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A B S T R A C T

This paper addresses a Stochastic Flexible Job-Shop Scheduling Problem (SFJSSP) in the context of semiconduc-
tor manufacturing. Semiconductor industry is among the most capital-intensive businesses whose operational
excellence is of vital importance. Within the front-end fab of the semiconductor industry, the photolithography
workstation is the well-known bottleneck process. To elevate the performance of the whole semiconductor
manufacturing system, developing a competent schedule for its bottleneck is essential. However, the re-entrant
product flows, high uncertainties in operations times, and rapidly changing products and technologies within
the photolithography, make it difficult to develop a schedule for the whole semiconductor fab. Considering
Industry 4.0, hybrid methods such as Simulation Optimization (SO) have proven their applicability in address-
ing complex production scheduling problems. Thus, this paper develops a mathematical model for SFJSSP of
the semiconductor manufacturing considering special constraints of the photolithography workstation (machine
process capability, machine dedication, and maximum reticles (masks) sharing constraints). Next, we transform
the developed model into an SO model integrated with a computer simulation model capable of modeling the
photolithography workstation. The simulation model develops an initial schedule based on the Least Work
Remaining (LWR) dispatching rule. Moreover, the simulation model calculates the objective function of the
SFJSSP. A tailored Genetic Algorithm (GA) is then developed, which attempts to optimize the initially proposed
schedule. To validate the superiority of the presented SO methodology in addressing SJSSPs, it is compared
with previously proposed methods. Furthermore, to assess the impact of the three special constraints of the
photolithography work area on system performance, two sets of experiments are proposed. In the first set of
experiments, the performance of two SFJSS environments, one with the special constraints and one without,
is compared. The second set of experiments involves observing the system’s performance while systematically
varying the severity of the special constraints. The results indicate that improved performance levels can be
accomplished by enhancing flexibility within both the operations of individual jobs and the machines within
the manufacturing system.
1. Introduction

Industry 4.0 (I4.0) has become a synonym for increasing produc-
tivity in the 21st century by applying digital technologies in manufac-
turing. Modern Job-Shop production systems, such as semiconductor
fabrication plants, are a perfect example of I4.0 adaptions (Herding
and Mönch, 2022). In other words, semiconductor manufacturing using
multi-mode sensors, intelligent tools, and robotics can be seen as a
potential early adaptor of I4.0. Semiconductors, which became com-
mercially available 60 years ago, are one of the main products for
manufacturing integrated circuits (ICs). The process by which ICs are
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produced is one of the most complicated technological achievements
of the twentieth-century (Nishi and Doering, 2000). On the one hand,
due to several manufacturing requirements, mainly expensive machines
that may cost up to 100 million US Dollars, the semiconductor produc-
tion is highly cost-intensive. On the other hand, the soaring increase
in the demand for ICs has resulted in a considerable rise in demand
amounts for semiconductors. Thus, operational excellence of different
stages within the semiconductor production process has been gaining
importance, as it promises cost reductions and thereby a competitive
advantage.
vailable online 5 December 2023
305-0548/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2023.106508
Received 15 September 2022; Received in revised form 22 October 2023; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

4 December 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:eghaedyh@uwaterloo.ca
mailto:e.nejati@ut.ac.ir
mailto:a.ghasemi2@hva.nl
mailto:satorabi@ut.ac.ir
https://doi.org/10.1016/j.cor.2023.106508
https://doi.org/10.1016/j.cor.2023.106508
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106508&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Operations Research 163 (2024) 106508E. Ghaedy-Heidary et al.
In this regard, there are four main stages for the semiconductor
production process, namely, wafer fabrication, probe, assembly, and
final test (Bang and Kim, 2011; Lee et al., 2009). Wafer fabrication and
probe are commonly referred to as front-end operations, and assembly
and test as back-end operations (Mönch et al., 2018a). The wafer
fabrication process is the most capital-intensive and complex stage
among all (Lee and Lee, 2022). To be more specific, since a similar set
of unit processes is necessitated for the processing of each layer, wafers
may visit a particular workstation several times, once for each layer
of circuitry, resulting in re-entrant product flows. Thus, scheduling
wafer fabrication plants can be seen as a complex Job-Shop Scheduling
Problem (JSSP) (Waschneck et al., 2018). JSSP can be defined as a
problem that a given set of jobs need to be scheduled on a set of
machines in a way to minimize an objective function (usually the
makespan) (Geyik and Cedimoglu, 2004). When assigning one job to
one machine, some constraints must be met. Firstly, each job assigned
to a machine is associated with a given order and a processing time.
Secondly, each machine can perform only one job at any moment (Chen
et al., 2012). Lastly, the processing time of a job is fixed, and once the
job is started, it cannot be interrupted (Peng et al., 2015).

Additionally, more adoption of smart production practices in wafer
fabs, such as the advanced process and equipment controls, has in-
creased the uncertainty level in the processing times of wafer fabrica-
tion operations, adding to its level of complexity (Jamrus et al., 2018).
Within the wafer fabrication system, the photolithography process is
known as the bottleneck process. This is mainly because of the layered
nature of wafer fabrication, particularly in the case of Application
Specific Integrated Circuit (ASIC) fabrication environments with high
mix product portfolios and low volumes (Ghasemi et al., 2020). The
photolithography process includes three main steps, coat, expose, and
develop. In the first step, the wafer is covered with a thin film of a
photosensitive polymer called photoresist strip. Subsequently, in the
‘‘expose’’ step, the wafer is exposed to ultraviolet light (UV) to print
the circuit pattern onto the wafer. To do so, a reticle is used. A
diverse range of recipes exists in an ASIC fab due to the range of prod-
ucts produced. Finally, polymerized photoresist sections are removed
from the exposed wafer. Since the circuits are composed of layers,
with every wafer passing through the photolithography area up to
40 times, photolithography can be considered the bottleneck resource.
Since the performance of a system is determined by the bottleneck
resource, developing a competent schedule for the photolithography
work area results in the improvement in the performance of the whole
fab (Ghasemi et al., 2020). However, there are three specific constraints
that differentiate the scheduling problem of the photolithography work
area from other scheduling problems (Chung et al., 2008).

Firstly, certain machines within the photolithography tool will
be competent for different recipes (machine process capability con-
straints). Secondly, to ensure the quality of the IC, for critical layers,
certain machines within the toolset will be required to be used (ma-
chine dedication constraints). Thirdly, the number of times a reticle
(mask) is shared between different layer productions should be limited
(maximum reticles sharing constraints) (Ghasemi et al., 2020). In this
context, some papers have considered the scheduling problem of the
photolithography work area as a Flexible Job-Shop Scheduling Problem
(FJSSP) (Mönch et al., 2011). FJSSP is an extension of JSSP (Liu et al.,
2021), where operations can be conducted on a set of compatible
machines (Zhang et al., 2012). FJSSP is therefore at least as complex
as JSSP (Mokhtari and Dadgar, 2015). In fact, the flexibility makes the
problem much more complex as FJSSPs belong to the class of NP-Hard
problems (Dosdoğru et al., 2015).

To be more detailed, as represented in Fig. 1, each layer of a wafer
entering the photolithography workstation is considered a job with a
predefined order of operations. Based on the machine process capability
constraints, within each layer, some operations can be conducted on a
set of machines (grouped by - - - lines in Fig. 1). Other constraints
2

of this workstation, such as the machine dedication and maximum
reticle sharing constraints, are satisfied within a scheduling problem
to minimize the objective function. Also, JSSPs can be classified as de-
terministic or stochastic. Where all parameters are known exactly, they
are assumed to be deterministic (Xiong et al., 2022). On the other hand,
Stochastic Job-Shop Scheduling Problem (SJSSP) deals with stochastic
problem parameters and/or variables (typically operations processing
times (Gu et al., 2010)). Thus, considering the uncertainties in the
processing times of the photolithography workstation (ranging from 15
to 60 min), the problem of scheduling operations on photolithography
machines can be considered a Stochastic Flexible Job-Shop Scheduling
Problem (SFJSSP). Furthermore, the mentioned SFJSSP is amongst the
most complex ones since simpler versions of this problem are NP-hard
(e.g., Low and Fang (2005)). In this regard and in the era of I4.0,
hybrid Simulation Optimization (SO) methods have been one of the
most promising approaches to address complex manufacturing system
problems (Malekpour et al., 2021). On the one hand, simulation models
have been used to assess industrial systems with stochastic parame-
ters and/or variables. On the other hand, optimization techniques are
critical tools to improve decisions within almost all systems. In other
words, SO methods benefit from the great detail provided by simulation
and the ability of optimization techniques to find good or optimal
solutions, simultaneously (Figueira and Almada-Lobo, 2014). Thus,
combining simulation models with optimization methods could develop
a promising tool for solving various complex and stochastic indus-
trial problems, such as scheduling within semiconductor manufacturing
systems (Ghasemi et al., 2018).

There are four significant gaps in the literature considering all
those mentioned above. Firstly, although, currently, there is a mas-
sive demand for semiconductors enhancing their revenue to around
$1000 per wafer (Ghasemi et al., 2020), a limited amount of re-
search has addressed the scheduling problem within its bottleneck
workstation (photolithography), which is crucial in terms of enhanc-
ing the operational excellence in such complex products (in terms
of production systems). Secondly, among the papers that focused on
scheduling operations on photolithography machines, none consid-
ered all characteristics of this workstation. In essence, despite the
fact that machine process capability, machine dedication, maximum
reticles sharing constraints, and uncertainties are interrelated and crit-
ical aspects of photolithography fabs from a manufacturing systems
standpoint, previous research has yet to concurrently consider all of
these factors. Thirdly, the majority of the existing research within the
literature has used traditional optimization methodologies to address
the SFJSSPs of the photolithography work area. These methods are not
capable enough to solve such complex problems within a reasonable
time. Lastly, there exists a gap regarding comparative and validation
strategies to evaluate the performance of the proposed methodolo-
gies as well as insightful sensitivity analysis of the photolithography
manufacturing environment.

To fill these gaps, we propose an SO-based approach to address
the SFJSSP of the photolithography workstation. Firstly, we develop a
mathematical model for SFJSSP considering unique photolithography
workstation constraints (machine process capability constraints, ma-
chine dedication constraints, maximum reticles sharing constraints) as
well as its uncertain nature. Subsequently, we transform the designed
mathematical model into an SO model. Next, a detailed simulation
model of the photolithography workstation, considering its critical
constraints and stochastic uncertainty of the processing and sequence-
dependent setup times, is developed. The model is in charge of
developing an initial schedule based on the Least Work Remaining
(LWR) dispatching rule. Furthermore, the simulation model calculates
the objective function’s value (makespan in this paper). As mentioned,
the photolithography area is the well-known bottleneck step of semi-
conductor front-end fab. On the other hand, photolithography machines
are very expensive and require a huge amount of capital investment.

Thus, maximizing the machine utilization in this production area is
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Fig. 1. Photolithography workstation as a FJSSP.
one of the most common targets of semiconductor production plan-
ners (Ghasemi et al., 2020). Accordingly, makespan (maximum com-
pletion time) minimization objective, which is one of the best-known
objectives to enhance utilization levels in wafer fabs (Pfund et al.,
2006), is considered within this research.

In the literature of stochastic SO, metaheuristics have been prepon-
derantly used due to their flexibility to tackle any type of solution space
and their ability to achieve good quality solutions within a reasonable
amount of time (Ólafsson, 2006). Moreover, as stated by Geyik and
Dosdoğru (2013), metaheuristics have also shown promising perfor-
mance in achieving efficient solutions to FJSSPs. Among the proposed
metaheuristics to address scheduling problems within the literature,
Genetic Algorithm (GA) is respected as the most widely used meta-
heuristic algorithm to optimize FJSSPs due to its superior performance
and strong universality (Shao et al., 2018). Thus, in this paper, we
present a tailored GA to optimize the initially developed schedule iter-
atively integrated with the simulation model forming an SO structure.
The GA proposed in this study incorporates crossover and mutation
operators that ensure the preservation of precedence constraints among
operations within the scheduling problem. Additionally, a significant
contribution of the proposed GA lies in the development of a sorting
approach, which facilitates the selection of the best solutions from each
iteration. These selected solutions are then passed on to the subsequent
iterations of the GA. To aid in this sorting process, a specialized
distancing function, tailored for FJSSPs, is employed.

1.1. Motivation, research gaps, research question

In the following, the motivation behind undertaking the research
presented in this paper is discussed. Subsequently, the research gaps
identified by reviewing the literature and the research question ad-
dressed by this paper are presented.

1.1.1. Motivation
The main motivation for undertaking the research in this paper

is to investigate the possibility of addressing the SFJSSP of the pho-
tolithography work area while considering all its main characteristics
by developing computationally effective algorithms. The majority of
the methods used to address the scheduling problem of the photolithog-
raphy work area are traditional optimization methodologies that are
not capable to address such complex problems within a reasonable
time. In this regard, we were particularly looking for strong algorithms
which are developed based on explicit mathematical formulations of
the problem and account for the stochastic nature and three special
constraints of the photolithography workstation, simultaneously.
3

1.1.2. Research gaps
We reviewed the literature on the scheduling problem of the pho-

tolithography work area which is presented in Section 2. Based on the
result, a summary of the gaps within the literature is presented below
(the following gaps are further detailed within Section 2):

• There is a limited number of research conducted on modeling the
scheduling problem within the photolithography area of semicon-
ductor manufacturing (the well-known bottleneck manufacturing
step), taking into account the inherent characteristics of this
work environment, including the three special photolithography
constraints as well as the stochastic nature of the processing and
the sequence-dependent setup times.

• There is a limited number of efficient solution approaches that
adequately address the SFJSSP within the photolithography work
area (while considering its complexities), in a reasonable time.

• Furthermore, the literature lacks comprehensive sensitivity anal-
ysis strategies that can shed light on the impact of various factors
on the performance of the photolithography work area.

1.1.3. Research question
To address the research gaps mentioned in the previous subsection,

the following research question is answered by this paper:

• How to devise an algorithmically efficient approach for tackling
SFJSSP in the domain of photolithography, taking into account
the inherent uncertainty associated with processing times and
sequence-dependent setup times, while also accommodating the
three constraints specific to this work area?

1.2. Contribution

In summary, the research question is addressed by the following
contributions:

• A mathematical model is developed for the SFJSSP of the pho-
tolithography work area considering its uncertain nature and
three special constraints (machine process capability, machine
dedication, and maximum reticles (masks) sharing constraint),
and further transformed into an SO model.

• A detailed simulation model of the photolithography workstation
is developed that considers the stochasticity of the processing
and sequence-dependent setup times and respects the special
constraints of the workstation, simultaneously.

• A tailored GA is devised that incorporates an effective and no-
ble approach as its sorting method and is capable of optimiz-
ing the schedule of complex and stochastic systems such as the
semiconductors manufacturing.
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• An SO model is finally developed by integrating the developed
simulation model with the proposed GA.

• An insightful sensitivity analysis is provided to assess the im-
pact of three factors, namely, Flexibility Ratio, Machine Dedication
Ratio, and Sequence-Dependent Setup Time Occurrence Ratio, on
minimizing the makespan in scheduling the photolithography
work area. Using actual fab data, a test problem environment of
the photolithography work area is proposed. This environment
is exposed to stochastic uncertainty since the processing times
and sequence-dependent setup times follow a Normal distribu-
tion. Furthermore, two different levels are considered for each
factor mentioned above. Eight different SFJSSPs are constructed,
with regard to these different levels, using the proposed prob-
lem environment. These scheduling problems are solved using
the proposed SO model afterward. Consequently, based on the
reported makespan for the problems, the effect of each factor on
the system’s performance is analyzed.

The remainder of this paper is then organized as follows. Section 2
rovides a literature review of the articles addressing the scheduling
roblem in the photolithography work area. In Section 3 the developed
athematical model for the SFJSSP of the photolithography work area

s presented. Also, in this section, an explanation is provided of how
he mathematical model is transformed into an SO model. Section 4
laborates on the SO model. The next section calibrates the SO model.
ection 6 reports the results of the experiments carried out. Finally,
ection 7 concludes the paper and looks at possible future studies.

. Literature review

The constant increase in the use of ICs in industrial, commercial,
nd military products renders the semiconductor industry of critical
mportance to the global economy (Mönch et al., 2018b). With this
apidly increasing global demand and one of the most capital-intensive
roduction systems (Cemernek et al., 2017), the semiconductor indus-
ry is well-positioned to invest in cost-saving process excellence. In
his regard, the research on performance improvement in the semi-
onductor manufacturing has only come into existence in the last
ew decades (Gupta and Sivakumar, 2006). Furthermore, the exist-
ng literature in this context is mainly focused on two areas, the
esting workstation (e.g., Cao et al. (2018), Chen et al. (1995), Ellis
t al. (2004), Uzsoy et al. (1992), Wu and Chien (2008) and Xiong
nd Zhou (1998)) and the photolithography workstation. The pho-
olithography workstation is a well-known bottleneck resource of most
abrication lines due to its expensive machines and complex process
onstraints (Lee and Lee, 2003). Therefore, effective scheduling for
he photolithography work center is essential as it could significantly
ffect the whole semiconductor fab throughput, cycle time, and on-
ime delivery (Cakici and Mason, 2007). Thus, due to the importance
f the photolithography work area, in this section, we focus on the
cheduling problem of this work area. Surprisingly, published research
n photolithography scheduling is limited within the literature. The
apers published in this context within the last decades are reviewed
n the following subsections. The first subsection focuses on the papers
hat addressed the scheduling problem of the photolithography work
rea as a form of JSSP, ignoring its uncertain nature. The papers
eviewed in the second subsection, however, aimed at scheduling the
perations of the photolithography workstation while considering the
ncertainties involved, therefore addressed it as a form of SJSSP. In
eviewing the papers within both of the subsections, special attention
s given to the three special constraints of the photolithography as well
s the solution method used to address the scheduling problem of this
4

ork area.
2.1. JSSP of the photolithography work area

This subsection presents a review of the papers that addressed the
scheduling problem of the photolithography work area while ignoring
the uncertain nature of this workstation. In this regard, one of the
earliest works is proposed by Wein (1988). He used a simulation
model to assess the effect of various input controls and sequencing
rules on the performance of the semiconductor wafer fabrication. The
developed simulation model represents a fictitious fab with parameters
driven from data gathered at an actual fab. However, non of the three
special constraints of the photolithography work area was taken into
account by the author. Akcali and Uzsoy (2000) broke down the shift
scheduling problem into capacity allocation and lot-sequencing sub-
problems. Capacity Allocation Routine (CAR) was developed for the
capacity allocation problem. CAR uses an integration of a metaheuristic
algorithm developed by Toktay and Uzsoy (1998) and a simulation
model presented by Akcali and Uzsoy (2000). Further on, numerical
experiments were proposed to study the effects of factors such as
stepper capability, reticle, and setup constraints. Regarding the stepper
capability, two cases were considered: fully flexible matrix and nested
matrix. The former accounts for when the stepper is capable of pro-
cessing all the operations while the latter happens when there are two
groups of steppers: one group that can process any operation; another
group capable of processing only a subset of the operations. Yugma
et al. (2007) addressed the problem of scheduling the lots in the
photolithography area while considering the reticle sharing constraints.
To be more detailed, a simulator was developed that uses the data
regarding each lot to prioritize them and determine the best equip-
ment for processing the lots. Johnzén et al. (2008) used a scheduling
simulator proposed by Yugma et al. (2007) to assess the impact of
qualification management on semiconductor scheduling. They used
different qualification sets and input data from a real fab to conduct
their desired experiments. Klemmt et al. (2010) considered three spe-
cial constraints of the photolithography work area. To address this
work area’s scheduling problem, a multistage optimization approach
was proposed. To be more detailed, the problem was broken down
into four optimization problems by creating data interfaces between
them. However, they stated that the global optimum might be lost by
using their proposed optimization method. Yan et al. (2012) proposed a
mixed-integer optimization model, which was solved using the branch-
and-cut-method. Reticle expiration and machine dedication constraints
were taken into account. The proposed objective function minimized
the load differences between every machine and the average. To reduce
the computational intensity, the authors also proposed a two-phase
model for the same problem. In the first phase, the range of the problem
is decreased by relaxing some constraints while the second phase is
in charge of developing a near-optimal schedule for the production
system. In another study, Ham and Cho (2015) modified a scheduling
model proposed by Ham (2012) for photolithography implementation.
The modified model referred to as i-RTD (MIP-based real-time dis-
patching), is constructed so that only necessary jobs are scheduled
in each decision time epoch. Moreover, all three special constraints
of the photolithography work area were considered by the authors.
Finally, Zhang et al. (2018) used a rolling horizon strategy to address
the scheduling problem of the photolithography machines by dividing
the problem into several local scheduling problems. They used an
Imperialist Competitive Algorithm (ICA) to solve each scheduling task.

2.2. SJSSP of the photolithography work area

The uncertainties involved in the photolithography environment are
one of the key features of this work area and have been addressed by a
limited number of studies. One of these studies is conducted by Akcalt
et al. (2001) in which several test and machine dedication policies
were presented to assign the critical layers to steppers. In this regard, a

simulation model of the photolithography work area was developed to



Computers and Operations Research 163 (2024) 106508E. Ghaedy-Heidary et al.

M
H

Table 1
Summary of publications on the photolithography work area with PT = Processing Time; ST = Setup Time; WIP = Work in Process; NOJ = Number of Operations per Job; MF =

achine Failure; MC = Machine Process Capability; MPC = Machine Dedication; RS = Reticle Sharing; SDST = Sequence-Dependent Setup Time; DR = Dispatching Rule; HE =
euristic; MH = MetaHeuristic; S = Simulation; SO = Simulation-Optimization; EX = Exact Optimization; P = (Maximize) Profit; ATHT = (Minimize) Average Throughput Time; LL

= (Minimize) Load Leveling; TH = (Maximize) Throughput; CT = (Minimize) Cycle Time; CMT = (Minimize) Completion Time; C = (Minimize) Cost; MS = (Minimize) Makespan;
FT = (Minimize) Flow Time; DO = (Minimize) Day at Operation; JS = Job-Shop; FJS = Flexible Job-Shop; SJS = Stochastic Job-Shop; SFJS = Stochastic Flexible Job-Shop; FF =
Fictitious Fab; RF = Real Fab; CPM = Compare with Previous Methods.

Reference Environment Uncertainty Constraints SDST Methodology Objective Case Validation

MPC MD RS DR HE MH S EX SO

Wein (1988) JS – – – – – – – – * – – ATHT FF –
Akcali and Uzsoy (2000) FJS – * – * * – – – – – * P-TH FF –
Akcalt et al. (2001) SJS MF – * * * – – – * – – CT FF –
Dabbas et al. (2001) SJS PT – – – – * – – – – – – FF-RF CPM
Lee et al. (2002) SJS PT – * * * * – – * – – LL – –
Yugma et al. (2007) JS – – – * * – – – * – – DO RF –
Cakici and Mason (2007) SJS PT-NOJ – * – * – * – – – – CT RF CPM
Johnzén et al. (2008) JS – – – * * – – – * – – DO RF –
Klemmt et al. (2010) FJS – * * * – – * – – * – C-LL-TH RF –
Yan et al. (2012) JS – – * * – – – – – * – LL – –
Bitar et al. (2016) SJS PT-ST – – * * – – * – – – FT – –
Bitar et al. (2014) SJS PT-ST – – * * – – * – – – CT RF –
Ham and Cho (2015) FJS – * * * * – – * – – – CMT-CT-U RF –
Zhang et al. (2018) FJS – * * * – – – * – – – CMT RF CPM
This paper SFJS PT-ST * * * * – – – – – * MS RF CPM
assess the effect of the proposed policies on the cycle time. In another
study, Dabbas et al. (2001) developed a dispatching rule by combining
several dispatching criteria such as throughput, flow control, and line
balancing. Then, a previously proposed wafer fabrication model was
used to compare the developed dispatching rule with single criterion
ones (e.g., Critical Ratio (CR) and Shortest Processing Time (SPT)). A
hypothetical ‘‘Mini-Fab’’ model presented by Spier and Kempf (1995)
and also a model based on an actual semiconductor factory were used
to validate their work. Lee et al. (2002) proposed a simulation model
of a wafer fab as well as several dispatching rules. Their numerical
experiments proved that pull-type scheduling rules are more effective
than push-type rules for most performance measures. In another study
by Cakici and Mason (2007), a mathematical model was proposed
for scheduling the photolithography area while considering machine
process capability and reticle sharing constraints. Processing times and
the number of operations per job were assumed to follow a uniform dis-
tribution. Moreover, two heuristic algorithms were developed to solve
the model. The heuristic with superior performance (H2) was identified
after conducting thorough numerical experiments using real wafer fab
data. Further on, they presented an enhanced version of the Tabu
Search (TS) algorithm by improving neighborhood research. Bitar et al.
(2016) proposed a memetic algorithm for parallel machine scheduling
in the photolithography work area. They considered the reticle shar-
ing constraints and optimized the weighted flow time (to minimize)
and the number of processed products (to maximize). Their proposed
metaheuristic was later on used by Bitar et al. (2014) to develop four
scheduling algorithms. The algorithms were further compared using
Operating Curves (OCs). OCs were developed by IBM and have been
used in semiconductor manufacturing to manage the trade-off between
cycle time and throughput.

As was reviewed in the previous paragraphs, the mentioned schedul-
ing problem has been addressed by a limited number of papers. On
the one hand, more than half of the reviewed papers, presented in the
first subsection, ignored the uncertain nature of the photolithography
work area. On the other hand, non of the papers that considered the
uncertainties involved in the photolithography work area addressed all
three special constraints of this work area. Within the papers reviewed
in the first subsection, only three of them (Ham and Cho (2015),
Klemmt et al. (2010), and Zhang et al. (2018)), addressed the schedul-
ing problem of the photolithography work area while considering
the three special constraints, simultaneously. However, as mentioned
before, the work presented by these papers did not account for the
uncertainties involved in the photolithography operations. Thus, as
5

proposed by the summary Table 1, no previous work has considered the
uncertain nature and special operational constraints of the photolithog-
raphy work area together while addressing the scheduling problem of
this work area. Furthermore, within the papers reviewed in both of
the subsections, the scheduling problem of the photolithography work
area has been primarily addressed using conventional approaches and
optimization methods that are generally intensive in computation time,
even in addressing simple, small-sized scheduling problems (Gupta and
Sivakumar, 2002). Thus, considering the complexity of the scheduling
problem within the photolithography work area, since simpler versions
of this problem are NP-hard (e.g., Low and Fang (2005)), there is a need
to apply more competent and effective tools to address this problem.
In this regard and in the era of I4.0, hybrid SO methods have been
one of the most promising approaches to address complex manufac-
turing system problems (Arakawa et al., 2003; Ghasemi et al., 2021).
On one hand, simulation models have become a popular technique
for developing production schedules and dispatch rules in manufac-
turing environments (Gupta and Sivakumar, 2002). The benefits of
using simulation models to schedule the semiconductor production
system have been highlighted by publications since decades ago (Li
et al., 1996; Lu et al., 1994; Zhang et al., 2009). In fact, as stated
by Sivakumar (2001), the simulation method helps in overcoming many
of the limitations of the conventional approaches in modeling the
scheduling problem of semiconductor manufacturing. On the other
hand, optimization techniques are critical tools to improve decisions
within almost all systems. Combining simulation models with opti-
mization methods could develop a promising tool for solving various
complex and stochastic industrial problems (Ghasemi et al., 2018) such
as scheduling the photolithography work area. In this regard, some
papers have used SO-based methods in the context of semiconductor
manufacturing (e.g., Gupta and Sivakumar (2002), Kuck et al. (2016),
Sivakumar (2001) and Waschneck et al. (2018)). However, none of
them has focused on the photolithography work area.

Considering all those mentioned above and the summary provided
in Table 1, there are significant gaps in the literature:

• As was stated before, developing an effective schedule for the
photolithography process is essential since it can lead to substan-
tial improvements in the overall wafer fab performance (Cakici
and Mason, 2007). However, a limited number of papers have
addressed the scheduling problem of this work area. As it is
evident in Table 1, through the last three decades, only around
20 papers have focused on the mentioned scheduling problem.

• Even though uncertainty is an indivisible characteristic of the
photolithography area (Kim et al., 2002), less than half of the
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Table 2
Notations table.

Indices and sets

𝑗, 𝑗′ = Jobs indexes, 𝑗, 𝑗′ ∈ {1,… , 𝑁}.
𝑖, 𝑖′ = Operations ids, 𝑖, 𝑖′ ∈ {1,… , 𝑁𝑂}.
𝑜, 𝑜′ = Operations indices for job 𝑗 and job 𝑗′, respectively, 𝑜 ∈ {1,… , 𝑁𝑂𝑗} , 𝑜′ ∈ {1,… , 𝑁𝑂𝑗′ }.
𝑚 = Machine indexes, 𝑚 ∈ {1,… , 𝑁𝑀}.
𝑘 = Queuing position index, 𝑘 ∈ {1,… , 𝑁𝑂}.
𝑃𝐷 = Precedence orders sets defining the execution precedence of operations of the same jobs.
𝑠 = Simulation replication index, 𝑠 ∈ {1,… , 𝑆𝐿}.
𝐼𝑡 = GA iteration index, 𝐼𝑡 ∈ {1,… , 𝑇 }.

Parameters

𝑁 Total Number of jobs.
𝑁𝑂 Total number of operations.
𝑁𝑀 Total Number of machines.
𝑁𝑂𝑗 Total number of operations for job 𝑗.
𝑒𝑗 First critical operation of job 𝑗.
𝑝𝑑𝑖 The precedence orders set that operation id 𝑖 is a member of.
𝑆𝐿 Number of simulation replications indexed by s.
𝑇 Total number of GA iterations indexed by It.
𝐴𝑜𝑗 Set of alternative machines capable of processing operation 𝑜 of job 𝑗.
𝐵𝑚 An index set of operations that can be processed on machine 𝑚, {(𝑜, 𝑗); 𝑜 such that 𝑚 ∈ 𝐴𝑜𝑗}.
𝑀𝑖𝑚 Alternative machine, 1 if machine 𝑚 is capable of processing operation 𝑖, 0, otherwise.
𝑡′𝑜𝑗𝑚 Stochastic processing time of operation 𝑜 of job 𝑗 on machine 𝑚.
𝑑′

𝑜𝑗𝑜′𝑗′ Stochastic sequence-dependent setup time between operation 𝑜 of job 𝑗 and operation 𝑜′ of job 𝑗′ on machine.
𝐶𝑟𝑜𝑗 Critical operation, 1 if operation 𝑜 of job 𝑗 is critical, 0, otherwise.
𝑃 ′

𝑖 Stochastic processing time of operation id 𝑖.
𝑄′

𝑖 Stochastic sequence-dependent setup time of operation id 𝑖.
𝜙𝑖𝑚 Probability distribution of processing time of operation id 𝑖.
𝜙′
𝑖𝑖′ Probability distribution of sequence-dependent setup time between operation ids 𝑖 and 𝑖′.

𝐹 𝑙𝑜𝑗 1, if there are more that one machines in 𝐴𝑜𝑗 , 0, otherwise.
𝑆𝑡𝑖𝑖′ 1, if 𝜙′

𝑖𝑖′ > 0, 0, if 𝜙′
𝑖𝑖′ =0.

𝑀 A large number.

Decision variables

𝑌𝑜𝑗𝑚 1, if operation 𝑜 of job 𝑗 is processed on machine 𝑚, 0, otherwise.
𝑆𝑃
𝑜𝑗 The starting time of operation 𝑜 of job 𝑗.

𝑋𝑜𝑗𝑜′𝑗′𝑚 1, if operation 𝑜 of job 𝑗 is to be processed right after operation 𝑜′ of job 𝑗′, 0, otherwise.
𝑍𝑖𝑘 1, if operation id 𝑖 is assigned to the 𝑘th position of the dispatching queue, 0, otherwise.

Functions

𝐶𝑚𝑎𝑥 The makespan of a schedule.
𝑓𝑠 The objective calculation function for the simulation replication s.
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o
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presented papers have considered the stochastic nature of this
work area. Also, regarding the three special constraints of this
workstation, only three papers have taken them into account
simultaneously. However, these three papers ignored the uncer-
tainty in the photolithography area. In other words, no previous
work has considered all the characteristics of this work area
simultaneously.

• As it was mentioned earlier, the majority of the methods used
to address the scheduling problem of the photolithography work
area are traditional optimization methodologies. These methods
are not capable enough to address such complex problems within
a reasonable time.

• Moreover, as it is evident from Table 1, there is also a lack of
validation and sensitivity analysis strategies within the reviewed
literature. In other words, only a few papers have validated their
solution approach by conducting relative comparisons. The same
goes for presenting a sensitivity analysis to evaluate the perfor-
mance level of the photolithography work area under different
conditions.

This paper aims to fill the mentioned gaps by addressing the
cheduling problem of the photolithography work area, considering
ll its characteristics while using a competent SO method. The pro-
osed SO method is also validated through extensive comparative
xperiments. Moreover, an insightful sensitivity analysis is presented to
ssess the performance of the understudied work area under different
onditions.
6

o

3. Problem formulation

In this section, the SFJSSP of the photolithography work area is
formulated. The mathematical model developed for the SFJSSP of
the photolithography work area is elaborated in the first subsection.
Further on, transforming the mathematical model into an SO model is
explained thoroughly in Section 3.2. Table 2 provides a summary of
the notations used in this section. Before introducing the model formu-
lation, the following example is proposed that represents a scheduling
problem in the mentioned work area. This example is solved gradually
to provide the reader with a better understanding of the SO math-
ematical model. Consider Job1, Job2, and Job3 presented in Fig. 2
or which 𝑁𝑂1 = 3, 𝑁𝑂2 = 3, and 𝑁𝑂3 = 1, respectively. One
f the operations is chosen to explain the operations’ sequencing and
ssignment procedure. In this regard, consider Op6 (note in this article
e sequentially number the operations across starting from the lowest
umber job to the highest number job), which is the third operation
f Job2. To satisfy the machine process capability constraints as one of
he three special constraints of the photolithography work area, a set of
achines are considered to process Op6. In this regard, the processing

imes of Op6 are 8 and 9 time units on Machine2, and Machine3,
espectively. Moreover, with respect to the third special constraint of
he photolithography workstation, maximum reticles (masks) sharing
onstraints, sequence-dependent setup times are also considered for
hifting from Op6 to Op1 and Op7 with 1 and 3 time units, respectively
the rationale behind considering sequence-dependent setup times to
atisfy the maximum reticles (masks) sharing constraints will be elab-
rated in the following subsection). Noteworthy is to mention that,
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according to previous production data provided by Ghasemi et al.
(2020), the processing times are known but they follow a probability
distribution. However, in Fig. 2, we ignored the stochastic factors in
both processing times and sequence-dependent setup times for illustra-
tive purposes. Furthermore, Op6 is the second critical operation of Job2
(this information will be used further on to satisfy the second special
constraint of the photolithography work center, machine dedication
constraints). To represent this scheduling problem, a mathematical
model is presented in the next subsection.

3.1. Mathematical model

This subsection proposes the mathematical model for the SFJSSP
of the photolithography work area. Noteworthy is mention that the
following mathematical model is developed based on the work of Choi
and Choi (2002) who proposed a mathematical model for an SFJSSP.
However, some of the notations are modified to implement the model in
the photolithography work area. Furthermore, constraint (9) is added
to the model to represent the machine dedication constraints of the
photolithography work.

As the primary goal of the proposed model is to minimize the
makespan of the schedule, according to Choi and Choi (2002), the
objective function can be formulated as follows:

𝑀𝑖𝑛 𝐹 = 𝑀𝑖𝑛(𝐶𝑚𝑎𝑥) (1)

Also, Choi and Choi (2002) presented the following set of constraints:

𝑆𝑃
𝑜𝑗 + 𝑡′𝑜𝑗𝑚.𝑌𝑜𝑗𝑚 ≤ 𝑆𝑃

𝑜+1,𝑗 , 𝑗 ∈ {1,… , 𝑁}; 𝑜 ∈ {1,… , 𝑁𝑂𝑗};𝑚 ∈ 𝐴𝑜𝑗 ; (2)

𝑆𝑃
𝑁𝑂𝑗 𝑗

+ 𝑡′𝑁𝑂𝑗 𝑗𝑚.𝑌𝑁𝑂𝑗 𝑗𝑚 ≤ 𝐶𝑚𝑎𝑥, 𝑗 ∈ {1,… , 𝑁};𝑚 ∈ 𝐴𝑁𝑂𝑗
; (3)

𝑆𝑃
𝑜𝑗 + 𝑡′𝑜𝑗𝑚 + 𝑑′𝑜𝑗𝑜′𝑗′ ≤ 𝑆𝑃

𝑜′𝑗′ + (1 −𝑋𝑜𝑗𝑜′𝑗′𝑚) ×𝑀, (𝑜, 𝑗) ∈ 𝐵𝑚; (𝑜′, 𝑗′) ∈ 𝐵𝑚;

𝑚 ∈ {1,… , 𝑁𝑀}; (4)

∑

𝑚∈𝑀𝑜𝑗

𝑌𝑜𝑗𝑚 = 1, 𝑗 ∈ {1,… , 𝑁}; 𝑜 ∈ {1,… , 𝑁𝑂𝑗};𝑚 ∈ 𝐴𝑜𝑗 ; (5)

∑

(𝑜′ ,𝑗′)∈𝐵𝑚

𝑋𝑜𝑗𝑜′𝑗′𝑚 = 𝑌𝑜𝑗𝑚, 𝑗 ∈ {1,… , 𝑁}; 𝑜 ∈ {1,… , 𝑁𝑂𝑗};𝑚 ∈ 𝐴𝑜𝑗 ; (6)

∑

(𝑜,𝑗)∈𝐵𝑚

𝑋𝑜𝑗𝑜′𝑗′𝑚 = 𝑌𝑜′𝑗′𝑚, 𝑗
′ ∈ {1,… , 𝑁}; 𝑜′ ∈ {1,… , 𝑁𝑂𝑗};𝑚 ∈ 𝐴𝑜′𝑗′ ; (7)

𝑃
𝑜𝑗 ≥ 0, 𝑗 ∈ {1,… , 𝑁}; 𝑜 ∈ {1,… , 𝑁𝑂𝑗}; (8)

s mentioned earlier, the following constraint is added to the original
odel proposed by (Choi and Choi, 2002):
∑

𝑜∈𝑁𝑂𝑗

𝑌𝑜𝑗𝑚 × 𝐶𝑟𝑜𝑗 =
∑

𝑜∈𝑁𝑂𝑗

𝑌𝑒𝑗 𝑗𝑚 × 𝐶𝑟𝑜𝑗 , 𝑗 ∈ {1,… , 𝑁};𝑚 ∈ 𝐴𝑜𝑗 ; (9)

Constraints (2) and (3) account for the precedence relationships
f the operations of the same job. According to constraint (2), an
peration cannot start processing unless its predecessor operation is
rocessed completely. Constraint (3) further denotes that the comple-
ion time of each job cannot exceed the makespan of the schedule.
ccording to constraint (4), each machine can only process one opera-

ion at a time. Constraint (4) also accounts for the maximum reticle
haring constraints of the photolithography work area. In a wafer
abrication process, an average of 20 to 30 reticle changes must be
erformed to process a specific lot (Cakici and Mason, 2007). These
hanges give rise to the need for sequence-dependent setup times (Park
nd Stefanski, 1998). Note the setup occurs just once when the machine
tarts processing operations requiring a new reticle (Ham and Cho,
015). Thus, the maximum reticle sharing constraints have been con-
idered in the model by including sequence-dependent setup times in
onstraint (4). Constraint (5), represents the machine process capability
7

onstraints and forces exactly one alternative machine option to be
elected from 𝐵𝑚. Constraints (6) and (7) denote circular permutations
f operations on each machine. Also, according to constraint (8),
ach job can be available at time zero. Constraint (9) accounts for
he machine dedication constraints. According to constraint (9), all
ritical operations of each job must be processed on the same machine
the machine that processed the first critical operation of that job).
inally, according to Choi and Choi (2002), variable types and domains
onstraints are demonstrated in the following:

𝑜𝑗𝑚 ∈ {0, 1}, 𝑗 ∈ {1,… , 𝑁}, 𝑜 ∈ {1,… , 𝑁𝑂𝑗};𝑚 ∈ 𝐴𝑜𝑗 ; (10)

𝑋𝑜𝑗𝑜′𝑗′𝑚 ∈ {0, 1}, (𝑜, 𝑗) ∈ 𝐵𝑚; (𝑜′, 𝑗′) ∈ 𝐵𝑚;𝑚 ∈ {1,… , 𝑁𝑀}; (11)

To solve the proposed SFJSSP of the photolithography work area,
the developed mathematical model must be transformed into an SO
model first. The underlying reason behind this transformation is that
production scheduling problems are among the most complex opti-
mization problems (Xiong and Zhou, 1998). Therefore, conventional
search and optimization methods are ineffective in addressing these
problems. This is mainly due to the fact that these methods are gen-
erally intensive in computation time as even the simple manufacturing
scheduling problems are NP-hard (Gupta and Sivakumar, 2002). The
complexity of scheduling problems increases even more in semiconduc-
tor manufacturing due to the presence of various work centers, special
process constraints, sequence-dependent setup times, re-entrant process
flow, and the stochastic nature of the problem. In this regard, SO
methods have been one of the most promising approaches to addressing
complex manufacturing system problems in a reasonable computation
time (Linnéusson et al., 2020).

The following subsection is dedicated to transforming the proposed
mathematical model into an SO model.

3.2. SO mathematical model transformation

This subsection presents the transformation of the previously pro-
posed mathematical model into an SO. An SO consists of a simulation
model and an optimization algorithm. Both the former and latter satisfy
a subset of the constraints presented in Section 3.1. To be more de-
tailed, some variables/parameters of the scheduling problem cannot be
regarded as fixed and known in an stochastic environment. Simulation
is one of the most suitable ways to derive experience-based solutions in
these stochastic environments (Longo, 2010). Thus, in our SO approach,
the simulation model is in charge of dealing with stochastic parameters.
In this regard, all the previously elaborated constraints, consisting of
stochastic parameters, are satisfied through the simulation model. In
other words, the constraints of the proposed mathematical model are
divided into two groups: group one, which contains stochastic parame-
ters, and group two, with all deterministic parameters. In this context,
the simulation model is in charge of dealing with the first group while
the second group of constraints is satisfied by the optimizer. Consider
the previously presented example in Fig. 2 for further elaboration.

As it can be seen in Fig. 2, Op6 is assigned to the 6th position of the
‘‘Job-Shop Queue (Queue)’’. Considering the precedence constraints,
Op6 must be positioned after Op4 and Op5 (as it can be seen in the
Queue). Thus, we denote that 𝑍42 = 1 and 𝑍53 = 1. The ‘‘Job-
Shop Queue (Queue)’’ in Fig. 2 represents a feasible solution for the
scheduling problem. That is to say, the operations are positioned in the
Queue according to their precedent-dependent relationships. In fact,
the ‘‘Job-Shop Queue (Queue)’’ can be seen as one of the solutions
provided by the optimization algorithm for the scheduling problem.
These alternative solutions, with different sequencing of operations,
need to be tested and compared to find a good (or optimal) solu-
tion (Figueira and Almada-Lobo, 2014). In this setting, the simulation
model calculates the objective value of each optimization solution. In
other words, objectives (makespan of the solutions in this paper) are
variable process parameters of the simulation model that result from

a simulation run (Krug et al., 2002). The simulation model builds
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Fig. 2. Proposed Job-Shop scheduling problem example.
the schedule by sequencing the operations on machines’ queues. Due
to the flexibility of the understudied scheduling problem, there is a
set of alternative machines to process each operation. Therefore, the
simulation model applies the Least Work Remaining (LWR) dispatching
rule to select a machine from the set of alternative machines capable
of processing each operation. Once an operation finishes processing,
the job moves to the next machine, and the dispatching rule is called
again. When all operations are executed, the final makespan is then
returned. In fact, the simulator receives as input a feasible solution (pro-
vided by the optimizer) and a Job-Shop problem instance and returns
the respective makespan. However, since the problem is stochastic,
one replication should not be enough to accurately evaluate the per-
formance of each solution (Figueira and Almada-Lobo, 2014). Thus,
Eq. (1) is transformed to Eq. (12), where 𝑓𝑠 calculates the makespan
of solution 𝑍𝑖𝑘 from simulation replication s. Also, in this context, F
defines the fitness value for an SFJSSP solution.

𝑀𝑖𝑛 𝐹 = 𝑀𝑖𝑛

(

1
𝑆𝐿

𝑆𝐿
∑

𝑠=1
𝑓𝑠

(

{∪𝑁𝑂
𝑖=1 ∪𝑁𝑂

𝑘=1 𝑍𝑖𝑘}, 𝑃 ′
𝑖 , 𝑄

′
𝑖
)

)

(12)

Some constraints need to be taken into consideration regarding the
simulation model. In each solution, 𝑍𝑖𝑘 is a binary variable that shows
whether operation 𝑖 is assigned to the 𝑘th position of the ‘‘Job-Shop
Queue (Queue)’’. Thus, each operation should be assigned to one of
the existing positions in the Queue:
∑

𝑘∈𝑁𝑂
𝑍𝑖𝑘 = 1; 𝑖 ∈ {1,… , 𝑁𝑂} (13)

The following constraints ensure that for each existing position in
dispatching queue 𝑘, at most one operation is assigned.
∑

𝑍𝑖𝑘 = 1; 𝑘 ∈ {1,… , 𝑁𝑂} (14)
8

𝑖∈𝑁𝑂
Also, the precedence relationship between two operations 𝑖 and 𝑖′ from
the same job 𝑗 in the scheduling problem needs to be considered. In
other words, when operation 𝑖 (assigned to the position 𝑘) precedes
operation 𝑖′, operation 𝑖′ must be assigned to a position 𝑘′ (𝑘′ > k) on
the dispatching queue:

𝑍𝑖𝑘 ≥ 𝑍𝑖′𝑘′ ; 𝑖, 𝑖′ ∈ 𝑃𝐷, 𝑘, 𝑘′ ∈ {1,… , 𝑁𝑂}, 𝑘 < 𝑘′ (15)

𝑍𝑖𝑘 −𝑍𝑖𝑘 ×𝑍𝑖′𝑘′ ≥ 𝑍𝑖′𝑘′ ; 𝑖, 𝑖′ ∈ 𝑃𝐷, 𝑘, 𝑘′ ∈ {1,… , 𝑁𝑂}, 𝑘 > 𝑘′ (16)

Finally, the decision variable feature of the model can be defined as
the following constraint:

𝑍𝑖𝑘 ∈ 0, 1; 𝑖, 𝑘 ∈ {1,… , 𝑁𝑂} (17)

Moreover, in addition to constraints (13) to (17), constraint (9)
presented in Section 3.1 also needs to be taken into consideration.

According to all the above-mentioned, to finish solving the example
provided in Fig. 2 consider the ‘‘Job-Shop Queue (Queue)’’, which is the
output of the optimization algorithm. This Queue represents a feasible
solution for the scheduling problem and is received by the simulation
model as input. Also, the data in the operation environment table in
Fig. 2 is the other input of the simulation model. In this stage, the
simulator starts the scheduling process to calculate the fitness value.
Since Op6 is the second critical operation of Job2, it must be assigned
to the same machine as the first critical operation of Job2 to satisfy
the machine dedication constraints. Since the first operation of Job2,
which is Op4, had been assigned to Machine3, Op6 needs to be assigned
toMachine3 as well. Thus, as shown in the Gantt chart, Op4 and Op6 are
both processed on Machine3. Conducting the same assignment method
for all the existing operations, each operation is assigned to a machine,
and the decision variables are calculated. Consequently, the amount of
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objective function/fitness value, which is the makespan in this paper,
is defined.

Algorithm 1: Scheduling algorithm.
Inputs : 𝑍 (feasible solution), 𝑂𝑝𝐽𝑜𝑏𝑖 (the job that operation id 𝑖

belongs to), 𝜙𝑖𝑚, 𝜙′
𝑖𝑖′ , 𝑁 , 𝑁𝑂, 𝑁𝑀

Output: 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
for 𝑗 = 1 to 𝑁 do

𝐹 𝑖𝑟𝑠𝑡𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑝𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑗 = 𝑁𝐴𝑁
𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑂𝑝𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒𝑗 = 0
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒𝑗 = 0

end
for 𝑚 = 1 to 𝑁𝑀 do

𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐹 𝑟𝑒𝑒𝐴𝑡𝑚 = 0
end
for 𝐾 = 1 to 𝑁𝑂 do

𝑖 = the operation in the 𝑘𝑡ℎ position of 𝑍
𝑗∗ = 𝑂𝑝𝐽𝑜𝑏𝑖
if 𝑖 is not a critical operation of 𝑗∗ then

𝑚∗ = the machine from the machine set (satisfying the
machine process capability constraints by considering a
machine set to process each operation) that can operate 𝑖
with the minimum of remaining work

end
if 𝑖 is the first critical operation of 𝑗∗ then

𝑚∗ = the machine from the machine set that can operate 𝑖
with the minimum of remaining work

end
if 𝑖 is a critical operation of 𝑗∗ but 𝑖 is not the first critical operation
of 𝑗∗ (satisfying the machine dedication constraints) then

𝑚∗ = 𝐹 𝑖𝑟𝑠𝑡𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑂𝑝𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑗∗
end
if 𝑖 is the first operation to be processed by 𝑚∗ or the last operation
that had been processed by 𝑚∗ also belongs to 𝑗∗ (satisfying the
maximum reticles (masks) sharing constraints) then

𝑄′
𝑖 = 0

else
𝑄′

𝑖 = 𝑅𝑎𝑛𝑑(𝜙′
𝑖𝑖′ )

end
𝑂𝑝𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒𝑖 =
𝑚𝑎𝑥(𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐹 𝑟𝑒𝑒𝐴𝑡𝑚∗ +𝑄′

𝑖 , 𝑃 𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑂𝑝𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒𝑗∗ )
𝑃 ′
𝑖 = 𝑅𝑎𝑛𝑑(𝜙𝑖𝑚∗ )

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒𝑗∗ = 𝑂𝑝𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒𝑖 + 𝑃 ′
𝑖

𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐹 𝑟𝑒𝑒𝐴𝑡𝑚∗ = 𝑂𝑝𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒𝑖 + 𝑃 ′
𝑖

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑂𝑝𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒𝑗∗ = 𝑂𝑝𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒𝑖 + 𝑃 ′
𝑖

end
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒𝑗 ∀𝑗 ∈ {1, .., 𝑁})
Return 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

4. The proposed SO algorithm

This section presents the proposed SO algorithm to solve the SFJSSP
of the photolithography work area. Hybrid SO-based approaches have
proven their potential in practical applications of production and lo-
gistics systems through the years (März et al., 2011). An SO structure
consists of a simulation model and an optimization algorithm. In this
regard, a simulation model of the photolithography work area and
a GA-based optimization algorithm are presented in the following
subsections.

4.1. The proposed simulation model

Due to the competencies of simulation models in scheduling com-
plex and stochastic manufacturing systems (Aydt et al., 2009), a simula-
tion model of the photolithography work area is proposed by employing
Python programming language. As mentioned in Section 3, the sim-
ulation model plays a critical role within the proposed SO structure.
According to Table 1, the developed simulation model is the only
model in the literature that considers all three special constraints of the
9

photolithography work area simultaneously and respects the stochastic
nature of this work center. Moreover, the developed simulation model
is widely flexible to represent various scheduling problems which are
solved using the proposed simulation model in Section 6.

A feasible solution for the scheduling problem, the number of jobs,
the number of operations of each job and the precedence relationship
among them, the set of machines capable of operating each of the
operations, and the processing times of the operations on each of the
capable machines are the input parameters of the simulation model.
The simulation model, also, receives data on the critical operations and
the sequence-dependent setup times required to process the operations
of different jobs on the same machine, consecutively. In other words,
all the data included in the Operations Environment and the Job Shop
Queue (Queue) presented in Fig. 2 are given to the simulation model
as the input parameters. The simulation model, therefore, is in charge
of three main tasks within the SO structure:

• Dealing with the stochastic nature of the constraints of the SFJSSP
of the photolithography work area. In fact, simulation models
are one of the most competent tools to deal with stochasticity in
manufacturing systems. Thus, one of the main applications of the
proposed simulation model is to satisfy a subset of the constraints
presented in Section 3 which contain stochastic parameters.

• Calculating the fitness value for each feasible solution obtained
by the optimizer. As mentioned in Section 3, the optimization al-
gorithm produces alternative feasible solutions for the scheduling
problem. The fitness value (the makespan) is employed to eval-
uate the performance of these solutions. The stochastic nature of
the photolithography work area renders the use of the simulation
model for calculating the fitness value.

• Developing an initial schedule that is iteratively optimized by the
optimization algorithm. The optimizer is in charge of developing
a chromosome of operations (a feasible solution). In the next step,
the proposed simulation model is responsible for assigning each
operation to a competent machine using the LWR dispatching
rule. Each operation is assigned to a machine, and an initial
schedule is developed.

A more detailed elaboration of the scheduling process by the simu-
lation model is illustrated in algorithm 1. Also, the proposed algorithm
illustrates how the three special constraints of the photolithography
work area are taken into consideration in the developed simulation
model.

4.2. The proposed optimization algorithm

This section proposes the developed GA as the optimizer of the
SO algorithm. GA imitates the phenomenon of biological evolution
and natural selection, where the fittest individuals are selected for
reproduction to produce offspring of the next generation. Over the
previous two decades, the superior search capability (Chang and Liu,
2017), and short computation time of GA (Chen et al., 2016), have
led to the refinement of numerous GA-based approaches for production
scheduling optimization problems (e.g., Gong et al. (2014), Kawanaka
et al. (2001) and Tay and Wibowo (2004)). Commonly, GA starts with a
predefined size of the population, known as the Initial Population, com-
posed of a certain number of individuals. These individuals are encoded
as chromosomes and represent a feasible solution to the optimiza-
tion problem (Zhang et al., 2011). Furthermore, three main operators
are employed in GA to direct the population to the global optimum:
selection, crossover, and mutation. The selection operator is applied
to the Initial Population to choose the chromosomes for reproduction.
Afterward, the crossover and mutation operators are adopted to form
a new population from the selected population. This process continues
until a termination condition is met (Defersha and Chen, 2009).

Key components of the proposed GA are presented in the following

subsections. Fig. 3 showcases the incorporation of GA components and
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Fig. 3. SO structure.
the simulation model. The diagram highlights the inputs and output of
the SO model through green boxes. Additionally, blue boxes represent
the GA operators, while the process of selecting the population for the
next iteration of the GA is depicted in a black box. Lastly, the red-
colored elements signify the simulation model and its output, which
are utilized by other components of the SO model.

4.2.1. Chromosome representation
Encoding a feasible solution to a chromosome is a key aspect in solv-

ing scheduling problems with GA (Djerid and Portmann, 1996). This
paper presents each chromosome in a single-dimensional array with
the same length as 𝑁𝑂. Each chromosome’s gene contains a unique
Operation ID (as presented in the table of Operation Environment in
Figure 1) that indicates one operation of a job. These IDs are assigned
to the operations, starting from the first operation of the first job to the
last operation of the last job. The ‘‘Job-Shop Queue (Queue)’’ presented
in Figure 1 can be considered a sample of the proposed chromosome
representation.

4.2.2. Population initialization
The fundamental underlying mechanism to start the search in GA

initiates with a population of individuals (Driss et al., 2015). This Initial
Population is crucial for GA since it directly influences the convergence
rate of the fitness values and the ultimate quality of the optimal
solutions (Chang and Liu, 2017). In this paper, the Initial Population
is created by sequencing the operations randomly in each chromosome
while preserving the precedent constraints of the operations of the same
job. As illustrated in Fig. 3, the way that each solution is represented
(Chromosome Representation) and the data regrading the specifications
of the operations are used to create the Initial Population.

4.2.3. Genetic operators
As mentioned earlier, there are mainly three genetic operators:

selection, crossover, and mutation. Genetic operators of the proposed
GA are described in the following.
10
4.2.3.1. Selection. The selection operator is in charge of choosing in-
dividuals for reproduction (Driss et al., 2015). We adopted a selec-
tion operator by modifying the binary tournament method introduced
by Brindle (1980). As Fig. 3 shows, the selection operator is applied on
the Initial Population. The proposed selection operator chooses the best
chromosomes from the Initial Population based on their fitness values
(makespans) following the subsequent steps:

• Step 1: Two chromosomes are chosen randomly from the Initial
Population.

• Step 2: Due to the stochastic nature of our scheduling problem,
one fitness value is not enough to accurately evaluate the perfor-
mance of each chromosome. Thus, for the chosen chromosomes
in Step 1, the simulation model is independently executed SL
times using the same chromosome as an input. The simulation
runs result in a list of SL fitness values (makespans) for each
chromosome.

• Step 3: The lists obtained from Step 2 are combined and sorted
in an ascending order, resulting in a new sorted list.

• Step 4: In this step, we allocate a score value to each chromosome
based on the sorted list derived from Step 3. It is important to note
that each element in the sorted list corresponds to a fitness value
obtained initially, in Step 2, by executing the simulation model
with one of the two randomly selected chromosomes from Step
1. During this step, our focus lies on the first half of the sorted
list, which represents the top-performing half of all fitness values
obtained in Step 2. Within this range, starting from the first fitness
value, we identify the corresponding chromosome and increment
its score value by one (score values are initially set to zero). The
same process is repeated for all items within the first half of the
sorted list, resulting in the final score values for the chromosomes.
To illustrate the scoring procedure, consider a solution population
consisting of 𝑛 chromosomes, labeled as 𝑋𝑖 where 𝑖 ranges from 1
to 𝑛. Each chromosome 𝑋𝑖 undergoes a series of 𝑆𝐿 simulations,
obtaining various objective values 𝑦1, 𝑦2, to 𝑦𝑆𝐿. These objective
𝑖 𝑖 𝑖
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values calculated using simulation experiments are stored in a
list. The list of objective values is then sorted in ascending order,
and only the first half of the sorted list is considered. Finally, the
score of each chromosome (solution) 𝑥𝑖 refers to the number of its
objective values being inside this subset (i.e., the score is obtained
by counting the number of 𝑦𝑖 in the subset for each solution 𝑥𝑖).

• Step 5: A comparison is conducted between the score values
assigned to the chromosomes in Step 4, utilizing a selection
threshold. The chromosome with a score value greater than or
equal to the product of the selection threshold and the length of
the first half of the sorted list is considered the fitter chromosome.
If neither chromosome meets the criteria to be considered fitter,
we go to Step 1.

he above-mentioned steps are repeated until the desired number of
hromosomes are selected to form the Selection Population.1 A detailed

explanation of the selection operator is provided in algorithm 2.

Algorithm 2: Selection Operator
Inputs : 𝐼𝑛𝑃 𝑜𝑝 (Initial Population), 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 (favorable number of

chromosomes in Selection Population), 𝑆𝐿, Selection Threshold
Output: 𝑆𝑒𝑙𝑃 𝑜𝑝 (Selection Population)
𝑆𝑒𝑙𝑃 𝑜𝑝 = 𝑁𝐴𝑁
𝐹𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 = ()
while number of chromosomes in 𝑆𝑒𝑙𝑃 𝑜𝑝 ≠ 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do

𝐶ℎ1 = A chromosome randomly selected from 𝐼𝑛𝑃 𝑜𝑝
𝐶ℎ2 = A chromosome randomly selected from 𝐼𝑛𝑃 𝑜𝑝
𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ1

= ()
𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ2

= ()
𝑆𝑐𝑜𝑟𝑒𝐶ℎ1

= 0
𝑆𝑐𝑜𝑟𝑒𝐶ℎ2

= 0
for 𝑠 = 1 to 𝑆𝐿 do

𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ1
= the fitness value for 𝐶ℎ1 calculated by the

simulation model
𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ1

= 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ1
+ 𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ1

𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ2
= the fitness value for 𝐶ℎ2 calculated by the

simulation model
𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ2

= 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ2
+ 𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ2

end
𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 = 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ1

+ 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ2
and sorted in ascending

order
for 𝑖 = 1 to 𝑙𝑒𝑛(𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 )∕2 do

if 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 (𝑖) ∈ 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝐶ℎ1
then

𝑆𝑐𝑜𝑟𝑒𝐶ℎ1
= 𝑆𝑐𝑜𝑟𝑒𝐶ℎ1

+ 1
else

𝑆𝑐𝑜𝑟𝑒𝐶ℎ2
= 𝑆𝑐𝑜𝑟𝑒𝐶ℎ2

+ 1
end

end
if 𝑆𝑐𝑜𝑟𝑒𝐶ℎ1

≥ Selection Threshold × 𝑙𝑒𝑛(𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 )∕2 then
𝑆𝑒𝑙𝑃 𝑜𝑝 = 𝑆𝑒𝑙𝑃 𝑜𝑝 + 𝐶ℎ1

end
if 𝑆𝑐𝑜𝑟𝑒𝐶ℎ1

≥ (Selection Threshold × 𝑙𝑒𝑛(𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 )∕2) then
𝑆𝑒𝑙𝑃 𝑜𝑝 = 𝑆𝑒𝑙𝑃 𝑜𝑝 + 𝐶ℎ2

end
end
Return 𝑆𝑒𝑙𝑃 𝑜𝑝

4.2.3.2. Crossover. The crossover operator aims to obtain better chro-
osomes by exchanging information contained in the currently se-

ected ones. During the last decades, several types of crossover op-
rators have been introduced, which do not respect the precedent

1 The literature on SO approaches in stochastic environments often employs
he average of simulation replications for selecting chromosomes. However,
ater in Appendix, employing the experiments presented in Sections Sec-
ion 6.1.2 and Section 6.2.2, it is shown that the proposed sorting methodology
y this article outperforms the sorting approach using the average of the
11

imulation replication results as the criterion
constraints of the operations (Chen et al., 2020). Thus, it is necessary
to apply a correcting algorithm to modify infeasible offspring created
by these operators. However, adopting a correcting algorithm is time-
consuming, and hence it is preferable to design operators such that
precedence constraints are not violated (Pezzella et al., 2008). There-
fore, in this paper, precedence preserving order-based crossover (POX),
firstly proposed by Lee et al. (1998), is used. POX is among the superior
crossover operators (Jiang and Zhang, 2018; Zhang et al., 2011), and
respects the precedence constraints of the operations of the same job.
In this regard, the proposed crossover operator randomly selects two
chromosomes (known as parents) from the Selection Population. Then,
n operation (𝑖) is randomly chosen from the first parent. In the next
tep, the precedent orders set to which 𝑖 belongs is identified (𝑝𝑑𝑖). Sub-
equently, all the operations of 𝑝𝑑𝑖 are placed in an empty chromosome
known as the child) in the same place as they appear in the first parent.
he operator then completes the child with the remaining operations

n the same order as they appear in the second parent. This procedure
s repeated until the favorable number of offspring is created and the
rossover Population is formed.

Fig. 4 presents how the crossover operator functions in four steps.
oreover, algorithm 3 is provided for further elaborations.

Algorithm 3: Crossover Operator
Inputs : 𝑆𝑒𝑙𝑃 𝑜𝑝 (Selection Population), 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 (number of

chromosomes in the Selection Population), 𝑁𝑂, 𝑝𝑑𝑖, 𝐶𝑟𝑜𝑠𝑠𝑅𝑎𝑡𝑒
Output: 𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝 (Crossover Population)
𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝 = 𝑁𝐴𝑁
for 𝑝 = 1 to (𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝐶𝑟𝑜𝑠𝑠𝑅𝑎𝑡𝑒) do

𝑃𝑎𝑟𝑒𝑛𝑡1 = A chromosome randomly selected from 𝑆𝑒𝑙𝑃 𝑜𝑝
𝑃𝑎𝑟𝑒𝑛𝑡2 = A chromosome randomly selected from 𝑆𝑒𝑙𝑃 𝑜𝑝
𝐶ℎ𝑖𝑙𝑑 = 𝑁𝐴𝑁
𝑘 = 𝑅𝑎𝑛𝑑(0, 𝑁𝑂)
𝑖 = 𝑃𝑎𝑟𝑒𝑛𝑡1(𝑘)
for 𝑂𝑝 ∈ 𝑝𝑑𝑖 do

𝑘 = 𝑓𝑖𝑛𝑑(𝑘|𝑃𝑎𝑟𝑒𝑛𝑡1(𝑘) = 𝑂𝑝)
𝐶ℎ𝑖𝑙𝑑(𝑘) = 𝑂𝑝

end
for 𝑘 = 1 to 𝑁𝑂 do

if 𝑃𝑎𝑟𝑒𝑛𝑡2(𝑘) ∉ 𝐶ℎ𝑖𝑙𝑑 then
for 𝑘′ = 1 to 𝑁𝑂 do

if 𝐶ℎ𝑖𝑙𝑑(𝑘′) == 𝑁𝐴𝑁 then
𝐶ℎ𝑖𝑙𝑑(𝑘′) = 𝑃𝑎𝑟𝑒𝑛𝑡2(𝑘)
𝑏𝑟𝑒𝑎𝑘!

end
end

end
end
𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝 = 𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝 + 𝐶ℎ𝑖𝑙𝑑

end
Return 𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝

4.2.3.3. Mutation. The mutation operator is also an important part of
GA. This operator can enhance the diversity of the offspring population
by introducing some additional variability into it (Driss et al., 2015).
In this way, the local optimum phenomena can be avoided (Chen
et al., 2020). This paper develops a mutation operator based on the
Precedence Preserving Shift mutation (PPS), firstly presented by Lee
et al. (1998). This operator also respects the precedence-dependant
relationships among the operations of the same job. Firstly, a chro-
mosome (known as the parent) is randomly chosen from the Selection
Population. Afterward, an operation (𝑖) is randomly selected from the
parent chromosome. In the next step, using the precedent orders set
to which 𝑖 belongs (𝑝𝑑𝑖), the predecessor and successor operations of 𝑖
are identified. The positions where these two operations are placed in
the parent chromosome are also identified. A position (𝑘) is randomly
selected between these two positions and the child chromosome is

created by moving 𝑖 to 𝑘. This procedure is repeated until the favorable
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Fig. 4. Crossover operator.
Fig. 5. Mutation operator.
number of offspring are created and the Mutation Population is formed.
Fig. 5 represents the mutation operator. Moreover, algorithm 4 is
provided for further elaborations.

It is noteworthy to mention that, in this paper, the offspring pop-
ulation is formed merely by the crossover and mutation operators. As
mentioned in the boxes representing the Crossover Population and the
Mutation Population in Fig. 3, the quotas of the offspring created by
each of these operators are calculated using 𝐶𝑟𝑜𝑠𝑠𝑅𝑎𝑡𝑒 and 𝑀𝑢𝑡𝑒𝑅𝑎𝑡𝑒,
12
respectively. These rates are applied to the Selection Population size to
reach the exact number of chromosomes.

4.2.4. Next population selection
In the presented GA, the Initial Population to start the first iteration

of the algorithm (𝐼𝑡 = 1) is created as explained in Section 4.2.2.
However, starting from the second iteration (𝐼𝑡 > 1), a method is
employed to choose the elite solutions from the summation of the Initial
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Algorithm 4: Mutation Operator
Inputs : 𝑆𝑒𝑙𝑃 𝑜𝑝 (Selection Population), 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 (number of

chromosomes in the Selection Population), 𝑝𝑑𝑖, 𝑁𝑂, 𝑀𝑢𝑡𝑒𝑅𝑎𝑡𝑒
Output: 𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 (Mutation Population)
𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 = 𝑁𝐴𝑁
for 𝑝 = 1 to (𝑃𝑜𝑝𝑆𝑖𝑧𝑒 ×𝑀𝑢𝑡𝑒𝑅𝑎𝑡𝑒) do

𝑃𝑎𝑟𝑒𝑛𝑡 = A chromosome randomly selected from 𝑆𝑒𝑙𝑃 𝑜𝑝
𝐶ℎ𝑖𝑙𝑑 = 𝑁𝐴𝑁
𝑇𝑒𝑠𝑡 = 𝑁𝐴𝑁
𝑘′ = 𝑅𝑎𝑛𝑑(0, 𝑁𝑂)
𝑖 = 𝑃𝑎𝑟𝑒𝑛𝑡(𝑘′)
𝑘′′ = 𝑓𝑖𝑛𝑑(𝑘′′|𝑝𝑑𝑖(𝑘′′) = 𝑖)
if 𝑖 == the last operation of 𝑝𝑑𝑖 then

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑎𝑟𝑒𝑛𝑡(𝑘′′ − 1)
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑖

end
if 𝑖 == the first operation of 𝑝𝑑𝑖 then

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑖
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑎𝑟𝑒𝑛𝑡(𝑘′′ + 1)

else
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑎𝑟𝑒𝑛𝑡(𝑘′′ − 1)
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑎𝑟𝑒𝑛𝑡(𝑘′′ + 1)

end
𝑙 = 𝑓𝑖𝑛𝑑(𝑙|𝑃𝑎𝑟𝑒𝑛𝑡(𝑙) = 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟)
𝑙′ = 𝑓𝑖𝑛𝑑(𝑙′|𝑃𝑎𝑟𝑒𝑛𝑡(𝑙′) = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟)
if (𝑙′ − 𝑙) ≤ 1 then

𝐶ℎ𝑖𝑙𝑑 = 𝑃𝑎𝑟𝑒𝑛𝑡
𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 = 𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 + 𝐶ℎ𝑖𝑙𝑑

else
𝑘 = 𝑅𝑎𝑛𝑑(𝑙, 𝑙′)
if 𝑘 ≥ 𝑘′ then

𝐶ℎ𝑖𝑙𝑑(1 ∶ 𝑘′) = 𝑃𝑎𝑟𝑒𝑛𝑡(1 ∶ 𝑘′)
𝐶ℎ𝑖𝑙𝑑 = 𝐶ℎ𝑖𝑙𝑑 + 𝑃𝑎𝑟𝑒𝑛𝑡(𝑘′ + 1 ∶ 𝑘)
𝐶ℎ𝑖𝑙𝑑 = 𝐶ℎ𝑖𝑙𝑑 + 𝑖
𝐶ℎ𝑖𝑙𝑑 = 𝐶ℎ𝑖𝑙𝑑 + 𝑃𝑎𝑟𝑒𝑛𝑡(𝑘 + 2 ∶ 𝑁𝑂)
𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 = 𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 + 𝐶ℎ𝑖𝑙𝑑

end
if 𝑘 == 𝑘′ then

𝐶ℎ𝑖𝑙𝑑 = 𝑃𝑎𝑟𝑒𝑛𝑡
𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 = 𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 + 𝐶ℎ𝑖𝑙𝑑

end
if 𝑘 < 𝑘′ then

𝐶ℎ𝑖𝑙𝑑(1 ∶ 𝑘 − 1) = 𝑃𝑎𝑟𝑒𝑛𝑡(1 ∶ 𝑘 − 1)
𝐶ℎ𝑖𝑙𝑑 = 𝐶ℎ𝑖𝑙𝑑 + 𝑖
𝑇 𝑒𝑠𝑡 = 𝑃𝑎𝑟𝑒𝑛𝑡(𝑘 ∶ 𝑁𝑂) − 𝑖
𝐶ℎ𝑖𝑙𝑑 = 𝐶ℎ𝑖𝑙𝑑 + 𝑇 𝑒𝑠𝑡
𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 = 𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 + 𝐶ℎ𝑖𝑙𝑑

end
end

end

Population, Crossover Population, and Mutation Population (referred to as
the Sum Population in Fig. 3) to initiate the subsequent iterations. The
aforementioned method consists of a sorting approach similar to the
one used in the selection operator and a distancing function presented
by Xiong et al. (2012). Both the former and the latter are explained in
the following subsections.

4.2.4.1. Sorting approach. The sorting approach used in this paper to
prioritize the solutions for selecting the Next Populationis conducted
based on the amounts of fitness values obtained in different simula-
tion runs. The following represents the main steps conducted by the
proposed sorting approach:

• Step 1: Due to the stochastic nature of our scheduling problem,
one fitness value is not enough to accurately evaluate the perfor-
mance of each chromosome. Thus, to conduct a valid comparison
among the chromosomes of the Sum Population, based on the
fitness value, the simulation model is run independently for SL
times for each of the chromosomes of the Sum Population. The
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resulting fitness values are recorded in separate lists for each
chromosome.

• Step 2: The lists obtained from Step 1 are combined and sorted
in an ascending order, resulting in a new sorted list.

• Step 3: In this step, similar to Step 4 of the selection operator, we
allocate a score value to each chromosome based on the sorted list
derived from Step 2. Each element in the sorted list corresponds
to a fitness value obtained initially, in Step 1, by executing the
simulation model with one of the chromosomes from the Sum
Population. During this step, we focus on the first half of the sorted
list, which represents the top-performing half of all fitness values
obtained in Step 1. Within this range, starting from the first fitness
value, we identify the corresponding chromosome and increment
its score value by one (score values are initially set to zero). The
same process is repeated for all items within the first half of
the sorted list, resulting in the final score values for all of the
chromosomes of the Sum Population.

• Step 4: We divide the Sum Population into distinct groups based
on the score values that we assigned to each of the chromosomes
previously. This process involves the creation of a group for each
unique score value generated in Step 3, aligning each group with
its corresponding score value. We then check the score values
of all chromosomes within the Sum Population and allocate them
to their respective groups accordingly. This grouping mecha-
nism ensures that chromosomes sharing the same score value are
consolidated into the corresponding group.

• Step 5: Chromosomes are added to the Next Population starting
from the group with the highest score value until the desired
number of chromosomes is selected for the Next Population.

Algorithm 5 provides more details on the proposed sorting ap-
proach.

4.2.4.2. Crowding distance. As mentioned in the previous subsection,
the sorting approach divides the population into diffident groups based
on their score values. Prioritizing the group with the highest score
value, individuals are chosen and added to the Next Population. In this
setting, initially, the chromosomes that belong to the group with the
highest score value get chosen, then the ones in the group with the
second highest score value are selected, and so on. This procedure
continues until the favorable number of solutions for the Next Popu-
lation is reached. However, a challenge is encountered if the number
of solutions to be chosen to reach the perfect population size is less
than the number of individuals in one of the groups from which we
started selecting solutions. Since all the solutions in this subgroup
have the same score value, none have priority over the others to get
chosen. In this case, a crowding distance function is used to conquer the
challenge. Noting that each chromosome represents a feasible solution
to the scheduling problem, the crowding distance function ensures that
diversity is maintained among the solutions (Xiong et al., 2012). In this
way, a good variety of solutions can be provided to the decision-maker.
In this paper, the crowding distance function proposed by Xiong et al.
(2012) for FJSSPs is employed. They formulated the crowding distance
function as presented in Eq. (18):

𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑍 =
𝐿𝑒𝑣𝑒𝑙𝑆𝑖𝑧𝑒 − 𝐴𝑠𝑠𝑖𝑔𝑛𝑍

𝐿𝑒𝑣𝑒𝑙𝑆𝑖𝑧𝑒
(18)

where 𝐿𝑒𝑣𝑒𝑙𝑆𝑖𝑧𝑒 is the size of the group in which the challenge of
prioritizing the solutions of the same score value was encountered.
𝐴𝑠𝑠𝑖𝑔𝑛𝑍 represents the number of chromosomes in the aforementioned
group with the same machine assignment as chromosome 𝑍. In this
setting, the chromosomes will be selected for the Next Population based
on their 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐 value, from most to least. In this paper, we
calculate the amount of 𝐴𝑠𝑠𝑖𝑔𝑛𝑍 for each chromosome in the afore-
mentioned group, and the ones with the least amount are prioritized.
Furthermore, as represented in Fig. 3, the simulation model is called
to obtain the required data about the assignment of the operations
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of each chromosome. In other words, the simulation model receives a
chromosome and the Operation Environment as the input and develops
a schedule accordingly. An Operations’ Assignment dictionary is extracted
from the developed schedule. This dictionary shows that each operation
within the chromosome, representing a feasible solution, is assigned
to which machine. This way, chromosomes with the same Operations’
Assignment dictionary are identified, and each chromosome’s 𝐴𝑠𝑠𝑖𝑔𝑛𝑍
mount is calculated.

According to all those mentioned above and illustrated in Fig. 3, to
orm the Next Population of the proposed GA, an algorithm is applied
sing the sorting method and the crowding distance elaborated in
revious subsections. Furthermore, the pseudo-code of the method
roposed to form the Next Population is illustrated in algorithm 5.

.2.5. Fitness function
The fitness function is a basis for measuring the quality of each chro-

osome (that represents a feasible solution for the scheduling problem)
rovided by the optimizer. In each generation, all the chromosomes
re evaluated using the fitness function. As shown in Fig. 3, the fitness
unction is calculated via the simulation model and for three primary
urposes: forming the Selection Population, forming the Next Population,
nd finding the Best Solution when GA’s iterations end.

.2.6. Termination condition
GA consists of iterative processes with the aim of improving the

olutions in each iteration. In this regard, a termination condition
efines when and how these iterations should end. The termination
ondition can vary from problem to problem. In the proposed GA, a
ime limit from the beginning of GA initialization is considered the
ermination condition.

All the components mentioned above are employed and integrated
o form the proposed GA of this paper. An explanation of the way these
omponents work together is provided in algorithm 6.

. SO calibration

In this section, Taguchi’s experimental design method is adopted via
INITAB 19 to calibrate the SO model. In this method, the arrangement

f experiments is based on an Orthogonal Array (OA) that is useful for
educing experiment time and increasing convergence speed (Apornak
t al., 2021). In the context of the proposed SO model, there are six
ey parameters: Initial Population size, Selection Population size, Selection
hreshold, MuteRate, CrossRate, and 𝑆𝐿. According to the explanation
rovided on the crossover and mutation operators in the previous
ection, the following can be stated:

𝑟𝑜𝑠𝑠𝑅𝑎𝑡𝑒 = 1 −𝑀𝑢𝑡𝑒𝑅𝑎𝑡𝑒 (19)

Thus, since we can calculate the amount of CrossRate through
he MuteRate, the number of the key parameters is reduced to five.
s illustrated in Table 3, three levels are considered for each key
arameter. Based on the 𝐿27 OA, 27 experiments were designed. The
verage signal-to-noise (S/N) ratio for objective function values is
hown in Fig. 6. As indicated in this figure, the optimum combination
f parameters for SO is as follows:

• Initial Population size = 100 ;
• Selection Population size = 200 ;
• Selection Threshold = 0.85
• CrossRate = 0.98 ;
• MuteRate = 0.02 ;
• SL = 40

After executing Taguchi and recognizing the desirable values for the
ey parameters, the proposed SO is employed to conduct numerical
xperiences in the following section. Noteworthy is to mention that, in
ll the experiments presented in Section 6, the proposed SO is employed
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ith the above-mentioned values for the key parameters.
Algorithm 5: Next Population selection
Inputs : 𝐼𝑛𝑃 𝑜𝑝, 𝑆𝑒𝑙𝑃 𝑜𝑝, 𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝, 𝑀𝑢𝑡𝑒𝑃 𝑜𝑝, 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝𝑆𝑖𝑧𝑒 (number

of chromosomes in the Next Population), 𝑆𝐿, 𝐽 , 𝑁𝑂, 𝑁
Output: 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝 (Next Population)
𝑆𝑢𝑚𝑃𝑜𝑝 = 𝐼𝑛𝑃 𝑜𝑝 + 𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝 +𝑀𝑢𝑡𝑒𝑃 𝑜𝑝
𝑁𝑒𝑥𝑡𝑃 𝑜𝑝 = ()
𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑎𝑙𝑙 = ()
for 𝐶ℎ ∈ 𝑆𝑢𝑚𝑃𝑜𝑝 do

𝐹 𝑖𝑡𝐷𝑖𝑐𝑡𝐶ℎ = (𝐹 𝑖𝑡𝐿𝑖𝑠𝑡 = (), 𝑆𝑐𝑜𝑟𝑒 = 0)
for 𝑠 = 1to𝑆𝐿 do

𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ = the fitness value for 𝐶ℎ calculated by the
simulation model

𝐹 𝑖𝑡𝐷𝑖𝑐𝑡𝐶ℎ(1) = 𝐹 𝑖𝑡𝐷𝑖𝑐𝑡𝐶ℎ(1) + 𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ
𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 = 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 + (𝐶ℎ, 𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ) and sort in an

ascending order based on the second item of each tuple in
the 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑

end
end
for 𝑖 = 1 to 𝑙𝑒𝑛(𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 )∕2 do

for 𝐶ℎ ∈ 𝑆𝑢𝑚𝑃𝑜𝑝 do
if 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 (𝑖)(1) = 𝐶ℎ then

𝐹 𝑖𝑡𝐷𝑖𝑐𝑡𝐶ℎ(2) = 𝐹 𝑖𝑡𝐷𝑖𝑐𝑡𝐶ℎ(2) + 1
end

end
end
for 𝑔 = 1to the number of fitness values ∈ 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 do

𝐺𝑟𝑜𝑢𝑝𝑔 = ()
end
for 𝐶ℎ ∈ 𝑆𝑢𝑚𝑃𝑜𝑝 do

𝐺𝑟𝑜𝑢𝑝𝐹 𝑖𝑡𝐷𝑖𝑐𝑡𝐶ℎ(2) = 𝐺𝑟𝑜𝑢𝑝𝐹 𝑖𝑡𝐷𝑖𝑐𝑡𝐶ℎ(2) + 𝐶ℎ
end
g = the highest value from 1 to the number of fitness values
∈ 𝐹 𝑖𝑡𝐿𝑖𝑠𝑡𝑠𝑜𝑟𝑡𝑒𝑑 for which 𝐺𝑟𝑜𝑢𝑝𝑔 ≠ 𝑁𝐴𝑁
while the number of chromosomes ∈ 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝 ≠ 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝𝑆𝑖𝑧𝑒 do

if the number of chromosomes
∈ (𝐺𝑟𝑜𝑢𝑝𝑔 +𝑁𝑒𝑥𝑡𝑃 𝑜𝑝) ≤ 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝𝑆𝑖𝑧𝑒 then

𝑁𝑒𝑥𝑡𝑃 𝑜𝑝 = 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝 + 𝐺𝑟𝑜𝑢𝑝𝑔
else

𝑑 = 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝𝑆𝑖𝑧𝑒 - the number of chromosomes∈ 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝
for 𝐶ℎ ∈ 𝐺𝑟𝑜𝑢𝑝𝑔 do

𝐴𝑠𝑠𝑖𝑔𝑛𝐷𝑖𝑐𝑡𝐶ℎ = a set of data provided by the simulation
model that shows each operation in 𝐶ℎ is assigned to
which of the available machines

𝐶𝑟𝑜𝑤𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶ℎ = 0
end
for 𝐶ℎ ∈ 𝐺𝑟𝑜𝑢𝑝𝑔 do

for 𝐶ℎ′ ≠ 𝐶ℎ ∈ 𝐺𝑟𝑜𝑢𝑝𝑔 do
if 𝐴𝑠𝑠𝑖𝑔𝑛𝐷𝑖𝑐𝑡𝐶ℎ == 𝐴𝑠𝑠𝑖𝑔𝑛𝐷𝑖𝑐𝑡𝐶ℎ′ then

𝐶𝑟𝑜𝑤𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶ℎ = 𝐶𝑟𝑜𝑤𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶ℎ + 1
end

end
𝑆𝑜𝑟𝑡𝑒𝑑 = a set of 𝐶ℎ ∈ 𝐺𝑟𝑜𝑢𝑝𝑔 sorted by their
𝐶𝑟𝑜𝑤𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶ℎ in an ascending order.

𝑁𝑒𝑥𝑡𝑃 𝑜𝑝 = 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝 + 𝑆𝑜𝑟𝑡𝑒𝑑(1 ∶ 𝑑)
end
break!

end
g = g-1

end
Return 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝

6. Experiment results and sensitivity analysis

This section presents the numerical results of this paper. Firstly,
comparative experiments are proposed to validate the applicability
and superiority of our SO model in addressing various SJSSPs. In this
regard, a set of comparisons are provided in the following subsections.
Moreover, the second subsection is dedicated to sensitivity analysis to
assess the effect of three special constraints of the photolithography
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Algorithm 6: GA
Inputs : 𝐼𝑡
Output: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑟
𝐼𝑛𝑃 𝑜𝑝 = the initial population created to start the GA
for 𝑟 = 1 to 𝐼𝑡 do

𝑆𝑒𝑙𝑃 𝑜𝑝 = the Selection Population chosen from 𝐼𝑛𝑃 𝑜𝑝 by the
selection operator

𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝 = the Crossover Population created by the crossover
operator using 𝑆𝑒𝑙𝑃 𝑜𝑝

𝑀𝑢𝑡𝑒𝑃 𝑜𝑝 = the Mutation Population created by the mutation
operator using 𝑆𝑒𝑙𝑃 𝑜𝑝

𝐺𝑒𝑛𝑃𝑜𝑝 = 𝐶𝑟𝑜𝑠𝑠𝑃 𝑜𝑝 +𝑀𝑢𝑡𝑒𝑃 𝑜𝑝
𝑆𝑢𝑚𝑃𝑜𝑝 = 𝐺𝑒𝑛𝑃𝑜𝑝 + 𝐼𝑛𝑃 𝑜𝑝
for 𝐶ℎ ∈ 𝑆𝑢𝑚𝑃𝑜𝑝 do

𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ = the fitness value for 𝐶ℎ calculated by the
simulation mode

end
𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑟 = 𝑓𝑖𝑛𝑑(𝐶ℎ|𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ = 𝑚𝑖𝑛(𝐹 𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝐶ℎ ∀𝐶ℎ ∈
𝑆𝑢𝑚𝑃𝑜𝑝)

Return 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑟
𝑁𝑒𝑥𝑡𝑃 𝑜𝑝 = the Next Population chosen from 𝑆𝑢𝑚𝑃𝑜𝑝 by the

sorting algorithm
𝐼𝑛𝑃 𝑜𝑝 = 𝑁𝑒𝑥𝑡𝑃 𝑜𝑝
if the termination condition is reached then

𝑏𝑟𝑒𝑎𝑘!
end

end

Table 3
Taguchi test parameters.

Parameter Level

1 2 3

Initial Population size 100 200 300
Selection Population size 100 200 300
Selection Threshold 0.65 0.75 0.85
MuteRate 0.01 0.02 0.05
SL 30 40 50

Fig. 6. Taguchi test results.

work area on the performance of the semiconductor manufacturing
system.

6.1. Comparative experiments

This section presents the comparative experiments of this paper.
These experiments are proposed to prove the excellence of SO in
addressing SJSSPs compared to other algorithms in the literature. In
this regard, this section is divided into two subsections. In the first part,
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the comparison is conducted adopting the test environment proposed
by Horng et al. (2012) while the second part employs (Ghasemi et al.,
2021)’s test environment to make the comparisons.

6.1.1. Horng et al. (2012)’s test environment
The test problem proposed by Horng et al. (2012) is illustrated in

Table 4. There are eight jobs, with eight operations in each and eight
machines in the proposed environment. Processing times of the oper-
ations are exposed to stochastic uncertainty and follow a probability
distribution. In vectors (𝑖, 𝜇, 𝜎2), 𝑖 refers to the sequence of the opera-
tion, 𝜇 the mean, and 𝜎2 the variance of the probability distribution to
which the processing time of the operation belongs. Furthermore, the
objective function for this instance is the sum of tardiness and earliness.
Table 5 depicts the due date for each job. Moreover, the cost of both the
tardiness and the earliness is equal to one. Horng et al. (2012) extracted
three SJSSPs from the presented environment by considering various
probability distributions for processing times. In the first scheduling
problem, processing times follow a Normal distribution with 𝜇 and
𝜎2 as the mean and variance, respectively. In the second problem,
Uniform distribution of (𝜇−3𝜎, 𝜇+3𝜎) is considered for processing times
while in the third problem, processing times belong to an Exponential
distribution with mean = 𝜇. The following algorithms are nominated to
be compared with the proposed SO in solving the elaborated SJSSPs:

• ESOO, an evolutionary SO method embedded in Ordinal Opti-
mization (OO) presented by Horng et al. (2012).

• ESOO-OCBA, a modified version of ESOO using Optimal Comput-
ing Budget Allocation (OCBA) proposed by Yang et al. (2014).

• ELBSO, an evolutionary learning based SO developed by Ghasemi
et al. (2021).

The results of solving the above-mentioned problems with ESOO,
ESOO-OCBA, ELBSO, and SO are illustrated in Table 6. Due to the
stochasticity of the test environment, each algorithm is replicated 20
times. The amount of objective function is calculated for 105 for the
best solution in each replication and the mean of the obtained values is
used to represent that replication (a value for each replication). Finally,
the mean of these 20 values is calculated and depicted in Table 6
(for the case of ELBSO and SO, the standard deviation of the values
is also reported in parenthesis). Moreover, the same time limitation
(600 s) and the number of times that the optimization algorithm is
iterated in each replication (100) in ESOO, ESOO-OCBA, and ELBSO
are also considered for SO. In other words, in each replication, SO will
terminate as soon as the optimization algorithm is iterated 100 times
or as soon as 600 s are passed since the initiation of that replication,
whichever occurs sooner. It is important to highlight that the 600 s time
limitation was the one that ended the execution of the SO approach
for these specific experiments. As can be seen, our SO model shows a
promising performance in addressing the presented SJSSPs by resulting
in considerably lower penalties for tardiness and earliness compared to
the other similarly designed algorithms.

6.1.2. Ghasemi et al. (2021)’s test environment
In this section, the test environment proposed by Ghasemi et al.

(2021) is employed to prove SO’s superiority further. As illustrated
in Table 7, the proposed environment consists of 15 jobs, with 15
operations belonging to each and 15 machines. Processing times of the
operations are stochastic parameters and follow a Normal distribution.
In vectors in the form of (𝑖, 𝜇, 𝜎2) in Table 7, 𝑖 represents the operation
id, while 𝜇 and 𝜎2 denote the mean and variance of the operation’s
processing time. The objective is to minimize the sum of tardiness and
earliness for all jobs. In this regard, Table 8 depicts the due dates for
each job. According to Ghasemi et al. (2021), eight diffident SJSSPs
are extracted from the test environment presented in Table 7. Table 9
presents these problems which are varied in size and the cost of tardi-
ness and earliness. For each problem, vector (𝑁,𝑁𝑂𝑗 ,𝑀) represents the
number of jobs, operations in each job, and machines in the scheduling
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Table 4
Horng et al. (2012)’s test environment.

Job id 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

1 (3, 70, 140) (2, 80, 160) (1, 90, 180) (6, 50, 100) (4, 40, 80) (8, 60, 120) (5, 70, 140) (7, 50, 100)
2 (1, 80, 160) (2, 40, 80) (3, 50, 100) (5, 90, 180) (4, 40, 80) (7, 50, 100) (6, 60, 120) (8, 40, 80)
3 (1, 50, 100) (2, 40, 80) (3, 80, 160) (5, 60, 120) (4, 70, 140) (6, 40, 80) (8, 40, 80) (7, 70, 140)
4 (2, 60, 120) (1, 50, 100) (3, 60, 120) (4, 70, 140) (7, 80, 160) (5, 40, 80) (6, 50, 100) (8, 80, 160)
5 (4, 50, 100) (3, 50, 100) (2, 70, 140) (1, 40, 80) (7, 50, 100) (5, 60, 120) (6, 90, 180) (8, 60, 120)
6 (2, 60, 120) (3, 80, 160) (1, 90, 180) (5, 70, 140) (6, 50, 100) (4, 40, 80) (8, 80, 160) (7, 90, 180)
7 (1, 40, 80) (3, 60, 120) (4, 40, 80) (2, 80, 160) (5, 60, 120) (7, 70, 140) (8, 50, 100) (6, 60, 120)
8 (2, 90, 180) (1, 70, 140) (3, 50, 100) (4, 60, 120) (5, 90, 180) (7, 80, 160) (6, 40, 80) (8, 40, 80)
Table 5
Job due dates in Horng et al. (2012)’s test environment.

Job id 1 2 3 4 5 6 7 8

Due Date 490 510 540 500 540 470 530 560
Table 6
Comparative experiments in an stochastic mode using Horng et al. (2012)’s test environment.

Probability distribution Algorithm

of the processing times ESOO ESOO-OCBA ELBSO SO

Normal 2280 2089 2269.56 (113.5) 2087.60 (187.14)
Uniform 2778 2452 2518.7 (119.12) 2396.43 (335.12)
Exponential 2683 2590 2550.71 (143.18) 2446.87 (256.02)
D

problem, respectively. Moreover, 𝐶𝑇 and 𝐶𝐸 account for the cost of
tardiness and earliness. In Table 10, SO’s results in solving the above-
mentioned problems are compared against ESOO and ELBSO. The
results are obtained in the same manner as explained in Section 6.1.1,
with a time limitation of 600 s or reaching 100 iterations of the
optimization algorithm as the termination condition. It is important to
highlight that the first termination condition, i.e., the time limitation,
was the one that ended the execution of the SO approach for these
specific experiments. The results indicate that SO outperforms the other
algorithms in solving the test problems and can be regarded as a potent
tool to address SJSSPs of different settings.

6.2. Sensitivity analysis

This section focuses on the special constraints of the photolithog-
raphy work area, namely, machine process capability constraints, ma-
chine dedication constraints, and maximum reticles (masks) sharing
constraints. The following subsections, therefore, are presented to in-
vestigate the effect of the presence and severity of the aforementioned
constraints on the performance of the system.

6.2.1. Presence of the special constraints of the photolithography work area
This section aims at comparing the performance of an SFJS man-

ufacturing environment with and without the presence of the special
constraints of the photolithography work area. In this regard, the
operation environment proposed in Fig. 1 is employed to develop an
SFJS environment without the presence of the photolithography work
area, that is presented in Fig. 7, as well as the SFJS environment of
the photolithography workstation, illustrated in Fig. 8. The processing
times of the manufacturing environments presented in Figs. 7 and
8 are exposed to stochastic uncertainty and are represented in the
form of (𝜇, 𝜎2) vectors (mean = 𝜇 and variance = 𝜎2). The stochastic
equence-dependent setup times are also presented in the form of
𝜇, 𝜎2) vectors (mean = 𝜇 and variance = 𝜎2) in Fig. 8. Since none
f the special constraints of the photolithography work center are to
e considered in the scheduling problem of the environment presented
n Fig. 7, all operations are fully flexible (can be processed on all the
resent machines). In the context of the photolithography workstation,
owever, some operations can be processed by a subset of all the
16

resent machines enforcing the machine process capability constraints.
Furthermore, no sequence-dependent setup times are considered for
the operations environment of Fig. 7 since maximum reticles (masks)
sharing constraints are not accounted for within this environment.
Lastly, unlike the SFJS of Fig. 8, there is no reference to critical
operations in the SFJS of Fig. 7 since the machine dedication constraints
are not enforced in the latter. Three different probability distributions
are used, similar to Section 6.1.1, to develop three scheduling problems
based on each of the manufacturing environments. These problems,
subsequently, are solved using the proposed SO model to study the
effect of the presence of the photolithography special constraints on
the performance of an SFJS environment. Using the makespan as the
objective function of these SFJSSPs, the results are obtained in the
same manner as explained in Section 6.1.1, with a time limitation of
600 s or reaching 100 iterations of the optimization algorithm as the
termination condition (the time limitation was the criterion that ended
the execution of the SO approach for these specific experiments). As
presented in Table 11, forcing the photolithography special constraints
results in lower performance levels for the manufacturing system. In
other words, the lower values that are reported for the makespan of
the scheduling problem in which the special constraints are absent
compared to the SFJSSPs of the photolithography work area prove
the difference caused by the presence of these constraints on the
performance of the system.

6.2.2. Different levels of the special constraints of the photolithography
work area

This section studies the effect of different severity of the ma-
chine process capability constraints, machine dedication constraints,
and maximum reticles (masks) sharing constraints, on the scheduling
problem of the photolithography work area. In this regard, three
factors namely, Flexibility Ratio, Machine Dedication Ratio, and Sequence-
ependent Setup Time Occurrence Ratio are introduced in the following,

using the notations presented in Table 2, each of which relates to one
of the special constraints. A sensitivity analysis is, then, conducted
to assess the performance of the photolithography work area under
different levels of these factors.

• Flexibility Ratio: This factor indicates the number of flexible op-
erations compared to the total number of operations. Flexible
operations are the ones that can be processed on more than one
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Table 7
Operations flow and their processing times in Ghasemi et al. (2021)’s test environment.

Job id 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

1 (3, 70, 140) (2, 80, 160) (1, 90, 180) (5, 50, 100) (4, 40, 80) (8, 60, 120) (6, 70, 140) (7, 50, 100)
2 (1, 80, 160) (2, 40, 80) (3, 50, 100) (5, 90, 180) (4, 40, 80) (7, 50, 100) (6, 60, 120) (8, 40, 80)
3 (1, 50, 100) (2, 40, 80) (3, 80, 160) (5, 60, 120) (4, 70, 140) (10, 40, 80) (8, 40, 80) (7, 70, 140)
4 (2, 60, 120) (1, 50, 100) (3, 60, 120) (4, 70, 140) (5, 80, 160) (7, 40, 80) (10, 50, 100) (8, 80, 160)
5 (4, 50, 100) (3, 50, 100) (2, 70, 140) (1, 40, 80) (5, 50, 100) (7, 60, 120) (9, 90, 180) (10, 60, 120)
6 (2, 60, 120) (3, 80, 160) (1, 90, 180) (5, 70, 140) (4, 50, 100) (6, 40, 80) (9, 80, 160) (10, 90, 180)
7 (1, 40, 80) (3, 60, 120) (4, 40, 80) (2, 80, 160) (5, 60, 120) (7, 70, 140) (8, 50, 100) (6, 60, 120)
8 (2, 90, 180) (1, 70, 140) (3, 50, 100) (4, 60, 120) (5, 90, 180) (7, 80, 160) (6, 40, 80) (10, 40, 80)
9 (5, 80, 160) (4, 60, 120) (3, 50, 100) (2, 60, 120) (1, 60, 120) (7, 70, 140) (10, 40, 80) (8, 40, 80)
10 (2, 80, 160) (1, 70, 140) (3, 50, 100) (4, 70, 140) (5, 90, 180) (8, 70, 140) (6, 50, 100) (7, 40, 80)
11 (5, 60, 120) (1, 80, 160) (3, 50, 100) (4, 60, 120) (2, 80, 160) (10, 50, 100) (6, 40, 80) (8, 50, 100)
12 (3, 60, 120) (1, 60, 120) (2, 50, 100) (5, 90, 180) (4, 70, 140) (10, 70, 140) (9, 40, 80) (8, 40, 80)
13 (1, 90, 180) (2, 60, 120) (3, 70, 140) (4, 90, 180) (5, 90, 180) (6, 60, 120) (7, 40, 80) (8, 40, 80)
14 (2, 80, 180) (1, 70, 140) (3, 60, 120) (4, 70, 140) (5, 90, 180) (7, 70, 140) (8, 50, 100) (6, 50, 100)
15 (2, 90, 180) (1, 70, 140) (3, 50, 100) (4, 60, 120) (5, 90, 180) (7, 80, 160) (6, 40, 80) (8, 40, 80)

𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15

1 (10, 70, 140) (9, 80, 160) (11, 90, 180) (13, 50, 100) (12, 40, 80) (15, 60, 120) (14, 70, 140)
2 (10, 80, 160) (9, 40, 80) (15, 50, 100) (12, 90, 180) (11, 40, 80) (13, 50, 100) (14, 60, 120)
3 (6, 50, 100) (9, 40, 80) (13, 80, 160) (12, 60, 120) (11, 70, 140) (15, 40, 80) (14, 40, 80)
4 (9, 60, 120) (6, 50, 100) (15, 60, 120) (11, 70, 140) (13, 80, 160) (12, 40, 80) (14, 50, 100)
5 (6, 50, 100) (8, 50, 100) (11, 70, 140) (12, 40, 80) (15, 50, 100) (14, 60, 120) (13, 90, 180)
6 (7, 60, 120) (8, 80, 160) (15, 90, 180) (14, 70, 140) (13, 50, 100) (12, 40, 80) (11, 80, 160)
7 (9, 40, 80) (10, 60, 120) (11, 40, 80) (12, 80, 160) (14, 60, 120) (13, 70, 140) (15, 50, 100)
8 (8, 90, 180) (9, 70, 140) (12, 50, 100) (13, 60, 120) (15, 90, 180) (11, 80, 160) (14, 40, 80)
9 (9, 60, 180) (6, 60, 120) (14, 50, 100) (15, 70, 140) (11, 60, 120) (12, 80, 160) (13, 40, 80)
10 (9, 80, 160) (10, 60, 120) (11, 60, 120) (12, 60, 120) (13, 80, 160) (14, 80, 160) (15, 60, 120)
11 (7, 60, 120) (9, 60, 120) (14, 60, 120) (15, 60, 120) (13, 60, 120) (12, 80, 160) (11, 60, 120)
12 (7, 50, 100) (6, 70, 140) (13, 50, 100) (14, 80, 160) (15, 80, 160) (11, 80, 160) (12, 60, 120)
13 (9, 60, 120) (10, 70, 140) (11, 50, 100) (12, 50, 100) (13, 80, 160) (14, 70, 140) (15, 50, 100)
14 (10, 90, 180) (9, 60, 120) (15, 60, 120) (14, 60, 120) (13, 90, 180) (11, 80, 160) (12, 40, 80)
15 (9, 90, 180) (10, 70, 140) (11, 50, 100) (12, 60, 120) (13, 90, 180) (14, 80, 160) (15, 40, 80)
Table 8
Jobs due dates in Ghasemi et al. (2021)’s test environment.

Job id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Due Date 290 310 440 300 440 470 530 560 640 610 550 700 760 740 820
Table 9
Constructed problems based on Ghasemi et al. (2021)’s test environment.

Problem id 1 2 3 4 5 6 7 8

Size (10 ⋅ 10 ⋅ 10) (10 ⋅ 10 ⋅ 10) (10 ⋅ 10 ⋅ 10) (10 ⋅ 10 ⋅ 10) (15 ⋅ 15 ⋅ 15) (15 ⋅ 15 ⋅ 15) (15 ⋅ 15 ⋅ 15) (15 ⋅ 15 ⋅ 15)
𝐶𝑇 1 1 5 5 1 1 5 5
𝐶𝐸 1 5 1 5 1 5 1 5
Table 10
Comparative experiments in an stochastic mode using Ghasemi et al. (2021)’s test environment.

Problem id 1 2 3 4 5 6 7 8

ELBSO Mean 9106.61 9119.52 44 258.7 45 606.82 35 761.3 35 900.3 180 486.46 181 767.82
ELBSO STD 219.41 218.49 1396.38 1589.31 1380.49 1604.22 5604.32 7655.91

ESOO Mean 9443.05 9473.31 47 005.7 47 840.51 37 858.27 37 952.31 184 344.22 185 448.52
ESOO STD 221.65 163.78 1165.9 1226.3 1087.81 2284.29 3667.85 7248.7

SO Mean 6840.68 6254.71 33 611.49 32 786.62 25 864.45 25 697.12 128 811.84 120 653.81
SO STD 320.06 307.48 1584.56 1566.17 697.70 700.36 3482.07 3413.05
machine. We used Eq. (20) to calculate this factor. This factor is
related to the machine process capability constraint.

𝑘𝑓 =
∑𝑁𝑂𝑗

𝑜=1 𝐹 𝑙𝑜𝑗 𝑗 ∈ {1,… , 𝑁}
𝑁𝑂

(20)

• Machine Dedication Ratio: This factor indicates the number of
critical operations compared to the total number of operations.
We used Eq. (21) to calculate this factor. This factor is related to
the machine dedication constraints.

𝑘𝑐 =
∑𝑁𝑂𝑗

𝑜=1 𝐶𝑟𝑜𝑗 𝑗 ∈ {1,… , 𝑁}
(21)
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𝑁𝑂
• Sequence-Dependent Setup Time Occurrence Ratio: This factor in-
dicates the number of operations that processing one after the
other needs sequence-dependent setup time compared to the total
number of operations. We used Eq. (22) to calculate this factor.
This factor is related to the maximum reticles (masks) sharing
constraints.

𝑘𝑠 =
∑𝑁𝑂

𝑖=1
∑𝑁𝑂

𝑖′=1 𝑆𝑡𝑖𝑖′
𝑁𝑂

(22)

Using the data provided from a real fab (Ghasemi et al., 2020) a
test environment consisting of five jobs, with five operations in each
and five machines is developed. For each operation, there is a set of
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Fig. 7. Proposed SFJS environment without special constraints of the photolithography
work area.

Table 11
Comparative experiments on the presence of the three special constraints of the
photolithography work area.

Probability distribution of the processing Problem

and Sequence-dependent Setup Times SFJSSP-
Photolithography

SFJSSP

Normal 28.61 (3.66) 22.76 (3.27)
Uniform 29.08 (4.17) 25.37 (5.63)
Exponential 34.14 (14.30) 30.07 (13.31)

alternative machines capable of processing it. As proposed by Ghasemi
et al. (2020), the processing times follow a Gamma distribution with
parameters 16.98 and 2.448. Furthermore, we considered stochastic
sequence-dependent setup times between the operations of different
jobs. According to the experts opinion the sequence-dependents setup
times also follow a Gamma distribution with parameters set at 0.1
elative to the processing times. Eight different SFJSSPs are constructed
ased on the developed environment. The amounts of three key fac-
ors (Flexibility Ratio, Machine Dedication Ratio, and Sequence-Dependent
Setup Time Occurrence Ratio) are what differentiate these eight schedul-
ing problems from one another. These scheduling problems are solved
using the proposed SO model with the objective function of minimizing
makespan. Due to the stochasticity of the manufacturing environment
presented in this section, each SO replication can report different
results. Thus, 20 replications of SO are used, similar to Section 6.1.1,
and the results are obtained in the same manner as explained in
Section 6.1.1, terminating the SO in each replication after 600 s or after
reaching 100 iterations of the optimization algorithm. It is worth noting
that the 600 s time limitation ended the execution of the SO.

As Table 13 shows, different levels of 𝑘𝑓 , 𝑘𝑐 , and 𝑘𝑠 affect the
performance of the manufacturing system and result in various values
for makespan. Fig. 9 presents a set of heat maps to analyze the effect
of the factors on the performance level of the photolithography work
area. Each row of the heat maps illustrates the relationship between
two factors and the amount of makespan. According to the first row,
increasing the level of flexibility (𝑘𝑓 ) appears to prompt performance
improvement by decreasing the amount of makespan (at both levels of
𝑘𝑐). In this regard, raising the level of flexibility gives more options
to the SO model to find an optimal solution, which can positively
affect the manufacturing system’s performance. However, a reverse
relationship between 𝑘𝑐 and makespan seems to exist. In fact, both
of the maps placed in the first row indicate that makespan worsens
when 𝑘𝑐 grows from 0.4 to 0.6 (in both levels of 𝑘𝑓 ). By increasing
the number of critical operations of each job, the level of flexibility
decreases. Thus, the SO model is limited in opting for the best solution
with the minimum makespan. The second row illustrates the impact of
𝑘𝑓 and 𝑘𝑠 on the amount of makespan. Considering the amount of the
makespan in each level of 𝑘𝑠, increasing the level of 𝑘𝑠 has a negative
effect on the performance of the manufacturing system. To be more
detailed, when 𝑘𝑓 = 0.2, increasing the level of 𝑘𝑠 appears to increase
18

the amount of makespan. A similar observation also holds when the
Table 12
Constructed problems based on the proposed test environment.

Problem id 1 2 3 4 5 6 7 8

𝑘𝑓 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6
𝑘𝑐 0.4 0.4 0.6 0.6 0.4 0.4 0.6 0.6
𝑘𝑠 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

amount of 𝑘𝑓 is set to 0.6. The last row also demonstrates the same
previously elaborated relationships (see Table 12).

To sum up, higher levels of 𝑘𝑓 improve the performance of the
manufacturing system while the opposite stands for 𝑘𝑠 and 𝑘𝑐 .

7. Conclusion

The ever-increasing development of technology and digital break-
throughs in the era of I4.0 has resulted in the advent of smart manu-
facturing systems. As one of the early adopters of I4.0, semiconductor
manufacturing is an example of these smart manufacturing systems.
On the one hand, semiconductor production is highly cost-intensive.
On the other hand, the growth in using ICs in industrial, commercial,
and military products renders the semiconductor industry of a rapidly
increasing global demand. Thus, operational excellence has gained
substantial importance in this industry. From the supply chain point
of view, semiconductor manufacturing consists of front-end and back-
end fabs. Most production processes are occurred within the front-end
fab, while assemblies are mainly executed within the back-end fab.
Within the front-end fab, the photolithography workstation is the well-
known bottleneck process. Therefore, developing a competent schedule
for the photolithography work area can elevate the performance level
of the whole semiconductor production line. From the manufacturing
system point of view, the scheduling problem of the photolithography
workstation can be considered an SFJSSP. Due to the stochastic na-
ture of the processing and sequence-dependent setup times and three
special constraints (machine process capability constraints, machine
dedication constraints, maximum reticles (masks) sharing constraints),
the scheduling problem of this work area is among the most complex
optimization problems. Furthermore, simpler versions of this problem
are NP-hard (e.g., Low and Fang (2005)). Thus, conventional methods
are inefficient in addressing this scheduling problem in a reasonable
time. In this regard and in the era of I4.0, hybrid methods such as
SO approaches have proven their applicability in addressing complex
production scheduling problems. In other words, combining simulation
models with optimization methods could develop a promising tool for
solving various complex and stochastic industrial problems, such as
scheduling the photolithography work area.

Thus, in this paper, we proposed an SO method, consisting of a
simulation model and a tailored GA algorithm to solve the SFJSSP of
the photolithography work area. In this regard, a mathematical model
that respects all the specifications of the photolithography workstation
(the uncertain nature and three special constraints) was presented.
In the next step, we transformed the presented mathematical model
into an SO model. Subsequently, a detailed simulation model of the
photolithography area was proposed considering the stochasticity and
special constraints of this work center. The simulation model devel-
ops an initial schedule based on LWR dispatching rule, satisfies the
stochastic constraints of the scheduling problem, and calculates the
objective function’s value. Further on, a tailored GA was proposed to
optimize the initially developed schedule iteratively integrated with
the simulation model forming an SO structure. Then, we conducted a
set of numerical experiments to validate the proposed SO and assess
its performance compared to other algorithms in the literature. In this
regard, first, SO was compared against three SO-based algorithms in the
literature in addressing three SJSSPs with stochastic processing times
for operations which varied in case of the probability distribution of the
processing times. Considerable improvements can be achieved in cost
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Fig. 8. Proposed SFJS environment of the photolithography work area.
Table 13
Results of solving the problems.

Problem id 1 2 3 4 5 6 7 8

Mean 263.26 263.72 279.29 280.29 244.79 245.35 249.59 251.29
STD 17.31 17.31 18.82 18.88 18.48 18.40 18.29 18.29
Fig. 9. Sensitivity analysis.
resulting from tardiness and earliness of the manufacturing system by
using SO compared to other algorithms. Additionally, to further prove
the superiority of SO in solving JSSPs under stochastic uncertainty of
processing times, eight different SJSSPs were addressed employing the
proposed SO in comparison with two similarly designed algorithms.
The results of the comparative experiments proved that the proposed
SO has the competency to solve a wide range of stochastic and complex
scheduling problems in a reasonable time while resulting in higher
19
performance levels for the system. Finally, using real fab data, we
focused on the three special constraints of the photolithography work
area. In this regard, first, we conducted a comparison to assess the
effect of the presence of the special constraints on the performance
level of the manufacturing system. Based on the results, enforcing the
special constraints of the photolithography work area in an SFJS man-
ufacturing environment affects the performance of the manufacturing
system by resulting in higher values for the makespan compared to
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Table 14
Results of solving the problems of Section 6.1.2.

Problem id 1 2 3 4 5 6 7 8

Approach one mean 7512.90 8679.30 40 360.14 40 331.74 30 305.62 31 370.19 138 970.36 142 768.70
Approach two mean 6840.68 6254.71 33 611.49 32 786.62 25 864.45 25 697.12 128 811.84 120 653.81
Table 15
Results of t-test for the problems of Section 6.1.2.

Sample N Median P-value

Approach one mean - Approach two mean 8 4163.55 0.014
Table 16
Results of solving the problems of Section 6.2.2.

Problem id 1 2 3 4 5 6 7 8

Approach one mean 271.1 268.67 282.87 275.90 254.10 249.25 251.74 251.51
Approach two mean 263.26 263.72 279.29 280.29 244.79 245.35 249.59 251.29
Table 17
Results of t-test for the problems of Section 6.1.2.

Sample N Median P-value

Approach one mean - Approach two mean 8 3.66 0.08
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an SFJS environment that does not enforce these constraints. Subse-
quently, we introduced three factors namely, Flexibility Ratio, Machine
edication Ratio, and Sequence-Dependent Setup Time Occurrence Ratio as
epresentatives of machine process capability constraints, machine ded-
cation constraints, and maximum reticles (masks) sharing constraints,
espectively. The effect of different levels of the aforementioned factors
n minimizing the makespan in the scheduling problem of the pho-
olithography work area was analyzed. It was concluded that higher
evels of flexibility can improve the performance of the manufacturing
ystem while the opposite stands for the Machine Dedication Ratio and
he Sequence-Dependent Setup Time Occurrence Ratio.

The scheduling problems encountered in manufacturing systems,
specially those derived from real-world scenarios, are known to be
ighly challenging. Complex production systems, such as semiconduc-
or manufacturing, require efficient scheduling methods that can effec-
ively address their JSSPs within reasonable time constraints. There-
ore, the proposed SO model holds significant promise as a practical
nd valuable decision-making tool, specifically within the context of
emiconductor production lines. Furthermore, the versatility of the
roposed SO model in handling diverse JSSPs, as demonstrated in
ection 6, makes the reported methodology applicable to other man-
facturing systems characterized by complex JSSPs. By relaxing the
pecial constraints associated with the photolithography workstation
nd introducing similar constraints tailored to the specifications of the
arget manufacturing system, the proposed methodology can be readily
xtended to address scheduling problems in various manufacturing
ontexts.

This paper suggests three directions for future work. Firstly, there
re myriad sources of uncertainty within a manufacturing environment
mong which stochastic processing and sequence-dependent setup
imes are addressed in this paper. However, other forms of uncertainty
such as machine breakdowns and emergency jobs) could also be taken
nto consideration in future works. Secondly, though simulation has
roven its superiority in modeling, analyzing, and assessing real sys-
ems, it has an undeniable weak point. Simulation models of problems
s complex as the SFJSSP of the photolithography work area can be
ighly time-intensive, causing SO implementations to be unacceptable
or real large-sized industrial problems. Thus, using methods such
s machine learning (ML) tools to replace the extensive simulation
eplications with a learning-based method can be another direction
f future research. Last but not least, as mentioned earlier, FJSSPs
elong to the NP-Hard class as complex combinatorial optimization
20

a

roblems (Geyik and Dosdoğru, 2013). Due to such complexity, sev-
ral swarm intelligence and evolutionary algorithms, other than GA,
ave been developed within the literature to address these problems,
ncluding Particle Swarm Optimization (PSO), Ant Colony Optimization
ACO), Tabu Search (TS), and Artificial Bee Colony (ABC) (Xiong et al.,
022). Though the proposed GA yields promising results in address-
ng the SFJSSP of the photolithography work area, employing other
lgorithms and comparing their results with those of our GA might
nravel more efficient approaches to address such complex scheduling
roblems.
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ppendix

The literature on SO approaches in stochastic environments often
mploys the average of simulation replications for selecting chromo-
omes. To demonstrate the effectiveness of the selection approach
roposed in this article, particularly in comparison to the average
riterion, a comparison was conducted on the problems outlined in
ections 6.1.2 and 6.2.2, each characterized by distinct objective func-
ions. The problems were solved twice — once using the average as
he criterion (Approach One) for forming the Selection Population and
he Next Population, and once using the approach introduced by our GA
Approach Two). The results for the problems outlined in Section 6.1.2
re presented in Table 14. Following this, a Wilcoxon Signed Rank Test,
non-parametric method designed for comparing two paired samples,
as executed utilizing Minitab 19 to assess the efficacy of the two
pproaches. The test utilized the differences between the outcomes
btained from Approach One and Approach Two as the sample for
nalysis. As depicted in Table 15, the test yielded a P-Value of 0.014

nd a Median of 4163.55. Indicating that, at a confidence level of 95%,
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the sorting approach of our GA outperforms the alternative approach.
Similarly, Table 16 displays the results for solving the problems in
Section 6.2.2 using both approaches. The Wilcoxon Signed Rank Test
was used again and the same approach was used to generate the sample
data for analysis (the differences between Approach One and Approach
Two) resulting in a P-Value of 0.08 and a Median of 3.66, as shown
in Table 17. Consistent with the previous experiment, our approach
demonstrated better results compared to the alternative approach at
a confidence level of 90%.
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