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Kurzfassung

Wasser ist für viele Bereiche des täglichen Lebens eine wichtige Ressource, deren Qualität
kontinuierlich überwacht werden muss. Dies gilt insbesondere für Oberflächengewässer wie
Trinkwasserreservoire, die stärker als Grundwasser Umwelteinflüssen ausgesetzt sind. Häu-
fig werden die zur Überwachung notwendigen Parameter arbeits- und kostenintensiv durch
in-situ Messungen oder durch die Analyse von Wasserproben ermittelt. Viele relevante
Wasserqualitätsparameter, wie z.B. der Schwebstoffgehalt, die Chlorphyll-a Konzentration
und die Temperatur der Wasseroberläche können auch mit Fernerkundungssensoren erfasst
werden. Insbesondere für die Fernerkundung der Ozeane werden traditionell multispek-
trale Satelliten eingesetzt. Flugzeuggestützte Systeme hingegen ermöglichen eine flexiblere
Datenerfassung zu gewünschten Zeitpunkten, sind jedoch kostenintensiv und erfordern eine
vorgegebene Infrastruktur sowie ausgebildete Piloten. Seit einigen Jahren sind kompakte,
bildgebende hyperspektrale Sensoren kommerziell verfügbar, die in kleine UAVs integri-
ert werden können. Dies ermöglicht im Gegensatz zu anderen Fernerkundungsplattformen
eine kostengünstige, räumlich und zeitlich flexible Datenerfassung. Diese leichten und
ungekühlten Sensoren haben meist eine weniger stabile Sensorcharakteristik und Einflüsse
wie Wind und wechselnde Bewölkung können die Datenerfassung und -auswertung erschw-
eren. Daher sind bisher keine vollständig integrierten Systeme kommerziell verfügbar, die
eine automatisierte und damit kostengünstige Auswertung der Daten ermöglichen.
Im Rahmen dieser Arbeit wird ein Sensorsystem, bestehend aus einer Wärmebildkamera,
einer Hyperspektralkamera und einem weiteren Spektrometer zur Messung der einfallenden
Solarstrahlung, auf einem kompakten UAV integriert. Darüber hinaus werden Methoden
entwickelt, die eine weitgehend automatisierte Datenverarbeitung ermöglichen. Als Ergebnis
erhält der Nutzer zuverlässige Parameterkarten der Wasseroberflächentemperatur und der
Schwebstoffkonzentration. Die entwickelten Methoden werden jeweils anhand realer Daten
einer Messkampagne validiert. Die Methoden und Ergebnisse zur Kalibrierung der Spek-
tralsensoren werden vorgestellt. Für die Wärmebildkamera, die aufgrund stark variierender
Sensorcharakteristik nicht vorab kalibriert werden kann, werden datengetriebene Methoden
von der Korrektur bis zur Berechnung von Mosaiken aus Einzelbildern entwickelt.
Zur Schätzung der Parameter aus den hyperspektralen Bildern werden maschinelle Lern-
verfahren eingesetzt. Die Modelle werden ausschließlich mit simulierten Daten trainiert
und anschließend mit realen Daten evaluiert. Die entwickelten Postprocessing-Methoden
berücksichtigen dabei auch Einflüsse wie die Totalreflexion des Sonnenlichts an der Wasser-
oberfläche und auftretende Wolkenschatten bei wechselnder Bewölkung. Die Evaluierung
zeigt hier, dass die maschinellen Lernverfahren ANN und CNN im Vergleich zu einfacheren
Verfahren bessere Ergebnisse liefern können und die Parameterschätzung auch weniger durch
geringe Wassertiefen beeinflusst wird. Durch die entwickelten Methoden und die mit dem
System gewonnenen Erkenntnisse leistet diese Arbeit einen Beitrag zur automatisierten
Fernerkundung von Wasserqualitätsparametern mit kostengünstiger mobiler Sensorik.
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Abstract

Water is a relevant resource for many areas of our daily lives, and its quality must be
continuously monitored. This applies particularly to surface waters such as drinking water
reservoirs, which are more exposed to environmental influences than groundwater. The
parameters required for monitoring are often determined through labor-intensive and costly
in-situ measurements or by analyzing water samples. Many relevant water quality parame-
ters, such as the total suspended solids concentration, the chlorophyll-a concentration, and
the water surface temperature can also be observed using remote sensing sensors. Multi-
spectral satellites are traditionally used for remote sensing of the oceans in particular. On
the other hand, airborne systems allow a more flexible data acquisition at desired times
but are cost-intensive and require a given infrastructure and professional pilots. Compact
hyperspectral imaging sensors that can be integrated into small UAVs have been commer-
cially available for several years. In contrast to other remote sensing platforms, this enables
cost-effective, spatially and temporally flexible data acquisition. These lightweight and
uncooled sensors usually have less stable sensor characteristics, and influences such as wind
and changing cloud cover can make data acquisition and evaluation more difficult. As a
result, fully integrated systems enabling automated and cost-effective data evaluation are
not yet commercially available.
This work integrates a sensor system consisting of a thermal imaging camera, a hyperspec-
tral camera, and a further spectrometer for measuring the incident solar irradiance on a
compact UAV. In addition, methods are developed that enable largely automated data
processing. As a result, the user receives reliable parameter maps of the water surface
temperature and the suspended solids concentration. The methods developed are validated
using real data acquired during a measurement campaign. The methods and results for
calibrating the spectral sensors are presented. Due to varying sensor characteristics, the
thermal camera cannot be calibrated in advance. Therefore, data-driven methods for image
correction and calculating mosaics from the individual images are developed.
Machine learning methods are used to estimate the parameters from the hyperspectral
images. The models are trained exclusively with simulated data and then evaluated with
real data. The developed post-processing methods also consider influences such as the
total reflection of sunlight on the water surface and cloud shadows that occur when cloud
cover changes. The evaluation shows that the machine learning methods ANN and CNN
can achieve better results than simpler methods. Also, the parameter estimation is less
influenced by shallow water depth. This work contributes to automated remote sensing of
water quality parameters with low-cost mobile sensors through the methods developed and
the knowledge gained with the system.
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CHAPTER1
Introduction

Water is a relevant resource whose world wide consumption has sixfold during the last
100 years and further increases by 1% per year [1]. The availability of fresh and clean water
directly affects health [2], energy production [3], agriculture [4], industrial development [5]
and a lot of other parts of our daily life. Due to climate change, it is very likely, that in
regions that suffer from water stress, the situation will get worse and even regions with
sufficient water resources will face periods with limited availability of water [6]. For example,
higher water temperatures and less dissolved oxygen will harm freshwater ecosystems and
can degrade water quality to an extent that should not be underestimated. Due to the
importance of inland waters, in many countries and regions they are also given special
attention at the legal and political level, for example, with the European Water Framework
Directive [7] and the US Clean Water Act [8]. Especially surface waters are much more
affected by annual and long-term climate variability than groundwater. Therefore, particular
attention must be paid to the monitoring and management of drinking water reservoirs
that provide drinking water for millions of people around the world. Key parameters that
should be monitored continuously are, among others, the temperature of the water, total
suspended solids (TSS) and the chlorophyll-a (chl-a) concentration [9].

Traditionally, the monitoring of water quality parameters is done with the help of in-situ
measuring probes or the analysis of water samples, which is labor-intensive and mostly
limited to single measuring points for a few water bodies. This means that especially short-
term phenomena such as algal blooms and their spatial distribution cannot be captured to
full extent [10, 11].

Another method for monitoring water quality parameters is remote sensing. Passive sen-
sors can be used to monitor the water temperature and also many of the different water
constituents, such as TSS and chl-a, as a proxy for phytoplankton abundance, which are
optically significant and influence the light reflected from the water body through absorption
and scattering processes [12, 13]. The measurement and analysis of the light reflected by
the water body allows to conclude about the concentration of the corresponding parameter.
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Chapter 1. Introduction

The remote sensing of water quality parameters can be very well investigated with ground-
based systems like point spectrometers to further optimize the methods for parameter
estimation. However, the simple handling and mostly good spectral properties are, like the
in-situ probes, opposed by the limitation to single point measurements.

In satellite-based multispectral remote sensing, on the other hand, these properties have
been used for decades to monitor the oceans, and in the last 30 years, the theories of
optical oceanography are transferred to inland waters where remote sensing of water quality
parameters is far less successful [12]. With this, on a global scale, remote sensing is able to
reveal large-scale processes, but until today, lacks on high spatial and temporal resolution,
which is not always sufficient for applications like the monitoring on small scales [1]. As a
result, it is often impossible to monitor the processes in inland waters, some of which are
very small and usually have complex optical characteristics [10]. Last but not least, it is
a major disadvantage of satellite-based remote sensing that the acquisition times are not
freely selectable and, for example, cloud cover further limits the availability of usable data.

In addition to multispectral [14, 15, 16] and more recently hyperspectral [17, 18, 19] satellite
missions, airborne campaigns [20, 21, 22] were also conducted to collect areal hyperspectral
data from inland waters and perform mapping of water quality parameters such as TSS and
chl-a. Airborne campaigns make it possible to collect data with very high spatial resolution
at desired times, in contrast to satellites. However, the sensor technology used is usually
expensive, and specially prepared aircraft are required for data acquisition, which further
complicates the application and makes it expensive and thus not economically attractive
for continuous monitoring tasks.

The recent progress in the development of small UAV and new lightweight sensors such
as compact hyperspectral and thermal cameras enable new possibilities for environmental
monitoring tasks [23, 24, 25, 26]. Methods used with space and airborne remote sensing
are now transferred to these systems, which will make it possible to perform continuous
monitoring tasks with high spatial and temporal resolution at low costs for areas of some
square kilometers [27, 28]. Also, in the field of remote sensing of water quality parameters,
these systems have been finding their way into research now, for example, to map the
temperature of the water surface or parameters such as TSS and chl-a with high spatial
and temporal resolution [29, 30, 28].

1.1 Research Goals

The advantages of compact UAVs and mobile sensors are accompanied by several disadvan-
tages and challenges. Many UAVs are vertical take-off multicopters that have a limited range
due to the high energy consumption and the weight of the sensors. Also, environmental
influences like wind gusts cause unwanted movements of the UAV and the sensors attached
to it, which complicate the georeferencing of the images. In addition, the mostly uncooled
low budget sensors have a poorer SNR and lower dynamic range compared to sensors for
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1.1. Research Goals

aircraft and satellites. Furthermore, these innovative hyperspectral sensors suffer from less
geometric and radiometric stability and optical limitations compared to the traditional
sensors for airborne missions. Therefore, characterization and calibration of the sensors
need to be done before data acquisition [31]. Another challenge after successful data ac-
quisition is the reliable and automated analysis of the collected data, for which no suitable
software packages are available today. Challenges here are the georeferencing of the data
over water, where the use of traditional image-based methods is not possible over water.
Using UAV borne systems provides the advantage of flying below clouds, but there are also
disadvantages due to fastly changing irradiance caused by cloud shadows. In general, a
system which can automate the process from data acquisition to cosistent maps of water
quality parameters is not available.

This work aims to set up a multimodal system with a thermal and a hyperspectral camera
on a compact UAV and the application of this system for the measurement and mapping
of water surface temperature and the estimation of water quality parameters in the context
of a research project. The following questions will be addressed in particular:

1. Can a low budget multimodal sensor system mounted on a UAV be used to
...

a) ... acquire data in an easy way?
Currently, no fully integrated systems are commercially available and spectral
sensors usually have to be calibrated by the user.

b) ... automatically process the data?
An automated process is absolutely essential for cost-effective use. This includes in
particular the preprocessing of the data and the subsequent parameter estimation.

c) ... generate consistent and reliable parameter maps?
For the use and evaluation of the results, it is necessary that the generated maps
are consistent and influenced as little as possible by ambient influences.

2. Is it possible to use the system below the cloud cover?
For continuous monitoring, it is essential to obtain data at fixed time intervals. Satellite
remote sensing cannot guarantee this due to the often prevalent cloud cover. UAVs, on
the other hand, can fly below the clouds

3. Is it possible to use only few ground truth data?
The collection of ground truth data to train and validate machine learning models is very
time consuming and costly. What are the alternatives to the synchronous acquisition of
a vast amount of reference samples?

3



Chapter 1. Introduction

1.2 Thesis Outline

This thesis is divided into nine chapters. Chapters 1 to 3 introduce the topic, describe
necessary basics (Chap. 2) and embed the work in the context of recent research also
discussing the challenges mentioned above (Chap. 3). Because of the importance of the
calibration of the spectral sensors for the success of this work, Chap. 4 describes the
sensor system and discusses the methods and results of the calibration of the spectral
sensors. Data collected during a measurement campaign at the drinking water reservoir
Passaúna in the west of Curitiba, Brazil in 2020 are presented in Chap. 5. Remote sensing
of the water surface temperature using a thermal camera, including recent research and
developed methods, are considered separately in Chap. 6. Subsequently, Chap. 7 deals
with the spectral data acquired with the sensor system, the developed processing tools
and the obtained results in the context of parameter estimation using the example of TSS
concentration. In Chap. 8 the summary of the work and the embedding of the results in the
context of current research work is given. Finally, the conclusions concerning the previously
presented research questions are presented and an outlook on future developments in the
field of automatic remote sensing of water quality parameters with small UAVs is given in
Chap. 9.

This work contributes to the automated water quality monitoring of inland waters using
low budget imaging sensor systems on UAVs. These small systems can provide data with
a high temporal and spatial resolution which is a clear advantage compared to traditional
methods like in-situ sampling or satellite remote sensing. To be cost-effective, these systems
need to be easy to use and it must be possible to process the data in an automated way. It
should be possible even for non experts to generate consistent and reliable maps of the water
surface temperature, total suspended solids concentration and other parameters without
time consuming interaction during the processing from raw data to final image mosaics.
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CHAPTER2
Fundamentals and Methods

Light incident on water interacts in different ways. Remote sensing uses the radiation leaving
the water body in relation to the incident radiation to conclude about the composition of the
water body. This chapter first presents typical, optically significant constituents of inland
waters and their interaction with light. After this, it introduces the quantities observable
by remote sensing and the influences affecting the remote sensing observations. Simulated
spectra show typical characteristics as a function of the concentration of water constituents.
Finally, the chapter deals with the methods for estimating the parameters from the remote
sensing data.

A standard work on optical properties of waters is The Oceanic Optics Book by Cur-
tis D. Mobley [13] which has its origins in the methods of ocean color remote sensing. Many
of the fundamentals discussed in this chapter refer to this book. Another book about the
remote sensing of the oceans and the role of light in aquatic ecosystems is Light and photo-
synthesis in aquatic ecosystems by John T. O. Kirk [32]. A focus on the remote sensing of
coastal aquatic environments can be found e.g. in [33, 34]. In [12] fundamentals and studies
related to the remote sensing of inland waters are presented. A tool to understand, analyze
and simulate spectral measurements of open waters is the freely available software WASI
(Water Colour Simulator, [35]).

2.1 Light and Water

Essentially for this work is the range of the visible and near infrared (NIR) of the electro-
magnetic spectrum which can be measured with spectrometers. Relevant measures will be
discussed in the following.

Many substances in waters, whether dissolved or particulate, are optically significant and
highly variable [13]. Due to the combination of physical properties of the constituents
(e.g. particle size and shape, etc.) with optical properties, optical measurements can be used
to obtain information about the constituents in aquatic systems. These inherent optical
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Chapter 2. Fundamentals and Methods

properties (IOP) are based on absorption and scattering and are linked to the water [36].
Therefore, these parameters can be determined equally in-situ in the water and in the
laboratory [13]. In a given volume of water, absorption A, scattering S, and transmittance
T can be determined, where fluorescence is to be seen as part of the scattering processes.
The sum of these must be A + S + T = 1 due to the conservation of energy. These
properties of water change in the presence of e.g. phytoplankton and mineral particles by
magnitudes compared to pure water. The following components are particularly relevant for
water: Absorption by water (see Fig. 2.1a), phytoplankton (see Fig. 2.1b), colored dissolved
organic matter, mineral particles, and scattering by water and particles present in it [12].
The associated most relevant IOPs are the absorption coefficient and the backscattering
coefficient.

Phytoplankton

Phytoplankton is one of the most important parameters for the monitoring of waters due
to its importance for the food chain and the human health, as some of the species are
toxic. Especially, due to the increase of algal blooms in waters used e.g. for drinking
water production and irrigation, the monitoring of the concentration and composition of
phytoplankton is of increasing interest [11, 37]. A major component of phytoplankton
is chlorophyll-a (chl-a), which was already measured in the 1970s using remote sensing
methods [38]. There are many different phytoplankton species which all have different
spectral characteristics. In Fig. 2.1b the absorption coefficients of two classes (cyanobacteria
and green algae) are visualized. The third class represents a combined absorption spectrum
of the typical phytoplankton mixture of Lake Constance (Phyto) where multiple present
species result in a combined signal. Characteristic for phytoplankton absorption is the peak
at ca. 670 nm. Besides absorption, there is also the emission of light due to chlorophyll
fluorescence which is not covered here as it is beyond the scope of this work and it is referred
to the literature [32, 12, 13]. According to [39] the relationship between phytoplankton and
inorganic particles is used for classification into case-I and case-II waters. Case-I is used for
waters where the composition is strongly influenced by phytoplankton (open ocean), case-II
for all other waters where also e.g. mineral particles have a significant impact on the water
color (coastal, inland waters).

CDOM

Colored Dissolved Organic Matters (CDOM, gilvin, yellow substance), are formed during
the decomposition of organic material in soil or water [32] and have a yellow or brown
color [40]. In inland and coastal waters, CDOM usually dominates absorption [12]. Larger
concentrations affect mainly the reflectance in the blue and green regions of the spectrum
(especially below 500 nm) [41]. The shape of the spectral absorption curve can be approxi-
mated by an exponential function [42, 13]. Since CDOM only absorbs radiation and does
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2.1. Light and Water
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Figure (2.1) Absorption coefficients of (a) pure water and (b) phytoplankton. The spectrum
labeled Phyto in (b) represents a typical mixture for Lake Constance. The label Cyano in (b)
stands for cyanobacteria. The single phytoplankton classes have highly variable absorption
coefficients. The signal of multiple present species in the water result in a combined absorption
spectrum as it is shown for the typical phytoplankton mixture of Lake Constance (Phyto). The
spectra are exported from WASI [35].

not reflect it, waters with high CDOM concentration have low reflectance. In particular,
the determination of CDOM using satellite remote sensing is difficult because atmospheric
correction in the blue spectral region is difficult and low concentrations are usually obscured
by backscattering of light from suspended particles [43].

Total Suspended Solids

Natural waters always contain a variety of particles that scatter light [32]. These are e.g.
mineral particles, phytoplankton, bacteria, etc. The sum of all these components is called
total suspended solids (TSS). Since suspended sediment also influences primary production,
e.g. by binding phosphorus, the determination of TSS is of interest [44]. In addition,
especially in shallow lakes, the input of TSS contributes to siltation and prevents light
penetration into deeper layers of the water, which can affect the organisms living there [45].
The scattering of light depends mainly on the size and concentration of the particles, while
the absorption properties depend strongly on the constituents [12]. In general, a higher
concentration of TSS contributes to higher reflectance (Rrs, see Sect. 2.2) values [46], which
also results in the characteristic local reflectance peak at approx. 800 nm (see Fig. 2.4a).

Apparent Optical Properties

While the IOP (absorption and backscattering coefficients) can be determined well in the
laboratory with the help of sensors, the direct measurement with remote sensing methods is
not possible. Therefore, the measurement of the AOP is used. AOP are properties of water
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Chapter 2. Fundamentals and Methods

that depend on the IOP and the geometry of the radiance distribution and display enough
regular features and stability to be useful descriptors of a water body [13]. They are defined
as ratios of radiometric quantities since these are less dependent on the light field than
the quantities themselves [12]. The AOP relevant for this work is the remote sensing ratio
(Eq. 2.3) measured above the water surface which is formed as the ratio of incident solar
radiation into the water and radiation reflected from the water body. A further explanation
using the example of remote sensing of water quality parameters using UAV carried sensor
systems follows in the next section.

Lt
LrefSref

Ed

Figure (2.2) Remote sensing of water using a reference panel with known spectral charac-
teristics Sref to measures Lref and calculate downwelling irradiance Ed or an upward looking
spectrometer attached to the UAV to measure Ed. The upwelling radiance Lt is measured by
the downward looking hyperspectral camera.

2.2 Remote Sensing of Water

Passive remote sensing of water quality parameters has its origins in ocean color remote
sensing with satellites more than forty years ago [37, 13]. While the focus at that time
was on an intensive understanding of oceans, the exploration of the optically more complex
inland waters is increasingly developing, which is only possible due to the advancement of
sensors towards higher spatial and spectral resolutions. Mostly, the passive remote sensing
of water uses the spectral bands in VIS, NIR and TIR. Here, the use of reflected radiation
in VIS and NIR measured by hyperspectral sensors above the water surface on UAVs is
discussed. Therefore, all notations are intended for measurements above water.

Remote sensing reflectance is usually chosen as the starting point for calculating water
quality parameters from remote sensing data:

Rrs = Lw
Ed

[sr−1] . (2.1)

This is formed from the water leaving radiance Lw and the downwelling irradiance Ed. Lw
is the part of the incident radiation that has interacted with the water body and leaves it
through the water surface in a certain direction with a certain solid angle. Schematically,
for the case of the use of a UAV, this is shown in Fig. 2.2.
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Figure (2.3) The received signal at the downward looking camera is a combination of multiple
signals as e.g. the water leaving radiance and scattered light on particles in the atmosphere and
the total reflection of sunlight at the water surface. Adopted from [47].

The calculation of the reflectance is often done in UAV campaigns using reference panels
where not Ed but Lref is measured [46]. Taking into account the spectral properties Sref of
the reference panel, Ed can be determined:

Ed = π
Lref
Sref

[Wm−2] . (2.2)

Recently, UAV systems have been supplemented by an additional spectrometer to be able
to continuously measure the incident radiation with the simultaneous measurement of the
downwelling irradiance. Since the measurement of radiance and irradiance is done with two
different sensors, an exact calibration of the sensors is necessary [13].

While actually the water leaving radiance Lw is of interest, in remote sensing the combined
signal Lt is measured as the sum of Lw and a variety of other signals at the sensor. This
results in the ratio named remote sensing ratio [13], which is defined here for measurements
above the water surface:

RSR = Lt
Ed

[sr−1] , with (2.3)

Lt = Lw + Lsun + Lsky + Lwc + Latm . (2.4)

These ambient influences (see Fig. 2.3) are e.g. reflection of the sun at the water surface
(sun glint, Lsun), reflection of the sky (sky glint, Lsky), radiance reflected by whitecaps
and foam (Lwc), and scattering in the atmosphere (Latm) [47]. Sun glint is the strongest
overlay of the Lw signal and due to the possible high intensity it can lead to saturated pixels
on the sensor and thus to data that cannot be evaluated and must be taken into account
accordingly when planning a campaign and later data evaluation.

The correction of sun glint and sky glint is feasible with additional effort [48]. It requires
measurements of the sky radiance with another sensor particularly in the area of the sky that
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is reflected on the water surface. During the processing of the measurements, a factor ρ must
be calculated to determine the reflected proportion of sun and sky glint on the measurement
Lt, which depends on several factors. These are, e.g. wind speed (as wind induces surface
roughness [49]), sensor field of view, prevailing cloud cover, and the inclination and azimuth
of sensor and sun [50]. Therefore, the determination is not trivial and must be elaborately
modeled using numerical simulations, which can be performed e.g. with the commercially
available radiative transfer numerical model Hydrolight [51].

Often Rrs and RSR are given in % when multiplied with 100. When reflectance is mentioned
in this work, RSR is always meant.
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(a) Variation of Phyto and NAP.
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(b) Variation of the water depth.

Figure (2.4) Simulated reflectance spectra with variation of (a) phytoplankton (Phyto) and
non algal particles (NAP), and (b) water depth in the case of shallow water and bottom type
sand. In (a) the different colors represent the variation of the non algal particle concentration
in mg l−1: 0 mg l−1 (green), 25 mg l−1 (red), and 50 mg l−1 (blue). The line style represents
the concentration of phytoplanktion in µg l−1: 0 µg l−1 (solid), 25 µg l−1 (dashed), and 50 µg l−1

(dotted). In (b) low concentrations for NAP and phytoplankton where chosen.
The spectra were generated with WASI [35].

In Fig. 2.4, exemplary reflectance spectra are shown which were simulated with WASI [35].
The left plot shows the influence of present phytoplankton and non algal particles (NAP) in
varying concentrations on the reflectance spectrum for the case of deep water. With increas-
ing NAP, the reflectance increases overall. An increasing concentration of phytoplankton
increases the dent at approx. 670 nm due to absorption (cf. Fig. 2.1b).
For shallow water the bottom of the water body also influences the measured reflectance
spectra which is visualized in Fig. 2.4b. Low concentrations for phytoplankton (5 µg l−1)
and NAP (15 mg l−1), and the bottom type sand were chosen in WASI to generate this plot.
The water depth was varied from 0.2 m to 5 m. A variation of the reflectance depending
on the water depth is particularly visible in the region above 700 nm. Also, the peak at
approx. 570 nm increases. For water depths larger than 2.2 m, almost no further variation
is visible in this case.
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2.3 Water Quality Parameter Retrieval

Based on the measured AOP, three types of estimation methods for determining the water
quality parameters can be distinguished [37]. Analytical models invert the physical model
which is based on IOP and AOP. In contrast, empirical models use existing data sets to build
models for the parameter estimation of unknown data sets. Whereas traditional empirical
models are often based on linear relationships, the more and more widespread machine
learning methods can also represent complex non-linear relationships and have therefore
been applied in parameter estimation for some years.

Analytical Models

The knowledge about the IOP facilitates the development of analytical models to simulate
the spectral properties of arbitrary waters. Further assumptions, e.g. the composition of the
atmosphere, allow the calculation of the AOP. In addition to forward modeling, inversion
of these models is also possible. This approach is followed in the estimation of water
quality parameters from remote sensing data using analytical models. Even though these
models allow to represent the complex physics, the inversion is not easily possible. Many
constituents have IOPs that overlap spectrally and thus an ambiguous solution is possible.
Also assumptions about the atmosphere contribute to errors in the calculation and inversion.
In general, the application of analytical models to estimate water quality parameters requires
expert knowledge and, partly, additional in-situ measurements to determine starting values
for the inversion.

Empirical Models

A common method for estimating water quality parameters are empirical models. Specific
wavelength bands are selected either automatically or manually to be related to the desired
parameters either directly or by using the relationships of several bands. In the literature
this is called band ratio (BR) and the estimation of parameters is based on previously
determined regressions between these ratios and the corresponding parameters. Especially
these models are applied to the multispectral data of satellites. Whereas the choice of the
used bands is transferable to other data, the chosen parameters of the models are often
bound to one water body and are not transferable. Therefore, it is usually necessary to
have corresponding reference measurements for each water body.

Machine Learning Models

A special form of empirical models are machine learning models. In recent years, due to the
increased computational capacity and the increasing spread in almost all scientific fields,
these methods are also used in the evaluation of remote sensing data for the regression of
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water quality parameters. In contrast to image classification tasks, the data for the regression
of continuous water quality parameters are mostly reflectance spectra of dimension one.
While traditional empirical models are simple and often based on linear relationships, these
methods also allow the mapping of complex nonlinear relationships between input data and
target variables. In several studies, these methods performed well and can even outperform
existing traditional empirical models [37]. However, for a reliable application, a huge amount
of data is needed to obtain generalizing models [52]. Also, a deep understanding of the
methods is required to train the models with the available data in such a way that they
do not exhibit overfitting or underfitting. All supervised machine learning models have in
common that the data to be used must be preprocessed. The data should be cleaned of
large outliers as far as possible and normalized if necessary to ensure successful training of
the models. Furthermore, it must be ensured that, ideally, independent data are used for
training and validation during model optimization, and testing of the final models, so that
the generalizability of the models can be assessed.

• PLS

Especially when processing spectral data, Partial Least Squares regression (PLS) [53] is
an often used robust method [54]. PLS is a bilinear factor model and can handle a high
dimension of observations and multicollinearity by projecting the observations and
the unknowns into new spaces. PLS has similarities with PCA, but in contrast, it also
includes the parameter space of the target variable by searching for the corresponding
direction of the maximum variance in the target parameter space to the direction in
the observation space. In short, PLS performs a dimensionality reduction but also
considers the target parameter space in order to take into account variables with low
variance but high influence on the target size, which is a decisive advantage compared
to PCR. The advantages of PLS are ease of use, fast training time, and applicability
to small data sets [54]. The disadvantages are usually a reduced performance and
generalizability compared to other machine learning models like ANN. The application
of PLS on spectral data to estimate water quality parameters is presented for example
in [55, 56, 57].

• RF

Random Forests (RF) [58] are part of the ensemble methods where multiple base
estimators are combined to improve generalizability. An RF combines several decision
trees, each of which is trained with a randomly chosen subset (a sample drawn with
replacement) of the training data. The best split for a node of a tree is found by using
all features or a random subset with a chosen maximum size. By using these two
sources of randomness the variance of the estimator and the probability of overfitting
are reduced. The injected randomness can lead to decoupled prediction errors, which
are reduced by averaging the individual predictions. An advantage of RF is a relatively
short training and evaluation time due to the parallelizability even with large data sets.
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Furthermore, the results can be interpreted with the help of the feature importance
[54]. The application of RF on spectral data to estimate water quality parameters is
presented for example in [59, 60, 61].

• ANN

Artificial neural networks (ANN) are inspired by the architecture of the brain and work
with artificial neurons. However, these have come a long way from their biological
cousins [62]. While the first mention can be traced back to 1943, for a long time
there was no intensive research on ANNs. Only in the 1990s and particularly since
the 2010s, however, ANNs are no longer to be excluded from modern data processing.
An ANN consists of artificial neurons (units) which are connected to each other. The
neurons consist of input connections and corresponding weights. The weighted inputs
are then applied to an activation function and the result is passed on to the next
neurons. For example, using the backpropagation method, it is then possible to adjust
all weights in the ANN to minimize the estimation error and optimize the ANN for a
regression problem [63]. ANN usually consist of several neurons which are built up in
several layers and are fully connected to each other. The simplest structure consists of
an input layer with a certain number of neurons and an output layer with one neuron.
If further layers (hidden layers) are inserted between the two layers, one speaks of a
deep neural network. In the context of regression tasks, the output layer has a linear
activation function. Currently, deep neural networks usually use the ReLU activation
function [64]. To optimize the weights mostly the Adam algorithm is used [65]. ANN
can handle large datasets and their structure is adaptable to individual problems even
to solve nonlinear problems. But they need, depending on the structure of the ANN
and the regression problem, a large amount of data which lead to long training times
and the whole process can be seen as a black box system. Applications of ANN to
estimate water quality parameters from spectral data can be found in [66, 67].

• CNN

A special kind of neural networks are convolutional neural networks (CNN) [68]
which have at least one input, one convolutional and one output layer. Usually, fully
connected layers are integrated into the network between the convolutional layers and
the output layer. The idea of CNNs is to extract local features using convolution
kernels (filters), which are learnable filters, thus automating the manual step of filter
engineering inevitable in traditional methods [68]. In a CNN, every element of the
convolution kernel is used at every position of the input (except possibly edge pixels).
This reduces the number of free parameters (parameter sharing), since only one set
of parameters is free instead of many sets (for each input dimension) [69] which
also significantly reduces the memory requirements of the model. Furthermore, each
convolutional layer is usually followed by a pooling layer which further reduces the
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output of the layer and helps to make the representation invariant to small shifts. In
the case of regression of hyperspectral data the use of 1D nets is recommended, the
application of 2D nets goes beyond the scope of this work. The application of a 1D
CNN on spectral data to estimate chl-a is presented in [70]. Other research using
CNNs in the framework of spectral remote sensing of water quality can be found in
[71, 72].

14



CHAPTER3
Related Work and Challenges

Remote sensing of waters in general has its origins in the 1960s [73, 74, 75, 13] and was
initially used primarily in the context of ocean exploration. Methods were invented by the
oceanographer community initially and have been transferred to inland water applications
especially in the last three decades [13]. While a number of studies use multispectral satellite
data for remote sensing of inland waters [46, 76, 77, 78], there are now also hyperspctral
satellites [79, 17, 19] and airborne campaigns [80, 81, 20, 82].

As sensors become smaller, the application of UAVs becomes more attractive [28, 83, 57, 84]
to acquire remote sensing data of inland water bodies to better understand the processes
therein or to improve their mangagement. Compared to traditional methods such as remote
sensing using satellites and airplanes, the low costs for the setup and operation of UAV
borne sensor systems are a major advantage. Also, UAVs can be operated below the cloud
cover while in regions with frequent cloud cover satellites often cannot provide data for
weeks.

In the following, current research in the field of remote sensing of water quality parameters
using UAV-mounted systems is discussed and challenges are presented.

3.1 Remote Sensing of Water with UAVs

Optical remote sensing using UAVs can make use of different sensor technologies. On the
one hand, there are multispectral sensors with usually less than 10 spectral bands [85] and
on the other hand hyperspectral sensors with usually more than 100 spectral bands [86],
which cover e.g. the visible and near infrared range and are usually used for remote sensing
of water quality parameters.

Hyperspectral sensors can generally be subdivided into point spectrometers, line scanners
and imaging sensors [27]. While point spectrometers have a very high spectral resolution,
they do not provide spatial information, which must be generated e.g. by appropriate
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flight planning in UAV campaigns [87]. Line scanners, on the other hand, usually offer
high spectral and high spatial resolution along one dimension. An areal acquisition of data
with two spatial and the spectral dimension is only possible with imaging sensors. These
use either fixed optical components to enable a snapshot system [88], or like fabry perot
interferometer (FPI) based systems a scanning of the spectral dimension to generate the
hyperspectral cubes [89]. FPI based cameras can achieve high spectral and spatial resolution,
but individual geometric correction is required for all channels, since the sequential scanning
of bands with the sensor in motion causes geometric offsets [90]. Snapshot systems usually
have fixed channels with lower spectral and spatial resolutions, but allow the acquisition of
full hyperspectral cubes at high frame rates. In contrast to the use of point spectrometers
and line scanners, hyperspectral imaging cameras allow the use of redundancy along the
flight line to create parameter maps.

In remote sensing of water quality parameters, multispectral cameras [91, 84] and partly
hyperspetral cameras [92, 93] integrated on UAVs are increasingly used due to smaller
dimensions and decreasing costs in comparison to airborne systems and campaigns to study
e.g. the spatial distribution of pyhtoplankton. Also, measurement campaigns with compact
UAVs can generally be planned and implemented quickly, as neither special infrastructure
for takeoff and landing nor a professional pilot are required. In addition to a flexible data
acquisition in terms of time and space, the ability to quickly switch between different sensor
systems on the UAV (e.g. active and passive sensors) is also an advantage.

Especially hyperspectral sensors allow the use for various applications due to the wide
spectral range covered and provide the necessary spectral properties even for the remote
sensing of complex inland waters. Good results can also be obtained with multispectral
sensors, but here not only the bandwidth of the channels but their number and especially
the position of the channels in the spectrum is crucial, for example to cover different
phytoplankton classes [94, 52].

The estimation of parameters is often based on models trained with the help of fine tuned
band ratio models using local reference samples. This usually results in very high accuracies
for single water bodies but the models are not transferable to others. In contrast, analytical
models are more general but they usually need good initial values and probably further
in-situ measurements for inversion. Therefore, they do not yet seem to play a role in the
area of UAV borne remote sensing of water quality. However, a promising approach is
the use of simulated data using these analytical models to obtain generic machine learning
models for parameter estimation [52].

In general, UAV are already used for remote sensing of CDOM [95, 57], TSS [92, 96, 84]
and chl-a [29, 87, 93, 97]. There, band ratios [91], partial least squares regression [28, 57]
or neural networks [67] are used to estimate the parameters, for example.
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3.2 Challenges and Limitations

Even though there are now numerous studies that deal with compact hyperspectral sensors
on UAVs in the context of different research fields and especially parts of the research of [57]
are similar to this work, there are still existing challenges and limitations. While the sensors
get smaller and cheaper they usually suffer e.g. from less stable spectral characteristics
and the small UAVs are more affected by environmental influences as wind gusts which
can complicate the processing of the data. In the following, challenges which need to be
considered in this work are presented.

UAV

Especially with vertical launch multirotor UAVs, the flight duration (mostly below 30 min)
and thus the maximum range is strongly limited [98]. Fixed wing UAVs, on the other hand,
can cover long distances (flight duration over 1 h), but require a larger flat area for takeoff
and landing. In addition, on these systems the camera is usually not stabilized by a gimbal
which complicates the georeferencing of the images. Another restriction for the operation of
UAVs are also country-specific laws and regulations for the use of UAVs, whereby the use,
for example, in nature reserves or in the vicinity of infrastructure is limited or not possible at
all [99]. Finally, even though a lot of UAVs are now available and easy to use, the operation
of customized UAVs require experienced operators and technicians for maintenance.

Sensor Calibration

When setting up the systems, care must be taken to ensure an appropriate calibration of
the sensors, especially when using an additional spectrometer for irradiance measurement
[100, 57]. Also checking of the calibration parameters for stability at regular time intervals is
recommended. Especially for the comparison of spectral data with different sensors and the
combination of different sensor types, calibration is indispensable. In the context of remote
sensing of water quality parameters, for example, it was shown in [101] that insufficient
radiometric calibration of a hyperspectral camera has non-negligible effects on the estimated
parameters. Fig. 3.1 shows the effect of varying wavelength scales between the individual
pixels of a hyperspectral camera. Clearly visible are undulation patterns in the data of
estimated turbidity (mid column) using the hyperspectral images caused by the missing
wavelength calibration. After an pixel individual calibration of the wavelength scales, these
effects are eliminated (right column).

Geocoding

While most remote sensing applications have sufficient features in the image data to generate
mosaics using feature based structure from motion algorithms, the water surface is too
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Figure (3.1) Effect of an uncalibrated wavelength scale of a hyperspectral camera on the
parameter estimation. The left column shows two panchromatic images captured with the
hyperspectral camera close to the water surface. The mid column shows the estimated turbidity
in this area before wavelength calibration. After the pixel individual wavelength calibration
the systematic effects visible as undulation patterns are eliminated (right column). Figure after
[101].

homogeneous or existing features (i.e. waves) too variable to apply automated image-based
algorithms [84]. Therefore, remote sensing of large water surfaces with UAVs depends on
accurate pose parameters of the used sensors.

Atmosphere, Clouds and Surface Effects

While satellite data cannot do without the correction of atmospheric influences, these are
usually considered negligible for UAV data in the literature [32, 102] and are therefore not
considered in detail in this work.

A challenge in the remote sensing of water quality parameters are reflections at the water
surface [103, 95]. These are, on the one hand the total reflection of sunlight (sun glint)
depending on the position of the sun, the viewing angle on the water and possible variations
by waves, and on the other hand the reflection of the sky (sky glint). To correct for these
effects, point spectrometer systems usually use at least one additional spectrometer to
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measure the sky radiance in the area of the sky that is reflected from the water surface [104].
In conjunction with numerical simulations, which include the motion of the water surface,
a correction can be determined [50]. While mobile or fixed point spectrometers allow the
use of an optimal geometric configuration different from nadir with multiple spectrometers,
this is usually not possible with UAV borne imaging systems. Only [29] presents a system
that uses two multispectral cameras on a UAV to additionally measure the sky radiance
synchronously.

An alternative is presented in [105] where sky radiance is reduced by using in-situ measure-
ments of the water leaving radiance using the multispectral camera inside a black tube. As
the camera needs to be detached from the UAV or another sensor is needed, this method
ist not applicable with our system presented in Chap. 4.

Analytical models try to simulate and invert sun and sky glint, but this requires, among
other things, expert knowledge of the user and usually further in-situ measurements [103],
making an automated correction difficult. The application and analysis of such an analytical
model to reduce water surface effects is described in [106] and [104] using simulated and
station based point spectrometer data.

Using polarization filters is another possibility to reduce glint [107]. Studies with imaging
spectrometers at a fixed station show that the application of polarization filters can achieve
similar results as the analytical methods mentioned [108]. At the same time, however,
further challenges are pointed out depending on the optical components used in the sensor
and further influences with moving sensors on UAVs. An application of hyperspectral
cameras with polarization filters on UAV for the reduction of glint is not known.

Also, a variable cloud cover further complicates the processing of the spectral data as the
irradiance changes continuously and cloud shadows on the water surface add even more
challenges to the task of parameter estimation from hyperspectral data. In [109] an analytical
model is used to estimate parameters under changing cloud conditions. However, specific
parameters for absorbance and scattering have been measured in-situ and are introduced
to the model (e.g. the specific backscattering coefficient of TSM), whereas parameters for
sky reflectance and cloud cover where fitted during the inversion of the model. Overall, the
approach provides promising results, but there are larger deviations from reference values
(approx. 30 %) when estimating parameters, and here, too, an operator with sufficient
background knowledge must operate the software.

Bottom Reflectance

Depending on the water depth and the attenuation of light in the water column, the bottom
can affect the measured spectrum at the sensor (cf. Fig. 2.4b) which was also noted as a
problem in [57]. The influence on the spectrum then depends on the type and constitution
of the bottom whereas pure sand would mainly affect e.g. the estimation of total suspended
solids. The presence of plants in contrast would have an influence on the estimation of
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phytoplankton parameters. Therefore, the water depth should be available as measured
bathymetry or the estimation methods should be chosen in a way that they can handle low
water depths in the estimation process.

3.3 Summary

Due to the fast progressing development of compact UAVs and lightweight sensor systems,
they become more and more attractive for remote sensing tasks in general but also for
remote sensing of water quality parameters in particular. Especially, the now available
compact hyperspectral cameras provide the necessary high spectral resolution for remote
sensing of water quality parameters. However, before setting up a system, the advantages
and disadvantages of each camera technology should be considered in the context of the
application. Crucial for the quality of the results is a precise calibration of the sensors.
Especially the wavelength scale of the single pixels of a camera should be checked and
calibrated if necessary. For remote sensing of water bodies, an accurate measurement of the
camera pose or its stabilization using a gimbal is necessary to simplify the georeferencing
of the data as much as possible, since feature based methods are usually not applicable
over water. The acquired hyperspectral images of water bodies are partly influenced by
water surface effects like sun glint, which makes the evaluation more difficult. The use
of redundancy can help to improve the final parameter maps. For this purpose, suitable
methods for the creation of parameter mosaics from overlapping hyperspectral images have
to be developed.
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CHAPTER4
Sensor System and Calibration Methods

The multi modal sensor system consists of a hyperspectral camera, an irradiance spectrom-
eter, a thermal camera and an RGB camera (see Fig. 4.1 and Tab. 4.1). All sensors are
integrated on a coaxial octocopter with a total weight of less than 10 kg (see Fig. 4.2). The
imaging sensors are mounted on a two axis gimbal to maintain a nadir orientation of the
sensors during the flight. First, this chapter presents the sensors and their specifications,
then the methods to calibrate the spectral sensors are explained (see Sect. 4.2). To calibrate
the spectral sensors, standard methods are used and adapted to the sensors, especially for
the hyperspectral camera. The results of the calibration of the spectrometer, the hyperspec-
tral camera, and their cross calibration are shown in Sect. 4.3. As the copter and the sensor
system share different time scales, a data driven method for synchronizing was developed
that enables the inclination correction of the irradiance measurements (Sect. 4.4) which is
inevitable to calculate the remote sensing ratio which is the foundation for the estimation
of water quality parameters in this work. Sect. 4.5 provides a short summary and embeds
the results into the context of related work.

(a)
(b) (c)

(d)

Figure (4.1) Used sensors from left to right: hypserspectral camera (Cubert S185), irradiance
spectrometer (Broadcom Qmini), thermal camera (Flir Tau2), RGB camera (Mapir Survey 3).
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Figure (4.2) Integrated sensor system mounted to the UAV. The two axis gimbal maintains
the desired viewing angle of the cameras during the flight. The irradiance spectrometer is
mounted on a pole next to the GPS antenna.

Table (4.1) Sensor specifications of the hyperspectral camera S185, the irradiance spectrom-
eter Qmini and the thermal camera Tau 2 as given by the manufacturers.

S185 Qmini Tau 2
Wavelength in µm 0.450 - 0.95 0.225 - 1.0 7.5 - 13.5
Channels 125 2500 1
Resolution in nm 8 @ 532 1.5 -
Sampling in nm 4 0.31 -
Weight in g 490 60 100
Sensorsize 50x50 1 640x512
PAN in pixel 1000x1000 - -
Sensor CCD CCD Micro Bolometer
FOV in deg 26x26 - * 44x36
A/D converter in bit 12 16 -

*cosine corrector

4.1 Sensors

The hyperspectral camera S185 from Cubert is used to map the water surface to estimate
water quality parameters like turbidity. In combination with the upward looking spectrom-
eter Qmini from Broadcom it is possible to measure the changing downwelling irradiance
during the flight. The thermal camera (Flir Tau 2) is used to map the temperature of
the water surface. To get more visual information about the conditions during the flight,
the Survey3 RGB camera from MAPIR is integrated into the system. It follows first the
description of the spectrometer and then the hyperspectral camera and thermal camera.
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Spectrometer

The upward looking spectrometer (Qmini, Broadcom Inc.) is used to measure the down-
welling irradiance in the range from 225 nm to 1000 nm with 2500 channels. The spectrom-
eter uses a linear 16 bit CCD sensor array, whereas the typical spectral resolution (FWHM)
is specified as 1.5 nm. To measure the irradiance, the spectrometer is equipped with a cosine
collector, which is a diffuser to collect the signal from the upper hemisphere before entering
the entrance slit of the device. Using the irradiance measurements during the flight allows
the dynamic calculation of reflectance values adjusted to the current conditions.

Hyperspectral Camera

Compared to the well established pushbroom, fabry perrot interferometer and filter based
sensors, the used hyperspectral camera (S185, Cubert GmbH) features snapshot acquisition
of hyperspectral images (see [27]). It provides a 50 x 50 pixel data cube, where each pixel has
137 channels in the range from 450 nm to 998 nm with a spectral sampling of 4 nm. However,
the manufacturer recommends only using the first 125 channels. Inside the camera the
three dimensional problem of a hyperspectral cube is projected on a two dimensional CCD
sensor. Simply said, the incoming light is focused on an optical element, which unfolds the
spectrum at the 50 x 50 points to its components which are projected on different areas of
the sensor array. The read out of the raw data cube already contains the pre calculated
hyperspectral data, whereat the raw two dimensional data is proprietary and not used in
this work. The spectral resolution decreases significantly from short to long wavelengths (see
Fig. 4.3). Beside the hyperspectral data, the camera features an additional coregistrated
high resolution panchromatic channel (1000 x 1000 pixel). The field of view of approximately
26◦ facilitates a ground sampling distance (GSD) of about 1 m at a flight height of 100 m
above ground level (AGL). Under sunny conditions the typical integration time over water is
12 ms increasing to more than 100 ms under overcast sky. First use cases and investigations
of this sensor and possible issues and challenges that could occur using this type of sensor
are presented in e.g. [110, 111, 31, 112, 101].

Especially [113] is relevant in the context of this thesis. They integrate the same hyperspec-
tral camera as used here and a spectrometer on a UAV which uses a method similar to the
one presented in this thesis to correct the systematic tilting effects of the irradiance spec-
trometer. Their investigation of the spectral resolution reveals a worse resolution, especially
for longer wavelengths compared to the specifications provided by the manufacturer. In
contrast to this work, the effect of nonlinearity was only investigated, instead of a calibration
they only use the linear range of the sensor.
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Figure (4.3) The spectral resolution for each channel of the hyperspectral camera is given
as FWHM in nm by the manufacturer. The spectral sampling is 4 nm starting at 450 nm.

Thermal Camera

The thermal infrared camera Tau 2 from Flir has an uncooled micro bolometer array with
640 x 512 pixels and is used to measure the water surface temperature. At a flight height
of 100 m the GSD is about 13 cm. To measure the temperature, the spectral band from
7.5 µm to 13.5 µm is used. The data is recorded using the ThermalCapture 2.0 from TeAx
and has a specified resolution of 0.04 K. As various studies using uncooled micro bolometer
cameras show effects overlaying the signal (e.g. [114]) it is expected that these effects also
occur in the data. Mainly there are two effects, first, a general drift in temperature and
second a vignette like overlay of the data. These effects show temporal variabilities and have
a number of possible causes, as spatiotemporal variations of the temperature of the lens, the
housing, and the sensor array (see [115, 116, 114]). Due to the temporal variability of the
effects, laboratory calibration is impossible. Therefore, a data driven correction approach
was developed which is applied during the processing of the data (see Chap. 6).

4.2 Calibration Methods for Spectral Sensors

Almost all available sensors have individual characteristics affecting the signal to be measured
depending e.g. on temperature and optical elements. The modeling and correction of these
characteristics are necessary to measure reliable values and are inevitable if different sensors
are combined in a multi modal sensor system like the presented one. In this work, the
calibration is crucial especially to calculate reliable reflectance values as the ratio of radiance
and irradiance, measured by different sensors (see Sect. 2.2). To calculate the reflectance
values from two different sensors, either an absolute calibration of each sensor or a cross
calibration between the sensors is necessary. In the following, calibration methods for the
spectral sensors used in this work and results are described in detail. The methods for
geometrical calibration are omitted, and it is referred to the well established methods in
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Dark Current (DC) Nonlinearity (NL) Wavelength (WL) Cross Calibration (S)

Figure (4.4) The calibration process aims to individually characterize the sensors (DC, NL,
WL) and to calculate the cross calibration factor (S) between them. The cross calibrated sensors
enable the direct measurement of the remote sensing ratio.

literature and software (e.g. [117]). The geometrical calibration of the cameras was carried
out using an asymmetric circles pattern and the camera calibrator app of MATLAB R©.

4.2.1 General Methods

First, general methods to calibrate spectral sensors are presented as they are applied to the
irradiance spectrometer, which measures one spectrum at a time. After this, the extensions
of these methods to calibrate the hyperspectral camera are illustrated (see Sect. 4.2.2) which
synchronously measures multiple spectra and also has further optical elements that needs
to be considered. Finally, the cross calibration of these two sensor types is described in
Sect. 4.2.3.

The calibration of spectral sensors (see Fig. 4.4) starts by modeling the dark current
(DC) which depends on the integration time and the temperature of the sensor array. The
nonlinearity (NL) is a sensor specific deviation from a linear behavior of the incoming signal.
As the next step, the wavelength (WL) calibration ensures that the correct wavelength is
assigned to each channel. Instead of an absolute calibration of the radiance and irradiance
values, the last calibration step is the cross calibration of the irradiance spectrometer and
the hyperspectral camera. Whereby the individual spectral resolution of the two sensors is
also taken into account. The DC, NL and WL calibration were carried out for each spectral
sensor in a lab using professional equipment.

Dark Current

Even when no radiation enters the detector, a small electric current can be measured, which
is called dark current (DC). It consists of fixed patterns and temporal noise. The fixed
patterns can be measured by averaging multiple measurements when no photons enter the
device. These fixed patterns can be characterized by a model depending on the integration
time and temperature of the sensor. A dataset to model the dark current must cover the
integration times and sensor temperatures which are expected to occur in the planned
measurement setups. The sensor should be heated and cooled down slowly while acquiring
the data to check for different behavior between heating and cooling. The DC correction
can be written as follows:

Y ′(k) = Y (k)−DC(τ,T ) , (4.1)
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Figure (4.5) Nonlinearity calibration of a CCD sensor using a black body radiator (e.g. a
stabilized halogen lamp). A linear reference is set to the not linearly changing measurements of
an integration time series. The deviation is modeled by a polynomial.

where τ is integration time, T is the temperature of the sensor array and k is the channel
of the measured signal Y . If there is no temperature sensor inside the device, the behavior
of the sensor must be investigated for its characteristics while changing integration time
and temperature. In this case, dark current measurements should be carried out as often
as possible during measurements, especially when the temperature of the sensor changes or
the integration time is adjusted.

Nonlinearity

The deviation of the sensor readout to the expected behavior of a linear changing incoming
signal is called nonlinearity. This effect can be observed by either changing the incoming
signal with known reference values or changing the integration time while keeping the in-
coming signal stable.
In this work, the latter approach is used. The process to model the nonlinearity (see
Fig. 4.5) of a sensor starts by acquiring a dataset of a luminance standard with changing
integration times of the sensor. Then a representative channel k is chosen which shows
very low and high values over a wide range of integration times. Mean values of multi-
ple acquired measurements for each integration time τi should be used and must be DC
corrected to retrieve Y ′(k,τi). If Y ′(k,τi) does not change linearly when changing the in-
tegration time, an arbitrary linear polynomial Q′(k,τi) must be set as a reference. The
ratio P ′(k,τi) = Y ′(k,τi)/Q′(k,τi) fitted to Y ′(k,τi) represents the model of the nonlinearity
NL(Y ′i (k)) of the sensor:

NL(Y ′) = fit(Y ′(k,τi),P ′(k,τi)) . (4.2)

The nonlinearity can usually be estimated as a second degree polynomial representative
for all channels. A correction of nonlinearity depends only on the DC corrected measured
signal and the corrected signal should be normalized by the integration time τi:

Y ′′(k) = Y ′(k)NL(Y ′(k))/τi . (4.3)

Wavelength

The calibration of the wavelength scale allocates the corresponding wavelength in nm to each
spectral channel of the sensor. This calibration step can be done using a monochromator
or wavelength calibration lamps like mercury lamps which have spectral lines with known

26



4.2. Calibration Methods for Spectral Sensors

Spectrum of
Wavelength Standard

Estimate Peak
Positions

Assign
Wavelengths

Estimate
Polynomial

Figure (4.6) Wavelength calibration using the measured spectra of traceable wavelength stan-
dards. The sub channel positions of peaks are estimated by polynomial fits. The corresponding
pairs of sub channel position and wavelength are used to fit an appropriate polynomial.

positions on the wavelength scale.
The distance between the lines should be appropriate to the spectral resolution of the sensor.
Otherwise, the spectral resolution must be taken into account while calibrating. The spectral
lines of the calibration standards are measured as peaks with the spectrometer, and their
maxima are fitted with an appropriate polynomial to achieve a sub channel precision of
the peak position. A polynomial that fits the identified peak positions to the traceable
wavelength allows the assignment of the corresponding wavelength λ to each channel k.

Y ′′(λ) = WL(Y ′′(k),k) (4.4)

Finally, using an appropriate interpolation method allows an equidistant sampling of the
spectrum which might be inevitable for further processing.

4.2.2 Camera specific Calibration

Calibrating the used hyperspectral camera requires some additional considerations and
steps. First, each of the camera’s pixels must be treated as a single spectrometer. Second,
the spectral resolution of the camera must be considered when using spectral calibration
lamps to calibrate the wavelength scale and for cross calibration with other spectral sensors.
Third, there are more optical components inside the camera compared to the spectrometer
which could affect the measurement, especially vignetting effects that are expected and
must be corrected. To perform the calibration steps for all sensor elements it is necessary to
use homogeneously illuminated surfaces with approximately Lambertian characteristics e.g.
luminance standards, integrating spheres or panels with known reflectance characteristics.

Resampling of Spectra

As the camera has a decreasing spectral resolution with increasing wavelength, this must
be taken into account while calibrating the wavelength where adjacent spectral peaks result
in a superimposed signal. Especially, to perform the cross calibration of the camera and
spectrometer, the resampling of the spectra of the irradiance spectrometer is inevitable as
their spectral resolutions differ clearly from each other. The resampling method described
in the following is also published in [101] and based on the approach presented in [118].

The spectral resolution is e.g. given by the manufacturer as the full width at half maximum
(FWHM) for each channel k. The spectral resolution of the original spectrum is FWHM o,
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and the spectral resolution of the resampled spectrum is FWHM d. These values are used
to calculate the σk of a Gaussian kernel N (λk − λ′,σ2

k) (see Equation 4.5). Equation 4.6
represents the resampling process. For each channel k a new value Y ′′d,k is computed by
integration of the convolution of a Gaussian kernel N (λk−λ′,σ2

k) with the original spectrum
Y ′′o,k in the interval of λk ± 3σk:

σk =
(

2
√

2 ln(2)
)−1√

FWHM 2
d,k − FWHM 2

o,k , (4.5)

Y ′′d,k(λ,FWHM d) =
λk+3σk∫
λk−3σk

Y ′′o,k(λ′,FWHM o) ∗ N (λk − λ′,σ2
k) dλ′ . (4.6)

4.2.3 Cross Calibration

Instead of an absolute calibration of the radiance or irradiance values to traceable SI-units it
is sufficient in this work to calculate the calibration factor between the two spectral sensors.
This cross calibration is necessary to calculate the remote sensing ratio (see Sect. 2.2) using
the measurements of the hyperspectral camera and the spectrometer. The calibration was
performed outdoors using an optimized setup under sunny conditions (see Fig. 4.7). Both
sensors were mounted on a matt black stand and oriented to reduce the effects of reflections
and stray light on the measurements. The spectrometer was mounted on the top and aligned
horizontally. The hyperspectral camera looked nadir on a plate with known reflectance
characteristics. The data was acquired synchronously, and the calibrated mean spectra of
the camera Y ′′C and the spectrometer Y ′′Q of multiple measurements were calculated. The
measurements Y ′′Q are then resampled to the spectral resolution of the camera. The cross
calibration factor is calculated per channel as follows:

SQC(λ) = Y ′′C (λ)/Y ′′Qd
(λ) . (4.7)

4.3 Sensor Calibration Results

This section presents the results of the investigation and calibration of the sensor system
with a focus on the spectral sensors. It starts with the individual steps for the spectrometer
and the camera. Then, the results of the cross calibration of both sensors are shown.

4.3.1 Spectrometer

The sensor specific calibration was performed in a lab without changing the assembly of
the spectrometer between the individual measurements. It follows first the investigation
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Q

C

P

Figure (4.7) Schematic figure of the cross calibration. The sensors are mounted on a stand.
The irradiance spectrometer (Q) is looking upwards, and the hyperspectral camera (C) is looking
downwards on a reference panel (P) with known spectral characteristics. The sensors acquire
synchronized data of the downwelling solar irradiance outdoors under sunny conditions.

and modeling of DC. After this, the NL was characterized, and finally the WL scale was
calibrated.

Dark Current Calibration

The data for this calibration task was acquired by closing the entrance slit of the spectrometer
and heating the device using a thermal radiation source. Measurements from 28 ◦C to 45 ◦C
sensor array temperature and integration time settings of 0.01 s, 0.25 s, 0.5 s, 1 s have
been used to investigate and model the DC of the Qmini spectrometer (see upper left
in Fig. 4.9). For typically used integration times of less than 0.02 s, the DC values are
normally distributed. Higher values show a positive skew which should be taken into
account, if necessary (see Fig. 4.8).
DC depends on two variables, the temperature T of the sensor array and the integration
time τ . Therefore, the chosen model is a polynomial surface, whereas a degree of three for
each variable fits best for this sensor. The fitted polynomial of the dataset acquired while
heating the device is shown in Fig. 4.9a.
Measurements of heating and cooling the sensor have been acquired. The difference between
the polynomials between heating and cooling is shown in Fig. 4.9b. In the expected
temperature range from 30 ◦C to 35 ◦C and used integration time of less than 0.02 s (see red
box in Fig. 4.9b) the difference between heating and cooling is small, and the mean of both
polynomials is used for later DC correction.

Nonlinearity Calibration

To perform the nonlinearity calibration, a series of measurements of the luminance standard
LMT-LN3 were acquired, DC corrected, and measurements with identical integration times

29



Chapter 4. Sensor System and Calibration Methods

4600 4700 4800
0

200
400
600

DC in DN

Fr
eq

ue
nc

y

(a) Integration time: 0.01 s.

5000 5500 6000
0

200
400
600

DC in DN

Fr
eq

ue
nc

y

(b) Integration time: 1 s.

Figure (4.8) Histograms representing the DC of the irradiance spectrometer at 30 ◦C for two
different exposure times. The distribution is changing to a positive skew for long integration
times. The Histograms show values of four measurements for all pixels.
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Figure (4.9) Results of the DC calibration of the irradiance spectrometer. Measurements
have been acquired while heating and cooling the device. (a) The polynomial fit of dark current
depends on temperature and integration time. (b) Delta of fitted dark current between heating
and cooling. The red box represents the value range in which the spectrometer is operated
during the field campaigns.

averaged. The integration time was varied in thirteen steps from 0.01 s to 0.6 s. For further
processing, the spectra with values Y ′k > 5000 for channel k = 1300 were chosen (see upper
left of Fig. 4.10). This reduces the dataset to eight measurements with integration times
from 0.1 s to 0.6 s. The first few hundred channels show only small and noisy values caused
by the light source, which emits no radiation in this wavelength range. After normalizing
the spectra by their individual integration time the plot in the upper right of Fig. 4.10
shows deviations from the desired overlap of all normalized spectra which is caused by the
nonlinearity characteristics of the sensor.

To model the nonlinearity the first step is to choose an arbitrary linear reference Q′(τ) =
58333.33 τ to the measured Y ′k(τ). In the next step, this linear polynomial is evaluated at
the corresponding integration times of the measurements. Finally a polynomial of degree
two is fitted to Y ′k(τ) and Z ′(τ) = Y ′k(τ)/Q′(τ). Fig. 4.10b visualizes this step. The dots
represent the factors Z ′(τ) and the red line is the fitted polynomial, which is the model of
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the nonlinearity:

NL(Y ′) = 0.9169 + 8.2517 · 10−6 Y ′ − 1.4334 · 10−10 Y ′2 . (4.8)

The figures 4.10c and 4.10d show all spectra normalized by integration time and each divided
by the mean spectrum of all eight measurements before and after applying the nonlinearity
correction. The X-axis is limited to the range where the sensor is sensitive and the incoming
signal is high to prevent analyzing other sensor specific effects. In Fig. 4.10c, systematic
sensor characteristics are visible, in Fig. 4.10d, the characteristics are corrected, and only
noise of 2% is remaining.
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Figure (4.10) Nonlinearity calibration of the irradiance spectrometer using measurements
of a luminance standard. The DC corrected measured spectra of an integration time series
(a) are used to calculate the nonlinarity factors for multiple discrete steps (dots in b) and are
fitted by a polynomial of degree two (red line in b). The lower two figures show the effect of
applying the NL calibration in the range from channel 1000 to 2000. While in (c), the channel
individual factor of spectra with different integration times Y ′i (each normalized by integration
time) divided by the mean of all spectra Y ′i shows variations of up to 5 % before calibration
and varies over the range of channels, these effects are reduced after calibration (d).

Wavelength Calibration

To calibrate the wavelength scale of the Qmini spectrometer, four different calibration lamps
were used (Argon, Ar; Mercury, Hg; Neon, Ne; Xenon, Xe). These lamps emit distinct
spectral lines in a wide range. It is sufficient to calibrate the wavelength in the operating
range of the hyperspectral camera. Therefore, only relevant peaks in the range from
400 nm to 1000 nm, which are as evenly distributed as possible were chosen (see Fig. 4.11b).
Starting with Hg in the blue region, Ar and Ne in the red region, and finally, lines in
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Figure (4.11) Wavelength calibration of the irradiance spectrometer. The first figure (a)
shows a combined spectrum from measurements of four different calibration lamps (Hg, Ar,
Xe, Ne). The positions with subchannel position of selected peaks and their corresponding
wavelengths are visualized in (b). The polynomial fit between channel and wavelength is
marked as a red line. The last plot (c) shows the residuals of the polynomial fit.

the near infrared region of the Xe lamp. The combined spectrum of the four individually
measured spectra is shown in Fig. 4.11a. The individual spectral peaks were fitted using a
second degree polynomial. The position with sub channel accuracy is plotted against the
corresponding wavelength of the peak in Fig. 4.11b. This relationship was fitted using a
second degree polynomial (red line)

WL(k) = 201.487 + 0.348 k − 6.022 · 106 k2 , (4.9)

which is the model to calculate the wavelength (WL) of each channel k in nm. The resid-
uals of the fit are visualized in the right plot and show deviations of less than 0.2 nm (see
Fig. 4.11c).

4.3.2 Hyperspectral Camera

In the following, the investigation and calibration of the hyperspectral camera is presented.
The DC could not be modeled due to a missing temperature sensor, it is therefore only
investigated. Not all calibration steps could be performed individually for each pixel. Most
plots are given for one representative pixel, and some investigations are visualized for all
sensor elements to reveal spatial patterns.

Dark Current Analysis

The hyperspectral camera does not provide a temperature sensor, therefore, the DC could
not be modeled, only investigated. For a first investigation, the camera was powered on
and the lens was covered. Data acquisition with changing integration times started after
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Figure (4.12) DC Investigation of the hyperspectral camera. The histogram of all pixels and
channels with an integration time of 12 ms and a housing temperature of approximately 40 ◦C
is shown in (a). The DC values are almost normally distributed, and a slightly increasing mean
DC for increasing integration time is present (b). A mean image of 10 acquisitions of channel
35 at 33 ◦C is shown in (c). This is similar to other channels where some pixels have higher DC
values than the average (visible at the upper image margin).
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Figure (4.13) Statistics for each channel of mean images calculated from each ten measure-
ments at different housing temperatures with each 10 ms integration time. Figure (a) reveals an
increasing DC per channel with increasing temperature. The standard deviation per channel
plotted in (b) indicates channels with biased pixels.

30 min. The second experiment aimed to investigate the temperature dependency of the
DC. To perform these measurements, the camera was put into a closed black box, and a
temperature sensor was attached to the outside of the housing.
The histogram for all pixels and channels of a single acquisition (cf. Fig. 4.12a) shows
normally distributed values in all cases for changing integration time and temperature.
With increasing integration time, the mean DC of all pixels and channels of 10 acquisitions
for each integration time increases slightly (see Fig. 4.12b).
Analyzing the mean DC of each channel with changing temperature for a fixed integration
time setting (10 ms) shows an increasing value (see Fig. 4.13a). Some channels show pixels
with higher DC than the average (see Fig. 4.12c). These channels can be identified by a
higher standard deviation (see Fig. 4.13b). This should be remembered if these effects are
visible in further experiments. DC measurements during field campaigns always were in the
range of 2 DN which is consistent with the analysis in the lab with a housing temperature
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Figure (4.14) Nonliearity calibration of the hyperspectral camera using measurements of the
LMT-LN3. An individual nonlinearity polynomial was estimated for each channel using a pixel
in the image center. Subfigure (a) shows the raw spectra normalized by integration time. The
normalized spectra divided by the mean spectrum of all normalized spectra are visualized in
(b) where systematic deviations are visible. After applying the nonlinearity calibration, these
systematic deviations are reduced (c).

of 30 ◦C. If no corresponding DC measurement is available to field measurements, a DC
value of 2 could be used.

Nonlinearity Calibration

Like the nonlinearity calibration of the Qmini, this characterization step is based on a series
of measurements of the luminance standard LMT-LN3. The nonlinearity calibration was
performed using the spectra of one central pixel shown in Fig. 4.14a. These are the mean
of each ten individual acquisitions, which are DC corrected.
As the estimated nonlinearity polynomial of one channel is not representative for all, the
procedure was performed individually for each channel. First, k individual linear polynomial
Q′k(τ) were chosen as reference. Then, for each channel, a polynomial of degree two is fitted
to Y ′k(τ) and Z ′k(τ) = Y ′k(τ)/Q′k(τ) which gives k nonlinearity models NLk(Y ′).
The resulting factors of the polynomials are shown in Fig. 4.15. The quality of the fit varies
between the channels, especially channels 1 to 40 show worse results than the others (see
Fig. 4.15d). The results show that an individual correction for each channel produces good
results, but further analysis revealed that this does not apply to other data. The correction
that fits best to the applications of this work is presented in the evaluation paragraph of
this section.
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Figure (4.15) For each channel of the hyperspectral camera, a polynomial of degree two
was estimated to model the nonlinearity NL = p1 + Y ′p2 + Y ′2p3. The figures represent the
individual coefficients of each polynomial and the corresponding R2.
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Figure (4.16) Position of relevant spectral lines of Ar, Hg, and Xe lamp which are used to
calibrate the wavelength scale of the hyperspectral camera. The position and relative intensity
of the lines are based on [119].
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Figure (4.17) Simulated (a) and measured (b) spectra of spectral calibration lamps. The
figures show only peaks that are relevant to the calibration task (cf. Fig. 4.16). The simulated
spectra use the reference peaks, which were resampled to the FWHM of the hyperspectral
camera, also taking into account the relative intensity. A central pixel is chosen for visualization
in (b).

Wavelength Calibration

The investigation of the wavelength scale of the hyperspectral camera was performed using
the spectral peaks of an Ar, Hg, and Xe lamp. Relevant peaks with their relative intensity
according to [119] are shown in Fig. 4.16. Due to the low and varying spectral resolution
of the camera (see Fig. 4.3) it is necessary to resample these peaks to the resolution of the
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Figure (4.18) For each pixel the wavelength scale was estimated with a polynomial of degree
two: WL(k) = p1 + kp2 + k2p3. The coefficients and RMSE for each pixel are visualized.
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Figure (4.19) For each pixel of the hyperspectral camera, the wavelength scale was estimated
with a polynomial of degree two. The box plots show deviations between the estimated scale
and the scale specified by the manufacturer. Each box plot combines all pixels of ten channels.
The bottom and top edges of the box indicate the 25th and 75th percentiles. A distance to the
limits of the box of 1.5 times interquartile range is chosen to mark the whiskers. Values larger
and smaller than the whiskers are treated as outliers. The blue dots mark only the maximum
and minimum outliers. The horizontal red lines mark the spectral sampling of 4 nm. A slight
trend, and especially for high and low channels, larger deviations and scattering are visible.
Only the first 130 channels are visualized.

sensor before starting the calibration itself (see Fig. 4.17a). In Fig. 4.17b, the measured
spectra for one central pixel are shown. The comparison of these two plots exhibits also
some deviations, which may be caused by the spectral sensitivity of the sensor, inaccuracies
of the spectral resolution model provided by the manufacturer, or the values for relative
intensity of the spectral peaks.
The maxima of the resampled peaks are then fitted with a second degree polynomial to
serve as the reference. Also, the positions of the maxima of the measured spectra are fitted
with a second degree polynomial. This process is done for each pixel individually, and the
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wavelength scales are fitted by a second degree polynomial. The parameters and RMSE of
the pixel individual fits are shown in Fig. 4.18.
Fig. 4.19 shows the differences between the calibrated wavelengths and the wavelengths
provided by the manufacturer for each channel as box plots. Each box represents all pixels
of ten channels, starting with the first channel and ending with channel 130. A distance
to the limits of the box of 1.5 times the interquartile range is chosen to mark the whiskers.
Values larger and smaller than the whiskers are treated as outliers. Instead of visualizing
all outliers, only maximum and minimum values are plotted. Two horizontal lines mark the
4 nm sampling of the sensor. Most of the deviations from the given wavelength scale are
smaller than the spectral sampling and much smaller as the spectral resolution specified
in Fig. 4.3. Larger deviations are only present at the edges of the wavelength range. This
is mainly caused due to missing reference peaks and can not be evaluated. Therefore, the
wavelength calibration should not be applied in this particular case, instead the parameters
provided by the manufacturer are used. An improvement of the wavelength calibration
can only be achieved by using a monochromator (cf. [31]), which can produce individual
spectral peaks. This ensures that there is no overlapping of peaks in the measured spectrum
due to the low spectral resolution of the HS camera.

Vignette Calibration and Residual Pattern

Measurements, which are DC and NL corrected show a strong vignetting effect of approxi-
mately 50 % from the image center to its margins caused by the optics of the camera (see
Fig. 4.20a). This vignette can be estimated using measurements of a homogeneously illumi-
nated Lambertian surface. In this work, the measurements were performed outdoors under
perfect sunny conditions on a reference panel with known reflectance characteristics. To
reduce the effects caused by the setup, multiple measurements with changing orientations
of the camera and the reference panel were used and averaged. An exemplary result of
an estimated vignette correcting factor for one channel is shown in Fig. 4.20b. As the
reference, the mean value of each channel is chosen. The used polynomial is of degree four
in u and v and individually fitted for each channel. After applying the calibration steps DC,
NL and vignette correction, a residual pattern remainins which is similar for each channel.
To reduce this pattern, it is estimated as a correcting factor individual for each pixel and
channel (see Fig. 4.20c).

Evaluation

The calibration of the hyperspectral camera aims to obtain reliable measurements for each
pixel, which are assigned to the correct wavelength and behave linearly to the signal. To
evaluate the calibration steps with respect to the homogeneity of the hyperspectral images,
an image of a white reference (outdoor, sunny conditions) was acquired, and the coefficient
of variation (COV, [120]) was calculated for each channel after applying the individual
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Figure (4.20) Vignette of the hyperspectral camera visualized for channel 80 (a). The
vignette is modeled (b) for each channel individually as a factor where the reference is the mean
value of each channel. A remaining residual pattern (c) of channel 80 after correction of the
vignette is visualized as a factor where the reference is the mean of the channel.

calibration steps (see Fig. 4.21):

COVk = 1
2500

50∑
u=1

50∑
v=1

µk,u,v
σk,u,v

. (4.10)

Here k corresponds to the channel and u,v to the pixel coordinates. The lower the COV, the
more homogeneous the image of a homogeneously illuminated surface for each represented
channel. First, the channel individual nonlinearity calibration (NLindiv) only slightly
enhances the data compared to the raw image (Raw), but it is evident that the channel
individual calibration does not provide good results for short wavelengths. Only for channel
60 and higher, the individual nonlinearity calibration provides good results. Therefore, an
approach was chosen, which combines the individual calibration for channels starting from
60 with a constant model for the first 59 channels, which uses the model of channel 60.
Applying the vignette calibration (Vig) after the nonlinearity calibration, the COV drops, as
expected, to a much lower level. At this point, it is noticeable that applying the wavelength
calibration (WL) does not improve the result, especially for long and short wavelengths
where the COV increases. This affirms the decision not to apply a wavelength calibration
other than the scale provided by the manufacturer. Finally, applying all calibration steps
and the correction of the residual pattern further increases the homogeneity of each channel
(Final).

4.3.3 Cross Calibration and Integrated Sensor System

The cross calibration was performed outdoors using two different reference panels, one with
a specified reflectance of around 96 %, and one with around 51 %. The Qmini spectrometer
simultaneously measured the downwelling irradiance (see Fig. 4.7) while capturing hyper-
spectral images of the reference targets with the camera. First, a series of measurements
was acquired and averaged. The data was calibrated according to the previously described
steps for each sensor. The spectra of the Qmini were resampled to the spectral resolution
of the hyperspectral camera (see Fig. 4.22a). An exemplary spectrum of the hyperspectral
camera is given in Fig. 4.22b. Using multiple acquisitions with different orientations of the
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Figure (4.21) COV per channel between pixels for different calibration steps indicating
the effect on enhancing the quality of the data. The data was acquired outdoors on a white
reference under sunny conditions. Raw represents the raw data. The nonlinearity was estimated
individually for each channel for NLindiv. One representative nonlinearity estimation of channel
60 was used for all channels (NL60). The curve Vig and WL show the COV after applying
vignette and wavelength correction. The COV of the best combination of correction steps is
plotted as Final.

hyperspectral camera relative to the sun and rotating the reference panels reduced environ-
mental influences and allows calculating a mean cross calibration factor as the quotient of
the resampled Qmini spectrum and the spectra measured with the camera. In Fig. 4.22c,
a mean factor of all pixels and acquisitions is plotted. The other two lines represent the
mean factor ±3σ standard deviation.
An evaluation of the cross calibration was performed using two measurements that are
independent of the calculation of the calibration factor. First, the acquisition of a dataset
of the 51 % reference panel and second of the 96 % reference panel, each with synchronously
measured irradiance. The first plot of Fig. 4.23 shows the respective mean reflectance spec-
tra and ± the standard deviation, and red lines specify the reference values of the panels.
The other two images represent the mean reflectance image of all channels respective to
the plot above. Even if the deviations are small, especially in the right image, a spatial
dependency is visible as a trend of about 4 % from the lower image margin to the top margin.
This effect could be caused by stray light entering the lens system from outside the reference
panel due to a slight lit towards the sun. During field campaigns depending on the ambient
conditions and acquisition strategy, this effect was observed to be even larger. Therefore, it
is not recommended to use reference panels in a setup like it is shown in Fig. 4.24. Here,
the angles between the sun and the camera’s line of sight are unfavorable, and the distance
between the reference and the camera is also very short. This means that influences such
as shading and reflections can affect the measurement. An experimental setup also revealed
that flexible reference materials (calibration tarp) must be used with caution. Variations
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of up to 20 % depending on the structure have been observed (Fig. 4.25). These influences
would have a direct effect on the calculation of the remote sensing ratio when using this
image as a reference and would thus systematically affect the results.
Therefore, reference panels of sufficient size should be used in the field. These should be
able to be measured in flight at low altitude, or ideally from the intended flight altitude.
Reference tarps should not be folded for transport, but rolled up to avoid creasing. It is also
advisable to measure the reflectance standards with different orientations of the camera,
especially changing the azimuth to the sun. This allows directional effects to be taken into
account in post-processing.
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Figure (4.22) Cross calibration of the hyperspectral camera and the irradiance spectrometer.
The calibrated and resampled spectrum of the irradiance spectrometer (a) and the calibrated
spectrum of the hyperspectral camera (b) are calculated from multiple synchronous acquisitions.
Calculating the channel wise factor between these measurements results in the cross calibration
factor (c). Mean cross calibration factor (solid line) and standard deviation (dotted).
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Figure (4.23) Evaluation of the cross calibration using two independent measurements on
two different reference panels. (a) Measured mean reflectance (blue lines) of a 51 % and a 96 %
(red lines). The area between the green lines marks the standard deviation. (b) Mean reflectance
of all channels of the 51 % panel. (c) Mean reflectance of all channels of the 96 % panel. A trend
from the lower to the upper image margin is visible.
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Figure (4.24) Reflectance measurement of a 51 % calibration panel in the field (a) placed
underneath the UAV close to the hyperspectral camera for field reference measurements. The
normalized image of the channel at 686 nm (b) shows a systematic drift across the image in a
range from −5 % to 5 % of the mean reflectance value.
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(b) Channel at 686 nm normalized by mean.

Figure (4.25) Reflectance measurement of a 56 % reflectance tarp normalized by mean. The
pan image (a) shows wrinkles caused by folding the tarp for transport which are visible in the
hyperspectral image (b) as well. Deviations of up to 20 % are visible e.g. for the selected channel
at 686 nm.

4.4 Irradiance Correction and Sensor Synchronisation

The downwelling irradiance E0 is measured by the upward looking spectrometer, which uses
a diffusor disk. Therefore, the measured signal E with this spectrometer depends on the
angle θ between the z-axis of the copter and the vector from the copter position to the sun.
Based on Lambert’s cosine law, the measured signal can be corrected as follows:

E0 = E
cos(θ0)
cos(θ) , (4.11)

where θ0 corresponds to the solar zenith angle [113].

For the correction, it is therefore necessary to know the actual inclination of the copter for
each measurement of the irradiance spectrometer. However, the time axes of the copter
and the spectral sensors are not synchronized, so a direct application of the correction is
not possible, and the time scales have to be synchronized first. By manual inspection of the
data, it is only possible to set the time shift with a precision of maximum 0.5 s.

However, the above described relationship between the irradiance measurement influenced
by the inclination of the copter can be used to estimate the offset of the time axes between
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the copter and the spectral sensors. Here it is assumed that the z-axis of the spectrometer
matches the z-axis of the copter. Instead of a spectral channel, the CCD load of the
spectrometer can be used. A visualization of the relationships can be found in Fig. 4.26.
The first subfigure (Fig. 4.26a) visualizes the CCD load (red) of the irradiance spectrometer
and the angle θ (blue) for one exemplary flight. The ups and downs of the CCD load
mark different flight lines moving to the sun or away from it. Clearly visible is the relation
between the two measured signals. The lower two plots of Fig. 4.26 show scatter plots of
CCD load and the angle θ for two situations. First for a time shift of 5 s and second for the
same dataset but with synchronized data. This relationship can be linearly approximated
by a polynomial for different time shifts ∆t around the initial value for the time offset,
which is the basis for the following algorithm to find the time offset between the copter and
spectral sensors time:

1. Calculate the angle θ for all logged inclination data of the copter.

2. Calculate the RMSE of the linear fit between θ and CCD load for different ∆t.

3. Fit a second degree polynomial between ∆t and RMSE(∆t) to calculate the minimum
corresponding to the time offset.

Blue dots in Fig. 4.26b mark the root mean squared error (RMSE) for every time shift ∆t.
The fitted polynomial of degree two to calculate a more precise estimate of the time shift
is visualized as a red line in Fig. 4.26b. Using the estimated time shift, it is possible to
get better corresponding copter poses for each measurement of the hyperspectral camera
and the irradiance spectrometer, which share the same time axis and therefore enables a
more precise georeferencing of the images and a more reliable inclination correction of the
irradiance measurements.

4.5 Summary

The aim of the methods, developed procedures, and analyses described in this chapter
are, on the one hand the investigation of the spectral sensors and, on the other hand,
their calibration. The individual calibration of the two spectral sensors themselves and the
subsequent determination of the cross calibration are indispensable for this work. Only
the dark current correction, the wavelength calibration, and the determination of the
nonlinearity of each spectral sensor enable the cross calibration. After this step, the remote
sensing ratio can be measured with the system, which is the basis for the estimation of
water quality parameters. Due to the different time scales of the copter and the spectral
sensors, the inclination correction of the irradiance measurements was not initially possible.
Therefore, a method was developed, to estimate the time offset between the two time scales
using the measured irradiance data, the logged copter pose, and Lambert’s cosine law.

In the following, the analyses of the hyperspectral camera are briefly reflected and placed
in the context of related research work. The camera used in the context of this work has
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Figure (4.26) Synchronization of the hyperspectral sensors and the copter using irradiance
measurements (CCD load) and the copter sun angle θ (a). The relationship of the CCD load
and θ is plotted for a time shift ∆t of 5 s (c) and a synchronized dataset (d). This relationship is
approximated by a linear fit for different ∆t and the minimum RMSE is estimated to calculate
the time shift (b).

already been used in the context of different research works and was also investigated in
e.g. [110, 112, 113]. The determined values for the DC are similar to the studies in [111].
[110, 121, 112] also found an undulating pattern similar to Fig. 4.20 which could be caused
by a coating of a beam splitter [111].
In [113] the spectral resolution of the camera was examined with the help of a monochro-
mator. Here, clear deviations from the values provided by the manufacturer are visible,
whereby the spectral resolution becomes worse with increasing wavelength than specified
by the manufacturer (cf. Fig. 4.3).
While in [101] and [31] also variations of the center wavelengths could be detected, this
was not possible within the scope of this work due to the available measurement equipment
and the spectral resolution of the camera. However, the investigations here showed that
possible variations with the used camera occur below the spectral sampling. The large
deviations of the center wavelengths of this hyperspectral camera published in a previous
study [101] (see also Fig. 3.1) can probably be attributed to a damage of the sensor since
these were no longer measurable after an overhaul of the sensor by the manufacturer. Due
to the drop in spectral resolution with increasing wavelengths and possible variations of
center wavelengths at the edges, the range for further use of the spectra is restricted to the
range from channel 5 to channel 95, which equals a wavelength range of 466 nm to 826 nm.
In the context of this work, the nonlinearity of the sensor was calibrated, while in other
works, the use of the measurements is limited to the linear range of the sensor [111, 113],
our approach allows the use of the sensor over a wider range. Nevertheless, spectra with
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low maximum signal amplitudes should not be used to ensure a good signal-to-noise ratio.
Therefore, spectra with a maximum amplitude of 500 DN or smaller were not included in
further steps.

In addition to limiting the wavelength range and discarding spectra with low amplitudes,
the use of spectral calibration standards in the field was also investigated. With the help of
the cross-calibrated system it was shown that, depending on the acquisition geometry and
material of a spectral calibration standard, systematic deviations can occur and therefore
the cross-calibrated approach is preferable.

The following recommendations can be made regarding the frequency of calibration. It is
particularly recommended to check the wavelength calibration before campaigns and after
software updates or possible damage. The check can be carried out without laboratory
equipment using standard fluorescent lamps. These provide the necessary spectral peaks,
which enable a rough check of the calibration. Due to the continuous stress on the sensor
caused by vibrations and bumps during operation on a UAV, a complete characteriza-
tion should be carried out annually, including a check of the cross calibration or absolute
calibration of the spectral sensors.

In Chap. 7, the influence of the calibration is taken up again as part of the overall evaluation.
It is shown that continuous measurement of the irradiance is necessary for reliable parameter
estimation and that the tilt correction of the irradiance spectrometer also has an influence
on the target variables.
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CHAPTER5
Study Area and Field Campaign

To evaluate the remote sensing system, developed methods and the processing pipeline,
data were acquired during a field campaign in 2020 on an artificial water reservoir close
to Curitiba, Brazil. Ground truth data was generated from analyzed water samples and
in-situ measurements to evaluate processed remote sensing data. The following sections
briefly introduce the study area and describe the process of reference data sampling and
the data itself. Followed by a description of the datasets acquired with the UAV.

5.1 Study Area

All datasets have been acquired at the drinking water reservoir Passaúna in the west of
Curitiba, Brazil (see Fig. 5.1) in the framework of the research project MuDak-WRM [9].
The artificial lake is about 11 km long, has a surface of approximately 8.5 km2 and a mean
depth of 9 m [122, 123]. It was built in the 80s and provides drinking water to 0.7 mio
people. The trophic state is oligotrophic to mesotrophic [9, 124].

The part in the north of the reservoir, the so-called buffer region, and the adjacent part
of the main reservoir are especially interesting in terms of large temporal variations and
flow dynamics. Therefore, this region is chosen to serve as the study area in this work.
The sediment load of the incoming river in the north can settle down in the buffer, before
entering the main reservoir. At the end of the buffer, after passing a bridge, a lateral
gradient of suspended sediment was observed (see Fig. 5.1) and therefore, it is an adequate
situation to investigate the performance of the system and algorithms.

The field campaign was carried out in March 2020, from the 5th to the 15th, on five selected
days. The weather was always sunny in combination with occasional larger and smaller
clouds. There was no heavy rain event during the campaign and no strong winds.
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Figure (5.1) Passaúna reservoir, located in the west of Cuitiba, Brazil. The right image
shows an RGB image acquired with the system. It shows the area where the water passes the
bridge at the end of the buffer. In the upper part of the image, the water of the buffer with a
high sediment concentration can be seen, and a gradient after passing the bridge. Map data
c©OpenStreetMap contributors.

5.2 Groundtruth Measurements

During the field campaign, the following parameters have been sampled as reference to
evaluate the remote sensing data: water temperature, TSS, turbidity, chl-a, and phycocyanin.
The water samples were taken and in-situ measurements were acquired from a boat in
approximately 15 cm depth. The chosen sampling positions are overlapped by as many
flights with the UAV as possible. During the campaign, the in-situ measurements were
carried out as simultaneously as possible or with a small time offset to the remote sensing
data. However, time offsets of up to two hours are possible. The parameters were measured
with different sensors and methods. The sensors and acquired data are described briefly
below.

Water Surface Temperature

The water temperature (in ◦C) was measured using a CastAway-CTD by Sontek. The
accuracy of the temperature measurements is specified as 0.05 ◦C by the manufacturer. To
measure the water temperature close to the surface, the profile measurement setup was used.
At least two profiles were measured at each point to prevent erroneous measurements due
to possible heating of the device while stored in the vessel. The temperature measurements
were screened, and the values registered in a water depth of 15 cm were used.
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Figure (5.2) At each day of the campaign multiple in-situ measurements were carried out
and water samples taken at different positions (a). In (b) the water temperatures measured
on each day of the campaign are visualized. The blue dots mark measurements before the
flights, the green squares during the flights, and the red triangles after the flight. Map data
c©OpenStreetMap contributors.

A representation of the water temperatures for each campaign day is given in Fig. 5.2b.
The temperature measurements are classified according to the time of measurement. Mea-
surements, which were made before the flights are marked as dots, during the flight as
squares, and after the flight as triangles. Even if the temperature measurements were partly
at different positions, there are temperature differences between the measurements before
and after the flights, which can only be related to a change of the water temperature in
total and not relative to the measurement points. These daily temperature variations are
expected and are also mentioned in the literature, e.g. [125, 126]. Therefore, the choice of
the in-situ measurements for referencing the temperature mosaics and their validation must
be made with measurements that are close in time to each other and to the flights. Overall
the measurements show a general increase in the water temperature from the first to the
last day of the campaign.

Turbidity, TSS and chl-a

Turbidity (in NTU), chl-a (in µg L−1), and phycocyanin (in µg L−1) concentrations were
measured using the respective TriOS sensors nanoFlu and Turb. The manufacturer of the
in-situ sensors specifies the accuracy by ±5 %. During the processing of the data, the first
few measurements at each sampling position of the in-situ sensors are ignored due to a
running-in characteristic. All remaining values of each point were averaged.

Total suspended solids (TSS, in mg L−1) were determined through analysis of taken water
samples. The taking of water samples was performed simultaneously while acquiring multiple

47



Chapter 5. Study Area and Field Campaign

0 10 20 30
10−2

100

Sample

Tu
rb

id
ity

in
N

T
U

0 10 20 30
10−2

100

Sample

C
O

V

(a) Turbidity.

0 10 20 30

10−1

100

101

Sample

ch
l-a

in
µg

L−
1

0 10 20 30

10−1

100

101

Sample

C
O

V

(b) chl-a.

Figure (5.3) Mean turbidity and chl-a concentration measured in-situ (blue dots) at each
sampling position during the campaign. The corresponding coefficient of variation is plotted as
green squares.

measurements with the in-situ sensors. At each sampling point, the sample volume was
at least 1 L, at points with expected low turbidity, 2 L of water have been sampled. The
water samples were stored in a thermo box until the analysis in the lab. Per water sample,
the TSS concentrations were analyzed by at least two sub-samples to identify outliers and
to get an averaged result. The filtering of the water samples for the determination of the
TSS concentration was carried out according to [127]. Additionally, independent turbidity
measurements were conducted in the lab.

An overview of the measured reference data for turbidity and chl-a concentration and the
coefficient of variation for each parameter and sample is given in Fig. 5.3. The in-situ
measurements show turbidity values less than 40 NTU for all samples during the campaign.
The chl-a measurements are also low, with a maximum value of 23 µg L−1. The mean
coefficient of variation (COV) for turbidity is 0.07 and chl-a is 0.08. Measurements of
phycocyanin show values close to zero with high standard deviations. Therefore, these
measurements are not further used and discussed in this work.
The analyzed water samples have TSS concentrations less than 70 mg L−1. A comparison of
turbidity measured in-situ and in the lab, and analyzed water samples is given in Fig. 5.4.
The left figure shows a scatter plot of the measured turbidity in the lab and the TSS
concentrations determined through the analysis of the water samples. In the right scatter
plot, the in-situ measured turbidity is plotted against TSS. Both plots also show a linear fit
which is forced to intersect the origin. The metrics of the fit indicate that the measurements
and lab analyses are plausible and that the units of this campaign data can be transformed
into each other.
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Figure (5.4) Scatter plots of TSS lab analysis and (a) lab and (b) in-situ measurements
of turbidity. The lines show a linear fit for each plot forced to intersect the origin. The
corresponding formula is also given. Outliers due to inappropriate sampling have been removed.

Bathymetry

Based on the bathymetry obtained from a high-resolution echo-sounder survey [128] and
the calculated relationship between measurements of secchi disk depth and turbidity (see
Fig. 5.5a), a map showing areas with less than 1.2 m water depth at a water level of
885 m a.s.l. was generated (see Fig. 5.5b). The threshold of 1.2 m was chosen based on
turbidity values of 7 NTU in the relevant part of the study area. This mask can be used
later to mask areas where the parameter estimation may have been influenced by bottom
effects due to the low water level during the campaign.

5.3 UAV Datsets

With the system presented in Chap. 4, RGB images, thermal images, hyperspectral images
and irradiance measurements were acquired in parallel continuous streams with different
but at least 1 Hz acquisition rate during the campaign. The RGB and hyperspectral camera
recorded images with at least 1Hz, the thermal camera and the spectrometer with more
than 20 Hz. The imaging sensors were mounted on a gimbal to allow a nadir configuration,
but the values of the orientation of the gimbal could not be recorded. Therefore, a nadir
configuration is assumed. Data were acquired with different trajectories (see Fig. 5.6) during
a sunny weather period with only occasional larger and smaller clouds. The flight plans
were chosen in such a way that firstly, a large area can be covered, secondly, there is an
overlap between the flights, and thirdly, the orientation of the camera is changed.

Tab. 5.1 lists the flights and the corresponding flight plan configurations. Gray entries show
flights where the hyperspectral camera did not acquire any data or acquired unusable data.
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Figure (5.5) Scatter plot of turbidity and secchi disk depth (a) and bathymetry map (b).
The orange overlay of the map shows area with possible bottom reflectance where the water
depth is less than 1.2 m. Map data c©OpenStreetMap contributors.

The methods and results of processing the thermal remote sensing data are presented in
Chap. 6, and the parameter estimation from spectral measurements is discussed in detail
in Chap. 7.

Table (5.1) Acquisition dates and flight plan types. Gray entries mark flights where no, or no
usable hyperspectral data were acquired. The paths of the flight plans are visualized in Fig. 5.6.

Day Date Flight Plans

1 05.03.2020 A, B, C
2 06.03.2020 A, B, C
3 09.03.2020 A, B, C
4 10.03.2020 A, B, C
5 15.03.2020 A, B, C

Instead of a stop-and-go mode of the copter and single acquisitions of the sensors, a contin-
uous flight mode was chosen. This is necessary, as the gimbal can not fully compensate the
abrupt starts and stops, and a logging of the gimbal orientation is not possible with this
system. Therefore, the deviations from the nadir view of the cameras would directly affect
the georeferencing of the images. However, there are advantages of using a constant flight
speed and a high data rate. First, the movement of the copter and also of the orientations
of the attached sensors are smoother, which simplifies the processing of the data. Second,
the high spatial overlap of the images along the flight track can be used in the further
processing of the data and enables the generation of more reliable image mosaics due to the
high redundancy for each ground point. Third, a continuous flight mode enables a faster
measurement progress compared to stopping for each acquisition.

50



5.3. UAV Datsets

(a) Flight plan A. (b) Flight plan B. (c) Flight plan C.

Figure (5.6) Flight paths of the different flight plans. The red arrow marks the direction of
the flight and the starting point for data acquisition.

The flight height of the system is set to 120 m above ground level (AGL) with a flight
speed of 6 m s−1. The flight duration was approximately 10 min, with approximately 900
hyperspectral images and 3500 thermal images acquired during each flight. The collected
data of each flight covers an area of about 0.14 km2.

Geocoding

The georeferencing of the single images is done in several steps and is the same for each
camera. First, the images are georeferenced, assuming a nadir image using the intrinsic
calibration parameters of the respective camera and the pose of the copter at the time of
acquisition. Subsequently, a correction of the georeferencing for each flight strip and, if
necessary, a global correction must be applied. The geometrical offset between the flight
lines is determined from several overlapping image pairs from two adjacent flight lines.
For this purpose, images acquired over land are used, and features are detected using the
KAZE algorithm [129] implemented in MATLAB. Subsequently, a mean offset in X and Y
is estimated using several image pairs and the detected corresponding points. Finally, the
mosaic may be shifted to adjust a residual offset using ground control points. The description
of the mosaic generation and corresponding blending procedures for each sensor type are
described separately in the chapters on thermal (Chap. 6) and spectral data (Chap. 7).
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CHAPTER6
Water Surface Temperature

The water temperature is a determinant factor for primary production [130], and its change
affects the composition of occurring species and oxygen concentration [11]. Therefore, the
temperature is a key parameter for water resource management. While e.g. thermistor
chains allow studying the vertical temperature profile at single points with high accuracy, a
spatially extended acquisition of temperature measurements is difficult to realize and costly
[131]. Another method to measure the water surface temperature is the use of thermal
remote sensing sensors which measure the emitted thermal radiation of objects which can
be related to the object temperature. Hence, thermal remote sensing is used to measure the
water surface temperature as a complementary parameter with a wide variety of systems
on ground, air, and space [131, 132, 133].

In this chapter, the remote sensing of the water surface temperature and relevant research
papers are briefly introduced. After this, the acquired thermal images are analyzed and the
developed methods to correct the sensor characteristics and to calculate mean mosaics are
presented. Finally, the results are evaluated qualitatively and quantitatively using reference
measurements.

6.1 Thermal Remote Sensing of Water

Like all terrestrial objects, water emits thermal radiation which is usually measured by
remote sensing sensors in the wavelength range from 8 µm to 14 µm. As the emitted radiation
of real objects differs from an ideal black body, the emissivity of the object needs to be
considered and in the case of water, an emissivity of ε ≈ 1 is usually assumed to measure the
radiation temperature. Since the radiation temperature differs from the true temperature
of the respective surface, an appropriate correction by in-situ measurements or further
assumptions is necessary [134]. Traditionally thermal remote sensing is carried out by
sensors on satellites and airplanes.
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In recent years, the development of small, and lightweight, but uncooled, thermal infrared
(TIR) cameras enabled the use of small UAV for remote sensing of the water surface
temperature at low costs [114, 30, 135]. These systems allow the acquisition of high-
resolution data at low costs, flexible times, and with little preparation effort. Therefore, the
system used here is also equipped with a lightweight thermal camera (see Sect. 4.1). However,
the great added value of the data from these small, usually uncooled, sensors is opposed
to difficulties in evaluating it. Findings from three other research papers [24, 136, 116] are
briefly listed below to highlight these challenges.

Many of these challenges using uncooled and not radiometrically calibrated TIR cameras
are described in [24], which is shortly summarized in this paragraph. The sensitivity and
offsets of the single microbolometers of the sensor array, which capture the incoming thermal
radiation, change with sensor temperature, which is especially crucial during the warm up
phase after turning on the camera. Also, the thermal radiation emitted from other parts
inside the camera affects the measurement. While operating on a UAV, special attention
must be paid to the changing characteristics due to wind-induced temperature changes of
the camera body, lens, and sensor. Usually, the parameters to correct these characteristics
are updated regularly during acquisition by taking a dark image with an internal shutter
closed. However, this flat field correction usually does not provide reliable results especially
when e.g. strong temperature gradients and wind affect the individual components of the
camera differently. Therefore, further corrections must be applied after data acquisition
which is called nonuniformity correction (NUC).

Some practical considerations of UAV based TIR acquisition are shared in [136]. They
recommend acquiring data with a nadir looking sensor to reduce angular-dependent effects
like reflections (e.g. sky and bankside objects) and changes in emissivity. Depending on the
setup, atmospheric corrections need to be included in the processing. In particular, this is
necessary when absolute data needs to be acquired directly and no in-situ measurements
are available for reference.

A comparison of data acquired with a cooled and an uncooled sensor is presented in [116],
where the presented workflow attempts to correct all sensor-specific characteristics and is
evaluated against in-situ measurements. It is shown that the calibration of all unknown
parameters is challenging, and it is currently impossible to measure absolute temperatures.
Therefore, in-situ measurements are essential to receive reliable surface temperature mea-
surements. As their final mosaics still show residual nonuniformity characteristics, a high
overlap of the flight lines or optimized processing is recommended. The use of classical pho-
togrammetric methods is hardly employable to the homogeneous water surface to automate
the mosaicking process.
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Figure (6.1) Mean temperature of all water pixels per frame of a flight (blue dots). The
flight duration was 8 min. Frames over land surface have been excluded. The mean temperature
deviates strongly from the expected temperature range between 20 ◦C and 30 ◦C while the sensor
temperature (green line) only has a slight drift of less than 5 ◦C. Large temperature offsets
occur after the camera performs flat fielding, these events are marked with vertical lines.

6.2 Analysis of thermal Images

During a field campaign in March 2020 at the Passaúna reservoir, close to Curitiba, Brazil,
nadir looking thermal images were acquired using a small UAV (see Chap. 4). Data with
the uncooled thermal camera was acquired with a frame rate of more than 20 Hz and dif-
ferent flight plan configurations were used (see Chap. 5). To have a general overview of
the performance of the thermal camera, the data are analyzed first concerning temporal
variation and then concerning spatial variation.

The average temperature of each frame of a chosen flight is visualized in Fig. 6.1 to analyze
the temporal variation of the data. The blue dots show the average temperature values
of frames showing only water. The sensor temperature of the thermal camera is plotted
as a green line. Data points of frames over the land surface were removed. Vertical red
lines mark the flat fielding correction (FFC) events of the camera when the internal shutter
was closed and the internal NUC updated. The analysis of this raw data acquired during a
flight shows a temporal variation and some large offsets. Whereas slight spatial gradients
in the water body are expected, the mean temperature of all water pixels per frame shows
large temporal variations and offsets that are not expected to occur in the scene. Also, the
measured sensor temperature of the camera does not match these effects.

Besides these temporal effects, the spatial variations are analyzed. The investigation of
different frames of one flight shows strong varying sensor characteristics superimposing the
signal of the water, which should show a more homogeneous temperature distribution (see
Fig. 6.2). These variations have magnitudes of up to ±10 ◦C whereas a much smaller range
of maximum ±2 ◦C is expected. Even if it appears similar to vignetting in some cases, these
nonuniformity characteristics deviate from the assumptions of radially symmetric patterns.
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(a) Raw data of frame 1575.
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(b) Non uniformity corrected frame 1575.
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(d) Non uniformity corrected frame 3534.

Figure (6.2) The two rows show two different frames captured with the thermal camera over
water during the flight shown also in Fig. 6.1. In the left column the raw data is displayed
and in the right column the same frame after correction of the individual nonuniformity. It is
clearly visible that the nonuniformity overlaying the signal has a strong variation in shape and
magnitude.

Therefore, these effects can not be modeled using the cos4-law which is usually used for
optical cameras (e.g. [137]). Further analysis of the metadata reveals that large offsets and
a big change of nonuniformity occur after the flat fielding correction (FFC) events of the
camera. The flat fielding is meant to reduce systematic characteristics as e.g. the pixel
to pixel bias by closing an internal shutter [138]. However, the analyzed data show that
this does not work reliably, and the remaining nonuniformity must be corrected. Due to
the strong variation of these dynamic effects, a laboratory calibration is not sufficient for
correction. In fact, it is necessary to estimate these characteristics as part of post processing
which is illustrated in detail in the next section.

6.3 Correction of thermal Images

The varying sensor characteristics presented in Sect. 6.2 require additional post processing
steps to calculate a consistent mosaic of the captured area:

• Nonuniformity Correction (NUC),

• FFC Offset Correction,

• Drift Correction.
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First, the nonuniformity correction is applied as it is necessary to calculate the FFC offsets
in the overlapping area of two consecutive frames. In the final step, the remaining drift is
corrected by calculating the offsets between all used frames. The effects of these corrections
applied individually to each frame are visualized in Fig. 6.4. Each sub-figure shows the
mean of all overlapping frames of one exemplary flight line.

Nonuniformity Correction

The spatial superposition of the desired signal shown in Fig. 6.2 is known as nonuniformity
in the literature [24, 139]. In the datasets acquired with the thermal camera during the field
campaign, the observed superposition is up to five times larger than the expected signal
variation. A common method to correct this effect is the estimation of the parameters in a
lab. For example [30] performs a laboratory calibration to estimate the NUC and applies
the correction to the data acquired in the field. This is only possible due to the low speed
of their aircraft and the housing around the camera which reduces environmental effects
like wind. Another type of correction are single shot NUC methods (e.g. [115]). In [114]
this approach was tested, but did not provide good results in an environment comparable
with our study area and is therefore not applicable to the data used here as well. As
the well-established methods for vignette correction do not fit the requirements and also
methods for single shot thermal NUC did not provide good results in a study by Abolt et
al. (2018) [114], a suitable post processing method was developed.

Two methods were tested to correct the nonuniformity. First, the nonuniformity was
estimated on frames showing only water surface. To correct the NUC of all frames, the
model of the nearest correction frame was used. Second, using as many frames as possible.
This approach uses a classification algorithm to classify the pixels into the classes water and
not water, and estimates the correction only on water pixels for each frame individually.

The first method uses frames which only show water. With each of these frames, the NUC
is estimated. To correct the remaining frames, which also show land surface, the nearest
available correction of another frame is assigned to the current frame. In Fig. 6.3c the result
of using this method is visualized.

In contrast to the first method, the second approach aims to estimate an individual NUC
for each frame, which is described in detail in the following. First, each pixel of a frame is
classified as water or not water by calculating the standard deviation for each pixel in a 5x5
pixel neighborhood and applying a threshold. The threshold was set to 0.18 ◦C, whereas
smaller values are classified as water. This value was chosen to classify water as land in
uncertain cases and might be adjusted for other datasets (in [116] 0.25 ◦C was chosen to
classify images). A particular advantage of this method is, that no data other than the
thermal images themselves are required for classification. The resulting masks are then
optimized using the morphologic operators opening and closing [140] to eliminate false
positives. If the percentage of the water area in a frame is larger than 80 % it is used to
model the nonuniformity. The NUC is then calculated in a two-step iterative process. First,
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(a) RGB data. (b) Raw data. (c) NUC of a frame
15 s later.

(d) NUC of current
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Figure (6.3) Changing nonuniformity of the thermal images exemplarily shown for the same
area as the RGB image in (a). The raw image (b) shows the signal superimposed by the
sensor characteristics. The two other images show the same frame corrected by two different
nonuniformity correction models where the water is visible as colder temperatures compared to
the higher temperatures of the land surface. The image in (c) is corrected by a model estimated
on a frame showing only water about 15 s later. In (d) the raw data is corrected by a model
estimated on the current frame.

a quadratic polynomial surface is estimated on all water pixels, and the residual for each
pixel is calculated. A threshold of three times the standard deviation of the residuals is then
applied to exclude pixels from the final estimation of the NUC polynomial. In Fig. 6.3d the
corrected raw data using the polynomial estimated with the second approach is visualized.

A comparison of the presented methods is shown in Fig. 6.3. The first image shows the
scene captured by the RGB camera, and the other three false color images show the raw
thermal image and the results of the two correction methods. The comparison of the two
methods to correct the NUC illustrates that the second approach provides much better
results than the first one. By assigning the estimated model of one frame to others, the
changing characteristic of the nonuniformity can not be corrected reliably. Therefore,
the first approach is not sufficient to correct the NUC, as the resulting data still show
systematic errors after correction. In contrast, the second method provides much better
results. Furthermore, it allows to estimate a correction for most frames of the data set and
does not need any other data than the thermal images themselves. This indicates that the
nonuniformity correction is not stable even for a relatively short time of less than a minute,
which corresponds to Fig. 6.1. Therefore, an individual estimation of the NUC for as many
frames as possible is recommended. After applying the individual nonuniformity correction
to each frame, the effect is visible in Fig. 6.4b. On the left side of the image, first structures
of the water are visible and the gradient in the middle has a clearer structure. This gradient
is caused by the offset at an FFC event of the thermal camera, which can be corrected by
applying the FFC offset correction described in the following.

FFC Offset Correction

The offsets occurring after the FFC events of the camera (see Fig. 6.1) are visible as a strong
gradient in the mosaic after nonuniformity correction (see Fig. 6.4b). Using the relative
orientation of the single frames from the navigational data, it is possible to estimate the
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Figure (6.4) Visualization of the applied corrections using the example of a section from an
aerial survey. The flight direction is from left to right. The shown mosaics consist of 94 single
images, which were calculated as mean of all corresponding frames. (a) Mean mosaic of the
raw data. An offset and the influence of the nonuniformity are visible in the center. (b) The
estimation of individual NUC improves the mosaic.(c) Correcting the FFC offset removes the
gradient in the center, but a variation from left to right is still remaining. (d) An image-based
drift correction results in the final mosaic of this section.

temperature offset of the overlapping area of the frames before and after the event.
First, the pixel-wise difference and their mean value and standard deviation are calculated.
Then, the pixels of the difference image that have larger deviations from the mean difference
than the standard deviation are excluded from calculating the mean temperature offset
between the frames. All the corrections are summed up, and the constant values are
assigned to each section between the FFC events. After this correction, the strong gradient
in the middle of the flight line in Fig. 6.4b is corrected, but a slight variation from left to
right is still visible. This variation of the water temperature is not expected to occur in this
area and the temperature drift is estimated and corrected in the next processing step.
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Drift Correction

The remaining drift, as it is visible in Fig. 6.4c can not be fully explained by the sensor
temperature drift and is therefore also corrected using the frame-based approach as it is
used to estimate the FFC offsets. To do so, this method is applied to all used frames.
Although this step can also include the FFC offset correction, it is performed separately so
that it is possible to skip frames which can speed up the processing.

Raw Image

Nonuniformity Correction

FFC Offset Correction

Drift Correction

Line Mosaics

Georeference Correction

Radiometric Correction

Mosaic Blending

Final Mosaic

Figure (6.5) Processing steps from raw thermal images to image mosaics. The steps on the
left side are presented in Sect. 6.3 and visualized in Fig. 6.4. The steps on the right side are
described in Sect. 6.4 and visualized in Fig. 6.6.

6.4 Mosaic Generation

After the frame individual processing steps, presented in the previous section, it is possible
to combine the single frames and calculate a mean mosaic. The methods to calculate a
mosaic are presented in the following and the process is visualized in Fig. 6.5. Results of
the intermediate steps are visualized exemplarily in Fig. 6.6 using two overlapping flight
lines. The first plot shows the overlap of two flight lines and reveals two problems. First, a
geometric offset, and second, a radiometric offset between the two lines. These offsets need
to be corrected first, before calculating the final mosaic. The correction of the geometric
offset is described in Sect. 5.3, as the process is identical for all imaging sensors in this
thesis.

Radiometric Correction

Due to the sensor drift and the methods used during post processing a constant radiometric
offset may occur between the overlapping flight lines. To correct this effect, the overlapping
area of water pixels is used to estimate the offsets between the neighboring flight lines as a
mean deviation, as it is done to estimate the offsets at FFC events.
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Figure (6.6) Overlapping mosaics of two overlapping flight lines. (a) A clear geometric
offset can be seen at the edge areas as well as a slight radiometric offset. (b) Correction of
geometric misalignment. (c) Adjusted radiometry to correct remaining offsets. (d) Mean mosaic
of all frames. The mosaic is calculated as the weighted mean value per ground point of all
corresponding pixels of the corrected thermal images. The weights are derived from the distance
of the pixels to the respective image center of the frame.

Mosaic Blending

After applying all processing steps, the final mean mosaic is calculated as a weighted mean
of all frames (see Fig. 6.6d). The initial weight wu,v of each pixel Pu,v is calculated by the
Euclidean distance du,v of the pixel to the image center. Pixels with a distance value larger
than 320 pixels are excluded from calculating the mosaic as it is expected that remaining
sensor characteristics especially occur in the corners of the images.
First, the weight of each pixel is defined identically for all frames as

wu,v =
∣∣∣∣ du,v
max(d) − 1

∣∣∣∣ (6.1)

After this, the weight images of all n frames are mapped to the world coordinate system
and the individual weights of each pixel in each frame i are assigned to a world coordinate
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X,Y . The individual weights are calculated as:

WX,Y,i = wX,Y,i∑n
i=1wX,Y,i

. (6.2)

These weights are then used to calculate the mean temperature TX,Y for each point in the
world coordinate system using all corresponding temperature values TX,Y,i:

TX,Y =
n∑
i=1

TX,Y,iWX,Y,i . (6.3)

The final result of processing the raw data to generate the mean mosaic is shown in Fig. 6.7b.
In comparison to the mean mosaic of the raw data (see Fig. 6.7a), the enhancement is clearly
visible. While the false color representation of the raw mosaic was scaled in the range from
20 ◦C to 40 ◦C, the mosaic of the processed data is scaled in the range from 26 ◦C to 28 ◦C
and shows the details of small temperature variations of the water surface.

Combining two Mosaics

As the system is not able to record the orientation data of the gimbal and a permanent
nadir view of the camera is assumed, the resulting mosaic is more blurry than the raw
data due to small deviations from that assumption. In contrast to the used method,
classical photogrammetry or structure from motion software could generate a high-resolution
orthophoto. While it is possible to use this software to process data with lots of detectable
and stable features as they appear over land, these algorithms can not be applied to the
homogeneous and unstable structure of the water surface temperature. Moreover, the
dynamic structure of the water surface results from waves and would be misleading for the
algorithm.

However, a combination of both methods is possible. The mosaic of the water surface
is calculated using the methods described above. All images containing more than 80 %
non-water pixels can then be used for processing with a classical photogrammetry software
(e.g. Agisoft Photoscan which was used here). In another step, the two mosaics can be
combined, which is shown in Fig. 6.8. The combined data provide more details on the
shoreline as it is also visualized by the enlargement of a small inflow of a cold water stream
to the warmer water of the reservoir.

6.5 Evaluation

Due to the sensor characteristics and the chosen post processing methods, a direct absolute
validation of the mosaics with the in-situ measurements is not possible. To reference the
final mosaics an offset was applied so that the mean of all water pixels of the mosaics
equals the corresponding mean of the raw data. These mosaics are then compared to the
in-situ measurements. It follows first a visual qualitative evaluation and then a quantitative
evaluation of the processed data.
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(a) Mosaic of the raw data. Calculated as the mean value of all corresponding pixels per
ground point. There are drifts and offsets between the flight lines. The signal of the water
is almost completely overlaid by sensor characteristics.
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(b) Processed mosaic. A weighted mean mosaic was calculated using the corrected frames.
The sensor characteristics have been removed and the signal of small temperature variations
of the water surface is visible.
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Figure (6.7) Image mosaics showing the mean mosaic of the captured raw data (upper plot)
and the processed data using the developed method (lower plot). While the raw data shows
large drifts of up to 20 ◦C, the processed data reveals the spatial structure of the water surface
temperature.

Qualitative Evaluation

A qualitative, visual evaluation of the generated mosaics shows good results but also slight
structures which are probably caused by remaining sensor characteristics. In Fig. 6.7b, this
is indicated by slight horizontal stripes and temperature variations transverse to the flight
direction which are probably not caused by the water temperature. Variations of the water
temperature, which could be related to the water depth can only be seen in the littoral zone.
Surface water, which was warmed up at the shore, is moved by wind and water current,
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Figure (6.8) Combination of two methods to generate the mosaic of the water surface tem-
perature. The water surface was mapped using the developed method and the land surface was
calculated as a orthomosaic using a photogrammetric software.

which is also visible in the data. Also, the disturbance of the water surface by e.g. boats is
visible in the data, which is not shown here.

The combination of mosaics using the presented method and a classical photogrammetric
method shown in Fig. 6.8 still has inconsistencies in the overlapping water areas of the
mosaics. As mentioned before, the application of methods relying on stable features can
not be applied reliably to water surfaces. Therefore, this behavior is as expected and this
data is not evaluated quantitatively. However, the used software provides good results for
the land surface.

Quantitative Evaluation

The deviations between the temperature mosaics and the reference measurements are shown
in Fig. 6.9a. The measurements marked with an × do not overlap spatially with the area
captured by the respective flight. They are located in a radius of up to 100 m to existing
measurement data. The partly large differences between the temperature of the mosaic
and the reference measurements are caused by the sensor characteristics and the method
to reference the temperature mosaics. In general, the temperature measured within the
mosaics is lower than the corresponding in-situ measurements. Furthermore, the deviations
between the in-situ data for single flights visible in Fig. 6.9a match the differences which are
present in the in-situ data itself (cf. Fig. 5.2b in Sect. 5.2). These differences are caused by
the period between the single in-situ measurements and the flights, during which the water
itself warms up by the corresponding difference. In contrast, temperature differences within
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(a) Temperature differences between the pro-
cessed mosaics and the reference measurements.
Measurements marked with an × are not in the
area of the corresponding flight.
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(b) Temperature of a small cold water inflow to
the reservoir. The measurements of different days
and flights are visualized for comparison.

Figure (6.9) The temperature mosaics of each flight are evaluated using in-situ measurements
at each day of the campaign (a). The temperature of a small cold water inflow is extracted
from the mosaics and visualized in (b). The vertical lines indicate the days of the campaign.

a mosaic can be determined very precisely. Here, an average deviation of only 0.33 ◦C was
determined by comparison with in-situ measurements.
An inflow of cold water into the warmer reservoir in the northeast (see red box in Fig. 6.8)
allows further evaluation of the data. It is assumed that the temperature of the inflowing
water is constant at least within one measuring day. On the second day of the campaign an
in-situ temperature of 19.7 ◦C was measured. The temperature of the water of this narrow
stream after referencing the mosaics is shown in Fig. 6.9b. Considering days four and five
there is only a small variation between the temperature measured in the data of two flights.
On day three, however, a large deviation is to be seen. Possible errors can be caused by
an insufficient correction of the sensor characteristics because the chosen location for the
measurement is surrounded by land, and therefore the NUC could be faulty. Also, the
missing daily synchronous in-situ measurements to precisely reference the mosaics can lead
to offsets due to the temporal variation of the water surface temperature. Furthermore,
the influence of mixed pixels from water and land due to the resolution and the spatially
narrow watercourse cannot be precluded. Altogether the temperature of the water inflow
measured in the thermal images varies in the range from 17.2 ◦C to 22.2 ◦C.

6.6 Summary

The developed data driven methods provide good qualitative results and reveal the slight
temperature variations of the water surface after applying the corrections to the raw data
(cf. Fig. 6.7). The qualitative comparison of the image mosaics with other studies shows
that the developed method facilitates a more consistent mosaic (cf. [116, 114]).
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Good qualitative results were also achieved in [30]. They estimated the NUC in the lab-
oratory and applied the corrections to the measurements. Presumably, the use of this
preliminary estimation of nonuniformities and application to field measurements is possible
due to the slow movement of the system with 1 m s−1, reducing a cooling through wind,
and mounting the sensor system inside a box which further reduces environmental effects
on the camera [141]. Mosaic generation was carried out with pixel-wise averaging, whereas
the developed method in this work uses weighting according to the distance between the
pixel and the image center. Furthermore, in [30] images are taken only along the boat’s
trajectory, which allows omitting the development of methods to combine overlapping flight
lines.

A common approach to get absolute temperature values is the use of in-situ measurements
to reference the data. Using this approach mean deviations of 0.33 ◦C to other in-situ
measurements could be achieved which aligns with the values in other studies (see [142, 136,
116]).

To further reduce remaining fixed pattern noise, additional filtering using e.g. Fourier
transformation could generate better results. This requires a detailed investigation of the
data to prevent filtering variations in water surface temperature instead of only reducing
sensor characteristics. Besides optimizing the processing of the data, it is presumed that
better protection of the camera against environmental effects would facilitate a significant
reduction of the variable sensor characteristics (cf. [141]).

To sum up, with the help of the developed automatic processing workflow, the camera can
be used quickly and without any special prior knowledge to investigate the temperature
distribution of the water surface. This can be used to detect currents on the water surface
and also colder or warmer water inflows into a water body. In addition, an absolute
referencing of the data using synchronous in-situ temperature measurements facilitates
precise temperature maps with accuracies below 1 ◦C.
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CHAPTER7
Spectral Data and Parameter Estimation

In addition to water temperature, other parameters such as total suspended solids (TSS)
and chlorophyll-a (chl-a) provide essential information about the state of a surface water
body. Since these substances in the water affect the properties of the sunlight reflected
from the water body, variations in the reflectance spectrum can be measured with passive
imaging sensors such as hyperspectral cameras and put in relation to these parameters.
Based on this, methods can be developed to map the spatial distribution of these substances
in near-surface water using UAV-borne hyperspectral cameras. In this chapter, the data
acquired with the system are analyzed regarding their spectral characteristics to illustrate
the processing challenges. For parameter estimation using the reflectance spectra, machine
learning models are trained using simulated data, and the real-world data is evaluated using
reference measurements. For the spatial mapping of the parameters, methods are developed
to create maps of the parameters from many individual images. The developed methods
focus on automating the process from data acquisition to the final parameter maps as far as
possible to reduce interactions with the process which require expert knowledge or further
in-situ measurements.

7.1 Spectral Data and Preprocessing

The estimation of water quality parameters such as total suspended solids (TSS) and
chlorophyll-a (chl-a) is based on the variation of reflectance spectra which depends, among
other influences, on the changing concentrations of the various components of the water body
(see Chap. 2). In Fig. 7.1 this variation of reflectance spectra is shown. The three spectra
were acquired during one flight of the field campaign at the drinking water reservoir Passaúna
in the west of Curitiba, Brazil (see Chap. 5). Corresponding in-situ measurements showed
higher TSS concentrations in the north than in the south and decreasing concentrations
in between which is also represented by the spectra. In general, a low TSS concentration
leads to a lower reflectance, which increases with increasing concentration. The vertical
lines at 670 nm and 810 nm show the relevant points in the spectrum for chl-a absorption
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Figure (7.1) Reflectance spectra at three different positions measured by the hyperspectral
sensorsystem during the field campaign. On a trajectory of 1 km length in the study area
presented in Chap. 5 these positions were chosen as the TSS concentration decreases from north
to south. The vertical lines at 670 nm and 810 nm show the relevant points in the spectrum for
chl-a absorption (green) and scattering on non-algal particles (red). A low TSS concentration
leads to a lower reflectance, which increases with increasing concentration.

and scattering at non-algal particles (NAP). The strong increase of reflectance in the region
of 750 nm to 790 nm is also worth mentioning, which may be an indication of an increasing
influence of reflections at the water surface such as reflection of sunlight (sun glint).

Particularly the influence of sun glint and under changing weather conditions, cloud shadows
highly influence the data. Cloud shadows affect the measurements of the water leaving
radiance but can also cause falsely assigned irradiance measurements to calculate the remote
sensing ratio which leads to erroneous reflectance values. Sun glint on the other hand only
affects the upwelling radiation which is measured with the hyperspectral camera in our
case. Sun glint is the direct reflection of sunlight on the water surface and depends on the
structure of the water surface, viewing geometry and sun position. It affects the signal in
the NIR region of the spectrum where higher glint causes higher reflectance values. However,
care must be taken for shallow or turbid waters as in these cases also changes occur in this
region of the spectra [47]. Both influences, sun glint and cloud shadows, are presented in
the following section and additionally in Fig. 7.2.

Within one frame the chosen image shows little sun glint (marked in blue) and also a slight
cloud shadow (marked in red). The mean spectra and associated standard deviations shown
in Fig. 7.2b represent the variation within the areas marked in Fig. 7.2a. Within the image
shown, no variation in water quality parameters can be assumed, so the variations shown
are only induced by ambient influences. The effect of glint on the measured spectrum is
apparent. A general offset to the other spectra and especially an increase of the reflectance
in the range of the longer wavelengths can be seen. Despite this high variation of reflectance
within the image, it is possible to obtain a reliable estimate with low scatter within this
scene using the PLS model presented in Sect. 7.2. However, a stronger glint has a greater
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Label sun shadow glint

Figure (7.2) Panchromatic image (a) and corresponding mean spectra and standard deviation
of the marked areas (b). Clearly visible is the sun glint in the lower left area of the image (blue).
The cloud shadow in the upper part is hardly visible (red). The area illuminated directly by the
sun without glint is marked green. To calculate the reflectance spectra an unshaded irradiance
measurement was used. The histogram shows the estimated TSS values of all pixels of the
corresponding hyperspectral image.

influence on the reflectance spectra (see Fig. 7.5). Therefore, the parameter estimation must
consider this during processing or affected pixels could be excluded.

While the previously presented influences only affect the radiance detected by the hyperspec-
tral camera, other influences affect the irradiance measurement. This particularly concerns
the incorrect assignment of irradiance measurements to the individual pixels since this sys-
tem assigns one representative measurement of the irradiance spectrometer to each image.
A distinction can be made in the following four cases:

1. Irradiance spectrometer in the sun and ground point in the sun

2. Irradiance spectrometer in shadow and ground point in shadow

3. Irradiance spectrometer in the sun and ground point in the shadow

4. Irradiance spectrometer in the shadow and ground point in the sun

These cases are visualized in Fig. 7.3 where different reflectance spectra for all four cases
of a ground point are shown. The dashed spectra show the correct cases one and two, and
the dash dotted spectra the cases three and four. While case three gives a far too low
reflectance, case four gives a much too high reflectance. However, it is also evident that
the calculated spectra for cases one and two have slightly different characteristics, which is
caused by the differences of direct and diffuse illumination. The variations presented here
also affect the estimated parameters. Therefore, these effects must be considered during
processing, which will be shown later in the chapter on map generation (see Sect. 7.3).
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(a) Visualization of different irradiance allocations.
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Figure (7.3) Missallocation of the irradiance measurement affect the calculated reflectance
spectra. The cases one and two in (a) represent the correct allocation of irradiance measure-
ments to the ground pixels. The cases three and four represent falsely allocated irradiance
measurements. The spectra in (b) correspond to these cases.
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Figure (7.4) Accuracy values of the classification of pixels in water and non-water of the fine
grid search for all combinations of channels in a selected range to find the optimal bands for
NDWI calculation. The optimal wavelengths are 558 nm for G and 870 nm for NIR.

Data Cleansing

Before the data is actually processed, it must be automatically analyzed and, if necessary,
pixels need to be sorted out according to the following criteria:

• Under- and overexposure

• Water and non-water

• Sun glint

First, only spectra whose maxima are in the range of 500 DN to 4000 DN are used for the
calculation of the reflectance, to sort out possible underexposure and overexposure. The
selection of this range is based on the dynamic range of the sensor.
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Figure (7.5) Two exemplary pan images with masked areas using NDWI. The red overlay in
(a) shows the masking of non water pixels using the calculated NDWI. Besides masking non
water pixels the NDWI can also be used to mask pixels with a high percentage of glint in the
spectrum (red framed area in (b)). Exemplary spectra for land, water and glint are given in (c).

After calculating the reflectance, the normalized difference water index (NDWI, [143]) can
be calculated for each spectrum. This is used to mask the land areas. To mask areas in the
data which are part of the water surface an NDWI filter is used (see Fig. 7.5). The NDWI
is calculated as:

NDWI = G−NIR
G+NIR

. (7.1)

The most suitable bands for calculating the NDWI were determined using labeled data
and calculating all possible combinations for wavelengths G : 546 nm to 586 nm and NIR :
846 nm to 886 nm. The spectra used for the fine grid search were labeled using the corre-
sponding pan images. The optimal wavelengths are 558 nm for G and 870 nm for NIR. In
Fig. 7.4 the classification accuracy values of the grid search are shown for all combinations
of channels.
The classification of the hyperspectral images based on the NDWI is carried out by setting
a threshold: values for NDWI > 0 are classified as water. In addition, the NDWI is able
to mask water spectra strongly influenced by glint reliably with the data used here (see
Fig. 7.5b).

While this selection of suitable spectra is automatically applied to all data, a further selection
is performed to generate a well selected reference data set for the evaluation of the parameter
estimation methods using the sampled ground truth data. The further selection is visualized
in the form of histograms of a spectral channel for a ground point in Fig. 7.6. To reduce
angle dependent influences only spectra with an azimuth difference between the sun and
viewing direction in the range from 90◦ to 270◦ are selected after NDWI selection. A last
manual step after reviewing the data excludes spectra under diffuse illumination or wrong
irradiance assignment.
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Figure (7.6) Visualization of the selection process of extracted ground truth spectra with
different thresholds. The histograms show the reflectance at 570 nm. The first figure shows
all corresponding spectra in a radius of 8 m around the sampling point. Figure (b) shows
the remaining spectra after applying the NDWI filter. Then a viewing angle based selection
is applied (c). The last histogram (d) shows the spectra remaining after manually selecting
spectra which are not shaded by clouds.

Simulated Measurements

In addition to the collected data, spectra were generated using the software WASI [35]
(Water Color Simulator, version 5). This software, with its integrated physical model
and extensive parameter customizability, allows, besides the inversion, the generation of
reflectance spectra of water for a wide range of scenarios, such as glint and suspended solids
variation.
In contrast to other available software like BOMBER [144] (only remote sensing reflectance)
or Hydrolight [51] (commercial), WASI is freely available and allows the processing of
radiance reflectance spectra which corresponds to the data acquired with the hyperspectral
sensor system. The dataset generated with WASI in this work serves for the training
of different machine learning models, whereby the evaluation of the collected reference
data with independent data becomes possible. During the generation of spectra with the
WASI tool, the parameters listed in Tab. 7.1 were changed stepwise to achieve the largest
possible variation of relevant parameters. A limitation of the number of varied parameters
is necessary because with WASI only three parameters can be changed at the same time. A
developed software for the control of WASI allows the variation of seven parameters. The
selection of the parameters was based on prior knowledge of the water body and analysis of
measured reflectance spectra. Since the investigated water has mainly sediment influenced
characteristics, the parameter CX was chosen to determine the TSS concentration. As chl-a
concentration the parameter C5 (green algae) was chosen, because the influences of the
variation of the concentration corresponded best to the variations in the real spectra. In
addition, the type sand was chosen for the bottom type, because its spectral characteristic
corresponds best to the bottom type of the reservoir. Due to the lack of measured values
for the CDOM (CY ) absorption, this parameter was also varied in the data. Because of
the partly very shallow water depth, a focus was also put on the variation of the water
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depth (zB). For the parameters CX and zB a logarithmic distribution was used, especially
to account for the influence of backscattering of the bottom at low water depth and low
suspended matter concentrations. The parameters gdd, gdsr and gdsa are used to create
effects similar to sun and sky glint in the data. With gdd the weighting of the direct
solar radiation is done and thus the simulation of sun glint. The parameters gdsr and gdsa
influence the simulated sky glint. The variation of the parameters resulted in a data set
with 896 000 spectra.

Table (7.1) Varied parameters to build a simulated dataset with WASI.

Parameter Range Steps Description

CX in mg l−1 1 - 80 20 Concentration of non-algal particles Type I
C5 in µg l−1 1 - 50 8 Concentration of chl-a
CY in m−1 0.1 - 5 10 Gelbstoff absorption
zB in m 0.2 - 5 7 Bottom depth
gdd in sr−1 0 - 1 5 Fraction of sky radiance due to direct solar radiation
gdsr in sr−1 0 - 2 4 Fraction of sky radiance due to molecule scattering
gdsa in sr−1 0 - 1 4 Fraction of sky radiance due to aerosol scattering

7.2 Waterquality Parameter Estimation

Before calculating the parameter mosaics, the estimation must be performed on the in-
dividual images, since the calculation of an average spectral mosaic is possible only with
the full correction of ambient influences which is beyond the scope of this work. In this
work methods that can be fully automated in order to require as little expert knowledge
of the user as possible were chosen and evaluated. First, different estimation methods
are evaluated using simulated data sets to discuss their suitability. In a second step, the
methods are evaluated with real data. As the concentrations of chl-a are very low, the pre-
sented methods and their evaluation include only the estimation of TSS. Only the simulated
spectra and corresponding TSS values were used to train the models. Although bathymetry
measurements are available, they were not used as input parameters for the models.

Training on Simulated Data

Besides the established band ratios which are part of the empirical models (see Sect. 2.3)
and are mainly applied to satellite data, machine learning methods are increasingly used
for the automatic processing of hyperspectral remote sensing data to estimate water quality
parameters. Therefore, a selection of commonly used methods for hyperspectral regression
tasks was made, which will be applied in the following and their results will be compared.
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These are:

• Band Ratios (BR)

• Partial Least Squares Regression (PLS)

• Random Forest (RF)

• Artificial Neural Network (ANN)

• Convolutional Neural Network (CNN)

Before being applied to real data, these methods are trained and evaluated using the
simulated data presented in Sect. 7.1. The training and evaluation presented here always
refers to the parameter CX in mg l−1, which stands for the TSS concentration in this work
(see Tab. 7.1). To reduce the probability of overfitting, gaussian noise was added to the
simulated data for the training data (subset of 70 % of the dataset). Gaussian noise with
a standard deviation of 0.5 % of its value was added to each channel of the spectra and
noise with 2 % of each value was added to the corresponding parameters. As a band ratio
method the ratio between 538 nm and 794 nm from [81] was used. The RF and PLS used the
Python implementations of scikit-learn [145]. As libraries for ANN and CNN the Python
versions of Keras [146] and TensorFlow [147] were used. Within a hyperparameter search the
architecture and parameters of the methods shown in Tab. 7.2 were chosen. The ANN and
RF showed the best results for scaled input data, that is removing the mean of each feature
and scaling to unit variance. While the systematic search for the optimal architecture and
parameters was mainly possible, the setting of the number of epochs for ANN and CNN
was determined using early stopping when the improvement of the loss function was low or
the algorithm optimized parts of the parameter range much different than other parts.

After training, the models were evaluated using a separate subset of the simulated data
without noise. The evaluation using the mean absolute error is shown in Tab. 7.3, where
D1 stands for the use of the first derivative of the spectra and D0 for the original spectra.

Overall the RF and ANN methods produce very good results and also PLS could give
good results with a mean absolute error below 4 mg l−1 for the best configuration which is
small compared to the simulated range from 1 mg l−1 to 80 mg l−1 in the WASI dataset (cf.
Tab. 7.1). While there is almost no difference between using the original spectrum and the
first derivative for PLS, RF gives better results for D0 and ANN and CNN for D1.

It is remarkable that all methods achieve worse results for low concentrations than in the
higher range. The results are particularly poor for the PLS model for CX concentrations
below 20 mg l−1 where the R2 is only 0.06, but for concentrations higher than 20 mg l−1

an R2 of 0.88 was achieved. The complete dataset on the contrary achieves an R2 of 0.97.
These results for low concentrations can be particularly attributed to the influence of water
depth, whereby the estimation does not only depend on the signal of the water body, but
also the backscatter of the water bottom influences the estimation. Using a dataset with
only deep water this dependence does not arise. From this follows that especially for shallow
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Table (7.2) Parameter setup for the different estimation methods.

Method Setup
BR Bands: 538 nm, 794 nm

PLS Number of components: 40

RF Treedepth: 15, Estimators:8

ANN 1 Dense Layer; 10 units; activation: ReLU
1 Dense Layer; 1 unit; activation: linear
Batchsize: 256; Epochs: 32
Optimizer: Adam; loss: mse

CNN 1 Conv Layer; Filter size: 5; 10 units; activation: ReLU
Max pooling; pool size: 2
1 Dense Layer; units: 10; activation: ReLU
1 Dense Layer; units: 1; activation: linear
Batchsize: 256; Epochs: 2
Optimizer: Adam; loss: mse

waters the estimation should be discarded or appropriate models must take this effect into
account with the help of measured bathymetry.

As the real data only consists of a small in-situ data set, the R2 value is not given in the
following, since it cannot be meaningfully evaluated.

Table (7.3) Evaluation of simulated data. The models were trained on simulated spectra.
The mean absolute error in mg l−1 is given for each two cases: using the raw spectra (D0) and
the first derivative (D1).

Derivative BR PLS RF ANN CNN
D0 15.7 3.7 0.6 1.7 6.6
D1 - 3.6 1.1 1.2 5.8

Application to Real Data

After the training and evaluation of the methods using the simulated data, the evaluation
using the UAV borne reflectance data measured during the campaign and the corresponding
reference values follows. The evaluation is done using extracted spectra in a radius of 8 m
around the sampling points. From these spectra a dataset was selected using the prepro-
cessing methods presented in Sect. 7.1. For the evaluation, the corresponding parameters
are estimated for all spectra of a point with the models presented in the previous section.
Then, the mean value of all estimates per point is calculated. The following evaluations
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refer in each case to these mean values. Due to the low water depth at the time of the
campaign, there are dependencies of the errors to the water depth. This is shown by the
green crosses in Fig. 7.7a which were estimated using a PLS model which was trained using
only data with deep water. To reduce the effect of other ambient effects, the used spectra
were manually selected. The blue circles, on the other hand, show the errors when using
adapted models for different water depths. Separate models for the evaluation in Tab. 7.4
were used for PLS and RF for the following depths, as it was possible to train individual
models with reduced dataset sizes:

• PLS: < 0.5m; 0.5− 1m; 1m− 1.7m;> 1.7m

• RF: < 0.5m;> 0.5m

As with the use of the simulated data in the previous section, PLS achieves almost identical
results with the original spectra and their first derivative using these depth dependent
models. In contrary, the RF now performs much better using the first derivative. The
CNN and ANN still show an improved accuracy with the first derivative. Especially the
results for RF, ANN and CNN could indicate that other influences on the spectra which
are not covered by the simulated data are present in the real world dataset. Even though
BR seems to give good results, the results are not usable, which would be evident when
looking at image mosaics, since this method only estimates parameters in the range of
0 mg l−1 to 10 mg l−1 independent from the input data and thus is not able to represent the
expected variations and is therefore not further considered in this work.

Based on these results, PLS could be selected as the favorite, but further evaluation of the
results after mapping is necessary to include possible spatial and depth dependent artifacts
in the evaluation.

Table (7.4) Evaluation of real data. The models were trained with simulated spectra. The
mean absolute error in mg l−1 is given for each two cases: using the raw spectra (D0) and the
first derivative (D1). The methods PLS and RF used different models for different water depths.

Derivative BR PLS RF ANN CNN
D0 3.1 2.3 7.5 4.6 3.9
D1 - 2.3 2.8 3.7 3.0

7.3 Mapping

After the training and evaluation of the estimation procedures using the simulated and
selected real reference data in Sect. 7.2, the calculation of georeferenced image mosaics is
carried out to visualize the spatial distribution of the estimated parameters. The processing
procedure follows the steps shown in Fig. 7.8. First, the raw data are calibrated and
synchronized (see Chap. 4) to enable the reflectance calculation. It follows the data cleansing
(see Sect. 7.1) and the estimation of the parameters on the individual images. Then, the
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(b) Scatter plot of measured and predicted TSS.

Figure (7.7) Evaluation of the selected PLS model using groundtruth measurements. The
blue circles are the result of applying models dependent on the water depth. The green crosses
mark the results for assuming deep water.

georeferencing of the individual images is carried out as described in Sect. 5.3. Subsequently,
areas of the individual images are cropped to reduce the remaining influence of glint on
the mosaics. The calculation of the mosaics is then done as a weighted average. In a final
step, possible artifacts caused by changing irradiance are reduced. The individual steps are
described below.

Mosaic Blending

The generation of image mosaics from adjacent or overlapping individual images is a common
practice in the evaluation of remote sensing data. Existing methods are therefore adapted
to the acquired data. The georeferenced individual images, which are available in a global
coordinate system and have been resampled to a uniform raster, serve as the starting point
for the following methods.
For the calculation of the image mosaics from the single images, the overlapping areas of the
images can be used to calculate an average value for each ground point. Calculating a mean
value of the redundant estimates of a single ground point provides spatially smoother results
than selecting one representative value for each ground point. Using a simple averaging of
all estimates per ground point, stripes with high spatial noise running from north to south
are still visible in Fig. 7.9a. These stripes represent the areas where there is no overlap
of adjacent flight trajectories. Espcially sun glint causes this spatial noise. Therefore,
to calculate the mosaics, a weighted average is inevitable, taking into account the angle
between the sun and the line of sight from the ground point to the camera νu,v and the
distance of the respective pixel to the center of the image du,v. To calculate νu,v, the relative
position of the sun S is calculated as unit vector and the vector C to the camera each with
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Figure (7.8) Scheme of the processing steps from spectral data to parameter maps. The
corresponding chapters and sections are listed on the right side.

reference to the pixel:

νu,v = arccos
( S ·C
|S||C|

)
. (7.2)

Then, for each pixel of an image, the previously calculated angles are normalized with

wνu,v =
∣∣∣∣∣ νu,v −min(ν)
max(νu,v −min(ν)) − 1

∣∣∣∣∣ (7.3)

and normalized the weights of all n overlapping pixels of a ground point X,Y are calculated:

WνX,Y,i =
wνX,Y,i∑n
i=1wνX,Y,i

. (7.4)

In a further step the weights are calculated which are based on the distances du,v of the
pixels to the image center. First, the distances are calculated and normalized for each pixel:

wdu,v =
∣∣∣∣ du,v
max(d) − 1

∣∣∣∣ . (7.5)

Then the normalized weights for all pixels of a ground point X,Y are calculated as follows:

WdX,Y,i
=

wdX,Y,i∑n
i=1wdX,Y,i

. (7.6)
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Figure (7.9) Mosaic generation using the TSS values estimated with a PLS model by calcu-
lating (a) the mean per ground point and (b) a weighted mean per ground point taking into
account the position of the sun, the line of sight of each ground point and distance of each
respective pixel to the image center.

Finally, the combined individual weights for all pixels of each ground point X,Y are calcu-
lated:

WX,Y,i =
WνX,Y,iWdX,Y,i∑n
i=1WνX,Y,iWdX,Y,i

. (7.7)

The weighted average of the parameter PX,Y for each ground point can then be calculated
using:

PX,Y =
n∑
i=1

WX,Y,iPX,Y,i . (7.8)

With the calculation of the weighted mean, a reduction of spatial noise was achieved (see
Fig. 7.9b).

Glint Crop

To further reduce remaining spatial noise caused by strong sun glint, the glint affected
parts of the single images can be cropped (see Fig. 7.10) which is possible because of a high
redundancy of estimates per ground point. In this case a fixed percentage of the image is
cut. To find the optimal threshold, more and more of the glint affected area of the frames
were systematically cropped and for each step the mosaic was calculated and the mean of all
local standard deviations in a 15× 15 neighborhood was computed (see Fig. 7.10c). Based
on this analysis, it was determined that 60 % of the respective frames must be cropped to
reduce noise in the final mosaics as much as possible (see Fig. 7.10b). While less crop than
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(a) Full images. (b) Cropped Images.

5

10

T
SS

in
m

gl
−

1

0 20 40 60 80

0.34

0.36

Cropped area in %

M
ea

n
lo

ca
ls

td
in

m
gl

−
1

(c)

Figure (7.10) Reducing the effect of sun glint induced erroneous estimations by removing
parts of the image faced to the sun. The two maps show (a) using full images and (b) using
cropped images (60 %) to calculate the map. The right plot (c) shows the mean of all local
standard deviations per pixel with a 15× 15 neighborhood as function of the cropped area.

this threshold results in too much glint, a higher value is not possible due to the decreasing
number of available values.

Shadow Blending

Under changing irradiance due to clouds it is possible that cloud shadows affect the calcu-
lated reflectance spectra and therefore also the estimated parameters. A distinction of the
problematic constellations can be made in two cases which are also visualized in Fig. 7.3.
One case occurs when the irradiance spectrometer is in the sun and the ground point in the
shadow (Case 3). The other case arises when the irradiance spectrometer is in the shadow
and the ground point is in the sun (Case 4). For consistent maps a detection and correction
of these effects is necessary. While in the context of this work it was not possible to fully
correct shadow areas for the Case 3 (see Sect. 7.1), a significant reduction of the influence
of the errors by Case 4 could be achieved. In Fig. 7.11a the influence is clearly visible.
Measuring irradiance in the shadow of a cloud, and the water surface which is directly
irradiated by the sun, leads to significantly higher reflectance values. Therefore, increased
estimates for the TSS concentration in this area are obtained. These areas can be detected
using different parameter estimations where the irradiance was measured either dynamic or
a fixed measurement for sun or cloud shadow is selected. First the following differences are
calculated:

∆diff = Mdyn −Mdiff , (7.9)

∆sun = Mdyn −Msun . (7.10)
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(a) Weighted mean. (b) Shadow correction.
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Figure (7.11) Blending of different maps to reduce the effects of cloud shadows on the final
map. The map in (a) shows the result without correction, in (b) the result after applying the
shadow blending is shown where the overestimation of TSS due to misallocation of shadow
irradiance measurements to sun pixels is reduced.

Here Mdiff and Msun represent data for which the reflectance was calculated with fixed
diffuse or direct solar irradiance. Mdyn represents data for which the dynamic irradiance
correction (see Sect. 4.4) was applied. By applying a threshold U1 to the difference images,
the areas with false irradiance assignment can be determined and a mask

F = (∆diff <= −U1) ∧ (∆sun >= U1) (7.11)

can be calculated which extracts only the areas with wrong assignment. In the next steps,
a weighting matrix B for blending is created.

B(∆sun < U2) = ∆sun(∆sun < U2) (7.12)

B = B/max(B) (7.13)

B(∆sun >= U2) = 1 (7.14)

By element wise multiplication (notated as ◦) of the blending matrix B and the mask F ,
the final blending matrix is obtained:

B = B ◦ F . (7.15)

The final mosaic
Mmos = Mdyn ◦ |1−B|+Msun ◦B (7.16)

is now computed as the sum of the weighted mosaics Mdyn and Msun , reducing the artifacts
due to misallocation of shadow irradiance measurements to sun pixels (see Fig. 7.11).
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7.4 Evaluation and Discussion of Mosaics

The methods presented in the previous sections allow the generation of parameter maps
which can now be evaluated. In the following, the importance of the dynamic irradiance mea-
surement for a reliable parameter estimation is shown. Subsequently, an areal comparison of
several flights is performed to evaluate the repeatability of the measurements. Furthermore,
the absolute validation of the final parameter mosaics and a qualitative comparison of the
different methods for parameter estimation are performed based on the processed mosaics.

Irradiance Correction

The cross calibrated spectral sensors allow the calculation of the reflectance using the contin-
uous measurement of the irradiance, which makes it possible to take into account changing
irradiance during a flight (see Chap. 4). In Fig. 7.12 the influence of the dynamic measure-
ment of irradiance versus a single measurement of a white reference (WR) is illustrated. The
three histograms show the estimation of the TSS values using a PLS model for a selected
area under sunny and cloudy conditions, respectively, for three cases. First, the use of a WR
measurement under sunny conditions, second, the use of the continuous irradiance measure-
ment, and third, the continuous irradiance measurement including the compensation of the
inclination of the spectrometer. Below the histograms are the visualizations of TSS maps
for these cases. The western half of the mosaics was taken under sunny conditions, and the
eastern half under cloudy conditions. The use of a single reference measurement in this case
leads to large differences between the western and eastern halves. A clear alignment of the
two parts of the mosaic is seen by using the dynamic irradiance measurement and a further
improvement by applying the tilt correction.

Repeatability

Three overlapping, consecutive flights on two different days allow an areal comparison of the
estimated parameters to evaluate the repeatability of the measurements. This comparison
is shown in the form of histograms and scatter plots in Fig. 7.13 where the parameters were
estimated with a PLS model. The results shown in the lower row in Fig. 7.13 are based
on datasets taken under sunny weather conditions without changing cloud cover. This
compares to the results in the upper row, which were taken under highly variable cloud
cover. The histograms show in each case the differences in the parameter estimation at
identical ground points between the individual flights. For the scatter plots the values of
pairs of flights are compared. The flights mentioned first in the legend correspond to the
X-axis. From the results shown, it is clear that the system produces consistent results and
performs very well, especially under clear sky conditions. The wider scatter in Fig. 7.13a is
due to the strongly changing cloud cover and the strong clustering is due to generally lower
concentrations on this campaign day compared to Fig. 7.13c.
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Figure (7.12) Effect of different irradiance measurements on the estimated parameters. The
top row shows the histograms of the TSS estimation of an overlapping area of two images. One
image was taken under diffuse conditions (green bars) the other under sunny conditions (blue
bars). The columns show the results for three diferent cases: first using a single measurement
of a reference panel under sunny conditions, second using individual irradiance spectrometer
measurements and third using individual inclination corrected irradiance measurements for each
image to calculate the reflectance.

Quantitaive Evaluation

While the evaluation of the methods in Tab. 7.4 is based on carefully selected spectra to
achieve the best possible result, this is not possible for the evaluation of the final maps in
Tab. 7.5, which are processed in an automated matter. The goal of this process is to achieve
a complete map, which also includes pixels with e.g. less advantageous angular constellations
including glint affected pixels. To calculate the metrics, all parameters were extracted and
averaged from each flight within a radius of 8 m around the respective sampling positions. A
distinction of the water depth was made again for the methods PLS and RF. The comparison
of the methods shows that ANN and CNN perform better than PLS and RF, although no
depth-dependent models were used here. The scatterplots of ground truth measurements
and estimated TSS concentrations in Fig. 7.14 reveal that the methods PLS and CNN
tend to slightly overestimate the values in this case. The mosaics calculated using the RF
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Figure (7.13) Pixel-wise spatial comparison of the flights acquired at the first campaign day
under variable cloud cover (upper row) and the third campaign day with clear sky conditions
(lower row). The histograms show the calculated delta between each two flight plan configura-
tions and are limited to a range from −10 mg l−1 to 10 mg l−1. The right panels show the scatter
plot between each two flight plan configurations. The plotted data is limited to ±3σ and only
each tenth point is plotted.

estimated parameters are not shown due to high spatial noise among other spatial artifacts
which are not visible in the results using the other methods. These problems of the RF
can be attributed to the poor performance of this method to generalize well for the various
effects on the spectra like sun glint.

Qualitative Evaluation

In addition, the quantitative evaluation of the data with reference values is followed by a
visual qualitative evaluation of the mosaics and methods. Comparing the three mosaics in
Fig. 7.14 reveals large spatial differences in addition to the variations in the scatter plots.
It is obvious that the methods not only have different absolute offsets, but also different
influences of bathymetry (cf. Fig. 5.5) on the results. For PLS this effect has to be corrected
in a further step using bathymetric data and own models for different depths (see Fig. 7.15).
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Figure (7.14) Visualization of the TSS estimation results as scatter plots and parameter
maps for different machine learning algorithms. The scatter plots were created using the
measured reference values and values extracted from the results at the corresponding positions.
The methods PLS and CNN tend to slightly overestimate the TSS concentration. The map
generated using the data from the ANN shows an inverse behavior for shallow water compared
to the other methods.

Even though blending algorithms have reduced the hard edges by blending the different
models, artifacts of the bathymetry are still visible in the data. A significant reduction
of bathymetric influences can be seen when using a CNN. ANN in comparison with the
methods PLS and CNN behaves however differently and in parts inversely. The influences
of the bathymetry are almost not recognizable here and in contrast to the other methods
now clearly lower estimates of the TSS content are shown in places with particularly shallow
water than in adjacent deeper areas. In the southwestern part of the map in Fig. 7.14b the
course of the old river (cf. Fig. 7.15c or Fig. 5.5b) with deeper water is now visible through
the elongated structure with slightly elevated TSS values. In the northern part the model
estimates very low values, or partly negative values which are filtered out.

Due to very low concentrations of the in-situ measured parameter chl-a, it was not evaluated
quantitatively. However, during the last two days of the campaign, a slightly increased
concentration was measured and therefore parameter estimations are shown here without
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Figure (7.15) Comparison of a mean weighted result (a) and a map (b) where the water
depth was taken into account for map generation. The parameters were estimated using a PLS
model. In (c) the corresponding bathymetry is shown.

a quantitative evaluation. The chl-a concentration of the two mosaics in Fig. 7.16 were
estimated using a PLS model trained with simulated data similar to the models to estimate
TSS in this chapter. In Fig. 7.16a the corresponding parameter map to the data of Fig. 7.14
is shown. The mosaic clearly shows the low concentrations, although the mosaic has high
spatial noise and in some cases the model estimates negative values. A chl-a mosaic of
another day of the campaign (see Fig. 7.16b) was calculated and corresponds to the TSS
map shown in Fig. 7.17. Clearly visible is a plume of higher chl-a concentration extending
from north to south. Since no measurements were made within the plume, the estimated
values cannot be validated absolutely.

7.5 Summary

The hyperspectral images acquired with the spectral sensor system form the basis for the
estimation of water quality parameters such as TSS and chl-a. This chapter first discussed
the measured spectra and showed the spectral variation between different areas of the
observed water body. These variations are caused by the spatially changing concentration
of the water constitutions in the study area. But also within a single image sun glint and
cloud shadow affect the spectra. In addition, this chapter showed adverse constellations of

Table (7.5) Evaluation of the final parameter maps. The models were trained with simulated
spectra. The mean absolute error in mg l−1 is given for the best method using either the raw
spectra (D0) or the first derivative (D1). The methods PLS and RF used different models for
different water depths.

PLS D0 RF D1 ANN D1 CNN D1
4.4 4.7 3.3 3.5
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(a) Flight plan A. (b) Flight plan B.
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Figure (7.16) Chl-a maps of campaign day 5. The maps are generated using a PLS model.
The higher values in (b) also match the spatial distribution of TSS in Fig. 7.17.
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Figure (7.17) Estimated TSS concentration using the CNN model. The map shows the
results for the data of flight plan type B acquired on the fifth day of the campaign. The spatial
distribution of the higher TSS values is also visible as higher chl-a values in Fig. 7.16b.

sun, clouds and sensor system and describes the automated pre-processing of the spectra.
Since the number of reference data collected in this work were not sufficient to train machine
learning models, simulated data were used. The focus in this work is on the estimation
of the TSS concentration. Various parameters, including the water depth, were varied to
generate the simulated data. However, only the generated spectra and corresponding TSS
values were used as input parameters for training the estimation models.

Five different methods were used to estimate the TSS concentration from spectral reflectance:
Band Ratio (BR), Partial Least Squares Regression (PLS), Random Forest (RF), Artificial
Neural Network (ANN) and Convolutional Neural Network (CNN). Based on the simulated
data sets the optimal parameter settings for each method were determined and fixed for the
subsequent analyses. The machine learning methods were tested with scaled and unscaled
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data and also using the preprocessed spectra and their first derivative. In a first step
the trained models were evaluated using a separate data set of simulated spectra. The
evaluation of the models trained with simulated data showed that BR does not perform
well at all. Except for RF, the machine learning models achieved better results using the
first derivative. At this point RF performed best, closely followed by the ANN model.

Subsequently, the models trained with simulated data were used to estimate parameters
using selected reference spectra which were acquired during the field campaign. The evalua-
tion step used corresponding turbidity in-situ measurements and laboratory analyses of the
TSS concentration in water samples. Here it was shown that the use of differentiated models
with depth dependent training (PLS and RF) provide an improved accuracy compared to
models that have to infer the influence of water depth on the measured spectra in the model
itself based on the spectra (ANN and CNN). At this point, the differences in the results
between the methods are smaller, and the CNN gives better results on the real data than
on the simulated data.

In the next step, parameter mosaics were created. First, the developed method for the
use of spatial redundancy by calculating a weighted mean per ground pixel was described
and then further steps for the optimization of the mosaics were presented. These included
cropping of strongly glint affected parts of the images and a developed semi-automatic
method to reduce the influence of cloud shadow caused deviations. Finally, the individual
steps of the mosaic calculation and the mosaics themselves were evaluated qualitatively and
quantitatively using the reference data.

The calculated mosaics showed that using a weighted mean to calculate the single ground
pixels enhances the result in terms of less spatial noise. The cropping of glint affected parts
of the image further decreased the spatial noise.

A semi automatic method was developed to reduce the influence of falsely allocated irradi-
ance measurements to ground pixels in case of variable cloud cover. It showed good results
by reducing the error due to overestimation of parameters in the case that ground pixels
were falsely allocated with irradiance measurements of cloud shadow.

A spatial comparison of large areas which were first illuminated by diffuse light under cloud
cover and after this directly by sunlight reinforced the necessity of using the continuous
measurement of the irradinace including the automatic correction of the inclination of the
irradiance spectrometer caused by the movements of the UAV.

Another spatial comparison was possible due to multiple spatially overlapping flights on
each of two campaign days. This comparison showed a good repeatability of the parameter
estimation. However, higher variance due to strong variations in cloud cover is still visible
in the results.

The quantitative evaluation of the methods based on the mosaics revealed that PLS and
RF perform worse than on the strongly preselected reference data. In contrast, ANN and
CNN still perform similarly in the evaluation using the reference spectra. This shows that
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these models can probably handle the variable water depths and further ambient influences
without providing any additional information to the model.

This assumption is reinforced by the qualitative comparison of the maps. Here it was shown
that the prevailing shallow water depth is reflected differently in the results. PLS showed a
particularly strong dependence on water depth which makes it necessary to mask shallow
areas in the map or to use corresponding depth dependent models which makes a further
blending step necessary. While the influence of the bathymetry is clearly reduced in the
ANN and CNN models, it can be seen that the estimation using the ANN is partly inverse
in comparison to the other methods, whereby shallow areas show a lower TSS estimation
than adjacent deeper areas.

The chl-a concentration for the data of two flights was estimated using a PLS model trained
with simulated data similar to the models to estimate TSS in this chapter. In general,
the mosaics show low concentrations and have a high spatial noise. One mosaic shows
a plume of higher chl-a concentration extending from north to south. However, due to
very low concentrations of the in-situ measured parameter chl-a in general, and unavailable
measurements in this plume, it could not be validated and evaluated quantitatively.

7.6 Discussion

The UAV borne multi-sensor system (see Chap. 4) and the developed methods to process the
spectral data presented in this chapter proved to be suitable for estimating the water quality
parameter TSS. Special focus was put on automating the process from data acquisition to
the final parameter map as far as possible and that interactions with the process flow are
possible even without expert knowledge. The result for the user is a parameter map of
the area under investigation. It should be emphasized here that the models for parameter
estimation were trained completely with simulated data using the WASI software. Thus,
it could be shown by the evaluation that the models generalize well to different weather
conditions and parameter ranges. In the following, some of the results obtained are shortly
discussed.

A comparison of the used parameter estimation methods using the mean absolute error in
the tables Tab. 7.3, Tab. 7.4 and Tab. 7.5 shows that the methods perform differently on
the simulated and real data. For example, the results with RF are worse for the real data
than for the simulated data. In contrast, the results of CNN are worse for simulated data
than for real data. Possible reasons for this could be, for example, that the model of RF
does not generalize well. That RF cannot make use of the high spectral resolution was also
shown in [52] in the context of estimating chl-a concentrations.

A quantitative comparison of the obtained results is especially possible with research pre-
sented in [57]. There, under similar conditions, data was collected with the same camera
also carried by a UAV of a peri-urban stream. They used PLS to estimate the TSS con-
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centration and achieved an RMSE of 6.4 mg l−1. The methods used here achieve an RMSE
of 4.1 mg l−1 for ANN and 5.8 mg l−1 for CNN when evaluating the final maps. Although
no real data were used to train the models in this work, the RMSE for PLS is only slightly
worse than in [57] with a value of 6.6 mg l−1.

While PLS and RF are not able to model bottom reflectance without further knowledge,
it could be shown in the context of this work that ANN and CNN can partially infer this
to a certain extent. Although the ANN and CNN perform better in general, a reason for
the inverted effect of small water depth in the results of the ANN compared to CNN could
not be finally identified. One possibility is the different number of training epochs and
the different structure of the two methods. However, larger values of TSS in the ANN
based estimations are observed along the course of the old river which is still present in the
bathymetry. This is most likely correct, as the main water flow follows this course. Due to
missing in-situ samples along this area, it is not possible to further evaluate this.

The spatial comparison of the methods shows the good repeatability of the measurements
but also reveals still existing influences due to changing cloud cover. In particular, the
estimated parameters obtained under diffuse illumination in cloud shadow suggest that the
physical processes prevailing there are not fully covered by the trained models or even by
the simulated data. However, by applying the developed methods for mosaicking, which
use the high redundancy especially along the flight direction, these effects (sun glint and
cloud shadow) could be clearly reduced. This demonstrated that the system can be used
even under variable cloud cover. Another method to reduce surface effects is the inversion
of adapted analytical models as it is presented in [109]. However, their method could not
reliably reduce all surface effects and needed more input parameters and expert knowledge
of the user compared to the methods developed in this work.
In addition to the good repeatability of the measurements, it can also be assumed that the
methods and models can be applied to other inland water bodies. This can be explained
by the fact that the models were trained exclusively with simulated data and the software
used (WASI [35]) was mainly developed for European waters. In the context of this work,
the application was made to a water reservoir in South America.

In general, the qualitative comparison of the mosaics concerning spatial noise and existing
angle-dependent effects shows that the methods developed here provide smoother and
probably more reliable results than comparable studies (cf. [92, 84, 148]). However, the
qualitative comparison of the PLS, ANN and CNN methods showed that there are spatial
differences in the results which are not revealed in the numerical comparison. The differences
could have been influenced by the method but also by the parameters chosen to train the
models. To be able to explain these effects, more reference data are especially necessary

From a user’s point of view, it should be mentioned that the measured suspended matter
concentrations are not only due to the sediment input into the water body. Increased
concentrations can also be explained, for example, by the resuspension of sediment in
shallow waters [149].
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Furthermore, the estimated concentrations are always integrated along the water column.
It is therefore not possible to determine the depth at which the measured concentration is
present. The water depth up to which the backscattered sunlight has an influence on the
measured signal is also directly related to the prevailing conditions such as the concentrations
of the water quality parameters as well as the condition of the water surface [150, 32, 13].
Fig. 5.5a, which visualizes the relationship between secchi disk depth and water turbidity
on the basis of measurements, can give a first impression.
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CHAPTER8
Summary

In this work, a multimodal sensor system consisting of a thermal camera, a hyperspectral
camera and an irradiance spectrometer was integrated on a small UAV. For this, the spectral
sensors were individually calibrated and cross-calibrated to be able to directly measure the
remote sensing ratio (see Chap. 4) which is then used to estimate water quality parameters.
The successful application of the system was demonstrated with several data sets acquired
during a field campaign in March 2020 at the Passaúna reservoir, located in the west of
Curitiba, Brazil (see Chap. 5). In Chap. 6 it was shown that the thermal camera together
with the developed methods is suitable to map the water surface temperature. The spectral
data and the developed methods to process the hyperspectral images to get image mosaics of
the total suspended solids (TSS) concentration were presented in Chap. 7. In the following,
the results of the individual chapters are taken up again and put into relation to current
research.

Sensor System and Calibration Methods

In Chap. 4 the UAV and the integrated sensor system were initially presented before focusing
on the calibration of the spectral sensors. Based on the general methods for the calibration
of spectrometers, the necessary adaptations for the calibration of the hyperspectral camera
were explained. After this, the cross calibration of both sensors was carried out. These cross
calibrated spectral sensors then enable the direct measurement of the remote sensing ratio
which is later used for parameter estimation. Finally, the developed method to synchronize
the data of the spectral sensors with the navigational data of the UAV allows the inevitable
inclination correction of the irradiance measurements. In the following, the relevant results
of the chapter are presented and discussed.

The spectrometer could be calibrated reliably according to the established methods for
calibration. The dark current was modeled as a function of temperature and integration
time and can then be corrected. The nonlinearity of the sensor was determined in the
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laboratory using a luminance standard and can also be corrected by a polynomial. Using
lamps with known spectral signatures, the wavelength of each channel was calibrated.

Since the hyperspectral camera does not have an internal thermometer, modeling the
dark current (DC) was not possible. Therefore, the DC was only investigated. If no DC
measurement is available, a constant DC value of 2 DN can be assumed. The nonlinearity
had to be determined individually for each channel to be able to correct this effect reliably.
In contrast to other research (see [57, 111]), where the camera is operated only in the linear
range, this represents an added value, since fewer spectra have to be discarded during the
evaluation. The adapted method is suitable for regularly checking the wavelength calibration
of the sensor. Since the hyperspectral camera was overhauled by the manufacturer, no
improvement could be achieved compared to the factory calibration. To precisely calibrate
the wavelength scale, a monochromator should be used (see [31, 57]). As with using a
monochromator the low spectral resolution of the hyperspectral camera would not produce
overlapping features in the measured spectra and therefore enable a better determination
of the center wavelengths of each channel. A similar pattern compared to the observed
vignette and residual pattern was also found in other works (see [110, 112, 121]) and could
be caused by a coating of a beam splitter [111]. The effect was corrected by a pixel and
channel dependent factor. Instead of an absolute calibration of the radiance and irradiance
values, a cross calibration between the sensors was performed.

After calibration, it was found that reflectance standards should be used with care in
outdoor environments as ambient effects like shadowing or hardly visible reflections onto
the reference panel affect the measurements. This applies especially to flexible reflectance
tarps when folded for transport. The remaining wrinkles after unfolding in the field can lead
to deviations of up to 20 percent from the mean, which would directly affect the calculated
reflectance spectra.

Due to the missing synchronization between the navigational data of the UAV and the
spectral sensor system, a method for synchronization was developed that uses the acquired
irradiance measurements and navigational data in combination with Lambert’s cosine law.
As this method is data driven, it is a valuable approach when data are not synchronized.

Finally, the cross calibrated sensors enable the direct measurement of the remote sensing
ratio which is later used for the estimation of water quality parameters like the total
suspended solids (TSS) concentration.

Water Surface Temperature

Remote sensing of the water surface temperature using the thermal camera integrated on
the UAV was covered in Chap. 6. First, the characteristics of the thermal camera were
presented. Then, data driven methods to correct these effects during post processing and
to generate mosaics of the thermal images were developed.
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The georeferencing of the images of both sensors, thermal and hyperspectral, was carried
out assuming a nadir image using the intrinsic calibration parameters of the respective
camera and the pose of the copter at the time of acquisition. As the initial georeferencing
of the images of both sensors showed geometrical shifts between the flight lines, an image
based method to reduce these offsets was developed. The geometrical shift between the
flight lines was determined from several overlapping image pairs from adjacent flight lines.
The used images were acquired over land and image features were detected. Subsequently,
a mean offset was calculated using several image pairs.

For the correction of the presented characteristics of the thermal camera, data driven meth-
ods to estimate the nonuniformity, offsets and drift of the thermal images were developed,
which are largely automated. As these methods are applied during post processing, labora-
tory calibration is not required. The development of suitable post processing methods was
necessary, as the characteristics of the camera are strongly variable during the flight, which
makes the use of laboratory calibration impossible.

To process the data, all pixels were first classified into water and nonwater to correct for
nonuniformity by fitting a polynomial surface. The overlapping areas of neighboring thermal
images along the flight line were then used to correct for existing large offsets between the
frames and a general temperature drift. After this, the radiometry of adjacent flight lines
was aligned using the existing overlap. Finally, an image mosaic of all individually corrected
frames was created by weighted averaging, taking into account the distance of each pixel to
the center of the image.
Applying these corrections, the effects of the sensor characteristics were reduced to a
minimum. While the temperature range of the raw data of all water pixels was over 15 ◦C
this could be reduced to 2 ◦C in the final mosaics, representing the natural variation. These
mosaics reveal the fine structures of the spatial variation of the water surface temperature
and correspond to the expected range of values (cf. in-situ temperature measurements in
Sect. 5.2).

To reference the temperature of the thermal image mosaics the average temperature of
all water pixels during processing from raw data to final mosaics was preserved. Another
method to reference the data is the use of synchronous in-situ measurements. While using
in-situ measurements is preferred as a reliable method, the other method showed that it
is possible to achieve a coarse referencing with deviations of less than 6 ◦C compared to
reference measurements. In general, this does not affect the good accuracy for relative
temperature measurements within a mosaic, for which a mean absolute error of 0.33 ◦C was
determined in this work. Therefore, in combination with in-situ measurements to reference
the data, a reliable mapping of the water surface temperature is possible.

Comparable results to this work were also presented in [114],[116] and [30].
The study area of [114] is a small river that provides a large number of detectable im-
age features and therefore they use feature tracking to compensate drift and a shutter
based approach to reduce nonuniformity. This approach is not applicable to our system
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as there are not enough stable feature points in the scenes and the temporal variations
of the nonuniformity pattern are too large. The mosaic generation was carried out with
pixel-wise averaging. In contrast, our developed method uses weighting according to the
distance between the pixel and the image center resulting in only little and smooth gradients
between overlapping image frames and flight lines. To reference the temperature mosaics
they used in-situ measurements.
In [116] an approach was presented to investigate and model all influences of the camera
characteristics and the ambiance on the acquired data. They achieved absolute mean devia-
tions of up to 6 ◦C, which could only be reduced significantly by using in-situ measurements
which is comparable to our results. However, there are still larger gradients in their image
mosaics caused by the camera characteristics compared to the results achieved with the
developed methods in this work.
Good qualitative and quantitative results were also achieved in [30]. They estimated the
nonuniformity of the images in the laboratory and applied the corrections to the measure-
ments. Presumably, the use of this preliminary estimation of nonuniformities and application
to field measurements is possible due to the slow movement of the system with 1 m s−1,
reducing a cooling through wind, and mounting the sensor system inside a box which further
reduces environmental effects on the camera [141].

Although our results are comparable with other studies, the data driven approach developed
here allows a high degree of automation and is therefore also applicable for nonexperts. Es-
pecially, the use of the pure data based correction of the influences represents a significantly
lower effort compared to the complete modeling of all effects as e.g. in [116] where still
residual effects are visible caused by an insufficient correction of the single images.

Spectral Data and Parameter Estimation

Using the calibrated spectral sensors (see Chap. 4), hyperspectral reflectance images were
acquired during the measurement campaign at the drinking water reservoir Passaúna close
to Curitiba, Brazil. These data were used in Chap. 7 to demonstrate and evaluate the
application of the system with the goal of largely automated mapping of the total suspended
solids (TSS) concentration. A flow chart of the developed processing pipeline is visualized
in Fig. 7.8.
This chapter first presented the acquired data and their specifics, such as possible problems
under changing irradiance and explained the automated data cleansing. As generalizing
machine learning methods allow the processing of spectral data even by operators without
deep expert knowledge, they were chosen in this work. Due to the lack of a large training data
set which is inevitable for the application of machine learning (ML) techniques, reflectance
spectra with corresponding reference values for the TSS concentration were simulated
using the software WASI. A similar concept was also presented in [70] where simulated
data were used within the framework of the estimation of the chlorophyll concentration
using ground based spectral reflectance data. A special focus during the generation of
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the simulated data was put on adding variations of ambient effects like sun glint and the
water depth. Using these simulated data, different ML methods such as Partial Least
Squares Regression (PLS), Random Forest (RF), Artificial Neural Networks (ANN) and
Convolutional Neural Networks (CNN) were trained and the models were then applied
to the real data to estimate the TSS concentration. The focus on the estimation of the
total suspended solids (TSS) concentration was chosen since for this parameter sufficient
in-situ measurements are available for an evaluation. For the data of two flights, the chl-a
concentration was estimated using a PLS model trained with simulated data. Due to very
low concentrations of the in-situ measured parameter chl-a in general, these mosaics could
not be validated and evaluated quantitatively. However, the chl-a maps show the potential
of using the system to map parameters other than the TSS concentration.

For the generation of parameter maps, an automatic mapping method was developed which
uses the estimated parameters of the single image frames. Using the estimated parameter
images is necessary because the raw spectra cannot be averaged due to influences such as
glint. On the other hand, the chosen estimation methods consider these effects so that the
resulting parameter images can be used for mapping. The developed method takes into
account the angle to the sun and the distance to the center for each pixel of the image
when calculating a weighted average of the corresponding ground point. It was shown that
the resulting spatial noise in the parameter maps was significantly reduced by using the
weighted average compared to simple averaging. It was also shown that only the use of
dynamic irradiance measurements facilitates reliable data even below clouds. To reduce the
influence of glint on the final maps, parts of the images with areas where glint is likely to
occur were cropped.
Under constantly changing cloud cover, however, false assignments of irradiance measure-
ments to ground pixels can occur. These misassignments result in the reflectance being
incorrectly calculated and thus the estimated parameters being falsified. To reduce this
error, a semi-automatic procedure was developed which significantly reduces these influ-
ences. While for the case that the irradiance spectrometer is in the shadow and the ground
point is in the sun a significant reduction was achieved, for the case that the irradiance
spectrometer is in the sun and the ground point in the shadow only minimal improvements
could be achieved. One reason for this may be the spectral characteristics, which are not
sufficiently covered by the simulated data for this case and no sufficient generalization was
achieved using the ML models.
Due to the largely automated handling of the influences of glint and shadow on the data,
the developed methods represent a clear advantage over other works that try to model these
effects and require expert knowledge of the operator and in some cases use further in-situ
measurements (cf. [109]).

The quantitative evaluation found that the trained models provide different results for
manually preselected individual spectra compared to the automatically calculated mosaics.
The methods PLS and RF gave better results than ANN and CNN for the manually
selected reference spectra. This was reversed when evaluating the final parameter mosaics.
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Here, ANN and CNN provided better results in the quantitative comparison. The better
performance of ANN and CNN in this case is achieved by the good generalizability and the
better handling of ambient influences of these ML methods.
The results of the ML methods were also compared to an empirical method, where a Band
Ratio (BR) approach was selected as it is a widely used method. As this approach could
only achieve reasonable results on manually preselected spectra with little ambient effects
like sun glint, this method was not further used.
An examination of the repeatability of the measurements was possible with the help of three
overlapping flights on each of two campaign days. This showed good repeatability of the
measurements under optimal sunny conditions with only little artifacts in the parameter
maps due to changing irradiance.

A quantitative comparison of the obtained results is especially possible with [57]. There,
under similar conditions, data of a peri-urban stream was acquired with the same hyperspec-
tral camera also carried by a UAV. They used PLS to estimate the TSS concentration and
achieved an RMSE of 6.4 mg l−1. The methods used here achieve an RMSE of 4.1 mg l−1

for ANN and 5.8 mg l−1 for CNN when evaluating the final maps. Although no real data
were used to train the models in this work, the RMSE for PLS is only slightly worse than
the results in [57] with a value of 6.6 mg l−1.

The qualitative evaluation of the parameter maps showed that the methods PLS, ANN and
CNN provide different results. RF on the contrary could not produce usable parameter
maps at all due to a high spatial noise also present in the individual processed images and
was therefore not considered in detail. The discrepancies between the different methods
are especially visible at low water depths. While PLS cannot handle low water depths
sufficiently and thus needs differentiated models with depth dependent training, the used
ANN and CNN models can partially account for the influence of low water depth on the
spectra and therefore provide better results.

The qualitative comparison of the mosaics concerning spatial noise and existing angle-
dependent effects shows that the methods developed here provide smoother and probably
more reliable results than comparable studies (cf. [92, 151, 93, 148]).
The results shown in [92] still show clear gradients between the data of different flight
lines which indicates that large angle dependent effects are not corrected or handled in the
mapping process. Also, they use only little reference measurements to train their models
and correct the hyperspectral images with the use of synchronously acquired ground based
spectra which is not necessary with our developed approach.
In [151] the authors use a hyperspectral camera for the mapping of turbidity and chlorophyll
but could not achieve good results. Radiometric influences like glint are still visible in their
presented maps.
A push broom scanner was used in [93] in combination with semi-analytical and semi-
empirical models to map the chlorophyll-a concentration in shallow coastal waters where
the results still show strong angle dependent effects in the mosaics.
Good quantitative and qualitative results are achieved for water transparency estimation
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in [83] where they used in-situ reference data to train the models. This is contrary to our
setup where we used only independent simulated data to train the models.

As a result of this study, it can be said that PLS can deliver good results under optimal
conditions with low demands on the computing power and it is also applicable with limited
ground truth data. In contrast, ANN and CNN provide more homogeneous parameter maps
and better results even under changing irradiation and at low water depths.
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CHAPTER9
Conclusions and Outlook

This work was concerned with the setup of a compact and inexpensive sensor system on
a UAV and contributes to current research in the field of automated monitoring of water
quality parameters of inland waters. Methods to calibrate the sensors and to process the
data to generate maps of water quality parameters were developed and applied to data sets
acquired during a field campaign. In the following, the core findings, conclusions and an
outlook will be presented. The research questions listed in the introduction (see Chap. 1)
will be addressed.

9.1 Conclusions

This thesis is divided in three parts. First, the setup of the system and the calibration of
the spectral sensors. Second, the remote sensing of the water surface temperature using
the thermal camera. Third, the hyperspectral remote sensing using the cross calibrated
hyperspectral camera and the irradiance spectrometer for the estitmation of water quality
parameters. Following this partition, conclusions and addressing of the research questions
are presented individually for the different parts. Finally, a general conclusion is given on
the integrated system. In short, the research questions are the following:

1. Can a low budget multimodal sensor system mounted on a UAV be used for (a) easy
data acquisition, and is it possible to (b) automatically process the data to (c) generate
consistent and reliable parameter maps?

2. Is it possible to use the system below the cloud cover?

3. Is it possible to use only few ground truth data?
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Sensor System and Calibration Methods

Especially for the estimation of water quality parameters like total suspended solids (TSS)
the spectral sensors must be calibrated. Without calibration, the varying spectral character-
istics of the individual pixels of a hyperspectral (HS) camera can lead to inconsistent data
(cf. Fig. 3.1). In Chap. 4 the methods for the calibration of the spectral sensors were pre-
sented. The methods used and developed require as few absolute laboratory measurements
as possible and thus keep the time and financial effort low. To synchronize the navigational
data of the UAV and the spectral measurements, the developed data driven approach uses
only data acquired during the field campaign. This synchronization enables the inevitable
inclination correction of the irradiance measurements. The calibrated spectral sensor system
is able to directly measure the remote sensing ratio which is later used for the estimation of
water quality parameters. However, due to the simplified methods and measurement setups,
it is not possible to measure absolute values for radiances and irradiances with this system.

The investigation of measurements on reflectance standards revealed that reference mea-
surements could be biased. The bias depends e.g. on the acquisition geometry causing for
example reflections from the UAV itself on the reference panel. Reflectance tarps on the
other hand can have wrinkles due to folding during transport which also adds a bias pattern
to the reference measurements. It can be concluded, that using a calibrated spectral sensor
system to directly measure the remote sensing ratio is beneficial compared to the traditional
method of using reflectance standards, especially for UAV applications under intermittent
clouds.

Research question 1a can be answered with yes since for the measurement of the remote
sensing ratio only a reliable cross calibration between the hyperspectral camera and irradi-
ance spectrometer is necessary, which was achieved by the developed methods. Especially,
the operation of UAVs is getting easier due to the fast advancing developments of this
technology so the acquisition of data can be done by briefly trained technical staff in the
meantime.

Water Surface Temperature

The analysis of the thermal data showed that the actual signal is overlaid by strong sensor
characteristics. The observed influences are a general drift of the temperature, large offsets
between individual frames and a strong nonuniformity within the frames. The correction of
the nonuniformity was particularly challenging since it varies strongly during a flight, as e.g.
a changing wind direction affects the temperature distribution inside the camera which is
not protected against these influences. Therefore, it cannot be calibrated in the laboratory.
However, the developed methods allow an automated processing of the data to reduce
remaining artifacts to a minimum. The resulting temperature maps can achieve absolute
deviations of less than 6 ◦C without the use of in-situ measurements, which is similar to
the results of other research. Measured temperature differences within the temperature
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maps, however, deviate on average only by 0.33 ◦C from reference measurements. It follows
that the parameter maps allow reliable measurements by using in-situ measurements to
absolutely reference the maps as it is common practice in current research. However, since
water surface temperature can vary by a few degrees Celsius over a day, care must be
taken when acquiring in-situ measurements for referencing the temperature maps to ensure
temporal proximity between in-situ measurement and acquisition of thermal images with
the UAV.

Addressing the research questions, research question 1 can be answered as follows: The used
thermal camera is easy to use and the automated processing of the data produces consistent
and reliable results.
The evaluated data did not show any influence by a changing cloud cover, therefore research
question 2 can be answered with yes for the thermal data.
Since only a few in-situ measurements for absolute referencing are necessary for the reliability
of the temperature maps, research question 3 can also be answered with yes.

Spectral Data and Parameter Estimation

The processing of spectral data requires more comprehensive methods compared to thermal
data since these data are influenced by ambient factors such as changing cloud cover and
total reflection of sunlight (sun glint) at the water surface. In order to achieve an automated
processing of the data as far as possible, methods for the preprocessing of the spectral data
were developed. In a further step, simulated data were used to train machine learning (ML)
models (PLS, RF, ANN, CNN) which were then used to estimate water quality parameters
of the real data. A developed mapping procedure combined the single parameter images to
consistent parameter maps. In this context, it could be shown that the dynamic measurement
of irradiance is mandatory for consistent image mosaics, as it is the only way to account for
effects such as changing irradiance under intermittent cloud cover.

Although the quantitative results with Random Forest (RF) were in the same range as
the other machine learning methods, the parameter maps showed a strong spatial noise
which can be attributed to a low generalization, especially for ambient influences on the
spectra like sun glint and cloud shadows. It can be concluded that this method is not able
to generalize using the simulated data, and therefore, a transfer to the real data is not
possible. Especially, the machine learning methods Partial Least Squares Regression (PLS),
Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) perform well
on the real data. The achieved results are comparable to other research while in this work
the used models were trained without any in-situ data.

However, influences of the water depth are always visible in the parameter maps. This can
be attributed to the low sediment concentration in the water and the bottom substrate
influencing the measured spectra in the same regions as the TSS concentration. The
comparison of the methods shows that the ML methods ANN and CNN can take this effect
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into account much better than the simpler methods due to the better generalization of the
models.

The purely numerical comparison also shows that PLS performs worse on the final mosaics
than, for example, ANN and CNN, but the differences are not particularly large. There-
fore, depending on the application, PLS can achieve good results while only requiring low
computing capacity. Empirical methods such as BR, which can also be implemented with
multispectral cameras, can also be useful in individual cases because particularly inexpen-
sive hardware can be used. The main disadvantage of empirical methods is the strong
adaptation to the local conditions and possibly even a seasonal dependency. By contrast,
the models generated in this work with the aid of simulated training data can be assumed
to be highly generalizable and easily transferable to other waters.

Due to the low number of reference measurements for the evaluation, a numerical comparison
with other research is difficult. Besides the few ground truth measurements, the relatively
small range in which the TSS concentrations varied and the very low chl-a concentration
make an optimal evaluation of the data difficult.
However, it should be highlighted that this work has completely avoided in-situ measure-
ments for training the models and thus uses completely independent data sets for training
the models and evaluating the real data, which is a decisive difference from the majority of
the literature, which mostly uses empirical models or models trained with in-situ data or
further prior knowledge.

The developed methods are largely automated and provide consistent and reliable maps. To
process the data, the operator does not need deep knowledge in this field, so the research
questions 1b and 1c can be answered with yes. The only constraint in using the system is
the need for the UAV operator to have practical experience.
Based on the results, research question 2 can be answered: The system can be used below
cloud cover and intermittent clouds while the parameter maps show few artifacts due to
ambient effects.
A comparison with other recent research also shows that the sensor system and the de-
veloped methods can achieve similar results. In this work, the developed methods mostly
achieve more consistent parameter maps with low spatial noise, and, in some cases, better
quantitative results. Therefore, regarding research question 3, it can be concluded that
the system can deliver reliable results even without ground truth measurements as only
simulated data was used to train the models.

General Conclusions

To sum up, the system is suitable for practical use, and the research questions posed at
the beginning can be answered in the affirmative for the system as a whole. Especially,
the qualitative analysis of the generated temperature and parameter maps shows the good
performance of the system. The high consistency of the maps is remarkable, with only
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minor artifacts of the sensor characteristics and ambient influences on the sensors visible in
the parameter maps. Thus, the results obtained stand out positively from a large number
of similar studies. Weaknesses of the conducted studies, however, are to be seen in the
reliability of the quantitative evaluation. Because of the few existing in-situ reference
measurements, future work with this system will have to include a robust quantitative
evaluation in particular.

Also, the high degree of automation of the system and the data evaluation leads to easy
handling. Thus, the developed system stands out from many approaches of current research
and makes an important contribution to automated remote sensing of water quality param-
eters. In practice, however, the short flight time of less than 15 min is a limiting factor for
the use of this system.

Possible use cases of the system in the context of monitoring water quality parameters
are presented in the following. The system can be used to collect high-resolution data at
any time, even within a day, e.g. from areas that are necessary for the numerical modeling
of processes in the water. It could be used to map the spatial distribution of parameters
around structures to e.g. identify sediment traps and study internal flows. This is a clear
added value compared to satellites which provide only data in intervals of days or even
weeks with lower spatial resolution. Besides this, the number of usable satellite images is
further reduced due to frequent cloud cover. The flexible and fast setup of the system in the
field also allows to capture phenomena with diurnal variations like algae blooms with a high
spatial and temporal resolution. Finally, the system can also be used to detect parameter
gradients and highly dynamic areas, which can be used to optimally determine the positions
for in-situ samplings and sensors for long-term monitoring.

9.2 Outlook

Based on the experience gained from the practical use of the system and the findings obtained
in the studies, further challenges for future research can be identified. The remaining
challenges and outlooks listed below concern the hardware and processing of the data as
well as their use.

The biggest added value of a UAV-borne sensor system can be achieved if the flight time is
long and thus the area that can be covered is large. With conventional vertical launching
multicopters like the one used in this work, this is usually not possible. However, the
ongoing development of UAVs in recent years has resulted in vertical take-off UAVs which
switch to a flight mode corresponding to that of a fixed wing UAV after take-off. With these
versatile UAVs, large-scale data acquisition at still low costs and a high degree of flexibility
will be possible soon.

In particular, the collection of sufficient reference data is a critical task for the training and
evaluation of parameter estimation methods. Since manual sampling requires additional
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personnel in a boat on the water, it makes sense to automate this part as well. Here,
autonomously driving boats with in-situ sensors or UAVs that can take water samples in
an automated way could be useful [152, 153].

Regarding the thermal camera, the results from [30] show, that with the help of an optimized
setup in which the camera is protected from as many environmental influences as possible
by an additional housing, data with good quality can be acquired and its potential should
be investigated in detail in further research. Also, the use of the thermal camera with an
additional external shutter which is heated could be beneficial. As it could provide a more
reliable reference than the internal shutter during flight and thus allows better correction
of nonuniformity and drift.

The spectral sensor system could be improved by the use of irradiance sensors that are
tailored to UAV applications [154] and are partly available for multispectral cameras (e.g.
[155]).

A special challenge in the processing of image data acquired over water is their exact
georeferencing, where traditional image-based methods are usually not applicable. For
further work, it is therefore imperative to be able to measure the exact orientation of the
camera to georeference the images correctly.

To further reduce ambient influences like sun glint affecting the measured spectra, the
optimal orientation of the hyperspectral camera should also be investigated, just as optimal
orientations have been determined for point spectrometers in the past.

Under changing irradiance, some minor artifacts still exist in the parameter maps. For this
purpose, further methods for their optimal correction have to be explored.

In this work, the spectral data were used only to estimate and evaluate the parameter TSS.
A first attempt of mapping the chl-a concentration was shown but not evaluated. Future
studies should therefore extend the developed methods to other relevant water quality
parameters and evaluate them accordingly. Also, the system should be tested on different
types of waters to confirm the applicability for different scenarios.

Since a system has been developed within the framework of this work that is suitable for
practical use, possible applications should be investigated in further studies. The easiest
to implement is the search for optimal positions for taking water samples [156] or the
positioning of in-situ probes for long-term measurements. Studies of phenomena that vary
within a day, such as algal blooms [15], are also particularly interesting. In the context of
management concepts for water reservoirs, for example, the parameter maps can serve as a
contribution to the setup and validation of numerical models and thus support e.g. sediment
management.

In general, the system is not limited to the sole use of remote sensing of inland waters. For
example, the data could be used for validation of e.g. satellite data, as it was implemented
in [157] with multispectral cameras. The integrated sensors can also be used for mapping
birds and other animals on the water or at the shore where also the predominant vegetation
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is of interest. In the catchment of a water reservoir, the hyperspectral camera could be used
to determine vegetation indices or even map the distribution of individual plant and tree
species. With this system this has already been tested in [158] for a small data set with the
aim of classifying different crops on an agricultural farm.

To sum up, the system performs well for the presented studies and the results are promising
for a variety of future works where the flexible acquisition of high resolution remote sensing
data is needed. Especially, when satellite data does not offer the necessary flexibility and
spatial resolution, and airborne systems are not economically viable. Nevertheless, more
research is necessary to improve the system and further automate the processing with the
aim of achieving a market ready product which then will make a decisive contribution to
the management of surface waters.
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