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Abstract
Desired speed or free speed distributions are important input parameters for microscopic traffic flow simulations. Whereas
driven speeds can be measured, desired speeds are not detectable for all vehicles because of vehicles constraining each other.
An established approach to estimating desired speed distributions is the modified Kaplan–Meier approach, which estimates
desired speed distributions based on single vehicle data from stationary detectors. We propose a novel approach to deter-
mine desired speeds based on vehicle trajectory data. The proposed approach, as well as the modified Kaplan–Meier
approach, is applied to a trajectory dataset recorded on a German freeway. With the modified Kaplan–Meier approach, we
observed that the resulting desired speed distributions vary by approximately 5 km/h depending on the position of the sta-
tionary detectors. The desired speed distributions obtained from the trajectory-based approach are approximately 5 to
10 km/h higher than those estimated by the modified Kaplan–Meier approach. This difference in results is probably because
the trajectory-based approach observes each vehicle over a longer distance rather than just at stationary points.
Nevertheless, it can be concluded that the estimation of desired speed distributions is subject to a certain degree of inaccu-
racy. The analysis of the vehicle trajectory data revealed a notable intra-vehicle instability in desired speeds, with a difference
of 5 to 7 km/h observed for 40% of the vehicles between different periods of free driving. These findings should be consid-
ered in the context of calibrating microscopic traffic flow simulations.
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The term ‘‘desired speed’’ (or ‘‘free speed’’) refers to the
maximum speed a driver intends to reach. If necessary,
the driver performs a lane change to overtake preceding
vehicles traveling at lower speeds. The desired speed is
individual to each driver, resulting in a distribution of
desired speeds across the collective of drivers on a partic-
ular road segment. Whereas driven speeds can be mea-
sured, desired speeds are not detectable for all vehicles.
The relation between driven speed and desired speed can
only be assumed for vehicles that are moving freely with-
out being constrained by preceding vehicles. As traffic
density increases, the interaction between road users
intensifies, leading to fewer freely moving vehicles and
consequently a greater disparity between desired and dri-
ven speeds. Furthermore, road users with higher desired
speeds exhibit a higher likelihood of being constrained
compared with those with lower desired speeds (1).
Relying solely on free speeds of a subset of vehicles to

infer the desired speed distribution for all road users
would result in a systematic underrepresentation of high
desired speeds. However, this approach is used in certain
studies to determine desired speeds on highways (2, 3).
The most established method for estimating desired
speed distributions is the modified Kaplan–Meier
approach (4, 5). This approach can be applied to single
vehicle data recorded by stationary detectors, consisting
of both constrained and unconstrained vehicles.

Desired speed distributions serve as an input parameter
for microscopic traffic flow simulations and significantly
influence the traffic dynamics within the simulation.
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Numerical simulations conducted by Lipshtat indicate
that the width of the distribution has a significant impact
on the stability of traffic flow because it leads to larger
variations in desired speeds among individual drivers (6).
These differences result in more drivers being constrained
by those with lower desired speeds, inevitably leading
to an increased amount of overtaking attempts.
Additionally, Farzaneh and Rakha have found that the
desired speed distribution also influences the speed at
capacity and, therefore, the shape of the fundamental dia-
gram (7). Thus, it is crucial to calibrate the desired speed
distributions in microscopic traffic flow models.

The advancements in drone technology and automatic
image processing now offer the possibility to record and
analyze vehicle trajectories for traffic flow investigations.
Utilizing vehicle trajectories to estimate desired speeds pro-
vides significant benefits because it enables the examina-
tion of each vehicle over an extended distance. Moreover,
it provides flexibility in recording as vehicle trajectories can
be captured at almost any desired location, while station-
ary detectors for recording single vehicle data need to be
installed along the observed road segment.

Within the scope of this study, we propose a method to
determine desired speed distributions based on vehicle tra-
jectory data. The approach entails identifying intervals
within each trajectory where the vehicle travels at free
speed. Our evaluations are based on a vehicle trajectory
dataset of a 1,200-m-long segment of a German freeway.
To examine the validity of the proposed method, we apply
the established modified Kaplan–Meier approach to the
dataset by synthesizing stationary detector data from the
vehicle trajectories. Further, the intra-vehicle stability of
desired speed and the overall concept of one global desired
speed per vehicle are discussed. To the best of our knowl-
edge, there are currently no published approaches for
determining desired speeds from trajectory data.

Literature Review

Desired Speed Estimation

Approaches for estimating desired speed distributions
described in the literature are based on product-limit
methods. One commonly used method is the estimator
by Kaplan and Meier, originally applied in the context
of clinical studies (8). This method features the estima-
tion of survival probabilities over a specific time period,
for example, after an operation. Some patients pass away
at a specific point in time after the operation because of
post-operative complications. Other patients experience
different causes of death or drop out of the study.
Therefore, all observed lifetimes contribute to the estima-
tion as either a death event or a loss, forming an incom-
plete observation. The Kaplan–Meier approach is a non-
parametric approach, meaning that the resulting

distribution does not conform to a specific mathematical
function type.

In traffic engineering, desired speed distributions draw
an analogy to survival probabilities in medicine. Instead of
a time period, we consider speeds, and instead of the events
of death and loss, we consider whether a vehicle is uncon-
strained (free driving) or constrained by preceding vehicles.
In the context of desired speeds, the application of the
Kaplan–Meier approach was initially introduced by Botma
(1). Hoogendoorn (4, 9) and Geistefeldt (5, 10) have further
developed this approach for estimating desired speeds. In
addition, the Kaplan–Meier approach is used in traffic flow
analysis to determine distribution functions of freeway
capacity (10–12). Also analogous to survival probabilities
in medicine, the procedure involves estimating the survival
probability of the traffic flow, whereby the capacity repre-
sents the lifetime of the traffic flow.

To estimate desired speed distributions, individual
vehicle data from stationary detector recordings are used.
For each vehicle j passing through the stationary detec-
tor, the speed vj and the time headway tj are known.
Vehicles are initially categorized as constrained or uncon-
strained based on their headway. For constrained vehi-
cles, the desired speed cannot be easily determined, but it
is greater than or equal to the driven speed. In contrast,
for unconstrained vehicles, the driven speed can be equa-
ted with the desired speed.

A significant disadvantage of the Kaplan–Meier
approach is that the resulting desired speed distribution
strongly depends on the chosen threshold value of the
headway. Thus, Hoogendoorn (4) further developed the
Kaplan–Meier approach by including partially con-
strained observations to the classification as constrained
and unconstrained observations. For this modified
Kaplan–Meier approach, the probability uj is deter-
mined, indicating the likelihood that a vehicle with a spe-
cific headway tj is constrained or unconstrained. This
modification is based on a threshold process (4).
Hoogendoorn’s second modification addresses the esti-
mation of desired speed distributions on multi-lane high-
ways (9). The author points out that his initial approach
is not directly applicable to highways. First, small head-
ways on highways are often caused by overtaking
maneuvers, but in such cases the vehicles are not con-
strained by each other. Second, distinguishing between
constrained and unconstrained vehicles based solely on
headways is not suitable in congested situations.
Consequently, in his modified Kaplan–Meier approach
for highways, Hoogendoorn introduces a two-part prob-
ability function u(dj,Dvj), which takes into account both
the distance to the lead vehicle dj and the relative speed
Dvj. A vehicle is considered more unconstrained, the
greater its distance and speed difference compared with
the lead vehicle. A high speed difference indicates an
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overtaking maneuver. Hoogendoorn defines the prob-
ability uj of a vehicle being constrained as indicated in
Equations 1 to 3 (9).
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� uspeedj
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where
dj = gap to the lead vehicle (m),
a1 = parameter (m), typical value by Hoogendoorn

(9)=20,
a2 = parameter (m), typical value by Hoogendoorn

(9)=150,
Dvj = relative speed between vehicle j and its lead

vehicle (m/s),
b1 = parameter (m/s), typical value by Hoogendoorn

(9)=2.5, and
b2 = parameter (m/s), typical value by Hoogendoorn

(9)=2.5.
In this study, Equation 4, as proposed by

Hoogendoorn, is utilized for the modified Kaplan–Meier
approach for highways (9).

F(v0)= 1�
Ynv0

j= 1

n� j� 1

n� j� uj

� �
ð4Þ

where
v0 = speed (m/s),
j = position of the considered vehicle j in the dataset

(for vj ascending and constrained before uncon-
strained vehicles),

vj = driven speed of the vehicle j,
nv0 = number of vehicles j with driven speed vj ł v0,
n = number of recorded vehicles (all observations),

and
uj = probability, that vehicle j is constrained.

Trajectory Data in the Context of Microscopic Traffic
Simulation

Driven by technological advances in the development of
camera drones and automatic image processing, various
freely available trajectory datasets have been collected
and processed to support the development of trajectory
processing and the use of trajectories in the context of

simulation models. Table 1 shows a selection of currently
available datasets. Research has been conducted on sub-
jects such as traffic flow analysis and modeling, traffic-
related estimation and prediction, traffic flow model cali-
bration, vehicle trajectory data cleaning, and vehicular
ad hoc network-related studies based on the NGSIM
dataset (13).

Hamdar et al. (19) and Hao et al. (20) calibrated and
validated their proposed car-following models based on
trajectories of the NGSIM dataset by comparing speed,
acceleration, time headway, and space headway. Przybyla
et al. (21) analyzed trajectories to identify driver behavior
and characteristics to propose a data-driven car-following
model, whereas Li et al. (22) examined the distribution of
headways collected from NGSIM trajectories. To cali-
brate Wiedemann’s car-following model in PTV Vissim,
Durrani et al. estimated the model parameters directly
from the NGSIM trajectories (23). The study showed that
vehicle-following behavior is significantly different among
various vehicle classes, and recommends setting parameter
values as distributions instead of fixed values. Hale et al.
propose a method to calibrate a microscopic traffic flow
simulation of a freeway segment by comparing and mini-
mizing the difference between observed and simulated tra-
jectories (24). To ensure comparing sufficiently similar
trajectories, both observed and simulated trajectories have
been binned into specific groups. Li et al. (25) and Zhong
et al. (26) propose approaches similar to Hale et al. (24) to
calibrate the intelligent driver model (IDM) with NGSIM
trajectories, whereas Kurtc (27) demonstrated that the
IDM is capable of reproducing naturalistic vehicle trajec-
tories based on the highD dataset.

The literature review shows that vehicle trajectories are
a suitable data source for the calibration of microscopic
traffic flow simulations, but most studies focus on driving
behavior. To the best of our knowledge, there are cur-
rently no published approaches for determining desired
speeds from trajectory data. Nonetheless, the studies men-
tioned above indicate that trajectory data is capable of
providing the required information to estimate desired
speeds, such as speed, acceleration, as well as time and
space headways to the surrounding vehicles.

Table 1. Overview Over Open Trajectory Datasets of Freeway
Traffic

Dataset Year
Segment
length Source

NGSIM 2006 600 m Kovvali et al. (14)
highD 2018 420 m Krajewski et al. (15)
HIGH-SIM 2021 2,400 m Shi et al. (16)
Automatum 2021 240–280 m Spannaus et al. (17)
I-24 MOTION 2022 4 mi Gloudemans et al. (18)
A2 dataset 2022 1,200 m This paper
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Method

Used Data

To estimate desired speeds from vehicle trajectories, it is
beneficial to have a trajectory dataset with wide spatial
coverage. As the length of the recorded trajectory
increases, it is more likely to identify time periods in
which the vehicle is not constrained by surrounding vehi-
cles and thus is able to attain its desired speed.
Considering the available datasets presented in Table 1,
the recorded trajectories, except for the HIGH-SIM and
the I-24 MOTION dataset, are too short to fully utilize
the advantages of vehicle trajectories. However, the
HIGH-SIM dataset only includes a single recording of
40min containing 2,182 vehicles for one driving direc-
tion, whereas longer recordings and more captured vehi-
cles would be beneficial. The I-24 MOTION dataset is
not yet available at the time of this study.

For this reason, we use a recently recorded vehicle tra-
jectory dataset that was acquired through a collabora-
tion with a commercial provider. This dataset focuses on
a segment of the German A2 freeway between the cities
of Hanover and Brunswick, and is referred to as the A2
dataset in the following. It is located 1,000m west of the
exit Peine and 5 km east of the exit Hämelerwald (see
Figure 1). The segment is composed of three lanes per
driving direction and has no speed limit. The drone
recording was carried out on Tuesday, November 1,
2022, during the morning peak hour, and covered a dis-
tance of 1,200m in both directions. Overall, 11,488 vehi-
cles (passenger cars and heavy vehicles) have been
captured. Because of technical limitations (battery capac-
ity of the camera drone), the data collection resulted in

six separate recordings of 21min. Figure 2 illustrates
the traffic volume (passenger cars and heavy vehicles),
and Figure 3 illustrates the spatiotemporal evolution
of the average passenger car speed aggregated to 50-m
and 1-min intervals. In the westbound driving direc-
tion, there are slightly higher traffic volumes than in
the eastbound direction and no noticeable traffic
instabilities. Whereas in the eastbound driving direc-
tion, congestion is beginning to form in Recording 5.
This breakdown is most probably caused by an oversa-
turation of the exit Peine, which is located 1,000m
downstream of the recorded area.

The data preprocessing conducted for the A2 dataset
is described in the following sections.

Figure 1. Location of the A2 dataset.

Figure 2. Traffic volume of the A2 dataset.
Note: vph = vehicles per hour; veh = vehicle; hv = heavy vehicle share; rec.

= recording.
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Data Preprocessing

Lane Matching. The recorded vehicle trajectories are ini-
tially projected onto world coordinates. To be able to
determine time headways, we perform a projection onto
roadway coordinates and a lane matching. Automatic
extraction of map lane boundaries is not used because of
the distorted positions of the vehicles. Instead, we carry
out the determination of the lane boundaries manually.
To support this process, we generate cross-sections at
intervals of 10m, and create histograms of the lateral
positions of the intersecting trajectories. The lane bound-
aries are then placed as close as possible to the minima
of the histograms.

Subsequently, the lane boundaries are iteratively
improved. For this purpose, we introduce a metric to deter-
mine vehicles overtaking each other within the same lane
based on the current lane boundaries. The objective is to
minimize this metric by slightly adjusting the lane limits.

Vehicle Dynamics Calculation. We compute the speed of a
vehicle v(t) as the travel speed between the positions of
the vehicle at times t � 0:5 s and t + 0:5 s. The accelera-
tion is then calculated based on the instantaneous rate of
change of velocity. Figure 4 illustrates the distribution of
all acceleration values in the A2 dataset. The resulting
accelerations are comparable with the distribution of
acceleration values that Montanino and Punzo recon-
structed for the NGSIM dataset (28).

Headway Calculation. At each time step, we determine the
preceding and following vehicles of a vehicle. To achieve
this, we cluster the vehicles into groups based on their
lane for each time step. Each group is then sorted based

on the distance traveled, allowing for retrieval of the pre-
ceding vehicles.

Then, we calculate the distances between each vehicle
and the surrounding vehicles and, based on these dis-
tances, we compute space and time headways. The time
headway is based on the speed of the following vehicle.

Application of the Modified Kaplan–Meier Approach

Applying the modified Kaplan–Meier approach requires
individual vehicle data from stationary detectors. These
data need to be synthesized from the vehicle trajectory
datasets and are further referenced as synthetic stationary
detectors. To do this, the trajectories are cut every 50m
along the recorded segment (see Figure 5), and for each of
these stationary detectors, the current speed of every vehi-
cle and its space headway to the preceding vehicle, as well

Figure 3. Spatiotemporal evolution of average passenger car speed of the A2 dataset (a) westbound, and (b) eastbound.
Note: rec. = recording.

Figure 4. Distribution of acceleration values after data processing.
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as the speed difference to the preceding vehicle, are calcu-
lated. Based on these values, we determine for each vehicle
the probability that it is constrained while driving (see
Equation 1). The modified Kaplan–Meier estimation is
carried out individually for each of these synthetic station-
ary detectors, resulting in one desired speed distribution
every 50m along the freeway segment, as well as for the
combined data of all synthetic detectors of each direction.

Determining Desired Speeds Based on Vehicle
Trajectory Data

The modified Kaplan–Meier approach is limited to obser-
ving a vehicle only at a single point in space and time. In
contrast, the method proposed in this study utilizes vehi-
cle trajectories to determine desired speeds as we examine
a vehicle over a specific time duration and distance. In the
first step, we identify free driving periods during which an
ego vehicle is driving without being constrained by pre-
ceding vehicles. We define being constrained as having a
front time headway of less than a threshold of 5 s. Other
studies use smaller thresholds (e.g., Geistefeldt [5]), but to
ensure that the vehicles are unconstrained we opt for this
conservative definition. This assessment considers both
the preceding vehicle in the same lane and in the left lanes
of the ego vehicle, whereas the headway to at least one of
these preceding vehicles must be higher than the thresh-
old. To ensure that the driver is conscious about a free
driving period, only periods exceeding a minimum free
driving period duration of 6 s are considered further. This
represents a duration in which a driver has enough time

to perceive their current situation and potentially adjust
their speed to match their desired speed. This parameter
value is a best guess that we find reasonable but have not
empirically investigated so far. For this reason, its impact
on the proportion of vehicles for which a desired speed
can be determined will be discussed later as part of a sen-
sitivity analysis.

In the next step, we determine a temporary desired
speed for each free driving period. For this purpose, we
identify the highest speed attained during the period and
verify whether the vehicle’s acceleration, by the time it
reaches this maximum speed, remains below a threshold
of 1 m

s2. This criterion ensures that the vehicle has achieved
its desired speed within the given period and that the accel-
eration toward the desired speed is not prematurely inter-
rupted because of the presence of a preceding vehicle.

If multiple free driving periods are identified for a
vehicle, various temporary desired speeds may result. To
determine a desired speed distribution for the collective
of vehicles on the segment, these temporary desired
speeds need to be aggregated into a single desired speed
value for each vehicle. Several approaches can be used
for this aggregation, such as selecting the maximum tem-
porary desired speed, the mean of the temporary desired
speeds, or the temporary desired speed that occurs most
frequently. Since this study is based on trajectory data-
sets with a length of 1,200m, and thus only a limited
amount of free driving periods are expected to be identi-
fied per vehicle, we carry out the estimation with the
mean and maximum temporary desired speed and dis-
cuss the results. The differences between these temporary
desired speeds and the stability of the desired speed over
the course of the road segment are examined further.

Results

Modified Kaplan–Meier Approach

We applied the Kaplan–Meier approach separately to the
data from each individual synthetic detector, allowing the
estimation of desired speed distributions at 50-m intervals
for both driving directions. Figure 6 shows the resulting
desired speed distributions. The color shades illustrate the
different synthetic detectors, with the colors darkening
along the driving direction. In the westbound direction,
the median of the distributions is approximately 15 km/h
higher than in the eastbound direction. This difference
could potentially be attributed to the presence of a free-
way exit about 1,000m downstream and the occurrence
of merging processes toward the end of the trajectories in
the eastbound direction.

Figure 7 depicts the variation of desired speed distri-
butions in 50-m increments along the segment. Each line
corresponds to the evolution of a percentile, with the
percentiles plotted at 5% intervals. In the westbound

Figure 5. Estimating desired speed distributions with the
modified Kaplan–Meier approach and determining desired speeds
based on vehicle trajectory data.
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direction, the desired speed distributions remain rela-
tively constant, with percentile values as well as the med-
ian fluctuating in an interval of 5 km/h, with the median
remaining between 120 and 125km/h. In contrast, in the
eastbound direction, it is evident that the dispersion of
the desired speed distribution increases with position,
particularly as the distance to the exit decreases. Despite
this variation, the median of the distribution remains
approximately constant at 105 km/h along the trajectory.
Interestingly, both the lower and upper percentiles widen
equally. This could be because, on the one hand, vehicles
may reduce their speed without direct influence from
other vehicles, and on the other hand, there tend to be
fewer vehicles on the left lane near the exit, providing
more space for vehicles staying on the freeway to drive
faster.

Trajectory-Based Approach

Estimating the desired speed from vehicle trajectories
enables the examination of the stability of a vehicle’s
desired speed throughout the duration of its trajectory. As
Figure 8 illustrates, we could only identify one free driving
period for most of the vehicles because of the 1,200m
length of the vehicle trajectory dataset. To examine the
intra-vehicle stability of the desired speed, we focused only
on vehicles for which more than one free driving period
could be identified. To assess the intra-vehicle stability of
the desired speed, the difference between a vehicle’s high-
est and lowest temporary desired speeds is determined.
While other statistical metrics like the standard deviation
of the temporary desired speeds are conceivable, they have
been omitted because of the limited amount of free driving
periods available for evaluation. This maximum desired
speed delta exceeds 5 to 7km/h for 40% of the vehicles,
depending on the driving direction.

Figure 9 displays the desired speed distributions
estimated using the trajectory-based approach. Similar
to the results of the modified Kaplan–Meier approach,
the westbound desired speed distribution is approxi-
mately 15 km/h higher in the median range. As we
mentioned above, this difference could potentially be
attributed to the presence of a freeway exit about
1,000m downstream and the occurrence of merging
processes toward the end of the trajectories in the east-
bound direction. We have considered two variants of
the method concerning the determination of the
desired speed for each vehicle based on the temporary
desired speeds: the maximum and mean of the tempo-
rary desired speeds. These results were compared with
the estimations obtained with the modified Kaplan–
Meier approach, which were computed based on the
entire set of synthetic detector data for each driving
direction. Because of the limited amount of vehicles
for which we have been able to identify multiple free
driving periods, the results of the maximum and mean
of the temporary desired speed mostly align, as they
yield the same result for vehicles with only one free
driving period.

We apply non-parameterized bootstrapping with 1,000
iterations separately for each driving direction to further
examine the significance of the obtained results. Table 2
presents the results for the distributions’ mean, standard
deviation, and median for different sample sizes. Regardless
of the sample size, the median in the westbound driving
direction yields a standard error of about 1.0km/h, and in
the eastbound driving direction, it is lower than 1.5km/h.
Comparing the results of the trajectory-based approach
with the modified Kaplan–Meier approach, we observed
similar outcomes in both driving directions: the shapes of
the desired speed distributions largely align, but the values
at the median level are approximately 5 to 10km/h higher
with the trajectory-based approach.

Discussion

Comparing the proposed trajectory-based approach
with the established modified Kaplan–Meier approach
indicates that the achieved results are reasonably plau-
sible because they fall within a similar range as those
of the modified Kaplan–Meier approach, and the
shapes of the desired speed distributions align. The
discrepancies can be explained as follows. Since the
modified Kaplan–Meier approach relies on stationary
detector data, each vehicle is considered only once at a
single point in space and time. Therefore, it is possible
that a vehicle has not yet reached its desired speed at
that particular point and continues to accelerate after
passing the stationary detector. Additionally, it is con-
ceivable that apart from the free driving period

Figure 6. Desired speed distributions of passenger cars for
every synthetic detector based on the Kaplan–Meier approach.
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recorded by the stationary detector, there are other
free driving periods for the same vehicle with higher
temporary desired speeds. Under these circumstances,
it is reasonable that the desired speed distribution
obtained through the trajectory-based approach dis-
plays higher speeds than the modified Kaplan–Meier
approach.

Considering the discrepancies observed both in the
application of the modified Kaplan–Meier approach to
multiple synthetic detectors and between the results of
the modified Kaplan–Meier approach and the proposed
trajectory-based approach, it can be concluded that the
estimation of desired speed distributions is subject to a
certain degree of inaccuracy, ranging between 5 and
10km/h for the A2 dataset. This should be taken into
account when calibrating microscopic traffic flow simu-
lation models.

Figure 8. (a) Distribution of maximum desired speed distribution delta for passenger cars with multiple free driving periods, and (b)
number of free driving periods per passenger car.

Figure 9. Desired speed distribution of passenger cars estimated
with trajectory-based approach (traj.) and modified Kaplan–Meier
approach (mKM).

Figure 7. Percentiles of the desired speed distributions of passenger cars estimated with the modified Kaplan–Meier approach (a)
westbound and (b) eastbound.
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The question of which method provides the ‘‘more accu-
rate’’ results cannot be easily answered based solely on
empirical evidence from the vehicle trajectory dataset.
Without knowledge of the actual ground truth, that is, the
true desired speed of each vehicle, we lack a definitive
benchmark for comparison. Simulation experiments, where
a specific desired speed distribution is defined as an input
parameter and the presented approaches are used to attempt
to reproduce this desired speed distribution from the result-
ing simulation outcomes, can provide valuable insights.

Nevertheless, this raises the question of whether the con-
cept of a fixed desired speed over time and space accurately
reflects reality. As shown in Figure 8, the temporary desired
speeds can exhibit considerable variations across different
free driving periods (in the A2 dataset, the maximum desired
speed delta exceeds 5 to 7km/h for 40% of the vehicles).
Current microscopic traffic flow simulation tools do not
consider these intra-vehicle instabilities of desired speed in
their models. The extent to which these instabilities influence
traffic flow cannot be conclusively determined here and
must be addressed in further investigations.

Based on the A2 dataset, Figure 10a illustrates that
depending on the position of the synthetic detector and
driving direction, approximately 80% of the vehicles are
unconstrained according to the modified Kaplan–Meier
approach, allowing for direct determination of desired
speed. As we do not know the desired speeds of the con-
strained vehicles, the desired speeds are estimated by
applying the product-limit method. In contrast to the
modified Kaplan–Meier approach, the trajectory-based
approach lacks a mechanism to determine desired speeds
for vehicles without a free driving period. This mechan-
ism is not necessarily required here as we were able to
identify a free driving period for 96% of the vehicles in
both directions (see Figure 10a), allowing for the deter-
mination of desired speed.

The percentage of free driving vehicles is influenced
by the choice of the minimum free driving period dura-
tion parameter. A sensitivity analysis reveals that the
percentage of free driving vehicles decreases linearly with
increasing the minimum free driving duration (see
Figure 10b). We use 6 s as a threshold in this study.

Table 2. Standard Error of Estimation Statistics for Different Bootstrap Sample Sizes (1,000 Iterations)

Bootstrap sample size

Statistic standard error (km/h)
Westbound Eastbound

250 500 1,000 2,000 250 500 1,000 2,000

Mean 1.01 1.01 0.99 1.02 1.17 1.20 1.18 1.17
Standard deviation 0.92 0.98 0.98 0.98 0.99 0.93 0.94 0.92
Median 1.01 0.96 0.98 1.00 1.46 1.48 1.47 1.42

Figure 10. Percentage of free driving passenger cars depending on the used approach (a) and the min. free driving period duration (b).
Note: traj = trajectory-based approach; mKM = modified Kaplan–Meier approach.
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Conclusion and Further Research

Desired speed distributions are crucial input parameters
in microscopic traffic flow simulations. However, their
determination is not straightforward, especially in situa-
tions of high traffic densities, where most vehicles are
constrained by surrounding vehicles and cannot attain
their desired speeds. The established method for estimat-
ing desired speed distributions is the modified Kaplan–
Meier approach, which estimates the desired speed distri-
bution based on single vehicle data from stationary
detectors using the product-limit method. Nonetheless,
the application of this method is limited to a stationary
perspective, where each vehicle is only captured at a sin-
gle point in space and time. In contrast, vehicle trajectory
data provides the opportunity to observe each vehicle
over a certain distance. In this paper, we propose a novel
method for estimating desired speeds from vehicle trajec-
tory data, as no similar approach has been found in the
existing literature. This trajectory-based approach is
compared with the established modified Kaplan–Meier
approach, which is applied to synthesized stationary
detector data derived from the vehicle trajectories.
Furthermore, we evaluated the intra-vehicle stability of
desired speeds using the outcomes obtained from both
methods. To conduct our evaluations, we used vehicle
trajectories covering a length of 1,200m on a German
freeway. The trajectory dataset covers 2 h of recording
time, encompassing both driving directions and a total
of 11,488 vehicles.

Applying the modified Kaplan–Meier approach on
synthetic detectors at 50-m intervals along the recorded
vehicle trajectories revealed that the desired speed distri-
bution widens as the freeway exit is approached, with
lower percentiles experiencing a notable decrease in
speed. Analyzing the trajectory data demonstrated that
40% of the vehicles exhibited a delta of temporary
desired speeds exceeding 5 to 7 km/h between different
free driving periods. These findings suggest that the
desired speed of a vehicle does not remain constant along
its route, although the obtained results are based on only
1,200-m-long trajectories, and longer trajectories are nec-
essary to verify them further.

Comparing our proposed method based on vehicle
trajectory data with the established modified Kaplan–
Meier approach, it becomes evident that the obtained
results are reasonably plausible. The estimated desired
speed distributions lie within a comparable range to
those of the modified Kaplan–Meier approach, and the
shapes of the distributions align. For both approaches,
the westbound desired speed distribution is approxi-
mately 15 km/h higher in the median range, most proba-
bly because of the presence of a freeway exit about
1,000m downstream and the occurrence of merging pro-
cesses toward the end of the trajectories in the eastbound

direction. The desired speed distributions obtained from
the trajectory-based approach are approximately 5 to
10 km/h higher than those estimated by the modified
Kaplan–Meier approach. This difference in results is
possibly because the trajectory-based approach observes
each vehicle over a longer distance rather than just at
stationary points. While this finding holds true for both
driving directions in the A2 dataset, this investigation
should be conducted in the future for additional road
segments to validate the findings. Nevertheless, it can be
concluded that the estimation of desired speed distribu-
tions is subject to a certain degree of inaccuracy. This
should be considered in the context of calibrating micro-
scopic traffic flow simulations.

The analysis of the trajectory data enables the identifi-
cation of a free driving period for almost every vehicle in
the A2 dataset, facilitating the determination of desired
speeds. However, at higher traffic densities than those
present in the current dataset, this approach may not be
as straightforward. Future studies should explore and
refine the proposed trajectory-based approach to deliver
plausible results even when free driving periods cannot
be identified for all vehicles. Moreover, all analyses of
desired speeds in this study pertain to passenger cars.
The extent to which the share of heavy vehicles influ-
ences these desired speeds and whether the approach can
also be used to estimate desired speeds for heavy vehicles
needs to be further investigated in subsequent studies.
To extrapolate empirical findings and compensate for
the lack of a ground truth, microscopic traffic flow simu-
lations should be employed. Using these simulations, the
proposed approach can be applied to various scenarios
and traffic densities, allowing for an examination of how
well the desired speed distributions defined as input
parameters in the simulation can be reproduced by the
approach based on the simulation results. Further inves-
tigations into the intra-vehicle stability of desired speed
also require additional vehicle trajectory datasets, ideally
covering longer stretches, such as the I-24 MOTION
project (27), whose data was not available at the time of
this study. In this context, it is important to explore the
potential impact of intra-vehicle instability of desired
speed on traffic flow and to assess whether and how such
variability should be represented in microscopic traffic
flow simulations.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: M.V. Baumann, C.M. Weyland, L.
Fuchs, J. Grau, P. Vortisch; data collection: M.V. Baumann, J.
Ellmers; analysis and interpretation of results: M.V. Baumann,

C.M. Weyland; draft manuscript preparation: M.V. Baumann,
C.M. Weyland, J. Ellmers, L. Fuchs. All authors reviewed the
results and approved the final version of the manuscript.

10 Transportation Research Record 00(0)



Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The authors disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article:
This paper is based on research funded by the German Federal
Ministry for Digital and Transport, represented by the Federal
Highway Research Institute.

ORCID iDs

Marvin V. Baumann https://orcid.org/0000-0001-5952-7112
Claude M. Weyland https://orcid.org/0000-0002-2936-1067
Jan Ellmers https://orcid.org/0009-0007-7402-715X
Lea Fuchs https://orcid.org/0009-0004-3222-8218
Josephine Grau https://orcid.org/0009-0001-2852-2551
Peter Vortisch https://orcid.org/0000-0003-1647-2435

References

1. Botma, H., The Free Speed Distribution of Drivers: Esti-

mation Approaches. In Five Years ‘Crossroads of Theory

and Practice’ (P. Bovy, ed.), Delft University Press, Neth-

erlands, 1999, pp. 1–22.
2. Wiedemann, R., H. Hubschneider, and H. Fritsche.

Zusammenhang zwischen der Wunschgeschwindigkeit und
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