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A B S T R A C T

This study addresses the challenge of simulating realistic particle systems by proposing a novel particle
decomposition scheme that improves the parallel performance of surface resolved particle simulations. Realistic
particle systems often involve large numbers of particles and complex particle shapes. The resulting need
to account for shape factors requires the inclusion of even more particles to obtain statistically meaningful
results. However, the computational cost increases with the number of particles, making efficient parallelization
crucial. Therefore, the proposed scheme aims to improve the scalability by optimizing the communication
and data management between processors. Through hindered settling experiments, the applicability and
performance of the novel particle decomposition scheme are thoroughly investigated using the homogenized
lattice Boltzmann method. The results show that the proposed method significantly improves the performance,
especially in scenarios with a large number of particles, by reducing communication constraints and improving
scalability. This research contributes to the advancement of computational methods for efficient study of
complex particle systems and provides valuable insights for future developments in this field.
1. Introduction

In numerous industrial and scientific contexts, the study of particu-
late systems has emerged as a critical area of research. Particles have
an astonishing variety of complex shapes, making their behavior highly
complex and difficult to understand. Understanding and manipulating
the behavior of these complexly shaped particles is vital to improv-
ing existing industrial processes and developing new technological
advances.

The extensive experimental and numerical research devoted to the
study of hindered settling highlights the importance of studying particle
collectives. Research initially focused on obtaining correlations for the
average settling velocity in order to establish relationships between sus-
pension characteristics and settling behavior [1–5]. These early studies
provided valuable insights into the collective behavior of particles
and laid the foundation for further investigations of dilute [6] and
concentrated suspensions at moderate Reynolds numbers [7,8]. Subse-
quently, the research expanded to include the formation and dynamics
of particle clusters during hindered settling [9,10]. Understanding the
clustering is crucial as it significantly influences the overall settling
behavior and the efficiency of separation processes.
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Despite these extensive research efforts, it is important to note
that the above studies have focused solely on simple spherical geome-
tries. However, in many industrial and scientific applications, particles
have non-spherical and usually irregular shapes. Therefore, several
experimental studies consider more complex shapes, such as cubic and
brick-like shapes [11], fibers [12], and irregular sand grains [13].
Current knowledge, however, is limited to explicit shapes, and a deeper
understanding, including correlations of the average settling velocity
with shape factors, remains a challenge. Experiments, though valuable,
are time-consuming, costly, and inherently difficult to control and
adjust specific parameters, such as particle shapes. In addition, it is
difficult to resolve a large number of particles and high particle volume
fractions.

Numerical investigations therefore play an essential role in gaining
a thorough understanding of such systems. However, comprehensive
models are complex and computationally expensive due to the need
to incorporate four-way coupling. This includes coupling between fluid
and particles, between particles themselves, and between particles and
walls. It is essential to accurately capture the complex interactions
and dynamics within the system. In addition, the presence of complex
vailable online 16 March 2024
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shapes introduces shape factors that affect collective behavior. Hence,
to obtain statistically meaningful results, a larger number of particles
is required, which further increases computational demands.

The discrete element method (DEM) is one approach to consider
particulate flows. It is widely used for simulations in many fields [14]
and can represent arbitrary geometries using the glued-sphere tech-
nique [15] or similarly by combining other convex shapes [16]. How-
ever, approximating arbitrary shapes from combinations results in lim-
ited accuracy. To improve the accuracy, the number of segments must
be increased significantly, resulting in expensive computations. In ad-
dition, modeling the influence of the surrounding fluid is challenging.
While there have been studies on coupling with a surrounding fluid,
these mainly use simple spherical geometries [17,18] or model only
the drag coefficient without back-coupling from the particles to the
fluid [19]. However, the back-coupling is of enormous importance,
especially at high particle volume fractions [20].

The immersed boundary method (IBM) is another well-known op-
tion to consider non-spherical particles, since it resolves surfaces as
Lagrange points [21]. The interaction of these points with the fluid
is independent of the fluid grid, resulting in a high level of accuracy.
In addition, a significant advantage of IBM is its ability to be coupled
with various fluid solvers, including the finite element method and the
lattice Boltzmann method (LBM). For example, it has been used to study
the settling behavior of elliptical particles [22,23], which has also been
addressed by other LBM-based methods [24]. However, the frequent
interpolations between particle and fluid points are computationally
expensive.

The partially saturated method (PSM), originally introduced by No-
ble and Torczynski [25] is the most widely used alternative LBM-based
method for simulating particles of arbitrary shape. This preference for
PSM is consistent with the growing interest in LBM due to its efficiency
and ease of parallelization, driven by the fact that its computation-
ally intensive operations are inherently localized [26]. Subsequently,
various new derivatives have been introduced [27,28], including the
homogenized lattice Boltzmann method (HLBM) [29–31]. The ability
to accurately represent a wide range of shapes has been demonstrated
in several cases. For example, this capability has been used to derive
shape-dependent drag coefficient correlations [32]. In addition, HLBM
has been applied to the simulation of cubic disk-shaped particles in
wall flow filters [33–36] and another PSM derivative to the filtra-
tion of irregular airborne particles [37]. The potential applications
are further extended by a compatible contact model that is suitable
for arbitrary convex shapes [38]. Since this feature enables four-way
coupled simulations using PSMs that already take advantage of the
LBM’s parallelization capabilities to improve the particle-fluid coupling
performance. However, the common implementation of PSMs involves
communicating all data to each process involved in the computation,
which can lead to significant overhead and limit the scalability of
simulations, especially at higher particle counts and domain sizes.

In summary, direct numerical simulations are essential for the nu-
merical study of suspensions consisting of arbitrarily shaped particles,
and several approaches, such as PSM and HLBM, are available for
such simulations. However, these approaches share a significant com-
putational cost, which poses a challenge in their application to more
realistic scenarios involving hundreds or even thousands of particles.
Consequently, there is an urgent need to increase their efficiency.

The aim of the present work is therefore to improve the efficiency
of PSMs through the development of a novel particle decomposition
scheme that allows for more efficient simulations. By achieving this
objective, future PSM simulations are conductable with larger particle
populations, allowing for more accurate and comprehensive investiga-
tions of complex-shaped particle systems. This eventually increases its
applicability to real-world problems.

To this end, the remainder of this paper is organized as follows.
Section 2 introduces the models used to consider the fluid and the
particles, while Section 3 discusses the numerical methods used to solve
the model system, followed by the proposed domain decomposition
scheme in Section 4 and its application to hindered settling in Section 5.
2

Finally, Section 6 provides a summary and conclusion.
2. Modeling

2.1. Fluid

Fluids are commonly considered to be incompressible. In this case,
the Navier–Stokes equations become
𝜕𝒖f
𝜕𝑡

+
(

𝒖f ⋅ ∇
)

𝒖f − 𝜈𝛥𝒖f +
1
𝜌f
∇𝑝 = 𝑭 f,

∇ ⋅ 𝒖f = 0,
(1)

where 𝑝 is the pressure, 𝑡 is the time, 𝑭 f is the total of all forces
acting on the fluid, and 𝒖f, 𝜌f, 𝜈 are the velocity, density, and kinematic
viscosity of the fluid.

2.2. Particle

For the particle component, we use Newton’s second law of motion.
Therefore, translation is described by

𝑚p
𝜕𝒖p

𝜕𝑡
= 𝑭 p (2)

and rotation by

𝑰p
𝜕𝝎p

𝜕𝑡
+ 𝝎p × (𝑰p ⋅ 𝝎p) = 𝑻 p. (3)

Here, 𝑚p, 𝑰p, 𝒖p, 𝝎p are the mass, moment of inertia, velocity, and
angular velocity of the particle. 𝑭 p and 𝑻 p are the sum of the acting
forces and torques affecting the particle motion, which may include the
hydrodynamic forces and torques mentioned in Section 3.2 or contact
treatment results [38,39]. Above, the subscript p indicates that the
quantities refer to the particle’s center of mass.

3. Numerical methods

3.1. Lattice Boltzmann method

In this work, the Navier–Stokes equations for incompressible flows
are solved using the lattice Boltzmann method (LBM) [26,40,41]. Note
that all values in Section 3 are given in lattice units, unless explicitly
stated otherwise.

LBM has its roots in gas kinetics, which explains why it operates at
the mesoscopic level and considers the behavior of particle populations.
Accordingly, particles in this section refer to the fluid particles. The
discrete velocity distribution function 𝑓𝑖(𝒙, 𝑡) is used to characterize
the aforementioned populations at a position 𝒙 and time 𝑡. The index 𝑖
refers to the corresponding discrete velocity 𝒄𝑖, which is given by the
selected velocity set. There are several velocity sets available in the
literature [26,40]. For the studies in this paper, we choose the D3Q19,

hich discretizes the three-dimensional space and contains 19 discrete
elocities

𝑖 =

⎧

⎪

⎨

⎪

⎩

(0, 0, 0), if 𝑖 = 0
(±1, 0, 0), (0,±1, 0), (0, 0,±1), if 𝑖 = 1,… , 6
(±1,±1, 0), (±1, 0,±1), (0,±1,±1), if 𝑖 = 7,… , 18

. (4)

The populations are also used to derive macroscopic quantities
such as the fluid density 𝜌f(𝒙, 𝑡) =

∑

𝑖 𝑓𝑖(𝒙, 𝑡) and velocity 𝜌f𝒖f(𝒙, 𝑡) =
∑

𝑖 𝒄𝑖𝑓𝑖(𝒙, 𝑡).
The particle populations’ evolution over time is expressed by the

lattice Boltzmann equation that is usually divided into a collision and
streaming step. The former reads

𝑓 ∗
𝑖 (𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) +𝛺𝑖(𝒙, 𝑡) + 𝑆𝑖(𝒙, 𝑡). (5)

Here, the post-collision distribution 𝑓 ∗
𝑖 is obtained using a collision op-

erator 𝛺𝑖 and an optional source term 𝑆𝑖. Furthermore, the propagation
step with 𝛥𝑡 = 𝛥𝑥 = 1 is given by

∗
𝑓𝑖(𝒙 + 𝒄𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓𝑖 (𝒙, 𝑡), (6)
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which streams the particle populations to their corresponding neigh-
boring lattice nodes.

The simplest way to account for collisions is to relax the distribu-
tions toward their equilibrium 𝑓 eq

𝑖 , as is done by the Bhatnagar–Gross–
Krook (BGK) collision operator [42]

𝛺𝑖(𝒙, 𝑡) = −1
𝜏
(𝑓𝑖(𝒙, 𝑡) − 𝑓 eq

𝑖 (𝜌f, 𝒖f)), (7)

with the relaxation time 𝜏 that determines the speed of the relaxation
and depends on the kinematic viscosity 𝜈 as follows

𝜏 =
(

3𝜈 + 1
2

)

. (8)

he Maxwell–Boltzmann distribution, quantifying the equilibrium state
s given by [43]

eq
𝑖 (𝜌f, 𝒖f) = 𝑤𝑖𝜌f

(

1 +
𝒄𝑖 ⋅ 𝒖f
𝑐2𝑠

+
(𝒄𝑖 ⋅ 𝒖f)2

2𝑐4𝑠
−

𝒖f ⋅ 𝒖f
2𝑐2𝑠

)

. (9)

he required weights 𝑤𝑖 originate from a Gauss–Hermite quadrature
ule and are fixed for the chosen velocity set, as is the constant lattice
peed of sound 𝑐𝑠. For D3Q19, the weights read

𝑖 =

⎧

⎪

⎨

⎪

⎩

1∕3, if 𝑖 = 0
1∕18, if 𝑖 = 1,… , 6
1∕36, if 𝑖 = 7,… , 18

, (10)

nd the lattice speed of sound is given by 𝑐𝑠 = 1∕
√

3.
The lattice Boltzmann method (LBM) implemented in the open

ource software OpenLB [44,45] is used exclusively in this work.

.2. Homogenized lattice Boltzmann method

Although the proposed scheme is potentially applicable to a variety
f methods such as PSM, in the context of this work, we consider
he application to HLBM [29–31]. Using the trigonometric level set
unction [38]

(𝒙, 𝑡) =
⎧

⎪

⎨

⎪

⎩

1, if 𝑑𝑠 ≤ −𝜀∕2

cos2
(

𝜋
2

(

𝑑𝑠
𝜀 + 1

2

))

, if 𝜀∕2 > 𝑑𝑠 > −𝜀∕2

0, if 𝑑𝑠 ≥ 𝜀∕2

, (11)

articles are mapped onto the entire computational domain for later
oupling between the components, with the size of the smooth bound-
ry 𝜀 and the signed distance to the boundary 𝑑𝑠. Inside the object, the
istance is negative, outside it is positive. In the remainder of the paper,
e use 𝜀 = 1∕2, in accordance with Krause et al. [29]. The coupling

rom the particle to the fluid is based on a velocity difference obtained
y a convex combination of the fluid and particle velocities

𝒖f(𝒙, 𝑡) = 𝐵(𝒙, 𝑡)
(

𝒖p(𝒙, 𝑡) − 𝒖f(𝒙, 𝑡)
)

, (12)

where 𝒖p(𝒙) = 𝒖p(𝑿p)+𝝎p×(𝒙−𝑿p) is the particle’s velocity at position
, and 𝑿p is the particle’s center of mass. According to previous
tudies [31], the best results are obtained by using an adapted exact
ifference method (EDM) [46]. This method introduces the following
ource term in Eq. (5)

𝑖(𝒙, 𝑡) = 𝑓 eq
𝑖 (𝜌f, 𝒖f + 𝛥𝒖f) − 𝑓 eq

𝑖 (𝜌f, 𝒖f). (13)

To couple from the fluid to the particle, we use the momentum ex-
change algorithm (MEA) by Wen et al. [47] to calculate the hydrody-
namic force

𝑭 h(𝒙, 𝑡) =
∑

𝑖
(𝒄𝑖 − 𝒖p(𝒙, 𝑡))𝑓𝑖(𝒙 + 𝒄𝑖𝛥𝑡, 𝑡) + (𝒄𝑖 + 𝒖p(𝒙, 𝑡))𝑓𝑖(𝒙, 𝑡). (14)

Above, the index 𝑖 refers to particle populations with the corresponding
velocity 𝒄𝑖 = −𝒄𝑖, i.e. the population 𝑓𝑖 points in the opposite direction
of 𝑓 .
3

𝑖

The sum of all hydrodynamic forces of cells whose center is inside
the particle is now the total hydrodynamic force acting on the particle.
These cells are denoted by 𝒙b. Thus the total force is [31]

𝑭 p(𝑡) =
∑

𝒙b

𝑭 h(𝒙b, 𝑡), (15)

and the torque is given by

𝑻 p(𝑡) =
∑

𝒙b

(𝒙b −𝑿p) × 𝑭 h(𝒙b, 𝑡). (16)

Note that while an applicable contact model exists [38], we deliberately
refrain from using it in the context of this work in order to focus exclu-
sively on studying the performance improvement of the decomposition
scheme.

4. Particle decomposition scheme

4.1. Background

In the context of the LBM, parallelization is typically implemented
using a block-based approach [40]. This involves dividing the compu-
tational domain into multiple blocks, with each block being assigned
to a specific process unit. In this parallel scheme, a process unit can
handle multiple blocks or a single block, depending on the workload
distribution.

In the LBM framework, data is stored locally for each block, allow-
ing for efficient computations within each process. However, as the
boundaries of the blocks interact, it becomes necessary to communicate
data across these boundaries with directly adjacent blocks. Implementa-
tions of PSMs follow this approach. The calculation of the surface forces
is done locally using the fluid information available within each block.
However, once calculated, these surface forces are communicated to all
other processes involved in the simulation for summation. This allows
synchronized solving of the equations of motion on each processor.

4.2. Improvements

This section introduces three new steps necessary for particle de-
composition, which allow for more efficient communication than the
communication between all processes involved as described above.
Importantly, these steps do not change the underlying methodology.
Rather, they balance the workload over multiple processes and en-
sure data consistency without affecting the accuracy or stability of
the method. They are also applicable to any shape, since the only
geometric parameter they depend on is the circumferential radius. The
steps include the communication of surface forces and torques, the
assignment of particles, and the communication of particle data. The
following sections provide basic definitions and a detailed explanation
of each step and its relevance.

4.2.1. Definitions
To enhance the comprehensibility, we present several definitions

that we use in the following sections:

Responsibility. When a block or its corresponding process unit assumes
responsibility for a particle, it means that both the solving of the
equations of motion and the subsequent reassignment of the particle
are performed within that specific process.

Neighborhood. The neighborhood refers to the collection of blocks lo-
cated within the maximum circumferential radius, which is the largest
radius of all particles in the simulation, from the block of interest.
Neighboring processes correspond to the processes responsible for han-
dling the blocks within this defined block neighborhood.

Extended neighborhood. The extended neighborhood in this context
includes neighboring blocks and their neighboring blocks, creating an
extended spatial region that includes not only immediate neighbors but
also the secondary level of neighboring blocks.
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Fig. 1. Representation of a heptagonal particle (solid black) and its circumferential
radius (dashed black) in a multi-block domain consisting of the responsible center
block (brown) and neighboring blocks (blue cross-hatching).

4.2.2. Communication of local fluid to particle coupling results
We use a communication-ideal strategy, i.e., particle data is stored

and used for coupling on the process units that also know the associated
fluid data, due to the advantages outlined by Henn et al. [48]. There-
fore, effective communication of surface forces and torques between
process units is required to ensure accurate simulations. Due to the
decomposition of the fluid domains across processors, the responsible
processor may lack essential fluid data for the surface parts of a
particular particle, as illustrated in Fig. 1. In such scenarios, portions
of the force and torque are missing and are provided by other pro-
cesses that have the relevant data, analogously to the conventional
implementation.

The new and improved data communication process involves two
types of processors: senders and receivers. The sender processor is the
one that holds part of the surface of a particle, but is not responsible
for it. On the other hand, the receiver processor is responsible for the
particle in question. In Fig. 1, the former is highlighted with a blue
cross-hatch and the latter with a brown fill.

The communicated data includes the particle ID, which uniquely
identifies the particle within the simulation. In addition, the sender
transmits the partial surface force, which represents the force acting on
the surface part of the particle held by the sender. The torque resulting
from the partial surface force is also included.

4.2.3. Particle assignment
The assignment of particles to processors is done at the block

level, similar to the fluid domain decomposition. This means that a
single process may handle multiple particle blocks, depending on the
computational domain and decomposition scheme. After solving the
equations of motion, the positions of the particles may have changed.
Consequently, the assignment of particles to processors must be reeval-
uated.

The responsibility for a particle goes to the block on which the
center of mass of the particle is located. Additionally, all neighboring
blocks are assumed to touch the surface of the particle. These neighbor-
ing blocks calculate the partial surface forces and torques, but are not
individually responsible for the particle itself. On the other hand, blocks
that are not in the neighborhood are not assigned to the particle of
interest. The responsible block described above is shown in Fig. 1 with a
brown fill, the neighboring blocks with a blue crosshatch, and all other
blocks without fill. This selectivity ensures an efficient use of compu-
tational resources by involving only the necessary blocks in particle
interaction calculations and minimizing the following communication
overhead by excluding as many process units as possible.
4

Fig. 2. Illustration of the position of a heptagonal structure at the current (dashed
black) and next (solid black) time steps within a multi-block domain. The brown
middle block represents the currently responsible block, while the adjacent blocks with
blue cross-hatching indicate the first-level neighborhood. The highlighted block with a
combination of brown fill and blue cross-hatching shows the responsible block at the
next time step. The green hatching represents the secondary neighborhood.

Note that using the maximum circumferential radius to determine
the neighborhood for particle assignment avoids missing overlaps and
thus ensures data consistency in the communication steps, no matter
how complex and different the shapes in the particle system are.

4.2.4. Communication of particle data
This communication step, which occurs after the particle reassign-

ment, is essential to maintain data consistency and involves more
blocks, as shown in Fig. 2. The figure contains a heptagonal particle
at the current position and at the next time step, indicated by the
dashed and solid lines, respectively. There are also several types of
blocks: the responsible block at the current time step (brown), the
responsible block at the next time step (brown with blue cross-hatch),
the current neighborhood (blue cross-hatch), and the additional blocks
in the current extended neighborhood (green hatching).

The responsible block initiates a request to its entire extended
neighborhood to ensure that no surface forces are overlooked due
to potential changes in particle responsibility, because, as shown in
Fig. 2, parts of the particle surface may intersect with the extended
neighborhood at the next time step. While the neighborhood of the
block where the particle’s center of mass is located after reassignment
receives the actual particle data, all other blocks receive an empty
request, streamlining the communication process.

The data sent during the communication step includes all relevant
particle information. This typically consists of the particle’s unique ID,
position, angle, velocity, angular velocity, an ID of the responsible
block or process unit, a surface ID, and any other particle properties
needed for the specific simulation.

If a block previously held a valid particle but receives no updates
in this step, the particle is invalidated and the corresponding memory
is released at a predefined interval.

4.2.5. Time step algorithm
To provide a clear and organized presentation, Algorithm 1 presents

the basic time step algorithm of the LBM with PSM and the proposed
particle decomposition as it is implemented in the open source software
OpenLB [45]. The algorithm follows a specific sequence that is consis-
tent with the previously discussed methods and ensures the necessary
order of execution.
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𝑢

𝑢

Fig. 3. Simulation domain with the spherical particles on their initial position using
a resolution of 𝑁 = 27 cells per sphere diameter and particle volume fraction of about
0.2.

Fig. 4. Relative error in 𝐿2 norm versus the resolution of the sphere’s diameter 𝑁 .
The reference uses the resolution 𝑁 = 27.

Algorithm 1: Basic LBM time step algorithm using PSM with the
particle decomposition scheme
for all time steps do

Couple fluid to particles; ⊳ Using the MEA
Communicate surface forces and torques; ⊳ See Section
4.2.2

Apply external forces; ⊳ Such as gravity
Solve equations of motion;
Evaluate particle assignment; ⊳ See Section 4.2.3
Communicate data and assignment; ⊳ See Section 4.2.4
Couple particles to fluid; ⊳ Using the EDM
Perform collision and streaming;
Increase time step;

end

5. Application to hindered settling

In the following, we evaluate the application of the proposed
scheme to hindered settling [1]. To ensure the correctness of the results,
we validate the average settling velocity, for which many correlations
are known. Most correlations, like the one proposed by Richardson and
Zaki [2], use a power-law model such as

̄ = 𝑢∗(1 − 𝜙 )𝑛, (17)
5

p p
with the predicted average settling velocity �̄�p, a reference terminal
velocity of a single particle in the considered domain 𝑢∗, the particle
volume fraction 𝜙p and an expansion index

𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4.65, if 𝑅𝑒 < 0.2
4.35𝑅𝑒−0.03, if 0.2 ≤ 𝑅𝑒 < 1
4.45𝑅𝑒−0.1, if 1 ≤ 𝑅𝑒 < 500
2.39, if 500 ≤ 𝑅𝑒

. (18)

Here, 𝑛 depends on the Reynolds number 𝑅𝑒 = 𝑢∗𝐷s∕𝜈. Garside and
Al-Dibouni [4] suggest

𝑛 = 5.1 + 0.27𝑅𝑒0.9

1 + 0.1𝑅𝑒0.9
, (19)

which has shown a superior accuracy [49]. Barnea and Mizrahi [3]
propose a different model, in which the average settling velocity is
independent of 𝑅𝑒 and is given by

̄p = 𝑢∗
1 − 𝜙p

(1 + 𝜙1∕3
p ) exp

5𝜙p
3(1−𝜙p)

. (20)

For validation purposes, all three correlations are used below.
In the creeping flow regime, the reference velocity reads

𝑢∗St =
𝑔𝐷2

s
18𝜈

(𝜌p − 𝜌f

𝜌f

)

, (21)

where 𝑔 = 9.80665 m s−2 is the standard gravity and 𝐷s is the diameter
of the considered spherical particle. Furthermore, 𝜌f and 𝜌p are the
fluid and particle densities. However, in the following studies we only
consider higher Reynolds numbers, hence we calculate the reference
velocity using

𝑢∗ =

√

4 𝑔𝐷s
3𝐶𝑑

(𝜌p − 𝜌f

𝜌f

)

, (22)

with the drag coefficient 𝐶𝑑 that we compute using the approximation
by Schiller and Neumann [50]

𝐶𝑑 = 24
𝑅𝑒

(

1 + 0.15𝑅𝑒0.687
)

, (23)

which is valid for 𝑅𝑒 < 800.
As is common in studies of hindered settling [10,49], we use two

dimensionless parameters to describe the setup below. The first one is
the particle to fluid density ratio defined as 𝜌p∕𝜌f and the second is the
Archimedes number

𝐴𝑟 =
𝑔𝐷3

s
𝜌p−𝜌f
𝜌f

𝜈2
. (24)

5.1. Simulation setup

To numerically study the above, we employ spherical particles with
a diameter 𝐷s = 2 mm at random positions in a cubic domain with
an edge length of 12𝐷s and periodic boundaries on each side, which
is filled with a fluid with a density 𝜌f = 1000 kgm−3. The setup is
exemplified in Fig. 3 with a particle volume fraction of about 0.2.
The size of the domain was chosen because previous studies have
shown that sufficiently accurate results can be obtained from a size
of 10𝐷s [10,49]. However, in the context of this work, we intend to
generate larger particle numbers for testing purposes, and therefore
expand the domain, but only slightly, so that the simulation remains
feasible for high resolutions.

The initially resting particles are accelerated in the 𝑧-direction by
the force 𝐹𝑔 = (𝜌f − 𝜌p)𝑉s𝑔. Here, 𝑉s = 𝜋𝐷3

s∕6 is the sphere’s volume. As
in previous numerical investigations of hindered settling [9,10,49], we
apply a pressure gradient in the opposite direction of particle motion to
obtain a net volume flow rate of zero. We calculate it using the Ergun
equation [51] with a superficial velocity equal to the current average
settling velocity �̄� .
p
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Fig. 5. Ratio of average settling velocity to single particle settling velocity �̄�p∕𝑢∗

ersus the particle volume fraction 𝜙p, showing current simulation results and the
orrelations by Richardson and Zaki [2], Garside and Al-Dibouni [4], as well as Barnea
nd Mizrahi [3].

In our studies, the Archimedes number is fixed at 𝐴𝑟 = 1500 and
he density ratio at 𝜌p∕𝜌f = 1.3. From these two quantities, we derive
he particle density as well as the fluid viscosity. To explore the effects
f particle concentration, we vary the particle volume fraction in the
ange of 0.05 to 0.3.

Furthermore, we choose a constant lattice relaxation time of 0.55
or all simulations, while resolving the sphere’s diameter with 𝑁 cells,
hich differs in the following simulations. We simulate a total time
f 300𝑡∗, with 𝑡∗ = 𝐷s∕𝑢∗St. Due to the initial random packing, the
tartup time is significantly reduced, nonetheless, we start averaging
he velocities to obtain �̄�p after a time of 30𝑡∗, leaving a period of 270𝑡∗
hat ensures statistically averaged results.

.2. Grid independence study

In this section, we delve into a grid independence study using a
article volume fraction of 𝜙p = 0.1 by systematically exploring various
rid resolutions 𝑁 ∈ {5, 7, 12, 18}. We compare the outcomes obtained
rom these resolutions to evaluate their impact on the simulation
esults, with respect to a baseline resolution of 𝑁 = 27. Previous studies
eport sufficiently accurate results when resolving a sphere diameter
ith 𝑁 ≈ 8 cells [31]. In order to have a very accurate baseline,
e therefore use a much finer resolution while still ensuring feasible

imulations. The results are presented in Fig. 4, which illustrates the
elative error using the 𝐿2 norm [40] plotted against the used grid
esolutions. Additionally, the figure includes lines representing the
xperimental orders of convergence (EOC) with values of 1 and 2.

The plot reveals that as the grid resolution increases, the error of the
imulation approximately follows the line of the EOC of 1, indicating
linear decrease in error with respect to grid refinement. The error

ecreases with increasing resolution as the particle shape is represented
ore accurately. The observed linear convergence is in agreement
ith the results of previous studies on single settling spheres [31] and

uggests that increasing the grid resolution leads to a proportional
ecrease in error. It is likely due to the staircase approximation of
he curved boundary [40,52]. Moreover, it is noteworthy that the
rror becomes smaller than 2% starting from a resolution of 𝑁 = 12,
nsuring grid-independent results. The minimum resolution required is
lightly higher than the resolutions reported in previous studies [31].
his adjustment is due to the presence of multiple particles and their

nteractions through the fluid.
6

.3. Validation

The following validation uses the resolution 𝑁 = 18, to assess
he accuracy and reliability. To this end, we plot the average velocity
btained from the simulations over the particle volume fractions in
ig. 5. For comparison, we additionally add the correlation by Richard-
on and Zaki [2] as a dotted purple line, Garside and Al-Dibouni [4]
s a blue line, and the correlation by Barnea and Mizrahi [3] as a
ashed green line. It is evident that as the particle volume fraction
ncreases, the average settling velocity progressively decreases. In gen-
ral, the results are well within the range of the correlations introduced
bove. In particular, they agree well with the first two correlations.
owever, it is noteworthy that at higher particle volume fractions, the
isparity between the simulation results and correlations becomes more
ronounced.

HLBM is therefore able to capture the settling behavior at low
article volume fractions, suggesting that in these cases HLBM works
ithout an explicit contact model, since the interaction through the

luid is prominent. The observed discrepancy between the simulation
esults and the correlations at higher particle volume fractions can
e attributed to the absence of an explicit contact model, because
ith increasing particle volume fraction, the probability of particle–
article interactions also increases. This in accordance with previous
indings [31]. In simulations without an explicit contact model, these
nteractions are not fully accounted for, leading to an error in the
redicted settling velocities. Since the energy dissipation due to in-
erparticle interactions is missing, the observed overestimation of the
elocity seems reasonable. The inclusion of a contact model [38,39]
ould allow for a more accurate representation of particle–particle

nteractions, potentially reducing the difference between simulation
esults and correlations, especially at higher particle volume fractions.
owever, since we are primarily interested in quantifying the perfor-
ance improvement from decomposition, an elaborate contact model
ould introduce too much bias by degrading overall performance by

ntroducing more complex computation and communication.
Fig. 6 visualizes the fluid velocity and the particles for 𝜙p ≈ 0.3

t different normalized times 𝑡∗. It can be seen that the particles form
lusters and that high fluid velocity channels form. The observation
s quantitatively consistent with the literature [10], further confirming
he correctness. However, interparticle contacts are also visible, hinting
t the potential need for an explicit contact model at high particle
olume fractions.

.4. Performance

In this section, we evaluate the performance of HLBM with the
ovel particle decomposition scheme and the conventional one. The
omputational infrastructure used for these experiments consists of
ntel Xeon Platinum 8368 CPUs, with each node equipped with 76 CPU
ores.

Fig. 7 presents the results of this analysis. Here, we plot the million
attice site updates per second (MLUPs) versus the number of nodes
sed. We consider a fixed total problem size with a resolution of 12
n Figs. 7(a) and 7(b), a resolution of 18 in Figs. 7(c) and 7(d), and a
esolution of 27 in Figs. 7(e) and 7(f). In each scenario, the number of
articles ranges from 166 to 991.

The performance plots in Fig. 7 reveal several important obser-
ations: Firstly, the novel method exhibits in general higher MLUPs
ompared to the conventional method. However, for small resolution
nd low particle number, the MLUPs are of a similar scale, but as
article number and resolution increase, the differences increase. For
xample, the simulations with the new particle decomposition show
LUPs more than five times larger than those with the conventional
ethod, when considering 991 particles. Additionally, the conventional
ethod demonstrates significant communication limitations for 𝑁 =
2, which is immediately apparent by a flattening to a plateau in the
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Fig. 6. Particles and fluid velocity at different normalized times 𝑡∗ for 𝐴𝑟 = 1500 and 𝜙p ≈ 0.3.
plots, and for 𝑁 = 18, which become noticeable when the number of
nodes reaches six.

In contrast, the new method shows significant communication lim-
itations only for 𝑁 = 12 and when the number of nodes reaches seven
or more, see Fig. 7(a). Note that the problem size is smallest in this
particular scenario. Increasing the number of processes beyond the ob-
served inflection point degrades performance because communication
becomes the limiting factor.

In a broader context, increasing the number of processes increases
the number of costly communications, which explains the flattening
of all performance curves as more nodes are used. At some point,
communications become more expensive than computations, leading to
the inflection point observed above. This behavior would occur in all
cases, but shows up earlier for small problem sizes because the overall
workload is smaller.

The new method demonstrates improved computational efficiency
and scalability. These improvements are due to the more efficient
communication strategy of the proposed method. Unlike the conven-
tional method, which transmits all data to every process, the novel
method selectively communicates data within the neighborhood of
each block, as explained earlier. By minimizing unnecessary data trans-
fer and concentrating communication on relevant blocks, the novel
method significantly reduces communication overhead and optimizes
computational resources.

These results highlight the benefits of the novel method in mitigat-
ing communication bottlenecks.

The studies focus on spheres, but a performance gain is expected for
any other shape, because in these cases the signed distance function is
more complex. The increased complexity means that the computations
performed on each lattice node, see Section 3.2, are more expensive.
It is therefore even more important to distribute the computational
effort across the processes in cases of complex shapes. The relative
performance gain is expected to be even higher.

The studies furthermore consider a minimum of 166 particles. How-
ever, the performance improvements are expected to also extend to
single particle simulations, due to a reduction in communication over-
head, although to a lesser extent. This reduction is due to the fact
that only the processes adjacent to the singular particle are required
to communicate, allowing the remaining processes to perform other
computations in parallel.

6. Summary and conclusions

In the present work, we propose and validate a novel and improved
particle decomposition scheme for surface resolved particle simulations
7

and apply it to HLBM for demonstration. For this purpose, we perform
extensive studies using the example of hindered settling.

The main objective, performance improvement, is evaluated and
confirmed, as the comparison of the conventional and the novel meth-
ods in terms of computational efficiency and communication con-
straints reveals significant advantages offered by the novel method.
The novel method scales considerably better, resulting in higher MLUPs
compared to the conventional method. This improvement is due to the
more efficient communication strategy of the novel method, where data
is selectively communicated.

The studies also show that HLBM is capable of capturing the settling
behavior of a particle swarm at low particle volume fractions. This
suggests that under these conditions, HLBM works effectively without
the need for a dedicated contact model. However, as particle volume
fractions increase, the limitations of not having a dedicated contact
model become more pronounced. Therefore, at higher particle volume
fractions, there is a clear need to incorporate a dedicated contact model
to accurately simulate and account for particle interactions.

These results emphasize the importance of efficient communication
strategies in particle simulation methods and highlight the value of
the novel method in achieving computational efficiency. It is now
feasible to simulate a larger number of surface resolved particles,
resulting in more realistic simulation setups and expanded applicability
to real-world problems, such as filters and thickeners.

Nomenclature

Acronyms

BGK Bhatnagar–Gross–Krook
DEM discrete element method
EDM exact difference method
EOC experimental order of convergence
HLBM homogenized lattice Boltzmann method
IBM immersed boundary method
LBM lattice Boltzmann method
MEA momentum exchange algorithm
MLUPs million lattice site updates per second
PSM partially saturated method

Roman Symbols

𝐵 weighting factor
𝒄 discrete velocity
𝑐𝑠 lattice speed of sound
𝐷 diameter
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Fig. 7. Comparison of the resulting MLUPs versus the number of employed nodes using the new particle decomposition scheme (left) and the conventional decomposition (right)
for the resolutions 𝑁 = 12 (a and b), 𝑁 = 18 (c and d) and 𝑁 = 27 (e and f) and different particle numbers.
𝑑s signed distance
𝑭 total force
𝐹𝑔 combination of weight and buoyancy
𝑓 particle population
𝑓 ∗ post-collision particle population
𝑔 standard gravity
𝑰 moment of inertia
𝑚 mass
𝑁 resolution
𝑛 expansion index
𝑅𝑒 Reynolds number
𝑆 source term
𝑻 total torque
𝑡 time
𝒖 velocity
𝑢∗ reference settling velocity of a single sphere
𝑉 volume
𝑤 weight for the equilibrium distribution

calculation
8

𝑿 center of mass
𝒙 position

Greek Symbols

𝛥𝑡 time step size
𝛥𝑥 grid spacing
𝜀 size of the smooth boundary
𝜈 kinematic viscosity
𝜌 density
𝜏 relaxation time
𝜙 volume fraction
𝛺 collision operator
𝝎 angular velocity

Subscripts

b refers to positions inside a particle’s boundary
f refers to the fluid
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C

y
W
C -
i

h refers to the hydrodynamic force
𝑖 refers to the corresponding discrete velocity
p refers to the particle’s center of mass
s refers to a sphere
St refers to the Stokes/creeping flow regime
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