KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi‐Scale Modeling of Surface Second‐Harmonic Generation in Centrosymmetric Molecular Crystalline Materials: How Thick is the Surface?

Zerulla, Benedikt ORCID iD icon 1; Díaz, Alejandro Luna 2; Holzer, Christof 2; Rockstuhl, Carsten ORCID iD icon 1,2; Fernandez-Corbaton, Ivan ORCID iD icon 1; Krstić, Marjan 2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)

Abstract:

Second–harmonic generation (SHG) is forbidden in centrosymmetric materials. However, a signal is observed from interfaces where the symmetry is broken. Whereas the effect can be phenomenologically accommodated, a qualitative and quantitative description remained elusive, preventing the exploration of questions such as how deep below the surface the second–harmonic is generated. A multi–scale approach to compute the total and layer-dependent intensity of surface SHG from molecular crystals is thus presented. The microscopic origin of surface SHG is identified in layer-dependent models with embedding partial charges combined with density functional theory (DFT) showing symmetry-breaking distortions of the electron cloud as the surface layer is approached. The SHG at the molecular level is determined using time-dependent DFT and then brought to the macroscopic scale through a rigorous self-consistent multiple scattering formalism. The intensity of the SHG at the surface layer is two orders of magnitude larger than at the next layer below and three orders of magnitude larger than two layers below. This approach can be used for designing and optimizing optical devices containing nonlinear molecular materials, such as molecular laminates. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000170704
Veröffentlicht am 21.05.2024
Originalveröffentlichung
DOI: 10.1002/adom.202400150
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Festkörperphysik (TFP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2195-1071
KITopen-ID: 1000170704
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Advanced Optical Materials
Verlag John Wiley and Sons
Band 12
Heft 18
Seiten Art.-Nr.: 2400150
Vorab online veröffentlicht am 06.05.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page