KIT | KIT-Bibliothek | Impressum | Datenschutz

The temporal domain derivative in inverse acoustic obstacle scattering

Knöller, Marvin 1; Nick, Jörg
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

This work describes and analyzes the domain derivative for a time-dependent acoustic scattering problem. We study the nonlinear operator that maps a sound-soft scattering object to the solution of the time-dependent wave equation evaluated at a finite number of points away from the obstacle. The Fréchet derivative of this operator with respect to variations of the scatterer coincides with point evaluations of the temporal domain derivative. The latter is the solution to another time-dependent scattering problem, for which a well-posedness result is shown under sufficient temporal regularity of the incoming wave. Applying convolution quadrature to this scattering problem gives a stable and provably convergent semi-discretization in time, provided that the incoming wave is sufficient regular. Using the discrete domain derivative in a Gauss–Newton method, we describe an efficient algorithm to reconstruct the boundary of an unknown scattering object from time domain measurements in a few points away from the boundary. Numerical examples for the acoustic wave equation in two dimensions demonstrate the performance of the method.


Volltext §
DOI: 10.5445/IR/1000170761
Veröffentlicht am 16.05.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 05.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000170761
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 30 S.
Serie CRC 1173 Preprint ; 2024/12
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Forschungsdaten/Software
Schlagwörter inverse scattering, wave equation, temporal domain derivative, convolution quadrature
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page