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Sensor-based HAR models face challenges in cross-subject generalization due to the complexities of data collection and annotation,
impacting the size and representativeness of datasets. While data augmentation has been successfully employed in domains like natural
language and image processing, its application in HAR remains underexplored. This study presents AutoAugHAR, an innovative
two-stage gradient-based data augmentation optimization framework. AutoAugHAR is designed to take into account the unique
attributes of candidate augmentation operations and the unique nature and challenges of HAR tasks. Notably, it optimizes the
augmentation pipeline during HAR model training without substantially extending the training duration. In evaluations on eight
inertial-measurement-units-based benchmark datasets using five HAR models, AutoAugHAR has demonstrated superior robustness
and effectiveness compared to other leading data augmentation frameworks. A salient feature of AutoAugHAR is its model-agnostic
design, allowing for its seamless integration with any HAR model without the need for structural modifications. Furthermore, we also
demonstrate the generalizability and flexible extensibility of AutoAugHAR on four datasets from other adjacent domains. We strongly
recommend its integration as a standard protocol in HAR model training and will release it as an open-source tool1.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; Human computer interaction (HCI); •
Computing methodologies→ Supervised learning by classification.
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1 INTRODUCTION

Human Activity Recognition (HAR) identifies human activities using various data sources. Among the available
methodologies, sensor-based HAR has gained prominence, especially with the evolution of wearable and mobile

1The code will be published at https://github.com/JoeZYX/AutoAugHAR.
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technologies. This approach offers significant advantages over vision-based HAR, particularly in terms of being
non-intrusive and unobtrusive. However, the size of sensor-based HAR datasets is often limited. Challenges in data
collection and annotation [1], coupled with the high costs of user studies and volunteer participation [39], limit their
representativeness and informativeness. While deep learning models for HAR have shown promising results [51, 77, 78],
their ability to generalize across different subjects remains a concern [25].

In order to improve the cross-subject generalizability of deep learning models, Data Augmentation (DA) has emerged
as a promising solution. DA involves enriching datasets through the creation of virtual training samples via various
transformations on original data. The efficacy of DA has been well-established in fields like computer vision [15, 63]
and natural language processing [18]. However, in the context of HAR tasks, the application of DA has received limited
attention [2, 28, 70]. Applying DA in the HAR domain presents four primary challenges:

1. Inter-Class Similarity Challenge: HAR datasets often exhibit significant similarities between different activ-
ities [12], complicating the application of random transformations without inadvertently altering the activity. For
example, Jeong et al. [30] shows how augmenting a "walking" segment might lead to a “jogging" misclassification.
Experimental findings [28, 30, 67], highlight how aggressive or inappropriate augmentations might bias the data and
diminish model performance. Consequently, a key challenge in DA implementation is the judicious selection of DA
methods that respect the characteristics of the data and the semantic nuances of the activities.

2. DA Combination Challenge: Research [32, 67, 70] has demonstrated notable improvements in HAR tasks by
trainingmodels combiningmultiple DAmethods. However, the sheer number of availablemethods [28]makes exhaustive
experimentation with all possible combinations impractical. Efficiently automating the selection and integration of DA
algorithms for HAR tasks remains an unresolved issue, requiring further investigation.

3. Multi-Modality Challenge: When capturing data from various body locations (e.g., chest, arms, ankles) using
different sensor types (e.g., accelerometers, gyroscopes, magnetometers), each modality provides unique insights
into the target activity. Applying transformations indiscriminately across modalities during DA can inadvertently
compromise the effectiveness of these techniques. Furthermore, optimizing DA combinations for each modality results
in an exponential increase in the total number of potential combinations as the number of modalities increases.

4. Intra-Class and Inter-Subject Variability Challenge: The general performance of HAR models often declines
when applied to new subjects. The variability within classes and between subjects leads to differences in the distributions
of training and test data. Although many DA methods aim to generate diverse synthetic data that approximates the
distribution of the original data, they may not sufficiently capture the data distributions encountered in test scenarios.

The present research endeavors to explore the potential and effectiveness of DA in enhancing deep learning HAR
models. As static DA solutions have not proven to be generalizable, our aim is to design an efficient automated DA
framework tailored to the above challenges:

• Automatic Augmentation Selection and Combination: This study introduces a differentiable automatic DA
approach for HAR tasks, facilitating the learning process to automatically generate effective combinations of
augmentations without excess computational demands.

• Development of AutoAugHAR Framework: A two-stage automatic DA framework named AutoAugHAR
is developed, explicitly designed to maintain label semantic information. Furthermore, considering the multi-
modalities nature, AutoAugHAR allows for the optimization of DA combinations specific to each modality.
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• Rigorous Experiments and Ablation Studies: Comprehensive experiments and ablation studies are conducted
across eight benchmark datasets and five state-of-the-art HAR models in order to support our design choices.
The results demonstrate the superiority of AutoAugHAR over the compared solutions on the given HAR tasks.

• Generalizability and Extensibility: Further experiments are conducted on four datasets from adjacent domains
to demonstrate the generalizable performance and flexible extensibility of the proposed AutoAugHAR.

• Accessibility of AutoAugHAR: AutoAugHAR is crafted for broad applicability across diverse deep learning
models used in HAR tasks. It does not require any modifications to existing models or structural adjustments,
thereby enhancing its usability. Furthermore, the framework is extensible and will be made publicly available as
an open-source tool, endorsing its integration as a standard procedure to bolster the generalization performance
of deep learning models in HAR tasks.

2 RELATEDWORK

Existing DA methods for HAR tasks can be broadly classified into two categories: traditional and advanced [70].

2.1 Traditional Approaches

Traditional DA techniques for HAR tasks typically involve random signal transformations such as adding noise,
window slicing, magnitude scaling, and random warping [3, 13, 32], among others. However, these methods are not
specifically designed for HAR tasks and lack awareness of the target task and data characteristics [70]. Consequently,
the implementation of inappropriate DA methods can distort the original data characteristics, possibly altering the
label semantic information [30] and negatively impacting model performance [28]. These observations underscore the
importance of selecting appropriate DA methods that minimize the distortion of the characteristics of the original data
(as mentioned in challenge 1).𝑤-augment [19] proposed sample-adaptive automatic weighting schemes to learn the
contribution of each random transformation, which enables the exclusion of excessive or redundant methods. However,
this approach was not specifically assessed on HAR data. Additionally, while it learns the importance of individual
random transformations, it does not explore their combination.

Research has demonstrated that combining multiple augmentation methods can yield improved performance [30, 67,
70]. However, these studies typically involve manually predefining the combination of methods. Identifying the optimal
set of augmentation methods is a combinatorial problem, which is NP-hard and requires substantial computational
resources (as mentioned in challenge 2).

To mitigate the label semantics issue arising from random transformations, Abedin et al. [1] proposed the MixUp DA
method. The MixUp method randomly linearly mixes two data samples and their labels to generate virtual data. Another
approach, ALAE-TAE-CutMix [2], deploys a different data mixing technique by randomly replacing sub-segments in
one data sample with corresponding sub-segments from another sample. However, these methods face challenges in
generating a diverse range of augmented data, especially considering variations in subjects, activities, sensor placements
and sensor elasticity [65]. The substantial intra-class and inter-subject variability prevalent in HAR datasets implies
that relying solely on training set through mixing techniques may not adequately bridge the distributional gap between
training and test sets (as mentioned in challenge 4). As a result, the exploration of supplementary DA techniques capable
of increasing the diversity and mirroring real-world scenario variability becomes indispensable.
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2.2 Advanced Approaches

Advanced approaches for DA primarily involve synthesizing data using generative models. For instance, Goubeaud
et al. [21] trained a variational autoencoder (VAE) on the original data and subsequently generated new samples
to augment the training set. Meanwhile, Activitygan [39] employed a generative adversarial network (GAN)-based
approach to generate new training samples. Another emerging class of generative models is the diffusion model,
increasingly applied in the image domain and recently adapted for HAR. This includes applications in WiFi channel
state information-based HAR [27], and wearable-based HAR [62, 81]. Work by Shao et al. [62] reconfigured the U-net
architecture for the denoising model to assess the efficacy of diffusion-based models. Zuo et al. [81] conditioned the
diffusion model on statistical information to generate diverse synthetic sensor data. However, a noteworthy limitation
of these approaches is that they did not train the virtual data generator in an end-to-end manner alongside the HAR
model, potentially resulting in sub-optimal performance (as mentioned in challenge 4).

Addressing this issue, the sample fusion network (SFN) [45] cascaded a long short term memory (LSTM) autoencoder
(AE) network to the HAR network, employing a data mixing style to create a combined network that can be trained
in an end-to-end manner. Augmented Adversarial Learning framework for HAR (AALH) [33] utilized an adversarial
neural network to learn common latent representation from various sensor modalities. Some efforts even attempted to
generate virtual data through other forms of data. For example, Vi2IMU [60] attempted to generate virtual Smartwatch
IMU Data through Videos. While these advanced approaches offer data- and task-dependent advantages, it is important
to acknowledge that they tend to be computationally expensive [28, 70].

Successfully applying the above advanced techniques often demands a high level of expertise in model structure
design and training configuration to guarantee the quality of synthetic samples. To mitigate the need for such expert
knowledge, fields like image processing have extensively explored automated DA optimization frameworks [14, 24].
However, these frameworks have not been explicitly applied to the HAR field. Furthermore, unlike image data, HAR
data involves more complex modalities and is more sensitive to perturbations, factors not accounted for in previous
research [14, 24].

3 PRELIMINARIES

In this section, the foundational concepts essential for the implementation of a self-optimizing generalizable DA are
presented. Particularly, we introduce the concept of DA sub-policies and define an optimization problem.

3.1 Background

Let O represent a set comprising𝑀 candidate time series processing operations. Each operation 𝑜 within O represents
a function capable of transforming the time series samples, given by �̃� = 𝑜 (𝒙). An augmentation sub-policy, denoted as
𝑠 and composed of 𝑁 consecutive transformations, is expressed as:

�̃� = 𝑠 (𝒙) = 𝑜𝑁 (· · ·𝑜2 (𝑜1 (𝒙))) (1)

In this formulation, each operation is sequentially applied to the time series sample 𝒙 . To implement an augmentation
sub-policy, it is necessary to determine the number of consecutive operations 𝑁 and identify the appropriate operation
form the set O for each transformation step. For instance, Chung et al. [13] utilized a single transformation method
jittering, which means the number of consecutive operations 𝑁 = 1 and the 𝑜𝑝 = ” 𝑗𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔”. And Um et al. [67]
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Fig. 1. The categorical distribution for 10 augmentation sub-policies. Those depicted in red represent augmentation sub-policies that
exert a negative influence, while those in green denote sub-policies with a positive impact.

utilized an augmentation sub-policy encompassing three consecutive operations (𝑁 = 3), which are 𝑜1 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,
𝑜2 = 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 , and 𝑜3 = 𝑡𝑖𝑚𝑒 −𝑤𝑎𝑟𝑝𝑖𝑛𝑔, respectively.

Let S symbolize the set of all possible augmentation sub-policies. Given 𝑀 candidate operations and each aug-
mentation sub-policy comprising 𝑁 consecutive transformations, the total number of augmentation sub-policies is
𝐿 = |S| = 𝑃𝑁

𝑀
, where S =

(
𝑠1, 𝑠2, · · · , 𝑠𝐿

)
. Each augmentation sub-policy possesses a distinct combination of the candi-

date operations. However, a brute-force approach to explore all various augmentation sub-policies demands significant
experimentation and computational resources, rendering it inefficient and sub-optimal.

3.2 Naive Approach

To address the challenge of efficiently selecting effective augmentation sub-policies, we use a baseline approach, that is
commonly used DAmechanism in computer vision model [15]. Instead of using only a singular, predefined augmentation
sub-policy, the entire set of possible sub-policies S is employed in a stochastic manner during the training phase. During
the augmentation phase of each mini-batch iteration, a single augmentation sub-policy is randomly selected from S
and subsequently applied to the mini-batch data.

Let the categorical distribution 𝒑 represent the likelihood of each sub-policy being sampled. In this context,
𝒑 =

[
𝑝1, 𝑝2, · · · , 𝑝𝐿

]
=
[ 1
𝐿
, 1
𝐿
, · · · , 1

𝐿

]
follows a uniform probability distribution, providing an equal chance for all

augmentation sub-policies to be utilized. Thus, the entirety of possible augmentation sub-policies is leveraged, offer-
ing a significantly increased diversity of the augmented data. Furthermore, this approach mitigates potential model
degradation that could arise from the utilization of predetermined, sub-optimal augmentation sub-policies.

3.3 Data Augmentation Optimization

The naive approach adopted a uniform probability distribution, treating all augmentation sub-policies equally without
considering their potential positive or negative impacts, as demonstrated in Figure 1 (a). Ideally, augmentation sub-
policies that exert positive influences should be assigned higher probabilities. Therefore, the primary objective of
this study is to automatically optimize the categorical distribution for all augmentation sub-policies, as illustrated in
Figure 1 (b). Moreover, this optimization process should be executed without incurring excessive training overheads or
necessitating model modifications.

4 METHODOLOGY

To effectively optimize the categorical distribution (combinatory space) of sub-policies, we present a two-stage gradient-
based framework, termed AutoAugHAR. This framework takes into account multi-modality characteristics inherent in
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Augmentation Layer HAR Model

𝒑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 𝑏𝑦 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝜶
𝐷𝑒𝑒𝑝 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙

𝑤𝑖𝑡ℎ 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝒘

ℒ(𝜶,𝒘)

𝐷𝑎𝑡𝑎 𝑆𝑎𝑚𝑝𝑙𝑒

Fig. 2. An overview of the proposed AutoAugHARbasic. Every channel across all modalities undergoes the same augmentation
sub-policy. During the data propagation phase, only one augmentation sub-policy is chosen and applied. The selection of this
sub-policy depends on the probability associated with each path (sub-policy). The objective of the optimization is to ensure that
sub-policies which improve performance have a higher probability compared to those that affect performance.

HAR tasks. Optimization of the categorical distribution and weights of the HAR model is performed end-to-end (see
Section 4.1) using gradient descent (Section 4.2) . We have designed a HAR specific search space of DA operators that
constitute the augmentation sub-policies (Section 4.3).

4.1 Overview of AutoAugHAR

During the training phase, data samples are subjected to DA transformations before being input into the HAR models
(see augmentation layer preceding the HAR model in Figure 2). Contrary to prior studies, this framework incorporates
a total of 𝐿 distinct augmentation sub-policies. For each mini-batch iteration, only a sub-policy is selected and executed,
ensuring that memory consumption aligns with traditional HAR model training paradigms. The selection is determined
by sampling the sub-policy in accordance with the categorical distribution 𝒑 =

[
𝑝1, 𝑝2, · · · , 𝑝𝐿

]
. Each element 𝑝𝑖

represents the probability of selecting the 𝑖-th sub-policy in the sampling process:

𝒄 = sample
(
𝑝1, 𝑝2, · · · , 𝑝𝐿

)
=


[1, 0, · · · , 0] 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

· · ·

[0, 0, · · · , 1] 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝐿
(2)

Upon sampling, the path within the augmentation layer is represented as a one-hot encoded vector, denoted as 𝒄 ,
contingent on the associated probability:

�̃� =

𝐿∑︁
𝑖=1

𝑐𝑖𝑠𝑖 (𝒙) =


𝑠1 (𝒙) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

· · ·

𝑠𝐿 (𝒙) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝐿
(3)
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Fig. 3. An overview of the proposed AutoAugHAR. Different colors represent data from different modalities. In the first stage, data
from all modalities undergo transformation by one selected operator. In the second stage, data from each modality is individually
transformed by different operators and then integrated together.

At any given instance, only a single augmentation sub-policy path is activated. If the categorical distribution of sub-
policies 𝒑 is uniformly distributed and remains unoptimized, this procedure mirrors the baseline approach detailed in
section 3.2. For clarity in subsequent experimental comparisons, we refer to this framework as AutoAugHARrandom.

Categorical distribution 𝒑 is parameterized by a learnable vector 𝜶 =
[
𝛼1, 𝛼2, · · · , 𝛼𝐿

]
. Subsequently, the distribution

𝒑 is derived by applying the softmax function over 𝜶 leading to the following probability of selecting the 𝑖-th sub-policy:

𝑝𝑖 = 𝑝𝜶

(
𝑠 = 𝑠𝑖

)
= softmax

(
𝛼𝑖 ;𝜶

)
=

exp
(
𝛼𝑖
)∑𝐿

𝑗=1 exp
(
𝛼 𝑗

) (4)

𝛼𝑖 signifies the importance attributed to the 𝑖-th sub-policy: a relatively large value of 𝛼𝑖 indicates a higher likelihood
for selecting the corresponding 𝑖-th sub-policy. We define the resulting optimization problem as follows:

min
(𝜶 ,𝒘 )

L (𝜶 ,𝒘) (5)

Both 𝒑 and𝒘 are subjected to end-to-end training, minimizing the loss function. The "sample" operation in equation 2
introduces a discontinuity, thereby inhibiting the propagation of gradients to the weights 𝜶 (see section 4.2). While
this optimization strategy enables dynamic weights optimization for augmentation sub-policies during the model’s
training phase, it still overlooks the distinct attributes of the candidate DA operations within set O and the inherent
characteristics of HAR tasks. (We refer to this framework as AutoAugHARbasic.)

Given two distinct categories of candidate DA operations, each with varying capacities to preserve label semantics
(refer to Section 4.3), and aiming to optimize augmentation sub-polices for each modality, we revised the structure.
The updated framework, named AutoAugHAR, is depicted in Figure 3. AutoAugHAR operates in two stages. The
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first mixing stage transforms the data using label-preserving sample-pair-based mixing techniques like MixUp and
CutMix. The second stage, which has a slightly higher risk of compromising label semantics, incorporates random DA
augmentations to further enrich the diversity of the data.

In contrast to AutoAugHARbasic, which optimizes 𝒑 universally across all modalities, AutoAugHAR tailors the
distribution of augmentation sub-policies for each modality in the second stage individually. Modalities are classified
based on sensor placement, e.g. head, upper limb, lower limb, and torso. During the forward pass of the second stage, data
samples are partitioned according to the modality. For each, a path is sampled independently, with the corresponding
augmentation sub-policy applied. Subsequently, data from all modalities are integrated and fed to the HAR model. We
did not perform individual modality-wise optimization in the first stage. This is attributed to the incompatibility of
sample-pair-based mixing techniques for such a purpose (see section 4.3).

For optimization, separate categorical distributions are initialized for the first mixing stage and each modality
of the second stage. These are denoted as

(
𝒑𝑚𝑖𝑥𝑖𝑛𝑔,𝒑ℎ𝑒𝑎𝑑 ,𝒑𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑏 ,𝒑𝑙𝑜𝑤𝑒𝑟𝑙𝑖𝑚𝑏 ,𝒑𝑡𝑜𝑟𝑠𝑜

)
with learnable vectors(

𝜶𝑚𝑖𝑥𝑖𝑛𝑔,𝜶ℎ𝑒𝑎𝑑 ,𝜶𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑏 ,𝜶 𝑙𝑜𝑤𝑒𝑟𝑙𝑖𝑚𝑏 ,𝜶 𝑡𝑜𝑟𝑠𝑜
)
. The size and search space of these distributions are detailed in

section 4.3.1 and 4.3.2. During the forward pass, within each categorical distribution, a path will be sampled using
equation 2. The corresponding sub-policy is then applied to the data according to equation 3. Upon optimization,
the first mixing stage as well as all individual modalities of the second stage, will acquire a specifically optimized
distribution for applying DA sub-policies. By leveraging this two-stage structure, AutoAugHAR seeks to preserve the
label semantic information of the data while generating optimized categorical distribution of augmentation policies
intrinsic to each modality, thus improving the overall performance.

4.2 Gradient Based Optimization

The loss function in equation 5 is differentiable with respect to the model weights𝒘 , allowing optimization via stochastic
gradient descent. However, the loss is not directly differentiable with respect to the sampling parameter 𝜶 , because
the discrete "sample" operation introduces non-differentiable points in the network. This section will describe how to
optimize the weights 𝜶 using a gradient descent approach. Because the forward process and gradient back propagation
process of all categorical distributions parameterized by 𝜶 are same, we decide to omit the use of superscripts (head,
upperlimb, lowerlimb and torso) to explain these processes.

In order to facilitate back-propagation through these non-differentiable operations, Straight-Through Estimators
(STE) [8] are employed. The basic idea behind STE is to provide a way to back-propagate gradients through these
non-differentiable operations while maintaining their original behavior during forward pass and avoiding any gradient
vanishing or exploding issues during the backward pass. In order to obtain a differentiable approximation, we apply the
Straight-Through Gumbel-Softmax Estimator [29]. Compared to sampling the path with equation 2, the Gumbel-Max
trick [22, 44] provides a different way to sample the path (sub-policy):

𝒄 = Onehot_Encoding
(
argmax

𝑖

(
𝑔𝑖 + log

(
𝛼𝑖
)))

(6)

where 𝑔𝑖 are independent samples drawn from a standard Gumbel distribution 𝑔𝑖 ∼ Gumbel (0, 1). The reparameteri-
zation trick refractors the sampling of 𝒄 into a deterministic distribution function using 𝜶 and independent noise 𝑔
from a fixed distribution, maintaining an identical sampling procedure using equation 2. This technique avoids having
to back-propagate through the stochastic node 𝑔 and instead only back-propagate into the deterministic distribution
function, updating the parameters 𝜶 .
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During the gradient back-propagation,𝑎𝑟𝑔𝑚𝑎𝑥 operation is still not differentiable. To address this issue, a differentiable
approximation of 𝑎𝑟𝑔𝑚𝑎𝑥 is needed. Gumbel 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 [29] offers a differentiable approximation to 𝑎𝑟𝑔𝑚𝑎𝑥 , as utilized
in various works [17, 40, 72, 73]:

𝑝𝑖 = GumbelSoftmax
(
𝛼𝑖 ;𝜶

)
=

exp
( (
log

(
𝛼𝑖
)
+ 𝑔𝑖

)
/𝜏
)∑𝐿

𝑗=1 exp
( (
log

(
𝛼 𝑗

)
+ 𝑔 𝑗

)
/𝜏
) (7)

𝜏 is the temperature parameter that controls the fidelity of the approximation to discrete one-hot vectors. Conse-
quently, this allows the model to be trained with discrete operations, using equations 6 and 3 for the forward pass and
the differentiable equation 7 for gradient back-propagation.

Following the exploration of the differentiable optimization problem, we now present the entire optimization process.
To evaluate whether a categorical distribution for augmentation sub-policies is good or not good, it is needed to train the
HAR model to converge to obtain the optimal model weights,𝒘∗ (𝜶 ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘 L𝑡𝑟𝑎𝑖𝑛 (𝒘,𝜶 ). The optimal weight
𝒘∗ is affected by the categorical distribution parameterized by 𝜶 , if 𝜶 changes, the corresponding optimal𝒘∗ will also
change. This implies a typical bi-level optimization problem [4, 42, 75] with 𝜶 as the upper-level variable and the model
weight𝒘 as the lower-level variable, mathematically defined as follows.

min
𝛼

L𝑣𝑎𝑙

(
𝒘∗ (𝜶 ) ,𝜶

)
𝑠 .𝑡 . 𝒘∗ (𝜶 ) = 𝑎𝑟𝑔𝑚𝑖𝑛

𝒘
L𝑡𝑟𝑎𝑖𝑛 (𝒘,𝜶 ) (8)

where L𝑡𝑟𝑎𝑖𝑛 and L𝑣𝑎𝑙 denote the training and validation loss, respectively. The objective is to determine the categorical
distribution parameterized by 𝜶 , which minimizes the validation loss, where the weights of the HAR model 𝒘 are
obtained by minimizing the training loss. Using the performance of the validation set as a reward for updating upper-
level variable is a common practice [41, 42, 79, 80]. In this case, minimizing the validation loss through 𝜶 encourages
the optimized categorical distribution for augmentation sub-policies preserve the data semantic information and also
fill the gap between seen (training) and unseen (validation) data. This mitigates the risk of generating augmentation
sub-policies that might over-fit the training set.

Algorithm 1 Training Procedure

Variables:
𝜶 - Categorical distribution for augmentation sub-policies 𝜶 =

(
𝜶𝑚𝑖𝑥𝑖𝑛𝑔,𝜶ℎ𝑒𝑎𝑑 ,𝜶𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑏 ,𝜶 𝑙𝑜𝑤𝑒𝑟𝑙𝑖𝑚𝑏 ,𝜶 𝑡𝑜𝑟𝑠𝑜

)
𝒘 - weights of the model
𝜉𝑤 - Learning rate for updating𝒘
𝜉𝛼 - Learning rate for updating 𝜶
𝑒𝑝𝑜𝑐ℎ𝑠𝑒𝑎𝑟𝑐ℎ - Number of epoch for optimization the augmentation sub-policies

1: for i=1 to 𝑒𝑝𝑜𝑐ℎ𝑠𝑒𝑎𝑟𝑐ℎ do
2: Augmentation sub-policy sampling
3: for Sample a mini-batch of data do
4: Update categorical distribution parameter 𝜶 : 𝜶 = 𝜶 − 𝜉𝛼∇𝜶L𝑣𝑎𝑙 (𝒘∗,𝜶 )
5: Update model weights𝒘 :𝒘 = 𝒘 − 𝜉𝑤∇𝒘L𝑡𝑟𝑎𝑖𝑛 (𝒘,𝜶 )
6: Augmentation sub-policy sampling
7: end for
8: end for

During the training process, 𝒘 and 𝜶 are alternately fine-tuned through gradient descent. The training protocol
is explained in Algorithm 1. Initially, an augmentation sub-policy is sampled for the initial mini-batch data loading
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in accordance with equation 6 (line 2). Following this step, 𝜶 undergoes an update through gradient calculations
(line 4). Subsequently, the weights 𝒘 of the model are updated on the basis of the updated 𝜶 (line 5). Conclusively,
the augmentation sub-policy is re-sampled for the forthcoming mini-batch data loading (line 6). This alternating
optimization procedure is repeated until the maximum optimization epoch is reached.

However, during the 𝜶 update step, the calculation of the gradient of 𝜶 requires a computationally intensive internal
optimization. 𝒘∗ are derived by minimizing training loss. To avoid extensive optimization, a one-step optimization
technique is employed to approximate𝒘∗, as outlined below.

∇𝜶L𝑣𝑎𝑙

(
𝒘∗ (𝜶 ) ,𝜶

)
(9)

≈∇𝜶L𝑣𝑎𝑙 (𝒘 − 𝜉𝑤∇𝜶L𝑡𝑟𝑎𝑖𝑛 (𝒘,𝜶 ) ,𝜶 ) (10)

=∇𝜶L𝑣𝑎𝑙

(
𝒘

′
,𝜶

)
− 𝜉𝑤∇2

𝜶 ,𝒘L𝑡𝑟𝑎𝑖𝑛 (𝒘,𝜶 ) ∇𝒘′L𝑣𝑎𝑙

(
𝒘

′
,𝜶

)
(11)

here,𝒘∗ ≈ 𝒘
′
= 𝒘 − 𝜉𝑤∇𝜶L𝑡𝑟𝑎𝑖𝑛 (𝒘,𝜶 ) is approximated using a single virtual gradient step over the training set. By

applying the chain rule for derivatives, equation 11 is derived. However, the second term in the equation 11 contains an
expensive matrix-vector product with a computational complexity of 𝑂 ( |𝜶 | |𝒘 |). Fortunately, the complexity can be
significantly reduced using a finite difference approximation. Let 𝜖 be a small scalar, and𝒘± = 𝒘 ± 𝜖∇𝒘′L𝑣𝑎𝑙

(
𝒘

′
,𝜶

)
,

then:

∇2
𝜶 ,𝒘L𝑡𝑟𝑎𝑖𝑛 (𝒘,𝜶 ) ∇𝒘′L𝑣𝑎𝑙

(
𝒘

′
,𝜶

)
≈

∇𝜶L𝑡𝑟𝑎𝑖𝑛

(
𝒘+,𝜶

)
− ∇𝜶L𝑡𝑟𝑎𝑖𝑛 (𝒘−,𝜶 )
2𝜖

(12)

The evaluation of the finite difference requires only two forward passes for the weights and two backward passes for
𝒂𝒍𝒑𝒉𝒂. following the settings in [40, 42] , we let 𝜖 = 0.01/

∇𝒘′L𝑣𝑎𝑙

(
𝒘

′
,𝜶

)
2
.

4.3 Candidate Operations And Search Space

Drawing from a thorough review of the relevant literature, we have identified a set of 17 operators, which are both
diverse and computationally efficient. All considered candidate DA operators are graphically depicted in Figure 4 and
their hyper-parameter settings are shown in the Table 1. The settings of these hyper-parameters are summarized from
related works [1, 2, 19, 28]. It is important to note that the same operators but with different hyper-parameters are
regarded as distinct and unique entities. The candidate operators can be systematically categorized into two primary
categories: label-preserving augmentation operators and random transformation operators. In the following sections,
we will go into the details of each of these two categories of operators.

4.3.1 Label-preserving Operators. Label-preserving transformation operators aim to produce virtual data that retain the
intrinsic characteristics of the original data. A widely applied technique in this regard is the use of sample-pair-based
methods, which involves mixing signals and labels from two input data samples.

In the MixUp approach, for two given samples (𝒙1, 𝑦1) and (𝒙2, 𝑦2), a virtual training sample (�̃�, 𝑦) is created
through linear interpolation between the input sample pair as follows: �̃� = 𝜆𝒙1 + (1 − 𝜆)𝒙2 and 𝑦 = 𝜆𝑦1 + (1 − 𝜆)𝑦2.
The mixing ratio 𝜆 is a stochastic value drawn from the beta distribution B(𝛼, 𝛼), determining the mixing intensity.
Adhering to the configuration presented in [1], the parameter 𝛼 is specified as 0.3.

In the CutMix methodology, segments from two samples are swapped to produce a new virtual sample. Given two
samples, 𝒙1 and 𝒙2, each comprising 𝑇 time steps. A randomly selected region, spanning a length of 𝜆𝑇 , is delineated
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Table 1. Candidate operators and the settings of hyper-parameters.

𝑀𝑒𝑡ℎ𝑜𝑑 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒/𝑟𝑎𝑛𝑔𝑒 𝑀𝑒𝑡ℎ𝑜𝑑 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒/𝑟𝑎𝑛𝑔𝑒
Jittering 𝜎 0.05 Jittering 𝜎 0.10
Jittering 𝜎 0.15 Identity \

Moving Average 𝑤𝑠 3 Moving Average 𝑤𝑠 5
Moving Average 𝑤𝑠 7
Magnitude Scaling 𝜎 0.1 Magnitude Scaling 𝜎 0.2
Magnitude Warping 𝜎 0.2 Magnitude Warping 𝜎 0.4
Window Slicing 𝜆 [0.7, 0.9] Slope-Like Trend 𝑠𝑙𝑜𝑝𝑒 [−0.1, 0.1]
Time Warping 𝜎 0.1 Time Warping 𝜎 0.2

Mixup 𝛼 0.3 CutMix 𝛼 0.8

within 𝒙1, from which the respective sub-segment is cropped. This cropped sub-segment subsequently replaces the
counterpart in sample 𝒙2, leading to the formation of a mixed virtual sample. Unlike the MixUp mechanism, CutMix
generates virtual samples without altering the raw data values. The samples generated by CutMix have steep transitions
between activities. The label associated with this augmented data is derived from the formula, 𝑦 = 𝜆𝑦1 + (1 − 𝜆)𝑦2. Here,
the coefficient 𝜆, which controls the degree of mixing, is also drawn from the beta distribution B(𝛼, 𝛼). As referenced
in [2], the parameter 𝛼 is set at 0.8.

In addition to those two operators, the identity operator is also incorporated. Within the first stage, the count of
conservative operations 𝑁1𝑠𝑡 is set to 1. Thus, the size of the categorical distribution for this stage is 𝒑𝑚𝑖𝑥𝑖𝑛𝑔 ∈ R3.
Modality-wise optimization is not adopted, because the mixing approach does not merely amalgamate data values, but
also integrates their corresponding labels, which would become semantically ambiguous.

4.3.2 Random Transformation Operators. Given that random transformations run the risk of corrupting the original
semantic information of the data, in total 14 such candidate operators are employed in the second stage of AutoAugHAR.

Adding Noise to data samples, also referred to as jittering, is specifically designed to simulate sensor noise. To
implement this method, controlled amounts of random noise are added to the raw data, producing a new representation
denoted as �̃� = 𝒙 + 𝝐 , with 𝝐 symbolizing the random drawn noise vector from a Gaussian distributionN

(
0, 𝜎2

)
. Unlike

prior studies, we introduced multiple distinct values of 𝜎 , namely 0.05, 0.1, and 0.15, with each corresponding to
different noise intensities.

Moving Average involves calculating the average of a sliding window of sensor data over time. It is effective
in mitigating the impact of outliers and noise present in the sensor data, but might introduce lag, especially with
larger window sizes (𝑤𝑠). The moving average’s inherent smoothing effect can dampen abrupt changes. Therefore, the
selection of an appropriate𝑤𝑠 becomes critical. We have incorporated three𝑤𝑠: 3, 5, and 7.

Magnitude Scaling is a technique that alters the magnitude of a signal by applying a stochastic scaling factor to
simulate variations in the intensity of physical activity observed in real-world scenarios, defined as �̃� = 𝒙 × 𝑠 𝑓 , where
the scaling factor 𝑠 𝑓 is a stochastic variable drawn from a Gaussian distribution N

(
1, 𝜎2

)
.We have introduced two

scaling ranges, 𝜎 = 0.1 and 𝜎 = 0.2.
Magnitude Warping [6]. In contrast to magnitude scaling, which uniformly scales all values within the signal using

the same factor, magnitude warping involves distorting the magnitude of the signal by applying a smoothed curve
generated through cubic spline interpolation with 𝐾 knots. As a result, Magnitude Warping can produce more realistic
variations in the intensity of time-series data. To implement magnitude warping, 𝐾 knots (reference points) are selected
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𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑤𝑠 = 3 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑤𝑠 = 5 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑤𝑠 = 7

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝜎 = 0.1 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝜎 = 0.2 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑊𝑎𝑟𝑝 𝜎 = 0.2 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑊𝑎𝑟𝑝 𝜎 = 0.4

𝑇𝑖𝑚𝑒 𝑊𝑎𝑟𝑝 𝜎 = 0.1 𝑇𝑖𝑚𝑒 𝑊𝑟𝑎𝑝 𝜎 = 0.2 𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑐𝑖𝑙𝑖𝑛𝑔𝐴𝑑𝑑𝑖𝑛𝑔 𝑆𝑙𝑜𝑝𝑒 −0.1，0.1

𝑀𝑖𝑥𝑈𝑝

𝐶𝑢𝑡𝑀𝑖𝑥

𝐽𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝜎 = 0.05 𝐽𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝜎 = 0.10 𝐽𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝜎 = 0.15

Raw Data Augmented Data

Fig. 4. Examples of candidate augmentation operators on the HAPT dataset.

along the time-series data, dividing the time-series data into 𝐾 − 1 equal segments. For each knot, a random scaling
factor is sampled from a Gaussian distribution N

(
1, 𝜎2

)
. These knots, along with their corresponding scaling factors,

serve as control points for the subsequent cubic spline interpolation. The original time-series data is then warped by
applying the values of the interpolated curve 𝑠𝑡 at corresponding time points t, 𝑥𝑡 = 𝑥𝑡 × 𝑠𝑡 . We defined two scaling
ranges, 𝜎 = 0.2 and 𝜎 = 0.4 to avoid unrealistic distortions.

Window Slicing [37], also known as cropping, involves randomly selecting a segments of random length from
the original signal. Given a data sample 𝒙 with 𝑇 time steps, mathematically, window slicing can be expressed as
�̃� = 𝒙 [𝑡 : 𝑡 + 𝜆𝑇 ] at the starting point 𝑡 with a random segment length 𝜆𝑇 . We chose to sample segments between 70%
and 90% of the original length of the input signal, 𝜆 ∈ [0.7, 0.9].

TimeWarping [28] involves warping the time steps based on a cubic spline interpolation with 𝐾 knots, that are first
selected along the time-series data, dividing the time-series data into 𝐾 − 1 equal segments. These knots are randomly
perturbed by multiplying them by a random factor which is sampled from a Gaussian distribution N

(
1, 𝜎2

)
, where

sigma controls the strength of perturbations (we use 𝜎 = 0.1 and 𝜎 = 0.2). The original time steps are replaced with
warped time steps from the new spline. Values corresponding to new time steps are obtained through interpolation.
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OPPO RW DSADS WISDMDG
Datasets Sampling Frequency # Subjects # Classes # Sensor Channels Sensor Types Sliding Window Size # Modalities

DG 64 Hz 10 2 9 Acc 1 s 2

PAMAP2 100 Hz 9 18 18 Acc, Gyro 2 s 3

OPPO 30 Hz 4 18 42 Acc, Gyro 1 s 3

RW 50 Hz 15 8 21 Acc 2.56 s 4

DSADS 25 Hz 8 19 30 Acc, Gyro 5 s 3

WISDM 20 Hz 36 6 3 Acc 5.12 s 1

HAPT 50 Hz 30 12 6 Acc, Gyro 2.56 s 1

GesHome 25 Hz 20 18 9 Acc, Gyro,Mag 2 s 1

HAPT

waist

right upper arm

right lower arm

left upper arm

left lower arm
Mid back

L-Shoe R-Shoe

chest

waist forearm

head

thigh

upperarm

shin

left arm right arm

Torso

right legleft leg
leg pocket

Trunk

Shank

Thigh

PAMAP2

chest

ankle

hand Smartwatch

GesHome

Fig. 5. Statistical summary of selected datasets.

Incorporating a Slope-Like Trend involves adding a linear trend to the time series to represent patterns in specific
scenarios, such as a drift in accellerometer data. The slope is selected randomly from a predetermined range, [−0.1, 0.1].

If operators change the length of the original time series, we interpolate the transformed time series back to the
original length. In addition, the identity operator is also incorporated in this step.

In this second stage of AutoAugHAR, we set the conservative operation count 𝑁2𝑛𝑑 to 2. Therefore, there are in total
𝑃214+1 − 14 − 3 × 2 − 3 × 2 − 2 − 2 − 2 = 178 augmentation sub-policies. Among all possible augmentation sub-policies,
we eliminate identical ones. For example, ’identity + jittering’ is the same as ’jittering + identity’. We also removed
sub-policies with the same operators, such as ’jittering 𝜎 = 0.05 + jittering 𝜎 = 0.10’. As a result, each modality’s
categorical distribution size is as follows: 𝒑ℎ𝑒𝑎𝑑 ∈ R178,𝒑𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑏 ∈ R178,𝒑𝑙𝑜𝑤𝑒𝑟𝑙𝑖𝑚𝑏 ∈ R178,𝒑𝑡𝑜𝑟𝑠𝑜 ∈ R178. In this
setting, the total number of conservative operations 𝑁 = 3 = 𝑁1𝑠𝑡 + 𝑁2𝑛𝑑 .

5 EXPERIMENTS AND DISCUSSIONS

We hypothesize that AutoAugHAR is more effective than manually selecting existing DA approaches without additional
expert-based optimizations. Thus, AutoAugHAR must not perform worse than any of the existing techniques given a
specific sensor-based HAR task using deep learning techniques. To validate the effectiveness and universality of the
proposed AutoAugHAR, we conducted extensive evaluations.

5.1 Experiment Setup

5.1.1 Datasets. Eight datasets are selected to represent a broad spectrum of sensing modalities, sampling frequencies,
and activity classifications. These datasets include: Human Activities and Postural Transitions (HAPT) [55], PAMAP2
Physical Activity Monitoring Data Set (PAMAP2) [54], Opportunity (OPPO) [11], RealWorld HAR (RW) [64], Daily
and Sports Activities Data Set (DSADS) [7], Wireless Sensor Data Mining (WISDM) [35], Daphnet Gait (DG) [6] and
GesHome [49]. Table 5 provides a statistical summary of each dataset, covering aspects such as sampling frequency,
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number of classes, sensor type, and number of channels. Sensors are grouped into different modalities based on their
mounting locations, as depicted in the figure at the top of the aforementioned table. Moreover, we maintained the sizes
of the sliding windows for each data set consistent with the configurations of previous studies [23, 43, 58, 76]. During
training, data are split using a sliding window with an overlap of 50%. For test data, we shift the window forward by
just one time step [31].

Data preprocessing consists of two steps: the separation of movement and gravity components and the normalization
of the data. To separate the acceleration signal into body acceleration and gravity components, the methodology
delineated in [5] is followed. Specifically, a Butterworth low-pass filter with a cutoff frequency of 0.3Hz is employed [68].
Subsequent to this separation, each signal undergoes the 𝑧-score normalization before entering the DA transformation.

5.1.2 HAR Models. In order to demonstrate the generalizability, we considered five diverse HAR models in the
experiments. Multi-branch Convolutional Neural Network (MCNN) [47] applies a sensor-based late fusion technique. It
employs individual convolutional networks to extract features from each sensor modality and then uses a fully connected
layer to fuse the learned features across all modalities. To improve the capacity to extract temporal information, the
hybrid model DeepConvLSTM (DCL) [51] incorporates LSTM layers into the individual convolution network. In order
to address the ’forgetting’ limitations of LSTMs, DeepConvLSTM-Attention (DCL-A) [48] augments DeepConvLSTM
with temporal attention, facilitating global temporal information exchange in a single forward pass. Attend-Discriminate
(Attend) [1] further improves performance on multiple HAR datasets by specifically learning the interactions between
channels at each time-step through an attention mechanism. A lightweight model, TinyHAR is carefully designed
for local information extraction, cross-channel information interaction, cross-channel information fusion, and global
temporal information extraction and fusion. The structures of all the aforementioned models align with their original
descriptions in the cited papers. Owing to their distinct architectures, these models exhibit different capabilities in
capturing local context information, long-time dynamics, and cross-modality information.

5.1.3 Compared Data Augmentation Approaches. We compare the proposed AutoAugHAR against the following seven
DA techniques in addition to a baseline (training without DA): These techniques can be categorized into three groups:
traditional DA techniques (MixUp, CutMix), generative models (SFN [45], ActivityGAN, SF-DM), and DA optimization
framework (𝑤-augment). The brief description of each technique is as follows.

SDA [30] introduces a DA pipeline that incorporates time-warping and data masking, drawing inspiration from the
SpecAugment method [52] used in language processing. Unlike the original SpecAugment approach, SDA proposes
different data masking strategies. Based on their experimental findings, we implemented the random masking strategy.

MixUp [1] and CutMix [2] are also included in the candidate operators, please refer to section 4.3.1 for more details.
SFN [45] draws inspiration from sample-pair-based augmentation strategies. Instead of using hand crafted techniques

like MixUp and CutMix, SFN generates virtual samples using a 4-layer LSTM autoencoder (AE). This LSTM AE is
cascaded with the HAR model through a MixUp fusion style to form a unified network that can be trained end-to-end.

ActivityGAN [39]: This method presents a GAN-based framework for generating synthetic sensor-based data. The
framework consists of a generator model and a discriminator model. The generator model uses a stack of 1D-convolution
and 1D-transposed convolution layers to generate synthetic sensor data, and the discriminator model employs 2D-
convolution networks to distinguish between real and synthetic data. After training this GAN-based framework, the
generator model is unitized for DA. In the experiments, the configuration of ActivityGAN aligns with the original
study’s design as described in [39].
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SF-DM [81] proposes an unsupervised statistical feature-guided diffusion model for sensor-based HAR. By condi-
tioning the diffusion model on statistical information, SF-DM can generate diverse and representative synthetic sensor
data. The structure of the diffusion model and training setup are consist with the original paper.
𝑤-augment [19] is very similar to our proposed framework: both are specifically designed to learn the optimal

weight of each DA sub-policy during the training phase. In𝑤-augment, for all DA sub-policies, a weight vector with
a dimension equals to the number of sub-policies is initialized with equal weights. During the optimization process,
the training loss is utilized to update the weights of each DA sub-policy.𝑤-augment aims to prioritize sub-policies by
assigning them larger weights. Following the settings in the original paper, only one-step sub-policies are considered.
In this experiment, the included one-step sub-policies for𝑤-augment are the DA methods summarized in Table 1.

It is worth nothing that for all DA techniques, original samples are incorporated into the training process.

5.1.4 Training&Evaluation Protocol. During the evaluation process, the performance of all models across various
datasets is assessed utilizing the Leave-One-Subject-Out (LOSO) Cross-Validation (CV) approach. Specifically, in each
CV iteration, the data corresponding to one subject is designated as the test set, while the data pertaining to all other
subjects forms the training/validation set. The ratio of the training set to the validation set is fixed at 9:1, and the DA
policy is applied exclusively to the training set. We use macro average F1-score (𝐹1𝑀 ) as evaluation metric, the mean
𝐹1𝑀 is further computed across all subjects. We repeat the process five times with random seeds ranging from 1 to
5. The mean and standard deviation 𝐹1𝑀 are used to compare the models. We use Adam optimizer [34] with default
parameters and an initial learning rate of 𝜉𝑤 = 10−4 to optimize the model weights𝒘 . The learning rate decays by 0.9
after a 10-epoch patience threshold is reached. The maximum training epoch is set to 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 200, and the
batch size remains fixed at 256.

To train the proposed AutoAugHAR, we use an additional Adam optimizer for the optimization of the policy
parameters 𝜶 with the learning rate 𝜉𝛼 = 5 × 10−3, momentum 𝛽 = (0.5, 0.999) and weight decay 10−3. Param-
eters 𝜶 are initialized to 10−3. The temperature 𝜏 is initially set to 𝜏0 = 5.0, and its decay equation is as follows,
𝜏 = 𝜏0 × 𝑒𝑥𝑝 (−0.05 × 𝑒𝑝𝑜𝑐ℎ). The 200 training epochs are divided into two phases by 𝑒𝑝𝑜𝑐ℎ𝑠𝑒𝑎𝑟𝑐ℎ = 130. The first 130
epochs are used for the DA sub-policies optimization and model training. During this phase, the ratio of the training
set to the validation set is 1:1. Specifically, 50% of the available data is utilized to train the model weights, and the
remaining 50% is allocated for updating the weights of the augmentation sub-policies. After 130 epochs, the second
phase commences, focusing exclusively on the optimization of the model weights. For this latter phase, 80% of the
prior phase’s validation set is incorporated into the training set. At the same time, 20% of the prior phase’s validation
set (equivalent to 10% of the available data) is reserved for the selection of the final best model. Note that the model
weights are not reinitialized at the beginning of the second phase. Throughout this latter phase, the 𝜶 parameters for
the sub-policies are fixed and no longer subject to optimization. The data will be transformed in accordance with the
optimized DA sub-policy distributions.

5.2 Comparison to State-of-the-art

The results presented in Figures 6 and 7 provide an exhaustive comparison of various DA techniques across multiple
datasets and models. The bars represent the mean of 𝐹1𝑀 and its standard deviation. Each row in the figure corresponds
to the performance on a specific dataset. Furthermore, each row is divided into five groups, each representing the
performance of one HAR model under different DA algorithms. To determine the statistical difference in performance
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Fig. 6. Classification performance on five datasets, each containing multiple modalities.

between the two DA algorithms, we employed theMann-Whitney U test [71]. Bold items mark the statistically significant
best result with a p-value less than 0.05.

Across all datasets and models, applying DA techniques leads to an improvement of performance compared to the
baseline that does not incorporate DA. Among the DA techniques examined, AutoAugHAR stood out, achieving the
best results in 38 out of 40 comparison experiments. SFN also exhibits commendable performance, followed by SF-DM,
MixUp and CutMix. SFN, MixUp and CutMix are sample-pair-based approaches. They generate virtual samples while
preserving label semantic information, underscoring the importance of label-preserving DA strategies in HAR tasks.
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Fig. 7. Classification performance on three datasets, each containing a single modality.

In contrast,𝑤-augment shows inconsistent results in all datasets, performing particularly poorly on the DG and OPPO
datasets. While𝑤-augment and AutoAugHAR both aim to allocate more weight to beneficial augmentation sub-policies
during training, they diverge in their augmentation sub-policy weight update procedures. Specifically, 𝑤-augment
employs training loss for augmentation sub-policy weight optimization, while the proposed AutoAugHAR leverages
validation loss. This difference makes 𝑤-augment more prone to over-fitting, potentially favoring "easy-to-learn"
augmentation sub-policies. "Easy-to-learn" augmentation sub-policies might significantly reduce training loss, but they
often fail to bridge the distribution gap between training and testing datasets. This shortcoming is especially evident on
the OPPO and DG datasets, characterized by challenges such as limited subjects and intra-class variability.

ActivityGAN improves the performance of the model, but it does not reach the extent achieved by AutoAugHAR,
SFN, SF-DM, MixUp or CutMix. This can be attributed to the separate training procedures of the generator and the HAR
model, potentially leading to sub-optimal solutions. The generator within ActivityGAN is trained to produce virtual
samples that match the original data distribution, often neglecting the need to bridge the gap with data not previously
encountered. These virtual samples may not align optimally with the downstream HAR model’s task requirements. In
contrast, the standout performance of AutoAugHAR and SFN can be attributed to their end-to-end training approach.
This ensures that the virtual data both mirrors the original distribution and improves the model’s performance on
unfamiliar data.

Compared to ActivityGAN, another generative model, SF-DM has shown superior performance, especially notable
in its outperformance over SFN across three datasets: DSADS, HAPT, and GesHome. However, it still lags behind the
proposed model, AutoAugHar. In datasets collected from a relatively larger number of subjects, SF-DM demonstrates
its impressive ability to generate diverse and complex data. However, it encounters challenges with certain datasets,

Manuscript submitted to ACM



18 zhou et al.

particularly the OPPO dataset. This could be attributed to two primary factors. First, the OPPO dataset, which consists
of data from only four subjects, exhibits a highly varied data distribution. Similar to ActivityGAN, the separate
training of the data generator and the HAR model hinders the use of validation loss as guidance for data generation.
Second, the simple denoising model employed by SF-DM fails to deal with datasets such as OPPO, which feature 42
channels and 18 classes. The structure of the model does not adequately address the characteristics of HAR datasets.
Literatures [16, 50] suggest that the success of a diffusion-based approach depends greatly on the model’s design and its
denoising configuration. Therefore, there is considerable room for improvement in the performance of diffusion-based
techniques.

Handcrafted algorithms, MixUp and CutMix, produce consistent results across all datasets. However, their perfor-
mance varies among different datasets and models. For example, MixUp outperforms CutMix on the RW and PAMAP2
datasets, whereas CutMix excels over MixUp on the OPPO and DSADS datasets. This variability highlights the im-
portance and need for automated DA techniques, such as AutoAugHAR, which autonomously determine the best
techniques or combine them.

The effectiveness of the SDN technique, is generally less impressive compared to MixUp and CutMix. SDN achieves
onlymodest improvements onmost datasets and can sometimes even reducemodel performance. This underperformance
is mainly due to SDN’s dependence on a predefined DA policy, which might not be suitable for all scenarios.

AutoAugHAR surpasses SFN on most datasets and models, though it shows comparable performance on the WISDM
dataset. We attribute this observation to two main reasons: 1) These though MixUp-style generated samples may appear
completely different from the original sequences and become meaningless from a human perspective [2]. As past
comparisons between CutMix and MixUp indicate, each sample-pair-based technique has its unique advantages. The
adoption of the MixUp-style fusion approach in SFN could potentially reduce its efficacy in specific scenarios. 2) Sample-
pair-based algorithms are constrained in their capacity to explore more diverse data domains, being entirely reliant
on data sample fusion. In contrast, the proposed AutoAugHAR can effectively select from various sample-pair-based
methods and combine them with random transformation methods to produce more diverse data.

In the context of the WIDSM and HAPT datasets, AutoAugHAR and SFN exhibit comparable performance. On
both datasets, AutoAugHAR and SFN obtained the best performance 6 times without significant differences. These
datasets possess shared characteristics, including the utilization of a singular sensor, the categorization of everyday
activities, and data sourced from over 30 subjects. These factors make the datasets sufficiently representative for their
tasks, eliminating the need for random augmentation to enhance data diversity. Given the singular modality in these
datasets, AutoAugHAR can’t optimize on a modality basis to boost performance. However, it’s worth noting that SFN’s
integration with an additional LSTM AE encoder into the HAR model enlarges the model’s size and necessitates expert
knowledge for its design. In contrast, AutoAugHAR doesn’t alter the HAR model’s structure or increase its size.

5.3 Ablation Study

In order to assess the contribution of the design underlying the proposed AutoAugHAR, three variants of AutoAugHAR
were subjected to comparative analysis: AutoAugHARrandom, AutoAugHARbasic, and AutoAugHARNoModality.

AutoAugHARrandom, as elaborated in section 3.2, does not optimize the categorical distribution for DA sub-policies.
It adopts a uniform distribution for the application of these DA sub-policies.

AutoAugHARbasic, detailed in section 4.1, optimizes the categorical distribution for DA sub-policies. However, it
doesn’t differentiate between sample-pair-based DA methods and random transformation methods, and it overlooks
multi-modality considerations.
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Fig. 8. Classification performance on five datasets, each containing multiple modalities. In this figure, we compare the proposed
AutoAugHAR with several of its variants to validate the contributions of its design.

AutoAugHARNoModality follows a two-stage structure like the proposed AutoAugHAR but doesn’t account for
multi-modality.

When the total conservative operation count 𝑁 is set to 3, the total number of augmentation sub-policies for
AutoAugHARrandom and AutoAugHARbasic surpasses 3000, even after eliminating redundant ones. Given the ex-
pansive search space, the performance for both AutoAugHARrandom and AutoAugHARbasic is poor. In order to
conduct a effective ablation study, we reduced 𝑁 to 2. With 𝑁 = 2, after removing redundant and identical aug-
mentation sub-policies, the number of augmentation sub-policies for AutoAugHARrandom and AutoAugHARbasic
becomes 𝑃1617 − 16 − 3 × 2 − 3 × 2 − 2 − 2 − 2 = 238. For a fair comparison, we set 𝑁1𝑠𝑡 and 𝑁2𝑛𝑑 to 1 for each stage in
AutoAugHARNoModality. Furthermore, we also re-trained AutoAugHAR with 𝑁2𝑛𝑑 = 1 in the second stage, denoted
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Fig. 9. Evolution of augmentation sub-policies probabilities with training epochs. These examples are derived from training the Attend
model.

as AutoAugHAR_1. Experiments were specifically conducted on datasets characterized by the presence of multiple
modalities, thereby validating the contribution of multi-modality optimization in the proposed AutoAugHAR. The
results are visually represented in Figure 8.

It can be observed that AutoAugHARRandom’s performance is unstable. For instance, on the DG dataset, it had a
detrimental impact on the MCNN model’s performance. Furthermore, its improvements are marginal compared to
the performance of CutMix and MixUp, as illustrated in Figures 6 and 7. Although the stochastic application of DA
techniques like AutoAugHARRandom is a conventional procedure in computer vision tasks, it proves unsuitable for
HAR tasks. The inherent nature of HAR data, which are more sensitive to perturbations compared to image data, can
lead to distortions in label semantic information due to excessive perturbations.

By employing the AutoAugHARbasic algorithm, after the optimization of weights for augmentation sub-policies, a
significant improvement in performance compared to AutoAugHARRandom was noted. This observation validates the
benefits of automatic optimization of DA sub-policies.

When compared to AutoAugHARbasic, AutoAugHARNoModality mostly demonstrated marginally superior per-
formance. Although the forced ordering of these two operator categories might limit the diversity of augmentation
sub-policies, it effectively reduces the search space, which helps optimization. We believe that augmentation sub-policies,
when arranged in this specific order, garner more attention during training. To validate this hypothesis, we further
examined the evolution of the probability distribution during the AutoAugHARbasic optimization process. Figure 9
illustrates this evolution while training the Attend model on five datasets. For clarity, the 238 augmentation sub-policies
were grouped into two classes. Class A consists of sub-policies where sample-pair-based methods are applied as the first
operator, totaling 30 sub-policies. Class B includes sub-policies where random augmentation is the initial operator, with
208 sub-policies in this class. The probability assigned to each class is the sum of its constituent probabilities. Given the
limited number of sub-policies in Class A, its initial sampling probability is relatively low. However, as optimization
continues, there’s a noticeable increase in this class’s probability. Even though Class A accounts for a small portion of
the total sub-policies, its probability exceeds 40% by the end of the optimization process. Remarkably, for the DSADS
dataset, this probability reaches 60%. We observed that sub-policies that prioritize the sample-pair-based method as the
primary operation tend to receive higher weights, further affirming the rationale behind AutoAugHAR’s design.
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Compared to AutoAugHARNoModality, AutoAugHAR_1 consistently outperformed AutoAugHARNoModality,
highlighting the benefits of considering the multi-modal nature of HAR task. This finding underscores the contribution
of optimizing each modality separately.

To understand the influence of the number of operations 𝑁 on performance, we included the results of AutoAugHAR
(with 𝑁2𝑛𝑑 = 2 in the second stage) from previous experiments in Figure 8. Our analysis revealed that AutoAugHAR
achieved optimal results in 18 instances, while AutoAugHAR_1 did so in 13 instances. Although AutoAugHAR often
had the edge over AutoAugHAR_1, the difference in performance between the two was marginal. An increase in the
number of operations indeed offers a more diverse augmentation policy. However, this benefit is offset by the challenges
of a larger search space and the potential for excessive transformations due to the increased operational steps.

In summary, the proposed AutoAugHAR demonstrates excellent performance for devices driven by IMUs, evidenced
by its adaptability across eight diverse IMU datasets, versatility in enhancing various HAR models, superiority over
existing DA algorithms, and effectiveness in handling the multi-modality nature of IMU data. The contribution of each
design element within the framework is further validated through an ablation study on five IMU-based datasets. Despite
the broad spectrum of IMU-based applications, the core task remains multivariate time series classification, making
AutoAugHAR apt for any IMU-based HAR application. It is important to note that the proposed modality-specific
approach retains its potential when applied to IMUs. Beyond sensor placement, by considering different sensor types in
IMUs as separate modalities, the AutoAugHAR framework can potentially further enhance performance by optimizing
DA policies for each sensor type. Moreover, as demonstrated in section 5.5, the framework exhibits flexible extensibility.
This advantage facilitates the modification and addition of candidate operators to accommodate a variety of IMU-based
application scenarios.

5.4 Generalization on adjacent Domains

The proposed AutoAugHAR framework theoretically holds potential for adaptation to various other multivariate time
series classification domains. To assess the framework’s applicability in different contexts, we tested four additional
datasets, each characterized by distinct data acquisition sensors. The Language-Sign (L-sign) dataset [53] employs a
combination of piezoresistive, gyroscopic, and accelerometric sensors to classify the Polish Sign Language alphabet. The
Electromyography Gesture (EMG-G) recognition dataset [38] uses data captured via the Myo armband from the upper
limb to classify seven grasp gestures. Additionally, the Physionet Imagery (Imagery) [20] and BCI IV 2A [9] datasets
utilize electroencephalography (EEG) recordings for motor imagery classification. Figure 10 (a) presents the statistical
details of these datasets and outlines the experimental setup. Considering that the imagery data contains data from 109
subjects, we followed the CV setup from the work [69]. For gesture classification tasks, the same HAR models used
in previous experiments were employed. For EEG classification tasks, the EEG model [36] and the gated transformer
model [66] were implemented. Due to the extensive nature of the experimental work, the comparison was limited to
two state of the art DA techniques: the SFN [45] and SF-DM [81], which have proven effective in previous experiments.

Figure 10 (b) illustrates that the improvements in performance achieved by the proposed AutoAugHAR model
are particularly notable in the context of the L-sign and EMG-G datasets, surpassing the SFN and SF-DM methods.
In contrast, on the Imagery and BCI IV 2A datasets, both the SFN model and AutoAugHAR showed comparatively
modest improvements in performance. The diffusion-based SF-DM model actually decreases performance on these two
dataset, probably because motor imagery classification benefits from a wider and higher frequency range [10, 26]. The
suboptimal performance of the SF-DM may be linked to the Frequency Principle [74], which posits that deep learning
models inherently exhibit difficulties in learning and generalizing high-frequency data, displaying a tendency to favor
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Fig. 10. Classification performance across four datasets from adjacent domains.

low-frequency information. Furthermore, the denoising process in the SF-DM model, which lacks explicit guidance,
might inadvertently remove high-frequency patterns essential for EEG classification. To explore the reasons behind the
limited improvement offered by AutoAugHAR on these two datasets, we separately applied the candidate DA operators.
We found that the DA operators included in the second stage might not be ideally suited for EEG classification tasks. As
mentioned in section 4.3.2, these DA operators were primarily selected to simulate sensor variations or activity changes
in HAR tasks, which may not align well with the specific requirements of EEG classification.

5.5 Extensibility and Flexibility

Our framework is designed to allow for the straightforward substitution of candidate DA operators, making it adaptable
to the unique requirements of various domains. Drawing on an extensive review of the prevalent DA operators for
EEG classification [57], we have selected four types of DA operators considered to be the most effective. A total of
13 candidate DA operators, each with different parameter ranges, were included in this experiment. These opera-
tors are as follows: TimeReverse (Reverse) [56]. Smooth Time Mask (STM) [46], with a smoothing length parameter
𝛥𝑡 ranging within [0%, 10%] , [10%, 20%] , [20%, 30%] , [30%, 40%] of the input window size. Fourier Transform Surro-
gate (FTS) [61], which involves modifying the phase of the signal in the Fourier domain. The change of phase 𝛥𝜑
ranges within

[
0, 𝜋2

]
,
[
𝜋
2 , 𝜋

]
,
[
𝜋, 3𝜋2

]
,
[ 3𝜋
2 , 2𝜋 ). ChannelDropout [59], which randomly drops channels from the EEG

signal. The channel drop probability 𝑝𝑑𝑟𝑜𝑝 ranges within [0, 0.25] , [0.25, 0.5] , [0.5, 0.75] , 𝑎𝑛𝑑 [0.75, 1]. For detailed
implementations of these DA operators, please refer to Work [57].

Figure 11 illustrates the significant improvement resulting from the integration of new DA candidate operators
into the second stage of AutoAugHAR, denoted as AutoAugHAR(N). It is evident that these operators have varying
Manuscript submitted to ACM
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Fig. 11. Classification performance using the new candidate DA operator on EEG datasets.
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Fig. 12. The training time for one iteration of the LOSO-CV process.

levels of effectiveness across the two datasets. Specifically, the FTS operator shows outstanding performance on the
Imagery dataset compared to the other candidates. However, the STM operator emerges as the most effective on the
BCI IV 2A dataset. The AutoAugHAR framework excels at identifying and combining the most efficient DA operators,
thus enhancing overall performance. While the SFN model and the diffusion model can also be improved, such an
enhancement would require specific adjustments to the denoising model’s structure and its training methodology.

5.6 Training Overhead

Figure 12 depicts the training time required for a single iteration of the LOSO-CV process on two datasets, primarily
differentiated by their number of sensor channels. Among the three traditional DA algorithms, MixUp and CutMix
lead to a slight increase in training time. In contrast, the SDA algorithm significantly extends training time due to its
default application of the ’time-warp’ operation, which requires re-interpolation for each sequence. This impact is more
pronounced on the OPPO dataset, where the training time is further extended due to the increased number of channels.

In terms of generative algorithms, SFN is the most time-efficient, followed by ActivityGAN and SF-DM. The longer
training durations for ActivityGAN and SF-DM can be attributed to their separate training processes, in which the
generator/denoising model is first trained and then incorporated into the dataloader for HAR model training. SF-DM’s
intelligent design uses unlabeled data as input instead of random noise, resulting in shorter training times compared to
ActivityGAN.

The training time required for AutoAugHAR is lower than that of most generative augmentations but higher than
SFN. The training time primarily consists of three components: HAR model training, data transformation using DA
policies, and DA policy optimization. The extra training time is largely attributable to data transformations using DA
policies. As shown in Figure 12, even AutoAugHARrandom without policy optimization significantly increases training
time, particularly due to time-intensive operations like ’time-warp’ and ’magnitude-warp’. The additional training time
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required to update the DA policy weights is indicated by the arrows in Figure 12. The reason why the training time for
DA policy optimization is acceptable is that the weights for DA policies are updated using gradients obtained through a
backward process in the Adam algorithm. The training time of𝑤-augment is substantially higher than AutoAugHAR
because all available DA operators are applied simultaneously to each data sample.

6 CONCLUSION

The consistent and superior improvement across a wide range of selected target datasets and tasks suggests that
automated DA techniques such as AutoAugHAR have potential as a go-to technique for many HAR applications. This
is contrasted by the inconsistent performance of other methods, which emphasises the need for careful selection and
experimentation based on the specific task and data at hand. The approach presented in this paper has the advantage that
the gradient based two-stage scheme can be efficiently integrated into model training. Unlike many other techniques
that address cross-subject generalisation during model training, the DA schemes presented are model agnostic. While it
is unlikely that there are one-size-fits-all augmentation techniques for the wide variety of sensor-based HAR tasks,
the presented model is easily extensible. Future efforts will be directed towards integration into our user-centric
HAR solutions. By open-sourcing the framework under a permissive licence, we also encourage others to confirm
the consistent improvements we have seen, but also to report possible adverse effects in applications that we cannot
completely rule out. Both the integration of the presented approach into larger, scalable hyperparameter optimisation
schemes and its combination with other data synthesis techniques are interesting avenues to pursue in order to further
improve the performance and data efficiency of HAR applications.
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