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J. Rolph ,𝑐,∗ J. Wellhausen,𝑐 G. C. Blazey,𝑑 A. Dyshkant,𝑑 K. Francis,𝑑 V. Zutshi,𝑑 B. Bilki,𝑒

D. Northacker,𝑒 Y. Onel,𝑒 F. Hummer, 𝑓 F. Simon, 𝑓 K. Kawagoe,𝑔 T. Onoe,𝑔 T. Suehara,𝑔,5

S. Tsumura,𝑔 T. Yoshioka,𝑔 M.C. Fouz,ℎ L. Emberger,𝑖 C. Graf,𝑖 M. Wagner,𝑖 R. Pöschl, 𝑗

F. Richard, 𝑗 D. Zerwas, 𝑗 V. Boudry,𝑘 J-C. Brient,𝑘 J. Nanni,𝑘 H. Videau,𝑘 L. Liu,𝑙 R. Masuda,𝑙

T. Murata,𝑙 W. Ootani,𝑙 T. Takatsu,𝑙 N. Tsuji,𝑙 M. Chadeeva,𝑚 M. Danilov,𝑚 S. Korpachev𝑚

and V. Rusinov𝑚

𝑎II. Physikalisches Institut, Georg-August-Universität Göttingen,
Friedrich-Hund-Platz 1, Göttingen D-37077, Germany
𝑏DESY,
Notkestrasse 85, Hamburg D-22603, Germany
𝑐Universität Hamburg, Physics Department, Institut für Experimentalphysik,
Luruper Chaussee 149, Hamburg 22761, Germany
𝑑NICADD, Northern Illinois University, Department of Physics,
DeKalb, IL 60115, U.S.A.
𝑒Department of Physics and Astronomy, University of Iowa,
203 Van Allen Hall, Iowa City, IA 52242-1479, U.S.A.
𝑓 Institute for Data Processing and Electronics, Karlsruhe Institute of Technology,
27 Kaiserstr. 12, Karlsruhe D-76131, Germany
𝑔Department of Physics and Research Center for Advanced Particle Physics, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
ℎCIEMAT, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas,
Madrid, Spain

∗Corresponding author.
1Now at Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, U.S.A.
2Now at Instituto de Física Corpuscular, Parque Científico, Catedrático José Beltrán, 2, Paterna E-46980, Spain.
3Also at Institute of Physics, The Czech Academy of Sciences, Prague, Czech Republic.
4Deceased.
5Now at ICEPP, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of
Sissa Medialab. Original content from this work may be used under the

terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this
work must maintain attribution to the author(s) and the title of the work, journal citation
and DOI.

https://doi.org/10.1088/1748-0221/19/04/P04037

https://orcid.org/0000-0003-3283-1303
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/19/04/P04037


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
4
0
3
7

𝑖Max-Planck-Institut für Physik,
Föhringer Ring 6, Munich D-80805, Germany
𝑗CNRS/IN2P3, ĲCLab, Université Paris-Saclay,
Orsay 91405, France
𝑘Laboratoire Leprince-Ringuet (LLR), CNRS, École polytechnique, Institut Polytechnique de Paris,
Palaiseau F-91120, France
𝑙ICEPP, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

𝑚Affiliated with an institute that has signed the CALICE MOU

E-mail: jack.rolph@desy.de

Abstract: A neural network for software compensation was developed for the highly granular
CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal
event information from the AHCAL and energy information, which is expected to improve sensitivity
to shower development and the neutron fraction of the hadron shower. The neural network method
produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy
deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to
learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method
produced a linear detector response and outperformed a published control method regarding resolution
for every particle energy studied.

Keywords: Large detector-systems performance; Pattern recognition, cluster finding, calibration and
fitting methods; Performance of High Energy Physics Detectors
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1 Introduction

To fulfil the requirements for BSM physics searches and Higgs precision measurements at future
linear colliders, a challenging final state jet-energy resolution must be achieved. For example, for
ILC operating at

√
𝑠 = 0.5–1 TeV where typical di-jet energies for interesting physics processes will

be in the range 150–350 GeV, a jet energy resolution of 2.7% is crucial [1]. Particle Flow (PF) is a
method expected to provide this resolution, which relies upon accurate tracking of charged particles
in a jet, sophisticated event reconstruction techniques, and highly granular sampling calorimeters.
A prototype of such a detector is the CALICE Analogue Hadronic Calorimeter (AHCAL) [2], a
highly-granular steel-scintillator sampling calorimeter designed for PF, with 24 × 24 × 38 individual
silicon photomultiplier (SiPM) readout cells. The AHCAL is notable for its capacity to measure
a timestamp for each readout channel.

The response of calorimeters to hadrons may be described in terms of two components: an
electromagnetic component (produced mainly by 𝜋0/𝜂 → 𝛾𝛾, contributed to by nuclear 𝛾), and a
hadronic component, which contains the remainder of energy depositing processes. The calorimeter
response is therefore split into an EM response (𝑒) and a HAD response (ℎ). A hadron shower in a
calorimeter exhibits an EM-dominated, energy-dense ‘core’ that propagates over a short longitudinal
and lateral range and a HAD-dominated, diffuse energy-sparse ‘halo’, which propagates over a wider
range [3]. Part of the energy deposited by a hadron shower cannot be detected and is called ‘invisible
energy’ (e.g. neutrinos, nuclear binding energy losses). This fraction also experiences significant
stochastic fluctuations from event to event, contributing to the calorimeter’s resolution.

Compensation describes a method to equalise 𝑒 and ℎ, typically by attenuating 𝑒 and enhancing ℎ
to improve the resolution. Hardware compensation requires careful tuning of the composition and
proportions of active and passive material in the calorimeter. This method is difficult to implement in

– 1 –
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highly-granular calorimeters, which require a high degree of longitudinal segmentation. Therefore,
software compensation (SC) algorithms are employed for this purpose and operate by estimating the
EM fraction of a shower using information measured in each event.

Notably, spatial and temporal readout information available from highly granular calorimeter
may be used for SC:

• A highly granular calorimeter may be able to resolve the hadron shower core and halo, and
therefore exploit spatial energy density for SC;

• The number of neutrons produced in nuclear interactions is proportional, on average, to the
invisible energy of the hadron shower. Energy deposits from neutrons can be measured indirectly
using ionisation by recoil protons from neutron elastic scattering in hydrogenous active material
such as plastic scintillator and photons from neutron capture. Energy deposits induced by
neutrons are delayed by 10–100 ns in steel [4]. A time-sensitive hadron calorimeter may
therefore exploit temporal information for SC.

Artificial neural network models have already been demonstrated to effectively exploit the spatial
development of hadron showers to improve SC. For example, a study performed in ref. [5] demonstrated
that a deep neural network was found to improve the response of a highly-granular hadron calorimeter
system from 48%

/√︁
𝐸particle ⊕ 2.2% to 37%

/√︁
𝐸particle ⊕ 1% using simulation.

However, a similar studies performed for AHCAL in ref. [6] and ref. [7], which trained
and compared the performance of neural networks trained on both simulation and testbeam data,
demonstrated the inability of similar machine learning-based SC algorithms to interpolate or extrapolate
compensation from the limited hadron shower data typically available for such studies. In other
words, the SC algorithm was biased to the training range of energies and its binning. This result is
problematic as it indicates that experimental data of hadron showers from testbeams cannot be used
for training SC algorithms because the available samples are typically binned too coarsely in particle
energy to prevent bias. Additionally, while simulation samples can be used to train the algorithm
with no constraints on particle energy binning or ranges, producing and storing these samples is
presently an unsustainable practice. These limitations therefore motivate the development of an
algorithm that can exploit the spatial and temporal information from AHCAL and simultaneously
remain unbiased to the training particle energies.

In the presented study, a neural network is designed to perform SC on simulated 𝜋− hadron
showers observed with the AHCAL calorimeter, using the local spatial and temporal energy density
from the event rather than just the sum of energy deposits. This information was expected to reduce the
effect of stochastic fluctuations by improving sensitivity to the shower development and the neutron
fraction of the event. Importantly, the neural network was carefully structured to reduce the effect of
energy biasing. Finally, the neural network is compared to the standard CALICE SC method, which
is used as a control algorithm. The results are then compared.

2 Methods and tools

The CALICE AHCAL is a non-compensating, highly granular steel-scintillator calorimeter prototype
designed for future precision e+–e− collider experiments. It has a highly granular structure, consisting
of 24×24×38 plastic scintillator cells of 30×30×3 mm3 volume each, read out by SiPMs. These cells

– 2 –
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indicate the spatial position, magnitude and timestamp of energy deposition with a minimum operating
time resolution of up to 100 ps allowed by hardware. The detector has a depth of approximately 4.2
nuclear interaction lengths (𝜆I). The hadronic calorimeter is complemented by a steel-scintillator Tail
Catcher/Muon Tracker (TCMT) detector, composed of 320 extruded scintillator strips of 50 × 5 mm2

area packaged in 16 × 1 m2 planes interleaved between steel plates corresponding to an additional
depth of 1.1𝜆I [8]. The TCMT is used in this analysis to tag leakage. Pictures of the AHCAL
calorimeter are shown for reference in figure 1.

(a) (b)

Figure 1. Pictures showing the CALICE AHCAL at testbeam. Figure 1(a) shows the detector setup for a
testbeam performed in June 2018 at the Super Proton Synchrotron (SPS) at CERN, Geneva. Reproduced
from [10]. The Author(s). CC BY 4.0. Figure 1(b) shows the individual cells of the calorimeter wrapped in foil
to improve photon sensitivity.

Event information from AHCAL consists of the position of an active cell with an energy deposit
in the AHCAL cell matrix (𝐼hit, 𝐽hit, 𝐾hit), its energy in calibrated MIP units (𝐸hit), and its timestamp in
nanoseconds, relative to the time at which deposited energy in a given cell cross a pre-defined threshold
(𝑡hit). 𝐼hit and 𝐽hit indicate the lateral spatial position of an active cell relative to the longitudinal
axis of the calorimeter (𝐼hit, 𝐽hit ∈ [1, 24] in units of cell index). The longitudinal spatial position
(depth in layers) is denoted 𝐾hit (𝐾hit ∈ [1, 38] in units of layer index). The energy of an active
cell is denoted 𝐸hit, measured in Analogue-to-Digital counts, calibrated to the energy deposited by
a minimum ionising particle (MIP) in one cell [9]. 𝐸hit takes a value between a noise threshold at
0.5 MIP and the energy corresponding to the SiPM saturation value. The 𝑡hit is bounded between
the time at which the energy deposited in a given cell crosses a pre-defined threshold (normalised
to 0 ns in this study), smeared by the resolution, and the chosen gate length for the measurement
of an event. This study considers the ultimate 100 ps timing resolution for AHCAL. No charge
integration gate length is considered in this study. The calorimeter response is measured as the sum of
the individual active cells (hits) in an event, 𝐸sum =

∑event 𝐸hit. Additionally, the incident position
of a charged particle in lateral coordinates is reconstructed using four delay wire chambers (DWC)
of 10 × 10 cm2 size, which is denoted as a vector [𝐼track, 𝐽track] [10]. The track information is only
relevant to event selection cuts described in section 2.3.

The event coordinate system is changed for this study to reflect the shower development. The
energy-weighted mean spatial position of the hadron shower in spatial coordinates is defined as a
vector called ‘centre-of-gravity’ (CoG = [CoG𝐼 ,CoG𝐽 ,CoG𝐾 ]). Shower coordinates are converted

– 3 –
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to a cylindrical coordinate system, relative to the shower development axis, approximated by CoG𝐼
and CoG𝐽 , and the shower starting depth, 𝐾S. These coordinates act as the origin and are all measured
in cell units. 𝐾S is calculated using a algorithm described in ref. [11]. The transformation results
in three new spatial coordinates: a hit radius, 𝑅hit =

√︁
(𝐼hit − CoG𝐼 )2 + (𝐽hit − CoG𝐽 )2, measured

in cell units; a hit azimuthal angle, 𝜃hit = arctan2 (𝐽hit − CoG𝐽 , 𝐼hit − CoG𝐼 ), where arctan2 is the
2-argument arctangent, measured in radians, and a shower-start normalised depth, 𝐾hit −𝐾S, measured
in layer indices. This coordinate system is advantageous to an SC algorithm because the hadron
shower is represented independently of the lateral position of the hadron shower and the depth at
which the hadron shower starts, and performs well for square cells of equal transverse size as in
the AHCAL. Furthermore, these ‘natural’ spatial coordinates describe the lateral and longitudinal
development of hadron showers more effectively than the raw event readout coordinates. They can
be readily obtained from a well-separated single hadron shower. A visual representation of these
coordinates is shown in figure 2 for reference.

Figure 2. Diagram illustrating the modified event coordinate system. The red axes indicate the readout of the
event from the cells. The green axes indicate the transformed spatial co-ordinates, as defined from the lateral
centre-of-gravity, indicated by CoG𝐼 and CoG𝐽 and the shower starting position, indicated by the green plane
labelled 𝐾S.

2.1 Neural network SC method

SC models are typically trained indirectly since the 𝑒
ℎ

fraction is unknown in a hadron shower event
a priori. The resolution of a hadron calorimeter is described according to eq. (2.1):

𝑅 =
𝜎𝐸

𝐸
=
𝑎 ·

√
1 GeV√︁

𝐸particle
⊕ 𝑏, (2.1)

where 𝐸 and 𝜎𝐸 are the mean and standard deviation of the response of the calorimeter to a hadron of
𝐸particle, 𝑎 describes the combined sampling and stochastic fluctuations experienced by the calorimeter,
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𝑏 the quality of detector calibration, non-uniformities in signal collection, imperfections in calorimeter
construction etc. and ⊕ addition in quadrature. This equation is valid under the assumption of a
normally distributed response (i.e. full shower containment, negligible electronics noise). Since
reductions in 𝜎𝐸 imply compensation due to a smaller 𝑎, 𝜒2 minimisation of the calorimeter response
to the known particle energy may be used to optimise SC algorithms. However, the lack of available
high-statistics training samples for SC at finely binned particle energies tends to result in undesirable
network biases that limit the algorithms’ general applicability. In particular, two failure modes have
been observed [6]: the ‘classification’ of the hadron showers by calorimeter response and bias to
the training sample’s upper and lower particle energy bins.

In particular, two failure modes have been observed [6]: the ‘classification’ of the hadron showers
by calorimeter response and bias to the training sample’s upper and lower particle energy bins.

A neural network was, therefore, designed to overcome the limitations of energy biasing. The
proposed model was designed to use 𝑘 nearest-neighbour (𝑘-NN) clustering in the event coordinates
defined in section 2 to obtain a local estimate of the energy density in space and time. A 𝑘-NN
cluster consists of the 𝑘 nearest points in the event in space, energy and, optionally, time in terms
of the square Euclidean distance, d𝑠2 = d𝑅2

hit + d𝜃2
hit + d(𝐾hit − 𝐾S)2 + d log 𝐸hit

2 + d arcsinh𝑇hit
2,

where 𝑅hit and 𝐾hit − 𝐾S are in units of cells, 𝜃hit is in units of radians, 𝐸hit is in calibrated MIP units
and 𝑇hit is in units of nanoseconds. 𝐸hit and 𝑇hit are transformed to reduce the skewness of these
variables. In practice, 𝑘-NN clustering is implemented by calculating the negative square distance
matrix −𝐷2

𝑖 𝑗
= −|𝑥𝑖 |2 − |𝑥 𝑗 |2 + 2 ·

〈
𝑥𝑖 , 𝑥 𝑗

〉
where 𝑥𝑖 and 𝑥 𝑗 are co-ordinates of individual hits in space

and time with indices 𝑖 and 𝑗 , |𝑥𝑖, 𝑗 |2 is the absolute square of 𝑥𝑖 or 𝑥 𝑗 , and
〈
𝑥𝑖 , 𝑥 𝑗

〉
is the inner product

of 𝑥𝑖 and 𝑥 𝑗 . The columns of the 𝐷 matrix are ranked based on their proximity to zero. The top 𝑘
elements are then selected for each column, representing the 𝑘-nearest neighbours for each data point
or coordinate, and the vectors between the seed cell and the other cells of the cluster are calculated.
Each cluster is then treated independently by the neural network. With context to highly-granular
calorimetry, this gives the local energy density surrounding a particular active cell during an event.
The neural network was designed based on a single EdgeConv operator, introduced in the DGCNN
graph neural network model [12]. The value of 𝑘 was optimised using a hyperparameter scan to 20
cells using the Optuna hyperparameter optimisation tool [13], as shown in table 2. The most critical
aspect of the neural network design is that each cluster is operated independently of all others. This
choice means that the capacity for the neural network to learn biased features of the training data, such
as overall shower shape and energy, can be reduced compared to the case where the entire shower
is presented as an input. This is because the network is subjected only to the local distributions of
individual clusters of active cells. Therefore, the neural network is guided to infer the appropriate
attenuation or enhancement of the calorimeter response from the energy distribution local to each
active cell. The idea is summarised in figure 3.

The neural network architecture consists of five main stages:

• Input: the neural network is provided two inputs. The first is the hadron shower event in
natural/transformed coordinates ([𝑅hit, 𝜃hit, 𝐾hit − 𝐾S, log 𝐸hit, arcsinh 𝑡hit]), where arcsinh 𝑡hit
is optional. The second is the original cell energy, 𝐸hit, which is used to inform the neural
network of the output scale of the compensated energy;

• 𝑘-NN clustering: as a pre-processing step, the neural network clusters the input according to the
𝑘-nearest neighbours. Their positions and vectors to their positions are calculated;

– 5 –
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Figure 3. Illustration of a method for software compensation by which biasing may be reduced. First, a hadron
shower of 𝑁 measured with AHCAL, indicated by the event display on the left, is decomposed into a series of
𝑘-NN cluster graphs, indicated by the vertices and red lines, indicating edges between them, denoted G. At
this stage, each active cell is now represented as a local neighbourhood graph, G𝑖 , where 𝑖 is the index of the
active cell. This diagram shows the case of 9 nearest neighbours for illustration. Next, for each cluster, a SC
model, 𝑓SC (G𝑖; 𝜃), is applied to each graph, where 𝜃 is the vector of the model’s free parameters, producing
an attenuated or enhanced calorimeter response to the kernel cell of G𝑖 , 𝐸hit,𝑖 . The sum of the individually
weighted active cells is then the compensated calorimeter response, 𝐸sum.

• Addition of Dimensions: dimensions are added to each cluster using a module consisting of
three sequential 2D fully connected convolutional layers 12, 24, and 48 channels, each using
leaky ReLU activation and instance normalisation. Each new dimension is calculated using
information from the inputs.

• Processing: each cluster is passed through a deep processing layer consisting of 3 sequential
2D fully connected layers of 48 channels, each using leaky ReLU activation and instance
normalisation;

• Aggregation: the maximum, mean and variance of the cluster dimension 𝑘 are used as activation
values for the cluster. These are concatenated with the cell energies of the event for each
active cell;

• Output: the final layers of the network are five dense layers, with 1024, 512, 256 and 128
channels and leaky ReLU activation, with an output layer with ReLU activation such that
the final output is positive. All dense layers, excluding the final layer, include dropout with
probability 𝑝dropout. The neural network’s final output is a single value for each active cell: the
compensated hit energy, 𝐸hit. The sum of these outputs yields the total compensated response,
𝐸sum =

∑event 𝐸hit, where 𝐸hit ∈ [0,∞] is the compensated cell energy.

A diagram representing the proposed neural network architecture is shown in figure 4.

– 6 –
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Figure 4. Flowchart describing the proposed neural network for software compensation studied in this paper.
The black, blue and grey colour coding indicates inputs and outputs, convolutional operations and general
operations, respectively. Additional operations are specified on the right of the figure.

2.2 Control SC method

The neural network was compared to the standard CALICE software compensation method called
‘local software compensation’, abbreviated hereafter as the control method and based on [14], is
described as follows.

The 𝐸hit distribution is binned in deciles (i.e. a 10% probability for a given 𝐸hit to be found in any
one of the bins). For each bin, an appropriate function is used for weighting. A function approximator
in the form of a second-order Chebyshev polynomial of the first kind, 𝜔𝑏, is defined as a function
of the total calorimeter response, 𝐸sum, scaled using a factor, 𝑆, such that 𝐸sum/𝑆 ∈ [0, 1] for the
typical range of hadron shower energies of AHCAL (𝑆 = 150 GeV). 𝜔𝑏 has three free parameters,
𝛼b, 𝛽b and 𝛾b, shown in eq. (2.2):

𝜔𝑏 (𝐸sum; 𝑆, 𝛼b, 𝛽b, 𝛾b) = 𝛼b + 𝛽b ·
(
𝐸sum
𝑆

)
+ 𝛾b ·

(
2
(
𝐸sum
𝑆

)2
− 1

)
(2.2)

For each bin, the corresponding weight is calculated. Finally, the energy of each active cell
within the ranges defined by bin 𝑏 is scaled by 𝜔b:

𝐸sum =

bins∑︁
b
𝜔b · 𝐸sum,b (2.3)

The idea underlying this method is that higher hit energy bins attenuate the energy, as these are
more likely to belong to an EM fraction and enhance the energy of low energy bins, which are more
likely to belong to the HAD fraction. An example of the ten bins selected for the study is in figure 5.

2.3 Datasets and training

Both the neural network model defined in section 2.1 and the control model defined in section 2.2
were trained and validated using experimental data from a CALICE test beam study at the Super
Proton Synchrotron at CERN in 2018, as well as a simulated dataset thereof [10]. Each case was
studied separately. Both simulation and experimental data were used for training and evaluation,
respectively. The showers were produced from 𝜋− hadron shower events observed with the AHCAL
detector. The simulation of the particle showers was achieved using Geant4 [15], with a full
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Figure 5. Histogram showing the ten decile bin ranges of the 𝐸hit distribution, shown in alternating blue
and orange, are shown for the training sample. Each bin corresponds to a total cumulative probability of
10% (deciles). The bin ranges extracted from the training sample discussed in section 2.3 are shown in
appendix table 5.

detector simulation developed using DD4hep [16]. Additional effects, such as digitisation of the
analogue signal and reconstruction of the detector variables, were achieved for both simulation
and data using CALICESoft [17]. Timing information from experimental data is not studied due
to comparatively poor timing resolution arising from chip occupancy effects [18]. A MIP-to-GeV
calibration factor of 37.3 MIP/GeV was used [19]. The statistics of the training, validation and
test datasets are shown in table 1.

The following selection criteria were applied:

• events were required to be identified using the standard CALICE particle identification algo-
rithm [20] as being a single particle and having less than a 0.5% probability of being a muon to
exclude non-showering, ‘punch-through’ pions;

• the 38th layer of the AHCAL was ganged and required special treatment beyond the scope of
this paper. Therefore, energy deposits were considered up to the 38th layer of the calorimeter;

• events were selected to have a track position with a corresponding position inside the 24×24 cell
AHCAL front-face and a shower starting layer within layers 1–4 of the AHCAL calorimeter.
This choice was made to reduce the effect of longitudinal and lateral leakage on the experiment.
These cuts were supplemented by an additional cut using the TCMT detector to only measure
detector resolution and linearity. This criterion requires the TCMT to measure a total deposited
energy of less than 25 MIP (𝐸TCMT

sum < 25 MIP).
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Table 1. Table of events used for training SC models after all cuts except the TCMT cut (shown separately),
split into simulation and data and by the testing, training and validation samples and by data and simulation.
Hyphens indicate 0 events.

Type June 2018 SPS Testbeam Data Simulation
Sample Test Test Training Validation Test Test Training Validation

+ TCMT Cut + TCMT Cut
𝐸particle [GeV]

10 6472 6460 51773 6472 20826 20759 18719 2080
15 — — — — 21969 21685 — —
20 9439 9233 75512 9439 23425 22808 21428 2381
25 — — — — 25193 24124 — —
30 — — — — 24031 22491 21901 2434
35 — — — — 24154 22065 — —
40 10384 9378 83064 10383 24195 21513 23552 2617
45 — — — — 23122 19981 — —
50 — — — — 27337 22889 24737 2749
55 — — — — 19636 16009 — —
60 13223 10684 105782 13223 22503 17728 24479 2720
65 — — — — 25584 19374 — —
70 — — — — 18951 13889 24864 2763
75 — — — — 15827 11204 — —
80 11666 8298 93325 11666 22272 15165 25308 2813
85 — — — — 22577 14875 — —
90 — — — — 26210 16618 — —
95 — — — — 20605 12475 — —
100 — — — — 17706 10385 — —
105 — — — — 17410 9873 — —
110 — — — — 16885 9161 — —
115 — — — — 18706 9820 — —
120 10713 5829 85701 10713 18192 9239 — —
Total Events 61897 49882 495157 61896 497316 395131 184988 20557

The cuts applied, not including the TCMT cut, remove around two-thirds of the original sample.
For the measurement of resolution, eq. (2.1) cannot be used if the AHCAL experiences longitudinal
shower leakage since the distributions exhibit a skewed ‘leakage tail’ that deviates from the expected
Gaussian response distribution. To resolve this, the TCMT is employed to tag and cut events likely
to have a fraction of leakage energy.

Examples of the effect of the applied TCMT cut are shown in figure 6. Figure 6(a) indicate the cut
has practically no effect on 10 GeV hadron showers, while figure 6(b) show that the cut significantly
reduces the leakage tail of the response distribution of 80 GeV hadron showers, resulting in a more
Gaussian distribution at energies where leakage is observed. This means that the cut can be used
to evaluate the resolution of the AHCAL alone. Figure 6(a) and figure 6(b) indicate that the energy
distribution of simulation is similar to experimental data and that the cut has a similar effect on both.
This means the cut can be applied without modification in both cases.

As a caveat, this method is sub-optimal based on the considerable longitudinal leakage experienced
by the AHCAL and will bias the resolution measurement to more compact showers. Therefore,
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(a) (b)

(c) (d)

Figure 6. Figure 6(a) and figure 6(b) show the reconstructed AHCAL energy distributions of simulation
for 10 GeV and 80 GeV 𝜋− hadron showers. The dashed line and the solid line filled with dots indicate the
distribution before and after the applied TCMT cut. Figure 6(c) and figure 6(d) show response distributions of
the test samples of simulation and June 2018 Testbeam data before and after the cut was applied, for 10 GeV and
80 GeV 𝜋− hadron showers.

example distributions illustrating the performance of the software compensation without the TCMT
cut are supplied for reference in the results shown in section 3, to illustrate the performance of
each method without this bias.

The training and validation dataset consisted of simulated showers induced by 𝜋− hadrons
with 𝐸particle in the range 10–80 GeV, in increasing steps of 10 GeV. By contrast, the test sample
contained showers induced by 𝜋− hadrons with 𝐸particle in the range 10–120 GeV, in increasing steps
of 5 GeV. The finer granularity tests the hypothesis that the neural network is unbiased to the particular
particle energies used for training. Energies higher than the training range are included to test the
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generalisation capacity of each compensation method. The whole range of energies is used for
training and testing for experimental data.

Two independent networks based on the model defined in section 2.1 were trained on the training
dataset: one without timing information and one with timing information. The proposed compensation
networks were developed in PyTorch [21] and trained using the PyTorch Lightning research
framework [22] on an NVidia V100 GPU. The ADAM optimiser was used to improve the convergence
rate for ten epochs, with early stopping applied. The hyperparameters used for training are shown
in table 2. Hyperparameter optimisation was achieved by optimising the networks many times with
different starting parameters for 𝑘 , learning rate, and dropout probability. Varying 𝛽1 and 𝛽2 resulted
in large fluctuations in performance and were therefore held at nominal values. The hyperparameter
search program Optuna optimised the hyperparameters for 50 trials, with 10 epochs per trial. To
speed up convergence, trials were rejected using ‘median pruning’, where a trial is pruned if its best
intermediate result is worse than the median of intermediate results of previous trials at the same epoch.

Table 2. Table of hyperparameters used to train the neural network. In this table, 𝛽1 and 𝛽2 are the ADAM
momentum parameters, 𝑝dropout is the dropout probability, and 𝑘 is the number of nearest-neighbours per cluster.
The parameters were informed by a hyperparameter scan using Optuna [13].

Parameter Value

Learning Rate 9 × 10−5

Batch Size 32
𝛽1 0.9
𝛽2 0.999

𝑝dropout 0.15
𝑘 20

The control method was also trained using the training dataset, using the MIGRAD algorithm of the
Minuit minimisation program [23]. Weights were initialised such that the compensation algorithm
acted as the identity operator (𝛼b = 1, 𝛽b = 0, 𝛾b = 0).

The loss was chosen to be the 𝜒2 goodness-of-fit of the compensated energy to the known
particle energy of the hadron shower:

L(𝐸sum; 𝐸particle) =

(
𝐸sum − 𝐸particle

)2

𝐸particle · (1 GeV) (2.4)

The denominator in the loss arises from the uncertainty on the Poisson-distributed sampling
quanta measured by the calorimeter, 𝜎𝐸 = 𝑎 ·

√︁
𝐸particle. The dummy constant of 1 GeV in the

denominator is formally included to make the loss unitless and merely acts to scale the loss. The
mean loss was used for both implementations to optimise the control and network methods. For
the network methods, the epoch with the smallest mean loss of the validation sample was chosen
for further study. The control method was minimised with the MIGRAD algorithm until the mean
training loss reached convergence. The fitted values of 𝛼b, 𝛽b and 𝛾b are presented for simulation
and data in tables 5(a) and 5(b), respectively.
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The training process involved utilising both simulation and data training samples from table 1
to train separate models for both cases, which were subsequently evaluated on their respective test
samples. Consequently, the model’s performance was assessed independently for scenarios in which
it was trained with simulation or experimental data.

3 Results

Each trained model was applied to the test sample. The effect of compensation was then analysed
for each method.

3.1 Example response distributions

The normalised energy response distributions for the simulation and 2018 June Testbeam test samples
are shown in figures 7(a)–7(d) and figures 9(a)–9(d), with the TCMT cut applied. In simulation,
particle energies of 10 GeV, 35 GeV, 80 GeV and 120 GeV are shown. For the experimental data,
particle energies of 10 GeV, 40 GeV, 80 GeV and 120 GeV are shown. These samples are used for
measurement of the resolution. The corresponding distributions without the TCMT cut applied are
shown for the same particle energies in simulation and experimental data in figures 8(a)–8(d) and
figures 10(a)–10(d), respectively. The uncompensated sample and each sample after compensation
are shown in each plot. The Freedman-Diaconis rule was applied to each sample to determine the
bin width [24]. The Freedman-Diaconis rule is a commonly used binning rule that approximately
minimises the integral of the square difference between a histogram and a probability density function.

Simulation. Figure 7(a) shows that the neural network methods outperform the control method for the
10 GeV sample, indicated by the lower spread of the response than for the control method. Furthermore,
including timing information results in superior energy resolution, which is expected to play a more
significant role in compensation at this energy scale due to a larger HAD fraction on average than at
higher energies in the training sample, since the EM fraction increases on average with 𝐸particle [3].

Figure 7(b) shows the 35 GeV testing sample, which demonstrates that the neural network methods
produce a more linear response than the control method and are therefore able to interpolate to
samples between training energies.

Figure 7(c) and figure 7(d) show the 80 GeV and 120 GeV samples. The control method
outperforms the neural network methods for the 80 GeV sample. However, by examination of the
120 GeV sample, it becomes apparent that this result is due to the control method biasing to the
highest energy sample of the training dataset. This statement is justified by the artificial attenuation
of the response by the control method, resulting in a highly non-linear compensated response. By
contrast, the neural network methods preserve the linearity of response beyond the training range.
Therefore, it is demonstrated that the neural network model can extrapolate the compensation to
higher particle energies without further training.

Similar conclusions can be drawn for figures 8(a)–8(d), indicating that the bias from the TCMT
cut does not significantly influence the outcome of the experiment.

2018 testbeam data. As in figure 7, the neural network method produces superior resolution than
the control in figure 9(a)-figure 9(c) except for the 120 GeV sample shown in figure 9(d). This
observation can be attributed to the same energy biasing observed for the 80 GeV sample in simulation
in figure 7(c), as these are both the maximum energy bins of the training dataset in both cases.
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(a) (b)

(c) (d)

Figure 7. Example normalised histograms showing the calorimeter response before and after compensation
applied to the simulated test dataset of table 1, with the TCMT cut applied. Samples of 10 GeV, 40 GeV, 80 GeV
and 120 GeV hadron shower energies are shown. Blue lines indicate intrinsic calorimeter response, while
orange, green and red lines indicate the control, network without and network with time compensation methods,
respectively. 𝐸particle is indicated as a dashed purple line. The number of events shown in the title indicate the
corresponding sample sizes from table 1.

Again, similar conclusions can be drawn for figures 10(a)–10(d), once again indicating that the
bias from the TCMT cut does not significantly influence the outcome of the experiment.

3.2 Resolution and linearity of response

The energy response distributions for each particle energy in the testing dataset, with the TCMT cut
applied, were fitted with a normal distribution in the range of ±2 standard deviations from their mean.
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(a) (b)

(c) (d)

Figure 8. Example normalised histograms showing the calorimeter response before and after compensation
applied to the simulated test dataset of table 1, without the TCMT cut applied. Else, as in figure 7.

The location and scale parameters of the fit, 𝜇 and 𝜎, were used to estimate 𝐸 and 𝜎𝐸 of eq. (2.1) and
used to study resolution (𝜎/𝜇 vs. 𝐸particle) and linearity of response (𝜇/𝐸particle vs. 𝐸particle).

Simulation. Figure 11 and table 3 show the measured resolution, fitted with eq. (2.1), and the
corresponding fit values, respectively, for the simulation. The fitted values of 𝜇 and 𝜎 are presented
in tables 6(a) and 6(b), respectively.

The top subplot of figure 11 indicates the neural network methods offer improved linearity of
response compared to the control, which overestimates the hadron shower energy by up to 5% compared
to 2–3% for the network methods for most of the training range of particle energies. Moreover, the
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(a) (b)

(c) (d)

Figure 9. Example normalised histograms showing the calorimeter response before and after compensation
applied to the 2018 June Testbeam test dataset of table 1, with the TCMT cut applied. Samples of 10 GeV,
40 GeV, 80 GeV and 120 GeV hadron shower energies are shown. Else, as in figure 7.

network and control methods are demonstrated to interpolate within the training range. However, the
control method fails to reconstruct the particle energy entirely for particle energies greater than 80 GeV.

The middle and bottom subfigure of figure 11 demonstrates that for values of 𝐸particle up to around
60 GeV, the neural network methods produce superior compensation, indicated by the smaller value of
the compensated response to the intrinsic response. Beyond this range, the resolution produced by
the control method diverges from the model of eq. (2.1). For this reason, the fit to this method was
only performed for 𝐸particle in the range 10–60 GeV. By contrast, the uncompensated and network
methods show good agreement with the expectations of eq. (2.1) and were fitted over the entire range.
Table 3 shows the fitted parameters indicated by the dashed coloured lines of the middle subplot of
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(a) (b)

(c) (d)

Figure 10. Example normalised histograms showing the calorimeter response before and after compensation
applied to the 2018 June Testbeam test dataset of table 1, without the TCMT cut applied. Else, as in figure 7 and
the same selected energy samples as in figure 9.

figure 11. The uncompensated stochastic resolution for simulated 𝜋− hadron showers in AHCAL
is in agreement within 1–2% with the 𝑎 = 51.7 ± 0.97% obtained in the study of [19]. The neural
network solutions improve the calorimeter’s stochastic resolution, 𝑎, by comparison by around 3%
without timing information and a further 3% with timing information, compared to the control method.
This result demonstrates the improvement in SC performance that can be obtained from including
spatiotemporal energy density information. This result agrees with a similar study on the additional
benefit of using timing information for software compensation with AHCAL, which observed a 3–4%
improvement in energy resolution using timing information than energy density information only.
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Figure 11. AHCAL linearity of response and resolution using all methods under test applied to the test dataset
of simulation. Blue indicates intrinsic calorimeter response, while orange, green and red indicate the control,
network without and network with time compensation methods. Circles indicate energies used for both training
and testing, and cross markers indicate energies used for testing only. The top subplot shows the ratio of fitted
𝜇 to 𝐸particle, where the dashed purple line indicates 𝜇 = 𝐸particle The middle subplot shows the fitted 𝜎/𝜇,
where the dashed lines indicate fits of eq. (2.1). The bottom subplot indicates the ratio of the resolution of each
compensation method to the intrinsic response.

Table 3. Table of fitted parameters of eq. (2.1) to the training range of energies of simulation shown as dashed
lines in figure 11, except for the control method, which was fitted up to 60 GeV due to the effect of energy
biasing.

a [%] b [%] 𝜒2/𝑁𝐷𝐹
Uncompensated 49.5 ± 0.4 7.1 ± 0.1 4.6
Control 43.4 ± 0.1 0.0 ± 2.9 14.3
Network, No Time 40.2 ± 0.2 2.2 ± 0.1 0.9
Network, + Time 37.3 ± 0.2 2.4 ± 0.1 1.4

June 2018 testbeam data. Figure 12 and table 4 show the measured resolution, fitted with eq. (2.1),
and the corresponding fit values, respectively, for the data.Again, the fitted values of 𝜇 and 𝜎 are
presented in tables 7(a) and 7(b), respectively.
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Figure 12. AHCAL linearity of response and resolution using all methods under test applied to the test dataset
of 2018 CALICE Testbeam Data. Else, as in figure 11.

Table 4. Table of fitted parameters of eq. (2.1) to the training range of energies of 2018 CALICE Testbeam data
shown as dashed lines in figure 11. The whole range of available energies was used to fit.

a [%] b [%] 𝜒2/𝑁𝐷𝐹
Calorimeter Response 56.1 ± 0.7 6.1 ± 0.1 10.1
Control 51.5 ± 0.42 1.0 ± 0.3 38.9
Network, No Time 41.9 ± 0.5 4.0 ± 0.1 6.5

As for simulation, the uncompensated stochastic resolution for data 𝜋− hadron showers in AHCAL
is in agreement within 1–2% with the stochastic resolution term 𝑎 = 57.70 ± 1.06% obtained in [19].
Furthermore, the machine learning methods outperform the control method in resolution, resulting
in an improvement of the intrinsic stochastic resolution term of 9.3% and 12.2%, outperforming the
control method in both cases. The neural networks also reduce the constant resolution term by 2%,
indicating the neural networks perform some detector calibration and SC. A slightly superior linearity
of response overall is observed compared to the control method and less than for simulation.

3.3 Correlations with spatial and temporal information

The spatial and energy-temporal correlations of the hadron shower weighting are analysed to study
and compare the neutral network SC methods to the control SC method.
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Simulation. The results for the spatial correlations (𝑅hit, 𝐾hit −𝐾S) and energy-temporal correlations
(𝑡hit, 𝐸hit) are shown in the left and right columns of figure 13, respectively to the test sample. The
colour axes indicate the percentage change of the energy due to the SC algorithm as a function of
these variables. In this example, the tail-catcher cut was not applied.

Figure 13(a) demonstrates that the control method shows only a weak dependence on lateral and
longitudinal development of the shower, with attenuation occurring only within 𝑅hit ≲ 1 𝜌M (the
EM fraction) and enhancement beyond, with minor variation, as expected. By contrast, the neural
network methods attenuate and enhance the active cell energy with much stronger spatial dependence,
indicated by the broadening of the weighting profile with longitudinal shower development. Two
additional effects are observed for the network methods, shown in figure 13(c) and figure 13(e):
a tendency to enhance 𝐸hit in the region above the white dashed line, and to attenuate 𝐸hit where
𝑅hit ≲ 1𝜌M (close to the lateral shower core) and 𝐾S < 0 (before the shower start). These effects
are not present in figure 13(a) and must therefore be a consequence of including spatial information
in the models. These results suggest the network models have learned leakage correction and to
remove the energy deposited by minimum ionisation of the 𝜋− particle before showering. This result
demonstrates an improved capacity of the proposed model to learn the physical properties of the
hadron shower and detector compared to the control method.

Figure 13(b), figure 13(d) and figure 13(f) demonstrate that all methods are observed to attenuate
active cell energies above 5 MIP and enhance below that threshold, which is expected of all SC
algorithms. The binned structure of the weighting of the control method is visible in figure 13(b). By
contrast, the neural network methods in figure 13(d) and figure 13(f) indicate a continuous weighting
function has been learned. Furthermore, figure 13(f) indicates that the model with timing information
enhances the threshold for energy deposited in the order of several ns to several tens of ns. A reduction
in the threshold is observed after around 100 ns. These observations are consistent with the timescales
of the two main neutron energy-depositing processes discussed in section 2. Comparison of figure 13(f)
and figures 13(b)–13(d) indicate that this effect must be due to the inclusion of timing information
since no such effect is observed in the control or method without timing information.

CALICE 2018 testbeam Data. The spatial and energy-temporal correlations in figure 14 show the
same information for data as in figures 13(a)–13(d). The conclusions to this figure are the same as in
figure 13 for the control method and the neural network model trained only with spatial information.

4 Conclusion

A neural network method for performing software compensation was devised, trained, and tested
on simulation and 2018 June Testbeam data for the AHCAL calorimeter. The model used a local
energy density estimate to overcome biasing effects on particle energies.

The neural network model was trained with and without timing information with 100 ps timing
resolution and is compared to a control method after accounting for the effect of leakage compensation
learned by the networks. The neural networks yielded superior overall compensation and linearity of
response to the control method when trained on simulation, resulting in calorimeter resolutions of
40.2%

/√︁
𝐸particle⊕2.2% and 37.2%

/√︁
𝐸particle⊕2.4%. This corresponded to an absolute improvement

of stochastic resolution, 𝑎, by 9.3% and 12.2%, or a relative improvement of 19% and 25% respectively
compared to the uncompensated 𝑎. The absolute value of the constant resolution term, 𝑏, was also
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Average percentage change in active cell energy (𝐸hit) as a result of compensation as a function
of 𝑅hit and 𝐾hit − 𝐾S (left column, presented in units of Moliere radius from the lateral center-of-gravity,
𝜌M = 24.9 mm, and nuclear interaction length from the shower start, 𝜆𝐼 = 237.1 mm, respectively), and 𝐸hit
and 𝑡hit (right column, presented in units of MIP and ns, respectively) for simulation. Each row indicates the
control and network methods without and with timing information in that order. The colour axis indicates the
percentage change, where blue regions indicate where the energy has been attenuated, and green through red
shows where the energy has been enhanced. White space indicates no data available. Regions of interest are
labelled accordingly for reference. The values of 𝜏slow and 𝜏fast were taken from [4].
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(a) (b)

(c) (d)

Figure 14. Average percentage change in active cell energy (𝐸hit) as a result of compensation as a function of
𝑅hit and 𝐾hit − 𝐾S as in figure 13 for CALICE 2018 Testbeam Data. Else, as in figure 13.

found to reduce by around 5% or a relative improvement of 70% compared to the uncompensated 𝑏 in
both models. This result indicates that the model was capable of detector calibration. Both methods
obtained a linearity of response within around 2–3% of the particle energy. This result should be
interpreted with the caveat of the bias caused by the TCMT cut. Nonetheless, improved performance
was observed compared to the control using the neural network method without the TCMT cut.

The network without timing information trained on CALICE 2018 SPS testbeam data achieved a
comparable resolution of 41.9%

/√︁
𝐸particle ⊕ 4.0%. This corresponded to an absolute improvement

in 𝑎 by 14.2% or a relative improvement of 25%. Additionally, this corresponded to an absolute
improvement in 𝑏 by around 2% or a relative improvement of around 35%. This result indicates that
the model can be trained with limited experimental data to a similar level as simulation. Additionally,
the control method was observed to bias to the training range of particle energies. In contrast,
the neural network method was demonstrated to both interpolate and extrapolate compensation to
energies not used for training.
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The networks’ learned method of applying SC agreed with expectations: the attenuation of
high-energy (EM) deposits and the enhancement of low-energy deposits. However, the network method
was found to apply SC differently depending on the stage of the shower development, both in space
and in time, the former of which included an effect consistent with longitudinal leakage correction
and the latter of which was found to agree with expectations of a bi-exponential time distribution
for energy deposits in a steel-scintillator calorimeter expected from ref. [4]. Similar behaviour was
observed in the independent neural network applied to data.

In summary, this study indicates that superior resolution can be obtained in highly granular
calorimeters using spatiotemporal event information and neural networks and that careful model
design can overcome the limitations of previous data-driven compensation techniques by reducing
energy biasing. The validation of the method as part of a full Particle Flow analysis represents
a promising future study.

A Supporting tables

Table 5. Bin ranges and weights obtained for the control method described in section 2.2. Table 5(a) shows the
values obtained for simulation. Table 5(b) shows the values obtained for CALICE June 2018 SPS Testbeam data.

(a)

Simulation
Bin Range [MIP] 𝛼b 𝛽b 𝛾b

0.500–0.735 −1.120 13.000 −5.499
0.735–1.002 −0.372 5.134 −4.727
1.002–1.272 −0.350 2.523 −3.054
1.272–1.585 −0.460 1.999 −1.587
1.585–2.013 −0.290 1.634 −1.012
2.013–2.631 0.022 1.275 −0.949
2.631–3.584 0.218 1.138 −0.632
3.584–5.328 0.387 0.658 −0.457
5.328–9.881 0.579 0.259 −0.281
9.881–∞ 0.788 −0.057 0.043

(b)

June 2018 SPS Testbeam Data
Bin Range [MIP] 𝛼b 𝛽b 𝛾b

0.500–0.770 −9.252 17.803 −16.047
0.770–1.059 −8.529 14.738 −11.256
1.059–1.351 −0.046 1.902 −1.797
1.351–1.698 1.283 −0.379 0.057
1.698–2.179 2.104 −1.325 0.720
2.179–2.875 1.025 0.384 −0.235
2.875–3.957 1.271 0.001 0.104
3.957–5.847 1.325 0.013 0.304
5.847–10.930 0.814 0.426 0.021
10.930–∞ 0.148 1.032 −0.243
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Table 6. Table of 𝜇 and 𝜎 from the Gaussian fits performed on the SC models trained on simulation. Tables 6(a)
and 6(b) show the 𝜇, 𝜎 and their errors as a function of particle energy for each studied method applied to the
testing dataset. CR, CTRL, NN,-Time and NN,+Time are abbreviations of: ‘intrinsic calorimeter response’,
‘control method’, ‘neural network, without time’ and with ‘neural network, with time’, respectively.

(a)

Simulation
𝜇 d𝜇

CR CTRL NN,-Time NN,+Time CR CNTRL NN,-Time NN,+ Time
𝐸particle [GeV]

10 9.214 10.281 10.157 10.502 0.013 0.012 0.010 0.009
15 14.257 15.754 15.186 15.512 0.016 0.014 0.012 0.012
20 19.401 21.307 20.326 20.692 0.019 0.015 0.013 0.013
25 24.516 26.796 25.569 25.954 0.021 0.016 0.015 0.014
30 29.330 31.990 30.661 31.136 0.024 0.018 0.017 0.016
35 34.230 37.160 35.688 36.247 0.027 0.020 0.018 0.018
40 39.199 42.311 40.656 41.368 0.030 0.021 0.019 0.019
45 44.148 47.374 45.651 46.468 0.034 0.023 0.022 0.021
50 49.119 52.316 50.526 51.466 0.034 0.022 0.021 0.021
55 54.066 57.157 55.555 56.583 0.043 0.028 0.027 0.026
60 59.033 61.864 60.352 61.535 0.045 0.027 0.026 0.026
65 64.099 66.412 65.148 66.438 0.045 0.026 0.026 0.026
70 69.145 70.838 69.905 71.315 0.057 0.031 0.032 0.032
75 74.178 74.941 74.578 76.158 0.066 0.035 0.037 0.037
80 79.235 78.972 79.270 80.992 0.061 0.029 0.033 0.032
85 84.506 82.781 83.912 85.779 0.064 0.029 0.034 0.033
90 89.475 86.410 88.615 90.592 0.063 0.027 0.033 0.032
95 94.663 89.725 93.157 95.238 0.078 0.031 0.039 0.039
100 99.804 92.822 97.723 99.969 0.088 0.034 0.044 0.044
105 104.983 95.722 102.337 104.685 0.095 0.032 0.047 0.047
110 110.224 98.338 106.931 109.416 0.103 0.031 0.050 0.049
115 115.567 100.585 111.316 113.949 0.106 0.028 0.050 0.049
120 120.000 102.513 115.874 118.618 0.010 0.028 0.053 0.052

(b)

Simulation
𝜎 d𝜎

CR CTRL NN,-Time NN,+Time CR CNTRL NN,-Time NN,+ Time
𝐸particle [GeV]

10 1.625 1.474 1.311 1.255 0.012 0.011 0.009 0.008
15 2.112 1.792 1.651 1.579 0.015 0.012 0.010 0.010
20 2.512 2.027 1.873 1.795 0.018 0.013 0.011 0.011
25 2.905 2.294 2.128 2.016 0.019 0.013 0.013 0.012
30 3.320 2.527 2.351 2.258 0.021 0.015 0.014 0.013
35 3.754 2.779 2.576 2.487 0.023 0.016 0.015 0.015
40 4.151 2.905 2.721 2.642 0.025 0.017 0.016 0.015
45 4.518 3.081 2.961 2.858 0.027 0.018 0.018 0.018
50 4.946 3.192 3.092 3.023 0.027 0.018 0.017 0.017
55 5.253 3.316 3.296 3.182 0.033 0.022 0.023 0.022
60 5.701 3.335 3.416 3.328 0.034 0.021 0.022 0.022
65 6.059 3.406 3.598 3.510 0.034 0.021 0.022 0.022
70 6.406 3.367 3.695 3.628 0.044 0.023 0.027 0.027
75 6.736 3.376 3.840 3.751 0.051 0.027 0.032 0.032
80 7.174 3.297 3.917 3.862 0.046 0.022 0.027 0.027
85 7.540 3.167 4.021 3.925 0.048 0.021 0.029 0.029
90 7.843 3.078 4.111 4.042 0.045 0.020 0.028 0.028
95 8.297 2.943 4.237 4.141 0.059 0.021 0.033 0.034
100 8.553 2.803 4.354 4.318 0.062 0.023 0.036 0.037
105 9.049 2.741 4.425 4.422 0.071 0.023 0.039 0.039
110 9.341 2.664 4.588 4.488 0.078 0.024 0.044 0.041
115 9.832 2.603 4.666 4.643 0.081 0.026 0.040 0.041
120 10.000 2.493 4.813 4.742 0.027 0.028 0.045 0.044
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Table 7. Table of 𝜇 and 𝜎 from the Gaussian fits performed on the SC models trained on data. Tables 7(a), 7(b)
𝜇, 𝜎 and their errors as a function of particle energy for each studied method applied to the testing dataset. Else,
as in table 6. ‘Sim’ and ‘Data’ indicate models trained on simulation and 2018 Testbeam data, resepctively.

(a)

June 2018 SPS Testbeam Data
𝜇 d𝜇

CR CTRL NN,-Time NN,-Time CR CNTRL NN,-Time NN,-Time
𝐸particle [GeV] (Data) (Data) (Sim) (Data) (Data) (Sim)

10 9.334 10.113 10.190 9.949 0.025 0.022 0.018 0.019
20 18.947 20.213 20.244 19.048 0.031 0.026 0.025 0.024
40 38.623 41.278 41.355 38.301 0.047 0.038 0.036 0.033
60 58.501 63.090 62.503 57.331 0.060 0.047 0.043 0.038
80 78.246 84.081 82.514 75.260 0.081 0.062 0.058 0.049
120 114.690 117.347 119.229 107.497 0.121 0.080 0.092 0.077

(b)

June 2018 SPS Testbeam Data
𝜎 d𝜎

CR CTRL NN,-Time NN,-Time CR CNTRL NN,-Time NN,-Time
𝐸particle [GeV] (Data) (Data) (Sim) (Data) (Data) (Sim)

10 1.733 1.554 1.363 1.407 0.023 0.019 0.016 0.016
20 2.614 2.260 2.151 2.094 0.029 0.023 0.022 0.021
40 4.124 3.456 3.198 3.012 0.042 0.033 0.031 0.029
60 5.702 4.526 4.202 3.750 0.050 0.039 0.036 0.031
80 7.058 5.093 5.144 4.381 0.065 0.046 0.048 0.040
120 8.734 5.203 6.611 5.532 0.096 0.062 0.077 0.059
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