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Abstract

Among women, breast cancer is the most prevalent cancer type. 24.5% out of the total number of cancer

cases were diagnosed as breast cancer worldwide in 2020. While digital mammography plays a crucial

role in the early diagnosis of breast cancer, many tumors are not detectable in mammography, for in-

stance, in women with dense breast tissue. Lesions that are not evident on mammography can frequently

be found with contrast-enhanced magnetic resonance imaging (CE-MRI). MRI-guided biopsy must be

used to further evaluate suspicious lesions. However, MRI-guided biopsy is costly, time-consuming, and

not universally accessible. This thesis proposes a novel method for a matching tool between MRI and

spot mammograms. The goal is to enable X-ray guided biopsy when the lesion is only visible in MRI

by transferring its location onto mammographic spot projections. Two registration methods are used:

a biomechanical model based registration between MRI and full X-ray mammograms, followed by an

image based registration between full and spot mammograms. A virtual deformation of the breast rel-

ative to the deformation of X-ray mammography is estimated using a patient-specific breast geometry

of 3D MRI. To generalize robustness and accelerate the workflow, two novel methods have been de-

veloped and evaluated: segmentation of breast MRI tissue using unsupervised learning and simulation

of the mechanical response of breast tissue under mammographic compression using machine learning.

The image based registration method entails three steps: preprocessing, identifying a region of interest

(ROI) from the full X-ray mammogram, and then applying image similarity metrics between the ROI

and the spot mammogram while sliding the spot mammogram incrementally over the ROI. To robus-

tify the proposed method, multiple image similarity metrics are combined and clustered using K-means.

The proposed methods have been tested using 51 patients from the Medical University of Vienna. The

first and second registration methods achieved a median target registration error (TRE) of 31.8mm and

20.2mm, respectively. The number of overlapping annotations of lesions after registration is 22 and 26

cases, respectively. For the accumulative registration of the two methods, the median TRE achieved is

35.6mm and 18 cases have an overlap between the two annotations. Characteristics that correspond to

the variations in datasets have been used to analyze the three methods. It is found that the methods work

better with cranio caudal (CC) views and with the location of lesions in the center of the breast. Clinical

applicability has been tested by simulating stereotactic biopsy. 11 and 14 datasets could be clinically

used when extracting 12 and 24 specimens with a standard needle biopsy, respectively. For the analyzed

dataset, the proposed methods showed not only promising results but also the feasibility of clinical use.

In the future, the method could enable performing the widely accessible and less expensive X-ray guided

biopsy even if a suspicious lesion can only be seen in MRI.
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Zusammenfassung

Bei Frauen ist Brustkrebs die am weitesten verbreitete Krebsart. 24.5% aller Krebsfälle weltweit wur-

den im Jahr 2020 als Brustkrebs diagnostiziert. Die digitale Mammographie spielt zwar eine entschei-

dende Rolle bei der Früherkennung von Brustkrebs, aber viele Tumore sind in der Mammographie nicht

zu erkennen, zum Beispiel bei Frauen mit dichtem Brustgewebe. Läsionen, die in der Mammographie

nicht erkennbar sind, können häufig mit der kontrastverstärkten Magnetresonanztomographie (CE-MRT)

der Brust gefunden werden. Zur weiteren Abklärung verdächtiger Läsionen muss eine MRT-gesteuerte

Biopsie durchgeführt werden. Die MRT-gestützte Biopsie ist jedoch kostspielig, zeitaufwändig und nicht

überall zugänglich. In dieser Arbeit wird eine neuartige Methode zur Registrierung von MRT und Spot-

Mammogrammen vorgeschlagen. Ziel ist es, eine röntgengeführte Biopsie zu ermöglichen, wenn die

Läsion nur im MRT sichtbar ist, indem ihre Lage auf mammographische Spot-Projektionen übertra-

gen wird. Es werden zwei Registrierungsmethoden verwendet: eine auf einem biomechanischen Modell

basierende Registrierung zwischen MRT- und Vollbild-Röntgenmammogrammen, gefolgt von einer bild-

basierten Registrierung zwischen Vollbild- und Spot-Mammogrammen. Eine virtuelle Verformung der

Brust relativ zur Verformung der Röntgenmammographie wird anhand einer patientenspezifischen Brust-

geometrie aus dem MRT-Volumen geschätzt. Zur Verallgemeinerung und Beschleunigung, wurden zwei

Neuerungen entwickelt und evaluiert: die Segmentierung von MRT-Brustgewebe durch unüberwachtes

Lernen und die Simulation der mechanischen Verformung von Brustgewebe unter mammographischer

Kompression durch maschinelles Lernen. Die bildbasierte Registrierungsmethode umfasst drei Schritte:

Vorverarbeitung, Identifizierung einer Region von Interesse (ROI) aus dem vollständigen Röntgenmam-

mogramm und anschließende Anwendung von Bildähnlichkeitsmetriken zwischen der ROI und dem

Spot-Mammogramm, während das Spot-Mammogramm schrittweise über die ROI geschoben wird. Um

die vorgeschlagene Methode robust zu gestalten, werden mehrere Bildähnlichkeitsmetriken kombiniert

und mit Hilfe von K-means geclustert. Die vorgeschlagenen Methoden wurden an 51 Patienten der

Medizinischen Universität Wien getestet. Die erste und zweite Registrierungsmethode erreichten einen

medianen Zielregistrierungsfehler (TRE) von 31.8mm bzw. 20.2mm. Die Anzahl der sich überschnei-

denden Läsionen nach der Registrierung beträgt 22 bzw. 26 Fälle. Bei der kumulativen Registrierung

der beiden Methoden beträgt der mittlere TRE 35.6 mm, und in 18 Fällen überschneiden sich die bei-

den Annotationen. Zur weiteren Analyse der Methoden wurde eine Korrelation des TRE mit Merk-

malen durchgeführt, die verschiedene Variationen der Datensätze abbilden. Es hat sich gezeigt, dass

die Methoden bei kranio-kaudalen (CC) Ansichten und bei der Lokalisierung von Läsionen in der Mitte

der Brust besser funktionieren. Die klinische Anwendbarkeit wurde durch Simulation einer stereotak-
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Zusammenfassung

tischen Biopsie getestet. 11 bzw. 14 Datensätze konnten klinisch verwendet werden, wenn 12 bzw. 24

Proben mit einer Standard-Nadelbiopsie entnommen wurden. Für den analysierten Datensatz zeigten die

vorgeschlagenen Methoden nicht nur vielversprechende Ergebnisse, sondern auch die Machbarkeit der

klinischen Anwendung. In Zukunft könnte die Methode die Durchführung der weithin zugänglichen und

kostengünstigeren röntgengeführten Biopsie ermöglichen, selbst wenn eine verdächtige Läsion nur im

MRT zu sehen ist.
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1 Introduction

1.1 Motivation

Cancer is the second most common cause of death in the United States and globally a major public health

concern. The United States has seen 1,918,030 new cancer cases and 609,360 cancer-related deaths in

2022 (170). In 2020, 6.9% of all cancer deaths were caused by breast cancer worldwide for women and

men (181; 57). For women, 15.5% have died in 2020 (57). Investing in more focused cancer control

activities and improving early diagnosis and treatment will enable a decrease in cancer mortality (170).

Despite the progress in diagnosis and therapy, breast cancer also remains one of the leading causes of

cancer-related deaths. In Europe, 23.5% were diagnosed with breast cancer, and 20.7% died in 2020

(5; 57).

For early diagnosis, several imaging techniques are available for diagnosing breast cancer, such as Mag-

netic Resonance Imaging (MRI), X-ray mammography, Digital breast tomosynthesis (DBT), Computed

tomography (CT), and Ultrasound (US) images. The development of medical imaging modalities leads

scientists to implement new medical image-processing algorithms.

The typical clinical workflow for a lesion is screening first using one of the mentioned modalities, and

then, based on the degree of the lesion, a follow-up is needed or a biopsy is required. One important

requirement is that if screening the breast is done by a specific modality, for example, an X-ray, for

further follow-up or a biopsy to be taken, it should also be done in X-ray. The same goes for other

modalities (171; 128).

Among the existing clinical imaging modalities, breast MRI has the highest sensitivity for detecting

breast cancer and is essential for breast imaging practice (114; 4; 81). It is considered a functional

technique (114). Although Contrast-enhanced magnetic resonance imaging (CE-MRI) of the breast has

a variable specificity, it is very sensitive for the diagnosis of breast cancer (4). MRI has the potential to

detect lesions that are not evident using conventional imaging techniques like X-ray mammography or

US (81; 174), especially for dense breasts. Additionally, detected lesions by MRI can be problematic in

the clinical management of breast disease. As malignancy is found in approximately every second to a

third of such lesions, further workup is necessary (81; 174). These lesions may be either followed up or

a biopsy is required based on the degree of suspicion (113). While US can be used to identify and biopsy

the suspicious lesion identified by MRI and it may help to make a pre-surgical wire-localization easier

(84), a recent meta-analysis made by a team of the Medical University of Vienna showed a limitation of

US which has a user-dependent heterogeneity regarding lesion detection rates ranging between 22.6%

1



1 Introduction

Figure 1.1: Suspicious breast lesions detected by MRI. Top row/solid lines: traditional workflow using costly
MRI-guided biopsy. Bottom row/dashed lines: proposed new workflow by image registration (160).

and 82.1% (179). In addition to that, the probability of non-detected lesions or those identified by second

look US leading to cancer is up to 54% of these cases (179; 30). In these specific cases, an MRI-guided

biopsy is essential (179). MRI-guided biopsies, however, are costly and require a long time to do the

procedures, typically in the range of 60 to 90 minutes, and a recent survey showed a significant shortage

of MRI-guided breast interventions worldwide (43). A lack of MRI-guided breast interventions is a major

limitation for a wider introduction of CE-MRI in clinical practice (96). Without them, MRI findings

cannot be translated into a clinical workflow. That is why a lack of MRI-guided breast interventions is

considered a serious problem.

1.2 Thesis Topic

The goal of this thesis is to transfer lesions that are detected by MRI to close-up stereotactic biopsy, so-

called spot mammograms, which are used for X-ray guided biopsy so that a cheap and widely available

lesion workup with X-ray guided biopsy is possible for lesions which are only visible in MRI. To my best

knowledge, this is considered a novel approach for a clinical workflow. This transfer will be investigated

by developing a matching tool between MRI and spot mammograms as shown in Figure 1.1. Instead

of using MRI-guided biopsy, the position of a lesion only visible in MRI will be transferred to X-ray

guided biopsy by a model based image registration, allowing an X-ray guided lesion workup. With this

method, first, the probability of detecting lesions will be more available. Second, the cost of a biopsy

will decrease by 50%. Third, it will reduce a lot of time which is typically in the range from 20 to 30

minutes for lesion workup (82). Fourth, the problem of a lack of MRI-guided breast interventions will

be solved. Three opening questions from a clinical point of view have been raised:

(a) Is transferring lesions visible in MRI to spot mammograms applicable?

(b) What are the methods that lead to the current best registration accuracy?

(c) What are the meaningful evaluation methods in order to allow radiologists to estimate whether the

proposed workflow can be integrated into clinical practice?
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1.2 Thesis Topic

1.2.1 Aim

The clinical challenge raised above is considered an image inter-modality registration problem for patient-

specific matching of MRI and spot mammograms. The general aim of this work is to develop, evaluate,

and clinically test a registration method between MRI and spot mammogram images taken during X-

ray-guided biopsy. There are three sub-aims: test and adapt the methods taking into consideration the

huge variance between clinical datasets, explore methods of acceleration keeping the same accuracy in

order to integrate into the clinical workflow, and find meaningful evaluation methods for knowing if the

methods could be integrated into clinical practice.

1.2.2 Challenges

The challenges are the significant differences in modalities regarding dimensions, view of the breast, pa-

tient positioning, compression state, physical basis, and image resolution. Each modality has a different

imaging setup. For Magnetic Resonance (MR) images, 3D images of the two breasts in a prone position

are acquired with the breast subject to gravity in an uncompressed state as shown in Figure 1.2 (left).

Different amounts of tissues may be imaged. MRI usually has pixel sizes between 0.5mm to 2mm. For

full mammograms, a 2D image of one side of the breast in the upright standing position is acquired as

shown in Figure 1.2 (middle). The breast is compressed up to 50% between two parallel compression

plates in order to enhance image contrast. X-rays pass through the breast to a detector positioned on the

opposite side. Full X-ray mammograms provide high resolution with a pixel size of less than 0.1mm.

Spot mammograms are taken from an X-ray-guided biopsy device in which the patient lies in a prone

position or stands upright (35) as shown in Figure 1.2 (right). A 2D image of a subset from the breast

of size 50×50 mm with a detailed view of the compressed breast is taken. Spot mammograms provide

resolution with a pixel size of range between 0.04mm to 0.08mm. Due to the different physical basis of

MRI and X-ray, the breast tissue is imaged with different contrast and grey value mapping.

1.2.3 Proposed Method

There may be three ways to transfer the lesion visible in MRI to spot mammograms. The first method

is the registration between the full set of MRIs, full X-ray mammograms, and spot mammograms in a

two step approach. It consists of two steps of registration methods between MRI and full X-ray mammo-

grams followed by a registration between full X-ray and spot mammograms which will be discussed in

detail in this thesis in chapter 3 and 4, respectively. The second method is the registration between MRI,

and spot mammograms in a two step approach as well. It consists of the same two steps of registration

methods but instead of using a full X-ray mammogram as an intermediate modality, it uses a synthetic

X-ray (projected deformed MRI) created from the biomechanical model. The third method is the regis-

tration between MRI and spot mammograms in one step by creating synthetic spot mammograms. The

advantages and disadvantages of each method will be discussed in detail in chapter 9.
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1 Introduction

Figure 1.2: Two step image registration between MRI and spot mammograms for X-ray guided stereotactic breast
biopsy. To register MRI (left) with full view mammograms (middle), a biomechanical model based registration is
used. To register spot mammograms (right) with full view mammograms (middle), an image based registration is
applied. Yellow rectangles indicate the marked lesions in all modalities by an expert radiologist (160).

As a proof of principle, the proposed method is a two step registration using three modalities MRI, full

X-ray, and spot mammograms as shown in Figure 1.2.

First, a biomechanical model based registration is used for aligning the lesion detected by MRI with the

full X-ray mammogram.

It estimates a breast configuration relative to its form in X-ray mammography using patient-specific

breast geometry as obtained with MRI in 3D. The deformation applied virtually to the MRI is simulated

by a biomechanical model to account for non-linear deformation and incompressible tissue behavior dur-

ing the deformation process for the breast (160). The method originates from an earlier work presented

by Ruiter et al. and Hopp et al. (156; 158; 76). It will be discussed in detail in Chapter 3. Some ques-

tions are raised in this method in order to achieve an accurate, robust, and automatic simulation of the

biomechanical behaviour of the female breast:

- Is it applicable to have accurate, robust, and automatic biomechanical modeling to cover the clini-

cal variability?

• With robust segmentation: fatty, glandular, and muscular tissue

• With a good quality mesh for convergence

• Leading to a stable biomechanical model

• Optimization of parameters to adapt patient-specific characteristics and uncertainties in meta-

data such as compression thickness which could have an error of 5mm range (201), Young’s

modulus for fatty and glandular tissues, positioning of compression plates, and rotation

around three axis

• Reasonable computation time for clinical applicability
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1.3 Thesis Layout

Second, the localization of the lesion in the full X-ray mammogram is transferred to the spot mammo-

gram, which is taken during an X-ray guided biopsy, using an image based registration which will be

discussed in detail in chapter 4.

Some questions are raised in this method in order to achieve an accurate, robust, and automatic image-

based algorithm regardless of the difference in imaging situation and the deformation of the female

breast:

- What is the correct image transformation to be applied?

- How to adapt the difference in contrast and grey value mappings?

- Which methods of image similarity metrics are to be used?

- How to select the most robust image similarity?

- How to combine the most robust image?

- Optimization: regarding computation time and accuracy

1.3 Thesis Layout

This thesis is composed of nine chapters. Chapter 2 gives an overview of three modalities and a general

view of the image registration methods. Then, a lot of terms for machine learning and deep learning al-

gorithms are explained from which some blocks are used in the proposed registration method proposed.

Chapter 3 gives a detailed literature review of the biomechanical model based registration followed by

applying the methods of biomechanical model based registration to register between MRI and X-ray

mammogram. Chapter 4 gives a detailed explanation of intensity-based methods followed by the pro-

posed methods of image based registration between full X-ray mammograms and spot mammograms.

Chapter 5 discusses the variance and the characteristics of the clinical datasets received from the Med-

ical University of Vienna. Chapter 6 presents the evaluation methods used for testing the proposed

methods. Chapter 7 presents and discusses the results of each method separately and then discusses

the accumulative registration of the two methods. Additionally, it investigates if the accuracy of each

method separately or the accumulative registration of the two methods correlates with the characteristics

of the clinical datasets. Chapter 8 discusses how it could be evaluated for clinical use. Then afterward,

it presents how many datasets could be clinically used based on this evaluation. Chapter 9 concludes

the contribution of this thesis and the results achieved. Several suggestions for future work are also

presented.
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2 Background

This chapter introduces the challenges and the difference in imaging situations between the three main

modalities: MRI, full X-ray mammograms, and spot mammograms, followed by a broader view of the

basics of image registration methods and concepts needed to be known for applying machine and deep

learning algorithms for optimization or accuracy purposes.

2.1 Magnetic Resonance Imaging

Breast MRI has been first introduced in 1980s by Heywang-Köbrunner et al. (72) and Kaiser and Zeitler

(86). It is considered an essential modality in addition to X-ray mammography and US images for early

breast diagnosis. MRI is considered to be a non-invasive technology (132).

Strong magnetic fields are used in MRI scanners to stimulate the hydrogen nuclei (protons) found in

human body tissue, evaluate their responses, and provide images of the body’s organs (132; 50). Spin

is an inherent characteristic of protons (107). The patient is first temporarily exposed to energy from

an oscillating magnetic field at a resonance frequency adequate for the body’s protons. These protons

tend to align in the same phase of the magnetic field. Then radiofrequency (RF) pulses perpendicular to

the magnetic fields are generated which enforce the proton to move against its nature by either 90◦ or

180◦. After the RF pulses are turned off, protons tend to emit energy to return to their equilibrium and to

realign again with the magnetic field. A receiving coil measures the RF signal that these protons release

and transforms them into images (50). The emitted signal is affected by the relaxation period of protons,

which is the amount of time required to allow the proton to return to equilibrium. It can therefore be

utilized to identify the contrast between various molecules, and consequently, the tissue types (132).

For getting images of diagnostic quality, a specific breast coil must be used (114). The recommended

minimum number of channels for a breast coil is four. More channels on a coil typically result in a

higher Signal-to-Noise Ratio (SNR). Additionally, the employment of more parallel imaging factors is

made possible by having more channels, which helps speed up the acquisition of images (114).

Numerous parameters, such as the kind of sequence and numerous sequence parameters per acquisi-

tion, can be used to control MR images. A particular image’s contrast or weighting selection is crucial

since it affects the image’s potential medical applications and, thus, its diagnostic value. Proton density

(PD) weighting, T1 weighting, and T2 weighting are the three main differences that are being identified.

Weighting is utilized in the sense that the acquisition parameters were selected so that image contrast
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Figure 2.1: This image illustrates the anatomy of the breast and the available tissues (1) and was modified by the
author.

primarily reflects fluctuations resulting from one of these tissue-inherent features, such as spin-spin re-

laxation (T2) (107).

The echo time (TE) and the repetition time (TR) are the variables that determine how a spin echo se-

quence is weighted. TE is the period of time between an RF pulse being generated and the RF signal

being detected. While TR stands for the elapsed time between subsequent RF pulses (107).

A short TE and a short TR at which the longitudinal magnetization has not yet retrieved define T1

weighting. For defining T2 weighting, a long TR can be used to lessen the T1 impact while a long TE

can be used to let the variations in T2 decay to appear. For T1-weighted MRI series, the fatty tissue

is bright, while the fluid, glandular, and muscular tissues are darker compared to the fatty tissue. For

T2-weighted MRI series, the fatty tissue is presented as intermediate-bright. The fluid, glandular, and

muscular tissues are dark. The air is ideally black in both series.

The recommended method for acquiring images with a high spatial resolution is to utilize a field strength

of at least 1.5 T (114).

Nowadays, MRI is a multiparametric technique in which for the same patient, it has two or more se-

quences with its subtraction series for different times (114). In this thesis, it is common to have one

T1-weighted series and one T2-weighted series and if T2-weighted series do not exist, then two T1-

weighted series are available.
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2.1 Magnetic Resonance Imaging

Figure 2.2: Imaging situation of each modality: MR image in a prone position (left) (118), X-ray mammography
in an upright standing position (middle) (37), and spot mammogram in a prone position (right) (83).

In MRI, the patient lies in a prone position in which the breasts hang freely without compression as

shown in Figure 2.2 (left). With this design, it permits the breast tissue to spread, which would make

finding abnormalities easier and help in decreasing motion artifacts caused by breathing (114).

The gradient coils, which enable us to apply a linear change of the homogeneous magnetic field B0,

are a crucial part of an MRI system. A variance of this kind in any spatial direction is enabled by a

weighted combination of the three gradient coils that are positioned in three orthogonal directions: head-

feet, left-right, and anterior-posterior (107). Slice selection and spatial encoding are the two concepts

that must be understood to enable the spatial localization of emitted RF waves based on the gradient coil

system. For slice selection, the slice’s thickness can be set to give a suitable compromise between spatial

resolution and SNR by producing a wave with a variety of frequencies. For spatial encoding, the spins’

transversal plane phase information is employed. In order to obtain an approximate representation of

the underlying hydrogen density distribution, multiple gradients must be applied, i.e., different patterns

must be created in the spins’ phase orientation. Then, the net magnetization must be measured. This

intermediate representation can subsequently be used to recreate the real distribution within a slice if

done correctly. Only spins within the slice of interest are subject to phase encoding, as this step comes

after slice selection (107). By those two concepts, 3D MR images can be created. There are two ways:

slice selective and volume selective. For slice selective, 2D spatial encoding is used for localization

inside each slice, and 2D slices of the desired 3D volume are acquired, reconstructed, and stacked by

using slice selection. For volume selective, the entire volume without slice selection is excited, 3D spatial

encoding is used for localization, and then rebuild the volume in 3D. Each way has its benefits and

drawbacks. Slice selective acquisitions are frequently non-isotropic and have high inplane resolutions of

1mm or less, but they also have thick slices that are several millimeters thick in order to reduce image

recording time (140). While volume selective acquisitions have a good SNR and they have an isotropic

resolution. In this thesis, slice selective is used. The available MR images are non-isotropic, i.e., with a

slice thickness larger than the inplane resolution (107).
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2 Background

Figure 2.3: Examples of the two categories of MRI artifacts that are available in datasets from the Medical Uni-
versity of Vienna. The first image is from signal processing artifacts, which have a partial volume (left). The
second image is from hardware-related artifacts, which is inhomogeneity (right). Red circles emphasize those two
problems.

There are a variety of artifacts that might appear in an MRI that have an impact on the diagnostic quality.

The distinction between artifacts and noise, however, is that artifacts are precisely replicated by repeating

a scan with the same item and scan parameters, whereas noise effects vary according to a probabilistic

system (20). The artifacts can be split into three different categories: patient-related, signal processing-

dependent, and hardware-related (53).

In the patient-related category, there are motion, flow, and metal artifacts. In the signal processing cat-

egory, there is chemical shift, partial volume, wrap around, and ringing artifacts. In the last category

hardware-related, there are several artifacts such as RF quadrature, external magnetic field B0, gradient

field B1 inhomogeneity, RF inhomogeneity, asymmetrical brightness, RF noise, RF tip angle inhomo-

geneity, bounce point, surface coil artifact (attenutation of signal), and slice to slice interference (53).

There are two recognized artifacts in the existing MRI datasets as shown in Figure 2.3: one from the

signal processing category and one from the hardware-related category. The partial volume artifact is

the first artifact when objects smaller than voxels lose their identity. This results in a loss of detail and

is brought on by the resolution anisotropy that was previously discussed. Second, the datasets have

a significant amount of intensity distortion because of the inhomogeneity of the external and gradient

magnetic field as well as the nonuniform sensitivity of the receiving coil. Furthermore, surface coil

artifacts cause further intensity distortions and a reduction in image brightness. A bias field is a term

used to describe this corrupted image. It results in the issue of varied gray-level distributions within

one tissue in the same image. Additionally, it lessens the image’s high-frequency material, such as the

image’s edges. Since fatty tissue makes up the majority of the non-black tissue, its intensity should be

consistent. The bias field causes the breasts to have both strongly darkened and overlit patches, and the

connection between the breasts is almost invisible.
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2.2 X-ray Mammograms

2.2 X-ray Mammograms

X-rays were first discovered by Wilhelm Conrad Röntgen in 1895. X-ray is considered to be in the group

of electromagnetic rays in the range of wavelengths between 0.01 and 10 nm and range of 100 keV down

to 100 eV in terms of energy. It uses photons and waves to carry radiant energy through space. Although

X-rays can pierce through matter, the amount of penetrating X-ray photons depends on the material.

They can be utilized to obtain information about internal organs due to their capacity to penetrate human

tissue. High or low energy X-ray spectra result from various tube voltages between the cathode and the

anode. X-rays can be dangerous because high energy radiation given to the body during an X-ray can

cause ionization which raises the possibility of cancer developing (20). That is why it commonly uses

low energy to enhance soft tissue contrast. It is considered the main modality that is used worldwide

not only in diagnosis but also in interventions (20). High spatial resolution and a straightforward digital

readout of the X-ray image are the two primary advantages of X-rays (20).

X-ray photons either completely absorb, scatter elastically, or inelastically. As a result, the radiation

intensity decreases, which is a decrease in the amount of photons arriving at the detector, i.e. attenuation

is caused by a variety of physical phenomena, such as changes in the number, direction, or energy of

photons.

The primary principle used for X-ray imaging is absorption, which results in a reduction of energy.

X-rays passing through a material are attenuated based on the properties of the material. The initial

X-ray source intensity, the material’s absorption characteristics, and the thickness of the material that

the X-ray travels in all affect the received X-ray intensity at a detector (117). The Beer-Lambert Law is

used to express this relationship. The definition of the Beer-Lambert Law is differently represented for

linear homogeneous and inhomogeneous materials as shown in equation 2.1 and 2.2, respectively (20).

The main difference between the two equations is that µ in the first equation is the material attenuation

coefficient, while the second equation is the linear attenuation coefficient at every point along the ray

path. X-rays can be described as a map of the density of tissues in the body; white areas on X-ray images

indicate high density structures. For breast images, high intensities represent, e.g., glandular tissues. The

amount of energy that is absorbed is directly correlated with the acquisition dose given to the patient

(20).

I = Io.e−µx (2.1)

where Io is the X-ray intensity at the X-ray source, µ is the absorption coefficient (material attenuation

coefficient), and I is the intensity that was detected in relation to the X-ray and the object’s thickness, or

the intersection length x (20).

I =
∫ Emax

0
Io(E)e−

∫
µ(x,E)dE (2.2)
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For X-ray mammography, a full 2D projected image of the patient in the upright standing position is

obtained as shown in Figure 2.2 (middle), while the breast is compressed up to 50% between two parallel

compression plates. X-ray mammography uses low energy and low doses to increase the contrast of

images. The breast is compressed to reduce the distance the X-rays need to penetrate the tissue. This

leads to a lot of deformation for the tissues that make structures appear different than in MRI. The

resolution of full X-ray mammograms is typically higher than 0.1 mm/pixel. Two views are taken in the

clinical routine: Cranio Caudal (CC) and Mediolateral Oblique (MLO). For CC, the rotation angle of

the X-ray tube and detector is 0◦ while MLO is of rotation angle 45◦ or -45◦ based on which side of the

patient is imaged.

There are several artifacts in X-rays, like vignetting and distortion on image detectors (20). A decrease

in brightness that appears at the edges of the screen is referred to as vignetting. It results from light

scattering, which shifts light photons in the output phosphor from its exterior to its interior. Image

distortion is a typical artifact. It is well known that magnetic or electric fields can affect the electron

optics of an image. The output image is considered distorted, even by the earth’s magnetic field (20).

The distortion field must be measured regularly through the measurement of predetermined calibration

objects in order to correct distortion artifacts. If the images have been digitized, the distortion can be

fixed by either modifying the electron optics appropriately or by doing additional image processing (20).

2.3 Spot Mammograms

A spot mammogram is a special kind of mammogram which is taken during an X-ray guided biopsy. A

biopsy is taken to determine the degree of suspicion for malignancy. For the cases with Breast Imaging-

Reporting and Data System (BI-RADS) category 4 (suspicious) or category 5 (highly suggestive malig-

nancy), having a biopsy of the lesion is mandatory in clinical workflow, while also category 3 (probably

benign) might need a biopsy as well (82).

Over time, a needle biopsy has shown to be more reliable and acceptable than a surgical biopsy. It is

readily available, less invasive, and carries very low risks (82). There are three types of needle biopsy

nowadays, as shown in Table 2.1: Fine Needle Biopsy (FNS), Core Biopsy (CB), and Vacuum Assisted

Biopsy (VAB). FNS allows studying cells (cytological examination), while CB and VAB allow studying

tissues (histopathological examination) which is the case in this thesis. FNS and CB, however, should

be used with US guidance, while VAB should be used with mammography or tomosynthesis or MRI

guidance (23).

Table 2.1: Types of needle

Difference Fine Needle Sampling Core Needle Biopsy Vaccum Assisted Biopsy

Examination cytological histopathological histopathological
Guidance US US Mammography or tomosynthesis or MRI
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2.3 Spot Mammograms

It has been proven that VAB performs better or is considered more accurate than CB. The fact that the

amount of tissue taken during the procedure in VAB is more, leads to a more reliable histological classi-

fication. In addition, a reduced rate of targeting errors along with lessened rebiopsy and underestimation

rates is provided in VAB. Moreover, it uses a suction and rotating cutter which can move in an angular

range of 360◦ without the need to remove the needle from the lesion (145; 82). The procedure of a biopsy

takes around 20 to 30 minutes.

A spot mammogram in this thesis is a type of image that is taken during a stereotactical biopsy using a

VAB which is called a scout image if it is taken at 0◦. It uses a subset 2D image of size 50×50 mm with a

detailed view of the compressed X-ray mammography to identify the location of suspicious areas within

the breast. There are two types of imaging situations: either in a prone position as shown in Figure 2.2

(right) or in an upright position (35).

In the prone position, a separate device like Fischer Mammotest (Siemens) is used. There are a lot of

benefits to this type of position. It causes less anxiety and less motion. In addition to that, physicians

have more room to handle everything since the breast is located freely hanging under the table (82). One

of the limitations of the prone position is that the table could bear a certain limit of weight (136 -156 )

kilograms which lead to the use of the table in the upright position (82). The upright position biopsy unit

is an attachable stereotactic biopsy attached to an existing mammography device (82). There are several

disadvantages to this position. First, it causes more anxiety for the patient because she can see the process

of taking a biopsy. Second, there is a lot of motion caused by the patient which can be reduced by adding

pillows or cushions. However, the resolution and quality of images are usually superior (82).

The biopsy procedure consists mainly of four parts: first positioning the paddles where the suspicious

lesion occurs based on the patient’s characteristics such as breast thickness.After making sure from the

correct position, a couple of images, which are called stereo images, are taken at -15◦ and +15◦ in order

to get the depth of the lesion using parallax shift (82; 35). Parallax shift takes into account the condition

that the lesion is in the center of 0◦ images and the three X-rays are intersecting at a point which is the

lesion. The lesion position is different than the center of rotation. The lesion’s x (horizontal), y (vertical),

and z (depth from the skin surface) are determined through the measurement of the parallax shift of the

target area from defined angles of views (+15◦ and -15◦) from the midline and along the x-axis (82).

Then pre-fire images are taken to make sure that the needle will be in the correct place. Last, the marker

clip positioning in which samples are removed from the breast is carried out. This step consumes most of

the time around 15 minutes to 20 minutes (8; 35). Once the specimen retrieval is completed, a localizing

post-biopsy marker clip is positioned, it is a 3mm titanium clip, which is placed at the biopsy site. The

purpose of this clip is to guide future surgical excision and to permit future mammography surveillance

of the area.

The needle could be inserted using three different views for taking a biopsy: CC, Mediolateral (ML),

and Lateromedial (LM) where the rotation angle of the X-ray tube and detector is 0◦, 90◦, and -90◦,

respectively. There are also three possible available images for making a biopsy (0◦ and -15◦) or (0◦
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and +15◦) or (-15◦, 0◦, and +15◦). The last option (-15◦, 0◦, and +15◦) is the most frequently used in

this thesis. For the successful cases, lesions are clearly identified in the three images: scout and stereo

images. By that, it is possible to get the x, y, and z coordinates of a lesion center by equating X-ray pass

through lesions in the stereo images (82; 35).

Some problems might appear while taking spot mammograms. First lesions might fail to appear on both

stereo images as the lesion may be obscured by other tissues or because of the geometric configuration of

the imaging system. Second, some parts could appear in the +15◦ or in the -15◦ only and not in the scout

image. In addition, some parts might have blind spots due to the location of the center of rotation and

the size of the biopsy window. It has been realized that the deeper the lesion, the more it will disappear.

Third, other geometry-related errors might occur. X-ray source is not exactly at +15◦ or -15◦, which

leads to a wrong assumption of angles resulting in errors in the depth of estimation (35).

To sum up, some challenges might occur in the X-ray-guided biopsy because of (82)

- small breasts

- thin breasts

- superficial lesion close to the skin

- very small size of the lesion

- deep lesions

- lesions adjacent to the chest wall

- lesions located in the very superior portions (inner or outer quadrant)

Proper patient positioning is the key to technical success. In the case of the prone table, in order to

fully reach the upper or posterior breast, the patient’s arm may be inserted through the table’s aperture

in addition to the target breast. The arm may be supported by a sling or lying on a stand. To restrict the

breast from moving, the affected hand may additionally grip a step stool’s handrail. The receptor plate

can be angled to improve access to posterior breast tissue and lesions so that the compression paddle can

be pressed against the sternum or rib cage as closely as feasible (82).

To sum up, there are challenges regarding the differences between the three modalities. First, compres-

sion leads to different deformations in the breast structures. Second, patient positioning leads to different

applied forces. The other differences are in resolutions, acquisition, physical basis, image contrast, di-

mensions, and breast shapes, as shown in Table 2.2. This leads to applying registration methods to

transfer the position of the lesion from one modality to another, as will be explained in the next section.

2.4 Image Registration Methods

Transferring the lesion from one modality to another is mandatory for early diagnosis. Hence, registering

between images is required. In image processing, registration is a fundamental operation used to align

two or more images that were captured, for instance, at various times, with various sensors, or from
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2.4 Image Registration Methods

Table 2.2: Difference between modalities

Characteristics MRI Full X-ray mammograms Spot mammograms

Imaging Situation Position Prone Upright Prone or Upright
Dimensional 3D 2D 2D
Resolution (mm) (0.5 - 0.93) / (0.8-5) 0.05 - 0.1 0.048 - 0.085
Deformation - Compression state Uncompressed around 50% Compression around 50% Compressed
Range of Image Intensities 0 - 4082 0 - 16383 0 - 4095
Breast shape two breasts one side of breast subset from the breast

various perspectives (29). To register between the same modality is called intra-modality and between

different modalities, is called inter-modality.

Image registration as a general concept is the process of mapping the spatial and intensity differences

between two images (29; 73). Two concepts of registration need to be known.

The first definition is finding a transformation model that can connect a feature’s position in one image

or coordinate space to the position of the matching feature in another image or coordinate space. In other

words, the feature space extracts the desired information from the images to match the images. The class

of transformation known as the search space can align the images (216; 29; 101).

The second definition of registration allows to compare the intensity at those related positions, for ex-

ample, subtraction image intensity values as well as relate the position of corresponding features. This

second definition of registration includes resampling and interpolation (73). In other words, in order to

find the optimal transformation, a search strategy must be used to select the next transformation from this

space. Then, the relative merit of each test is established by the similarity metric. Until a transformation

is found whose similarity measure is sufficient, the search is carried out following the search strategy

(29).

The purpose of image registration is to determine how points in a moving image I and those in either a

fixed reference image R or the intervention’s physical space correlate (75).

Thus, it could be illustrated as five elements commonly present in registration algorithms (75). They are

all influenced by knowledge of the features of each form of variation (29):

ψ = D[I(Tθ (x)),R(x)]+λ (Tθ(x)) (2.3)

- R are the fixed points in the reference image

- I are the points which need to be determined in the moving image

- A transformation model Tθ (x) is utilized to limit the distortion that occurs between images or

between images and physical space within the given spatial domain, x, which is determined by a

set of parameters θ

- Cost function ψ to calculate the similarity between the images and the result can optionally be

regularized λ

- An optimization method to reduce the cost function arg minθ (ψ)
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There are three major types of variations in which registration methods are needed. The first kind of

variation is the misalignment of the images as a result of the differences in acquisition which is called

corrected distortions. The second category of variations includes those that also result from different

acquisition methods but are difficult to be modeled, which is called uncorrected distortions, such as

lighting, shadows, and environmental factors. However, they may also be spatial, such as perspective

distortions, and they typically impact intensity values. The third sort of variation is when the images that

are of interest differ, whether it is due to object movement, scene changes, or growth or deformations.

The second and third sorts of variations are not usually eliminated by registration and they make reg-

istration more challenging because an exact match can not be achieved based on the complexity of the

transformation. Depending on the types of variations between images, the expected transformation for

registration is chosen.

2.4.1 Transformations

The most common general transformations are rigid, affine, projective, and curved (197). In this sec-

tion, the rigid transformation will be illustrated, which will be further used in the proposed registration

methods.

The transformation could be global or local. When a change in any one of the matching parameters af-

fects how the image is transformed overall, the matching transformation is a global one. A modification

that only affects a small portion of the image is called local matching transformation (197). The size

and shape of an object are preserved throughout rigid transformations. Translation and rotational trans-

formations are included. In contrast, a non-rigid transformation modifies’ size or shape. Scale, affine,

projective, and shear transformations are all included (29; 111; 197).

Rigid Transformation The rigid transformation can be expressed by rotation and translational matri-

ces. The rotation matrix is a rotation about one of the axes of a coordinate system by an angle θ , as shown

in equation 2.4. In this equation, each matrix represents the rotation around x,y, and z, respectively, in

the cartesian coordinate system. It is a clockwise representation. A translation matrix is shifting objects

along one or more of the three axes by a value d, as shown in equation 2.5 (12).

R(θ) =


1 0 0

0 cos(θx) −sin(θx)

0 sin(θx) cos(θx)




cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)




cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

 (2.4)

Translation =


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

 (2.5)
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Affine Transformation An affine transformation is the extension of rigid transformation. It is a

non-rigid transformation that includes more degrees of freedom. It consists of four matrices: rotation,

translation as explained, scaling, and shear. A scaling transformation enlarges or reduces an object’s size

by varying all of its voxels or vertices along its three axes by three different scalar values of Sx or Sy or

Sz. A shear transformation tilts objects. This is accomplished in the upper 3 by 3 submatrix by non-zero

off-diagonal components (115).

Elastic Transformation Challenges occurred not only by global deformations but also, by local non-

rigid deformations. This leads to extending registration to more degrees of deformation such as elastic

transformation to overcome non-linear deformation (11). This type of transformation depends on elas-

ticity theory and local deformations. It models the geometric difference between images as the result

of elastic deformation, treating images as continuous bodies (151). Models from fluid mechanics could

be utilized as an alternative. These models are more adaptable and are used to explain 3D projections

onto 2D images (3D–2D registration), like the biomechanical registration model in this thesis. However,

constraining the mapping in such registration approaches is a common issue (151).

In general, there are two types of registration approaches: landmark-based and intensity-based. Landmark-

based algorithms generate a transformation based on features extracted from images, such as points,

curves, and surfaces. Intensity-based techniques compute the transformation by directly utilizing the

image intensities (151). In this thesis, landmark-based is used which is the case for the biomechanical

registration, and intensity-based is used which is the case for image based registration.

2.5 Machine Learning

Recently machine learning algorithms have been used for improving registration and segmentation meth-

ods. Problems involving classification and regression may benefit from its utilization. When the result

is a category, for example, a "dog" or "cat," classification is taking place. Regression only occurs when

the output is an actual value. The data is trained until it performs acceptably with unseen data. Machine

learning methods include supervised, unsupervised, and semi-supervised algorithms.

For supervised machine learning algorithms, an input and an output are both present. In unsupervised

machine learning, there is no labeled data, simply the input data is provided for training. In order to

better understand the data, the goal is to model the underlying structure of the data. It could be applied

to clustering and association. The goal of clustering is to identify the most significant categories in the

data. However, the association is utilized to identify patterns that describe significant portions of data.

In semi-supervised machine learning, only a small portion of the large used dataset gets labeled. Both

supervised and unsupervised methods could be employed in this area; supervised methods would offer

the best predictions for untrained data. Unsupervised methods attempt to discover the input variable’s

structure.
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One of the machine learning algorithms that is used in this thesis is the tree-based ensemble algorithm

which will be discussed in the next section.

2.5.1 Tree-Based Ensemble Algorithms

The tree-based ensemble algorithm is a subset of the tree-based algorithms but is generally considered a

more accurate model than the traditional tree-based algorithms since it can have better performance (64).

It is based on building multiple trees together in an ensemble learner, where the features are randomly

split in each tree and the predictions of all the trees are combined. Three classes of ensemble learning

techniques have been developed for the tree models: bagging, stacking, and boosting. In this thesis,

extremly randomized tree (ERT) is the one used from the family of the bagging tree models. It has been

proposed recently by Martínez-Martínez et al. (116; 159). Another model from the boosting family is

used, which is extreme gradient boosting (XGBoost) (64).

Extremely Randomized Trees

ERT frequently takes into account homogenous weak learners and teaches them separately from one

another in parallel. Then, homogenous weak learners are combined using some deterministic averaging

procedure. The advantage of ERT compared to other types of bagging trees is the reduction in bias and

variance. The reduction in bias relates to the tree’s construction process, which involves sampling from

the entire dataset not from a subset of the dataset. The reduction in variance is a result of the decision

trees’ nodes being split randomly, which means that the algorithm is not greatly influenced by specific

dataset features or patterns (63).

Extreme Gradient Boosting

XGBoost frequently takes into account uniformly weak learners and trains them sequentially in a highly

adaptive manner. Then, uniformly weak learners are combined using a deterministic approach. Com-

pared to other gradient boosting methods, XGBoost has advantages, such as a more direct path to the

least error, faster convergence with fewer steps, and simplified calculations to increase speed and reduce

compute costs. One of the disadvantages of XGBoost is complexity. In order to simplify the model and

produce predictions that are more reliable and precise, it combines L1 and L2, which are lasso regression

and ridge regression regularization, respectively. Overfitting, a common issue in machine learning, can

be avoided with the aid of regularization algorithms, which are part of XGBoost. The numerous hyper-

parameters involved might be complicated to configure and tune, making the process time-consuming

(40).
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Figure 2.4: The biology of a neuron in the brain (a - left) and the applied neuron in NNs (a - right). A simple NN
architecture (b). This Photo was modified by the author based on (3; 189) and licensed under CCBY .

2.5.2 Neural Networks

Neural Network (NN)s are a branch of the machine learning field. These algorithms’ fundamental con-

cepts are mostly inspired by how the brain functions. The brain’s primary computational component is

the neuron. Dendrites and axons are the components entering and exiting the neuron, respectively, in the

way that neurons are interconnected. An axon and a dendrite are connected by a synapse as shown in

Figure 2.4 (a - left).

Both inputs and outputs are referred to as activations. The ability of a synapse is to scale xi with a scaling

factor of wi, which is considered the most significant function as shown in Figure 2.4 (a - right). The

brain’s learning synapses are associated with weight changes. As a result, different weights produce

various reactions to an input. The process of adjusting weights is known as learning (189).

There are three layers in a straightforward NN: input, hidden, and output as shown in Figure 2.4 (b). It

is based on the perceptron theory. The perceptron is considered a neuron model (155). It is a non-linear

function since this action only allowed the neuron to produce an output if the inputs exceeded a certain

threshold.

Stochastic Gradient Descent

This straightforward network is being trained to optimize performance by modifying the weights of

neurons. The objective of deep neural networks (DNNs) training is to reduce the discrepancy between

the ideal perfect scores of weights and the scores determined by the DNNs based on the current weight

as shown in equation 2.6. The procedure used to update the weights is gradient descent. When training

the network, Stochastic Gradient Descent (SGD) can be used to change the NN model’s parameters.

The weight-updated definition of gradient descent is updated (wt+1
i j ) using a multiple of the gradient of

the loss (L) with respect to each weight, which is the partial derivative of the loss with respect to the
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weight. The loss (L) is the cost function and α is the learning rate. The target is to minimize this cost

function. To lessen the overall loss, the technique is continually repeated and the NN model’s parameters

are optimized (189).

wt+1
i j = wt

i j −α
dL

dwi j
(2.6)

Backpropagation is the method used to compute the gradient where the influence of loss is propagated

backward through the network to compute how each weight has an impact on loss. One such training

example is x1, which is trained for these parameters. Throughout the training, the NN is active in both

directions. In the feed-forward algorithm, the prediction is compared to the target connected to x1 in

addition to forecasting the output. It keeps running until it reaches the loss layer which is responsible

for updating the parameters. In mathematical optimization, the partial derivative vector represents the

gradient. The gradient’s decision to move wi in a particular direction causes an increase in loss. wi should

be updated in the opposite direction of the gradient in order to minimize the loss function. Although

gradient descent appears straightforward in math, it is very difficult. An unstable loss function is shown,

for instance, if the parameters are updated using only the gradient updated from one training example.

Since the gradient is computed using only one training example rather than the entire dataset, the average

loss of all training examples will oscillate up and down with a relatively high frequency. For decreasing

these oscillations, mini batches of SGD are recommended which is splitting the dataset into small batches

and for each batch, the gradients are computed (207).

In order to summarize how a NN functions, it takes a single vector and turns it into a number of hidden

layers. Neurons with learnable weights and biases make up each hidden layer. Each neuron performs

a dot product, receives some inputs, and is fully connected to every neuron in the layer behind it. The

output layer is the final fully-connected layer and it categorizes the class scores (6; 189).

Activation Functions

All activation functions are non-linear. There are different activation functions, for example, a threshold

function which behaves like a step function. The most frequently used in the literature on deep learning

and NNs are the logistic sigmoid function as shown in equation 2.7 (left) and the hyperbolic tangent as

shown in equation 2.7 (middle). In addition, Rectified Linear Unit (ReLU) as shown in equation 2.7

(right) has been recently used in multiple architectures (6). Furthermore, the idea of sparsity has come to

be a fascinating topic in the field of machine learning. ReLU is considered to be the activation function

that applies the concept of sparsity since it provides rising to real zeros. In ReLU, all of the negative

values are set not to be activated, which indicates that only certain pieces of information are activated. In

addition, the gradient is back propagated which is considered to be an advantage for SGD. For instance,

after the weights are uniformly initialized, approximately 50% of continuous output values from hidden

units are real zeros; this percentage can go up due to regularization that causes sparsity.
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Using ReLU is recommended because it increases the non-linearity of NN and helps identify complex

patterns and objects. It has been realized from the point of view of computation that ReLU is simpler and

easier than the other two activation functions since it does not include an exponential function as shown

in the equations 2.7. ReLU is considered the most widely utilized in hidden layers of NNs (6).

y =
1

1+ e−x , y =
ex − e−x

ex + e−x , y = max(0,x) (2.7)

Deep Neural Network

For real-time systems, deep learning is a rapidly expanding discipline that requires a lot of data to be ef-

fective (98). Deep learning is considered to be a black box that has only one module doing two operations

together; extracting features and classification, while a machine learning algorithm has two modules; a

fixed feature extractor and a trainable classifier. Deep learning outperforms any other machine learning

method (189). One of the most famous algorithms in deep learning is Convolutional Neural Network

(CNN).

Convolution Neural Network CNN was first introduced by Yann LeCun, 1998 (98). CNN is quite

similar to ordinary NNs. However, it assumes that its inputs are images, which gives us the chance to

comprehend certain architectural characteristics. Consequently, it is easier to implement and there are

fewer parameters in the network (6). For instance, a single fully-connected neuron in the first hidden

layer of a regular NN would contain 3072 weights if an input image of size 32x32x3 was used. The

number of parameters would rapidly expand as the size of an input image increased (6). While CNN is

different, it depends on sharing weights. Hence, the number of weights used for the same input image is

5x5x3 = 75 weights instead of 3072 weights in addition to a bias value. Three architectural concepts are

combined. The first concept is the local receptive field, the second is the replication of weights, and the

third, when the pooling layer is applied, is spatial subsampling (98; 189). These concepts ensure some

degree of distortion invariance, shift, and scale.

Convolution Layer The convolution layer is the main layer in CNN. It consumes most of the operation

time in the architecture. Each layer generates a feature map that preserves important distinctive infor-

mation. Each convolution layer has a set of 2D input feature maps, each of which is called a channel.

Each channel is convolved with a different 2D filter from the filter stack, one for each channel. The

results of the convolution at every point are summed over all the channels as shown in equation 2.8. A

1D bias can also be added to the filtering result (189). These calculations produce output activations,

which provide one channel of an output feature map. To provide more output channels and enhance the

reuse of filter weights, multiple input feature maps can be employed as a batch. The convolution layer is

crucial because it finds all of the object’s edges, including those discovered by SGD and those that are

horizontally or vertically oriented. Convolution produces good results in a particular direction if bias is

included. The representation of more complicated properties and the acquisition of significant objects,
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such as the classification of tissues, increases with the depth of the convolution layer (207; 189). Padding

is another term that is crucial to understand in the context of the convolution layer. It is used to adjust

the width and height such that they are the same length. Although it often has zero values, it can have

other values (207). The size of the output volume is controlled by three hyperparameters: depth, stride,

and zero-padding as shown in equation 2.8 (6).

O[z][u][x][y] = B[u]+
C−1

∑
k=0

R−1

∑
i=0

R−1

∑
j=0

I[z][k][Ux + i][Uy + j]×W [u][k][i][ j] (2.8)

0 < y < E, 0 < x < F, 0 ≤ z < N, 0 ≤ u < M

where: O, I, W, and B are the matrices of output feature maps, input feature maps, filters, and biases,

respectively. E and F are the output feature maps of plane height and width, respectively. N is the batch

size of 3D feature maps. M is the number of output feature maps.

E =
H −K +U +2P

U
, F =

W −K +U +2P
U

(2.9)

where H and W are the input feature maps of plane height and width, respectively. K is the filter plane

height and width. U is the step size or stride and P is the padding size.

Dropout It is a way to enhance the generalizability of deep learning methods. It makes all weights

connected to a certain percentage of neurons equal to 0. For example, if the percentage of neurons is 0.5,

these neurons are set to zero (207).

Normalization It controls the input distribution across layers in order to accelerate training and enhance

accuracy. The distribution of layer input activations; mean µ and standard deviation σ are normalized

such that it has a zero mean and a unit standard deviation. There are numerous varieties of normalization;

for example batch normalization and local response normalization. Batch normalization is performed

between the convolution layer and the non-linear activation function while local response normalization

is performed after the non-linear activation function (189).

Loss Layer The last layer is the softmax layer or loss layer. It gets the exponential of each neuron

and divides it by the sum of the exponential of each neuron. It is employed to determine whether the

predicted value and the target differ from one another. The softmax layer is useful for training by gradient

descent. It is considered a cross entropy loss. It eliminates several issues that would be challenging to be

trained again, such as when one class is equal to one while all the others are zero. For more illustration,

the probability of the maximum value of the previous layer will be increased by exponential functions

compared to other values and the sum-up of the output will always equal one. The softmax is not needed

for prediction, it is only useful for training CNN parameters using a set of training examples (207).

Recurrent Neural Networks Recurrent neural network (RNN) are deep learning algorithms but the

main difference between recurrent and NNs is that they use data from earlier inputs to modify the current
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input and output. In contrast, conventional NNs consider inputs and outputs to be independent of one

another.

Bidirectional Long Short-Term Memory with an Attention Layer One of the architectures that are fa-

mous in RNN is Long short-term memory (LSTM). Each LSTM consists of three main gates: forget gate,

input gate, and output gate which is called a cell state. The forget gate is the gate responsible for adding

or removing information to the cell state, for which the sigmoid function is used (214). Bidirectional

long short-term memory (BLSTM) processes data in two directions. As a result, this model can use both

past and future data. Additionally, there is a layer called the attention layer, which is added as a cascaded

layer to the BLSTM. The idea of the attention layer is to apply an activation function to the output to

obtain a weighted output vector instead. It consists of two cascaded steps of activation functions. For

example, those activation functions can be tanh, sigmoid, or ReLU. In the next equations, tanh is used

as an activation function in the two cascaded steps as shown in the following equations 2.10, 2.11, 2.12,

and 2.13 where H is the output vector, T is the length of the output vector and w is the trained parameter

vector. Based on (214), bidirectional long short-term memory with an attention layer (Att-BLSTM) has

a better performance compared to BLSTM without an attention layer.

M = tanh(H) (2.10)

α = so f tmax(wT M) (2.11)

r = Hα
T (2.12)

h∗ = tanh(r) (2.13)
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For registration of MRI to full X-ray mammograms, a biomechanical model based registration is used

(160). The method originates from an earlier work in our group (156; 158; 76). It has been applied in an

automated registration workflow and tested with clinical datasets (77)(78).

In this chapter, a literature review of biomechanical model based registration between MRI and X-ray

mammogram will be discussed and followed by an explanation of the methods proposed for achieving

registration between the two modalities.

3.1 Biomechanical Models

One of the main factors from the point of view of registration between MRI and X-ray is the change in

intensities and deformation of tissue structures in the breast (75).

There are several ways to register between MRI and X-ray mammograms in literature. The most fre-

quently used method for this purpose is using Finite Element Method (FEM). Alternative methods are to

register using transformation models such as affine transformation. In the case of 3D, this includes 12

degrees of freedom. Although this method is very simple compared to non-rigid registration or biome-

chanical models, registration between MRI to X-ray mammography could achieve errors of 13.1mm for

49 patients (121).

Free form deformation using a B-spline model, where a set of control points’ coordinates were tuned

to generate a deformation that varied smoothly (75), shows an error of 5.6mm for ten patients of large

deformation (141).

In addition, thin plate splines (24) have been implemented for modeling breast compression deformation

during an X-ray (19). Though these mentioned methods achieved considerably good results, there are

still some limitations. Mertzanidou et al. requires a user interface step to select landmarks on the pectoral

muscle boundary. Additionally, these cases contain limited rigid deformation which is far away from real

mammographic compression (121). Also, Pereira et al. does not include patients with high dense breasts

(141). Biomechanical models are the state of the art, as they can respect highly nonlinear deformation

and model it on a physical basis.

The challenges in breast image registration are mainly three factors: a large deformation, a non-rigid

problem, and soft tissue deformation (75). That is why researchers tend to use soft tissue simulations

instead (75).
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The main goal for using those simulations is to be applicable to each patient specifically regarding size,

shape, and geometry. The target is also to represent the internal structures of different tissues and predict

the deformation of each tissue according to the simulation. Additionally, it could be used in clinical use

from a computation point of view (75).

For that purpose, many biomechanical models, either linear or non-linear, have been suggested for the

simulation of the deformation of the breast such as mass spring method (153; 138), mass tensor method

(154), and most prominently in the last years FEM.

3.1.1 Finite Element Methods

Finite Element Methods allow having finite discrete representations of an object for solving the differ-

ential equations describing the physical conditions approximately (137). The boundary conditions are

considered as the input and out of which, an algorithm for approximating the corresponding solution

comes (137). The continuum problem is approximated by a method where the continuum is partitioned

into a finite number of elements and a finite set of parameters determines the performance of these ele-

ments. The entire system’s solution as an assembly of its elements pursues the same principles that apply

to standard discrete problems (215).

Biomechanical modeling (BM) of the behavior of anatomical structures under different loads is a neces-

sary step for numerous academic and clinical applications. A set of Partial Differential Equations (PDEs)

and the accompanying boundary conditions must be satisfied in order to derive appropriate BM. Corre-

sponding PDEs control the physical phenomenon being modeled such as the deformation of organs like

liver, prostate, stomach, breast, and other virtual organs in augmented reality applications (143).

FEM specifically for modeling breast deformation has been used for several applications with different

complexities of biomechanical models and materials (75; 59). More specifically, the mammographic

compression of the breast has been modeled using FEM with different models using diverse tools for

computing the FEM simulation. The main differences are in the complexity of modeling such as ho-

mogenous or heterogenous tissues, type of materials, and geometry of the breast. For example, it could

be modeled patient-specific or by a simplified geometry. In addition, it was solved using different solvers

such as dynamic or static solvers. In this thesis, only an overview of software packages, computation

time, and type of studies are presented in Table 3.1 (referred to as "Optim." for optimization).

For the registration between MRI and X-ray using biomechanical models, three main factors need to

be defined, as shown in Figure 3.1. First, the geometry of the breast includes typically tetrahedral or

hexahedral meshes. Second, the material properties include linear or non-linear materials. Hyperelastic

is one example of non-linear elastic. Third, compression simulation and boundary conditions include

forces, displacements, and contact problems. Some models, mainly who used FEM for registration

purposes have been collected and sorted ascendingly based on the number of nodes as shown in Table

3.2.
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Table 3.1: Literature review of finite element methods for breast deformation

Reference Application Computation Time Tools Studies

Azar et al. (15) MR image-guided biopsy < 30 mins ABAQUS Clincial
Samani et al. (165) Image registration - ABAQUS Phantom
Ruiter et al. (157) Cancer diagnosis - ANSYS Clinical
Ruiter et al. (158) Image registration - ANSYS Clinical
Tanner et al. (191) Breast deformation - ANSYS Clinical
Chung et al. (41) Image registration - - Phantom
Han et al. (70) Breast deformation 312 mins (Explicit) ABAQUS Clinical
Hopp et al. (78) Image registration 20 mins (Optim.:120) ABAQUS Clinical
Lee et al. (99) Image registration - CMISS Clinical
Mertzanidou et al. (122) Image registration 120 mins NiftySim Clinical
Liu et al. (105) Simulation compression - ABAQUS Clinical
García et al. (60) Image registration 61 mins (Optim.) NiftySim Clinical

Table 3.2: Literature of biomechanical models

Biomechanical Model Reference
Geometry Definition Material Definition

(see details in Table 3.3)
#nodes #elements Model

- 64 Neo-Hooken Lee et al. (99)
800 2500 Hyperelastic Neo-Hookean Mertzanidou et al. (122)
3712 2793 Wellman non-linear elastic Azar et al. (15)
15939 16841 Hyperelastic Samani et al. (165)
29307 161997 Hyperelastic Neo-Hookean Han et al. (70)
50000 200000 Hyperelastic Neo-Hookean García et al. (60)
54843 37755 Neo-Hookean / Mooney–Rivlin Tanner et al. (191)
61000 313000 Hyperelastic Solves-Llorens et al. (177)

Before creating the meshes, the MR images need to be segmented first. From the literature, manual

segmentation or interactive approaches have been often applied (165; 192; 70; 122), while some methods

tend to apply automatic segmentation (158; 78) (99; 177). The bold ones are from this group’s research.

3.1.2 Biomechanical Model and FEM Simulation

To model the geometry of the breast, some methods used in literature have been collected in Table 3.3

to show the variance of geometries of the breast. Extraction of a volume or a surface mesh based on

segmentation is done by these methods. The volumetric meshing is done using tetrahedral or hexahedral

meshes. It was claimed that hexahedral meshes in Finite Element (FE) models save more time and

are more accurate (165). One disadvantage of hexahedral meshes, it is hard to model curved surface

geometries, which in turn leads to some inaccuracies in surface strain. Therefore, two methods have

been suggested to solve this specific problem for improving the mesh. First, a smoothing technique was
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Figure 3.1: The components of a biomechanical model and the specific components to build a biomechanical model
of breast deformation.

used which smooths irregular boundaries at the model surfaces and material interfaces (32). Second, a

method based on the transfinite interpolation technique is considered to be more efficient and accurate

than applying the first method (165). One disadvantage often occurs for the transfinite interpolation:

it requires a large number of elements and this large number of deformed elements makes it harder to

converge. This leads in most cases to the use of tetrahedral meshes. Tetrahedral meshes can also have

undesirable characteristics such as slow convergence with mesh refinement in between the steps (165).

But it is more common to be used for breast geometry based on literature (75). Hexahedral meshes

have been used by (158; 42; 99). The mesh granularity is another dimension of difference proposed

in literature. The breast anatomy and shape are accurately represented by a fine mesh. However, this

requires a lot of time to be solved by a FE solver. In addition, it might cause folding problems (75). For

modeling breast compression, the number of elements varies (75). It could be a few hundred such as

(158; 42; 99), or several thousand such as in (122), or up to ten thousand such as in (78; 165; 192; 70;

177).

To have a realistic biomechanical modeling of the breast, comprehending anatomical characteristics is

necessary. The elasticity of cancer or benign tissues varies from one another. Infiltrating ductal carci-

noma varies from 1% to 15% strain. At 1% strain, stiffness is ten times as fatty tissue, and two and a

half times as glandular tissue. While at 15% strain, it is 70 times stiffer than fatty tissue and five times

as glandular tissue (75). The elasticity of malignant tumors is stiffer than benign lesions (75). Values for

malignant tumors were reported as 15.9 KPa (106), or 146.6 KPa (14) while for benign lesions 7 KPa

(106), or 45.53 KPa (14) was given.
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Table 3.3: Literature of biomechanical models - geometry definitions

Nodes Fat Gland. Muscle Skin Tumor Tool Reference
8-node ✓ ✓ × × ✓ custom in C Azar et al. (15)
trilinear
3-node × × × ✓ × custom in C Azar et al. (15)
triangular
(only surface)
8- hexahedral ✓ ✓ × × × Matlab Samani et al. (165)
4-node × × × ✓ × Matlab Samani et al. (165)
quadrilateral
(only surface)
tetrahedral ✓ ✓ × ✓ × Simpleware Solves-Llorens et al. (177)
3-cubic ✓ ✓ ✓ × × - Lee et al. (99)
hexahedral
tetrahedral × × × × × TetGen Mertzanidou et al. (122)
tetrahedral ✓ ✓ ✓ × ✓ TetGen Han et al. (70)
10-node ✓ ✓ × × × ANSYS Tanner et al. (191)
tetrahedral
tetrahedral ✓ ✓ × × × TetGen García et al. (60)

Krouskop et al. (95) reported that the elastic modulus of fatty tissue is almost constant over a wide range

of applied strain (up to 30%) while glandular tissue is strain dependent. It remains constant across a small

range (less than 10%) and then afterward it increases with respect to the applied strain. The elasticity of

glandular and fatty tissues are nearly the same at low strain levels while at higher strain levels, glandular

tissue is stiffer than fatty tissue with one order magnitude higher (75). The values of fatty tissue range

from 0.5 - 25 KPa while for glandular tissue range from 2 - 66 KPa (62).

To model the mechanical response of breast deformation, various materials have been used such as linear

elastic, non-linear elastic, hyperelastic, and exponential models. Linear elastic models are treated to be

less accurate models for large deformation which is the case for breast deformation (75). In literature

two groups used linear elastic models (192; 9). One limitation for Tanner et al. (192) is that surface

displacements are known. For modeling the breast, hyperelastic material is the most commonly used

(75; 17; 191; 42; 70; 78; 99; 122; 158; 165; 177). Hyperelastic material (112) which is considered a

non-linear elastic model and does not rely on the strain rate, responds elastically and quickly to high

strain. More details about the hyperelastic material will be given in Section 3.2.3.

During MRI acquisition, women lie in a prone position while during X-ray mammography acquisition

women stand in an upright position (59). In this case, MRI is considered gravity loaded, therefore, an

unloaded state is required before mammographic compression. Several approaches have been proposed

to estimate the unloaded state. A simple inversion of gravity was employed by Lee et al. (99). However,

obtaining the unloaded reference state by this simple method is considered to be not accurate (146).
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Another technique is an iterative approach which was first proposed by Carter et al. (36). It assumes

internal stresses equal to zeros, applying gravity in the anterior direction while computing the reference

point. The method was expanded later by Eiben et al. (52), relaxing the stresses of the breast model and

inverting gravity.

Inverse FE approaches have been proposed by Govindjee and Mihalic (65) for obtaining the unloaded

state configuration. The strategy entails solving the inverse motion by reparameterizing the equilibrium

equation with a numerical approach. Eiben et al. examined these methods. It was observed that the

iterative and the inverse methods show similar zero gravity estimation while the simple inversion method

only works for small or highly constrained deformations (59).

Boundary conditions for the compression simulation were defined by displacements in the compression

direction to the surface of breast nodes (158; 74). Another technique is modelling a contact problem

between plates and breast using friction model (9; 78; 99), or frictionless model (42; 122; 70).

It has been realized that muscular tissue affects simulation compression (75). One approach was to

constrain nodes close to the muscular tissue. In literature, several methods followed this approach (165;

42; 78). The second approach was to allow these nodes to slide along the chest wall (9; 192; 70; 99; 177;

122).

There are several models used in literature to model glandular tissue, for example, an exponential func-

tion of strain was used by Azar et al., (16) to fit the curve of Wellmann et al., (206). Also, the two

parameters Mooney Rivlin model were used by Yin et al., (211) which was first introduced by Krouskop

(95). In addition, a second order polynomial hyperelastic model was applied in (61). The last two models

are also used for fatty tissue (75). If the skin is modeled, it is considered to be an incompressible tissue

like fatty, glandular, and muscular tissues. An exponential hyperelastic model (200), a linear model (165)

or a non-linear model has been applied to model the skin (16).

Experiments measuring the stress-strain relationship by ex-vivo tissue samples are usually carried out by

recording the forces and displacements of the samples undergoing strain. The measured sample points are

used to determine the stress-strain relationship of the material by an interpolation function. The applied

mathematical formulation of the model is a simplification. The stress-strain relationship observed in the

experiment is given with respect to the reference configuration. To describe the material model, linear

elastic, hyperelastic, and exponential models are mostly used in the literature.

Several methods for MRI to X-ray mammogram registration with clinical data have been proposed (see

Table 3.4). There is no fair comparison between these methods with respect to accuracy since the clinical

datasets are different and features used vary. Also, differences in views such as MLO and CC may cause

unfair comparisons. Moreover, the effect of muscular tissue in the compression simulation and the huge

uncertainty of positioning the breast before compression is challenging and varies a lot (75).

After collecting an overview of what has been done in literature regarding FEMs for allowing the pos-

sibility of registration between MRI and X-ray mammography, the method used in this thesis will be

discussed in detail in the upcoming section.
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Table 3.4: Evaluation of clinical datasets available from literature

Reference Views #datasets mean error

Ruiter et al. (158) CC / MLO 6 4.3mm
Hopp et al. (77) CC 11 11.8mm
Hopp et al. (78) CC 79 13.2mm
Hopp (76) MLO 52 15.3mm
Lee et al. (99) CC / MLO 6 19mm
Solves-Llorens et al. (177) NA 14 4.5mm
Mertzanidou et al. (122) CC / MLO 10 11.3mm
Liu et al. (105) CC 10 -

Table 3.5: Literature of skin model

Skin
Linear

Non -Linear

Azar et al. (15) ×/✓
Samani et al. (165) ✓/×

3.2 Proposed Method

The proposed registration method between MRI to full X-ray mammography is based on the work orig-

inated by Hopp et. al, (78). It estimates a configuration of the breast that is comparable to its shape in

X-ray mammography using the breast geometry as observed within 3D MRI. A biomechanical model

is used in combination with a FEM simulation, which mimics virtually the deformation applied to the

MRI.

The biomechanical model considers four tissue types: fatty, glandular, and muscular tissues, as well as

skin. It uses an estimation of the unloaded state of the breast before applying compression using a contact

problem between the breast and the rigid compression plates.

It has been evaluated in several clinical use cases and obtained clinically relevant results, e.g. for mul-

timodal diagnosis of MRI and X-ray mammography with an average localization error of about 13 to

18mm (78; 46), image fusion of MRI contrast kinetics with X-ray mammograms (77; 47), and for mul-

timodal computer-aided diagnosis (79; 80).

For obtaining the patient-specific breast geometry, first, an image segmentation for three tissues is applied

to the MRI followed by interpolating images to make them isotropic, see in Appendix B.1 for more

details for the interpolation method. For simplicity, the shape of the breast is only modeled until a small

distance behind the sternum position in the posterior direction. Based on the segmented MRI, the model

geometry is generated, dividing the breast anatomy into approximately 2000 to 2500 4-node elements

using a tetrahedral meshing algorithm, see in Section 3.2.2. Afterwards, an isotropic hyperelastic Neo-

Hookean material model is applied (206) to account for non-linear and incompressible tissue behaviour
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Figure 3.2: The block diagram of the biomechanical based registration between MRI and full X-ray mammogram.

during the deformation process of the breast which will be discussed in detail in Section 3.2.3. An FEM

is used to solve the mechanical deformation problem. The mechanical deformations are computed using

the dynamic FE solver in the commercial FEM software ABAQUS / Explicit (175).

"After the deformation simulation, the deformation field is applied to the segmented MR image, resulting

in a volume containing the deformed configuration of the breast. The deformed MRI volume is calcu-

lated by linear interpolation of the deformation field at all voxels and trilinear interpolation of the voxel

intensities. This volume serves as a basis to carry out an X-ray-like projection. A raycasting algorithm

is applied for this purpose. The geometry of the X-ray acquisition process using the available informa-

tion from the metadata is taken into consideration such as source to detector distance, source to patient

distance, and compression thickness.

The biomechanical model based registration is optimized to adapt to patient-specific characteristics and

uncertainties in the metadata. For this purpose, several parameters are optimized such as the compression

thickness from the mammogram’s metadata which might have an error in the range of 5mm (201), the

Young’s modulus of fatty and glandular tissue, the positioning of the compression plate and a possible

patient rotation around the three main axes. Optimization is done using a simulated annealing scheme

optimizing all the parameters at once. The employed optimization criterion is to measure the shape

similarity of the deformed MRI and the full X-ray image" (Said et al. (160)). For this purpose, the

DICE Similarity Coefficient (DSC) (see Chapter 6) is used to calculate the overlap of the full X-ray

mammogram with the projection of the deformed MRI.

The workflow mainly consists of the following points as shown in Figure 3.2:

1. segmenting MR volume images

2. interpolating MR images and segmented images to derive an isotropic resolution
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3. generating meshes for the patient-specific breast geometry

4. carrying out the deformation simulation

5. applying X-ray projection

6. optimizing patient-specific characteristics in steps 4 and 5 in order to align with the original X-ray

mammography for getting the best deformed MR image

In this thesis, several processing blocks have been modified to generalize robustness, stability, accuracy,

and acceleration of computation time. Those blocks are mainly: segmentation, meshing, and deformation

simulation. In the first block, a novel segmentation algorithm is proposed using unsupervised NNs. This

work has been published in (162). It will be discussed in detail in Section 3.2.1. In the second block, the

mesh quality based on specific criteria is validated and it will be discussed in detail in Section 3.2.2. The

third block is the deformation simulation and it will be discussed in detail in Section 3.2.4. The goal was

mainly to robustify the model regarding some parameters: position of plates, rotation angles, boundary

conditions, etc. Additionally, the stability of the deformation simulation without losing accuracy was

investigated. The model was accelerated by removing some steps in the simulation that were previously

used. In addition to that, a novel method using machine learning and deep learning algorithms was

proposed for replacing FEM. It has been published in (164) and it will be detailed in Section 3.2.5.

Afterward, the model was used as part of the MRI to spot mammogram registration.

3.2.1 Segmentation

One of the critical steps in image registration is segmenting images into specific tissues, mainly fatty,

glandular, and muscle tissues. Hence, MRI segmentation plays an essential role in the automatic cre-

ation of biomechanical models in such applications. It extracts the Region of Interest (ROI) through

a semiautomatic or automatic process (45; 193). For breast MR images, different image segmentation

methods have been suggested. Among the methods is clustering. It was applied by distinguishing the

global characteristics of the ROI from the foreground in images (135; 90). Intensity-based clustering

such as K-means and Fuzzy C-means (FCM) are most commonly used in breast MRI segmentation (89).

K-means is often employed due to the uncertainty, irregular, and fuzzy borders in breast MR images

(90; 89). To enhance segmentation techniques, FCM was used (135). Other approaches of segmentation

based on region-based methods, such as active contour, region growing, and region merging, were used

(212; 202). However, breast MR images include artifacts in patient-related, signal processing-dependent,

and hardware-related which might cause noise, intensity inhomogeneity, and weak boundaries which re-

quire complex procedures (45; 53).

Most of the automatic breast segmentation techniques proposed in literature only divide tissue into two

categories: fatty and glandular tissues (34; 67; 208). There are also techniques for segmenting muscular

tissue such as a Bayesian model. However, it is time-consuming. To obtain a segmentation using this

approach, it might need up to 7 hours to compute (66). Recently, deep learning algorithms have been
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Figure 3.3: One of the clinical cases from the Medical University of Vienna for MR image in three views without
any preprocessing: sagittal (left), transverse (middle), and coronal (right).

applied to medical image segmentation, enhancing the performance of segmentation techniques (100;

124). U-Net is a famous architecture that applies convolution to extract high-level semantic information

and low-level detail information (152). U-Net has been adapted to segment MRI data into fatty and

glandular tissue (213; 68). In addition to the lack of muscle segmentation, these networks require labeled

training data for robust performance, which is costly and time-consuming to obtain for 3D breast MRI

data.

Here, a novel method is proposed using an unsupervised NN for segmenting three types of tissue simulta-

neously (162). The method was developed for segmenting T2-weighted images, which causes fatty tissue

to be brighter than glandular tissue (no fat saturation). It consists of three parts, which are preprocessing,

NN classification, and postprocessing as shown in Figure 3.4. First, preprocessing is intended to make

the training of the network and the segmentation easier. It prepares the MR volume for the subsequent

processing step. Second, an iterative approach is used for NNs to generate a set of different segmenta-

tions of the same MR volume. The network is randomly reinitialized and retrained for each iteration.

Third, postprocessing improves segmentation by eliminating common mistakes and selecting the most

reasonable segmentation. With some minor adaptions in the postprocessing which will be illustrated, it

could also segment T1-weighted images (no fat saturation).

Preprocessing

Preprocessing is responsible for improving segmentation results for training NN. It deals with two prob-

lems that might appear. First, the intensities of muscle are enhanced such that they differ from the

background. Second, it corrects the bias field which affects MRI’s intensities considerably and may

lead to the misclassification of different tissue types if not adapted. Preprocessing consists of four steps:

improving contrast, masking, correcting bias field, and cropping data, see Figure 3.5.
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Preprocessing Neural Networks Postprocessing

Figure 3.4: The block diagram of the segmentation process indicates the output from each step: preprocessing
(left), NNs (middle), and postprocessing (right).

(a) (b) (c) (d) (e)

Figure 3.5: The steps of preprocessing in one of the slices: The enhanced image (a). The corrected bias field image
(b). The binary mask using K-means (c). The corrected bias field image is multiplied by the K-means mask (d).
The cropped image (e).

Improving Contrast The first step is stretching the histogram intensities of the MRI which improves

the contrast. The intensity distribution in various datasets contains nearly 99% of voxels in less than

30% of the intensity range. The maximum intensity of the other 99% of the voxels is assigned to the

remaining 1% of the voxels as shown in Figure 3.6. As a result, the contrast is enhanced as shown in

Figure 3.5 (a) in comparison to the original image (Figure 3.3 (middle)).

In order to avoid the problem of missing parts in muscular and glandular tissue as they are similar to

the background in intensities, a certain position is estimated from the left and right breast in each slice

based on the position of the sternum position. The holes that occur after this position in the muscular and

glandular tissue are filled.

Bias Field Correction Due to the inhomogeneity in the coils of the magnetic field, a bias field often

exists in MRI data. This results in intensity inhomogeneities of the same tissue type. It has a higher effect

mostly on the superior and inferior slices in MRI. Song et al. (178) concluded that bias field correction is

not completely a solved problem, however, a few practical approaches have been proposed in literature.

In this thesis, the bias field correction based on Fuzzy C-means (Bias Field Correction based on Fuzzy

C-means (BCFCM)) is used (7). It performs segmentation by Fuzzy C-means clustering and a bias field

correction simultaneously. The Fuzzy C-means clustering is the extension of K-means clustering. In

parallel, the method adapts the intensity with respect to the found classes to eliminate the bias field.

Then the class centers are recalculated and the process is repeated iteratively. The best solution for

the T2-weighted images based on the clinical data is currently initializing only two centroids. By that,
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Figure 3.6: The distribution of voxels intensities using histogram for one of the cases for T2-weighted MRI volume
(left). Improving the contrast as seen in Figure 3.5 (a) using stretching histogram (right).

homogeneity within classes have been increased and the bias field is corrected. However, one of the side

effects is that the background becomes brighter.

Masking Since the breast muscle and the background have nearly the same intensity values in T2-

weighted MR images, an air mask is implemented using K-means to get a binary mask for the breast

volume excluding the background as shown in Figure 3.5 (c). Then, an element-wise multiplication

between this mask and the corrected bias field data is applied as shown in Figure 3.5 (d).

Cropping Data For decreasing the volume of MRI in order to reduce the computation burden, one step

is to get only the bounding box of the breast. This is done by cropping all the voxels of the background

from posterior, inferior, left, and right as shown in Figure 3.5 (e). Additionally, the positions of the

100 brightest pixels of the middle slice are stored. They will be used further in the postprocessing for

the evaluation of segmentation as the brightest pixels are considered fatty tissue with respect to the T2-

weighted characteristics.

Neural Networks

The NN architecture is based on the work of Kanezaki et al. (93; 88). It is an unsupervised image

segmentation method but has not yet been utilized for breast MRI segmentation and has only been used

for purposes in non-medical imaging applications. This network consists of convolution layers, ReLU

as an activation function, batch normalization layer, and softmax layer. They are cascaded together such

that the output of a specific layer depends on the input of the previous layer in a feedforward scheme.

This network’s loss function consists of two criteria. First, voxels with similar features are assigned to

the same class. Cross entropy loss is applied for this purpose as shown in Figure 3.7 (first row). Second,

spatially continuous voxels are also assigned to the same class. The Mean Absolute Error (MAE) is
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True positive
False positive
False negativeFeature

Figure 3.7: Concepts of similar features to be assigned to the same class (first row). Spatial continuous voxels in
3D dimensions to be assigned to the same class (second row).

calculated for this purpose between each element in the input x and target y, where x is the difference

between the voxel-wise feature to its neighbouring voxels and y is a matrix full of zeroes as shown in

Figure 3.7 (second row). The step size that has been empirically used for both loss functions based on

the available datasets is one and three, respectively.

This network is modified to be adapted for 3D datasets with anisotropic volume dimensions. The loss

function of spatial continuity is expanded into the third dimension. An iterative approach is used in NNs

that generates different segmentations of the same MR volume because of the random initialization of

the NN. For each iteration, the network is randomly reinitialized and retrained.

Architecture In this thesis, three approaches have been proposed for training the model. One approach

was training the segmentation on the whole volume 3D. The second approach was training 2D slices

separately and combining them to a 3D volume (denoted as 2D stacked). The third approach was to

train a subset of the 3D volume of a dataset and adapt the same trained parameters to the whole volume.

The advantages and disadvantages of each approach are trade-offs between accuracy and computation

time which will be discussed in Section 7.1. With respect to accuracy, the first approach is considered to

be the best compared to the other two approaches. From the perspective of computation time, the third

approach is faster than any of the other approaches.

3D Volume and 2D Stacked Volume For the first two approaches, the architecture consists of two

sub-networks. The first network with a filter size of [1x3x3] pixels is responsible for classifying the

muscular tissue and the second network with a filter size of [1x1x1] pixels is responsible for detecting

glandular tissue. The number of convolution layers is three and two for the first and the second network,

respectively. After each convolution layer, there is an activation function in which ReLU is used in

addition to a batch normalization layer. At the end of each sub-network, there is a fully connected layer.

The learning rate (α) is empirically set to 0.2 and 0.05 for the first and second networks, respectively.

37



3 Biomechanical Model Based Registration

The number of channels in both networks is 25. A SGD optimizer is used. The number of iterations is

300 for training while the number of randomly reinitialized and retrained different segmentation is 10 for

each network. The number of labels reached for stopping the training is four labels. These values have

been selected based on empirical tests on the available data.

Subset from the Volume For the third approach, the idea is to select a subset from the volume, which

is used for training, and then extract the NN parameters and assign them to the whole volume. Only

the middle slice was selected to train the network. The idea of selecting the middle slice was to ensure

that all the features were included in training the parameters since it has the full shape of the breast as

shown in Figure 3.3. The architecture consists of only one network similar to the network architecture

with a filter size of [1x1x1]. All of the parameters are the same except for two: the learning rate (α) and

the number of random reinitialization and retrained segmentations. (α) is 0.2. The number of randomly

reinitialized and retrained different segmentation is 20. It uses only one network, not two sub-networks

as before. These values were selected based on empirical tests on the available data.

In the postprocessing, the final segmentation is selected from this series of segmentations. First, different

numbers of iterations have been tried: the mean DSC of the available ground truth (eight cases) was

calculated in each iteration starting from one to ten as shown in Figure 3.9 (left). The figure shows that

starting from the third iteration, it varies. Hence, another experiment was done, in which each iteration

40 random times for each patient was simulated to determine if ten iterations were sufficient. In each

iteration, the average of all the patients in the same specific random simulation is taken. Then the average

of all the random simulations for this iteration is taken as shown in Figure 3.9 (right). In iterations starting

from one to five, the breasts with small sizes could not identify the muscle as a class in some random

simulations. It was obvious starting from the sixth iteration, that it could be considered a determined

result for each patient. Hence, re-initialization 10 times for each sub-network is sufficient for the first

two approaches. So, 20 iterations in total are used. For the third approach, 20 iterations for only one

network are applied. By that, it would guarantee general robustness for new data.

Postprocessing

The postprocessing improves segmentation by removing common errors and choosing the most reason-

able segmentation from the random re-initialization. It consists of three main steps: assigning class

numbers to tissue types, splitting the combined class of glandular and muscular tissue, and finally an

evaluation metric for selecting the most reasonable segmentation for both tissues glandular and muscular

tissues.

Assigning Deterministic Class Labels There is no distinct class label for each tissue because the

learning is done unsupervised. It varies between 0 and 24 based on the number of channels that have

been selected in the architecture. Based on heuristic observations, the four segmented areas are sorted

by the NN to deterministic tissue labels: 0 (background), 1 (glandular tissue), 2 (fatty tissue), and 3
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Figure 3.9: The mean DSC of a single run for the eight patients in each iteration (left) starting from one until ten
iterations using the first approach. The mean DSC of 40 runs for the eight patients in each iteration starting from
one until ten iterations (right).

(a) (b) (c) (d)

Figure 3.10: Assigning deterministic class labels in the postprocessing in the middle slice of one of the cases from
Medical University of Vienna. The output image from NN in one of the iterations (a). Applying determined labels
based on the four segmented labels (b). Compensating the loss of segmenting glandular tissue (c). The assigned
classes for the three main labels (background, fatty, mixed class of glandular and muscular tissues) (d).

(muscle). It was observed using a histogram that the segmented area with the most voxels is given the

label 0 as shown in Figure 3.10 (b) since the background includes the majority of the voxels as shown

in Figure 3.11 (i.e. label 9 in this example). One common error might arise after this step, a small

amount of voxels is assigned to i.e. label 7 (unassigned labels) as shown in Figure 3.11. Those voxels are

considered to be members of the mixed class of glandular and muscular tissue. Hence, they are assigned

to label 1 as shown in Figure 3.10 (c). However, other tissues can not be assigned unfortunately based on

the histogram of a dataset. The ratio between fatty and glandular tissue depends on the age of the patient

(85). Young women can have more glandular tissue than fatty tissue and vice versa (18) (85). Hence,

another approach is needed for assigning the remaining tissues.

Due to the characteristics of the T2-weighted MR images, fatty tissue is considered the brightest tissue.

Therefore, the 100 brightest pixels are examined in the middle slice in the original MRI dataset and the

NN tissue class that these pixels belong to is assigned to label 2 for fatty tissue shown in Figure 3.10

(d). For now, glandular and muscular tissues will be assigned to the same class label 1. In the upcoming

paragraph, it will be discussed how to differentiate between them.
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Figure 3.11: The histogram of the unassigned segmented four labels from NN for one example. The absolute label
from the NN is not consistent for different random re-initialization.

(a) (b) (c) (d) (e)

Figure 3.12: Differentiating between glandular and muscular tissues in the postprocessing in the middle slice of
one of the cases from the medical university of Vienna: The mixed class of skin, glandular, and muscular tissues
(a). The borders of the breast with a large area (b). The subtracted image from the first two images (mixed class
without skin) (c). The binary mask of muscular tissue only (d). The binary mask of glandular tissue only (e).

Differentiating between Glandular and Muscular Tissues

(1) 3D Volume and 2D Stacked Volume Before separating glandular and muscular tissue into two

different classes, one needs to take into consideration that some errors could occur and need to be

resolved.

First, the boundary of the breast is classified as glandular tissue. However, this misassignment is

caused by the partial volume effect which leads to a gray value of pixel close to the breast surface

similar to glandular tissue. It is handled by having two masks of the breast volume with different

sizes. Those masks are subtracted from each other so that the borders of the breast can be extracted

as shown in Figure 3.12 (b). Finally, these borders are assigned to fatty tissue label 2.

Second, some fatty tissues could appear inside the muscle area. This is because some intensities of

muscle are similar to the fatty tissue. It is handled by filling these holes in the muscle area. Those

two common errors are only done for the network of filter size [1x3x3].

Due to their similar intensity values in T2-weighted images, muscular and glandular tissues are

frequently classified as the same class. From the sub-network of filter size [1x3x3], a binary

mask of the mixed class of glandular and muscular tissues is extracted. Based on the available

datasets, it can be empirically determined that glandular tissue consists of numerous small areas

while muscular tissue consists of one single object with a large area as shown in Figure 3.12 (d and
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e). Thus, the largest connected object in each slice is identified and given the label 3 for muscular

tissue. Label 1 is given for glandular tissue to the rest of the objects.

The final result is combined by taking the shape of the breast, which is set to fatty tissue, from the

sub-network of filter size [1x1x1] and adding the mixed class of the same segmentation on top for

glandular tissue and overlying the breast muscle from the sub-network of filter size [1x3x3]. By

that, an accurate shape could be achieved, good muscular tissue, and detailed glandular tissue as

shown in Figure 3.13.

(2) Subset from the Volume Instead of using two sub-networks, it is sufficient to use only one network

of filter size[1x1x1] with the same procedures of assigning classes to glandular and muscular

tissues keeping the same accuracy.

Evaluation Metrics The NNs are randomly initialized 10 or 20 iterations based on the approach.

A selection metric is suggested to assess the quality of the muscular and glandular tissue segmenta-

tion in order to choose the most reasonable segmentation out of the ten different segmentation for each

sub-network or out of 20 different segmentation for one network only. By combining several heuristic

metrics, the muscle quality score (MQS) and glandular quality score (GQS) are determined.

For muscle tissue, first, the muscle occurrence (denoted as Occurrm in equation 3.1) is evaluated in each

segmentation from the sub-network of filter size [1x3x3]. The number of muscle voxels is compared to

the total breast volume. If the ratio is too small, it will be given a bad score. Second, the symmetry of

the muscle (denoted as SymErrm in equation 3.1) is evaluated. The muscle symmetry error is the mean

square error between muscle segmentation and its flipped version. If a one-sided muscle is only detected,

then it will be given a bad score. Third, in the case of including extra tissues in the same mask of muscular

tissue, the muscle needs to be corrected. Therefore erosion is applied to this binary mask, which causes

a loss of details. The morphological process of erosion causes an object’s boundaries in an image to get

smaller. Hence, the number of erosion steps (denoted as Erosm in equation 3.1) that were done for the

inaccurate detection of the muscular tissue in the anterior part of the breast is counted. As the number

of erosion steps increases, the quality of segmentation decreases. Fourth, it is taken into consideration

that the muscle should not occur in the anterior two third of each slice (denoted as OccurAnteriorm in

equation 3.1). It is only available in the posterior of the breast (136). Fifth, in the human body, muscular

tissue should not be in contact with air (denoted as Airm in equation 3.1) but rather with the chest wall.

Therefore, it was evaluated how many voxels are in contact with air instead, which is considered in this

case the background. These metrics are subtracted or added together based on the decision of whether

they have a negative or positive effect on selecting a good muscle shape, as shown in equation 3.1. The

values of these metrics have been weighted based on empirical tests of the available data. The weighted

values are the same for both series. For Occurrm, the constant value (a) currently is 500. For SymErrm,

the constant value (b) is 100. For Erosm, the constant value (c) is 1
15 . For OccurAnteriorm, the constant
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value (d) is 50 while for Airm, the constant value (e) is 5×10−4. These constants could be updated in the

future.

MQS = a ·Occurrm −b ·SymErrm − c ·Erosm −d ·OccurAnteriorm − e ·Airm (3.1)

For glandular tissue, first, the glandular occurrence (denoted as Occurrg in 3.2) is evaluated in each

segmentation from the sub-network of filter size [1x1x1]. It is evaluated with the same concept as muscle

occurrence: comparing the number of glandular voxels to the total breast volume. Second, the overlap

of the muscle area detected in each sub-network (denoted as Overlapm in 3.2) is calculated in the case

of the first two approaches. In the case of the third approach, the overlap of the muscle area between

the selected muscle (based on evaluation metrics) and the current muscle of the specific iteration. If

overlapping increases, the quality of segmentation of glandular tissue increases. Third, for the position

of the 100 brightest pixels of the middle slice of the MRI volume (denoted as PixPos f in 3.2), a ratio of

those pixels is calculated between the default labels (fatty tissue) and the actual segmented labels. If the

ratio increases, it is likely that those pixels are segmented correctly. Fourth, it could be determined that

different MRI datasets do not have glandular tissue in the lateral parts or the area posterior to the sternum

position. This observation can be validated that the glandular tissue reaches from the axillary to the

inguinal regions (136). A mask for this region has been created as shown in Figure 3.12 (b) and multiplied

by the segmented data. By that, the percentage of glandular tissue in this area (denoted as Bordersg in

3.2) could be calculated. If the percentage increases, it is considered bad segmentation. These metrics

have been similarly subtracted or added together based on the decision of having a negative or positive

effect on selecting a good glandular shape, as shown in equation 3.2. The values of these metrics have

been weighted based on empirical tests of the available data. These weighted values are different for both

series. For the T2-weighted series, the constant value (a) of Occurrg is currently 1.5. For Overlapm, the

constant value (b) is 0.3. For PixPos f , the constant value (c) is 0.05, while for Bordersg, the constant

value (d) is 30. For the T1-weighted series, the constant value of Occurrg (a) is currently 1.1. For

Overlapm, the constant value (b) is 0.5. For PixPos f , the constant value (c) is 0.05, while for Bordersg,

the constant value (d) is 300. These constants could be updated in the future for both series.

GQS = a ·Occurrg +b ·Overlapm + c ·PixPos f −d ·Bordersg (3.2)

3.2.2 Meshing

Based on the segmented MRI, the model geometry is generated, dividing the breast anatomy into ap-

proximately 2000 to 2500 4-node elements using a tetrahedral meshing algorithm. The iso2mesh library

(54), which is based on Computational Geometry Algorithms Library (CGAL) (39) and tetgen (169), is

used for creating the tetrahedral meshes used. The meshing algorithm first divides the outer and inner

surfaces of the breast tissues into a triangular mesh based on the Delaunay triangulation (55). Afterward,
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Figure 3.13: One of the segmented clinical cases for three tissues simultaneously: glandular (dark grey), fatty
(bright grey), muscular tissue (white) in three views: sagittal (left), transverse (middle), and coronal (right).

the volumetric mesh is filled with tetrahedrons in between. Each element of the mesh is assigned to

tissue-specific material properties according to the labels of regions produced, which in turn are based

on the MRI segmentation. On top of the tetrahedral mesh, a skin layer of membrane elements with a

thickness of 2mm is modeled. There are five parameters controlling the mesh generation, taking into

consideration the shape, the size, and local refinement.

- maximum element volume (size - element)

- maximum radius-edge ratio: a ratio between circumRadius (R) and length edge (shape - element)

- deviation from isosurfaces (local refinement)

- maximum triangle delaunay circle radius (size - surface)

- minimum angle of a surface triangle (shape - surface)

An analysis is done to investigate if there is a correlation between breast segmentation in images and

mesh coordinates. Two aspects were analyzed: the ratio between glandular and fatty tissues and the

amount of glandular tissues compared to the breast. It is found that there is a strong correlation with an

Pearson Correlation Coefficient (r) of 0.88 and 0.85, respectively using a polynomial fitting curve (first

degree). This analysis verifies that the ratio of dense breasts which will be used further in the results is

calculated correctly either based on images or meshes as shown in Figure 3.14.

3.2.3 Material Model and Boundary Conditions

After creating the mesh, a material model for describing the mechanical response of breasts during

deformation needs to be implemented. Several parameters can be used to characterize the mechanical

properties of the breast:

- Poisson’s ratio (ν) defines the relative change of volume, either thickness or length when applying

an external force
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Figure 3.14: Comparison of the ratios calculated once by image coordinates and once by mesh coordinates. These
ratios have been calculated based on the proposed segmentation methods. A strong correlation is found between
the ratio of glandular and fatty tissue calculated in images and meshes of an r of 0.88 (left). A strong correlation
is found between the amount of glandular tissue compared to the breast of an r of 0.85 (right).

- Young’s modulus (E) describes the stress (σ ) - strain (ε) relationship of the breast when exposed

to deformation in linear elastic cases.

- Bulk modulus (κ) explains the magnitude of pressure change required to cause a specific volume

change

- Shear modulus (G) or (µ) describes the deformation due to shear forces

Since breast tissue is considered to be an incompressible material (147), Poisson’s ratio is assumed to be

nearly ν = 0.5, which leads the bulk modulus K to be infinity as shown in equation 3.8.

The hyperelastic material models are considered to be a solution for breast tissues. Since they are

isotropic, non-linear, incompressible, and depend on the strain rate which leads to respond instantly

elastically up to large strains. In addition, they could take into account the geometric non-linearity dur-

ing the analysis step. That is why hyperelasticity was selected for modeling the stress-strain behaviour

of such material (rubber-like material) (27; 195). Some typical hyperelastic models are:

- Polynomial

- Mooney-Rivlin

- Neo-Hookean

The strain energy density function for the polynomial model is defined as (27)

U =
N

∑
i+ j=1

Ci j(I1 −3)i(I2 −3) j +
N

∑
i=1

1
Di

(Jel −1)2i (3.3)

where U is the strain energy per unit of the reference volume, Ci j are the empirically determined material

constants, and (I13) and (I23) are the first and second invariants of the deviatoric component of the left
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Cauchy-Green deformation tensor. A correction factor for compressible material based on the material

constant Di is represented by the last term on the right-hand side. The Di values determine the compress-

ibility of the material: if all the Di are zero, the material is taken as fully incompressible. If D1 = 0 , all

Di must be zero. Jel is the elastic volume ratio. Since J becomes 1 in the case of incompressibility, the

last term on the right side can be omitted. Regardless of the value of N, the initial shear modulus and the

bulk modulus depend only on the polynomial coefficients of order as shown in equation 3.4 (76):

µ0 = 2(C10 +C01), κ0 =
2

D1
(3.4)

The Mooney-Rivlin model is a simplified version of the polynomial model with N = 1 and C11 = 0. The

Neo-Hookean model is a specific case of the Mooney-Rivlin model when C01 = 0 as shown in equation

3.5 and for this case, the initial shear modulus and the bulk modulus are as shown in equation 3.6 (76).

An isotropic hyperelastic Neo-Hookean material model was implemented to account for the large defor-

mation, non-linear, and incompressible tissue behavior during the deformation process (206). It depends

on the material parameters C10 and D1. The C10 and D1 are derived from the equations 3.7 and 3.8 as

functions of Young’s modulus E and Poisson’s ratio ν as shown in equation 3.9 to describe the stress-

strain relationship of the breast tissue to fit the reduced polynomial form (187). Poisson’s ratio ν was set

to 0.495 for all three tissues while Young’s modulus differed from one tissue to another. E f at was set to

1100 Pa, EGland was set to 2500 Pa, and EMuscle was set to 6000 Pa (176).

U =C10(I1 −3)+
1

D1
(Jel −1)2 (3.5)

µ0 = 2C10, κ0 =
2

D1
(3.6)

G = µ0 =
E

2(1+ν)
(3.7)

κ0 =
E

3(1−2ν)
(3.8)

C10 =
E

4(1+ν)
, D1 =

2
3E(1−2ν)

(3.9)

ν =
3(K0

µ0
)−2

6(K0
µ0
)+2

(3.10)

The biomechanical model that was previously proposed by Hopp et al. mainly consists of four steps sim-

ulating the deformation of mammographic compression. First, since the MRI is taken in prone position

as discussed in Section 2.1. The initial model is not stress-free and the breast is first simulated in an

unloaded state, i.e., in a configuration in which no mechanical deformation and no gravity are applied to

the breast. Then, an upright gravity simulation mimics the upright standing patient, followed by applying
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compression to the breast by moving the lower compression plate first to its desired position and then the

upper plate to perform the actual compression. "In the posterior direction, the fixation of the breast at the

chest wall is modeled. In terms of boundary conditions, the breast is attached to the body by modeling

the muscle as an undeformable body. Nodes at the interface between the muscle and other tissue are

restricted in moving in the anteroposterior direction. The boundary condition to perform the compres-

sion is thereby defined as a displacement of the compression plates. Acrylic glass plates modeled by

8-node hexahedrons are used. The compression of the breast model is achieved by defining a contact

between the breast surface and the plate surface. Since the material is considered nearly incompressible,

the applied deformation results mostly in a change of shape and not in a change of volume" Said et al.

(160). The four steps are named:

step 1 unloaded state - removal of gravity

step 2 applying upright gravity

step 3 moving lower plate

step 4 moving upper plate

The compression simulation mimics two views of X-ray mammography, CC and MLO. For CC, com-

pression plates and breast are in the same position at angle 0◦, while for MLO there are two ways for

implementing the simulation of compression either rotating the breast only by 45◦ or -45◦ based on the

side of the breast or similarly rotating the compression plates only. Different scenarios have been ana-

lyzed to robustify and decrease the number of steps of the biomechanical model and simulation which

will be discussed in detail in Section 3.2.4.

Based on the results of Section 3.2.4, mimicking the deformation simulation of the CC mammographic

compression consists of two steps. First, the unloaded state of the breast is simulated in which no gravity

is applied to the breast. This is simplified by applying a body force with a gravitational force in the

anteroposterior direction. In the second simulation step, compression plates are added to compress the

breast until the required compression thickness is achieved. The compression thickness is read from

the metadata of the corresponding mammogram. The lower compression plate is assumed to be fixed

at the inframammary fold and only the upper plate moved downwards toward the breast. In terms of

boundary conditions, a displacement of the upper compression plate is defined and the lower plate is

kept in position. 8-node hexahedrons are used to model the plates and a linear elastic material with

material parameters mimicking acrylic glass is applied. The deformation simulation of the breast is

considered a contact problem between the breast surface and the plate surfaces. It defines a small sliding

interface with an adjustable friction coefficient which has been set to 0.25 taken from literature (210).

There are common problems that might cause non-converging deformation of the breast, such as the

quality of the mesh, titling because of large breasts, or highly dense breasts. In order to avoid non-

convergence problems, several investigations will be discussed in the next Section 3.2.4. For the tilting

problem, it has been observed that it might be caused by not having a concave shape or symmetry of
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Figure 3.15: Example of the additional restricted nodes at the back of the breast in case of a very large breast to
avoid titling. Nodes are restricted at the corners of the breast from the bottom back and one node is restricted in
the middle of the breast.

(a) (b) (c)

Figure 3.16: Example of CC case: the breast geometry in the biomechanical simulation before deformation (a),
the deformed breast after applying the compression plates (b), and example of the inner distribution of tissues
showing fatty (green) and glandular tissue (white) in the compressed breast (c) (160).

the breast, or by very large breast size, or by very glandular i.e. very dense breasts. One way to solve

this problem is to restrict more nodes at the corners of the breast from the back bottom in addition to the

interface nodes that have been previously explained in the anteroposterior direction. Also, a node in the

middle of the breast with a ratio of one to a third of the breast size is restricted as shown in Figure 3.15.

For mimicking the deformation simulation of the MLO mammographic compression, three steps are

applied. First, the unloaded state of the breast is simulated in combination with applying the upright

gravity. So in total using Pythagoras’ law, a force of 13.81 m/s is applied in the negative direction. Then

the second and third steps are moving first the lower plate toward the breast followed by moving the

upper plate toward the breast. The boundary conditions are similar to that of CC view but rotating those

restricted nodes with the same rotation value of MLO that was read from the metadata. The reason why

three steps are selected instead of two in the case of MLO cases is that it increases the convergence and

solving the deformation simulation more smoothly. It is necessary to solve this deformation simulation

because 58.8% of the available data are MLO cases. Two factors are affecting the robustness of the
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(a) (b) (c) (d) (e)

Figure 3.17: Example of MLO case: the breast geometry in the biomechanical simulation before applying defor-
mation (a), the deformed breast after removal of gravity and applying upright gravity in one step (b), the breast
geometry before applying deformation of the plates (c), the breast geometry after applying deformation of the
lower plate (d), and the breast geometry after applying deformation of the upper plate (e).

deformation simulation for the MLO. First, the precision of the rotation angle for the muscle area in the

breast is required. The technician is asked to rotate the patient so that as much of the axilla or muscle

appears in the view. This causes the rotated view in the image, which needs to be detected to apply these

findings to the biomechanical model as well. Thus, this value has been extracted based on the proposed

method that will be explained in Chapter 4 in Section 4.2.1. Second, the position of the plates in the

posterior direction. This value has been extracted like the explained algorithm for CC in Section 3.2.4,

in addition to 2 cm more for compensating the posterior nipple line (PNL) for MLO cases. The general

rule is that if the PNL is less than 1 cm, the MLO view is taken correctly and corresponds to the CC view

(134). Since the available data varies a lot, 2 cm was added instead of 1 cm.

The simulation is started using these empiric standard parameters. The FEM is employed to compute

the mechanical response of the breast tissue for the modeled compression. The mechanical deformations

were estimated using the dynamic FE solver in the commercial FEM software ABAQUS / Explicit (175),

selected for its robust convergence for highly non-linear deformations and contact problems. Although,

ABAQUS / Explicit could require a lot of time or give a noisy response at the end of the last step as

shown in Figure 3.27. Applying mass scaling can help in reducing the computation time required for the

explicit solver (185). The non-linear system of equations is solved in ABAQUS / Explicit using a small-

step incremental solution method. For each small time step, the geometric non-linearity of the breast is

taken into account. ABAQUS / Explicit is set to automatically determine the step size and convergence

criterion of each increment. To have a stable time increment size, it is based on two factors as shown

in equation 3.11; the mesh’s smallest element dimension Lmin and the wave speed dilatation cd in terms

of Lame’s constant and shear modulus as shown in equation 3.12. The effective hyperelastic material

moduli are computed from the constitutive response of the material to provide the current dilatational

wave speed cd . The effective Lame’s constants in an isotropic elastic material are defined as follows:

in terms of Poisson’s ratio ν and Young’s modulus E as shown in equation 3.13. Since the mesh has

multiple materials, the initial time increment is estimated by the element with the highest wave speed.

Large deformations in non-linear problems cause the model’s highest frequency to fluctuate over time,

which in turn affects the stability limit. There are two methodologies for time incrementation control
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in ABAQUS/Explicit: fully automatic time incrementation and fixed time incrementation. In this thesis,

fully automatic time incrementation is used and as a consequence, user intervention is not required. The

analysis initially makes use of a stability limit determined by the highest element frequency over the

entire model. It is calculated for every element based on its current dilatational wave speed. Compared

to the true stability limit, which is based on the highest frequency of the whole model, it will offer a

smaller stable time increment.

Finding the stable time needed for a dilatational wave to propagate across the smallest element dimension

is crucial. That makes it simple to see how the explicit approach determines the time increment when the

time increase is controlled by element-by-element stability estimation. The time increment will become

less sensitive to the element size as the step progresses if the global stability estimate is applied.

△t ≈ Lmin

cd
(3.11)

In equation 3.11, Lmin is the smallest element dimension in the mesh and cd is the dilatational wave speed

in terms of λ0 and µ0.

cd =

√
λ0 +2µ0

ρ
(3.12)

with ρ is the density of the material,

λ0 =
Eν

(1+ν)(1−2ν)
(3.13)

A smooth step displacement curve is used to approximate the model to a quasi-static configuration. The

amplitudes are calculated based on the smoothing step to estimate the ramp step as shown in equation

3.14. The amplitudes are considered to be the displacements of moving the upper plate towards the breast.

The simulation of the breast compression is divided into small time steps to calculate the displacements

of the moving upper plate towards the breast.

The deformed configuration of the breast is extracted by requesting from ABAQUS the node positions at

a certain time step (referred to as "step number"). This information is used as a feature for training the

machine learning models, as described in Section 3.2.5.

a = Ai +(Ai+1 −Ai)ξ
3(10−15ξ +6ξ

2) f or ti ≤ t ≤ ti+1 (3.14)

where: ξ =
t − ti

ti+1 − ti

In this case, t ranges from zero until one second. The initial state represents the highest position of the

upper plate before starting the simulation. The last state represents where the upper plate has stopped

when it reaches the compression thickness from the metadata.
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In the next section, several experiments will be discussed in order to show why these proposed steps, and

specific parameters regarding stability, and convergence are selected.

3.2.4 Experiments for Optimizing Parameters

This section discusses four experiments that have been tested by a small subset of eleven patients that

were available at that time. First, the evaluation of the quality of meshes is included. Second, how many

steps are needed compared to the reality of mammographic compression was investigated. This was done

using the evaluation methods of quality meshes. Third, some factors that could affect the simulation of

models, such as the position of the plate in the Y direction and the thickness of the skin are examined.

Fourth, an analysis of the stability of the model when being solved by FEM is investigated.

Quality of meshes

Solving the mechanical deformation problem using FEMs requires a good mesh quality, i.e., no degen-

erated tetrahedrons, for a stable solution, to achieve convergence and avoid re-meshing in between the

steps of the simulation. Poor quality meshes could lead to non-convergence. These problems of poor

quality meshes are listed below, as shown in Figure 3.18:

1. An element that is touched by the upper plate’s corner degenerates (see Figure 3.18 (a))

2. An element that is fixed at the back (breast-muscle interface) is pulled down by the plate at single

nodes (see Figure 3.18 (b and c))

3. An element gets squeezed excessively inside the breast (see Figure 3.18 (b))

4. The breast flows down the lower plate for finer meshes (see Figure 3.18 (c and d))

There are a lot of methods by which mesh quality can be analyzed. Three methods have been imple-

mented and tested. All meshes were done using tetrahedrons. First, quality measures of meshes are

calculated in MATLAB using a specific equation, which will be illustrated in detail below. Second, the

quality of meshes is calculated using ABAQUS functions. Third, the quality of meshes is calculated by

metrics provided in the iso2mesh toolbox. The goal of this analysis was to select which metric from

these is the most effective in identifying the initial parameters for generating meshes, without the need

for re-meshing in between the simulations based on the available data.

(1) Ratio radius of tetrahedron meshes The ideal shape for tetrahedron meshes is an equilateral

mesh. However, it is usually difficult to generate tetrahedrons with edges of the same size for the

meshes. In general, the tetrahedral elements can be described as a region bounded by polygon

faces. An evaluation of the shape of a tetrahedron and how much it deviates from the equilateral

ideal can be done using the ratio of inradius (r) and circumradius (R) (2; 31) as shown in Figure

3.19 and equations 3.15 and 3.16. The inradius is the length measured between a face’s center

and the tetrahedron center. Circumradius is defined as the radius of the sphere passing through
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(a) (b)

(c) (d)

Figure 3.18: Problems of bad quality meshes that could lead to non-convergence as listed earlier. Figure a shows
the first problem (1). Figure b shows the second and third problems (2 and 3). Figure c shows the second problem
(2). Figures c and d show the fourth problem the finer (c) and the coarse (d) mesh using these parameters, the
maximum element volume of 18 and 9, respectively, the maximum radius ratio edge of 3 in each, the deviation
from isosurfaces of 5 and 4, and the maximum triangle delaunay circle radius of 35 in each.

the four vertices of the tetrahedron as shown in equation 3.16. The radiuses of these two spheres

are 1
3 for an equilateral tetrahedron. The more a tetrahedron deviates from the ideal shape, the

lower this ratio will be. It is therefore an indication for the detection and rejection of bad shapes

of tetrahedrons. Any tetrahedron with a ratio (see equation 3.17) less than 0.25 should be rejected

and considered a distorted element (2) (31).

r =
abs(α)

||N(a,b,c)||+ ||N(a,b,d)||+ ||N(a,c,d)||+ ||N(b,c,d)||
(3.15)

where: α =
−→
ab · (−→ac×

−→
ad), Na,b,c =

−→
ab×−→ac

R =

√
(a+b+ c)(a+b− c)(a+ c−b)(b+ c−a)

24∗ v
(3.16)

Quality measure = ρ =
3 · r
R

< 0.25 (3.17)
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R

r

Figure 3.19: Diagram of a tetrahedron mesh showing inradius (r) and circumradius (R). This diagram was modified
by the author based on (48) and is licensed under CCBY.

where: r is inradius, R is circumradius, v is the volume of an element, and a, b, c are the products

of the lengths of opposite edges.

(2) Quality metrics from ABAQUS Based on the documentation of ABAQUS (188) 2017, there are

three quality metrics for judging the quality of the mesh.

a) shape factor

b) aspect ratio

c) short edge

According to equation 3.18, the shape factor is the ratio of the element volume to the ideal element

volume. The volume of an equilateral tetrahedron with the same circumradius of the element is the

ideal (optimal) element volume (70). The aspect ratio is the ratio between the longest and shortest

edge of an element, as shown in equation 3.19. The short edge is considered to be the edge with the

shortest length in a tetrahedron mesh. There are certain limits in ABAQUS for tetrahedral meshes

regarding these parameters for achieving convergence. The aspect ratio should not exceed 10, the

shape factor should not exceed 0.0001, and the short edge should not exceed 0.01 (188).

Shape Factor =
element volume

optimal element volume
(3.18)

Aspect Ratio =
hmax

2 ·
√

6r
(3.19)

(3) Quality metrics from iso2mesh Based on the documentation of iso2mesh (54), a metric to judge

the quality of a mesh is the JoeLiu metric (103) which takes into consideration radius ratio (ρ) as

shown in equation 3.17 and it could be called as well the aspect ratio, mean ratio (η) as shown in

equation 3.21, and σmin as shown in equation 3.20.

σmin = sin(
θmin

2
) (3.20)

where: θmin is minimum solid angle
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η =
12∗ (3v)

2
3

∑
0≤i< j≤3

l2
i, j

(3.21)

where: v is volume of an element and li, j is length of edges of an element

After measuring the quality of the meshes, the most effective metric for avoiding the need for re-meshing

in between the steps was the first method. If the ratio radius of tetrahedron meshes (see equation 3.17)

is less than 0.25, then it is considered a distorted element. The best parameters found for generating

meshes resulting in the least distorted elements were found as shown in Table 3.6 (second column). It is

obvious from the table that the values selected are the upper bound of the analysis which could be a local

minimum or not fully optimized. The reason why this range is selected is to preserve the shape and the

anatomy of the breast and at the same time achieve convergence. For example, if the maximum element

volume is greater than 15, the geometry of the breast is not correct and it does not converge. By selecting

these parameters, It was found that 42 patients out of 51 patients available have only 1 to 2 % distorted

elements using the initial parameters found in this analysis (see Section 7.3.1). By that, it is possible to

avoid non-convergence and re-meshing between the steps of simulation.

For the other two methods of quality measures, it was more meaningful to use them in the next experi-

ments because the investigations were done in between simulations to evaluate the distortion elements at

each step in order to decrease the complexity of biomechanical deformation.

Simulation of steps of the model using the evaluation methods of quality metrics

The complexity of the biomechanical deformations was investigated using the percentage of distorted

elements that could appear at each step in between the four mentioned steps (see Section 3.2.3). The

percentage of distorted elements was calculated using the quality mesh metrics of the second and third

methods for the same subset of patients. As explained, those four mentioned steps are needed if the goal

is to apply real and physical mammographic compression regarding forces and displacements. However,

the goal is to solve the mechanical deformation problem using FEM simulations which lead to conver-

gence and at the same time decrease the number of steps. Thus, different scenarios have been tried by

Table 3.6: The range and the step size that have been tried for creating a tetrahedron mesh (first column). The best
parameters were found with the least distorted elements (second column)

Parameters Range / step size Value

maximum element volume 7-15 / 1 15
maximum radius-edge ratio 2-3 / 1 3
deviation from isosurfaces 2-5 / 1 5
maximum triangle delaunay circle radiu 20-35 /5 35
minimum angle of a surface triangle - 30

54



3.2 Proposed Method

changing the order of these steps to investigate which step leads to the most distorted elements as shown

in Figure 3.20, 3.21, 3.22, and 3.23.

The first step is defined from 0 to 1 second, the second step is defined from 1 to 2 seconds, the third

step is defined from 2 to 3 seconds, and the fourth step is defined from 3 to 4 seconds. The first scenario

(denoted as the full scenario) consists of the four mentioned steps. Through all the next scenarios, the

gravity (unloaded state step) is removed and the order of upright gravity has been changed. The second

scenario (denoted as upright+plates) consists of three steps applying an upright gravity followed by

applying compression plates with the same sequence as explained before. The third scenario (denoted

as lower plate+upright+upper plate) consists of three steps as well, but adding the upright gravity in

between moving the lower plate and moving the upper plate. In the fourth scenario (denoted as plates

only), the upright gravity is removed and the plates are moved in the same sequence as before.

Figure 3.20 shows that the percentage of distorted elements either from ABAQUS or from iso2mesh in

the last two time steps (3 and 4) between 2 to 3 and 3 to 4 seconds lead to the most distorted elements

because of the large deformations that happen in these two steps, additionally, the jump of distorted

elements between the upright gravity step (2) and moving lower plate step (3) is high from 0.8% to 2.5%

(the absolute difference is 1.8%). Figure 3.21 shows that not only distorted elements exist in the last two

steps but also in the first step from 14.8% to 33.7%. The jump from the upright gravity step (1) to the

next steps of compression plates (2 and 3) is higher than the Figure 3.20 in descending order from 14.8

% to 11.5% (the absolute difference is 3.3%). This shows how the upright gravity affects the distorted

elements in the next steps. In Figure 3.22, the percentage of distorted elements increased compared to

Figure 3.21 in the three steps from 14.9% to nearly 34.4% when the upright gravity step was added (2) in

between. Additionally, there is nearly no jump in the upright gravity step from 34.3% to 34.5%. Figure

3.23 compared to Figure 3.22 shows that the percentage of distorted elements with or without the upright

gravity, is nearly the same effect. The percentage of distorted elements is from 14.9% to 34.4% in the

"lower plate + upright + upper plate" scenario. The percentage of distorted elements is from 14.8% to

34.1% in the plates only scenario.

From this analysis, adding the upright gravity step before the compression of the lower plate was found

to have a negative effect, although it is a more realistic scenario for mammographic compression. In

general, the upright gravity step has a negative effect on the model causing excessive distortion of ele-

ments. So in this thesis, removing the upright gravity step is proposed for CC views for the purpose of

convergence and decreasing the complexity of deformation simulation.

By having less distorted elements and decreasing the number of steps of the biomechanical model, the

probability of having the simulation fail and the probability of losing precision in the simulations would

be decreased. From an optimization point of view, the computation time will be decreased as well. From

this analysis, it was concluded that the proposed scenario would be having first the unloaded state, fixing

the lower compression plate at the inframammary fold, and then moving the upper plate downwards
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Figure 3.20: Monitoring of mesh quality of one of the cases of datasets from ABAQUS and iso2mesh in different
scenarios for the FEM model. First scenario (full scenario): four steps (unloaded state, upright gravity, moving
lower plate, and moving upper plate).
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Figure 3.21: Monitoring of mesh quality of one of the cases of datasets from ABAQUS and iso2mesh in different
scenarios for the FEM model. Second scenario (upright+plates): three steps (upright gravity, moving lower plate,
and moving upper plate).

to compress the breast until the desired compression thickness which is considered the fifth scenario

(denoted as gravity+plates) that will be used further. To sum up, the five scenarios that are investigated:

1. unloaded state, applying upright gravity, moving lower plate, and then upper plate "full scenario"

2. applying upright, moving lower plate, and then upper plate "upright+plates"

3. moving lower plate, applying upright, and moving upper plate "lower plate+upright+ upper plate"

4. moving lower plate and then upper plate "plates only"

5. unloaded state, fixing lower plate, and moving the upper plate "gravity+plates"

Simulation of steps of the model using TRE

The analysis of the four scenarios was continued from Section 3.2.4 in addition to the proposed fifth

scenario. The goal of this experiment is to achieve the best accuracy with the least errors. This experiment

has been evaluated by Target Registration Error (TRE) as shown in equation 3.22. It was observed that

not only the scenarios are affecting TRE as shown in Figure 3.25. There are two more factors, which are

the position of the lower plate in the inferior direction and the thickness of the skin.

T REBiomechanical = ||CXR −CMRI|| (3.22)
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Figure 3.22: Monitoring of mesh quality of one of the cases of datasets from ABAQUS and iso2mesh in different
scenarios for the FEM model. Third scenario (lower plate+upright+upper plates): three steps (moving lower plate,
upright gravity, and moving upper plate).
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Figure 3.23: Monitoring of mesh quality of one of the cases of datasets from ABAQUS and iso2mesh in different
scenarios for the FEM model. Fourth scenario (plates only) two steps: (moving lower plate and moving upper
plate only).

First, the position of plates in the posterior direction at the back of the breast is the main parameter needs

to be estimated robustly, as shown in Figure 3.16 (a). Not only the position of plates in the posterior

direction is important but also the position of the lower plate in the inferior direction affects the TRE.

There are four algorithms proposed for the estimation of the position of the lower plate in the inferior

direction. First, the position of the inframammary fold is estimated by selecting the middle slice of MR

images (transverse view) and calculating the bent shape of the muscle at this slice. Second, the first hit

(non-background pixel) from the horizontal side of the middle slice of the MRI is calculated (see Figure

3.24 arrow indicates 2). The position that corresponds to the inferior position in this calculated location is

extracted and considered to be the position of the lower plate in the inferior direction. Third, the first hit

(non-background pixel) from the vertical side is calculated, as shown in Figure 3.24 (see arrow indicates

3), and similarly the position that corresponds to the inferior position is extracted and calculated. Fourth,

the position of the lower plate is estimated to be equal to the position that corresponds to the inferior

position in the calculated sternum position. From this analysis, it was observed that a simpler simulation

with unloaded state and compression by moving one plate only (gravity+plates) is as good as a complex

four-step scenario (full scenario) as shown in Figure 3.25. Also, it was observed earlier that the other

scenarios including the upright step cause a lot of distorted elements, which leads to the variance of TRE

in these scenarios from one algorithm to another. Additionally, it has been realized that TRE varies based
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3

2

Figure 3.24: Two algorithms explained out of the four algorithms for the estimation of the position of lower plate
in the inferior direction. (2) indicates the second estimation. (3) indicates the third estimation.

on these algorithms (1, 2, 3, and 4), and the first algorithm is the best of them which is currently used. In

the first scenario (full scenario) and the fifth scenario (gravity+plates), the median of TRE is quite similar

in the four algorithms.

mean Error =
∥∥Dspeci f ic massscaling −Dnon massscaling

∥∥ (3.23)

Second, the thickness of skin from 0.5mm to 2.5mm with step size 0.5mm, respectively, as stated in

literature (87) is analyzed for the four algorithms of estimating the position of the lower compression

plates in the inferior direction in the first and fifth scenarios as shown in Figure 3.26. This experiment

is analyzed using the evaluation metric of minimum mean nodal displacement error. It is calculated

between the nodal displacement without mass scaling as a reference (ground truth) and with the selected

mass scaling of 5e−5 (based on the next experiment) at this given range of skin thickness as shown

in equation 3.23. The goal of this experiment is to find the minimum error achieved concerning skin

thickness and reserving the same performance of the full scenario at the same time.

From this analysis, it was observed that the magnitude of the minimum mean nodal displacement in the

fifth scenario using algorithms 2 and 3 (see Figure 3.26 b and c) in comparison to the magnitude of the

full scenario did not have the same performance. Therefore, algorithm 2 and algorithm 3 are not taken

into consideration in the comparison. In the other two algorithms (1 and 4) (Figure 3.26 (a and d)), the

magnitude of minimum mean nodal displacements achieved in the gravity+plates scenario compared to

the full scenario could be nearly the same performance. It was also observed that the error achieved

using the fourth algorithm, as shown in Figure 3.26 (d), is considerably the least error. Through all the

different skin thicknesses in Figure 3.26 (a and d), skin thickness at 2mm is the minimum mean nodal

displacement error. It was hard to select which algorithm to be used with a skin thickness of 2mm. Since

the goal in all the experiments is to predict the position of lesions correctly, therefore, the evaluation

using TRE is more important. In the previous experiment, the first algorithm for estimating the position

of the lower plate was the best concerning TRE. Hence, as a conclusion from these two experiments, the

first algorithm is selected with a skin thickness of 2mm to be used in the model.
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Figure 3.25: Analysis of TRE for different scenarios and different estimations for the position of lower plate in the
inferior direction (Y direction). First scenario (full scenario): four steps (unloaded state, upright gravity, moving
lower plate, and moving upper plate). Second scenario (upright+plates): three steps (upright gravity, moving
lower plate, and moving upper plate). Third scenario (lower plate+upright+upper plates): three steps (moving
lower plate, upright gravity, and moving upper plate). Fourth scenario (plates only): two steps (moving lower
plate and moving upper plate only). Fifth scenario (gravity+plates): two steps (unloaded state, fixing the lower
plate, and moving only the upper plate). For different estimations in Y direction for the position of lower plate Y,
(1) indicates first algorithm, (2) indicates second algorithm, (3) indicates third algorithm and (4) indicates fourth
algorithm.

Stability of the model

Having a stable model is important to verify that deformation is solved without any effect of noise.

Damping oscillations are considered noisy behaviour that might appear randomly in between the sim-

ulation in the four steps (see Figure 3.30) or only in the last step (see Figure 3.27). The oscillations

might also appear because of the dynamic solver or large deformations that happened to the breast. To

analyze the damping oscillations that happen in the simulation and tackle this problem, specific nodes

are extracted. The displacements of those nodes are tracked as a function of the simulation time. Those

specific nodes were selected based on the geometry of the breast, i.e., the back, front, middle, surface,

and bottom of the breast, in order to see the oscillations in all areas of the breast. It was visually seen

that the tissue was oscillating in the simulation. It bounces back and forth, which might be because of a

too coarse time step, i.e., too much force is applied, or because of the selected mass scaling, or because

of the total time of the four steps together. Three experiments were done to validate this using three

parameters.
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Figure 3.26: Effect of skin thickness (0.5,1,1.5,2,and2.5)mm on mean nodal displacement error in the first and
fifth scenarios using the four algorithms for the position of lower plate in the inferior direction (Y direction) for
one of the datasets. Full scenario (left) and gravity+plates (right): first algorithm (a), second algorithm (b), third
algorithm (c), and fourth algorithm (d).

- time increment

- mass scaling

- time step

The first experiment was done to vary between the initial time increment and mass scaling, as shown in

Figure 3.27 for the full scenario. From this experiment, it was observed that initial time increments do

not affect the stability of the system, as different values were tested from 1e−6 to 0.01. Hence, using the

default initial time increment of 0.01 is sufficient for the model.

The second experiment was trying different mass scaling factors with values of 1e−5, 5e−5, 1e−6, 1e−7,

1e−8, 1e−9, 1e−10 and without mass scaling. This experiment has been tried for two scenarios: full sce-

nario and the gravity+plates scenario, as shown in Figure 3.28 and 3.29. All of these trials for varying

mass scaling were done with the same time increment of 0.01. This value was observed in the previous

experiment. From this experiment, it could be concluded that mass scaling is not the reason for oscilla-

tions. Also, it shows how the upright gravity step causes most of the oscillation in all the steps that come

afterward. Hence, a mass scaling of 5e−5, which is considered the default, was used.

The third experiment was increasing the total time of the four steps by two compared to the usual time

in the following steps: upright gravity step, moving lower plate, and upper plate step, as shown in Figure

3.30. It was observed that increasing the total time does not prevent the oscillations, but it increases the

oscillations more and more. As a conclusion, the time steps can be kept the same.

To have a stable FEM model based on the documentation of ABAQUS, two main factors were found

to be affecting the stability of the system. One of them is the Kinetic Energy (KE) of the deforming
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material of the breast, which should not exceed a small fraction of 5% - 10% of its Internal Energy (IE)

throughout most of the process (186). A KE and IE of the whole model for one of the cases is shown

in Figure 3.32. The second factor that may cause this behavior is that the breast is incompressible, and

assuming that the material is completely incompressible is not feasible in ABAQUS/Explicit (184). In

theory, an incompressible material has an infinite wave speed, which will result in a time step of zero.

So, at some point, some compressibility for the breast needs to be provided, knowing that this would

make bulk behaviour slightly softer than that of the actual material. This is based on Poisson’s ratio ν ,

bulk modulus κ and shear modulus µ0. It is recommended that a ratio of R = κ

µ0
should be between 20

and 100 (184). Since the goal is to define the soft tissue as incompressible rather than using the default

value defined in ABAQUS which is 20. Therefore, it is suggested from (183) to use the upper limit in

order not to introduce high frequency noise into the dynamic solution. Currently, the upper limit, which

is 100, is used by using values mentioned in Section 3.2.3 for Poisson’s ratio and Young’s modulus. An

experiment was tried manually to change D1, and C10 coefficients in ABAQUS which are interpreted for

bulk modulus and shear modulus respectively to have a ratio less than 100. It was found out that for

nodes in the middle bottom of the breast, the oscillation decreases significantly as shown in Figure 3.31,

while for the other nodes, the oscillation decreases slightly compared to the other simulations. In which,

it was concluded that the chosen Poisson ratio and Young’s modulus needs to be further investigated in

future.

Despite the fact that this model has been used to register between MRI and X-ray images with success,

the FEM is time-consuming and thereby limits clinical applicability and integration into clinical work-

flows. Furthermore, the image registration considers an iterative scheme for optimizing meta parameters

of each patient specifically such as the compression thickness, the material parameters, or rotations of

the breast to cope with uncertainties in the clinical data. Therefore, the FEM simulation has to be com-

puted numerous times, which increases the overall computation time further. Simulations with standard

parameters take around 20 minutes on an Intel(R) Core i7-9700K Central Processing Unit (CPU) with

3.60 GHz. In contrast, optimization of some parameters for increasing accuracy takes around 2 hours or

even more. Additionally, if the number of iterations is multiplied for only one parameter requires high

computation time.

Numerous strategies have been proposed to reduce the computational effort of FEM in order to achieve

real-time compliance. Some of them concentrated on improving linear solvers, which are the main FEM

bottleneck (120). The Graphics Processing Units (GPU) implementation by (71) relies on a total La-

grangian explicit dynamics (TLED) formulation by (123), which is considered the most optimal method

for modeling breast biomechanics (120). NiftySim is a GPU-based solver (70) used for breast model-

ing. The Simulation Open Framework Architecture (SOFA) also uses a GPU-based solver to speed up

computations and has been used for prostate deformation simulation (127).
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Figure 3.27: Magnitude of specific nodes through steps of full scenario in FEMs by different mass scaling factors
and different time increment values. Mass scaling of 5e−5 and time increment of 1e−5 (a). Mass scaling of 5e−5

and time increment of 1e−6 (b). Mass scaling of 1e−5 and time increment of 1e−5 (c). Mass scaling of 1e−5 and
time increment of 1e−6 (d).
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Figure 3.28: Magnitude of specific nodes through steps of full scenario in FEMs by different mass scaling factors.
Mass scaling of 1e−6 (a). Mass scaling of 1e−7 (b). Mass scaling of 1e−8 (c). Mass scaling of 1e−9 (d).
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Figure 3.29: Magnitude of specific nodes through steps of unloaded state and moving plates in FEMs by different
mass scaling factors. Mass scaling of 1e−6 (a). Mass scaling of 1e−7 (b). Mass scaling of 1e−8 (c). Mass scaling
of 1e−9 (d).
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Figure 3.30: Increasing total time of the four steps of full scenario 2 times more in each of the following steps:
upright gravity, moving lower plate, and moving upper plate step.
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Figure 3.31: Manually changing D1 and C10 coefficient to have a ratio less 100.
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Figure 3.32: The total IE (left) and KE (right) of the FEM model to make sure the ratio is less than 10% in the
compression step.
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3.2.5 Machine Learning Algorithms for Simulation of Biomechanical Model Deformation

A lot of research has been done to predict the mechanical behavior of anatomical structures using dif-

ferent algorithms of machine learning algorithms (143). The fundamental benefit of machine learning

models is their ability to forecast outcomes in real-time once the mapping function has been computed

offline. The three main types of algorithms are NNs, tree-based algorithms, and support vector regression

(SVR) machines. Although lots of anatomical structures using machine learning have been investigated

(143), for the simulation of breast deformation, there is only limited research (see in Table 7.7 in Chapter

7).

Mendizabal et al., (120) was particularly concentrated on the simulation of deformations of US images

for US guided breast biopsy. They used a U-net architecture that has been trained for a small synthetic

dataset. Their main goal was to find a relationship between the partial surface deformation under the

US probe and the deformation inside the breast. For that purpose, they were able to make an accurate

prediction for the lesion displacement in real-time. Their model did not take into consideration the

heterogeneity or complex boundary conditions that exist in clinical cases. Their model is insensitive to

patient-specific elastic properties as its input is only the surface displacement.

For evaluation, they used the displacements that have been generated by FEMs as ground truth and then

calculated the normalized mean error. In addition, since their goal was an accurate prediction, they

calculated the TRE between their prediction and the annotated lesion in the phantom breast. They used

different probe displacements from less than 12.5mm to more than 27.5mm, achieving a mean TRE of

2.7mm to 5.8mm. Their main limitation was that they had to train the model again for each new geometry,

which is restricted to the types and number of compression tools such as different probe shapes (120).

Martínez-Martínez et al. (116) and Rupérez et al. (159) modeled the breast deformation of a biomechan-

ical model derived from MRI under mammographic compression. Their main goal was to accelerate

the multimodal registration and simulate the behavior of the breast tissues in image-guided interventions

such as biopsies. They proposed three models which are decision tree (DT), ERT, and random forest.

They first did their experiments based on phantoms and then expanded to clinical datasets.

They evaluated their methods by first calculating the mean 3D Euclidean distance between the nodes

predicted by the models and those extracted from the FE simulation as a ground truth. Their experiments

showed that ERT has the best performance with an average error of 0.62mm. One limitation is certainly

the number of datasets (10 phantoms, 10 clinical cases) that have been evaluated. This might cause

overfitting problems and prevent generalization of the model. In addition, the model of FEM has been

used to generate the data and used as a ground truth. It considers compression ratios of only 20%, which

is considerably lower than the compression ratios applied in mammography. Their model was restricted

to three tissue types fatty and glandular tissues and skin (116; 159).

In this thesis, three models from machine learning and deep learning algorithms are being proposed and

compared to overcome the excessive computation time required by FEM; i.e. ERT and XGBoost based
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Figure 3.33: A clinical case of our biomechanical model in the sagittal plane (lateral view): The initial state, the
unloaded state estimation followed by the compression step (164).

Start / FEM model

Feature Extraction

Deformation /FEM

Data Processing Deformation /ML
Evaluation / RMSE

Figure 3.34: The workflow of the proposed method of machine learning algorithms for replacing FEMs

on machine learning, and one model consists of encoder and decoder models of a Att-BLSTM based on

deep learning to predict the deformation of a biomechanical model for CC views. The biomechanical

model can be considered complex as it considers four tissue types: fatty, glandular, and muscular tissues

and skin. Also, compression ratios up to 76% were considered given the metadata of the mammograms

that have been included in this study (164).

Data Cleaning

The deformed configuration of the breast is extracted by requesting from ABAQUS the node positions

at a certain time step (referred to as "step number"). This information is used as a feature for training

the machine learning models. For the unloaded state step and the compression step, 100 and 70 steps,

respectively are extracted as intermediate steps between the initial state and the last step. For the unloaded

state step, intermediate steps can not be removed as the forces that have been applied are the inverse of the

gravity direction during the whole step. So deformation of the breast during the whole step is essential.

For the compression step, since the focus of that step is the contact problem (deformation of the breast

when it is compressed by the plates), some initial steps could be removed which is the time taken for

the upper plate to move till it starts to contact the breast as shown in Figure 3.35 and 3.36. During

this time, the breast hypothetically should remain the same but due to some remaining forces from the

steps before, the breast is slightly moving and oscillating without any contact. Removing this duration

of time helps in getting better results for the model. A threshold method is used for calculating the sum

of displacements of all nodes of the breast for estimating the time taken to remove these steps. It has

been empirically tested to set this threshold to 5mm which is around 25 ∼ 30 % out of 100 steps. This

threshold is sufficient for removing these steps.
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Figure 3.35: Simulation of the compression step in case of CC view in one of the clinical datasets, showing when
the upper plate starts to contact the surface of the breast at a time step of 0.30.
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Figure 3.36: Some nodes were selected based on the geometry of the breast, validating that in the compression step
around 25 ∼ 30% could be omitted, since the upper plate did not touch the surface of the breast.
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Data Generation and Features Extraction

Extracted features mainly contain three different types of information. First, the geometry of the breast

described by the initial coordinates of breast mesh is included. Second, the properties regarding tissues

such as the breast volume and fraction volumes of tissues given by the proposed segmentation are in-

cluded. Third, the external forces that cause the deformation such as the position of the compression

plates and surface nodes of the breast mesh are also included. The biomechanical model for CC views

consists of two steps: unloaded state estimation and compression simulation. For the unloaded state

estimation, eleven features are extracted that are similar to the features proposed in (116; 159). For the

compression simulation step, a total of 22 features are extracted: the same eleven features from (116; 159)

and additionally, eleven features that have shown to empirically improve the results in the experiments,

especially for the large deformations during the breast compression simulation. A description of the 22

features is summarized in the following list (164):

- Feature 1-3: The three components of the nodal coordinates (X, Y, and Z) of each node in the

initial breast geometry

- Feature 4: The step number at which the nodal coordinate was acquired

- Feature 5-7: The volume fraction of each segmented tissue (fatty, glandular, and muscular tissues)

compared to the total volume of the breast

- Feature 8: The volume of the breast mesh in mm3

- Feature 9-11: The fraction of elements for each tissue type (fatty, glandular, and muscular tissues)

compared to the total number of elements in the breast mesh

- Feature 12: The displacement of the upper compression plate towards the breast for the particular

step

- Feature 13-14: Y and Z coordinates of the edge of the fixed lower compression plate

- Feature 15-16: Y and Z coordinates of the edge of the moving upper compression plate for the

particular step

- Feature 17: a flag indicating if the node of the current instance is a surface node of the breast mesh

which will potentially get into contact with the upper compression plate

- Feature 18: a flag indicating if the node of the current instance is a surface node of the breast

- Feature 19-21: 3-bit binary value representation of the tissue type to which the node belongs based

on the breast mesh as shown in Table 3.7

- Feature 22: Laterality of the breast mesh (left or right breast)
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Table 3.7: Tissue labels

bit 2 bit 1 bit 0 Class

0 0 1 muscle
0 1 0 fatty
0 1 1 interface (fatty, muscle)
1 0 0 glandular
1 0 1 interface (glandular, muscle)
1 1 0 interface (fatty, glandular)
1 1 1 interface (three tissues)

n Features

Step 1

Intermediate Steps

Last Step

node 1

node 1

node 2

node 2

Figure 3.37: Data structure of the features, which are considered as the input for training the machine and deep
learning models.

Finally, one instance of 22 features represents the information of one node in a breast.

After extracting the features, a 2D matrix was organized where the columns represent the 11 and 22

features for the unloaded state estimation and compression step, respectively, and the rows represent the

nodes at one time step as an instance as shown in Figure 3.37.

Data Processing

Before feeding the instances into the machine learning algorithms, a preprocessing step is done, which

consists mainly of normalization.

It is responsible for bringing different breast geometries into a similar reference space to increase robust-

ness and training stability.

In this application, due to the large variance in the geometry of the breasts, such as position, shape, and

size, normalization is an essential step. It brings the plates and the breast mesh into the same coordinate

system. It has been empirically tested that the z-score normalization has the best performance for this

problem: a pretest was performed comparing two common normalization methods: z-score and min-

max scaling normalization (173). A small dataset of 100 breasts was used for training and 10 breasts

were predicted using the machine learning and deep learning models, which will be described in the next

69



3 Biomechanical Model Based Registration

subsection (models). The performance using the Root Mean Square Error (RMSE) was evaluated (see

Chapter 6) and analyzed the percentages of nodes in the breast model with an RMSE less than 2mm.

For the z-score normalization on average 14.4% of the nodes had an RMSE less than 2mm. For the

min-max scaling normalization on average 12.7% of the nodes had an RMSE less than 2mm. Since

the z-score method showed better performance than the min-max scaling on average, it was selected for

normalization. The main concept of the z-score is based on calculating the standard deviation of distances

of data points from the mean. It aims to have all instances have a mean of zero and a standard deviation

of one (150). For this problem, this means that the X, Y, and Z coordinates of the nodal positions V of

one patient dataset are changed to Vnorm in which they are centered around the origin (µ) and the standard

deviation (σ ) of all nodal positions from the origin is one, as shown in equation 3.24.

Vnorm =
(V −µ)

σ
(3.24)

Models

The next step after generating the features and data processing is to build up machine learning models

for training. The inputs of the model are the eleven features for the case of the estimation of the unloaded

state while 22 features for the compression step are used. The output of the models is the predicted

deformation of the instance sequentially starting from step number one till the last desired required step,

i.e. the three coordinates X, Y, and Z of the nodal position belonging to one instance for a particular step.

Since the problem is a supervised problem, there are three main approaches to follow: linear model, tree-

based models, and artificial NNs. Two models are based on tree-based ensemble models: ERT similar to

the model used in (159), XGBoost, and one model is based on RNN.

Extremely Randomized Tree and Extreme Gradient Boosting The main difference between

bagging ERT (63) and boosting XGBoost (40) is that ERT learns trees independently from each other

and in parallel. By that, each model is trained using a different sample from the same training dataset,

and the prediction is made by averaging the weak predictions together. Contrary, XGBoost learns trees

based on the previous one sequentially in an adaptive way. By that each new model is trained based on

the performance of the previously trained model and the prediction is made by correcting the error of the

previous model. The loss function used for ERT and XGBoost is the RMSE.

For XGBoost, some hyperparameters affect the model:

- number of estimations

- maximum depth

- minimum child weight

The number of estimators is equal to the number of decision trees in the model. The larger the number of

trees is, the higher the ability to fit and solve complex problems is. However, one drawback of increasing
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the number of estimators is increasing the complexity of the model, which also could cause an overfitting

problem (133).

The maximum depth is considered to be the depth of the decision trees. Increasing the depth will lead to

fitting complex problems in a better way but it will also lead to increasing the complexity of the model

and it might cause an overfitting problem (133).

The minimum child weight is to calculate the sum of the sample weights. The tree expansion is stopped

if the sum of the sample weights is less than the selected threshold. Increasing the minimum child weight

will lead to a decrease in the complexity of the model and will affect the number of branches of trees

(133).

For the unloaded state and compression steps, the parameters are empirically tested on a small dataset of

100 datasets to validate the parameters. For the unloaded state step, the number of estimators is set to

55, maximum depth is set to 6, minimum child weight is set to 50, and learning rate (α) is set to 0.2. For

the compression step, the number of estimators is set to 80, the maximum depth is set to 7, the minimum

child weight is set to 6, and the learning rate (α) is set to 0.08.

Encoder and Decoder based on Att-BLSTM The third model is from the family of RNN. The

architecture consists of an encoder and a decoder (108). The encoder consists of a Att-BLSTM (214).

The decoder consists of an LSTM. The loss function for this architecture is the root mean square.

Similarly, the parameters are empirically tested on the same small dataset. For the unloaded state, the

parameters are set as follows: the activation function in the attention layer in both stages is set to tanh

and ReLU, and the learning rate (α) is set to 0.03. For the compression step, the activation function in

the attention layer in both stages is set to sigmoid and the learning rate (α) is set to 0.03 as well.

3.3 Summary

First, the literature review of registering between MRI and X-ray mammograms specifically using biome-

chanical models has been presented. Second, the methodology of the proposed method has been illus-

trated: to register between MRI and X-ray mammograms, a patient-specific model has been imple-

mented to mimic X-ray mammographic compression in the two views CC and MLO. This model was

originated from the work of Hopp et al. The biomechanical model has been solved by FEMs using

ABAQUS/Explicit. In this thesis, three main blocks have been investigated: segmentation, meshes, and

the biomechanical model simulation. First, a novel approach has been proposed for segmenting three

tissues simultaneously using unsupervised NNs for T2-weighted MRI series (162). Second, the ratio

between circumradius and inradius was used to investigate the quality of the initial mesh in order to

avoid re-meshing in between the simulation steps and achieve better convergence. If the ratio is less

than 0.25, it is considered a distorted element. Additionally, other quality metrics read from iso2mesh

and ABAQUS were used to investigate the complexity of the biomechanical model and to answer the
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question if the model could be simpler. By that, applying upright gravity shows a negative effect on the

model. In addition, positioning the lower plate in the inferior direction and the thickness of the skin has

an impact. Those two factors have been examined using TRE and minimum mean nodal error, respec-

tively. It was observed that the first algorithm for estimating this position with a skin thickness of 2mm

is the most robust. To analyze the stability of the model, different parameters have been investigated

such as time increment, mass scaling, time step, the ratio between KE and IE, D1, and C10. It was found

that time increment and mass scaling do not affect the stability. While increasing the time step leads to a

more oscillating model. The latter two factors have a large impact on the stability of the model and the

decrease in oscillations. Despite the fact that FEMs could solve the deformation, it requires around 20

minutes to solve using the standard parameters. Additionally, it might take up to several hours to optimize

parameters even if it is only one parameter that needs to be optimized since it is based on the number

of iterations. Thus, three models have been proposed based on machine and deep learning algorithms to

replace the model solved by FEMs (164). The three models are ERT, XGBoost, and Att-BLSTM. By

proposing this method, solving the deformation could be done in 5 seconds.

72



4 Image Based Registration

After aligning the MRI to the full X-ray mammogram, image based registration methods have been

developed to align full X-ray with the spot mammograms.

4.1 Intensity-Based Methods

Intensity-based registration transforms two images by considering one image as a reference image and

the other one as a moving image (21). The key here is that it only uses intensities like gray levels to es-

timate the transformation. Point-based, surface-based, and voxel-based registrations are three categories

of intensity-based methods (110). It registers images with the same or different dimensions, by rigid

transformations or deformable registration. Images can be intermodal and intramodal.

Registration using control points and surface-based control points minimizes the distances between cor-

responding anatomical landmarks and surfaces, respectively. For this thesis, it could be extracting e.g.

glandular tissue features from a full X-ray mammogram and spot mammogram. There are two disad-

vantages to this method. First, the difficulty of extracting different landmarks automatically for different

cases. This difficulty of extracting landmarks automatically is illustrated in Figure 4.1. Three different

automatic methods have been used for extracting glandular tissues automatically from spot mammo-

grams. These methods were first implemented to enhance the image contrast of spot mammograms

which will be explained in the proposed method. Then afterward to extract the glandular structures, a

threshold is selected. This specific threshold is calculated by adding the mean and standard deviation of

the enhanced image. It is obvious that glandular structures in the three methods vary from one enhance-

ment to another which makes it hard to rely on. This likely leads to a manual extraction which would

require a lot of time. Second, in some cases, the identification of glandular tissue features is difficult for

dense breasts since the dimensions of a spot mammogram image are considerably small with 50× 50

mm only which is considered a subset of the breast not the full view of the breast image.

Pixel (2D) and voxel (3D)-based registrations optimize a functional calculation of the similarity of cor-

responding pixels pairs for a given feature. One advantage of pixel-based methods is that feature calcu-

lation is simple. The accuracy is independent of precise segmentation or extracting landmarks as in point

or surface-based methods (110). Some challenges may arise with using only the pixel (2D) or voxel

(3D) values. First, the algorithm might only function consistently if the similarity measure is determined

using the voxels in a specific area of interest in the image for example, an ROI and not opposed to all

voxels of the image. Second, to prevent aliasing in the subsampled images (21; 148), sometimes it is
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Original Image

Enhanced Image I Glandular I

Enhanced Image II Glandular II

Enhanced Image III Glandular III

Figure 4.1: Variance in automatically extracted glandular tissue structures. The original image of the spot mammo-
gram was received from the Medical University of Vienna. Three algorithms for enhancing the spot mammogram
were applied (first column). Automatically extracting the glandular tissue was based on a threshold based on the
mean and the standard deviation (second column).
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4.1 Intensity-Based Methods

helpful to blur the images before sampling. The amount of blurring utilized may vary depending on the

application. Third, preprocessing is necessary and it will probably depend on the modalities being reg-

istered as well as the body part being analyzed. Fourth, for some modalities, segmentation of particular

parts based on the body’s anatomy might be helpful to avoid registering these parts. This is considered

as pre-knowledge, e.g. in which areas no registration is allowed, e.g. muscle area. Fifth, robustifying the

intensity-based methods is one of the most challenging tasks in order not to be constrained to a small set

of image types but to respect patient variability (21). Different image similarity metrics can be selected

based on the problem (119). The next paragraphs will outline the most frequent similarity metrics used

in this thesis. In all the image similarity metrics, the reference image is denoted as X. The moving image

is denoted as Y. Some symbols used in the following equations, are defined in this Section ??.

(1) Convolution (Conv) It is a 2D convolution operation between the reference image and the moving

image as shown in the equation 4.1. The moving image Y is considered the filter that slides over

the reference image X, performing an element-wise multiplication. Then, it sums up results into a

single output pixel (160; 33). The maximum convolution value is considered to have the highest

probability that the two images are correctly aligned.

Conv(i, j) = ∑
m

∑
n

X(i+m−1, j+n−1)Y (m,n) (4.1)

where m and n refer to the number of rows and columns, respectively and i and j are the locations

of pixels in the reference image X.

(2) Correlation Coefficient (Corr) It measures the correlation coefficient which is the difference

between the intensity value at that pixel and the mean intensity of the whole image for every pixel

location in both images: reference image X and moving image Y as shown in equation 4.2 (13).

The maximum value of Corr is considered to be the highest value for a correct alignment.

Corr =
∑m ∑n(X(m,n)−X)(Y(m,n)−Y )√

(∑m ∑n(X(m,n)−X)2)(∑m ∑n(Y(m,n)−Y )2)
(4.2)

where m and n refer to the locations of pixels in either reference image X or moving image Y.

(3) Mutual Information (MI) It measures the degree of dependence of the reference image (X) and

moving image (Y) by measuring the distance between the joint distribution pX ,Y (x,y) and the

distribution related to the instance of complete independence pX(x)pY (y) (109). MI is based on

the definitions of the joint histogram, probability distribution function (PDF), entropy, joint en-

tropy between two images, and conditional entropy of X given Y and of Y given X, respectively

(110; 109; 180; 44; 102). The entropy of an image is defined as E(X) = −∑x pX(x) logb pX(x)

where p is the probability of a pixel having a certain gray level intensity (e.g. 256 for 8-bit

images), and b is the base of the logarithm function, while the joint entropy JE(X ,Y ) is the
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measure of the uncertainty associated between the two images and is defined as JE(X ,Y ) =

−∑x,y pXY (x,y) logb pXY (x,y). The conditional entropy is the amount of uncertainty left in X when

knowing Y and vice versa as shown in equation 4.3 (109; 180; 21). By measuring the informa-

tion theory using mutual information instead of joint entropy or joint histogram, the problem of

calculating only the PDF from the joint entropy (the region of overlap between the two images) is

overcome. The higher the value of MI is, the higher the probability of correct alignment is.

MI(X ,Y ) = ∑
yεY

∑
xεX

p(X ,Y )(x,y) · log
p(X ,Y )(x,y)
pX(x)pY (y)

(4.3)

(4) Normalized Mutual Information (NMI) Similarily NMI is based on the definitions of entropy

and joint entropy between the two images as shown in equation 4.4. It is considered the extension

of MI and it has been proposed to counter the decisive effect of increasing MI while the registration

quality is low (94). Similarly as well for the value of NMI, if the value of NMI is higher, then the

probability of higher correct alignment is.

NMI(X ,Y ) =
E(X)+E(Y )

JE(X ,Y )
=

∑xεX pX(x) · log pX(x)+∑yεY pY (y) · log pY (y)

∑x,y p(X ,Y )(x,y) · log p(X ,Y )(x,y)
(4.4)

(5) Ratio Image Uniformity (RIU) A ratio (R) is calculated by the division of each pixel in the refer-

ence image X by each pixel in the moving image Y for estimating the registration transformation.

The uniformity is then determined by calculating the normalized standard deviation of R. Addi-

tionally, the roles of images X and Y are reversed and averaging the two calculated uniformity

(21; 167). A minimal RIU value is considered to be the highest probability of correct alignment.

RIU =
σR

µR
(4.5)

where: µR =
1
N ∑

(i)
R(i), σR =

1
N ∑

(i)
(R(i)−µR)

2, R(i) =
Y (i)
X(i)

, and N is the number of pixels.

(6) Mean Square Error (MSE) It is the mean square error between the reference X and the moving

image Y as shown in equation 4.6. The optimum value is minimum which represents the correct

alignment between the reference and moving image (166).

MSE =
∑(X(i, j)− Ŷ(i, j))2

n
(4.6)

where: n is the number of pixels.

(7) RMSE It is the root mean square error between the reference and the moving image as shown in

equation 4.7. The optimum value is minimum since it is based on MSE (38).
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RMSE =
√

MSE (4.7)

(8) Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) It evaluates the overall image

quality in the reference image X as shown in the equation 4.8 (38). The lower the error is, the

higher the probability that the moving image Y is located in the reference image X.

ERGAS = 100∗ ResX

ResY

√
1
N

N

∑
k=1

RMSE2

µY
(4.8)

ResX and ResY are the resolution of the reference and moving images, respectively. N is the number

of pixels.

(9) Peak Signal to Noise Ratio (PSNR) It is based on MSE and the peak value (denoted as peak-

val) of the reference image X is considered to be the maximum intensity. The optimum value

is the maximum, although, it is based on MSE. The reason behind that is MSE is located in the

denominator position as shown in equation 4.9 (166; 168).

PSNR = 10∗ log10
peakval2

MSE
(4.9)

(10) SNR It is the signal to noise ratio between the reference X and moving Y images as shown in the

equation in 4.10.

SNRx,y = 10∗ log10(
∑

N
n=1 |Xn|2

∑
N
n=1 |Yn|2

) (4.10)

(11) Universal Objective Image Quality Index (UIQI) This method is based on the Human Visual

System (HVS) rather than the mathematical measurements like RMSE for example. Compared

to the commonly used distortion measure such as MSE, it performs noticeably better (204). The

main goal of this metric is to be suitable for different image processing applications and support

fair comparison across various types of image distortions. It combines the multiplication of three

factors: luminance distortion (l), contrast distortion (c), and loss of correlation (s) (203) as shown

in equation 4.11. The optimum value that represents a good match is the maximum.

UIQI(x,y) =
4σxyµxµy

(σ2
x +σ2

y )(µ
2
x +µ2

y )
(4.11)

where: l(x,y) =
2µxµy

µ2
x +µ2

y
, c(x,y) =

2σxσy

σ2
x +σ2

y
, s(x,y) =

σxy

σxσy
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(12) Structural Similarity Index Measure (SSIM) It is the extension of UIQI of extracting three

main features: luminance (l), image contrast (c), and structures (s) with additional regularization

constants C1, C2, and C3 for each feature, respectively as shown in equation 4.12 (204; 205; 166;

168). These regularization constants are used by SSIM function to prevent instability in image

regions where the local mean or standard deviation is near zero. Consequently, these constants

ought to have small non-zero values. Additionally, each feature has a parameter µ , σ , and γ that is

used for adjusting the relative importance of each feature separately. For simplicity, these values

are set to one (205). The SSIM is a perception-based model. It takes into account luminance and

contrast masking terms as well as significant perceptual phenomena, such as picture degradation

as a perceived change in structural information. The distinction between these methods and others

is that they estimate absolute errors, unlike MSE or PSNR. The concept of structural information

holds that pixels have high interdependencies, particularly when they are spatially close to one

another. These dependencies carry crucial information about the hierarchy of the objects in the

visual scene. Contrast masking is a phenomenon where distortions become less evident where

there is significant activity in the image. While luminance masking is a phenomenon where visual

distortions tend to be less visible in bright places (204; 205). Similarly, the optimum value for a

correct match is the maximum.

SSIM(x,y) = [l(x,y)]α .[c(x,y)]β .[s(x,y)]γ (4.12)

where: l(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1
, c(x,y) =

2σxσy +C2

σ2
x +σ2

y +C2
, s(x,y) =

σxy +C3

σxσy +C3

where C1 = (K1L)2, C2 = (K2L)2, C3 =
C2
2 where K1 = 0.01 and K2 = 0.03 and L is the specified

dynamic range value which in our case is 255 (205).

(13) Multiscale Structural Similarity (MS-SSIM) It is the extension of SSIM which supports more

flexibility than single scale methods in incorporating the variations such as image resolution as

shown in equation 4.13 (204). A low pass filter is applied iteratively for the reference X and mov-

ing Y images followed by downsampling the filtered images by a factor of 2. The original images

are indexed as scale 1, and the highest scale as scale M which is obtained after M-1 iterations. The

luminance (l) is only computed for scale M while the image contrast (c) and structures (s) are mul-

tiplied at each iteration (j). The overall MS-SSIM is calculated by combining the measurements at

different scales. The optimum value for a correct match is the maximum.

MS-SSIM(x,y) = [lM(x,y)]αM
M

∏
j=1

[c j(x,y)]β j .[s j(x,y)]γ j (4.13)

where M is the highest scale (The default value is five).
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(14) BIAS It is the difference between the mean of each image: reference X and moving Y image as

shown in equation 4.14 (38). The ideal optimum value for a correct match is zero.

Bias = X −Y (4.14)

(15) Difference in Variance (DIV) is the difference between the variance of each image as shown in

equation 4.15 (38). The optimum value for a correct alignment is minimum.

Variance =VX −VY (4.15)

where: VX =
1

N −1

N

∑
i=1

|Xi −µ|2, µ =
1
N

N

∑
i=1

Xi

where N is the number of observations. If there is only one observation, then the weight is 1.

(16) Standard Deviation Difference (SDD) It is the difference between the standard deviation of the

moving Y and reference X images divided by the mean of the reference image. In addition, the

difference between the standard deviation of the moving and reference images divided by the mean

of the moving image is calculated as shown in equation 4.16 and vice versa. The average of both

values is calculated (38). The optimum value for a correct alignment is zero.

SDD =
(σX −σY )

µX
(4.16)

Image similarity metrics have been categorized into classes based on how similar equations are. The first

class of quality measures is the 2D convolution. The second class of quality measures is measuring the

correlation coefficient. The third class of quality measures is MI and NMI. The fourth class of quality

measures is RIU. The fifth class of quality measures is MSE, RMSE, ERGAS, and PSNR. The sixth class

of quality measures is SNR. The seventh class is UIQI, SSIM, and MS-SSIM. SSIM is an extension of

UIQI. Additionally, MS-SSIM supports more variation than SSIM such as image resolution (204). The

eighth class is bias, DIV, and SDD. The optimal values of the calculated image similarity metrics are

extracted. Using the optima of the image similarity metrics as a reference point with the best match of

the moving image, the moving image is registered to the reference image.

4.2 Proposed Method

The proposed method consists of three main blocks: preprocessing, finding a ROI from the full mammo-

gram which is considered the reference image as shown in Figure 4.2 (top), and then applying different

image similarity metrics between the ROI (the reference image) and the spot mammogram (the moving

image). The spot mammogram slides across ROI pixel by pixel computing the image similarity metric as

shown in Figure 4.2 (bottom). Afterward, the optimum value either minimum or maximum is extracted
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Region of Interest

Spot Mammogram Different Image Similarity Metrics
The Best Match

Region of Interest

Spot Mammogram

Preprocessed X-ray

1st Iteration 2nd Iteration 3rd Iteration

Figure 4.2: The block diagram of the image based registration between full X-ray mammogram and spot mam-
mogram: finding ROI from the full X-ray mammogram using convolution operation (top) and applying different
image similarity metrics between ROI and spot mammograms (bottom) to get the best match (red square).

based on the computed image similarity metric. The position of this optimum value is considered where

the moving image is aligned with the reference image (161; 163). This matching process allows for

resolving a translational transformation between both images. This proposed method is a rigid transfor-

mation since rotation is also applied in the preprocessing block. It is assumed from the clinical point of

view that both images have the same forces applied although the gravity applied in cases of spot mam-

mogram could be both in the prone and upright position. The most common here in this thesis is the

prone position. For an X-ray mammogram, the gravity applied is only an upright position. Also, both

images are considered to have the same compression thickness of the breast and the same position of the

X-ray source. Moreover, both images are considered to have the same projection angle. While this is not

the case, e.g., both images have CC views, there might be a slight difference in projection angles due to

different imaging situations. Additionally, there is already a difference in views in mammography im-

ages and biopsy images, e.g. MLO for full X-ray mammogram and ML for spot mammogram. Despite

all these differences, it is considered sufficient to solve the problem.
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Figure 4.3: Steps of preprocessing block for X-ray mammogram images: the original image received from the
Medical University of Vienna (1), removing muscle from the image using the proposed methods (2), normalizing
the image (3), cropping until the nipple position (4), enhancing contrast using the proposed method (5), and scaling
intensities into 0-255 levels (6).
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Figure 4.4: Steps of the preprocessing block for spot mammogram images (top): The original image has inverted
intensities (first), image after enhanced intensities (second), normalization between 0 and 1 values (third), resam-
pling to resolution of full mammogram (fourth), rotation (fifth), applying the proposed image contrast (sixth),
and scaling the intensities into 0-255 levels (seventh). Steps of the proposed enhancement image contrast for
spot mammograms (bottom): The rotated image is the input to the image (first), applying median filter (second),
sharpen the image (third), applying CLAHE (fourth), applying an average filter with size 2x2 (fifth).

4.2.1 Preprocessing

Preprocessing aims to provide better quality for full X-ray and spot mammogram images regarding con-

trast, resolution, rotation, and removing unnecessary areas for the full mammograms as shown in Figure

4.3 and 4.4. First, the contrast of spot mammograms is adjusted to match that of the full X-ray mam-

mogram by inverting contrast. Second, normalization is done for both images. Third, a resampling is

applied for the spot mammogram using nearest neighbor interpolation since it has a different resolution

(35).

Fourth, since spot mammograms could be taken from a prone or upright position taking into considera-

tion three views (CC, ML, and LM as explained before) while the full mammogram could be taken only

in the upright position taking into consideration two main views and two minor views (CC, MLO, ML,

and Rolledlateral (RL), respectively), the spot mammogram needs to be rotated to compensate partly in

the transformation matrix.
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Figure 4.5: Twelve options of rotating the spot mammogram taken in the prone position based on the breast side
and the combination of views between full X-ray and spot mammogram image.

The hierarchy of combinations of the standard views of full mammograms and views of spot mammo-

grams taken from the prone position is shown in Figure 4.5. First, spot mammograms are rotated by 90◦

counterclockwise (CCW) for the left breasts while they are rotated by 270◦ CCW for the right breasts to

match the coordinates of the breast in the full mammogram. Second, all the cases highlighted yellow in

Figure 4.5 are considered to be in the same position although, the imaging situation is different. Hence,

the deformation state is considered to be comparable. For the cases of CC (full X-ray mammograms) and

CC (spot mammograms), the spot mammogram is considered to be in the same position at 0◦ rotation

angle. Similarly, for the cases of MLO and CC, and MLO and ML, the variance of 45◦ between the full

X-ray mammogram and the spot mammogram is considered to be acceptable to determine similarities.

While the other cases (not highlighted) (CC and LM, CC and ML, MLO and LM) for full X-ray mam-

mograms and spot mammograms, respectively, up-down direction rotation is applied for compensating

partly the difference in the LM views as shown in Figure 4.5.

For the supplementary views ML and ML, ML and LM, and RL and ML for the full X-ray mammograms

and spot mammograms, respectively, rotation of left and right breasts and up-down direction are applied.

While for ML and CC for full X-ray and spot mammograms, respectively, rotation of left or right breasts

is only applied.

For the upright position, spot mammograms are rotated by 270◦ CCW and 90◦ CCW for the left and

right breasts, respectively in order to match the coordinates of the breast in the full mammogram.

Fifth, the background in some cases in the full mammograms is not assigned to zero intensity which

might cause further problems in the next steps. Segmentation of the breast is applied to determine the

shape of the breast and then multiplication of this segmented image to the original image to set all the

background pixels to zero.

Sixth, the quality of the image for both images is necessary to be calculated since there are several

methods to improve image contrast. The quality of images is calculated by measuring the properties
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of gray level co-occurrence matrix (GLCM), which are contrast, correlation, energy, and homogeneity

as shown in equations 4.17, 4.18, 4.19, and 4.20 (219; 22; 49). Then the Euclidean distance (ED) is

calculated between the ideal value (denoted as ref) and the actual value (denoted as act) for each property

as shown in equation 4.21.

Contrast = ∑
i, j
|i− j|2 p(i, j) (4.17)

Correlation = ∑
i, j

(i−µi)( j−µ j)p(i, j)
σiσ j

(4.18)

Energy = ∑
i, j

p(i, j)2 (4.19)

Homogeneity = ∑
i, j

p(i, j)
1+ |i− j|

(4.20)

ED =
√

(Contre f −Contact)2 +(Corrre f −Corract)2 +(Engre f −Engact)2 +(Homore f −Homoact)2

(4.21)

There are several techniques for improving the image contrast of medical images and removing noises

such as Gaussian filter, median filter, and contrast limited adaptive histogram equalization (CLAHE)

(196; 126). In this thesis, six techniques have been tested and evaluated using the properties of the

GLCM matrix:

1. Adjusting image intensity values based on a ratio called gamma γ between the mean and standard

deviation of the image (denoted as method (1))

2. According to a technique from Kumbhar et al. (97), the image contrast is improved by first apply-

ing a median filter, then sharpening, equating the histogram (CLAHE), and applying an average

filter, as illustrated in Figure 4.4 (bottom) (denoted as method (2))

3. Using two cascaded steps of the same block of method 2 (denoted as method (3))

4. Using two cascaded steps as well: method (2) followed by method (1) (denoted as method (4))

5. Using only CLAHE (denoted as method (5))

6. Using wavelet transform for denoising the image (126) (denoted as method (6))

Based on this analysis, it was observed that method (2) is the best technique based on the available

datasets which will be discussed in Section 7.4.1. An example of one clinical dataset is shown in Figure

4.6 and 4.7 (a). Additionally, the Euclidean distance between the ideal case and the measured parameters
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Figure 4.6: Six techniques have been analyzed for enhancing the image contrast of spot mammograms. The input
image is the rotation image since the contrast enhancement is applied after rotation (see Figure 4.4). Based on the
available dataset, method 2 is the best agreement for our problem.

of each property has been calculated as shown in Figure 4.7 (b). Last, the intensities are converted to 255

intensity levels for both images.

Since breast lesions are available in the breast shape not in the muscle area for MLO cases which is

considered a pre-knowledge, the muscle is cut off to prevent the spot mammogram from aligning with

it. Two methods have been evaluated to find the edge of the line dividing the muscle from the breast.

First, the full X-ray mammogram is segmented using K-means clustering into three classes. Then classes

background (0), glandular tissue (2), and fatty tissue (1) are assigned based on a histogram. One of the

observations is that glandular and muscle are usually clustered in the same class. That specific class

is extracted. Hence, separating between glandular and muscle tissue is applied using morphological

operations as shown in Figure 4.8 (top). By that, the muscle is extracted. In some clinical cases, this

method might not work. For the evaluation of this method, the rotation angle of Y is calculated. If the

angle is larger than 40◦, then this indicates that the method is not working because usually, this angle is

in the range [0◦ - 35◦] which leads to selecting the second method instead (28). In the second method,

a Sobel filter is applied, which is an edge detection filter. Next, the gradient magnitude of the image is

calculated, and finally, hough transform is used, which is a feature extraction technique used in image

analysis (25) as shown in Figure 4.8 (bottom).

For speeding up the methods, the full mammogram is cropped to the nipple position in the anteroposterior

direction as shown in Figure 4.3 (4).

4.2.2 Multi-Resolution Approach

After the pre-processing step, two cascaded stages of image similarity metrics are used. The first stage is

responsible for finding a ROI which is used to speed up subsequent processing steps. Afterward, different

image similarity metrics are applied to get the translational transformation parameters.
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Figure 4.7: Four properties have been extracted from GLCM: Contrast, Energy, Correlation, and Homogeneity.
From 1 to 6 indicate the six techniques for enhancement of the image contrast. All six techniques have been
evaluated using these four properties (a). Euclidean distance between the ideal values and the measure values for
the four of them for each technique (b).

To get the ROI from the full mammogram where the spot mammogram is potentially located, a dynamic

step size is applied using a 2D convolution operation as a constraint for image similarity. The convolution

operation is measured between small squares of size 50×50 mm from the full mammogram and the

spot mammogram. The dynamic step size depends on three factors. First, these squares are obtained

from the full mammogram taking into consideration covering the full mammogram iteratively. These

squares are selected by calculating the ratio between the X and Y coordinates of the input of full X-ray

mammograms. The X coordinate is also split into a specific number of parts in each iteration. Then,

based on the ratio and these partitions of X, partitions of Y will be calculated. Second, the maximum

values of convolution are extracted based on the histogram of convolution values in all squares for all

iterations for the last bin width. In this last bin width which is considered the bin that has the maximum

convolution values, the number of areas is counted. Third, after a defined number of iterations combined,

the input of the full mammogram is cropped to the region with the maximum convolution values. Based

on empirical tests on the available data, three iterations are applied, splitting X coordinate into two, four,

and six regions, respectively in each iteration. These regions could vary based on the size of the breast.

It is illustrated for example in the first iteration as shown in Figure 4.2 (first row). The X coordinate is

split into two regions. But, since it is a small breast with size 172.2× 81.2mm2 , one region only will

be processed in the first iteration and similarly for the next two iterations. Based on that, the ratio of

X related to Y is 2.8. Hence, Y coordinates are split into five regions using rounding down. These five

regions are convolved with the spot mammograms. The areas, that have maximum values of convolution

values, are extracted i.e. the bright areas in Figure 4.2 (first row in the iterations).
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4 Image Based Registration

X-ray Mammogram Segmented Image Mixed Class Big Object Final Object Output

(a)
X-ray Mammogram Contrast Enhancment Sobel Filter Gradient Image Output

(b)

Figure 4.8: Two techniques proposed for removing the muscular tissue from the full X-ray mammograms. The
steps of the first technique: original image (first), segmented image using K-means clustering (second), mixed
class of glandular and muscular tissues (third), extracting the big object from the mixed class (fourth), apply
erosion and dilation operations for getting the final object for the muscular tissue (fifth), and the final result after
removing the muscular tissue (sixth) (a). The steps of the second technique: original image (first), applying the
proposed contrast enhancement for the full X-ray mammogram (second), sobel filter (third), the gradient image
(fourth), and the final result after removing the muscular tissue (fifth) (b).

4.2.3 Image Similarity Metrics

After estimating the ROI from the full mammogram a rescaling factor of 0.1 is applied for computational

speed up for both ROI and spot mammogram images. All Image similarity metrics from Section 4.1,

have been evaluated in order to select the best of them. For all metrics, the spot mammogram is the

moving image that slides across the ROI as a reference image pixel by pixel. At each position the image

similarity is calculated between the spot mammogram and the underlying area in the full mammogram

(ROI).

4.3 Summary

This chapter first details the methodology of point-based, surface-based, and voxel-based registration,

explaining why the latter category was the most convenient solution for the problem in this thesis. This

is due to the difficulty in generating structures automatically from a subset of the breast. Then, it illus-

trates the equation of the image similarity metrics used. The proposed method consists of three steps.

First, preprocessing allows for improving contrast and partially compensating the coordinates of full

mammogram images. It also increases the probability of aligning the spot mammogram with the full

X-ray mammogram by removing pre-knowledge information such as muscle area. For optimization pur-

poses, it removes all the background pixels in the provided full X-ray mammogram. The second step
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is responsible for determining the ROI from the full mammograms to increase the chances of matching

correctly with the spot mammogram. This is done using a multi-resolution approach which covers the

full X-ray mammogram iteratively using a convolution operation. Third, different image metrics have

been calculated by sliding the spot mammogram across ROI pixel by pixel. The optimum value of these

solved metrics is extracted and considered to be the transformation parameter. This method is considered

to solve a rigid transformation. Since it is rotating the spot mammogram, it then solves a translational

transformation using image similarity metrics.
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In this chapter, the characteristics of the available clinical datasets, which have been used for evaluation

from the Medical University of Vienna, will be discussed. For data exchange, they have been inserted in

a Structured Query Language (SQL) server using a Matlab script, which has been adapted for the modali-

ties used in this thesis. Additionally, the datasets could be visualized using a customized Digital Imaging

and Communications in Medicine (DICOM) Viewer, which has been adapted also for the modalities used

in this thesis. For evaluation purposes, lesions have been annotated in the three modalities using the free

hand tool SLICER 3D (56) and have been saved in NIfTI data format. Thus, it could be processed again

in Matlab. The full dataset consists of different types of MRI series, full X-ray mammograms, and spot

mammograms. For MRI series, the series that has been used in the annotation, may be different than

the series used in registration. The methods of segmentation are limited to T2-weighted series. Around

30% of the available clinical datasets (15 datasets out of 51) did not contain T2-weighted series. Hence,

the method was adapted to be applied also for T1-weighted images. For annotation, either a subtraction

series or a dynamic contrast enhanced is used. The subtraction series is easier to interpret the annotations

by comparing them to the original sequences (194) and therefore, radiologists often annotate in this type

of series. For full X-ray mammograms, there are two common views (182) CC and MLO. In some clini-

cal datasets, those two views do not exist but rather the supplementary views such as ML or RL. For spot

mammograms, the most important image is the scout image. The amount of clinical datasets received is

51 datasets. Although this available clinical dataset is considered a relatively small dataset, there are a

lot of variances regarding:

- Patient age

- Combination of views for the two methods

- Resolutions

- Different machines

- Breast needle biopsies classified into categories according to histopathological appearances (10)

- Breast density

- Size of lesions

- Location of lesions

These variances were split into two categories. The first category is the variability which is read from

metadata of each patient specifically such as patient ages, views, resolutions, and machines. The second

category is the variability which is calculated based on the proposed methods in this thesis or information
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received from the expert radiologists. This category consists of breast needle biopsies according to

histopathological appearances, breast density, size, and location of lesions.

5.1 Characteristics of Clinical Data from Metadata

5.1.1 Patient Age

The minimum patient age of the clinical dataset is 33, while the maximum age is 78 years. The mean

and median ages are 55 and 56, respectively with a standard deviation of 11 years.

5.1.2 Combination of Views

The clinical datasets have differences regarding imaging situations and views. Those differences are

important for the image based registration method between full X-ray and spot mammograms. Full X-

ray mammograms are always in the upright standing position. There are different views such as CC,

MLO, and also supplementary views such as ML and RL. Spot mammograms vary also in the imaging

situation not only in the views. The imaging situation could be prone or upright position. The views

could be CC, ML, and LM.

The biopsy of most of the available clinical datasets is done in the prone position. 51 datasets are split into

3 upright and 48 prone positions. For the three cases in the upright position, there is also a difference in

the views of the X-ray mammogram and spot mammogram (see more details in Table 5.1). Additionally,

one of these three cases does not have a T2-weighted MRI. Hence, an available T1-weighted MRI was

used instead. For the 48 cases acquired in prone position, first, there are two standard views in the full

X-ray mammograms: CC and MLO (the distribution is shown in Figures 5.1, 5.2, and 5.3). For the cases

of full X-ray mammograms in CC view, six cases out of the 19 cases do not have a T2-weighted MRI

series. While seven cases out of the 25 cases for MLO cases of full X-ray mammogram do not have T2-

weighted MRI series. This leads to use T1-weighted MRI series instead. The most common combination

in the available clinical datasets is CC for full X-ray mammograms and CC for spot mammograms (16

patients), MLO for full X-ray mammograms and ML for spot mammograms (8 patients), and MLO for

full X-ray mammograms and LM for spot mammograms (14 patients).

Additionally, some cases have only the supplementary views such as ML and RL (190) while for the

spot mammograms, there are three views: CC, ML, LM (the distribution for these cases are shown in

Table 5.2. Several reasons might cause different views (82): small or thin breasts, superficial lesions

close to the skin, deep lesions close to the chest wall, and lesions in the very posterior part (inner or outer

quadrant). One of the four cases from this combination of views does not have T2-weighted MRI series.
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5.1.3 Resolutions

For the biomechanical model based registration method, registration is done between T2-weighted MRI

and full X-ray mammograms. In case a T2-weighted MRI is not available, registration is done between a

Fast Low Angle Shot 3D (FL3D) (139) or T1-weighted MRI series and full X-ray mammograms. For the

T2-weighted series, the minimum resolution in the x and y direction is 0.5 mm/pixel, while the maximum

resolution is 0.88 mm/pixel. The minimum spacing between slices for these cases is 3mm, while the

maximum is 5mm. The minimum resolution of full X-ray and spot mammograms for the same cases

is 0.07 mm/pixel and 0.048 mm/pixel, respectively, while the maximum resolutions are 0.1 mm/pixel

and 0.085 mm/pixel, respectively. For the FL3D-weighted series, the minimum resolution in the x and

y direction is 0.66 mm/pixel, while the maximum resolution is 0.937 mm/pixel. The minimum spacing

between slices for these cases is 0.8mm, while the maximum is 3mm. The resolution of full X-ray and

spot mammograms for the same cases is the same 0.085 mm/pixel and 0.0488 mm/pixel, respectively.

For T1-weighted series, the minimum resolution in the x and y direction is 0.53 mm/pixel, while the

maximum resolution is 0.786 mm/pixel. The minimum spacing between slices for these cases is 0.9mm,

while the maximum is 2mm (See more details in Appendix B.4). For the image based registration

method, see distribution of resolutions in detail in Table 5.3.

5.1.4 Devices

There is also a difference in the available devices for MRI and full X-ray mammograms. For MR images,

there are two vendors: Siemens and Philips. For Siemens, there are fourteen different models available

in the clinical dataset received from the Medical University of Vienna. The most common model is the

Siemens TrioTim model with thirteen patients as shown in Figure 5.4 (right). For Philips, there are two

different models available as shown in Figure 5.4 (left). For full X-ray mammograms, there are seven ma-

chines: Philips, Sectra Imtec AB, FUJIFILM Corporation, GE Medical Systems, Hologic, Inc., AGFA,

and Siemens as shown in Figure 5.5 (left). The most common machine for full X-ray mammograms is

Siemens with two different models: Mammomat Inspiration (34 patients) and Mammomat Revelation (1

patient) as shown in Figure 5.5 (right). For spot mammograms, the machine is Siemens whether it is in

the upright or prone position.

Table 5.1: Distribution of combination views of the three patients available from the Medical University of Vienna
in case of upright position regarding imaging situation for the X-ray guided biopsy

Modality / view X-ray Spot mammogram Number of Patients

right breast MLO LM 1
left breast CC LM 1
right breast CC ML 1
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Figure 5.1: Distribution of the combination of views of 51 patients from the Medical University of Vienna specifi-
cally for image based registration method. Yellow-marked cases are the most dominant available clinical datasets
regarding the combination of views.
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Figure 5.2: Distribution of left and right breasts for the prone position in case of the full X-ray mammogram is in
CC view and three views: LM, ML, and CC for the spot mammogram.
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Figure 5.3: Distribution of left and right breasts for the prone position in case of the full X-ray mammogram is in
MLO view and three views: LM, ML, and CC for the spot mammogram.
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Figure 5.6: Distribution of the 51 patients based on the breast needle biopsy categories according to the Histopatho-
logical appearances. The decision for each case is made by the radiologists of the Medical University of Vienna.
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Table 5.2: Distribution of combination views of the four patients available from the Medical University of Vienna
in the case of prone position (left breasts) regarding imaging situation for the X-ray guided biopsy

Modality / view X-ray Spot mammogram Number of Patients

left breast ML ML 1
left breast ML LM 1
left breast ML CC 1
left breast RL ML 1

Table 5.3: Image resolution of X-ray and spot mammogram for image based registration

X-ray / Spot mammogram Number of Patients

0.1 / 0.0488 1
0.085 / 0.085 2
0.085 / 0.0488 33
0.07 / 0.0488 1
0.05 / 0.0488 13
0.05 / 0.085 1

5.2 Characteristics of Clinical Data Calculated or Informed from Radiologists

The variance regarding the second category will be discussed in this section. Some characteristics are

taken from the decision of the expert radiologists that have been used for further analysis such as breast

needle biopsies based on histology. Other characteristics such as Percentage Density (PD) were calcu-

lated based on the proposed segmentation methods in this thesis. In addition, some characteristics are

considered based on both since the lesions have been annotated by radiologists while the size of the

annotation and the location of lesions are automatically calculated in this thesis.

5.2.1 Histopathological Diagnosis

Histopathological appearances, as described by radiologists, are based on both pathological and radiolog-

ical information (10). There are mainly five categories from B1-B5 as described in Table 5.4 (142; 10).

These five primary categories are split based on the information about the lesion and its radiological ap-

pearance, the localization method, the specimen type, the presence or absence of histology calcification,

and the pathologist’s judgment (142).

B1 category: is when the pathologist only finds normal breast tissue in biopsy samples and detects no

calcium on a specimen (10).

B2 category: This is when the pathologist can safely detect benign changes linked to visible calcification

that have been sufficiently sampled. The patient can be confidently released without the need for addi-

tional interventions. It is the most frequent outcome of a stereotactic biopsy. Around (66% - 75%) of

biopsies, whether employing CB or VAB, is obtained. The breast radiologist’s main concern when given

a B1 or B2 biopsy result is whether cancer might still be present. Depending on the type of needle used,

a false negative result is more or less likely to happen (10).
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B3 and B4 categories: these categories mostly include lesions that, upon needle biopsy, may reveal

benign histology but are known to exhibit heterogeneity or carry a higher risk of concurrent malignancy.

In comparison to B4 (66%), the B3 group has a reduced risk of malignancy on further surgical biopsy

(25%). Although surgical excision is required for the majority of B3 lesions, according to Perry et al.

(10), a multidisciplinary meeting should be conducted to discuss each case.

B5 category: there are two subtypes available: malignant in situ (B5a) and malignant invasive (B5b).

Similar to B3 and B4 lesions, it is possible to underestimate the severity of the disease when a B5a (in

situ malignancy) is upgraded to invasive malignancy after surgery. The type of needle that is utilized

again affects the underestimation rate (10).

The distribution of the category of needle biopsies of these datasets is shown in Figure 5.6. There are

mainly three dominant categories B2, B5a, and B5b which have 15, 22, and 9 patients, respectively.

Table 5.4: Categories of breast needle biopsies regarding histopathological appearances

Category Description

B1 normal tissue
B2 benign lesion
B3 lesion of uncertain malignant potential
B4 suspicious of malignancy
B5a malignant in situ
B5b malignant invasive

5.2.2 Breast Density

There are several techniques for evaluating the density of breasts either manually or automatically. For

manual evaluation, it is done using visualization, which requires a lot of time. Automatic methods require

accurate commercial tools and to have access to them is too expensive. There are also open source tools

such as Laboratory for Individualized Breast Radiodensity Assessment (LIBRA) (92) that work on 2D X-

ray mammograms. Unfortunately, it did not provide meaningful results for the available clinical datasets.

Based on the literature, there is a survey for measuring breast density using MRI (172). The most

common algorithm for measuring the breast density on MRI volume is FCM (172). In addition, Liu et al,

(104) suggested calculating PD from reconstructed MRI using Generative Adversarial Networks (GANs)

methods. Apart from that, one algorithm was proposed for measuring the breast density based on MR

images directly, since segmentation algorithms take a lot of time to generate an automatic segmentation

and then auto-correct the inaccurate parts which is done by radiologists (198).

The density of breasts has been analyzed in this thesis based on the proposed segmentation method. Two

aspects were calculated: first, the amount of glandular tissue compared to the fatty tissue, and second, the

amount of glandular tissue compared to the breast tissue. As shown in Figure 5.7, most of the available

datasets (26 patients) lie in the percentage between 0 and 20% regarding the ratio between glandular and

fatty tissues (left). In the next three classes from 20-40%, 40-60%, and 60-80%, the number of patients
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Figure 5.7: Histogram of the clinical datatsets regarding two aspects: ratio of glandular and fatty tissues in per-
centages (left). The ratio of glandular tissue compared to breast tissue in percentages (Percentage Density-(PD))
(right).

decreases to 11, 8, and 4, respectively. Regarding the amount of glandular tissue compared to the breast

tissue, the categories have been split like literature (91) with a step size of 10% between each class. 19

patients lie in the class from 0-10% and 12 patients lie in the class from 20-30%.

5.2.3 Sizes of Lesions

The size of lesions in the three modalities, which have been annotated by radiologists, was calculated.

One annotated lesion is considered 3D in MRI while the other two annotated lesions are considered 2D

in full X-rays and spot mammograms. Lesion sizes might not correlate due to the errors made by manual

annotations. Hence, breast sizes regarding 3D and 2D have been calculated first to validate the correlation

between the 3D and 2D images in general, as shown in Figure 5.8. There is a strong correlation between

the sizes of breasts in full X-ray (CC or MLO) compared to the sizes of breasts in MRI with an r of

0.91 and 0.82, respectively. The minimum breast size available in 2D (CC and MLO), 3D (MRI) is

5.6x103 mm2, 9.8x103 mm2, and 1.7x105 mm3 while the maximum size is 4.6x104 mm2, 3.4x104 mm2,

and 1.8x106 mm3, respectively. A comparison between the size of annotations is done secondly in which

a moderate correlation between the area annotation of full X-ray and volume annotation of MRI with an

r of 0.64 and 0.56 for CC and MLO views, respectively is found. There is a strong correlation found

between the annotation of full X-ray and spot mammograms with an r of 0.83 and 0.76 for CC and MLO

views, respectively.

5.2.4 Location of Lesions

The localization of lesions has been analyzed by splitting them into defined regions. For MRI, the breast

is split into 12 regions which follow the standard quadrants of the breast (217). Slices of MRI volume,

in which the breast shape (field of view (FOV)) is located, have been split first into three regions based

on inferior, middle, and superior regions. Then, each slice is split into four regions: upper inner, lower

inner, upper outer, and lower outer as shown in Table 5.5. An example of a middle slice in a left breast is

shown in Figure 5.11 (left): upper inner (R2), lower inner (R5), upper outer (region 8), and lower outer
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Figure 5.8: Distribution of the breast sizes in full X-ray mammograms (2D): CC and MLO and in MRI (3D). A
strong correlation is found between the breast sizes 3D and 2D with an r of 0.91 and 0.82, respectively.
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Figure 5.9: Distribution of the lesion sizes annotated by experienced radiologists in full X-ray mammograms (2D):
CC and MLO and in MRI (3D). A strong correlation is found between the breast sizes 3D and 2D with an r of
0.64 and 0.56, respectively.
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Figure 5.10: Distribution of the lesion sizes annotated by experienced radiologists in full X-ray mammograms
(2D): CC and MLO and in spot mammograms (2D). A strong correlation is found between the breast sizes with
an r of 0.83 and 0.76, respectively.
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Figure 5.11: Definitions of regions in each modality: MRI: four regions are shown in this example which are R8,
R11, R2, and R5 (left). Full X-ray mammogram: all regions available for the two views CC and MLO are shown
in this example from R1 till R8 (middle). Spot mammogram: all regions available for spot mammogram are
shown in this case from R1 till R16 (right).
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Figure 5.12: Number of patients in each region defined. MRI (12 regions) (left), full X-ray mammograms (8
regions) (middle), and spot mammograms (16 regions) (right).
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(R11). For an X-ray mammogram, the breast is split into 8 regions. Two regions towards the muscle in

the posterior direction are defined, distinguishing the upper region in the inferior/feet direction (R1) and

the lower region in the superior/head direction (R5). Similarly, another two regions towards the nipple

(R4 and R8) in the anterior direction are defined. The rest of the regions are in the center part of the

breast (R2, R3, R6, and R7) as shown in Figure 5.11 (middle). For the spot mammogram, since it is

a square window of 50× 50 mm for most of the available cases, 16 regions of small squares are split

equally, as shown in Figure 5.11 (left).

Table 5.5: Regions specified for location of lesion in MRI

Regions Description

R1 upper inner - inferior slices
R2 upper inner - middle slices
R3 upper inner - superior slices
R4 lower inner - inferior slices
R5 lower inner - middle slices
R6 lower inner - superior slices
R7 upper outer - inferior slices
R8 upper outer - middle slices
R9 upper outer - superior slices
R10 lower outer - inferior slices
R11 lower outer - middle slices
R12 lower outer - superior slices

The decision of where each lesion is located is based on these regions. For the cases where lesions exist

in more than one region, the decision is made based on the maximum area located. For MRI regions, it

is found that 11 patients are located in R11 which is the lower outer-middle slice. For X-ray regions, it

was found that 18 patients lie in R2 which is considered the center (first area in the posterior direction).

For spot mammograms, ideally for biopsy images, the lesion should be located in the center area which

in this case: R6, R7, R10, and R11. It was found that 13, 9, 7, and 6 patients’ lesions were located in

these regions, respectively.
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This chapter discusses the generation of ground truth for segmentation and registration methods. Then,

quality metrics, which were used for the assessment of the proposed method, are introduced.

6.1 Data Processing

As mentioned in Chapter 5, the data exchange was done via cloud storage in DICOM data format.

Having a ground truth is a mandatory step to evaluate the proposed methods. Five proposed methods

need to be evaluated: the segmentation algorithm of MR images for three tissues, the biomechanical

model based registration solved by FEM between MRI and X-ray mammography, the proposed machine

and deep learning algorithms for replacing FEM simulation of the biomechanical model, the image

based registration between X-ray mammograms and spot mammograms, and an evaluation of the full

proposed processing chain to register MRI and spot mammograms, which is considered the accumulative

registration of the two methods.

6.1.1 Generating Ground Truth for Breast MRI Segmentation

For the evaluation of segmentation algorithms, annotation of images of MRI is required. The ground

truth was first created by using niftySeg (34) for classifying glandular and fatty tissues. NiftySeg is

based on an expectation maximization algorithm. NiftySeg is an independent and open-source tool for

pre-segmentation. There were some issues with this open-source tool when used to classify glandular and

fatty tissues as shown in Figure 6.1. Also, there was no detection for muscular tissues like the proposed

method in this thesis. Therefore, those issues were corrected manually by a medical practitioner using

Medical Imaging Interaction Toolkit (MITK) (131) and the breast muscle was segmented manually in

each slice.

As was expected, it would take expert radiologists around one to two hours for one dataset to generate

ground truth for evaluating the segmentation methods. That is why eight clinical datasets have been

annotated for evaluation purposes. Another set of 25 datasets has been evaluated qualitatively, which

will be discussed in Section 6.3.1.

6.1.2 Generating Ground Truth for Image Based Registration

For the evaluation of registration algorithms, annotation of landmarks visible in all three modalities is

required. In this thesis, it was decided by the medical partners that microcalcifications can fulfill this
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Figure 6.1: Visualization of an example of classification of fatty and glandular tissues using NiftySeg (transverse
view). Original image (left). The segmented image (right). Red circles indicate the holes or problems not classified
by niftySeg. Additionally, the muscle is not detected.

purpose. There are two options to annotate microcalcifications: deterministic shapes (with sharp edges

like squares or circles) or free-hand shapes. Some disadvantages have arisen from having sharp edges,

like squares or cubes because microcalcifications can be out of the annotated square, and if bigger squares

are marked instead, they are decisive and misleading. The solution for that was annotating a freehand

shape based on the exact circumference of a cluster of microcalcifications. To have a free-hand shape,

annotations have been performed by an experienced radiologist using Slicer 3D (56) as shown in Figure

6.2.

6.2 Evaluation Metrics

Four main evaluation methods have been used for evaluating the proposed methods. These are True

Positive Rate (TPR), DSC, Jaccard Index, and TRE. The equations will be presented first, and then the

usage of these evaluation methods for each proposed algorithm will be discussed.

6.2.1 True Positive Rate

The TPR is a metric that is also known as sensitivity or recall between two sets of elements A and B.

It calculates the percentage of the actual positives that are correctly detected, as shown in equation 6.1

(125):

T PR =
T P

T P+FN
=

|A∩B|
A

(6.1)

6.2.2 DICE Coefficient

DSC or F-score measures the similarity between two sets of elements A and B, or pixels: positive and

negative. In other words, it is the average of precision and recall, as shown in equation 6.2 and in

Figure 6.3 (a). Both of them include true positives (TP), false positives (FP), and false negatives (FN).
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Figure 6.2: Visualization of an example of annotation done by radiologists using Slicer 3D in a subtraction MRI
series. The green area is the annotation of radiologists.

The precision (denoted as prec) is the ratio of true positives to all the predicted positives (218). It is

calculated by

prec =
T P

T P+FP

The recall or TPR (denoted as rec) measures the percentage of all detected positives that were correctly

predicted as explained in 6.2.1 and shown in equation 6.1:

DSC =
2T P

2T P+FP+FN
=

2 · rec · prec
rec+ prec

=
2|A∩B|
|A|∪ |B|

(6.2)

6.2.3 Jaccard Index

Jaccard Index or Intersection over Union (IoU) metric measures the similarity between two sets A and

B. It is a percentage that ranges from 0% to 100% and indicates how comparable two sets of data are, as

shown in equation 6.3 and in Figure 6.3 (b) (199):

IoU =
T P

T P+FP+FN
=

|A∩B|
|A|∪ |B|

(6.3)
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2 A B

(a)

TP FPFN

(b)

a(𝑥1, 𝑦1)

b(𝑥2, 𝑦2)

(c)

Figure 6.3: Visualization of the four evaluation methods that have been used in this thesis: the Venn diagram of
DSC (a), the Venn diagram of Jaccard Index and TPR (b), and the visualization of Euclidean distance (c). Yellow
is the ground truth annotation which is A, green is the predicted annotation which is B, and red is the intersection
or overlap between the two annotations.

The difference between DSC and IoU is that DSC emphasizes on true positives rather than only the

overlap between sets as declared in the equations.

6.2.4 Target Registration Error

The TRE is the Euclidean distance (d) between two points a and b as shown in Figure 6.3 (c), where a is

the actual point and b is the predicted point (58):

d =
√
(bx2 −ax1)

2 +(by2 −ay1)
2 (6.4)

6.3 Evaluation Methods

6.3.1 Biomechanical Model Based Registration Method

The biomechanical registration method has been evaluated using TRE which is the Euclidean distance

between the center of gravity of the predicted lesion in the registered moving image (synthetic X-ray)

generated from the MRI and the center of gravity of the annotated lesion by radiologists in the reference

image (original X-ray) as shown in equation 6.5:

T REBiomechanical = ||CXR −CMRI|| (6.5)

Moreover, the IoU and DSC have been calculated to evaluate the overlapping between lesion annotations.

This was done for further evaluations for clinical use, which will be discussed in Chapter 8.

In addition, TPR has been calculated to avoid the problem of indeterministic shapes. Areas of the anno-

tations in both images might not correlate due to the error in manual annotations.

Also, estimation of DSC is calculated between the similarities of the breast shapes of the two images

(synthetic X-ray and original X-ray).
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Segmentation

The segmentation methods have been evaluated using DSC and IoU. For this case, the precision is a score

that represents how much of e.g., fatty tissue is identified in the segmentation compared to fatty tissue in

the ground truth. Similarly, the precision of glandular and muscular tissues was calculated. The recall

indicates how much of e.g. fatty tissue in the ground truth was detected by the segmentation. Similarly,

the recall of glandular and muscular tissues was calculated.

IoU metric measures the number of pixels common between the segmented image and ground truth

image divided by the total number of pixels present across both images for each tissue separately.

Machine and Deep Learning Algorithms for Simulation of Biomechanical Model

Deformation

In order to evaluate the performance of the proposed machine and deep learning models, the deformed

nodes from the FEM simulation are considered as the ground truth. By that, the RMSE could be calcu-

lated for each node between the proposed models as explained in Section 3.2.5 and the ground truth, as

shown in equation 6.6. In this equation, ε represents the deviation of a node’s position from the ground

truth in the x, y, and z directions. Afterward, the mean value of all nodes belonging to one dataset is

calculated, where one dataset refers to one breast of one patient. Finally, the mean and median RMSE of

all the datasets are calculated in the validation set (see Section 7).

RMSEnode =

√
ε2

x + ε2
y + ε2

z

3
(6.6)

6.3.2 Image Based Registration Method

Annotated lesions in the two modalities of full X-ray and spot mammograms were used as a bench-

mark to assess the accuracy of image based registration algorithms. TRE has been calculated as the

Euclidean distance between the center of gravity of the lesion predicted in the registered moving image

(spot mammogram) and the center of gravity of the annotated lesion in the reference image (full X-ray

mammogram) to evaluate the image based registration method as shown in equation 6.7:

T REImagebased = ||CCR −CXR|| (6.7)

Moreover, the IoU and DSC have been calculated to evaluate the overlapping between lesion annota-

tions. TPR was calculated similarly to the evaluation of the biomechanical model based registration, as

explained in Section 6.3.1,
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6.3.3 Accumulative Registration of the Two Methods

The same evaluation methods as explained in Section 6.3.2 are used here in calculating the accumulative

registration of the two methods. The TRE as shown in equation 6.8, DSC, IoU, and TPR of both reg-

istration steps in combination is calculated based on the predicted lesion position originating from the

MRI annotation from the first step. This is given as input for the second step (image based registration)

to predict the position in the spot mammogram image.

T RETotal = ||CCR −CCRpredicted || (6.8)
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After the two proposed registration methods have been developed, this chapter presents the results ob-

tained from all the proposed methods:

- segmentation of MR images for three tissue types: fatty, glandular, and muscular

- proposed machine and deep learning algorithms for simulations of the biomechanical model

- biomechanical model based registration between MRI and X-ray mammography

- image based registration between full X-ray mammography and spot mammograms

- accumulative registration of the two methods between MRI and spot mammograms

7.1 Segmentation

In this section, the results from the proposed segmentation methods’ will be presented qualitatively and

quantitatively for T2-weighted MRI. Additionally, three example cases of segmentation for T1-weighted

are shown in Figure 7.3. This demonstrates that the method works also for the T1-weighted MRI series.

7.1.1 Qualitative Analysis

The analysis has been evaluated qualitatively for the first approach (segmentation of 3D volume denoted

as 3DNNs) by two observers. It has been done using 25 datasets that were available at that time for the

T2-weighted MRI series. Each dataset’s slices were equally divided into three categories: inferior, mid-

dle, and superior slices. Within each category, seven possible issues related to the segmentation of tissues

were examined. Three of them are connected to the segmentation of the muscular tissue: distinguishing

glandular from muscular tissue, holes in the muscle, and artifacts at the border between glandular and

muscular tissue. Two of them are connected to the segmentation of the glandular tissue: noisy classifi-

cation and the possibility that the breast’s borders could be mistakenly identified as glandular tissue due

to the partial volume effect. The incorrect overall contour of the breast and missing parts of the breast

tissue are the two main problems that were taken into account regarding the segmentation of fatty tissue,

as shown in Figure 7.1. For each issue, a score between 1 and 5, in which 1 represents the worst score and

5 represents the best score, was calculated by taking the average of the observations from two people. A

maximum score of 35 and a minimum score of 7 were obtained by adding the scores for each of the seven

problems. The overall score for each category was then divided into five groups, as indicated in Table

7.1. It has been observed that middle slices have fewer issues than inferior and superior slices. There
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Figure 7.1: Examples of the seven common problems that were qualitatively evaluated; three problems of muscular
tissue (first row), two problems of glandular tissue (second row), and two problems of fatty tissue and breast shape
(third row).

Table 7.1: Percentage of datasets in the group score of each category of slices

Slices 30-35 25-30 20-25 15-20 7-15
Inferior 56% 32% - 12% -
Middle 76% 12% 12% - -
Superior 64% 16% 12% 8% -

are no significant issues in more than 75% of the middle slices (category 30-35). In category 15-20, only

12% and 8% of inferior and superior slices, respectively, have segmentation issues.

Quantitatively, the mean DSC of eight clinical datasets was computed for the three tissues in the inferior,

middle, and superior slices as illustrated in Figure 7.2 in order to numerically validate the three categories

derived from the qualitative results. It demonstrates that the most reliable category is the middle slices,

supporting the assessments of the two observers. The mean DSC achieved is 0.91, 0.64, and 0.93 for

fatty, glandular, and muscular tissue, respectively.

7.1.2 Quantitative Analysis

There are three approaches which have been proposed in Section 3.2.1; segmentation of 3D volume

(denoted as 3DNNs), segmentation of 2D stacked volume (denoted as 2DNNs), and segmentation of a

subset from the volume (denoted as Subset3DNN). The three approaches have been compared to the

ground truth of breast MRI, as shown in Section 6.1.1. Eight different datasets of T2-weighted MR

images of different resolutions have been evaluated using DSC and Jaccard index, as shown in Section
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Figure 7.2: Mean DSC of eight clinical datasets for the three tissues: fatty, glandular, and muscular tissues in
inferior, middle, and superior slices, respectively.

6.3.1. The proposed approaches ran on an Intel(R) Core i7-9700K CPU with 3.60 GHz in a couple of

minutes and on NVidia RTX 2080Ti with a speed-up of 3.

For the first approach (3DNNs), the mean DSC is 0.87 for fatty tissue, 0.45 for glandular tissue, and

0.88 for muscular tissue, as shown in Figure 7.4. The mean of the Jaccard index is 0.78 for fatty tissue,

0.31 for glandular tissue, and 0.79 for muscular tissue, as shown in Figure 7.5. For the second approach

(2DNNs), the mean DSC is 0.70 for fatty tissue, 0.18 for glandular tissue, and 0.54 for muscular tissue.

The mean of the Jaccard index is 0.56 for fatty tissue, 0.10 for glandular tissue, and 0.40 for muscular

tissue. For the third approach (Subset3DNN), the mean DSC for each tissue is 0.82 for fatty tissue, 0.40

for glandular tissue, and 0.85 for muscular tissue. The mean of the Jaccard index is 0.70 for fatty tissue,

0.26 for glandular tissue, and 0.75 for muscular tissue.

It was obvious that mean DSC and Jaccard index in the second approach are low compared to the other

two approaches. In the second approach, segmentation was performed slice by slice. Each slice has

different labels than the previous slice due to the random initialization of the NN, as shown in Figure

7.6 which makes it hard to have four deterministic labels in all the slices in the postprocessing block.

Due to the fact that fatty, glandular, and muscular features could have the same amount of voxels, this

makes it hard and leads to a higher probability that some slices could not be assigned to the same class.

Therefore, the probability of losing more information is higher in the 2D stacked NN. That is why the

values of DSC and Jaccard index in this approach are low compared to the other two approaches.

The mean DSC and Jaccard index of glandular tissue in all the approaches proposed is less than the other

two tissues due to the small number of voxels of glandular tissue compared to the total number of voxels.

Additionally, segmentation of very fine structures in glandular tissue is challenging while generating the

ground truth.
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7 Results

Figure 7.3: Three examples of clinical datasets of T1-weighted MRI series that has been segmented using the
proposed methods. Original images (first column). Segmented images (second column).
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Figure 7.4: Mean DSC of each tissue (fatty, glandular, and muscle) for eight datasets in the proposed algorithm
(3DNNs) compared to 2D stacked (2DNNs), a subset from the volume (Subset3DNN), Fuzzy C-means three
clusters (FCM3) and four clusters (FCM4) and K-means three clusters (KM3) and four clusters (KM4).
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Figure 7.5: Mean Jaccard index of each tissue (fatty, glandular, and muscle) for eight datasets in the proposed
algorithm (3DNNs) compared to 2D stacked (2DNNs), a subset from the volume (Subset3DNN), Fuzzy C-means
three clusters (FCM3) and four clusters (FCM4) and K-means three clusters (KM3) and four clusters (KM4).

Figure 7.6: An example of one dataset that is segmented by 2D stacked volume. Each slice has different labels
than the slice before or after.

It has been realized that the second approach does not detect the muscular tissue compared to the other

two proposed approaches as shown in Figures 7.4, 7.5, 7.7, and 7.8. Hence, this approach is considered

ineffective.

The third approach can be considered comparable to the first approach in terms of accuracy regarding

fatty and muscular tissues. Regarding DSC and Jaccard index of glandular tissues in cases from 3 till

8, there is a huge difference compared to the first approach as shown in Figures 7.7, and 7.8. The DSC

of glandular tissue for the first approach in case 3 is 0.36, while the DSC is 0.21 for the third approach.

There is a hypothesis that it might depend on the size of the breast which would require different numbers

and positions of slices extracted from the volume, i.e. superior, inferior, or middle slices. If the size of

the breast is large enough, the middle slice, or in other words, one slice is sufficient for training the

approach. But if the size of the breast is too small like for example in Figure 7.9, in the segmentation of

the third approach (fourth) compared to the segmentation of the first approach in Figure 7.9 (second), it

might be necessary to have more than one slice trained not only the middle slice. This example, which is

referred to, is case 3 in Figures 7.7 and 7.8. In the future, the number of slices and different positions in

the volume could be increased and changed to improve accuracy instead of using only one slice, or here,

the middle slice.
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Table 7.2: Accuarcy in terms of DSC of three proposed approaches for segmentation (mean, median) ± standard
deviation RMSE (mm) in the eight datasets

Approach 3D volume 2D stacked volume subset from the volume

Fatty tissue (0.87, 0.89) ± 0.04 (0.70,0.79 ) ± 0.19 (0.82, 0.83) ± 0.07
Glandular tissue (0.45, 0.45) ± 0.18 (0.18,0.14) ± 0.11 (0.40, 0.37) ± 0.2
Muscular tissue (0.88, 0.89) ± 0.04 (0.54, 0.64) ± 0.24 (0.85, 0.87) ± 0.07
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Figure 7.7: Distribution of DSC of each tissue (fatty, glandular, and muscle) across the eight datasets in the pro-
posed algorithm (first approach) (3DNNs) compared to 2D stacked (second approach) (2DNNs), a subset from
the volume (third approach) (Subset3DNN), Fuzzy C-means three clusters (FCM3) and four clusters (FCM4) and
K-means three clusters (KM3) and four clusters (KM4).

The three approaches have been compared from a computational point of view as shown in Figure 7.10.

The computation time varies from one case to another because it depends on the breast size, since in the

preprocessing block, all unnecessary background voxels have been removed. The 2D stacked volume

not only shows less classification in the tissues of each class but also is slower than the first approach

by nearly a factor of 1.3 speedup in CPUs. The third approach has proven to be the fastest algorithm,

as it achieves a 45 times speedup compared to the first approach. However, in some cases, the glandular

tissue is not classified using the third approach. Therefore, the first approach was used in this thesis

since it has the best values regarding mean, median, and standard deviation of DSC in the three proposed

approaches, as shown in Table 7.2.

The proposed method was compared to other segmentation approaches by replacing only the three pro-

posed approaches with algorithms used in the literature. This was namely, Fuzzy C-means which was

implemented in earlier work for automatic generation of biomechanical models (78) and K-means, shown

in Figures 7.4 and 7.5. These methods have been applied once with three clusters and once with four
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Figure 7.8: Distribution of Jaccard index of each tissue (fatty, glandular, and muscle) across the eight datasets in the
proposed algorithm (first approach) (3DNNs) compared to 2D stacked (second approach) (2DNNs), a subset from
the volume (third approach) (Subset3DNN), Fuzzy C-means three clusters (FCM3) and four clusters (FCM4) and
K-means three clusters (KM3) and four clusters (KM4).

Original image 3D volume Subset from the volume2D stacked volume

Figure 7.9: An example of segmentation using the three approaches compared to the original image showing that
small-size breasts might not work for the third approach of the subset from the volume using one slice. Original
MRI from the Medical University of Vienna (first). Segmentation of the three classes using the first approach
3D volume (second). Segmentation of the three classes using the second approach 2D stacked volume (third).
Segmentation of the three classes using the third approach subset from the volume (fourth).

clusters. In all of the subsequent comparisons, the result of those algorithms uses the proposed prepro-

cessing and postprocessing. Using the Fuzzy C-means algorithm with three clusters, the mean DSCs

obtained for the three tissues is lower than that which was obtained based on 3D NNs. The mean DSC

and mean Jaccard index of fatty tissue are 0.75 and 0.61, respectively. The mean DSC and mean Jaccard

index of glandular tissue are 0.37 and 0.24, respectively, while the mean DSC and mean Jaccard index

of muscular tissue are 0.75 and 0.60, respectively. The results obtained with four clusters are even worse

than those obtained with three clusters. K-means with three clusters show less accuracy in all metrics

than the proposed method. However, with four clusters, the results for fatty and glandular tissue are

comparable to the proposed method. Muscular tissue is however, not detected at all using this algorithm.

An exemplary segmentation compared to Fuzzy C-means with three clusters is shown in Figure 7.11.
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Figure 7.10: Computation time of the three approaches proposed across the eight patients that have ground truth in
CPUs. First bar (3D volume), Second bar (2D stacked), and third bar (subset from the volume)

(a) (b) (c)

Figure 7.11: An example of segmentation using the proposed method in comparison to Fuzzy C-means. The
ground truth is manually corrected by a medical practitioner (a). The segmentation of the proposed methods (b).
The segmentation of Fuzzy C-means with three clusters (c) (162).

7.1.3 Comparison to Literature

While being evaluated on different databases, the proposed method was compared to algorithms from

the literature, as shown in Table 7.3 to provide a relation to other approaches. They are all limited to one

or two tissues. The first method was used to estimate breast density for two tissues only (67). The Atlas-

Basd breast muscle segmentation method was the only method used to detect muscular tissue (66). Two

of these methods use supervised learning, which requires a massive amount of labeled data for training

(213; 68). In contrast to methods from literature, the proposed method detects three tissues, not just two

tissues. The mean DSC achieved for fatty tissue is 0.87, which is better than the one used in Zhang et al.

but less than referred to in Gubern-Mérida et al. The mean DSC achieved for glandular tissue is 0.45,

which is less than the values in the literature. For muscular tissue, the mean DSC achieved is 0.88, which

is better than the one achieved in Gubern-Mérida et al.
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Table 7.3: Comparison of the mean DSC for three tissues compared to literature review

Tissue Gubern-Mérida et al. Gubern-Mérida et al. Zhang et al. Ha et al. Proposed
Fatty 0.94 - 0.86 - 0.87
Glandular 0.80 - 0.83 0.81 0.45
Muscular - 0.72-0.74 - - 0.88

7.2 Machine Learning Algorithms for Simulation of Biomechanical Model Deformation

In this section, the results of biomechanical simulation using machine learning algorithms will be dis-

cussed. Since the proposed machine and deep learning algorithms are supervised learning methods, they

require a lot of datasets to validate this method and to avoid overfitting problems. Therefore, two groups

of datasets were considered: 26 datasets from the Medical University of Vienna with ages ranging from

29 to 78 years, which is a subset of the dataset (Chapter 5) since this subset only has T2-weighted MRI

series. Additionally, 232 datasets from the University Hospital of Jena with ages ranging from 23 to

92 years were used. All datasets were collected retrospectively. Patients were treated independently

and according to standard procedures that comply with relevant laws and institutional guidelines. The

institutional committees approved the collection of data. Datasets were fully anonymized. Each dataset

consists of a T2-weighted MRI series collected in clinical practice according to the internal guidelines of

the respective hospital. In addition, the model was parameterized using metadata from a corresponding

patient’s mammogram, such as compression thickness. In total, 258 patients were used.

To increase the size of the database, first, breast meshes from both the left and right breasts of each

patient were generated, resulting in a total of 516 datasets. Second, intermediate steps between the initial

state and the final state of the deformed breast were retrieved in order to train the model with different

deformation states. Any number of intermediate steps could be extracted since the deformation is a

function of time in the FEM simulation solved by the dynamic solver. 100 steps were extracted for

the estimation of the unloaded state. From the time step when the upper compression plate begins to

contact the breast to the time step when the breast is fully compressed according to the metadata of the

mammogram, approximately 70 steps were extracted for the compression simulation to provide a good

variety of intermediate steps. A total of 70884000 instances were employed for training and validation

in the unloaded state step. A total of 48979346 instances were extracted for the compression step.

The three models, ERT, XGBoost, and Att-BLSTM were initially evaluated using one-fold validation in

order to optimize the hyperparameters and compare them. The data was divided into 90% for the training

set (467 datasets) and 10% for the validation set (49 datasets). The validation set was equally divided into

50% of datasets from the Medical University of Vienna and 50% of datasets from the University Hospital

of Jena. The unloaded state estimation and the compression simulation were investigated separately.
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Table 7.4: Unloaded state estimation: (mean, median) ± standard deviation RMSE (mm) of the validation set.

Steps ERT XGBoost Att-BLSTM

All (6.8, 5.9) ± 2.9 (6.3, 0.6) ± 36.9 (4.9, 0.6) ± 26.6
Last (8.1, 6.3) ± 5.5 (7.8, 1.0) ± 37.3 (6.4, 1.1) ± 26.7

The evaluation method used was RMSE; see details in Section 6.3.1. In addition to that, the percentage

of nodes was categorized from the validation set into classes with an interval of a certain value for the

RMSE starting from 0mm to 22mm with a step size of 2mm. Since a few percentages of nodes are

located in a class with errors larger than 22mm, an additional class for those nodes was added. This

categorization provides a representation of the error distribution.

7.2.1 Unloaded State Estimation

For the unloaded state estimation when considering the prediction of all 100 intermediate steps, from

Table 7.4 it can be seen that the median RMSE for Att-BLSTM and XGBoost is similar, while Att-

BLSTM provides the minimum mean RMSE of 4.9mm. When considering the last step, Att-BLSTM

provides the minimum mean RMSE of 6.4mm. As for the median, XGBoost performs slightly better with

a median RMSE of 1.0mm compared to 1.1mm for Att-BLSTM. The standard deviation for both methods

is considerably higher than ERT due to four and six outliers for XGBoost and Att-BLSTM, respectively.

The interquartile range for XGBoost is 2mm and for Att-BLSTM is 1.4mm. As shown in Figure 7.12,

the RMSE values for XGBoost and Att-BLSTM are nearly similar based on the categorization of the

percentages of nodes into accuracy classes.

Two cases were visualized in the three views of the body plane: the first illustrates how well the proposed

models perform visually in comparison to the deformation from the FEM simulations. For this good case

as shown in Figure 7.18, 7.19, and 7.20, the minimum error achieved in Att-BLSTM was 0.49mm. The

RMSE error achieved was 0.47mm and 0.49mm for XGBoost and Att-BLSTM, respectively. Both meth-

ods visually perform the same in the three views compared to the FEM simulation (ground truth). How-

ever, the ERT model’s predicted breast mesh shape with an RMSE of 5.7mm significantly loses volume,

and the displacement of the nodes does not follow the same pattern as the displacement estimated by the

FEM simulation. Second, a case with an RMSE of 5.9mm, 1.1mm, and 1.1mm for ERT, XGBoost, and

Att-BLSTM, respectively has been presented for illustration. In this case, due to a non-optimal automatic

segmentation of the MRI volume, some elements are incorrectly modeled as glandular tissue on the sur-

face of the breast. Additionally, some elements exceed the quality criterion limits of ABAQUS during the

FEM simulation and would need to be re-meshed. Despite these challenges in predicting a non-optimal

initial dataset, the behavior of the XGBoost and the Att-BLSTM provides visually convincing results,

still similar to the deformation in the FEM simulations, as shown in Figure 7.24, 7.25, and 7.26.
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Figure 7.12: Comparison of the percentage of nodes in each category of error for the unloaded state estimation
(left) and for the compression step (right). The RMSE values are calculated for the three methods (ERT, XGBoost,
Att-BLSTM).

7.2.2 Compression Step

When taking into account the prediction of all 70 intermediate steps for the compression step, it can

be seen from Table 7.5 that XGBoost provides the minimum mean and median RMSE of 4.9mm and

3.5mm, respectively. For the last step, in which the compression is the highest and reaches the com-

pression thickness specified in the mammogram’s metadata, the mean and median RMSE are 7.3mm and

4.3mm, respectively. Compared to these values, Att-BLSTM performs marginally worse with an average

RMSE of 6.0mm overall steps. For the last step, the mean error achieved is 9.1mm. While ERT per-

forms for both, overall steps and the last step, noticeably worse with 10.0mm and 13.4mm, respectively.

According to the error distribution in Figure 7.12 (right), Att-BLSTM predicts slightly less nodes with

an RMSE higher than 10mm compared to the XGBoost method. Both XGBoost and Att-BLSTM have

approximately the same number of nodes with an RMSE lower than 10mm. It can also be realized that

there is a significant difference in the first class from 0−2mm and the last class, which summarizes errors

greater than 22mm. For the first class, the distribution shows that Att-BLSTM performs slightly better

than XGBoost, while the last class indicates that the number of nodes with a large error in Att-BLSTM

is considerably higher than in XGBoost.

The same two cases that were presented for the unloaded state estimation in three views that correspond

to three body planes are shown in Figures 7.21, 7.22, and 7.23. The first case compares the deformation

acquired by the FEM simulation to the performance of the suggested models. It is obvious that the breast

mesh predicted by the ERT method has an RMSE of 6.1mm, loses volume, and the deformation of the

nodes results in a different breast shape as in the FEM simulations. XGBoost and Att-BLSTM provide

similar performance with an RMSE of 1.7mm and 1.7mm, respectively, in the three views compared

to the FEM simulation (ground truth). In the second case, it is shown that neither method’s prediction
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Table 7.5: Compression step: (mean, median) ± standard deviation RMSE (mm) of the validation set

Steps ERT XGBoost Att-BLSTM

All (10.0, 8.0) ± 5.4 (4.9, 3.5) ± 4.0 (6.0, 3.6) ± 7.1
Last (13.4, 10.6) ± 9.9 (7.3, 4.3) ± 7.5 (9.1, 4.7) ± 13.1

yields a visually comparable outcome. In this case, the RMSE for ERT, XGBoost, and Att-BLSTM is

25mm, 20.8mm, and 42.1mm, respectively. This case is one of those with a high compression ratio (67%)

since the thickness before compression is around 120mm, as shown in Figure 7.24 and the thickness after

compression is approximately 40mm. Furthermore, as previously mentioned, the breast mesh is not ideal

since, for example, glandular tissue can be seen on the surface of the breast (dark blue), which is a result

of an inadequate automatic segmentation of the MRI. As opposed to the ground truth, Att-BLSTM not

only fails to predict the shape of the breast accurately but also causes a significant global displacement

of the coordinates. XGBoost also fails to accurately represent the shape of the breast.

In the following subsections, a deeper analysis of the performance of the models with respect to patient

characteristics is emphasized.

Correlation with Features of the Breast

In order to determine whether any subgroups are correlated with the RMSE, the results with respect to

three characteristics of the breast were investigated: the error as a function of the different tissue types

(glandular, fatty, and muscular tissues), the breast volume, and the compression ratio. Based on the

validation set of the one-fold validation, the analysis was carried out.

Tissue Type: It was investigated whether there is a correlation between the RMSE and the tissue

types that were taken into account in the model, namely the fatty, glandular, and muscular tissues. To

accomplish this, the instances were subdivided into nodes labeled with the appropriate tissue type, i.e.,

the inner nodes of the breast mesh of those elements modeled as fatty, glandular, and muscular tissues.

Nodes at the tissue interfaces were not taken into consideration.

A histogram of the RMSE for the three models is plotted for each tissue type as shown in Figure 7.13.

Due to the variation in the number of nodes belonging to each class, a log-normal distribution was fitted

to the histograms. The µ stands for the RMSE logarithmic values’ mean, and the σ for their standard

deviation. According to Table 7.6 and Figure 7.13, XGBoost has the smallest µ of 1.76 with a mean

RMSE of 9.4mm for fatty tissue. With a mean RMSE of 8.4mm, XGBoost has the smallest µ of 1.7 for

glandular tissue. Although, Att-BLSTM has the smallest µ of 1.41 for muscular tissue, it has the highest

σ of 1.07. XGBoost has the minimum mean RMSE of 6.5mm

There is no clear pattern when comparing the various tissue types across all evaluations. Apart from the

fact that the RMSE tends to be lower for nodes in muscular tissue than for fatty and glandular tissues.
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Figure 7.13: Probability density function versus RMSE: the relation between the tissue type and the RMSE of the
validation set for the three models: ERT, XGBoost, and Att-BLSTM.

Table 7.6: Average RMSE for tissues in mm

Tissue ERT XGBoost Att-BLSTM

fat 16.6 ± 13.3 9.4 ± 10.9 12.1 ± 17.7
glandular 13.1 ± 7.4 8.4 ± 7.5 13.3 ± 16.8
muscle 13.1 ± 8.3 6.5 ± 5.8 8.4 ± 14.7

This can be because muscular tissue was modeled as a rigid body that can not deform due to the boundary

conditions in the biomechanical model. As a result, this behavior might be easier for the machine learning

model to learn than the intricate deformation of fatty and glandular tissues.

Breast Volume: In order to examine if larger breast sizes, which deform more during mammographic

compression, can be predicted with less accuracy than smaller ones, an investigation was done to examine

whether there is a relationship between the breast volume and the RMSE. Figure 7.14 shows the RMSE

as a function of breast volume measured in mm3. There is no discernible trend, and the data points

are widely dispersed. A polynomial fitting curve with degree one was used to analyze the correlation.

With a maximum r of 0.09, it is seen that the three approaches ERT, XGBoost, and Att-BLSTM have an

independent relationship.

Compression Ratio: It was assumed that the error increases with the compression ratio based on the

discrepancy between the result obtained by averaging the results of all deformation steps and the final

step. For validating this hypothesis, a correlation between the RMSE and the compression ratio of the

validation set was analyzed by calculating the compression ratio in intermediate steps until it reaches the

desired breast thickness that is recorded in the metadata for each dataset, as shown in Figure 7.15. Then,

starting at 1% and going up to 76%, which is the highest compression ratio found in the patient cohort,

the mean value for all the datasets at each compression ratio was determined. With a 1% step size, the

datasets were binned. The outcomes of this investigation are shown in Figure 7.15 (left). The observed

data points were fitted with a second-degree exponential function. A significant correlation between the

fitting curve and the data is indicated by the exponential curve fit’s r-squared (R2) values, which are 0.90

for XGBoost, 0.88 for Att-BLSTM, and 0.90 for ERT. This supports the initial hypothesis.
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Figure 7.14: Relation between the breast volume and the RMSE of the validation set for the three models: ERT,
XGBoost, and Att-BLSTM. Breast volume does not correlate with the RMSE.

For the XGBoost and Att-BLSTM models, which achieve the best overall results, the relationship be-

tween the RMSE and the compression ratio for all of the available datasets was also examined with 10-

fold cross-validation. Figure 7.15 displays these results (right). The error distribution closely matches

the one-fold validation subset evaluation. The relationship between RMSE and the compression ratio

develops gradually up to a compression ratio of 53%. It was evaluated whether, in this range, the rise

in error with increasing compression ratio may likewise be regarded as linear by performing a linear fit

with R2 of 0.93. Yet, the error substantially increases after 53% compression, which leads us to believe

that the entire error distribution has an exponential relationship. The 10-fold validation data in Figure

7.15 (right) were likewise fitted with a two-degree exponential fitting curve, yielding R2 of 0.83.

The fitted curves in Figure 7.15 show that, for all compression ratios, ERT has the highest error in

contrast to the other two approaches. Also, it can be seen that up to a compression ratio of roughly 53%,

the performance of Att-BLSTM and XGBoost is almost identical with 5.8mm. XGBoost outperforms

Att-BLSTM at a higher compression ratios with lower RMSE values.

7.2.3 Cross-Validation Analysis

As shown earlier, XGBoost and Att-BLSTM appear to be generally capable of offering a good agreement

of predicted breast shapes compared to the FEM ground truth. In terms of the median RMSE for the

estimation of the unloaded state, Att-BLSTM and XGBoost nearly get the same results, while XGBoost

performs better for the compression step used in the one-fold validation.
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Figure 7.15: Relation between the compression ratio and the RMSE: the validation set (49 datasets) for the three
models, ERT, XGBoost, and Att-BLSTM, respectively (left) and 10-fold cross-validation for two models, XG-
Boost and Att-BLSTM, respectively (right). The compression ratio is extracted for every intermediate step for
each dataset until it reaches the desired compression ratio extracted from the metadata. The RMSE is the mean of
all patients in each intermediate step corresponding to the compression ratio. The representation of compression
ratio and RMSE in the 10-fold validation (right) is the same as the 1-fold validation (left).

Table 7.7: Literature review of machine learning algorithms for breast deformation

Reference Compression Ratio Time-FEM Time-ML Architecture #datasets

Martínez-Martínez et al. 20 % 120 min <0.2 s DT/ ERT/random forest Clinical -10
Rupérez et al. NA NA 0.43 s DT/ERT/random forest Phantom -10
Mendizabal et al. NA 407.7 ms 3.14 ms U-Net Phantom -10
Proposed 20 - 76 % 20 min 5 s ERT/XGBoost/Att-BLSTM Clinical -516

In order to expand the database and evaluate the approaches by avoiding over-fitting to only one valida-

tion set, 10-fold cross-validation was used for this purpose. It was applied to: XGBoost and Att-BLSTM

model for the estimation of the unloaded state and the compression step.

The average RMSE for XGBoost even reduces to 3.4mm and 4.7mm, respectively, as shown in Table

7.8. Additionally, the error distribution for the two simulation steps is greatly improved. Figures 7.16

and 7.17 further illustrate the results. Regarding RMSE and error distribution, Att-BLSTM shows the

same behavior.

From a computational perspective, it takes about 4.5 hours to train the model for XGBoost using the

516 breast meshes in a 10-fold cross-validation, whereas predicting a single dataset only takes about

5 seconds. While it takes over 60 hours to train Att-BLSTM using 516 breast meshes in a 10-fold

cross-validation, predicting a dataset takes only about 10 seconds. Both models were trained on an RTX

2080TI GPU using CUDA 10.2. This achieves a speedup of factors 240 and 120 for XGBoost and Att-

BLSTM, respectively, compared to a runtime of about 20 minutes for the computing duration of a FEM

simulation.
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Table 7.8: RMSE ((mean, median) ± standard deviation) of 10-fold cross-validation for the unloaded state estima-
tion and the compression step in the last step for XGBoost and Att-BLSTM

Method Unloaded state Compression

XGBoost (3.4, 0.8) ± 30.5mm (4.7, 3.4) ± 4.7mm
Att-BLSTM (3.0, 1.2) ± 22.3mm (4.9, 3.4) ± 5.6mm

7.2.4 Comparison to Literature

For 10 clinical datasets, Martínez-Martínez et al. and Rupérez et al. attained an accuracy of 0.62mm.

For a comparable problem in the compression step, the proposed approach in this thesis achieves mean

and median RMSE values for 516 breasts of 4.7mm and 3.4mm, respectively. However, the first key

distinction between the study in this thesis and others is the use of a compression ratio of up to 76%,

which results in strong non-linear deformations of the breast. The evaluation of (116; 159) was con-

strained to a 20% compression thickness. With 10-fold cross-validation, the proposed techniques in this

thesis achieve mean and median RMSE at a 20% compression ratio of 2.3mm and 1.8mm, respectively.

The second difference is the analysis of two simulation steps, not only the compression step but also the

estimation of the unloaded state. The third difference is the number of datasets; 516 breasts were used

in the evaluation of this study, while the work of (116; 159) was restricted to 10 phantoms and clinical

datasets.

Martínez-Martínez et al. and Rupérez et al. reported the time required for prediction in the ML models

and very generally, the computation time for one FEM simulation, which may often take 120 minutes

(78; 177), (Table 7.7). A speedup of factor approximately 240 is achieved by the proposed models in this

thesis when compared to the FEM model simulation. Despite using different breast imaging modalities

in comparison to Mendizabal et al., they were 130 times faster than their FEM model simulation.
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Figure 7.16: Percentages of nodes split into categories for the unloaded state estimation with XGBoost and Att-
BLSTM for the 10-fold cross-validation in comparison to the 1-fold cross-validation regarding the RMSE.
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Figure 7.17: Percentages of nodes split into categories for the compression step with XGBoost and Att-BLSTM
for the 10-fold cross-validation in comparison to the 1-fold cross-validation regarding the RMSE.

Figure 7.18: Clinical case with a visually good result in the sagittal plane (lateral view): the comparison of the
estimation of the unloaded state between the ground truth (FEM simulation) and the prediction by ERT, XGBoost,
and Att-BLSTM (164).

7.3 Biomechanical Model Based Registration

In this subchapter, the results of the registration between MRI and X-ray mammography will be pre-

sented. TRE, TPR, IoU, and DSC, which are explained in Chapter 6, have been calculated between the

predicted annotation and the annotation that has been marked by radiologists. In addition, DSC and

IoU will be presented for the shape of the breast between the synthetic X-ray mammography (predicted

deformed MRI) created from the biomechanical model based registration method and the original X-ray

mammography.

As explained before, a free-hand shape annotation was used. Hence, for calculating the TRE, the center

of gravity (COG) of the annotation was calculated to get the error between the predicted annotation and

the actual annotation. The annotation of MRI is 3D, while the X-ray annotation is 2D. The annotation

was tracked in the 3D volume before and after deformation, as shown in Figures 7.31 and 7.32, and then
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Figure 7.19: Clinical case with a visually good result in the transversal plane (axial view): the comparison of the
estimation of the unloaded state between the ground truth (FEM simulation) and the prediction by ERT, XGBoost,
and Att-BLSTM (164).

Figure 7.20: Clinical case with a visually good result in the coronal plane (back view): the comparison of the
estimation of the unloaded state between the ground truth (FEM simulation) and the prediction by ERT, XGBoost,
and Att-BLSTM (164).

Figure 7.21: Clinical case with a visually good result in the sagittal plane (lateral view): the comparison of the
compression step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-
BLSTM (164).
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Figure 7.22: Clinical case with a visually good result in the transversal plane (axial view): the comparison of the
compression step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-
BLSTM (164).

Figure 7.23: Clinical case with a visually good result in the coronal plane (back view): the comparison of the
compression step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-
BLSTM (164).

Figure 7.24: Clinical case with visually non-optimal result in the sagittal plane (lateral view): the comparison of
the unloaded state estimation between the ground truth (FEM simulation) and the prediction by ERT, XGBoost,
and Att-BLSTM (164).

Figure 7.25: Clinical case with visually non-optimal result in the transversal plane (axial view): the comparison of
the unloaded state estimation between the ground truth (FEM simulation) and the prediction by ERT, XGBoost,
and Att-BLSTM (164).
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Figure 7.26: Clinical case with visually non-optimal result in the coronal plane (back view): the comparison of the
unloaded state estimation between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and
Att-BLSTM (164).

Figure 7.27: Clinical case with visually non-optimal result in the sagittal plane (lateral view): the comparison
of the compression step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and
Att-BLSTM (164).

Figure 7.28: Clinical case with visually non-optimal result in the transversal plane (axial view): the comparison
of the compression step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and
Att-BLSTM (164).
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7.3 Biomechanical Model Based Registration

Figure 7.29: Clinical case with visually non-optimal result in the coronal plane (back view): the comparison of
the compression step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-
BLSTM (164).

the 2D projection of this annotation was retrieved. Three examples have been visualized in Figures 7.38,

7.39, and 7.40 for CC cases and similarly for MLO cases. The red lesion represents the lesion that is

marked by the radiologist in the full X-ray mammogram and the green lesion represents the predicted

lesion based on the annotation in the MR image using biomechanical model based registration. The

yellow color represents the overlap of the two lesions.

The proposed biomechanical model based registration method achieves a median error of 31.8mm for 51

clinical datasets with the standard parameters without optimization, as shown in Table 7.9 and in Figure

7.33 (left). The lower and upper quarters are 16.4mm and 48.2mm, respectively. While the minimum and

the maximum errors are 4.4mm and 85.92mm, respectively. Such a high error in the case of 85.92mm,

as shown in Figure 7.30, was observed for one of the MLO cases in which X-ray mammogram does not

look optimum with respect to the two rotation angles of muscle area and rotation around the z-axis for

applying compression (first image). Additionally, it might be because of inaccurate segmentation, which

causes a hole in the projected deformed MRI (second image). Optimizing the parameters of rotation

angles and compression thickness could be used to decrease the error, but due to time constraints, it

was not evaluated. For the intersection between the two annotations (the yellow color), three metrics

(DSC, IoU, and TPR) have been calculated. It was found that 22 cases out of the 51 cases achieve an

intersection, as shown in Figure 7.34. The maximum DSC achieved is 0.623, and the maximum IoU

achieved is 0.46 in the same case. TPR has been evaluated to avoid the indeterministic shapes and the

non-correlated annotations between MRI and full X-ray mammograms, such as in Figure 7.39. In some

127



7 Results

X-ray mammogram MRI deformed Overlap

predicted
ground truth
intersection

Figure 7.30: An example of a bad registration between MRI and X-ray mammography (Patient ID 31): original
X-ray mammography and its problem of a rotation angle of muscle area (see red circle) (first), synthetic X-ray
created from the biomechanical model based registration and its problem of an artifact in the image because of
inaccurate segmentation (second). Overlap of the two images (third). The predicted lesion that has been annotated
by radiologists in the original X-ray (red) and projected tracked annotation of the MRI into the synthetic X-ray
(green).
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Figure 7.31: An exemplary case shows the annotated lesion by the radiologist in three views of an MR image
before applying compression deformation to the breast.

cases, TPR might be much higher than DSC and IoU for such problems, such as in cases 55, 49, 36, 35,

33, 10, and 6, as shown in Figure 7.34. The maximum TPR achieved is 0.97.

In addition for the shape of the breast, the DSC achieves a median of 0.87 as shown in Figure 7.33 (right).

The lower and the upper quarters are 0.9 and 0.84, respectively. There is one outlier with a value of 0.7.

The minimum and the maximum values are 0.75 and 0.95, respectively. Similarly, for IoU, it achieves a

median of 0.77. The lower and the upper quarters are 0.72 and 0.81, respectively. There is one outlier

with a value of 0.54. The minimum and the maximum values are 0.6 and 0.9, respectively.

Table 7.9: Accuracy of biomechanical model based registration between MRI and X-ray mammography

Accuracy in mm mean median std min max 75% 25%

TRE 33.12 31.76 18.95 4.4 85.92 48.2 16.4

128



7.3 Biomechanical Model Based Registration

z

y

z

x x

y

Figure 7.32: The exemplary case shows the tracked annotated lesion by the radiologist in three views of an MR
image after applying the compression deformation to the breast.
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Figure 7.33: Analysis of TRE for the biomechanical model based registration method of 51 cases received from the
Medical University of Vienna (left). Analysis of the DSC and IoU for the shape of the breast between the produced
synthetic X-ray mammography (predicted deformed MRI) and the original X-ray mammography (right).
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Figure 7.34: Distribution of the three evaluation metrics that have been calculated for the intersection between the
actual and the predicted lesion using biomechanical model based registration method (the yellow color in Figures
7.38, 7.39, and 7.40). 22 out of 51 cases achieved an intersection between the two annotations.
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Table 7.10: The correlation strength into categories based on Wuensch and Evans (209)

Category very weak weak moderate strong very strong

Range 0 - 0.19 0.20 - 0.39 0.40 - 0.59 0.60 - 0.79 0.80- 1.0

Table 7.11: The number of elements in the initial mesh exceeded the limit of the minimum angle (less than <10◦)

Elements per Patient ID 11 12 21 22 28 29

Number of distorted elements 2 2 2 4 2 2
Number of elements per patient 9124 2941 7500 2279 8579 6886

7.3.1 Mesh Quality and Volume Loss by FEM

The biomechanical model based registration has been analyzed using seven characteristics that corre-

spond to the variations in datasets as explained in Chapter 5 to investigate if subgroups are correlating

with the accuracy of the method. The strength of the correlation is split into categories based on Wuensch

and Evans as described in Table 7.10.

Additional features have been investigated such as the quality of initial meshes before being solved by

FEMs, the total loss of volume after the deformation of the breast, and the loss of volume for each tissue

of three segmented classes of fatty, glandular, and muscular tissues.

Quality of meshes

As explained in Section 3.2.4, there are different quality metrics for evaluating the quality of the initial

mesh, and the most effective one is the ratio radius of the tetrahedron mesh. The total number of elements

for all the available data of 51 patients is 656960 elements. Figure 7.35 (left) shows the distribution of

the percentage of distorted elements in each initial mesh for each clinical case using the best parameters

found in the methods. It was observed that 20 cases have 1% distorted elements and 22 cases have 2

% distorted elements, which is considered 82.3% from the available data. Also, other metrics such as

Joe Li, minimum angle, and maximum angle have been calculated for the initial mesh. Interestingly, it

is found that no patient is exceeding the limits of Joe Liu’s and maximum angle. Only six patients out

of the 51 clinical datasets have elements that exceed the desired limit of the minimum angle (see Table

7.11).

Additionally, it was investigated if the quality of the mesh using the ratio radius of the tetrahedron mesh

has an impact on the accuracy of the biomechanical model based registration. It was observed that there

is a very weak correlation between them with an r of -0.04 and R2 of 0.001, as shown in Figure 7.36

(left).
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Histogram of Percentage of Distorted Elements
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Figure 7.35: Histogram of percentage of distorted elements for the initial mesh in each patient for 51 clinical
datasets received from the Medical University of Vienna (left). Histogram of the total loss volume of MRI breast
after being solved by FEMs (right).

Loss of Volume

Another aspect that has been evaluated regarding the deformation of the biomechanical model of the

MRI breast solved by FEM is the loss of volume which occurred since the material is considered nearly

incompressible. Figure 7.35 (right) shows the histogram of total loss of volume between the initial

mesh before deformation and the deformed mesh. It was observed that most of the clinical datasets (47

patients) lie in the percentage of total loss of volume between 1.5% and 2%.

Additionally, it has been investigated if the total loss of volume has an impact on the accuracy of the

biomechanical model based registration. It was observed there is a very weak correlation between them

with an r of -0.16 and R2 of 0.02, as shown in Figure 7.36 (right).

Moreover, the loss of volume for three segmented tissues fatty, glandular, and muscular tissues has been

analyzed to find a correlation between these losses and the accuracy of the biomechanical model based

registration method. For fatty tissue, it is considered a very weak correlation in the negative direction

with an r of -0.12 and R2 of 0.01, as shown in Figure 7.37 (a). For glandular tissue, it is considered a

weak correlation in the negative direction with an r of -0.20 and R2 of 0.04 as shown in Figure 7.37 (b).

For muscular tissue, it is considered a very weak correlation with an r of -0.08 and R2 of 0.006.

7.3.2 Correlation with Features of the Breast

Patient Age

The age of the patients in the clinical datasets has been investigated. A polynomial fitting curve (first

degree) has been used to evaluate how the datasets are distributed compared to the TRE of the biome-
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Figure 7.36: A very weak correlation is achieved between the accuracy of the biomechanical model based registra-
tion method and the percentage of distorted elements in the initial mesh across all the patients with an r of -0.04
(left). A very weak correlation is found between the total loss volume of MRI breasts and the TRE with an r of
-0.16 (right).
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(c)

Figure 7.37: Relationship between the loss volume for the three tissues and the accuracy of the biomechanical
model based registration method. A very weak correlation is found for loss of volume in fatty tissue with an r of
-0.12 (a). A weak correlation is found for loss volume in glandular tissue with an r of -0.20 (b). A very weak
correlation is found for loss in muscular tissue with an r of -0.08 (c).
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Figure 7.38: An example of registration between MRI and X-ray mammography (Patient ID 40): original X-
ray mammography (first), synthetic X-ray created from the biomechanical model based registration (second),
and overlap of the two images (third). Ground truth annotation marked by radiologists in original X-ray (red),
projected tracked annotation of the MRI into the synthetic X-ray (green), and overlap between the two lesions
(yellow).
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Figure 7.39: An example of registration between MRI and X-ray mammography for a lesion at the back of the
breast (Patient ID 52): original X-ray mammography (first), synthetic X-ray created from the biomechanical
model based registration (second), and overlap of the two images (third). Ground truth annotation marked by
radiologists in original X-ray (red), projected tracked annotation of the MRI into the synthetic X-ray (green) and
overlap between the two lesions (yellow).
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Figure 7.40: An example of registration between MRI and X-ray mammography for an ideal result (Patient ID 12):
original X-ray mammography (first), synthetic X-ray created from the biomechanical model based registration
(second), and overlap of the two images (third). Ground truth annotation marked by radiologists in original X-
ray (red), projected tracked annotation of the MRI into the synthetic X-ray (green), and overlap between the two
lesions (yellow).
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Figure 7.41: An example of registration between MRI and X-ray mammography (Patient ID 7): original X-ray
mammography (first), synthetic X-ray created from the biomechanical model based registration (second), overlap
of the two images (third). Ground truth annotation marked by radiologists in original X-ray (red), projected
tracked annotation of the MRI into the synthetic X-ray (green), and overlap between the two lesions (yellow).
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Figure 7.42: An example of registration between MRI and X-ray mammography (Patient ID 10): original X-ray
mammography (first), synthetic X-ray created from the biomechanical moel based registration (second), overlap of
the two images (third). Ground truth annotation marked by radiologists in original X-ray (red), projected tracked
annotation of the MRI into the synthetic X-ray (green), and overlap between the two lesions (yellow).
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Figure 7.43: An example of registration between MRI and X-ray mammography (Patient ID 56): original X-ray
mammography (first), synthetic X-ray created from the biomechanical model based registration (second), overlap
of the two images (third). Ground truth annotation marked by radiologists in original X-ray (red), projected
tracked annotation of the MRI into the synthetic X-ray (green), and overlap between the two lesions (yellow).
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Figure 7.44: A very weak correlation between the accuracy of the biomechanical model based registration method
and the age of the patients with an r of -0.13.

chanical model based registration method as shown in Figure 7.44. It was observed that age has a very

weak correlation in the negative direction in relation to the TRE with an r of -0.13 and R2 of 0.02.

Views

The second characteristic, which was investigated, is the views of full X-ray mammography. Boxplots

have been used for evaluating the correlation.

It was observed that the median TRE of CC (21 datasets) is less by a factor of 2 than the median TRE of

MLO (26 datasets) as shown in Table 7.12. For the TRE of ML and RL cases as shown in Table 7.13, the

number of datasets (four datasets) is likely too small for a conclusion. Hence, Figure 7.47 shows only

the TRE (left), DSC and IoU of the breast shapes (right) of CC and MLO cases which shows that the

biomechanical model based registration method works better for CC cases. In addition, the number of

datasets with an overlap of lesion annotations for CC cases is thirteen cases out of 21 cases as shown in

Figure 7.45 while the number of datasets with an overlap of lesion annotations for MLO cases is seven

cases out of 26 cases as shown in Figure 7.46.

For CC cases, the lower and the upper quarters are 11.65mm and 29.4mm, respectively. The minimum

and the maximum errors are 4.4mm and 56.7mm, respectively. For the intersection between the two

annotations as shown in Figure 7.45, the maximum DSC achieved is 0.52 and the maximum IoU achieved

is 0.36 in the same case. The maximum TPR achieved is 0.83.

For MLO cases, the lower and the upper quarters are 23.8mm and 49.5mm, respectively. The minimum

and the maximum errors are 5.6mm and 85.9mm, respectively. For the intersection between the two

annotations as shown in Figure 7.46, the maximum DSC achieved is 0.63 and the maximum IoU achieved

is 0.46 in the same case. The maximum TPR achieved is 0.97.
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Distribution of Three Evaluation Metrics for CC Cases
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Figure 7.45: Distribution of the three evaluation metrics for the CC cases that have been calculated for the intersec-
tion between the actual and the predicted lesion using biomechanical model based registration method (the yellow
color in Figures 7.38, 7.39, and 7.40). Thirteen cases out of 21 cases achieve an intersection.
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Figure 7.46: Distribution of the three evaluation metrics for the MLO cases that have been calculated for the
intersection between the actual and the predicted lesion using biomechanical model based registration method.
Seven cases out of 26 cases achieve an intersection.

In conclusion, the accuracy of the biomechanical model based registration method correlates with the

views of full X-ray mammography regarding CC and MLO cases.

Table 7.12: TRE of biomechanical model based registration regarding views

Accuracy in mm mean median std cases

TRE - CC 23.27 23.29 15.6 21
TRE - MLO 39.95 41.42 19.2 26
TRE - ML/RL 40.38 40.83 11.56 3 /1

Histopathological Diagnosis

The third characteristic is in terms of the histopathological diagnosis of the breast needle biopsies as

explained in Section 5.2.1. Based on the available data, there are five classes: B2 (15 cases), B3 (5

cases), B5a (21 cases), B5b (9 cases), and B2 and B5b at the same time (1 case). The highest number

of cases belongs to both B2 and B5a classes, in which it has been observed that median TRE is 31.8mm
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Figure 7.47: Analysis of TRE for the biomechanical model based registration method regarding CC and MLO
cases (left). Analysis of the DSC and IoU for the shape of the breast between the produced synthetic X-ray
mammography (predicted deformed MRI and the original X-ray mammography for the same cases (right).

Table 7.13: Evaluation of biomechanical model based registration regarding ML and RL cases

Evaluation Metrics DSC-shape IoU-shape TRE DSC IoU TPR

Patient ID 24 (ML) 0.83 0.70 50.3mm 0 0 0
Patient ID 41 (ML) 0.84 0.73 50.41mm 0 0 0
Patient ID 47 (ML) 0.89 0.81 31.35mm 0.01 0.008 0.02
Patient ID 54 (RL) 0.75 0.60 29.4mm 0.04 0.02 0.04

and 32.7mm, respectively as shown in Figure 7.48. In addition, the minimum, maximum, lower quarter,

and upper quarter of both classes, as shown in Table 7.14, are quite comparable. It could be concluded

that there is no correlation with respect to the histopathological appearance.

Table 7.14: Detailed analysis of boxplots of class B2 and B5a versus the accuracy of the biomechanical model
based registration

min max lower quarter upper quarter

B2 4.43mm 77.9mm 16.8mm 54.4mm
B5a 5.6mm 85.9mm 15.1mm 48.9mm

Breast Density

The breast density of clinical datasets is detailed in Section 5.2.2. Two aspects were taken into consid-

eration: the glandular tissue related to the total breast volume and the ratio between glandular and fatty

tissues in the breast. A polynomial fitting curve (first degree) has been used to evaluate how the datasets

are distributed compared to the TRE of the biomechanical model based registration method as shown in
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Figure 7.48: Analysis of TRE for the biomechanical model based registration method regarding the breast needle
biopsies into categories with no correlation: B2 (15 cases), B3 (5 cases), B5a (21 cases), B5b (9 cases), and B2
and B5b (1 case).

Figure 7.49. It was observed that both aspects have a very weak correlation with the TRE with an r of

0.06 and 0.05, respectively, and R2 of 0.004 and 0.003, respectively.

Sizes of Breasts and Lesions

The size of breasts and lesions is the fifth characteristic from Section 5.2.3 that has been investigated. A

polynomial fitting curve (first degree) has been used to evaluate how the datasets are distributed compared

to the TRE of the biomechanical model based registration method, as shown in Figures 7.50 and 7.51.

Since it was observed in Section 5.2.3 that sizes of breasts in MRI (3D) and full X-ray mammography

(2D) are correlating, it is expected that sizes of breasts will have the same behavior in relation to the TRE

of the biomechanical model based registration method. There is a very weak correlation in the negative

direction with an r of -0.06, -0.08, and -0.15 and with R2 of 0.004, 0.006, and 0.02 for MRI, full X-ray

mammography CC and MLO, respectively, as shown in Figure 7.50.

To analyze the impact of the sizes of lesions, a polynomial fitting curve (first degree) has been used to

evaluate how the lesion size correlates to the TRE of the biomechanical model based registration method.

Also, it was observed in Section 5.2.3 that sizes of lesions in MRI and full X-ray mammography are

correlating. Hence, it is expected that sizes of lesions in MRI or full X-ray mammography will have the

same behavior in relation to the TRE of the biomechanical model based registration method. There is a

very weak correlation with an r of -0.09, -0.09, and 0.07 and with R2 of 0.008, 0.009, and 0.004 for MRI,

full X-ray mammography CC and MLO, respectively, as shown in Figure 7.51.
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Figure 7.49: A very weak correlation between the accuracy of the biomechanical model based registration method
and the distribution of glandular tissue in the breast with an r of 0.06 (left). A very weak correlation between the
accuracy of the biomechanical model based registration method and the distribution of the ratio between glandular
and fatty tissues in the breast with an r of 0.05 (right).
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Figure 7.50: Relation between the accuracy of the biomechanical model based registration method and distribution
of the breast sizes in MRI (3D) (first) and full X-ray mammograms (2D): CC (middle) and MLO (last). A very
weak correlation is found between the breast sizes 3D and 2D and the TRE with an r of -0.06, -0.08, and -0.15,
respectively.

0 0.5 1 1.5 2 2.5 3

Lesion size MRI in mm
3 10

4

0

10

20

30

40

50

60

70

80

90

T
R

E
 i
n

 m
m

All Patients

data

fitted data

(a)

0 200 400 600 800 1000 1200

Lesion size X-ray (CC) in mm2

0

10

20

30

40

50

60

70

80

90

T
R

E
 i
n
 m

m

All Patients

data

fitted data

(b)

0 200 400 600 800 1000 1200 1400 1600 1800

Lesion size X-ray (MLO) in mm2

0

10

20

30

40

50

60

70

80

90

T
R

E
 i
n
 m

m

All Patients

data

fitted data

(c)

Figure 7.51: Relation between the accuracy of the biomechanical model based registration method and distribution
of the lesions sizes in MRI (3D) (first) and full X-ray mammograms (2D): CC (middle) and MLO (last). A very
weak correlation is found between the sizes of lesions 3D and 2D and the TRE with an r of -0.09, 0.09, and 0.07,
respectively.
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Figure 7.52: Relation between the location of lesions in MRI and full X-ray mammography in both views and
the accuracy of the biomechanical model based registration method. R5 of four cases in MR images is the least
median error, which corresponds to lower inner middle slices (first). R7 in both views of full X-ray mammograms
(CC 8 cases (middle)) (MLO 4 cases (last)) is the least median error, which corresponds to the area of the center
of the breast.

Location of Lesions

The location of lesions in MRI and full X-ray mammography is the sixth characteristic that has been

evaluated. Boxplots have been used for finding a correlation between locations of lesions and the TRE

of the biomechanical model based registration. MR images were split into twelve regions as explained

in Section 5.2.4. X-ray mammography has been split into eight regions. For MRI, only two cases have

annotated lesions in region R4. R3, R9, and R10 have only three cases, so it is hard to get a conclusive

observation since the case numbers located in these regions are likely too small. R5 though, has also

a small number of cases (four cases only). Nevertheless, it is expected that median TRE would be

small because the deformation in this region, that belongs to the lower inner middle slices, is relatively

small compared to other areas. The median TRE achieved is 13.7mm. The highest number of cases

belongs to R11 (eleven cases), in which the median TRE is 34.7mm, as shown in Figure 7.52 (first)

and it corresponds to lower outer middle slices. In addition, R11 in MRI corresponds to R2 in X-ray

mammography which achieves a median of 32.3mm in the case of CC and a median of 27.2mm in the

case of MLO.

For full X-ray mammography, similarly, some regions cannot be considered as conclusive such as R4 for

both views (one case only) and R3 (three cases) in case of CC view. It is clear that lesions at the back

of the breast near the muscle in the posterior direction (R1, R2, R5, and R6 in both views) are harder to

register than the lesions at the center of the breast (R7): which achieves the least median of 27.3mm for

eight cases in CC view and the median of 19.7mm for four cases in MLO view.

7.4 Image Based Registration

In this section, the results of aligning between full X-ray mammograms and spot mammograms will be

presented. Similarly, TRE, TPR, IoU, and DSC which are explained in Chapter 6, have been calculated
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between the predicted annotation and the annotation marked by radiologists. In addition, image qual-

ity assessment for image contrast and the algorithm for removing the muscle area from the full X-ray

mammograms have been evaluated.

As explained before, a free-hand shape annotation was used. Hence, for calculating the TRE, the COG

annotation was used to calculate the Euclidean distance between the predicted annotation and the actual

annotation. In this case, both annotations are 2D. The same three cases for CC mammograms have been

visualized for image based registration in Figures 7.76, 7.75, and 7.77. Similarly, the same three cases

for MLO have been visualized for image based registration in Figures 7.78, 7.79, and 7.80.

In these visualizations, the red lesion represents the lesion that is marked by the radiologist, while the

green lesion represents the predicted lesion based on the annotation in the spot mammogram using the

proposed image based registration. The yellow color represents the overlap of the two lesions.

7.4.1 Image Quality Assessment for the Contrast of Spot Mammograms

As explained in Section 4.2.1, there are four properties in the GLCM matrix; contrast, correlation, en-

ergy, and homogeneity utilized for evaluating the image quality of the spot mammogram. Those four

properties have been calculated for the six methods proposed for evaluating the quality improvements

of spot mammograms using the 51 available clinical datasets. Then afterwards, the mean, median, and

standard deviation of each parameter were calculated. Across the six proposed methods (denoted from 1

to 6) in this thesis, it was observed that correlation and homogeneity do not have an impact on the quality

of the image because there is no significant difference in ranges achieved (see Figure 7.53). However,

contrast and energy vary between the six methods. In addition, methods 1 and 6 could be excluded

since the values of contrast are low and the values of energy are high compared to the other methods, as

shown in Figure 7.53. The number of outliers in method 1 is too high compared to the other methods.

The interval between 25% and 75% is high in method 6 compared to the other methods. The standard

deviation of those two methods (1 and 6) is high compared to others. Additionally, it has been observed

visually in Figure 4.6 that methods 1 and 6 provide images that are very dark and bright, respectively.

From the literature (130), the values of contrast in breast X-ray mammography range from 0.01 to 0.05

for tumor tissues, while for normal tissues, they range from 0.02 to 0.07. The values of energy in breast

X-ray mammography range from 0.2 to 0.7 for tumor tissues, while those for normal tissues range from

0.2 to 0.4.

The evaluation of the quality of the images is done for spot mammograms in which there might be tumor

tissue. The ranges of contrast and energy should be like X-ray mammography for tumor tissues. For

getting a reference value to calculate the Euclidean distance, the midpoint of this range was assumed

to be this value. Afterward, the Euclidean distance was calculated between the reference value and

the actual value of each parameter and summed up for each dataset. The median, mean, and standard

deviation across all the datasets were then calculated, as shown in Figure 7.54 for the six methods.
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Figure 7.53: Boxplots of the four properties extracted from GLCM matrix for the six methods (denoted from 1 to
6) that have been tested for enhancing image contrast of spot mammograms.
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Figure 7.54: The Euclidean distance between the ideal value (reference value taken from literature) and the actual
values for contrast and energy parameters. The median of the Euclidean distance for all the patients (first). The
mean of the Euclidean distance for all the patients (middle). The standard deviation of the Euclidean distance for
all the patients (last).

Additionally, it was observed that method 5 could be excluded as well since the standard deviation is

high compared to other methods.

Additionally, the distribution of contrast and energy values for three methods (2, 3, and 4) for the 51

clinical datasets has been visually represented in Figure 7.55 and in Figure 7.56. It has been realized

that contrast values are always less in method 4 than in the other two methods, and energy values are

always higher in method 2 than in the other two methods. Those three methods, 2, 3, and 4, provide

approximately similar results. Hence, an analysis of TRE for the different image similarity metrics

that have been explained in Section 4.1, has been investigated for the three methods of image contrast

enhancement for the spot mammogram, as shown in Figures 7.57, 7.58, and 7.59. Through this analysis,

it was observed that method 2 has the least outliers in all the metrics and the least median error in most

of the metrics as shown in Figure 7.57. Therefore, method 2 was selected for the purpose of enhancing

the image quality of spot mammograms in this thesis.

7.4.2 Evaluation of Cropping the Muscle Area from MLO Cases

To assess the accuracy of removing the muscle from the full X-ray mammogram, manual annotation was

carried out for six cases from the available data. These annotations were marked utilizing a feature that
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Figure 7.55: Distribution of the contrast property extracted from GLCM matrix for all the available datasets for the
three most robust image contrast methods: method 2 (denoted as M2), method 3 (denoted as M3), and method 4
(denoted as M4) that have been tested from enhancing image contrast of spot mammograms.
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Figure 7.56: Distribution of the energy property extracted from GLCM matrix for all the available datasets for the
three most robust image contrast methods: method 2 (denoted as M2), method 3 (denoted as M3), and method 4
(denoted as M4) that have been tested from enhancing image contrast of spot mammograms.
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Figure 7.57: Analysis of different image similarity metrics with 51 patients using method 2 of image contrast.
Distribution of the TRE for all tested image similarity measures.
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Figure 7.58: Analysis of different image similarity metrics with 51 patients using method 3 of image contrast.
Distribution of the TRE for all tested image similarity measures.
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Figure 7.59: Analysis of different image similarity metrics with 51 patients using method 4 of image contrast.
Distribution of the TRE for all tested image similarity measures.

Figure 7.60: An example of the manual annotation of the rotation angle of the muscle area used as a ground truth
in RadiAnt DICOM Viewer.

calculates the rotation angle in RadiAnt DICOM Viewer, as shown in Figure 7.60. Since the ground truth

was generated manually, a subset from the available datasets was randomly chosen. These values have

been compared to the automatic calculation of the proposed methods in Section 4.2.1. Also, the absolute

error between the annotated value (manually) and the predicted value (automatically by the proposed

methods) has been calculated (third column). The lowest and highest absolute errors achieved are 0◦ and

2.7◦, respectively.

7.4.3 Optimization

After discussing the evaluation results of the preprocessing step, in this section evaluating and combining

image similarity metrics will be discussed.
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Table 7.15: Rotation angle of the muscle area in the full X-ray mammography

cases rot. angle manually rot. angle automatically Absolute Error

1 13.8◦ 13.8◦ 0◦

2 18.5◦ 18.1◦ 0.4◦

3 17.5◦ 17.2◦ 0.3◦

4 20.2◦ 19.2◦ 1◦

5 14.5◦ 12.9◦ 1.6◦

6 15.4◦ 18.1◦ 2.7◦

The entire X-ray mammogram

First, the image similarity metrics have been calculated between the full size of the X-ray mammogram

(the entire X-ray mammogram) and the spot mammograms sliding the spot mammogram over the full

X-ray mammogram step by step for all the 51 clinical datasets, as shown in Figure 7.61. Furthermore,

three evaluation metrics have been calculated for each image similarity separately, as shown in Figure

7.64. It has been realized that 35 cases could have an overlap between the two annotations if there is an

ideal image similarity metric applied. Considering the tested image similarity metrics, RMSE can align

the images such that 15 cases show an overlap of annotations, as shown in Figure 7.67 (a). RMSE has

also the least median TRE of 22.2mm, as shown in Figure 7.61. Figure 7.64 shows that RMSE, MSE,

ERGAS, and PSNR are mathematically equivalent since all of them are based on MSE, as explained in

Section 4.1.

There are two disadvantages of sliding the spot mammogram over the full size of an X-ray mammogram.

First, computation time is very high in some cases. It may take over 100 hours to calculate all the image

similarity metrics desired (see Figure 7.71 (first)). The computation time varies from patient to patient

because of the different sizes of breasts since all the image similarity metrics are calculated after the

preprocessing step in which the image is cropped till the nipple position. Second, It slides over the

full size X-ray which is not focused on an exact ROI. That might affect the accuracy by finding a local

minimum or a local maximum value instead of a global value based on the optimum value of the applied

image similarity metric and as a consequence, the overlap between annotations is not achieved as desired.

That is why it was proposed to select a ROI first, instead of applying the image similarity analysis of the

full size of the X-ray.

Select an ROI

From the results of applying image similarity metrics over the full size of full X-ray mammogram,

convolution, RMSE, and UIQI could be selected as constraints to determine ROI since they don’t have

outliers and nearly have the same lower and upper quarter. Additionally, other metrics such as Corr,

SSIM, RIU, MI, and NMI have been examined at the beginning to select the ROI for all 51 patients.

Based on the available data, the convolution operation stands out as the most robust image similarity for
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Figure 7.61: Analysis of different image similarity metrics for 51 patients in CC/MLO/ML and CC/ML/LM views
for full X-ray mammograms and spot mammograms, respectively in two imaging situation positions: prone and
upright. Distribution of the TRE for all tested image similarity measures applied for the full size of X-ray mam-
mograms.
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Figure 7.62: Image similarity metrics of 51 patients using image based registration based on dynamic step size
with convolution constraint (three iterations). All of the datasets are rescaled for processing with a factor of 0.1
after determining the ROI using the dynamic stepping.
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Figure 7.63: Image similarity metrics of 51 patients in CC/MLO/ML views and left/right breast for full X-ray mam-
mograms and CC/ML/LM views and left/right breast for spot mammograms in two imaging situation position:
prone and upright using image based registration based on a pixelwise approach. All of the datasets are rescaled
for processing with a factor of 0.1 after getting 50% of the maximum values from the convolution operation.
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Figure 7.64: Analysis of different image similarity metrics for 51 patients in CC/MLO/ML and CC/ML/LM views
for full X-ray mammograms and spot mammograms, respectively. Distribution of the three evaluation metrics:
DSC, IoU, and TPR for all tested image similarity metrics applied for the full size of X-ray mammogram. 35
cases can be achieved if an ideal image similarity metric is applied.
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Figure 7.65: Analysis of different image similarity metrics for 51 patients in CC/MLO/ML and CC/ML/LM views
for full X-ray mammograms and spot mammograms, respectively. Distribution of the three evaluation metrics:
DSC, IoU, and TPR for all tested image similarity metrics applied for the ROI using a multi-resolution approach.
40 cases can be achieved if an ideal image similarity metric is applied.
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Figure 7.66: Analysis of different image similarity metrics for 51 patients in CC/MLO/ML and CC/ML/LM views
for full X-ray mammograms and spot mammograms, respectively. Distribution of the three evaluation metrics:
DSC, IoU, and TPR for all tested image similarity metrics applied for the ROI using pixelwise approach. 42 cases
can be achieved if an ideal image similarity metric is applied.
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Figure 7.67: Number of datasets with an overlap of lesion annotations between the predicted and the ground truth
annotation in each experiment: using the entire X-ray mammogram (a), by getting an ROI using multi-resolution
approach (b), and by getting an ROI using a pixelwise approach (c).

the particular problem, making it the preferred choice for selecting the ROI. Furthermore, it is one of the

metrics that does not have outliers. The median TRE for 51 patients is 27.6mm. The lower and the upper

quarter are 16.5mm and 51.5mm, respectively, as shown in Figure 7.61.

Although there are some cases using the convolution operation that have high errors, it does not have

an effect on selecting the correct ROI. The decision of selecting correct ROI is based on, where the spot

mammogram potentially exists. The number of datasets with an overlap of lesion annotations is 14 cases

using the entire X-ray mammogram, as shown in Figure 7.67 (a). It has been evaluated visually that

using the convolution as a metric to determine the ROI, yields the best results. Only four patients present

bad ROI in which the ROI deviates from the location where the spot mammogram should be located. To

avoid the problem of having a bad ROI, there are two options. First, optimizing the stepping sizes of

X and Y coordinates in the full X-ray mammogram and the number of iterations could be enhanced to

select the best ROI.

Second, instead of using a multi-resolution approach, applying convolution operation over the full X-ray

mammogram pixel by pixel could be an option to determine an ROI by taking the area that is greater

than the mean value of the convolution operation, as shown in Figure 7.69 (first row). This proposal

would help in not having bad ROI, but it will increase computation time by a factor of 83x, which is not

desirable, as shown in Figure 7.68. Furthermore, the accuracy of using the second option to determine

the ROI did not improve that much, as shown in Figures 7.63, 7.66, 7.67 (c). The number of datasets

increased by two (42 cases in total) only compared to the proposed mutli-resolution approach (40 cases in

total). 42 and 40 cases have an overlap from one of the image similarity metrics, as shown in Figures 7.65

and 7.66, respectively. For further optimization of combining the image similarity as will be discussed

in the next section, it achieves similar accuracy but costs more computation time. That is why the multi-

resolution approach was selected for getting the ROI.

After calculating all the image similarity metrics between the ROI and spot mammograms, the two

disadvantages of full size mammograms are improved. First, it has been realized that computation time

decreased significantly, which will be discussed in the next paragraph. Second, as the image similarity
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Figure 7.68: Comparison between computation time of getting ROI using two approaches. The first approach uses
a pixelwise approach (left) and the second approach uses multi-resolution approach (right).

calculation focuses on a region of interest, the accuracy increased, as shown in Figure 7.62. Most of the

accuracy of the lower quarter of the image similarity metrics (RMSE, SSIM, UIQI, Corr, RIU) decreased.

As an example, the TRE using RMSE as similarity metric decreased from 16.2mm to 14.6mm, and SSIM

decreased from 13mm to 11.2mm, RIU decreased from 22mm to 15.8mm. Additionally, the number of

datasets with an overlap of lesion annotations increased from 35 to 40 cases if there is an ideal image

similarity metric to be applied and the maximum for each image similarity metric separately is 18 cases

such as SSIM image similarity in Figure 7.67 (b).

Rescaling Factor

To speed up the method, the second step that has been proposed is applying a rescaling factor to the

images without affecting the accuracy. An experiment has been analyzed for selecting rescaling factors

from 0.1 to 1 with a stepsize of 0.1 on a subset from the available datasets (17 patients), which was

available at that time, for a subset from the image similarity metrics. This experiment has been tested

using the entire X-ray mammography. The median, mean, and standard deviation of TRE achieved has

been calculated at each step size of the rescaling factor. From this analysis, as shown in Figure 7.70, it

has been realized, that whatever the rescaling factor is selected, it does not have a huge impact on the

accuracy. For example, the median TRE achieved using the convolution operation of a rescaling factor

of 0.1 till 0.8 is the same with a value 52.4mm. Since the computation time is high, a 0.1 rescaling factor

is selected for decreasing time. By selecting this rescaling factor, the computation time decreased from

2 hours to ten minutes.

It has been realized that computation time decreased significantly, as shown in Figures 7.71 (b) and

(c), for example, in the cases that need 100 hours to compute, by applying multi-resolution approach in

addition to the rescaling factor, 15 minutes is only required. Also for the cases that needed 3.6 hours,
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Multi-resolution convolution
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Figure 7.69: An example of applying the convolution operation in order to get the ROI: pixelwise approach (first
row) versus multi-resolution approach using three iterations (second row). The third column is the ROI retrieved
from both operations, respectively.
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Figure 7.70: An experiment for testing the most robust rescaling factor using a subset of patients. A subset of
image similarity metrics (RIU, NMI, MI, Corr, Conv, MSE, and SNR) is examined from a scale factor of 0.1 to 1
with a step size of 0.1. The mean, median, and standard deviation of the subset of the patients are shown in these
image similarity metrics. There is no big difference between selecting the rescaling factor.
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Figure 7.71: The comparison of computation time of applying all the image similarity metrics using the full size of
X-ray mammograms or ROI. The computation time of applying all image similarity metrics using the full size of
X-ray mammogram (a). The computation time of applying all image similarity metrics using ROI and rescaling
factor instead (b). It decreased from a couple of hours of a maximum of 100 hours to a maximum of 15 minutes
(b). The computation time like (b) in addition to applying a multi-threading looping (c).

after this proposal, it needs only 4.2 seconds. The difference between Figure 7.71 (b) and 7.71 (c) is

applying additional multithreading for the loops, which decreased the computation time more without

affecting the accuracy.

7.4.4 Combination of the Most Robust Image Similarity Metrics

Each image similarity metric separately achieves a maximum of 18 datasets with an overlap of lesion

annotations like SSIM. It has also been realized that some image similarity metrics work well for some

clinical data and other image similarity metrics work well for other clinical data. For robustifying the

method, there are five proposed combinations of the most robust image similarity metrics. The most

robust image similarity metrics were selected based on similar median error achieved, the least number

of outliers, and the lower quarter achieved in addition to empirical experiments for the available data set.

For each of the following proposed combinations, the most robust image similarity was selected based

on the four mentioned parameters.

The first proposed combination added up the most robust image similarity metrics together as shown in

equation 7.1 (denoted as ImgUni1). For the image similarity that has the minimum value as the optimum

instead of the maximum value, such as RIU, RMSE, and BIAS, the image similarity metrics were in-

verted and then added. Then, the position of the optimum value was extracted and considered to be the

best match. In this case, the optimum value was considered to be the maximum. Based on the available

clinical datasets, the most robust image similarity metrics are Conv, Corr, SSIM, MS-SSIM, RIU, and

MSE.

ImgUni1 =Conv+Corr+SSIM+MSSSIM+RIU +MSE (7.1)
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The second proposed combination subtracted the most robust image similarity metrics from each other

as shown in equation 7.2 (denoted as ImgSub). Similarly, for the image similarity that has the minimum

value as the optimum value, they were inverted and then subtracted. Then, similarly, the position of the

optimum value was extracted and considered to be the best agreement. In this case, the optimum value

was considered to be the minimum. Similarly, for subtraction, the most robust image similarity metrics

which have been selected are Conv, Corr, SSIM, MS-SSIM, RIU, and MSE.

ImgSub =Conv−Corr−SSIM−MSSSIM−RIU −MSE (7.2)

The third and fourth proposed combination determined the weight of each pixel in an image (denoted as

img) based on the gradient magnitude at that pixel and then returned the weight array (denoted as W) as

shown in equation 7.3. σ was used as the standard deviation for the derivative of Gaussian to compute

the image gradient.

To apply to the particular problem, the image (img) was assumed to be the most robust selected image

similarity metric and two σs have been examined. First, σ was assumed to be the standard deviation

(std) of the applied image similarity metric for example, convolution is selected, as shown in equation

7.5. Second, σ was assumed to be the mean (µ) of the applied image similarity metrics as shown in

equation 7.4. So, in total two image weights (W) have been calculated for each robust image similarity.

All the weighted images with σ = µ as in equation 7.4 were added up together and all the weight images

with σ = std as shown in equation 7.5 were added up together. It was empirically tested that the best

combination of image similarity metrics based on the available datasets is Conv, Corr, SSIM, MS-SSIM,

RIU, MSE, UIQI, NMI, and Bias. Then afterward, the third proposed combination subtracted the first

proposed method (denoted as ImgUni1) from the total of all the image similarity metrics of the weighted

images (denoted as ImgMeanTot) as shown in equation 7.6 (denoted as ImgUni2). The fourth proposed

combination added the first proposed method (denoted as ImgUni1) to the total of all image similarity

metrics of the weighted images (denoted as ImgMeanTot) and subtracted the total of all image similarity

metrics of the weighted images (denoted as ImgStdTot) from them as shown in equation 7.7 (denoted

as ImgUni3). Then, for both these two proposed combinations, the position of the optimum value was

extracted and considered to be the best match. In this case, the optimum value was considered to be the

maximum.

W = gradientweight(img,σ) (7.3)

ImgMeanConv = gradientweight(Conv,mean2(Conv)), ImgMeanTot = ImgMeanConv + ImgMeanCorr + .. (7.4)

ImgStdConv = gradientweight(Conv,std2(Conv)), ImgStdTot = ImgStdConv + ImgStdCorr + .. (7.5)
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Table 7.16: The second criteria for selecting a good cluster

std minDis Class

0 0 take the second class
0 1 take subset from the positions of second class
1 0 probability to happen too low (take the second class)
1 1 take that class

ImgUni2 = ImgUni1 − ImgMeanTot (7.6)

ImgUni3 = ImgUni1 + ImgMeanTot − ImgStdTot (7.7)

The fifth proposed method extracted the optimal values of the calculated image similarity metrics and

registered the moving image to the reference image using the optima of the image similarity metrics as

a reference point. They were clustered using K-means into two classes: one is considered a good cluster

and the other is considered a bad cluster. There are several ways to decide the criteria of a good cluster.

One criterion could be getting the majority vote (denoted as combMat1). This work has been published in

(161; 163). The second criterion could be based on standard deviation and the minimum distance between

the positions of the optima value in the same cluster as shown in Table 7.16 (denoted as combMat2).

The third criterion could be based on six characteristics of the positions to select the optimum value as

illustrated and explained in the upcoming points in Table 7.17 (denoted as combMat3). For those two

tables, one indicates that the values of the second class in any of the following listed parameters are less

than those of the first class, and zero indicates vice versa. For example, the standard deviation between

points (denoted as std in Table 7.16) and the minimum distance (denoted as minDis) are zeroes, which

means that the "std" and "minDis" of the first class is higher. So based on these criteria, the second class

is chosen.

- Standard deviation between points in the same cluster (denoted as std)

- Distance between points in the same cluster

• Minimum distance in the same cluster (denoted as minDis)

• Maximum distance in the same cluster (denoted as maxDis)

• Variance between the distance of points in the same cluster (denoted as variance)

Based on the decision of a good cluster, those detected positions with the best agreement according to

the respective metric were averaged. The combined metric is denoted as combMat1, combMat2, and

combMat3. Based on the available clinical datasets, the most robust image similarity metrics are Conv,

Corr, SSIM, MS-SSIM, RIU, MSE, and ImgUni1.
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Table 7.17: The third criteria for selecting a good cluster

std variance minDis maxDis Class

0 0 0 0 take the second class
0 0 0 1 remove outlier and check again
0 0 1 0 remove outlier and check again
0 0 1 1 take the second class
0 1 0 0 remove outlier and check again
0 1 0 1 remove outlier and check again
0 1 1 0 remove outlier and take that class
0 1 1 1 remove outlier and take that class
1 0 0 0 remove outlier and check again
1 0 0 1 remove outlier and check again
1 0 1 0 remove outlier and take that class
1 0 1 1 remove outlier and take that class
1 1 0 0 take subset from that class
1 1 0 1 take subset from that class
1 1 1 0 take subset from that class
1 1 1 1 take all the points in that class

After evaluation, for those five proposed combinations as shown in Figure 7.72, it was found that the

combined image similarity metrics using K-means clustering for the third criteria results in the least

median error of 20.2mm and the maximum number of cases with an overlap of lesion annotations is

26. For all the other combinations except the subtraction, the number of cases with an overlap of lesion

annotations achieved is 20 while for subtraction, the number achieved is 19.

The proposed image based registration method achieves a median error of 20.2mm for 51 clinical datasets

as shown in Table 7.18 and in Figure 7.73. The lower and the upper quarters are 11.6mm and 39.1mm,

respectively. The minimum and the maximum errors are 1.5mm and 87.5mm, respectively. For such

a high error for the case of 87.5mm, it might need to optimize the combined metrics or select a good

ROI, or even use another enhancement of the image contrast from the proposed ones since this case is

from a Philips machine, of which four cases only were included in the dataset as explained in Section

5.1.4. Due to time constraints and the small number of available cases taken from this machine, this

could be followed up in the future. It would be interesting to optimize the three mentioned blocks. For

the intersection between the two annotations (the yellow color), three metrics (DSC, IoU, and TPR) have

been calculated. It was found that 26 cases out of the 51 cases achieve an intersection as shown in Figure

7.74. The maximum DSC achieved is 0.73 and the maximum IoU achieved is 0.58 in the same case.

Since there is a correlation between the annotation in the full X-ray mammogram and spot mammogram

and both of the annotations are in 2D, the maximum TPR achieved is 0.63 in the same case.
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Figure 7.72: Analysis of TRE of the five proposed combined metrics for the image based registration method of
51 cases received from the Medical University of Vienna.

Table 7.18: Accuracy of image based registration between full X-ray mammography and spot mammograms

Accuracy in mm mean median std min max 75% 25%

TRE 25.6 20.2 18.95 1.5 87.5 39.1 11.6

7.4.5 Correlation with Features of the Breast

The method of the image based registration has been analyzed using seven characteristics that correspond

to the variations in datasets as explained in Chapter 5 to investigate if any subgroups correlate with the

accuracy of the method.

Patient Age

A polynomial fitting curve (first degree) has been used to evaluate how the datasets are distributed com-

pared to the TRE of the image based registration method as shown in Figure 7.81. It was observed that

age has a very weak correlation in the negative direction with the TRE with an r of -0.06 and R2 of 0.003.

Views

The second characteristic, which was investigated, is views of full X-ray mammography.

The views include the variance in the projection angle which may differ in full X-ray and spot mammo-

grams and also in the side of the breast, whether left or right breasts. As explained before in Section

5.1.2, there are twelve combinations for the views for the prone position for spot mammograms and the

same combinations for upright position for spot mammograms. Based on the available datasets, three

combinations for the prone position are dominant. For CC (full X-ray mammograms) and CC (spot

mammograms), there are sixteen patients. For MLO (full X-ray mammograms) and ML (spot mam-

mograms), there are eight patients. For MLO (full X-ray mammograms) and LM (spot mammograms),
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Figure 7.73: Analysis of TRE of the combined metrics for the image based registration method of 51 cases received
from the Medical University of Vienna.

there are fourteen patients. There are six patients in the other classes of views for the prone position (see

Table 7.19). For the views of ML and RL of full X-ray mammography, four patients are included in these

views as shown in Table 7.20. Only three patients are available in the upright position (see Table 7.21).

The inconsistency in the views between full X-ray and spot X-ray might increase the error of registration.

That is because of the variance in the imaging situation between the two modalities. The variance in

projection angle in each imaging situation causes to image the breast tissue from different angles which

can’t be handled using affine or projective transformation due to the lack of missing information that

could be extracted from metadata to apply these transformations. There is likely no conclusive correlation
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Figure 7.74: Distribution of the three evaluation metrics that have been calculated for the intersection between the
actual and the predicted lesion using image based registration. 26 out of 51 cases achieve an intersection between
the two annotations.
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Figure 7.75: An example of registration between X-ray mammography and spot mammogram for the same showed
case in the biomechanical model based registration (Patient ID 40): location of spot mammogram in full X-ray
mammogram (left). Overlap between the lesion that has been annotated by radiologists in the original X-ray (red),
prediction of the position of the lesion using image based registration (green), and overlap between the two lesions
(yellow) (right).
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Figure 7.76: An example of registration between X-ray mammography and spot mammogram for the same showed
case in the biomechanical model based registration (Patient ID 52): location of spot mammogram in full X-ray
mammogram (left). Overlap between the lesion that has been annotated by radiologists in the original X-ray (red),
prediction of the position of the lesion using image based registration (green), and overlap between the two lesions
(yellow) (right).
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Figure 7.77: An example of registration between X-ray mammography and spot mammogram for the same showed
case in the biomechanical model based registration (Patient ID 12): location of spot mammogram in full X-ray
mammogram (left). Overlap between the lesion that has been annotated by radiologists in the original X-ray (red),
prediction of the position of the lesion using image based registration (green), and overlap between the two lesions
(yellow) (right).
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Figure 7.78: An example of registration between X-ray mammography and spot mammogram for the same showed
case in the biomechanical model based registration (Patient ID 7): location of spot mammogram in full X-ray
mammogram (left). Overlap between the lesion that has been annotated by radiologists in the original X-ray
(red), prediction of the position of the lesion using image based registration (green), and overlap between the two
lesions (yellow) (right).

158



7.4 Image Based Registration

Loc. of spot mammo in X-ray Overlap

predicted
ground truth
intersection

Figure 7.79: An example of registration between X-ray mammography and spot mammogram for the same showed
case in the biomechanical model based registration (Patient ID 10): location of spot mammogram in full X-ray
mammogram (left). Overlap between the lesion that has been annotated by radiologists in the original X-ray (red),
prediction of the position of the lesion using image based registration (green), and overlap between the two lesions
(yellow) (right).
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Figure 7.80: An example of registration between X-ray mammography and spot mammogram for the same showed
case in the biomechanical model based registration (Patient ID 56): location of spot mammogram in full X-ray
mammogram (left). Overlap between the lesion that has been annotated by radiologists in the original X-ray (red),
prediction of the position of the lesion using image based registration (green), and overlap between the two lesions
(yellow) (right).
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Figure 7.81: A very weak correlation between the accuracy of the image based registration method and the age of
the patients with an r of -0.06.

because of the very small number of datasets in cases of ML and RL. Hence, for the three dominant views,

boxplots have been used to evaluate the correlation between the accuracy of the method and the views

of the full X-ray mammography as shown in Figure 7.82 (a). It was observed that error across the three

main views differs considerably: CC/CC (sixteen datasets) have a median TRE of 12.6mm, MLO/ML

(eight datasets) have a median TRE of 17.6mm, and MLO/ML (fourteen datasets) have a higher median

TRE of 23.9mm.

In addition, the number of intersections between the two annotations for CC/CC cases is eight cases out

of sixteen cases, as shown in Figure 7.83, while the number of intersections between the two annotations

for MLO/ML cases is four cases out of eight cases, as shown in Figure 7.84. For MLO/LM cases, the

number of intersections between the two annotations is eight cases out of fourteen cases, as shown in

Figure 7.85.

For CC/CC cases, the lower and the upper quarters are 4.7mm and 35.15mm, respectively. While the

minimum and the maximum errors are 1.55mm and 61.99mm, respectively. The reason why one patient

has a high error although, it is a CC and CC case is that the lesion is located at the very back of the breast.

For the intersection between the two annotations as shown in Figure 7.83, the maximum DSC achieved

is 0.73 and the maximum IoU achieved is 0.58, and the maximum TPR achieved is 0.63 in the same case.

For MLO/ML cases, the lower and the upper quarters are 8.6mm and 40.1mm, respectively. While the

minimum and the maximum errors are 3.6mm and 44.6mm, respectively. Two reasons that could cause

such a high error in this case, is that the data is from a "Sectra Imtec AB" device for which only six

datasets in total are available. This machine has a different image contrast than the one that has been

imaged from Siemens. Second, the lesion is located at the very back of the breast. For the intersection
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between the two annotations, as shown in Figure 7.84. The maximum DSC achieved is 0.56 and the

maximum IoU achieved is 0.39 in the same case. The maximum TPR achieved is 0.49.

For MLO/LM cases, the lower and the upper quarters are 16.6mm and 39.6mm, respectively. While the

minimum and the maximum errors are 6.6mm and 67.3mm, respectively. One reason that could cause

such a high error in this case, is that the data is from a "FUJFILM Corporation" device for which only

three datasets in total are available. Hence, due to the limitation of the number of datasets taken from

this machine, it is likely too small for this conclusion. This could be optimized in the future. For the

intersection between the two annotations as shown in Figure 7.85, the maximum DSC achieved is 0.43

and the maximum IoU achieved is 0.27. The maximum TPR achieved is 0.42 in the same case.

It was expected that MLO/LM has a higher error than the other two views since three difference occurs:

imaging situation (one prone and one upright), and variance in projection angle (one MLO and the other

is LM).

After splitting the datasets by projection angle in full and spot mammograms, these three classes of views

were divided into left and right breasts, in which the number of datasets in each class is eight, eight, two,

six, seven, and seven, respectively, as shown in Figure 7.82 (b). For MLO/ML, it is hard to conclude

since one class (left breast) has only two patients. The other two categories are equally divided, but they

are also considered a small dataset on each side. However, it could be assumed that right breasts work

better than left ones.

In conclusion, the accuracy of the image based registration method correlates with the views of full

X-ray mammography and spot mammograms regarding CC/ CC, MLO/ML, and MLO/LM cases and

potentially with the laterality.

Table 7.19: Distribution of six patients (prone - other views) from the Medical University of Vienna regarding
imaging situation for the X-ray guided biopsy

Modality / view X-ray Spot mammogram Patient ID TRE DSC IoU TPR

left CC ML 19 17.15mm 0 0 0
right CC LM 1 17.3mm 0.19 0.1 0.15
right CC LM 14 28.13mm 0.0025 0.0012 0.0022
right MLO CC 29 87.48mm 0 0 0
right MLO CC 51 15.83mm 0 0 0
right MLO CC 56 19.33mm 0.14 0.075 0.14

Table 7.20: Distribution of four patients (prone - left breasts) from the Medical University of Vienna regarding
imaging situation for the X-ray guided biopsy

Modality / view X-ray Spot mammogram Patient ID TRE DSC IoU TPR

left ML ML 41 41.8mm 0 0 0
left ML LM 47 16.4mm 0.1 0.054 0.085
left ML CC 24 43.7mm 0 0 0
left RL ML 54 13.9mm 0.31 0.18 0.32
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Figure 7.82: The three dominant views category: CC/CC, MLO/ML, and MLO/LM for the prone position (a).
Analysis of TRE for the image based registration method regarding these categories by splitting into left (L) and
right (R) breasts (b).
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Figure 7.83: Distribution of the three evaluation metrics for the CC/CC cases that have been calculated for the
intersection between the actual and the predicted lesion using image based registration method. Eight cases out of
sixteen cases achieve an intersection.
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Figure 7.84: Distribution of the three evaluation metrics for the MLO/ML cases that have been calculated for the
intersection between the actual and the predicted lesion using image based registration method. Four cases out of
eight cases achieve an intersection.
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Table 7.21: Distribution of three patients (upright) from the Medical University of Vienna regarding imaging situ-
ation for the X-ray guided biopsy

Modality / view X-ray Spot mammogram Patient ID TRE DSC IoU TPR

left CC LM 26 24.42mm 0 0 0
right CC ML 43 11.41mm 0.034 0.018 0.033
right MLO LM 28 41.51mm 0 0 0
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Figure 7.85: Distribution of the three evaluation metrics for the MLO/LM cases that have been calculated for the
intersection between the actual and the predicted lesion using image based registration method. Eight cases out of
fourteen cases achieve an intersection.

Histopathological Diagnosis

The third characteristic is in terms of the histopathological diagnosis of the breast needle biopsies as ex-

plained in Section 5.2.1. It has been observed that the median TRE is 22.5mm and 24.7mm, respectively,

for B2 and B5a classes as shown in Figure 7.86. In addition, the minimum, maximum, lower quarter,

and upper quarter of both classes, as shown in Table 7.22, are quite comparable. It could be concluded

that there is no correlation with respect to histopathological diagnosis.

Table 7.22: Detailed analysis of boxplots of class B2 and B5a versus the accuracy of the image based registration

min max lower quarter upper quarter

B2 1.5mm 61.9mm 12.6mm 48.9mm
B5a 2.7mm 67.4mm 12.5mm 40.1mm

Breast Density

The breast density of clinical datasets is the fourth characteristic as detailed in Section 5.2.2. A polyno-

mial fitting curve (first degree) has been used to evaluate how the datasets are distributed compared to the
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Figure 7.86: Analysis of TRE for the image based registration method regarding the breast needle biopsies into
categories with no correlation: B2 (15 cases), B3 (5 cases), B5a (21 cases), B5b (9 cases), and B2 and B5b (1
case).

TRE of the image based registration method, as shown in Figure 7.87. It was observed that the glandular

tissue related to the total breast volume and the ratio between glandular and fatty tissues in the breast as

aspects have a very weak correlation with the TRE with an r of -0.16 and -0.16, respectively, and R2 of

0.026 and 0.024, respectively.

Sizes of Breasts and Lesions

The size of breasts and lesions is the fifth characteristic from Section 5.2.3 that has been investigated. A

polynomial fitting curve (first degree) has been used to evaluate how the datasets are distributed compared

to the TRE of the image based registration method, as shown in Figures 7.88 and 7.89.

There is a very weak correlation with an r of 0.08 and -0.04 and with R2 of 0.007 and 0.002 for full

X-ray mammography CC and MLO, respectively, as shown in Figure 7.88. Since spot mammograms are

a subset of the breast, this characteristic is not valid for this modality.

To analyze the impact of the sizes of lesions, a polynomial fitting curve (first degree) has been used to

evaluate how the datasets are distributed compared to the TRE of the image based registration method.

Also, it was observed in Section 5.2.3 that sizes of lesions in full X-ray mammography and spot mam-

mograms are correlating. Hence, it is expected that sizes of lesions either full X-ray mammography or

spot mammograms will have the same behavior in relation to the TRE of the image based registration

method. There is a weak correlation with an r of -0.21, -0.23, and -0.24 and with R2 of 0.045, 0.052,

and 0.059 for full X-ray mammography CC and MLO, and spot mammograms, respectively, as shown

in Figure 7.89.
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Figure 7.87: A very weak correlation between the accuracy of the image based registration method and the distri-
bution of glandular tissue in the breast with an r of -0.16 (left). A very weak correlation between the accuracy
of the image based registration method and the distribution of the ratio between glandular and fatty tissues in the
breast with an r of -0.16 (right).
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Figure 7.88: Relation between the accuracy of the image based registration method and distribution of the breast
sizes in full X-ray mammograms (2D): CC (left) and MLO (right). A very weak correlation is found between the
breast sizes and the TRE with an r of 0.084, and -0.041, respectively.
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Figure 7.89: Relation between the accuracy of the image based registration method and distribution of the lesions
sizes in full X-ray mammograms: CC (first) and MLO (middle) and spot mammograms (last). A weak correlation
is found between the sizes of lesions and the TRE with an r of -0.21, -0.23, and -0.24, respectively.

Location of Lesions

The location of lesions in full X-ray mammography and the spot mammograms is the sixth character-

istic that has been evaluated. Boxplots have been used for finding a correlation between locations of

lesions and the TRE of image based registration. X-ray mammography was split into eight regions. Spot

mammogram has been split into sixteen regions, as explained in Section 5.2.4.

For full X-ray mammography, some regions cannot be considered conclusive results, such as R4 (one

case only) and R5 (five cases) for both views, and R3 (three cases) in case of CC view. It is clear that

lesions at the back of the breast near the muscle in the posterior direction (R1, R2, and R6 in both views)

are harder to register than the lesions at the center of the breast (R7), which achieves the least median of

16.5mm for eight cases in CC view and the median of 15.8mm for four cases in MLO view, as shown in

Figure 7.90 (first and middle).

For spot mammograms, some regions do not have available datasets and some regions, such as R14 and

R15 have only one case. R1 and R5 have two cases, and R3 and R8 have only 3 cases. Hence, it is hard

to get a conclusive observation since the cases located in these regions are likely too small. While R2

though, has also a small number of cases (four cases only), it is expected that median TRE would be high

34mm since the lesions located in this region are at the corners of the spot mammogram. The highest

number of cases belong to R6 (13 cases), in which the median TRE is 17.16mm, as shown in Figure 7.90

(last). Thus, if the guidelines are followed well and the lesion is central in the spot mammogram, then

they are better registered.

7.5 Accumulative Registration of the Two Methods

To evaluate the accuracy of the accumulative registration of the two methods, TRE, TPR, IoU, and DSC,

have been calculated based on the predicted annotation position originating from MRI annotation from

the first method. This was given as an input for the second method (image based registration) to predict
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Figure 7.90: Relation between the location of lesions in full X-ray mammography in both views and spot mam-
mograms and the accuracy of the image based registration method. R7 in both views of full X-ray mammograms
(CC 8 cases (middle)) (MLO 4 cases (last)) is the least median error which corresponds to the area of the center
of the breast.
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Figure 7.91: An example of registration between MRI and spot mammogram for the same showed cases of CC
cases in the two methods of registration (Patient IDs: 40, 52, and 12): predicted lesion area based on the matching
of the annotation in the MRI (red) and ground truth annotation in the spot mammogram (blue). The yellow color
represents the overlap of both.
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Figure 7.92: An example of registration between MRI and spot mammogram for the same showed cases of MLO
cases in the two methods of registration (Patient IDs: 7, 10, and 56): predicted lesion area based on the matching
of the annotation in the MRI (red) and ground truth annotation in the spot mammogram (blue). The yellow color
represents the overlap of both.
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Figure 7.93: Analysis of TRE of the accumulative registration of the two methods (denoted as TotTRE) of 51 cases
received from the Medical University of Vienna. In addition the analysis TRE of each method separately. The
image based registration (denoted as ImgTRE) and biomechanical model based registration method (denoted as
BioTRE).

the position in the spot mammogram image. The predicted position in the spot mammogram based on

the two steps of the registration was compared to the ground truth marked in the spot mammogram in

which it was possible to calculate the total TRE, TPR, IoU, and DSC.

The accumulative registration of the two methods achieves a median error of 35.6mm for 51 clinical

datasets as shown in Figure 7.93. The lower and the upper quarters are 20.7mm and 49.5mm, respec-

tively. The minimum and the maximum errors are 5.7mm and 106.1mm, respectively. For such a high

error for the case of 106.1mm, the error in both methods is high, for the biomechanical model based reg-

istration, TRE is 43.2mm and for the image based registration, TRE is 67.3mm. Hence, the two errors

are added together. For biomechanical model based registration, it is one of the MLO cases which could

need more optimization in rotation angle and position of plates. For image based registration the reason

behind that might be because of the data acquisition of the full X-ray. It is from the device of ’FUJIFILM

Corporation’, in which only three cases are available. The error of the image based registration method

in the other two cases from the same machine is 55.4 and 39.6mm, which are considered high too. In the

future, more datasets are needed to be available from this machine to investigate the proposed methods

and improve the accuracy. For the intersection between the two annotations, DSC, IoU, and TPR have

Table 7.23: Accuracy of accumulative registration of the two methods between MRI and spot mammograms

Accuracy in mm mean median std

Biomechanical 32.9 31.3 18.94
Imagebased 25.6 20.2 18.95
Total 35.9 35.6 20.9
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Distribution of Three Evaluation Metrics

1 4 6 9 10 12 22 23 33 35 36 40 42 45 49 50 52 56

Patient ID

0

0.1

0.2

0.3

0.4

0.5

DSC

IoU

TPR

23 33
0

0.005

0.01

Figure 7.94: Distribution of the three evaluation metrics that have been calculated for the intersection between the
actual and the predicted lesion for the total registration between MRI and spot mammograms. 18 out of 51 cases
achieve an intersection between the two annotations.

been calculated. It is found that 18 cases out of the 51 cases achieve intersection, as shown in Figure

7.94. The maximum DSC achieved is 0.45, the maximum IoU achieved is 0.29, and the maximum TPR

achieved is 0.33 in the same case.

The same six cases that have been visualized in both methods are shown for the accumulative registration

of the two methods in Figure 7.91 and 7.92. One of the cases of MLO (first case), is a good case in both

methods separately: biomechanical model based registration (12mm and has an overlap between the two

annotations) and image based registration (24.6mm and has an overlap between the two annotations).

However when combining the two methods, there is no overlap, and the error achieved is 35.6mm. It

could be concluded even if the methods work well separately, it might not work for the final registra-

tion. Additionally, it could be concluded although the variance in views and image situation was partly

compensated, the accumulative registration of the two methods could be clinically feasible which will be

discussed in the next chapter 8.

7.5.1 Correlation with Features of the Breast

The accumulative registration of the two methods has been analyzed using seven characteristics that

correspond to the variations in datasets as explained in Chapter 5 to investigate if the subgroups correlate

with the accuracy of the method.

Patient Age

A polynomial fitting curve (first degree) has been used to evaluate how the datasets are distributed com-

pared to the total TRE, as shown in Figure 7.95. It was observed that age has a very weak correlation

with the TRE with an r of 0.09 and R2 of 0.008.
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Figure 7.95: A very weak correlation between the accuracy of the accumulative registration of the two methods
and the age of the patients with an r of -0.06.

Views

The second characteristic, which was investigated, is the views of full X-ray mammography that corre-

sponds to the breast in MRI and spot mammograms, as explained in Section 5.1.2.

It was observed that the median total TRE of CC for full mammograms and CC for spot mammograms

(sixteen datasets) is 33.85mm, which is less than both the median TRE of MLO for full mammograms

and ML for spot mammograms (eight datasets, 40.31mm ) and the median TRE of MLO for full mam-

mograms and LM for spot mammograms (14 datasets, 37.21mm). Then, these three classes of views

were divided into left and right breasts, as shown in Figure 7.96 (b).

For the overlap between the two lesions, it has been observed that the CC and CC view for the prone

position for spot mammogram has the highest number of overlapping cases, eight cases out of sixteen, as

shown in Figure 7.98. MLO and ML cases have three overlapping cases out of eight, as shown in Figure

7.99. MLO and LM cases have five overlapping cases out of fourteen, as shown in Figure 7.100.

For all the other remaining views, there are only two datasets that have an overlap between the two

lesions, which is shown in Table 7.24. That is why, the distribution of TRE for each method separately

and the total error is only presented in Figure 7.97, in which it has been realized that TRE for views of

MLO and CC for full X-ray mammography and spot mammogram, respectively are the worst for the

proposed methods.

In conclusion, the total error of the accumulative registration of the two methods correlates with the

views of full X-ray mammography and spot mammograms regarding CC/ CC, MLO/ML, and MLO/LM

cases.
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Figure 7.96: The three dominant views category: CC/CC, MLO/ML, and MLO/LM for the prone position (a).
Analysis of TRE for the accumulative registration of the two methods regarding these categories by splitting into
left (L) and right (R) breasts (b).

Table 7.24: Distribution of the total overlap of the remaining views (Only two patients)

Views Patient ID DSC IoU TPR

CC and LM 1 0.18 0.098 0.10
MLOand CC 56 0.36 0.22 0.37

Histopathological Diagnosis

The third characteristic is in terms of histopathological diagnosis of the breast needle biopsies, as ex-

plained in Section 5.2.1. The highest number of cases belongs to both B2 and B5a classes, in which it

has been observed that median TRE is 38.8mm and 35.62mm, respectively, as shown in Figure 7.101.

It could be concluded that there is no correlation with respect to the breast needle biopsies regarding

histopathological appearance.

Breast Density

The breast density of clinical datasets is the fourth characteristic as detailed in Section 5.2.2. A polyno-

mial fitting curve (first degree) has been used to evaluate how the datasets are distributed compared to

the total TRE, as shown in Figure 7.102. It was observed that both aspects have a very weak correlation

with the TRE with an r of -0.033 and -0.036, respectively, and R2 of 0.0011 and 0.0013, respectively.

Sizes of Breasts and Lesions

The size of breasts and lesions is the fifth characteristic from Section 5.2.3 that has been investigated. A

polynomial fitting curve (first degree) has been used to evaluate how the datasets are distributed compared

to the total TRE, as shown in Figures 7.103 and 7.104.
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Figure 7.97: Distribution of the TRE for the remaining views that have a small number of datasets. The first three
classes are cases of prone position (black dashes) and the last class is the cases of upright position. The first
class belongs to the category of having either CC and ML or CC and ML (denoted as CC/ML or CC/LM) for full
X-ray mammography and spot mammograms, respectively. Similarly, all the next classes are for the same two
modalities. The second class belongs to MLO and CC (denoted as MLO/CC). The third class belongs to ML and
ML or ML and CC or ML and LM or RL and ML (denoted as ML/ML or ML/CC or ML/LM or RL/ML). The
fourth class belongs to CC and ML or CC and LM or MLO and LM (denoted as CC/ML or CC/LM or MLO/LM).
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Figure 7.98: Distribution of the three evaluation metrics for the CC/CC cases that have been calculated for the
intersection between the actual and the predicted lesion using accumulation registration of the two methods. Eight
cases out of sixteen cases achieve an intersection.

There is a very weak correlation with an r of 0.041 and R2 of 0.002 for MR images, as shown in Figure

7.103 (first). There is also a very weak correlation with an r of 0.11 and 0.02 and with R2 of 0.011 and

6.02x10−4 for full X-ray mammography CC and MLO, respectively, as shown in Figure 7.103 (middle

and last).

To analyze the impact of the sizes of lesions, a polynomial fitting curve (first degree) has been used to

evaluate how the datasets are distributed compared to the total TRE. Also, it is observed in Section 5.2.3

that the sizes of lesions in full X-ray mammography and spot mammograms are strongly correlated.

While the sizes of lesions in full X-ray mammogram and MRI intermediately correlate. Hence, it is

expected that sizes of lesions either in MRI or full X-ray mammography or spot mammograms will have

the same behavior in relation to the total TRE. There is a very weak correlation with an r of -0.18, -0.061,

-0.14, and -0.15, and with R2 of 0.032, 0.094, 0.021, and 0.022 for MRI, full X-ray mammography CC

and MLO, and spot mammograms, respectively, as shown in Figure 7.104.
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Figure 7.99: Distribution of the three evaluation metrics for the MLO/ML cases that have been calculated for the
intersection between the actual and the predicted lesion using accumulative registration of the two methods. Four
cases out of eight cases achieve an intersection.
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Figure 7.100: Distribution of the three evaluation metrics for the MLO/LM cases that have been calculated for the
intersection between the actual and the predicted lesion using accumulative registration of the two methods. Eight
cases out of fourteen cases achieve an intersection.
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Figure 7.101: Analysis of the total TRE for the accumulative registration of the two methods regarding the breast
needle biopsies into categories with no correlation: B2 (15 cases), B3 (5 cases), B5a (21 cases), B5b (9 cases),
and B2 and B5b (1 case).

0 10 20 30 40 50 60

PD (%)

0

20

40

60

80

100

120

T
R

E
 i
n
 m

m

All Patients

data

fitted data

0 20 40 60 80 100 120

Ratio of glandular to fatty tissue appearance in the breast (%)

0

20

40

60

80

100

120

T
R

E
 i
n
 m

m

All Patients

data

fitted data

Figure 7.102: A very weak correlation between the accuracy of the accumulative registration of the two methods
and the distribution of glandular tissue in the breast with an r of -0.033 (left). A very weak correlation between the
accuracy of the accumulative registration of the two methods and the distribution of the ratio between glandular
and fatty tissues in the breast with an r of -0.036 (right).
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Figure 7.103: Relation between the accuracy of the accumulative registration of the two methods and distribution
of the breast sizes in MRI (first) and full X-ray mammograms (2D): CC (middle) and MLO (last). A very weak
correlation is found between the breast sizes and the TRE with an r of 0.041, 0.11, and 0.02, respectively.
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Figure 7.104: Relation between the accuracy of the accumulative registration of the two methods and distribution
of the lesions sizes in MRI (first), full X-ray mammograms: CC (second) and MLO (third), and spot mammograms
(fourth). A very weak correlation is found between the sizes of lesions and the TRE with an r of -0.18, -0.061,
-0.14, and -0.15 respectively.
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Figure 7.105: Relation between the location of lesions in MRI (first), full X-ray mammography in both views (sec-
ond and third), and spot mammograms (fourth) and the accuracy of the total TRE of the accumulative registration
of the two methods.
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Location of Lesions

The location of lesions in MRI, full X-ray mammography, and spot mammogram is the sixth charac-

teristic that has been evaluated. Boxplots have been used for finding a correlation between locations of

lesions and the total TRE. MR images were split into twelve regions. X-ray mammograms were split

into eight regions. Spot mammograms were split into sixteen regions as explained in Section 5.2.4.

For MRI, only two cases have annotated lesions in R4 and R7, and three cases have annotated lesions

in R3, R9, and R10. A conclusive observation for these regions is not possible since the cases located

in these regions are likely too small. R5, though, has a small number of cases (four cases only). Nev-

ertheless, it is expected that median TRE would be small because the deformation in this region, which

belongs to the lower inner middle slices, is relatively small compared to other areas. The median TRE

achieved is 21.8mm. The highest number of cases belongs to R11 (11 cases), in which the median TRE

is 35.9mm, as shown in Figure 7.105 (first), and it corresponds to lower outer middle slices. In addition,

R11 in MRI corresponds to R2 in X-ray mammography which achieves a median of 37.2mm in the case

of CC and a median of 27.9mm in the case of MLO.

For full X-ray mammography, some regions cannot be considered conclusive results, such as R4 for both

views (one case only) and R3 (3 cases) in the case of the CC view. Lesions at the back of the breast near

the muscle in the posterior direction (R1 in both views) are harder to register, as shown in Figure 7.105.

For the lesions at the center of the breast (R7), it can be expected to achieve a lower error; however, it

achieves a high error with a median of 40.9mm for CC view and 38.7mm for MLO. It could be concluded

that each method separately works well in this region. It has a negative effect when they are added up

together, as shown in one of the examples in Figures 7.41, 7.78, and 7.92 (first).

For spot mammograms, some regions do not have available datasets, and some regions, such as R14

and R15, have only one case, R1 and R5 have two cases, and R3 and R8 have only three cases. A

conclusive observation is not possible for these cases since they are likely too small. R2, though, has

also a small number of cases (four cases only). Nevertheless, it is expected that the median TRE would

be high 50.9mm because the lesions located in this region are at the corners of the spot mammogram.

The highest number of cases belong to R6 (13 cases), in which the median TRE is 27.43mm, as shown

in Figure 7.52 (last). Thus, if the guidelines are followed well and the lesion is central in the spot

mammogram since it is already a small window, then they are better registered.

7.6 Summary

This chapter presented the results from all the proposed methods. First, there are three approaches to

segment MRI simultaneously for three tissue types: the whole 3D volume as a single object, 2D stacked

volume as multiple objects, and a subset from the volume as a single object. Based on the analysis

in this chapter, the segmentation based on the 3D volume is chosen from the three approaches for all

the subsequent steps in the biomechanical model due to its best accuracy, despite being slower than the
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subset from the volume. It achieves a median of DSC of 0.89, 0.45, and 0.89 for fatty, glandular, and

muscular tissues, respectively compared to a manually annotated ground truth.

Second, another novel algorithm was proposed to speed up the biomechanical model for mimicking

the mammographic compression in case of CC view. The goal was to validate if machine learning

algorithms could replace FEMs for accelerating computation time and keeping the same accuracy. The

three models have been investigated separately but were not yet integrated into the registration process

due to time constraints. However, two out of three models show very promising results. The estimation

of the unloaded state and the compression simulation achieves an average RMSE of 3.4 and 4.7mm,

respectively for XGBoost. While for Att-BLSTM, the average RMSE achieved is 3.0 and 4.9mm for the

unloaded state estimation and the compression simulation, respectively.

Third, the proposed biomechanical model based registration method achieves a median TRE of 31.76mm

for 51 clinical datasets received from the Medical University of Vienna. 22 cases (43.1%) have an overlap

between the two annotations.

Fourth, the proposed image based registration method achieves a median TRE of 20.2mm and the number

of overlapping annotations in 26 datasets (51.0%) of the available data. Based on the predicted annotation

position resulting from the MRI annotation from the biomechanical model based registration, the image

based registration is carried out. By that, it is possible to calculate the accumulative registration of the

two methods. The median total TRE achieved is 35.6mm and 18 cases have an overlap between the two

annotations, which means 35.4% of the available data.

The three registration methods has been analyzed using six characteristics that correspond to the varia-

tions in datasets: age, views, breast needle biopsies in categories, dense breasts, breast sizes, lesion sizes,

and location of lesions. Overall, in the three analyses, the same observation is similar. The methods are

significantly dependent on the views of full X-ray mammograms and spot mammograms and also on

where the lesion is located in the breast. Moreover, the methods are independent of age, breast needle

biopsies, dense breasts, breast sizes, and lesion sizes.
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In this chapter, the aim is to stimulate what would happen if a biopsy needle is inserted at the predicted

position of the lesion based on the proposed methods. The goal is to evaluate if this biopsy needle hits

the actual lesion. Hence, the question, if the methods could be clinically used, will be answered. This

investigation is done by modeling the size and dimensions of the needle that is used at the Medical

University of Vienna. Then, it estimates approximately the area which tissue is biopsied. These areas are

named artificial areas based on the view of the biopsy compression. Then afterward, it evaluates if this

area overlaps with the predicted lesion annotation.

8.1 Dimensions of the Needle

There are several dimensions of needles such as 8, 9, 11, and 14-needle gauges for taking a biopsy using

stereotactic X-ray guidance. From the literature, an analysis has been done to check how much specimen

is enough to be taken during a biopsy based on the size of the needle. It was found that for the needle size

of 9 gauge, 14 specimens are enough (145). This article stated the advantages of a larger size of the needle

which consequently has larger sample volumes which leads to the increasing accuracy of histological

diagnosis (145). Another article presented the difference between dimensions 8 and 11 needle gauges.

It was found that there was no big difference in terms of diagnostic accuracy, rate of complications, and

subjective experience of pain between the 8 and 11-needle gauges. It was recommended that lesions with

a maximum diameter of up to 18mm to be taken using an 8 gauge needle, and those with a maximum

diameter of up to 11mm to be removed with an 11 gauge needle. However, the assumption that a large

tissue volume can be removed using a large needle was only partly correct. The limitation could be

caused by one of these reasons: the size of the lesion if it is close to the skin or surface, the size of the

breast, and the bleeding rate of the patient (69).

Another article showed that a 9-needle gauge was even better than an 11-needle gauge regarding three

points: the average weight of the biopsy specimen, the core length, and the degree of fragmentation (144).

The specimens were extracted by rotating the entire system about its longitudinal axis. Geometrically,

the longitudinal axis of the needle was located concentrically within the device with its tip opening at

the center, the distance was 8mm. The specimens obtained with needle 9 were significantly longer than

the others. The mean length of biopsy cores was 26.6mm. Although the 9 needle gauge showed better

performance than 8 or 11-needle gauges, the removal of specimens from lesions closer to the chest wall

was not good.
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Table 8.1: Dimensions of the needles

Part number length (mm) width (mm)
refer to Figure 8.1

1 1 3.75
2 2 3.75
3 1 3.75
4 1 2.99
5 15 2.99
6 1 2.99
7 0.5 3.75
8 1 3.75
9 0.5 3.75

The proposed method is examined on clinical data using a simulation model for stereotactic guided

biopsy in order to assess the applicability of the clinical application. The purpose of this simulation is

to ascertain the success rate (sampling of the target lesion) when using the model-predicted location to

center a stereotactic guided biopsy. According to radiologists from the Medical University of Vienna,

they employ a 9-gauge vacuum-assisted biopsy equipment. The outer diameter and the inner diameter are

3.75mm and 2.99mm, respectively. The dimensions of the inner details of the needle are shown in Figure

8.1 and Table 8.1. 12 or 24 specimens were typically acquired. An area of the biopsy of approximately

15mm for 12 specimens and 25mm for 24 specimens was estimated.

The position of inserting the needle inside the breast is decided based on the shortest distance to the

surface of the breast. Based on the position of the compression view of the biopsy, the area view differs

from one position to another, as shown in Figure 8.1. There are two shapes for the simulated area

consequently. For the craniocaudal position of inserting the needle, as shown in Figure 8.2 (left), the

area is a circle. The craniocaudal position is applicable for CC, ML, and LM views. The area of the

lateral position of inserting the needle is assumed to be a rectangle, as shown in Figure 8.6 (left). This

position is only applicable for the CC view because the breast will not be slipped like in the cases of

ML and LM views. That is why this approach (lateral position) is only investigated for CC cases (129).

The dimensions of 12 (denoted as small area) and 24 specimens (denoted as large area) are mentioned in

Table 8.2.

The center of gravity of the annotation in the MRI volume is transferred to the spot mammogram and a

circle around this center point mimics the area of excised tissue for CC, ML, and ML cases, as shown in

Figure 8.2 and similarly a rectangle shape only for CC cases, as shown in Figure 8.6.
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4mm 
(1,2,3)

17 mm 
(4,5,6)

2 mm 
(7,8,9)

1
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7
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9

Rectangle of 20 (l) x 10 (w) mm  
in case of lateral view

Circle of 15 mm diameter 
in case of craniocaudal view

Figure 8.1: The dimensions of the needle. Each part is numbered from 1 to 9 and the dimensions of each part are
stated in Table 8.1 based on literature for needle gauges of size 9. Additionally, the dimensions of the artificial
areas are given: rectangle in case of lateral view and circle in case of craniocaudal view are estimated by expert
radiologists to verify the applicability of clinical use.

Table 8.2: Dimensions of the simulated needle

Simulated Needle shape 12 specimen 24 specimens

Craniocaudal (circle) 15mm diameter 25mm diameter
Lateral (rectangle) 20×10 mm 30×20 mm

8.1.1 Craniocaudal Approach

Small Area

For a craniocaudal approach of 12 specimens, it is found that eleven patients could be clinically used,

which is 21.6% of the available data. All of them are from the prone imaging situation of stereotactically

guided biopsy. Different views are included as shown in Table 8.3 which could be considered a positive

property since the proposed method could work on a variety of views.

Big Area

For a craniocaudal view of 24 specimens, it is found that more patients could be clinically used. In this

case, fourteen patients could be used which is 27.5% of the available data. All of them are from the prone

imaging situation of stereotically guided biopsy as well as shown in Table 8.4.
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Figure 8.2: The shortest distance to the surface for the craniocaudal approach (left). The artificial area in this case
is a circle based on the COG of the predicted annotation of MRI (right).
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Figure 8.3: Predicted area (red) which a vacuum biopsy would cover if the biopsy was performed around the
predicted lesion position in the spot mammogram (+ sign) in cranio-caudal direction and tissue will be excised in
an area of 15mm diameter (left) and in lateral direction and tissue will be excised in an area of 20×10 mm (right).
Blue represents the annotation of the lesion area in the spot mammogram, and yellow represents the overlap of
both. In this case, a part of the lesion would be included in the specimens taken during X-ray guided biopsy and
thus the biopsy could be considered successful.

Table 8.3: Distribution of the eleven patients with an overlap of the predicted biopsied area of 15mm diameter for
the craniocaudal view in views category

Views CC + CC MLO + ML MLO + LM CC + ML CC + LM MLO + CC

No. of Patients 4 2 2 1 1 1
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Figure 8.4: Distribution of the three evaluation metrics for the small area of craniocaudal view of 15mm diameter
applied. Eleven patients could be clinically used by this artificial area.
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Figure 8.5: Distribution of the three evaluation metrics for the big area of craniocaudal view of 25mm diameter
applied. Fourteen patients could be clinically used by this artificial area.

Table 8.4: Distribution of the fourteen patients with an overlap of the predicted biopsied area of 25mm diameter
for the craniocaudal view in views category

Views CC + CC MLO + ML MLO + LM CC + ML CC + LM MLO + CC

No. of Patients 7 2 2 1 1 1
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Figure 8.6: The shortest distance to the surface for the lateral approach (left). The artificial area in this case is a
rectangle based on the COG of the predicted annotation of MRI (right).

Table 8.5: Distribution of the six patients with an overlap of the predicted biopsied area of 20× 10 mm for the
lateral view in views category

Views CC + CC MLO + CC

No. of Patients 5 1

8.1.2 Lateral Approach

Small Area

For a lateral approach of 12 specimens, it is found that six patients could be clinically used which is 30%

of the available data. All of them are from the prone imaging situation of stereotically guided biopsy.

Different views are included as shown in Table 8.5 which could be considered a positive property since

the proposed method could work on a variety of views.

Big Area

Similarly, a lateral approach of 24 specimens is only investigated for CC cases. It is found that more

patients could be clinically used. In this case, eight patients could be used which is 40% of the available

data. Similarly, all of them are from the prone imaging situation of stereotically guided biopsy and

include different views as shown in Table 8.6.

Two examples have been visualized for the cranial-caudal approach and lateral approach for small and

big areas, as shown in Figures 8.3 and 8.7. In the first example, based on the evaluation presented in the

results, there is overlap already in the two methods separately, and in the accumulative registration of the
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Figure 8.7: Predicted area (red) which a vacuum biopsy would cover if the biopsy was performed around the
predicted lesion position in the spot mammogram (+ sign) in cranio-caudal direction and tissue will be excised in
an area of 25mm diameter (left) and in lateral direction and tissue will be excised in an area of 30×20 mm (right).
Blue represents the annotation of the lesion area in the spot mammogram, and yellow represents the overlap of
both. In this case, a part of the lesion would be included in the specimens taken during X-ray guided biopsy and
thus the biopsy could be considered successful.
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Figure 8.8: Distribution of the three evaluation metrics for the small area of lateral view of 20× 10 mm applied.
Six patients could be clinically used by this artificial area

two methods. There is also an overlap based on the clinical evaluation. In the second example, there is

only overlap based on the clinical evaluation. Both of them are considered clinically applicable.

8.1.3 Summary

In conclusion, although 18 patients have a total overlap as shown in Section 7.5 and 17 patients have a

total TRE of less than 25mm, the proposed methods could be clinically applicable for fourteen patients

in total. In other words, the results have clinical relevance for fourteen patients, i.e. biopsy would be

successful. From the 18 patients with an overlap annotation, 12 patients could be clinically applicable

and from 17 patients with a TRE less than 25mm, 14 patients could be clinically applicable. One reason

might be because the artificial area is centered around the center of gravity of annotation of MRI which

might be deviated from the actual annotation because it is a free hand shape, which might be irregular.
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Table 8.6: Distribution of the eight patients with an overlap of the predicted biopsied area of 30× 20 mm for the
lateral view in views category

Views CC + CC MLO + CC

No. of Patients 7 1
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Figure 8.9: Distribution of the three evaluation metrics for the big area of lateral view of 30×20 mm applied. Eight
patients could be clinically used by this artificial area

One way to improve and avoid this type of problem, instead of selecting COG, selecting a target position

based on the lesion shape would be better.
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An image registration method between MRI, full X-ray mammograms, and spot mammograms for X-

ray-guided stereotactic breast biopsy has been presented in this thesis. The aim is that lesions only seen

in MRI can have a widely accessible, affordable lesion workup with X-ray-guided biopsies. Compared to

literature, aligning MRI volumes with spot mammograms has not been implemented before. The method

is based on two registration steps: a biomechanical model based registration between MRI and full X-ray

mammograms followed by an image based registration between full X-ray and spot mammograms.

The biomechanical model based registration originates from an earlier work presented by Ruiter; Hopp

(156; 76). It estimates a breast configuration relative to its shape in X-ray mammography using a patient-

specific breast geometry that was imaged using MRI in 3D. A biomechanical model simulates the defor-

mation applied virtually to the MRI to take into consideration non-linear deformation and the behavior

of incompressible tissue throughout the deformation process for the breast. Two main blocks in this

method have been developed in this thesis using machine learning algorithms, which are segmentation

and deformation simulation. In order to transfer the lesion position from the full X-ray mammography

to the spot mammogram, which is obtained during X-ray-guided biopsy, an image based registration has

been developed and evaluated.

9.1 Discussion and Outlook

9.1.1 Biomechanical Model Based Registration

The proposed biomechanical model based registration method achieves a median TRE of 31.8mm for

51 clinical datasets received from the Medical University of Vienna. It is found that 22 cases, which is

approximately 43.1%, have an overlap between the two annotations of lesions in both modalities. These

annotations serve as landmarks for evaluation. Compared to literature in Table 3.4, the error is larger.

High errors such as 85.9mm in Figure 7.30 are more probably for MLO cases than for CC cases. One

possible reason is that MLO X-ray mammograms tend to vary considerably more with respect to the

rotation angle of the muscle around the longitudinal axis in the transverse plane and rotation around the

sagittal axis in the frontal plane for applying compression. Additionally, inaccurate segmentation might

add to the error. A novel approach based on unsupervised NNs was proposed for this reason but did not

improve for this particular case. Optimizing parameters like rotation angles and compression thickness

could be a solution to decrease the error for one patient (78), but this will increase the computation time to

two or three days. Hence, a novel approach to replace FEM was proposed. It makes use of deep learning
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and machine learning algorithms. It enables the deformation simulation of X-ray mammography in a

couple of seconds. Further work can apply this method in the registration process.

To generalize robustness and accelerate computing time, two main processing blocks in the biomechani-

cal model based registration have been researched. The two main blocks are segmentation and deforma-

tion simulation.

Segmentation

A novel automatic method has been proposed using unsupervised NNs for segmenting three tissue types:

fatty, glandular, and muscular tissues. Compared to literature in Table 7.3, it is the first time to classify

three tissues simultaneously. This method was initially developed for the T2-weighted MRI series. One

of the challenges was that 30% of the available datasets do not have this series included. Therefore,

the proposed method has been improved in the postprocessing to also function for T1-weighted MRI.

This thesis proposes three approaches for training the model: the full 3D volume as a single object,

2D stacked volume as multiple objects, and a subset from the volume as a single object while adapting

the same trained parameters to the whole volume. The segmentation of full 3D volume is chosen from

the three approaches for all the subsequent steps in the biomechanical model due to the best achieved

accuracy and despite being slower than the segmentation of the subset from the volume.

The proposed method shows very promising results with a mean DSC of 0.87, 0.45, and 0.88 for fatty,

glandular, and muscular tissues, respectively. While the segmentation of fatty and muscular tissues

performs similarly to values found in the literature as shown in Table 7.3, the mean DSC for glandular

tissue is noticeably lower. The reason for this might be partially attributed to a statistical impact, as

errors are overemphasized in this class due to the lower number of voxels. Furthermore, the ground truth

segmentation misses tiny details of glandular structures, which are partially segmented with the proposed

method which is considered a positive sign property. As a consequence, this may result in a lower

DSC score, despite really producing excellent results. In contrast to a patient’s X-ray mammography,

the concordance between the glandular structures identified by the segmentation was demonstrated, as

shown in Figure 9.1. Unsupervised learning will enable us to segment a breast MRI, without the need

for labeled training data. As a result, it serves as a fundamental, reliable tool for the automatic creation

of biomechanical models unique to each patient.

One of the limitations of the segmentation algorithm is that the datasets have only been tested quantita-

tively only for T2-weighted MR images. In the future, the database of labeled datasets could be increased

for more quantitative validation of the method. The method could be extended for more different MRI

series to generalize robustness. Interestingly, the segmentation of a subset from the volume is from the

computational point of view 45 times faster than the segmentation of the full 3D volume though the

accuracy is slightly lower e.g. for fatty tissue, mean DSC is 0.82 instead of 0.87. In the future, it would

be interesting to investigate a broader range of slice numbers from the subset of volume, including e.g.
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X-ray image Synthetic X-ray image

Figure 9.1: An example showing how segmentation using NNs will help in creating the deformed MR image from
the biomechanical model: X-ray image (left) and synthetic X-ray (deformed MRI) (right) (162).

three, five, and ten slices, rather than just one slice, and compare the results to the segmentation of the

full 3D volume.

Machine Learning Algorithms for Simulation of Biomechanical Model Deformation

In this thesis, estimation of the unloaded state from a gravity-loaded MRI and execution of a mammo-

graphic breast compression based on two machine learning algorithms (ERT and XGBoost), and one

deep learning algorithm (Att-BLSTM) has been proposed as a novel method. In the literature, machine

learning algorithms have not been implemented to simulate the unloaded state. Furthermore, this makes

a significant contribution by testing the machine learning based deformation simulation with realistic

compression ratios and a large number of clinical datasets, covering a variety of breast shapes from daily

clinical practice. The estimation of the unloaded state step and the compression simulation step using

the proposed method both exhibit highly encouraging results with an average RMSE of 3.4 and 4.7mm,

respectively for XGBoost. For the machine learning based simulation of the mammographic compres-

sion, the investigation of the correlation between error and compression ratio leads us to the conclusion

that the XGBoost and Att-BLSTM models are stable up to a compression ratio of approximately 53%

with 5.8mm. The model was tested up to a 76% compression ratio. In comparison to literature where

the compression ratio was only 20% as shown in Table 7.7, the proposed models are significantly better

for the usually applied compression ratios in clinical practice. The normal range of compression ratios

is from 50 to 65% (see Appendix B.3). Additionally, it has been shown that there is no dependence on

breast volume, which is a positive sign since it is typical for large breasts to distort significantly when

compressed for mammography. To replace FEM simulations that describe the deformation of the breast
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during mammographic compression in the image registration could be a significant step. This would

result in a huge time reduction, from almost 20 minutes to only 5 seconds which equals a speedup of

240 and makes the computation time clinically more relevant. Furthermore, it will give rise to the op-

portunity to greatly expand the optimization space for biomechanically informed image registration, as

some image registration techniques, such as those in (77), need an optimization of some variables like

rotation angle around body axes, compression thickness, and Young’s moduli of various tissues. The

optimization of parameters in such a high dimensional space requires iterative execution of the biome-

chanical simulation. With the help of machine learning and deep learning models, it is possible to test

out many rotations, compression thicknesses, and Young’s moduli in a matter of seconds now, potentially

increasing the registration accuracy dramatically.

There are several restrictions on the models, despite the fact that the proposed machine learning algo-

rithms produced promising results. The proposed deep learning and machine learning models have, in

general, been trained on a specific biomechanical model. Although this model is rather complex and has

undergone testing in clinical use cases, it is evident that the machine learning model cannot be broadly

applied to significant modifications in the biomechanical model. A certain resolution of the finite element

mesh, for instance, was used to train the model. Results may vary depending on whether the deforma-

tion is predicted for finer or coarser meshes. Furthermore, meshes that do not meet specific quality

requirements as they are, for example, evaluated by ABAQUS, may produce varied outcomes. Similar

restrictions have been applied to training and testing for the material properties of tissues, where constant

values from the literature have been employed. In order to improve generalization for other FEM use

cases, these material attributes could be introduced to the model in the future as a free parameter. In order

to prevent overfitting issues, a cross-validation analysis was done on a total of more than 500 cases. The

patient cohort contained breasts of various shapes and sizes obtained from clinical routines and images

taken at two different clinical sites. It must be taken into account that the machine learning and deep

learning models have been trained for the realistic compression applied to the specific patient during

X-ray mammography, so the overall number of cases with a high compression ratio of more than 65 is

14.5% in the available patient cohort. At very high compression ratios of more than 65%, this might have

caused the error to grow exponentially. It would be intriguing to extend the datasets that have a higher

compression ratio in the future. In order to enhance statistics and generalization, the suggested strategy

might also be evaluated with more unknown datasets in the future. For optimizing the hyperparameters

and examining various loss functions for the three models, extra trials such as a mesh grid search could

be added. A breast mesh evaluation rather than a nodal evaluation is another possibility. Currently, the

proposed method is not integrated into the registration method due to time constraints. However, it will

be advantageous to incorporate it in the future, reducing registration time by a factor of 240.
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9.1.2 Image Based Registration

Image based registration between full X-ray mammography and spot mammograms has not been pre-

sented in literature. The proposed image based registration method achieves a median TRE of 20.2mm,

and annotated landmarks overlapped in 26 datasets, which is 50.1% of the total datasets available at this

time.

While the median error of image based registration is already relevant for clinical application and could

be feasible to be used in clinical use, more research for potential improvements of the case, e.g. with large

errors, is needed. More optimal parameters, such as the number of iterations or restricting the search of

the ROI to anatomically plausible regions, may improve such outliers. In addition, more research in com-

bining image similarity metrics may be added. Moreover, another image contrast enhancement method

from the proposed ones could be used since the cases that have high errors are from a Philips device,

of which only four cases were included in the available dataset. Thus, increasing and diversifying the

datasets would be very helpful for validating the optimization. Also, it would be interesting to consider

the deformation state of the two images using affine transformation or more complex registration meth-

ods. One limitation is that this method only allows rigid transformation which simplifies the problem in a

less complex way. Three main parameters have been neglected: the different repositioning of the patient,

the difference in the gravity forces applied, and the difference in the projection angle. In the future, more

information about these parameters could be collected to explore other transformations.

9.1.3 Accumulative Registration of the Two Methods

Based on the predicted annotation position resulting from the MRI annotation from the biomechanical

model based registration, the position of the lesion in the spot mammography was predicted. The median

total TRE achieved is 35.6mm and 18 cases have an overlap between the annotated landmarks, which

means 35.4% of the available data. The presented methods provide the ability to use X-ray-guided biopsy

instead of MRI-guided interventions for those cases. There is still a large error in some clinical datasets,

which could be investigated in the future. One reason for these large errors is that the errors of the

two methods separately are likely added up when concatenating the registration results, although each

method separately works well.

One way to solve this is to allow the image based registration to use information from the biomechanical

model based registration. The ROI in image based registration might be selected based on the predicted

lesion position from the biomechanical model based registration (see the appendix in section B.2). A

window of 7.5×7.5 cm around the predicted lesion has been selected to apply image based registration.

This method has been tested until now for three patients which initially had a high TRE and it provides

initially promising results with a median TRE of 21.9mm instead of 56.2mm. One disadvantage of

this method is that it depends on the biomechanical model based registration. Hence, if biomechanical

model based registration does not work, then the accumulative registration of methods will not work as
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well. Enhancing the number of overlaps between annotations in each method individually, is necessary

for cases with large errors, as this evaluation demonstrates greater reliability on this metric than solely

assessing TRE.

In the beginning, it was mentioned that the registration between MRI and spot mammograms could

be done using three possible approaches. There are five parameters that have a huge impact on the

three approaches: the number of modalities used, the resolution of the modalities, dependency of errors,

accuracy, and computation time needed.

The presented methods used two steps of registration involving three modalities. It mostly overcomes the

restriction to different resolutions in each modality. The error of the second registration method does not

depend on the error of the first registration method. Thus, the two individual registration methods, are

not dependent. They could work separately. High errors are however possible since the errors are added

up as shown in one of the examples in Section 7.5. In terms of computation time, around 30 minutes in

total are required using a fixed parameter set.

The requirement to obtain the patient’s full mammogram is one disadvantage of this method. While

this is typically available because the majority of patients who undergo MRI have recently undergone

a screening or diagnostic mammogram, or a mammogram is acquired prior to X-ray guided biopsy for

planning purposes, it could potentially be avoided in case of lesions only available in MRI, such as lesions

detected in young, high-risk women undergoing MRI screening only. This could be accomplished with

the next two approaches.

The second approach of registration consists of two steps, involving two modalities. First, a biomechan-

ical model based registration is used for creating a projection of the deformed MRI, which should be

similar to full X-ray mammogram. This is then followed by image based registration between projection

of the deformed MRI and the spot mammogram. The proposed segmentation method using NNs, shows

that the tiny structure of glandular and fatty tissues are similar in the full X-ray mammogram and the pro-

jection of the deformed MRI, as shown in Figure 9.1. The proposed deformation simulation of the breast

using machine learning methods could also be integrated into the biomechanical registration method to

create the projection of the deformed MRI. The proposed image based registration in this thesis could

also be used to register between the synthetic X-ray and spot mammograms. Hence, all the methods are

available to investigate this approach in the future. In terms of the five parameters mentioned, it would be

similar to the first approach regarding dependency of errors, expected accuracy, and computation time.

One advantage is that the number of modalities involved in the registration process has been reduced

to two. One limiting factor might be the low resolution of the MRI which may affect the image based

registration because it will be applied based on the synthetic X-ray mammogram, not the original X-ray

mammogram.

The third approach of registration consists of one step, involving two modalities. A simulation of artificial

spot mammograms from MRI datasets was initially developed to align them with real spot mammograms

directly. Based on this proposed biomechanical model, the artificial spot mammography could be con-
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Spot mammogram Synthetic spot mammogram

Figure 9.2: An example showing how a synthetic spot mammogram is created from the biomechanical model (left):
spot mammogram (middle) and synthetic spot mammogram (right).

structed by simulating the prone patient or upright positioning on a biopsy table with small compression

paddles used for stereotactic biopsy. Similarly, synthetic spot mammograms using a ray-casting algo-

rithm could be produced. One of the challenges in this approach is that the compression plate has to

be positioned on the breast surface so that the artificial spot mammogram shows the lesion visible in

the MRI volume as centrally as possible. An iterative search, which would require up to three hours, is

needed. Preliminary results have been achieved with an average TRE of 6mm for eight cases. Despite,

the promising results the following challenges need to be resolved in the future: the lesion’s location on

the actual spot mammography heavily influences the approach. It is yet unknown, however, if actual spot

mammograms can be obtained at the correct anatomical position without the planning based on the full

X-ray mammography, which is standard procedure. The iterative search approach for the location of the

plates in the simulation can offer general guidelines for positioning the plates clinically, and it may be

tested in the future. One drawback of this approach is that this method might fail when breast structures

are not visible due to low or extremely high breast densities, or because inner breast structures could not

be distinguished due to the low resolution of MR images in the artificial spot mammograms. Regarding

the five parameters, the number of modalities used is two, the method will be dependent on the resolution

and contrast of inner structures of the breast, as shown in Figure 9.2, and there will be no dependency

of errors since it is only one method. The accuracy shows promising results but needs to be tested in the

future with more datasets. One drawback is that it currently requires around three hours to compute. In

future, using the proposed machine learning algorithm to replace this proposed biomechanical model of

simulating artificial spot mammograms from MRI might be helpful for this reason.

In conclusion, the two-step matching method is used currently since it offers more reliable performance

and would diverge less from the standard clinical workflow.

193



9 Discussion, Conclusions, and Outlook

9.1.4 General Limitations

Each method separately has been analyzed using seven characteristics that correspond to the variations

in datasets: age, views, histopathology, density of breasts, breast sizes, lesion sizes, and location of

lesions. The accumulative registration of the two methods has been analyzed using the same seven

characteristics to investigate if the subgroups correlate with the method’s accuracy. Overall, in the three

analyses, the observations are similar. The methods are significantly dependent on the views of the full

X-ray mammograms and spot mammograms and also on where the lesion is located in the breast. Some

limitations are that the method is working better with CC views and with the location of lesions in the

center of the breast. The methods are however independent of age, histopathology, breast density, breast

sizes, and lesion sizes. This is considered a positive property since the method can be applied to a lot

of variances in the characteristics of the patients and pathologies, e.g. also with dense breasts, which

are usually hard to register in case of the biomechanical model based registration and easier to register

in case of image based registration. For the compression simulation in the biomechanical model, dense

breasts are hard to register due to more non-linear deformation and the heterogeneity of the tissues.

However, dense breasts are easier to register in the image based registration due to the clearly defined

inner structure of glandular tissue which makes it easier to be identified using image similarity.

One of the general limitations of the proposed method is that it has been tested on the available datasets,

which is considered a small one of only 51 patients. Though there is already a lot of variance in the

datasets. In the future, it would be interesting to test it on a larger number of datasets.

Currently, the proposed methods transfer the lesions from MRI (3D) to spot mammograms (2D), it

would be interesting to enhance the methods for tomosynthesis-guided biopsy (3D) to eliminate the

projection to 2D, opting instead for a direct transition from 3D to 3D. In tomosynthesis-guided biopsy,

some limitations may be overcome by this, such as the breast being too thin and the target abnormality

being located directly behind the nipple or near the chest wall. In the future, it would be intriguing to test

tomosynthesis-guided biopsy instead, since there has been already research done for registering between

MRI and tomosynthesis images by Smole et al. (176). Additionally, Rochat et al. (149) concluded that

tomosynthesis-guided biopsy could be better than stereotactically-guided biopsy.

Another general limitation is that the available datasets only contained cases with lesions visible in all

modalities. While not being used for registration explicitly, a clinical use case would be different since

the purpose is to apply this method for patients with lesions not visible in X-ray mammography and spot

mammograms. It remains to be investigated if the proposed methods are affected by that, for example in

solving the image based registration.

9.1.5 Applicability for Clinical Use

In order to determine whether the proposed procedure could be applied clinically, it was tested on clinical

data using a simulation model for stereotactic guided biopsy. This simulation was done to evaluate
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the success rate when a stereotactic guided biopsy was centered using the model’s projected location.

In order to simulate a needle, radiologists mentioned to have used a 9-gauge vacuum-assisted biopsy

equipment to collect 12 or 24 specimens. For 12 specimens and 24 specimens, the estimated area of

the biopsy was 15mm and 25mm, respectively. This is considered a limitation since these dimensions

originate from personal communication with two experienced radiologists. They are estimating these

dimensions using the particular needle used in practice at the Medical University of Vienna. Based on

this analysis, 11 and 14 datasets could be clinically used if 12 respectively 24 specimens are taken during

the biopsy. The methods thereby show the feasibility of clinical use especially for cases of lesions located

centrally in the breast and the views of CC and CC for full X-ray mammography and spot mammograms,

respectively.

9.2 Conclusion and Contributions

One of the biggest barriers to a wider use of CE-MRI in clinical practice is the lack of MRI-guided

breast interventions (96). The developed methods provide the ability to transfer lesions found by MRI

to spot mammography, or close-up stereotactic biopsy, which is utilized for X-ray guided biopsy, in

order to make a low-cost and broadly accessible lesion workup with X-ray-guided biopsy possible for

lesions only seen in MRI. It is a novel approach for the clinical workflow, by matching MRI and spot

mammograms. Having such a method would increase the probability of detecting lesions, reduce the

costs by an estimated 50%, decrease the time needed for taking a biopsy by approximately 67% from

90 minutes (for MRI-guided biopsy) to 30 minutes (for X-ray guided biopsy), and solve the issue of

shortage of MRI guided breast interventions.

The following points summarize the main contributions of this thesis:

- A novel method for segmenting MR images was developed and tested on clinical cases

- A novel method for replacing FEM using machine learning algorithms was investigated with a

large number of datasets and clinically realistic deformations

- For the first time, an image based registration between full X-ray and spot mammograms was

developed and tested with clinical data

- Accumulative registration between MRI and spot mammograms was explored, which allows a

novel clinical workflow and evaluation of the applicability of clinical use
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B.1 Interpolation

Interpolation is needed for two purposes. First, MRI data is not isotropic when received from the Medi-

cal University of Vienna to save time during data acquisition. Hence, MRI has a small number of slices

and that is why interpolation is required. Interpolation is needed for the original data of MRI and the

segmented data of MRI. Upsampling increases the number of sampling points. While downsampling,

the resolution is reduced. For example, if there are two images, A (high resolution) and B (low reso-

lution) whose resolutions are to be adjusted to each other, downsampling produces fewer artifacts than

upsampling due to the higher density of the existing data points. Upsampling artifacts can be huge due

to the large gaps and missing information where interpolation is required.

It has been tested to apply linear interpolation (classical interpolation) before applying segmentation al-

gorithms. However, it was observed that it negatively affects the quality of segmentation due to missing

information and the big gap between slices. To avoid this issue, interpolation was applied after segment-

ing MRI data using morphological merge (26) (see equation B.1).

C = [(As)((AB)s)](AB)(26) (B.1)

The main difference between the classical interpolation and this morphological method is that classical

interpolation sticks to an intensity range and the interpolation is done by keeping the overall variation

of this range. The morphological merge method is based on binary interpolation. It is applied to each

tissue separately and between slices, in which it is repeated as many times as necessary to obtain the

right number of slices.

For example as in equation B.1, A and B are considered two original slices, S is a morphological object

of small size, and C is considered to be the interpolated slice. The required number of slices is computed

based on the number of slices that exist in the original data using this equation

α = Nz ∗
Z
X

(B.2)

where α and Nz are the number of slices after interpolation and before interpolation, respectively. Z and

X are the resolutions of each coordinate.

Second, the annotation of the MRI segmentation, which serves as ground truths, was performed based

on the T2-weighted images. The T1-weighted images have a lower physical resolution, i.e. the centers
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of the pixels of the two images have different distances. If the number of sampling points of an image

object is smaller while the object size remains the same, this results in a smaller number of voxels, i.e. a

smaller volume. Accordingly, the resolutions must be adapted to each other in order to be able to make

an accurate comparison using the DSC. This can be done either by downsampling the ground truth or

upsampling the T1-weighted images.

B.2 Select ROI Using Window 7.5 x 7.5

The proposed algorithm here instead of taking the full view of the X-mammogram, only takes a small part

7.5×7.5 cm or 10×10 cm of it based on the predicted lesion from the biomechanical model registration.

It will not only cause a speeding up for image based registration, but it will also affect the TRE of image

based registration as it is concentrated on a region of interest. This method has been tested for three cases

as shown in table B.1. It has been realized that some T REImagebased which were 71.5mm decreased to

21.9mm. One drawback is if the biomechanical registration did not work, then as consequence, image

based registration will not work as well.

Table B.1: Comparison between the results of full size and window 7.5× 7.5 of three patients for image based
registration

Window P1 P2 P3

Full size 14.9mm 56.2mm 71.5mm
W 7.5X7.5 cm 12.7mm 34.68mm 21.9mm

B.3 Distribution of Patients Regarding Compression Ratio

This figure shows the distribution of the available datasets that have been tested using machine learning

algorithms relative to the compression ratio read from the metadata. The normal range from 50% to 65%

compression ratio, as shown in Figure B.1. Only 33% out of the total patients have a compression ratio

up to 53%.

Table B.2: Accumulative registration using window 7.5×7.5 of the same three patients

TRE/mm P1 P2 P3

Biomechanical 6.10 35.7 24.6
Imagebased (W 7.5x7.5) 12.7 34.68 21.9
Total 15.5 13.7 4.48
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Figure B.1: Histogram of patients regarding the compression ratio read from the metadata for 516 patients that
have been tested using machine learning algorithms for the compression step.

B.4 More Details about Data Characteristics as in Chapter 5

B.4.1 Resolution

The figures B.2, B.3, and B.4 have been sorted based on the minimum resolution available regarding

MRI images in x and y coordinates denoted as resMRIx,y and showing the spacing between slices which

are denoted as resMRIz and the variance of resolutions of the other modalities: full X-ray mammogram

denoted as resX-ray and spot mammogram denoted as resSpot that have been used in the registration

methods for the same dataset.
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Figure B.2: Combination of resolution of the three modalities: MRI, full X-ray mammogram, and spot mammo-
grams of the available T2- weighted MRI images in the clinical datasets received from the Medical University
of Vienna. The green bar indicates the resolution of the MRI modality in the x and y directions. The red bar
indicates the resolution of the MRI modality in the z direction. The blue bar indicates the resolution of full X-ray
mammograms. The yellow bar indicates the resolution of the spot mammogram.
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FL3D - Weigthed MRI Images
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Figure B.3: Combination of resolution of the three modalities: MRI, full X-ray mammogram, and spot mammo-
grams of the available FL3D - weighted MRI images in the clinical datasets received from the Medical University
of Vienna. The green bar indicates the resolution of the MRI modality in the x and y directions. The red bar
indicates the resolution of the MRI modality in the z direction. The blue bar indicates the resolution of full X-ray
mammograms. The yellow bar indicates the resolution of the spot mammogram.
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Figure B.4: Combination of resolution of the three modalities: MRI, full X-ray mammogram, and spot mammo-
grams of the available T1 - weighted MRI images in the clinical datasets received from the Medical University
of Vienna. The green bar indicates the resolution of the MRI modality in the x and y directions. The red bar
indicates the resolution of the MRI modality in the z direction. The blue bar indicates the resolution of full X-ray
mammograms. The yellow bar indicates the resolution of the spot mammogram.
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Among women, breast cancer is the most prevalent cancer type. 24.5% out of the total number 
of cancer cases were diagnosed as breast cancer worldwide in 2020. While digital mammography 
plays a crucial role in the early diagnosis of breast cancer, many tumors are not detectable in 
mammography, for instance, in women with dense breast tissue. Lesions that are not evident on 
mammography can frequently be found with contrast-enhanced magnetic resonance imaging 
(CE-MRI). MRI-guided biopsy must be used to further evaluate suspicious lesions. However, 
MRI-guided biopsy is costly, time-consuming, and not universally accessible. This work pro-
poses a novel method for a matching tool between MRI and spot mammograms. The goal is 
to enable X-ray guided biopsy when the lesion is only visible in MRI by transferring its location 
onto mammographic spot projections. Two registration methods are used: a biomechanical 
model based registration between MRI and full X-ray mammograms, followed by an image 
based registration between full and spot mammograms. A virtual deformation of the breast 
relative to the deformation of X-ray mammography is estimated using a patient-specific breast 
geometry of 3D MRI. To generalize robustness and accelerate the workflow, two novel methods 
have been developed and evaluated: segmentation of breast MRI tissue using unsupervised 
learning and simulation of the mechanical response of breast tissue under mammographic 
compression using machine learning. The image based registration method entails three 
steps: preprocessing, identifying a region of interest (ROI) from the full X-ray mammogram, 
and then applying image similarity metrics between the ROI and the spot mammogram while 
sliding the spot mammogram incrementally over the ROI. To robustify the proposed method, 
multiple image similarity metrics are combined and clustered using K-means. The proposed 
methods have been tested using 51 patients from the Medical University of Vienna. The first 
and second registration methods achieved a median target registration error (TRE) of 31.8mm 
and 20.2mm, respectively. 

The number of overlapping annotations of lesions after registration is 22 and 26 cases, re-
spectively. For the accumulative registration of the two methods, the median TRE achieved 
is 35.6mm and 18 cases have an overlap between the two annotations. Characteristics that 
correspond to the variations in datasets have been used to analyze the three methods. It is 
found that the methods work better with cranio caudal (CC) views and with the location of 
lesions in the center of the breast. Clinical applicability has been tested by simulating stereo-
tactic biopsy. 11 and 14 datasets could be clinically used when extracting 12 and 24 specimens 
with a standard needle biopsy, respectively. For the analyzed dataset, the proposed methods 
showed not only promising results but also the feasibility of clinical use. In the future, the 
method could enable performing the widely accessible and less expensive X-ray guided biopsy 
even if a suspicious lesion can only be seen in MRI.
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