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Abstract

Inverse problems are ubiquitously encountered throughout science and engineering.

Where the forward problem answers the question of what the output for a given in-

put looks like, the inverse problem tries to answer the opposite: given a set of outputs,

what were the inputs? While the forward problem is typically uniquely defined and can be

solved through numerical modeling, the inverse problem is generally ill-posed, making its

direct solution intractable. Inverse design is a class of methods that aim to solve the inverse

problem, at least to a “good enough” approximation, by computational optimization of a

mathematically defined objective function.

Topology optimization, in particular, is a gradient-based method for inverse design. The

method has gained popularity in photonics in the past decade and has led to the cre-

ation of devices with non-intuitive designs and exceptional performance. This thesis

applies topology optimization to designing various nanophotonic devices, from two-

dimensional structures that manipulate and guide surface waves to fully free-form and

three-dimensional devices such as fiber-to-chip and grating couplers. We find that while

topology optimization and additive manufacturing via methods such as 3D laser nanoprint-

ing ideally complement each other, creating fabrication-ready free-form nanophotonic

devices presents unique challenges. We identify the issue of structural integrity and de-

velop a method for coupled mechanical and electromagnetic inverse design, demonstrating

that this approach can yield more feasible devices for fabrication.

Lastly, we focus on the issue of computational cost – topology optimization typically

involves many iterations of computationally expensive numerical simulations, which can

limit the extent to which the design space can be explored. We develop a framework for

the inverse design of nanophotonic devices via a neural operator-based surrogate solver

and apply it to optimize free-form electromagnetic scatterers. As these surrogate solvers

are trained on data obtained from numerical simulations, we discuss the trade-offs in terms

of generality and accuracy and examine the problem settings in which such trade-offs can

be feasibly made.
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1 Introduction

Nanophotonics, as the investigation of light-matter interactions on the nanoscale, plays a

crucial role in advancing various modern technologies such as photolithography, optical

communication, and optoelectronics [1]. Most nanophotonic device development follows

a structured process that starts with conceptual design and is followed by verification

through numerical simulations, fabrication, and detailed characterization. The design

process often begins with a basic model inspired by similar devices in related fields, like

microwave engineering, adjusted through iterative simulations to optimize performance

for the intended application. This iterative approach has led to the creation of an extensive

collection of nanophotonic device templates. These templates integrate principles of

material resonances, bandgap engineering, and index guiding, enabling unparalleled

control over light propagation across a broad range of frequencies.

Computational techniques like the finite-difference time-domain (FDTD) [2, 3], finite-

difference frequency domain (FDFD), and the finite element method (FEM) [4, 5] are

crucial for simulating device responses to various inputs. Addressing a given set of

inputs to predict device outcomes is referred to as solving the direct, or forward, problem.

However, this direct method often does not correspond with practical scenarios where

the actual query is about designing a device capable of producing specific outputs, thus

necessitating the resolution of what is known as the “inverse problem”. The inverse

problem focuses on deducing the necessary device parameters to achieve a desired outcome.

Traditionally, this has involved manual adjustments of device parameters through trial

and error – often guided by the designer’s physical intuition – which can be seen as a

form of exhaustive brute-force optimization. Nevertheless, as nanophotonics continues to

expand, embracing an increasingly wide array of phenomena and fabrication techniques,

the complexity of the functional requirements for nanophotonic devices grows. Numerous

applications require the simultaneous optimization of several independent features, such

as device functionality at particular frequencies, minimization of the overall device size,

and tolerance to fabrication imperfections.

As nanophotonic devices become increasingly more complex and need to meet specific

functional requirements, the traditional manual optimization process often becomes im-

practical and inefficient. This evolution underscores the necessity for advanced computa-

tional tools to support, enhance, or fully automate this design process. Developing and

integrating such tools into the workflow of nanophotonic device design would streamline

the optimization process and enable the exploration of a broader design space with higher

precision and efficiency. Consequently, there has been a significant push towards leverag-

ing computational methods, such as machine learning and computational inverse design

1



1 Introduction

techniques [6]. These techniques can intelligently navigate the vast parameter space to

identify optimal device configurations that meet the desired performance criteria without

the exhaustive manual tuning previously required.

Gradient-free optimization methods, such as iterated searches [7, 8], genetic algorithms [9,

10], and particle swarm optimization [11, 12], have been applied extensively and success-

fully as a computational alternative to the traditional design approach. These algorithms

adjust the design variables, compute the forward problem for each variant, and retain the

variable set that most closely aligns with the design objectives. The distinction among

these techniques primarily lies in the manner of perturbing design variables and the

strategy for selecting solutions for subsequent iterations. A key advantage of gradient-free

optimization is their inherent ability to converge to a solution within the search space

irrespective of the space’s differentiability or the problem’s convexity. This trait makes

them particularly useful in scenarios where gradient-based methods may not be applicable

or efficient, e.g., when the objective function is non-differentiable or the problem is combi-

natorial. Moreover, these methods are versatile and capable of handling a wide range of

optimization problems without necessitating gradient information, which can be difficult

or computationally expensive to compute in certain contexts. However, the trade-off for

this flexibility is that these methods require many function evaluations to find a satisfac-

tory solution, leading to increased computational costs, especially for high-dimensional or

complex design spaces. The fundamental nature of gradient-free optimization methods,

being essentially combinatorial, significantly impacts their scalability with complexity.

The necessity to compute the forward problem multiple times is directly tied to the number

of design variables, leading to poor scalability as the complexity of the device increases.

In the context of nanophotonic device optimization, design variables often represent

geometric parameters that define the distribution of materials. Consequently, limiting

the number of degrees of freedom in the search space also limits the range of possible

device topologies that can be explored through these optimization methods. A significant

disparity exists between the complexity and variety of topologies that could theoretically

be manufactured using advanced fabrication techniques and the relatively constrained

search space accessible through these optimization strategies. This gap implies that the

potential of nanophotonic device design, enabled by modern fabrication methods such as

photolithography or 3D laser nanoprinting, may not be fully realized or explored using

conventional gradient-free optimization approaches.

Gradient-based optimization techniques offer a more efficient approach to exploring the

parameter space by leveraging gradient information to determine the search direction.

These methods can optimize many design parameters – often on the order of millions –

simultaneously. In theory, gradient-based optimization is straightforward, and implement-

ing such algorithms is generally not labor-intensive because of their broad applicability

and the availability of performant implementations in the public domain [13, 14, 15]. The

challenge, however, lies in computing the gradients for a specific optimization problem.

While obtaining numerical gradients through finite differences is conceptually simple,

it necessitates solving the forward problem for each variation in the design variables,

thereby incurring computational complexities akin to those encountered in gradient-free

techniques. Adopting more efficient methods for gradient computation, such as the adjoint
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method, is the key to overcoming these complexities. The adjoint method computes the

gradient of the objective function with respect to any number of design variables through

only two full-wave simulations. This efficiency makes the adjoint method particularly at-

tractive for problems involving many design variables, as is often the case in nanophotonic

device optimization.

1.1 Inverse design in nanophotonics

Inverse design has seen a rapid rise in popularity in nanophotonic within the past decade.

Pioneered by Jensen and Sigmund [16], who carried the concept over from mechanical

engineering to photonics, and later popularized by Piggott et al. [17], countless studies have
been dedicated to the exploration of inverse design in nanophotonics since. Much, if not

most, of this work has been dedicated to realizing optical components for on-chip photonic

integrated circuits (PICs) such as compact power splitters [18], polarization splitters [19],

mode converters [20], and wavelength demultiplexers [17]. The strength of these devices

has typically been their previously unparalleled performance at small footprints, with

the drawback of lower tolerances for fabrication imperfections and oftentimes relatively

narrow-band operation.

While earlier works focused on proof-of-concept designs [21, 6], much effort has gone into

resolving issueswithmanufacturability, with the development of schemes for incorporating

feature size constraints into the optimization [18, 20]. While important, such earlier

schemes generally failed to fully capture the design restrictions imposed by commercial

foundries with CMOS-compatible silicon photonics processes. Many of these foundries

and their associated fabrication processes have design rules that are notoriously difficult

to deal with, even in “conventional” PIC design. Because of this, much focus in recent

developments has been on the incorporation of such design rules [22, 23, 24], marking an

important step toward the commercialization of inverse design in the context of integrated

photonics.

These developments have led inverse design in silicon photonics to a point where we

are now seeing initial steps toward industry adoption, with commercial electromagnetic

simulation and design software such as Lumerical FDTD and Tidy3D incorporating tools

for inverse design. The demand for high-bandwidth interconnects due to the ever-rising

requirements of datacenters and more recently, machine learning, coupled with key players

in the chip industry announcing roadmaps for co-packaged optics, means that it is now

only a matter of time until miniaturized photonics – and with it, inverse design – reaches

a point of widespread adoption. In other words: it is a good time to be a photonics

engineer.

The research community is – as always – forward-looking and, in the context of integrated

photonics, has started exploring alternative material platforms with more “exotic” optical

properties, where suitable methods have been developed for the inverse design of, e.g.,
nonlinear optics [25, 26, 27, 28]. Some of these new material platforms include lithium
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niobate [29], diamond photonics [30], chalcogenide glass [31], and silicon carbide [32,

33].

Another area where inverse design has gained popularity is in the design of metasur-

faces [34, 35, 36], particularly in the context of flat lenses (“metalenses”) [37, 38] and other

imaging systems [39, 40]. While being a different application and problem setting, most of

these designs have stayed within the confines of two-dimensional patterning of single-

layer structures by traditional photolithography techniques. However, there has been

some investigation into structures made of multiple patterned layers [41]. Nevertheless,

outside of on-chip applications, restricting designs to a 2D configuration severely limits

the functionality that could, in principle, be attainable through 3D patterning of devices.

A technology with which such patterning is possible is two-photon lithography [42],

sometimes also called 3D laser nanoprinting. 3D laser nanoprinting is a high-resolution

additive manufacturing technique that uses focused laser beams to precisely fabricate

structures at the nanoscale. It has seen rapid developments in terms of scalability and

printable feature sizes in recent years [43, 44]. While this technology has, of course,

not gone unnoticed by the inverse design community, work on the development and

application of inverse design techniques tailored for such fabrication has been sparse [45,

46], and most have restricted the geometries to quasi-planar designs [47, 48].

1.2 Thesis outline

With 2D inverse design on the way to commercialization, a logical next step is the develop-

ment and application of inverse design to fully free-form devices, which will be the focus

of this thesis from Chapter 4 onward. We will explore the application of gradient-based

inverse design to a series of increasingly more complex nanophotonic design challenges,

where we will uncover some novel device designs and design strategies.

Following this introduction, Chapter 2 will introduce the theory for the two cornerstones

of large-scale, gradient-based inverse design in nanophotonics, namely the adjoint method
and topology optimization, which will serve as the lens through which we will view and

approach the design challenges introduced in the subsequent chapters.

In Chapter 3, we will introduce our first nanophotonic inverse design challenge – en-

hancing and steering the emission of a dipole emitter that excites Bloch surface waves

into a waveguide. We will first discuss the theory of wave propagation in stratified media,

which leads to the appearance of such surface modes. These modes are weakly guided

and experience an extremely low effective index contrast, rendering intuitive design chal-

lenging. A unique property of this system is that it can be modeled accurately through 2D

simulations, making it feasible to systematically study variations in the refractive index

contrast through multiple optimizations.

Moving on to 3D simulations, we will proceed to design a device that couples light from

an optical single-mode fiber into a photonic wire bond in Chapter 4. This system is
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characterized by its rotational symmetry. We will develop an efficient parameterization

for topology optimization that constrains the design space accordingly. Using this param-

eterization, we design a device that offers high coupling efficiencies at a much smaller

device footprint than typical couplers.

In Chapter 5, we will then proceed to tackle a truly large-scale inverse design challenge:

optimizing a polarization-independent grating coupler. We design the device with additive

manufacturing via 3D laser nanoprinting in mind, thereby obviating the need for planar

or symmetry restrictions used in the previous chapters. This leads to a fully free-form

geometry with millions of degrees of freedom in the optimization. The optimized device

achieves some of the highest reported coupling efficiencies for both polarizations but

presents a challenge for experimental realization.

Consequently, Chapter 6 will highlight some of the unique challenges that arise when

using topology optimization to design free-form nanophotonic devices. The chapter will

focus on the aspects of connectivity and structural integrity, which are aspects of inverse

design that have largely been neglected in the literature due to the focus on the optimization

of planar (on-chip) devices. We develop a framework for co-designing devices’ photonic

and structural properties by combining optical and mechanical topology optimization

and systematically study the tradeoffs on the optical objective associated with imposing

structural penalties, where we discover that such co-designed devices can achieve both

structural integrity and only marginally diminished optical performance

Chapter 7 will illuminate the challenge of nanophotonic inverse design from an entirely

different perspective – the computational cost associated with large-scale inverse design.

In particular, we will explore the use of neural network-based surrogate solvers to replace

conventional full-wave solvers such as FDTD. Our work will focus on so-called neural
operators, a recently developed class of machine learning models and compare their perfor-

mance to other state-of-the-art models used in nanophotonics, where we show drastically

improved accuracy and data-efficiency for our approach. We will then demonstrate the

inverse design of fully free-form three-dimensional devices with the developed surrogate

model.

Finally, Chapter 8will conclude with a summary of our findings, place the work presented

in a broader scientific context, and outline possible future paths for development.
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Two main ingredients are necessary to perform gradient-based inverse design: a way

to obtain the gradients of some objective function with respect to a set of optimization

variables and a suitable parameterization such that these parameters can represent a

physical design. In this chapter, we will introduce the adjoint method in its general form

in Section 2.1 as an efficient way of obtaining these gradients, which we will then apply

to Maxwell’s equations. Following this, we will show how these gradients are connected

to topology optimization in Section 2.2 and introduce the three-field parameterization

scheme.

2.1 Adjoint sensitivity analysis

Various approaches can generally tackle inverse design, but in the case of problems with a

very large number of degrees of freedom, such as the ones we discuss here, gradient-free

methods become infeasible as the problem’s dimensionality is simply too large. Instead,

we rely on local, gradient-based optimization, and to do this, we need first to establish

a way of obtaining gradients of some figure of merit with respect to the optimization

parameters. In particular, obtaining these gradients needs to be as efficient as possible, as

Maxwell’s equations are generally computationally expensive. Therefore, derived gradients

by finite-differencing schemes are infeasible, as this would entail running at least one

additional simulation per degree of freedom in the optimization. Instead, we will employ

the so-called adjoint method, or adjoint sensitivity analysis, which allows for efficient

gradient computation for linear systems with many free parameters.

Adjoint sensitivity analysis has a long history in optimal control theory as a method of

finding a certain optimality criterion for a given system. It has been used extensively in

the engineering disciplines in the context of computational fluid dynamics and structural

engineering [49, 50].

This analysis technique draws its theoretical basis from Pontryagin’s maximum principle,

a cornerstone in control theory developed by Kopp [51], which facilitates the identification

of the most effective control strategies for guiding a dynamical system from one state to

another. Thus, adjoint sensitivity analysis can be seen as an extension of the calculus of

variations, offering two principal approaches for establishing an adjoint system: one can

either derive the gradient of the objective function from a continuous design problem before

discretizing this gradient for computational implementation or discretize the problem

initially and then derive the gradient from this discretized model. These approaches

7



2 Theory

converge in outcomes as the discretization becomes infinitely fine, yet exhibit minor

differences otherwise.

In this section, we will introduce the discrete adjoint formalism in its general form and

then outline its application to Maxwell’s equations.

2.1.1 The discrete adjoint method

Numerous physical systems, encompassing fields such as thermal flow, structural mechan-

ics, and electromagnetics – as governed by Maxwell’s equations – can be modeled as linear

equations that encapsulate the underlying physics of the form

A𝒙 = 𝒃 , (2.1)

whereA is the systemmatrix, 𝒙 is the solution field vector and 𝒃 are the sources. Resolution
of this system can be achieved through direct methods, such as LU or Cholesky decompo-

sition, or iterative techniques, such as the Richardson or Jacobi methods, depending on

the problem’s nature and computational considerations.

When designing physical structures, be it load-bearing elements in mechanical engineering

or integrated optical circuits in nanophotonics, one is typically interested in optimizing

some real-valued scalar objective function 𝐹 (𝒙) of the solution vector 𝒙 . This can be

expressed as a general optimization problem of the form

min

𝝆
𝐹 (𝒙)

subject to A(𝝆) 𝒙 = 𝒃 (𝝆) ,

(2.2)

with the parameter vector 𝝆. While 𝝆 can, in principle, be any vector of coefficients in the

linear system, it typically represents the material parameters that are discretized on the

computational grid in our case. Since we are interested in the sensitivity of the objective

function 𝐹 with respect to a change in these parameters 𝝆, we are ultimately interested in

evaluating the following expression

𝜕𝐹

𝜕𝝆
=
𝜕𝐹

𝜕𝒙

𝜕𝒙

𝜕𝝆
. (2.3)

Obtaining 𝜕𝐹/𝜕𝒙 only requires the solution vector 𝒙 , which is simply the result of solving

the linear system once. The derivative of the objective function 𝐹 with respect to its

inputs is usually either known analytically or easily derived through other means, such as

automatic differentiation [52, 53].
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Assuming that A is invertible, we can find for the derivative 𝜕𝒙
/
𝜕𝝆 :

𝜕𝒙

𝜕𝝆
=
𝜕A−1

𝜕𝝆
𝒃 + A−1

𝜕𝒃

𝜕𝝆
(2.4a)

= −A−1
𝜕A
𝜕𝝆

A−1𝒃 + A−1
𝜕𝒃

𝜕𝝆
(2.4b)

= A−1

(
𝜕𝒃

𝜕𝝆
− 𝜕A
𝜕𝝆

𝒙

)
, (2.4c)

leading to:

𝜕𝐹

𝜕𝝆
=
𝜕𝐹

𝜕𝒙
A−1

(
𝜕𝒃

𝜕𝝆
− 𝜕A
𝜕𝝆

𝒙

)
. (2.5)

Assuming that we have already solved the linear system once, it is straightforward to

obtain both 𝜕𝒃
/
𝜕𝝆 and 𝜕A

/
𝜕𝝆 𝒙 – these terms have an analytical relationship with 𝝆,

and thus can be easily calculated. But how do we calculate 𝜕𝐹/𝜕𝒙 A−1
? In large systems,

we never have direct access to A−1
, both due to numerical accuracy [54] as well as memory

constraints. The latter is related to the fact that the system matrix of discretized PDE

systems is generally sparse and banded, which means that even for very large systems,

most sparse matrix formats can store them in O(3𝑛) space, with 𝑛 being the number

of nonzero entries in the matrix. However, the inverse of that matrix can be dense and

therefore require O
(
𝑛2

)
memory, with much larger 𝑛 than before. The crux now lies in

realizing that instead, 𝜕𝐹/𝜕𝒙 A−1
can be expressed as another linear system:

𝜕𝐹

𝜕𝒙
A−1 = 𝒙𝑇

aj
, (2.6)

or

𝒙aj = A−𝑇 𝜕𝐹

𝜕𝒙𝑇
, (2.7)

where we defined the so-called adjoint solution 𝒙aj. Interestingly, this new linear system

uses the transposed system matrix of the original system, with a source term that depends

on the derivative of the objective function with respect to the original solution. Putting

everything together, we obtain

𝜕𝐹

𝜕𝝆
= 𝒙𝑇

aj

(
𝜕𝒃

𝜕𝝆
− 𝜕A
𝜕𝝆

𝒙

)
, (2.8)

with the direct solution 𝒙 and the adjoint solution 𝒙aj, both which require solving one

linear system. Thus, solving two linear systems makes it possible to obtain the gradient

of a scalar-valued objective function with respect to an arbitrary number of degrees of

freedom 𝝆, and is the fundamental property that underpins all gradient-based optimization

discussed herein.
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2.1.2 Adjoint method & Maxwell’s equations

Establishing a suitable set of equations for electromagnetics is essential before applying

the adjoint formalism described previously. Our starting point will be the time-domain

Maxwell equations, which underpin all macroscopic electromagnetic phenomena:

∇ · 𝑩(𝒓, 𝑡) = 0 ∇ × 𝑬 (𝒓, 𝑡) = −𝜕𝑩(𝒓, 𝑡)
𝜕𝑡

∇ · 𝑫 (𝒓, 𝑡) = 𝜌ext(𝒓, 𝑡) ∇ × 𝑯 (𝒓, 𝑡) = 𝒋
macr

(𝒓, 𝑡) + 𝜕𝑫 (𝒓, 𝑡)
𝜕𝑡

,

(2.9)

where the macroscopic current density 𝒋
macr

(𝒓, 𝑡) represents the source of the electro-
magnetic field in the absence of free charges, which is generally the case in optics. The

constitutive relations are defined as

𝑫 (𝒓, 𝑡) = 𝜖0𝑬 (𝒓, 𝑡) + 𝑷 (𝒓, 𝑡)

𝑩(𝒓, 𝑡) = 𝜇0𝑯 (𝒓, 𝑡) +𝑴 (𝒓, 𝑡) ,

(2.10)

which link the electric and magnetic fields to their respective auxiliary fields. In Eq. (2.9)

and Eq. (2.10) we have used SI units and employed the following convention:

𝑬 (𝒓, 𝑡) = electric field

𝑯 (𝒓, 𝑡) = magnetic field

𝑫 (𝒓, 𝑡) = electric displacement field

𝑩(𝒓, 𝑡) = magnetic displacement field

𝒋
macr

(𝒓, 𝑡) = macroscopic current density

𝜌ext(𝒓, 𝑡) = external charge density

𝑷 (𝒓, 𝑡) = electric polarization

𝑴 (𝒓, 𝑡) = magnetic polarization .

We will focus on single-frequency steady-state solutions to Maxwell’s equations, which

are obtained via a Fourier transform of Eq. (2.9):

∇ · �̃�(𝒓, 𝜔) = 0 ∇ × �̃� (𝒓, 𝜔) = 𝑖𝜔�̃�(𝒓, 𝜔)

∇ · �̃� (𝒓, 𝜔) = 𝜌ext(𝒓, 𝜔) ∇ × �̃� (𝒓, 𝜔) = −𝑖𝜔�̃� (𝒓, 𝜔) + 𝒋
macr

(𝒓, 𝜔) .

(2.11)

Further, we will limit our considerations in this thesis to dispersive, linear, local, and

isotropic media, for which the material equations in the frequency domain are:

�̃� (𝒓 , 𝜔) = 𝜖0𝜒 (𝒓, 𝜔)�̃� (𝒓, 𝜔) (2.12a)

�̃� (𝒓 , 𝜔) = 𝜖0 (1 + 𝜒 (𝒓 , 𝜔))︸          ︷︷          ︸
𝜖𝑟

�̃� (𝒓, 𝜔) (2.12b)

�̃� (𝒓 , 𝜔) = 0 (2.12c)

�̃�(𝒓 , 𝜔) = 𝜇0�̃� (𝒓, 𝜔) , (2.12d)
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with the susceptibility 𝜒 (𝒓, 𝜔):

𝜒 (𝒓, 𝜔) = 1

2𝜋

∫ ∞

−∞
𝑅(𝒓 , 𝑡) 𝑒𝑖𝜔𝑡 d𝑡 , (2.13)

where 𝑅(𝒓 , 𝑡) is the response function related to the polarization induced in the material

in the time domain for a delta-type excitation. In the following, we will only consider

non-dispersive materials with 𝜖 (𝒓 , 𝜔) = 𝜖𝑟 . To arrive at a linear equation system to

which we can apply the adjoint formalism, we will first derive the wave equation for the

electromagnetic field.

By taking the curl of Faraday’s law and utilizing the constitutive relations Eq. (2.12b) and

Eq. (2.12d), we get

∇ × ∇ × �̃� (𝒓, 𝜔) = 𝑖𝜔𝜇0∇ × �̃� (𝒓 , 𝜔) (2.14a)

= 𝜔2𝜇0𝜖0𝜖𝑟 �̃� (𝒓, 𝜔) + 𝑖𝜔𝜇0𝒋macr
(𝒓, 𝜔) , (2.14b)

and therefore

∇ × ∇ × �̃� (𝒓, 𝜔) − 𝜔2𝜇0𝜖0𝜖𝑟 �̃� (𝒓, 𝜔) = 𝑖𝜔𝜇0 𝒋macr
(𝒓, 𝜔) . (2.15)

To implement the adjoint method as referenced earlier, we recast the wave equation in the

form of a linear system, akin to the structure introduced in Section 2.1:

[∇ × ∇ × −𝜔2𝜇0𝜖0𝝆]︸                      ︷︷                      ︸
A(𝝆)

�̃� (𝒓, 𝜔)︸  ︷︷  ︸
𝒙

= 𝑖𝜔𝜇0 𝒋macr
(𝒓, 𝜔)︸              ︷︷              ︸

𝒃

, (2.16)

introducing a notation change 𝜖𝑟 → 𝝆 to align with our established convention for design

variables 𝝆. Note that a slight subtlety in the derivation of the adjoint equation for this

system arises from the fact that �̃� is complex-valued.

Assuming a complex variable of the form 𝑧 = 𝑥 +𝑖𝑦, one can define theWirtinger derivative

operators [55]:

𝜕

𝜕𝑧
B

1

2

(
𝜕

𝜕𝑥
− 𝑖 𝜕

𝜕𝑦

)
(2.17)

𝜕

𝜕𝑧
B

1

2

(
𝜕

𝜕𝑥
+ 𝑖 𝜕
𝜕𝑦

)
, (2.18)

which leads to the differential d𝑓 of a complex-valued function via the chain rule:

d𝑓 =
𝜕𝑓

𝜕𝑧
d𝑧 + 𝜕𝑓

𝜕𝑧
d𝑧 . (2.19)

For a real-valued function with complex arguments, this is equivalent to

d𝑓 = 2 Re

{
𝜕𝑓

𝜕𝑧
d𝑧

}
. (2.20)
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Applying this identity to Eq. (2.8), we get

𝜕𝐹

𝜕𝝆
= 2 Re

{
𝒙𝑇
aj

(
𝜕𝒃

𝜕𝝆
− 𝜕A
𝜕𝝆

𝒙

)}
. (2.21)

We can now substitute 𝒙 → �̃� and further assume the source term to be independent of

the material distribution, i.e.𝜕𝒃
/
𝜕𝝆 = 0, and we arrive at the “adjoint rule” for Maxwell’s

wave equation in its most common form:

𝜕𝐹

𝜕𝝆
= −2 Re

{
�̃�
𝑇

aj

𝜕A
𝜕𝝆

�̃�

}
. (2.22)

The derivative 𝜕A
/
𝜕𝝆 is, in the simplest case where 𝝆 = 𝜖𝑟 , apparent from Eq. (2.16), with

𝜕A
/
𝜕𝝆 = −𝜔2𝜇𝑢𝜖0. But, as we will see in the following section, much of the challenge

lies in finding good mappings from 𝝆 → 𝜖𝑟 .

2.2 Topology optimization

Inverse design approaches that exploit the adjoint method can generally be divided

into two main categories: shape and topology optimization. Both derive their gradi-

ents from Eq. (2.22); however, they differ in what the parameters 𝝆 represent. In the

case of shape optimization, 𝝆 represents the boundary of a level set function that evolves

according to the Hamilton-Jacobi equation [56]:

𝜕𝜑

𝜕𝑡
= 𝑣 |∇𝜑 | , (2.23)

where 𝑣 is the normal velocity of the boundary 𝝆. While shape optimization seems like

a natural choice for problems where the boundary of the structure under investigation

is known, the implementation in the context of electromagnetics is somewhat tricky,

primarily because the normal component of the electric field is discontinuous across the

boundary 𝝆, so 𝜕A
/
𝜕𝝆 must be obtained through, e.g., perturbation theory [57, 58]. While

not an insurmountable challenge, this makes shape optimization somewhat unattractive

for many practical purposes, especially when additional constraints are added to the

optimization and when, at least to a good approximation, similar results can also be

achieved through appropriately chosen parameterization in topology optimization.

In topology optimization, 𝝆 represents the numerical value of the permittivity, either

directly or through a series of transformations. This means that 𝜕A
/
𝜕𝝆 represents a

continuous change in the material at each point in space or each pixel/voxel in a discrete

setting. At each step in an optimization, this derivative is evaluated and used to decide

whether the material at each pixel should have a higher or a lower permittivity at that

point to maximize some objective. The designs are then updated accordingly, and the

process is repeated until convergence is achieved. Topology optimization can be regarded

as a “zero knowledge” approach to inverse design, in the sense that it requires no, and in
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fact often works best without, prior initialization of the device geometry. The optimization

is generally free to create whatever device topology best maximizes the objective function,

which is where the method derives its name from. This approach to inverse design has

some particular implications:

• The number of elements in 𝝆 is determined directly by the size of the design region

and its spatial discretization.

• The device geometry is represented as an image (either in 2D or 3D), and its feature

sizes are on the scale of single pixels.

• The parameters 𝝆 are continuous, leading to a continuous material distribution in

the optimized devices.

• The values of 𝝆 are unbounded, which can lead to unphysical materials.

While the first point is merely an observation, it does imply that these optimization prob-

lems can become very large, on the order of millions of degrees of freedom. Arguably,

this can lead to an over-parameterization of the design, as the “real” design space of

such devices is generally much smaller, i.e., not on the pixel scale. However, in prac-

tice, these large parameter spaces are typically not a problem, and in cases where such

over-parameterization is undesired, it can be avoided through mappings that reduce the

dimensionality of 𝝆, as we will see later.

The latter points, however, present real challenges in topology optimization, and in the

following section, we will outline the most common way of addressing them.

2.2.1 Three-field parameterization

Three-field topology optimization is an established parameterization scheme that maps a

design density 𝝆 ∈ [0, 1] to the physical material via a series of transformations [59] to

introduce length-scale and binarization constraints.

Features on the scale of a single discretization step in the simulation can generally not be

fabricated and must, thus, be avoided. This can be achieved by correlating neighboring

pixels in the design through a convolution, canonically referred to as the “filtering” step [60],

expressed as

�̃� = 𝝆 ∗ 𝜿 , (2.24)

with the design density 𝝆, the convolution kernel 𝜿 , and the resulting filtered density �̃�.

The effect of this filtering step is illustrated in Fig. 2.1, where we have chosen to represent

the design density 𝝆 as a randomly initialized 2D array with values in the range [0, 1]. Note
that we assume periodic boundaries for the convolution here, which preserves the intensity

at the edges, but this choice is problem-dependent and zero-padding is also often used.

This step is essentially an image processing technique, and the computer vision literature

often inspires the kernels used for filtering. Because the feature sizes are achieved by

“smoothing” of 𝝆, the most common kernels used for this purpose are radial kernels (“conic
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2 Theory

ρ

*

κ

=

ρ̃

Figure 2.1: Illustration of the filtering step in the three-field topology optimization scheme. A design density

𝝆 (left), represented as random noise, is convolved with a radial kernel 𝜿 (middle), which yields a filtered

density �̃� (right) with feature sizes approximately on the scale of the radius of the kernel. The boundaries

are treated as periodic for the purposes of this illustration.

filters”), such as illustrated in Fig. 2.1, uniform kernels (“mean filters”), and Gaussian filters.

Gaussian filters in particular can be advantageous in scenarios where the design domain,

and hence 𝝆, is very large, as they are separable filters, i.e., they can be applied to each

dimension individually in the form of a one-dimensional convolution. Although we focus

here on the filtering step as a way to apply simple feature size constraints, it should be

noted that such filtering schemes can be applied much more generally to yield designs

with specific geometric features through careful design of these kernels, and they can be

tailored to particular fabrication techniques [23, 24]. Further, although we focus on the

2D case for illustration, these filters can be applied in exactly the same way in 1D or 3D

settings, both of which we will encounter in later chapters of this thesis.

After filtering, we are typically left with a washed-out “gray-scale” image of the design.

This is generally undesirable for fabrication, as most devices are made of discrete materials.

Therefore, designs with continuous material distributions should be avoided. To address

this, the three-field approach introduces a so-called “projection” step, which thresholds

the filtered density field.

◦

ρ̃

=

ρ̂

Figure 2.2: Illustration of the projection step. A soft-thresholding function in the form of a sigmoid (left) is

applied to the filtered design density �̃� (middle) to yield the “projected” density field �̂� (right). The projected

field shows a much stronger contrast but still contains some non-binary material.

Because thresholding is not a differentiable operation, a similar behavior is typically

achieved through a “soft-thresholding” function such as

�̂� =
tanh(𝛼𝛽) + tanh

(
𝛼

(
�̃� − 𝛽

) )
tanh(𝛼𝛽) + tanh(𝛼 (1 − 𝛽)) , (2.25)
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2.2 Topology optimization

which represents a normalized sigmoid function with outputs between 0 and 1 for inputs

in the same range [61]. The parameter 𝛼 controls the steepness of this function and 𝛽

its center, and it is generally assumed that 𝛽 = 0.5. Figure 2.2 illustrates this projection

scheme. We can see that the projected density �̂� exhibits much higher contrast than the

filtered field �̃� while maintaining the same overall features. However, it is apparent that

�̂� is not fully binary, owing to the smooth nature of the projection function. A common

strategy to remedy this is to increase the value of 𝛼 during the optimization, continuously

or at specific steps so that the final optimized structure is binary. Note that while the

projection defined in Eq. (2.25) is the most common one found in the literature for topology

optimization in nanophotonics, it is certainly not the only possible choice. In principle,

any function that maps a linear input to an output with stronger contrast will do the trick,

be it a sigmoid, a piecewise function, or something entirely different. A discussion of

different projection functions and their tradeoffs can be found in Hooten et al. [62]. The
only requirement is that these functions are differentiable to calculate 𝜕A

/
𝜕𝝆 . However,

if one is willing to sacrifice some accuracy in the gradients, it is possible to use hard

thresholding by approximating the gradient with that of a smooth projection function, as

shown in Schubert et al. [24].

After projection, �̂� represents the geometry of the design to be simulated, although the

values are still within the range [0, 1], so they are mapped to the actual physical material

values, in our case generally the permittivity, via linear interpolation:

𝝐𝑟 = 𝜖min + �̂� (𝜖max − 𝜖min) , (2.26)

where 𝜖min and 𝜖max represent the minimum and maximum permittivity values, respec-

tively.

With this, we have fully outlined the three-field parameterization most commonly used

in topology optimization in nanophotonics. It is important to stress that the filter-and-

project scheme should be considered a template for parameterizing topology optimization

problems. However, many variations exist and proper parameterization should always be

considered in tandem with the problem at hand.
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3 Cavity-enhanced Bloch surface waves
coupled to integrated waveguides

For our first application of topology optimization to a nanophotonic inverse design problem,

we will explore the efficient extraction of light from a dipole emitter coupled to a waveguide

attached to the design region. This contribution’s unique aspect is that we consider Bloch

surface waves (BSWs) to be the platform used to steer the light in the integrated system.

BSWs are supported at the interface between a one-dimensional photonic crystal (1DPC)

and some isotropic ambient material. On top of the 1DPC, a defect layer is structured,

which locally controls the refractive index the surface wave perceives. The physical

properties of this system allow us to model it accurately using 2D simulations. After a

short introduction in Section 3.1, Section 3.2 will outline the theory behind propagating

surface waves, particularly BSWs, on which we will focus here. We then describe the

problem setting and optimization setup in Section 3.3 and demonstrate the results of our

optimization in Section 3.4, followed by concluding statements in Section 3.5.

The work presented in this chapter is primarily based on [P2] and can be regarded as a

continuation of the work done during my master’s thesis [63], which led to the publication

of an article on subwavelength focusing of BSWs [8]. Because these works share the same

underlying theory, much of Section 3.2 was adapted from [63].

3.1 Introduction

Bloch surface waves are unique solutions to Maxwell’s equations that are evanescently

confined to and propagating along the surface of a truncated 1DPC [64, 65]. Notably, these

waves reach their maximum intensity at the surface of the 1DPC and can possess either

transverse electric (TE) or transverse magnetic (TM) polarization [66]. The structure of

a 1DPC is generally formed by stacking layers of dielectric materials, which alternate in

their permittivity. Specifically, BSWs appear within the frequency range of the photonic

crystal’s band gap. This guarantees that the field decays exponentially in the homogeneous

medium (such as air or water) and exhibits an oscillating amplitude with an exponentially

decaying envelope within the layered medium, enabling it to propagate over extended

distances with relatively low loss.

While BSWs and other guided surface modes such as surface plasmon polaritons [67,

68] differ in their physical principles, they share the characteristic of being localized at

the interface. The degree of field confinement in BSWs is less pronounced because the
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3 Cavity-enhanced Bloch surface waves coupled to integrated waveguides

effective index of these guided surface modes can not exceed the material indices involved,

which are generally small in real-world BSW-sustaining platforms. Nevertheless, BSWs

present the remarkable advantage of achieving propagation distances from hundreds

of micrometers to even millimeters, with the field predominantly extending into the

surrounding medium [69, 70]. This extended propagation length is possible due to the

negligible dissipation losses within the all-dielectric structure, where the propagation

length is typically constrained by the photonic crystal’s limited layer count rather than

inherent material losses [71]. Although a finite number of layers may result in some

leakage radiation through evanescent tunneling to the underlying substrate, this issue can

be regarded as a technical challenge that can be mitigated with engineering solutions.

Guiding light across macroscopic lengths within integrated systems opens the door to

numerous applications to address societal challenges [72, 73]. Past endeavors in this

area have included the development of devices for on-chip data processing [74] and

various sensing technologies [75, 76, 77]. These sensing devices, in particular, have been

designed with the flexibility to attach directly to fiber ends [78, 79]. A key factor for

incorporating BSWs into integrated circuits involves confining them within a second

dimension; that is, across the plane perpendicular to their direction of travel and parallel

to the substrate surface [80]. Typically, this confinement is achieved by structuring the

last layer of the one-dimensional photonic crystal, often referred to as the functional

layer. The design ensures that BSWs encounter slightly different effective indices at the

operational frequency between the patterned and non-patterned sections of the functional

layer [81]. Such structuring enables the creation of waveguides and resonators with lateral

confinement [82, 83] and facilitates the construction of more complex devices, taking

advantage of the minor contrast in indices [84].

However, the relatively small difference in refractive index, often merely around Δ𝑛 ≈
0.1, represents a significant challenge in the design process [85, 86]. This minor index

contrast implies that the straightforward application of traditional optical elements, such

as lenses, into these systems is not as simple as one might expect. This complexity is

due to the fact that the effectiveness of these conventional components typically depends

on a much more substantial contrast in refractive index. Therefore, designing functional

components within an integrated BSW framework emerges as an intriguing area for

applying innovative computational techniques in inverse design [6]. Through these

advanced design methodologies, viable configurations that achieve specific operational

goals can be discovered while navigating the limitations brought about by slight differences

in refractive index.

We utilize topology optimization to develop an integrated photonic architecture based on

BSWs. Our investigation focuses on facilitating the extraction of light from an embedded

source into an integrated circuit on a BSW platform. Here, we consider only a waveguide

instead of a more complex circuit, as this can be “attached” to any suitable application

downstream. The source, modeled as an electric dipolar emitter, is designed to be externally

stimulated, with the aim of maximizing energy transfer into the waveguide. The specific

structure under analysis is a defined area around the emitter, which can be patterned to

guide as much light as possible into the waveguide efficiently.
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3.2 Wave propagation in stratified media

Two crucial considerations complicate straightforward solutions and necessitate sophis-

ticated methodologies for tackling this inverse design challenge. Firstly, there is a need

to optimize the coupling efficiency, which represents the proportion of emitted light suc-

cessfully channeled into the waveguide. Secondly, the structure that supports this process

can significantly enhance the interaction between the dipole emitter and the waveguide

through Purcell enhancement. This phenomenon reflects an increase in the local density

of optical states, facilitating more efficient light extraction from the emitters. Purcell

enhancement is quantified by comparing the power extracted from the emitter near the

supporting photonic structure to that extracted in free space or against another baseline

structure. Achieving a high Purcell enhancement [87] while achieving fast light extraction

means the emitter can be re-excited more quickly and emit additional photons. The re-

search challenge we aim to address revolves around defining the optimal characteristics of

a supporting photonic structure that maximizes light transfer from a quantum emitter to a

waveguide by coupling with the BSWs, especially under conditions of dipole excitation in

the saturation regime. We focus particularly on examining the impact of index contrast

within the BSW platform, aiming to illuminate the complex relationship between coupling

efficiency and Purcell enhancement. To achieve this, topology optimization is employed

in the inverse design process of the supporting photonic structure, providing a systematic

approach to discovering configurations that effectively bridge these two critical aspects.

3.2 Wave propagation in stratified media

Before discussing device optimization in the subsequent section, it is crucial to lay down

a theoretical foundation for understanding the propagation of electromagnetic waves in

periodic media and examine surface states. This process entails two primary steps: Initially,

we must scrutinize the eigenmodes present within the periodic medium, paying close

attention to their dispersion relation and field distributions. Following this, an analysis

of the dispersion relation associated with the surface states is required. The concepts

discussed in this section rely on the studies conducted by Yeh, Yariv, and Hong [65] and

Yeh [88].

Our initial examination centers on a periodically stratified dielectric medium that extends

infinitely, structured in layers from two materials differing in refractive indices. The

refractive index 𝑛 of an isotropic and homogeneous material is given by

√︁
𝜇𝜖/𝜇0𝜖0. Given

that most transparent materials are non-magnetic, with 𝜇 = 𝜇0, this expression simplifies

to 𝑛 =
√︁
𝜖/𝜖0. It is critical to note that 𝜖 , and consequently 𝑛, are functions of frequency.

This relationship between 𝑛 and frequency introduces dispersion, indicating that the phase
velocity 𝑣 = 𝑐/𝑛 of a light wave varies with frequency.
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3 Cavity-enhanced Bloch surface waves coupled to integrated waveguides

Figure 3.1: A segment of an infinitely extended periodic stratified medium composed of alternating layers of

two distinct dielectric materials, characterized by refractive indices 𝑛1 and 𝑛2, and thicknesses 𝑑1 and 𝑑2,

respectively. Bold lines indicate the interfaces included in the analysis, with the overbrace marking the 𝜈-th

unit cell.

The study here focuses on a layered structure consisting of two materials, each with

specific thicknesses 𝑑1 and 𝑑2, and respective refractive indices 𝑛1 and 𝑛2, as illustrated

in Fig. 3.1. The profile of the refractive index for this arrangement is defined by:

𝑛(𝑥) =
{
𝑛1 0 < 𝑥 ≤ 𝑑1

𝑛2 𝑑1 < 𝑥 ≤ Λ
with 𝑛(𝑥 + 𝜈Λ) = 𝑛(𝑥) . (3.1)

Here, Λ = 𝑑1 + 𝑑2 denotes the periodicity of the layered structure, and 𝑥 is the axis

perpendicular to the interfaces of the layers. The analysis initially focuses on the transverse

electric (TE) polarization, where the field is characterized by the components 𝐸𝑦 , 𝐻𝑥 , and

𝐻𝑧 .

All components mentioned follow the wave equation, with our detailed examination

directed towards 𝐸𝑦 :

𝜕2𝐸𝑦

𝜕𝑧2
+
𝜕2𝐸𝑦

𝜕𝑥2
+ 𝜔

2

𝑐2
𝑛2(𝑥)𝐸𝑦 = 0. (3.2)

To identify the eigenmodes and their dispersion relations, we utilize a plane wave ansatz

in the frequency domain along the 𝑧-direction, reflecting the uniformity of the material in

this direction:

𝐸𝑦 (𝑥, 𝑧) = 𝐸 (𝑥)𝑒𝑖𝛽𝑧 . (3.3)

Within each layer, the 𝑥-dependent solutions 𝐸 (𝑥) comprise both forward and backward

propagating plane waves:

𝐸 (𝑥) = 𝑎(𝛼)𝜈 𝑒𝑖𝑘
(𝛼 )
𝑥 (𝑥−𝜈Λ) + 𝑏 (𝛼)𝜈 𝑒−𝑖𝑘

(𝛼 )
𝑥 (𝑥−𝜈Λ)

with 𝑘
(𝛼)
𝑥 =

√︂(𝑛𝛼𝜔
𝑐

)
2

− 𝛽2, (3.4)

where 𝑎
(𝛼)
𝜈 and 𝑏

(𝛼)
𝜈 represent the amplitudes of the forward and backward propagating

waves in the 𝛼 layer (𝛼 ∈ 1, 2) of the 𝑛th unit cell.
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3.2 Wave propagation in stratified media

For an electric field vector perpendicular to the considered plane of propagation (TE mode),

𝐸 and 𝜕𝐸/𝜕𝑥 have to be continuous across the material interface:

𝑎
(1)
𝜈 𝑒𝑖𝑘

(1)
𝑥 (𝑥−𝜈Λ) + 𝑏 (1)𝜈 𝑒−𝑖𝑘

(1)
𝑥 (𝑥−𝜈Λ) = 𝑎(2)𝜈 𝑒𝑖𝑘

(2)
𝑥 (𝑥−𝜈Λ) + 𝑏 (2)𝜈 𝑒−𝑖𝑘

(2)
𝑥 (𝑥−𝜈Λ)

(3.5a)

𝑖𝑘
(1)
𝑥

(
𝑎
(1)
𝜈 𝑒𝑖𝑘

(1)
𝑥 (𝑥−𝜈Λ) + 𝑏 (1)𝜈 𝑒−𝑖𝑘

(1)
𝑥 (𝑥−𝜈Λ)

)
= 𝑖𝑘

(2)
𝑥

(
𝑎
(2)
𝜈 𝑒𝑖𝑘

(2)
𝑥 (𝑥−𝜈Λ) + 𝑏 (2)𝜈 𝑒−𝑖𝑘

(2)
𝑥 (𝑥−𝜈Λ)

)
.

(3.5b)

Considering these interface conditions at two adjacent layers 𝜈 and 𝜈 + 1 (shown in bold

in Fig. 3.1) with 𝑥𝜈 = 𝜈Λ − 𝑑2 and 𝑥𝜈+1 = 𝜈Λ, we obtain the following continuity relations:

©«
𝑒−𝑖𝑘

(1)
𝑥 𝑑2 𝑒𝑖𝑘

(1)
𝑥 𝑑2

𝑒−𝑖𝑘
(1)
𝑥 𝑑2 −𝑒𝑖𝑘

(1)
𝑥 𝑑2

ª®¬ ©«
𝑎
(1)
𝜈

𝑏
(1)
𝜈

ª®¬ =
©«
𝑒−𝑖𝑘

(2)
𝑥 𝑑2 𝑒𝑖𝑘

(2)
𝑥 𝑑2

𝑘
(2)
𝑥

𝑘
(1)
𝑥

𝑒−𝑖𝑘
(2)
𝑥 𝑑2 −𝑘

(2)
𝑥

𝑘
(1)
𝑥

𝑒𝑖𝑘
(2)
𝑥 𝑑2

ª®¬ ©«
𝑎
(2)
𝜈

𝑏
(2)
𝜈

ª®¬ (3.6a)
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ª®¬ ©«
𝑎
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𝜈

𝑏
(2)
𝜈

ª®¬ =
©«
𝑒−𝑖𝑘

(1)
𝑥 Λ 𝑒𝑖𝑘

(1)
𝑥 Λ

𝑘
(1)
𝑥

𝑘
(2)
𝑥

𝑒−𝑖𝑘
(1)
𝑥 Λ −𝑘

(1)
𝑥

𝑘
(2)
𝑥

𝑒𝑖𝑘
(1)
𝑥 Λ

ª®¬ ©«
𝑎
(1)
𝜈+1

𝑏
(1)
𝜈+1

ª®¬ . (3.6b)

From these relations, we can obtain an expression relating 𝑎
(1)
𝜈 and 𝑏

(1)
𝜈 to 𝑎

(1)
𝜈+1

and 𝑎
(1)
𝜈+1

:

©«
𝑎
(1)
𝜈

𝑏
(1)
𝜈

ª®¬ =
©«
𝐴TE 𝐵TE

𝐶TE 𝐷TE

ª®¬︸        ︷︷        ︸
𝑇

©«
𝑎
(1)
𝜈+1

𝑏
(1)
𝜈+1

ª®¬ , (3.7a)

with the matrix elements given by

𝐴TE = 𝑒−𝑖𝑘
(1)
𝑥 𝑑1

(
cos

(
𝑘
(2)
𝑥 𝑑2

)
− 𝑖

2

(
𝑘
(1)
𝑥

𝑘
(2)
𝑥

+ 𝑘
(2)
𝑥

𝑘
(1)
𝑥

)
sin

(
𝑘
(2)
𝑥 𝑑2

))
(3.8a)

𝐵TE = 𝑒𝑖𝑘
(1)
𝑥 𝑑1

(
𝑖

2

(
𝑘
(1)
𝑥

𝑘
(2)
𝑥

− 𝑘
(2)
𝑥

𝑘
(1)
𝑥

)
sin

(
𝑘
(2)
𝑥 𝑑2

))
(3.8b)

𝐶TE = 𝑒−𝑖𝑘
(1)
𝑥 𝑑1

(
− 𝑖

2

(
𝑘
(1)
𝑥

𝑘
(2)
𝑥

− 𝑘
(2)
𝑥

𝑘
(1)
𝑥

)
sin

(
𝑘
(2)
𝑥 𝑑2

))
(3.8c)

𝐷TE = 𝑒𝑖𝑘
(1)
𝑥 𝑑1

(
cos

(
𝑘
(2)
𝑥 𝑑2

)
+ 𝑖

2

(
𝑘
(1)
𝑥

𝑘
(2)
𝑥

+ 𝑘
(2)
𝑥

𝑘
(1)
𝑥

)
sin

(
𝑘
(2)
𝑥 𝑑2

))
. (3.8d)

The transfer matrix𝑇 , as defined in Eq. (3.8), serves to correlate the amplitudes of forward

and backward propagating plane waves, specifically 𝑎
(1)
𝜈 and 𝑏

(1)
𝜈 , within a single layer of

the unit cell, to those, 𝑎
(1)
𝜈+1

and 𝑏
(1)
𝜈+1

, in the corresponding layer of the subsequent unit cell.
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3 Cavity-enhanced Bloch surface waves coupled to integrated waveguides

For transverse magnetic (TM) polarized waves, the continuity conditions differ slightly

and yield

𝐴TM = 𝑒−𝑖𝑘
(1)
𝑥 𝑑1

(
cos

(
𝑘
(2)
𝑥 𝑑2

)
− 𝑖

2

(
𝑛2

2
𝑘
(1)
𝑥

𝑛2

1
𝑘
(2)
𝑥

+
𝑛2

1
𝑘
(2)
𝑥

𝑛2

2
𝑘
(1)
𝑥

)
sin

(
𝑘
(2)
𝑥 𝑑2

))
(3.9a)

𝐵TM = 𝑒𝑖𝑘
(1)
𝑥 𝑑1

(
𝑖

2

(
𝑛2

2
𝑘
(1)
𝑥

𝑛2

1
𝑘
(2)
𝑥

−
𝑛2

1
𝑘
(2)
𝑥

𝑛2

2
𝑘
(1)
𝑥

)
sin

(
𝑘
(2)
𝑥 𝑑2

))
(3.9b)

𝐶TM = 𝑒−𝑖𝑘
(1)
𝑥 𝑑1

(
− 𝑖

2

(
𝑛2

2

𝑘
(1)
𝑥

𝑛2

1
𝑘
(2)
𝑥

−
𝑛2

1
𝑘
(2)
𝑥

𝑛2

2
𝑘
(1)
𝑥

)
sin

(
𝑘
(2)
𝑥 𝑑2

))
(3.9c)

𝐷TM = 𝑒𝑖𝑘
(1)
𝑥 𝑑1

(
cos

(
𝑘
(2)
𝑥 𝑑2

)
+ 𝑖

2

(
𝑛2

2
𝑘
(1)
𝑥

𝑛2

1
𝑘
(2)
𝑥

+
𝑛2

1
𝑘
(2)
𝑥

𝑛2

2
𝑘
(1)
𝑥

)
sin

(
𝑘
(2)
𝑥 𝑑2

))
(3.9d)

for the matrix elements. Here, we have focused on an infinitely periodic multilayer

structure characterized by only two distinct refractive indices and layer thicknesses. The

general transfer matrix, which links the electric field amplitudes of the𝑚th layer in two

adjacent cells of a multilayer slab comprising 𝑀 layers per unit cell, is detailed in Yeh,

Yariv, and Hong [65]:

𝑇 (𝑀) =
1

2
𝑀

𝑀+𝑚∏
𝛼=𝑚+1

©«
(
1 +𝐶 (𝛼)

)
𝑒−𝑖𝑘

(𝛼 )
𝑥 𝑡 (𝛼 )

(
1 −𝐶 (𝛼)

)
𝑒𝑘

(𝛼 )
𝑥 𝑡 (𝛼 )(

1 −𝐶 (𝛼)
)
𝑒−𝑖𝑘

(𝛼 )
𝑥 𝑡 (𝛼 )

(
1 +𝐶 (𝛼)

)
𝑒𝑘

(𝛼 )
𝑥 𝑡 (𝛼 )

ª®¬ , (3.10)

where 𝑡𝑚 = 𝑥𝑚 − 𝑥𝑚−1 is the thickness of the𝑚th layer and

𝐶 (𝛼) =

{
𝑘
(𝛼 )
𝑥 /𝑘 (𝛼−1)

𝑥 TE waves

𝑛2

(𝛼 )𝑘
(𝛼−1)
𝑥 /𝑛2

(𝛼−1)𝑘
(𝛼 )
𝑥 TM waves

. (3.11)

Given the wave’s propagation within a periodic medium, the Floquet-Bloch theorem

establishes that the wave’s amplitude will mimic the lattice’s periodicity, with solutions

characterized by

𝐸𝐾 (𝑥, 𝑧) = 𝐸𝐾 (𝑥)𝑒𝑖𝐾𝑥𝑒𝑖𝛽𝑧 with 𝐸𝐾 (𝑥 + 𝜈Λ) = 𝐸𝐾 (𝑥) . (3.12)

where𝐾 represents the Bloch wave number, a crucial wave vector component. To ascertain

the values for 𝐾 and 𝐸𝐾 (𝑥), we apply the periodicity condition to the Bloch wave:(
𝑎𝜈
𝑏𝜈

)
= 𝑒𝑖𝐾Λ

(
𝑎𝜈+1

𝑏𝜈+1

)
, (3.13)

which, in conjunction with Eq. (3.7a), formulates an eigenvalue problem:(
𝐴 𝐵

𝐶 𝐷

) (
𝑎𝜈
𝑏𝜈

)
= 𝑒−𝑖𝐾Λ

(
𝑎𝜈
𝑏𝜈

)
(3.14)
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3.2 Wave propagation in stratified media

leading to the condition for eigenvalues:����𝐴 − 𝑒−𝑖𝐾Λ 𝐵

𝐶 𝐷 − 𝑒−𝑖𝐾Λ
���� = 0 . (3.15)

The eigenvalues are thus determined by

0 = 𝐴𝐷 − 𝑒−𝑖𝐾Λ𝐴 − 𝑒−2𝑖𝐾Λ𝐷 − 𝐵𝐶 (3.16a)

= 𝑒−𝑖𝐾Λ𝐴 − 𝑒−2𝑖𝐾Λ𝐷 + 1 (3.16b)

⇒ 𝑒−𝑖𝐾Λ =
1

2

(𝐴 + 𝐷) ±
√︂

1

4

(𝐴 + 𝐷)2 − 1 , (3.16c)

assuming the transfer matrix 𝑇 is unimodular (i.e., 𝐴𝐷 − 𝐵𝐶 = 1) when considering

nonabsorbing media. The eigenvectors related to these eigenvalues are given by(
𝑎0

𝑏0

)
=

(
𝐵

𝑒−𝑖𝐾Λ −𝐴

)
. (3.17)

The expression in Eq. (3.16c) establishes the dispersion relation linking 𝐾 , 𝜔 , and 𝛽 :

𝐾 (𝛽, 𝜔) = 1

Λ
cos

−1

(
1

2

(𝐴 + 𝐷)
)

. (3.18)

When
1

2
|𝐴+𝐷 | < 1, the values of𝐾 are real, indicating that the Blochwaves are propagating.

Conversely, if
1

2
|𝐴+𝐷 | > 1, the solutions for 𝐾 become complex, introducing an imaginary

component 𝐾𝑖 to the wavenumber 𝐾 = 𝑚𝜋
Λ + 𝑖𝐾𝑖 , thereby rendering the wave evanescent.

This delineation between propagating and evanescent waves demarcates the forbidden

bands within the periodic medium, with the band edges specified by
1

2
|𝐴 + 𝐷 | = 1.

The comprehensive solution for a Bloch wave within the first layer of the 𝑛th unit cell,

representing the distribution of the eigenmodes’ fields, is described by:

𝐸𝐾 (𝑥)𝑒𝑖𝐾𝑥 =
((
𝑎0𝑒

𝑖𝑘
(1)
𝑥 (𝑥−𝜈Λ) + 𝑏0𝑒

−𝑖𝑘 (1)𝑥 (𝑥−𝜈Λ)
)
𝑒−𝑖𝐾 (𝑥−𝜈Λ)

)
𝑒𝑖𝐾𝑥 , (3.19)

with the coefficients 𝑎0 and 𝑏0 as defined in (3.17). With the analysis of Bloch waves

concluded the discussion will now shift toward the propagation of Bloch surface waves.

Surface waves are confined to the interface between two semi-infinite systems. In this

context, we will explore BSWs, which are electromagnetic surface modes that exist at the

interface between a semi-infinite periodic multilayer and a dielectric medium, such as

air. These waves are capable of propagating along these interfaces. The refractive index

profile of this system is characterized as follows:

𝑛(𝑥, 𝑧) =


𝑛𝑎 𝑥 ≤ 0

𝑛1 𝑚Λ ≤ 𝑥 < 𝑚Λ + 𝑑1

𝑛2 𝑚Λ + 𝑑1 ≤ 𝑥 < (𝑚 + 1) Λ
with 𝑚 ∈ N . (3.20)

23



3 Cavity-enhanced Bloch surface waves coupled to integrated waveguides

This analysis will focus on TE polarization, specifically looking for waves that propagate

in the 𝑧-direction along the interface. Employing the same ansatz, 𝐸𝑦 (𝑥,𝑦, 𝑧) = 𝐸 (𝑥)𝑒𝑖𝛽𝑧 ,
the wave equation simplifies to:

𝜕2𝐸 (𝑥)
𝜕𝑥2

+
(
𝜔2

𝑐2
𝑛2(𝑥) − 𝛽2

)
𝐸 (𝑥) = 0 , (3.21)

considering solutions of the form:

𝐸 (𝑥) =
{
𝛼𝑒𝑞𝑎𝑥 𝑥 ≤ 0

𝐸𝐾 (𝑥)𝑒𝑖𝐾𝑥 𝑥 ≥ 0

with 𝑞𝑎 =

√︂
𝛽2 − 𝜔2

𝑐2
𝑛2

𝑎 and 𝛼 = const. , (3.22)

where we incorporate the previously derived general Bloch wave solutions in the periodic

medium and introduce a new solution for the dielectric medium. To ensure a mode is

localized at the interface, it must exhibit a decay within the dielectric medium and the

periodic multilayer. This requirement implies that the mode must be evanescent on both

sides of the interface, positioning it within the photonic crystal’s forbidden band gap while

also lying below the dielectric medium’s light line. This gives rise to the condition for the

surface modes:

𝑞𝑎 = −𝑖𝑘 (1)𝑥

𝑒−𝑖𝐾Λ −𝐴 − 𝐵
𝑒−𝑖𝐾Λ −𝐴 + 𝐵

. (3.23)

The electromagnetic field experiences an exponential decay outside the dielectric multi-

layer, whereas within the photonic crystal, it diminishes following a (−1)𝑚𝑒−𝑖𝐾𝑖Λ pattern

for each repeating unit, where𝑚 represents the integer denoting the𝑚th forbidden gap.

Incorporating a slim terminal layer, referred to as the functional layer, characterized by

an appropriate thickness and dielectric constant atop the final layer of the configuration

enables deliberate alteration of the BSW’s local dispersion relation. The BSW’s effective

index, denoted as 𝑛BSW =
𝑐𝛽

𝜔
, is obtained through the propagation constant of the surface

mode, both in the presence and absence of the functional layer. An extensive empirical

study exploring the effect of the functional layer on the BSW’s positioning within the

band gap is detailed in Yu et al. [73].

The photonic band gap of the crystal contains the guided surface modes, situated beneath

the air light line. The origin of their separation lies in the modestly altered index profile

induced by the functional layer atop the multilayer arrangement. For any specific 𝜔 , the

refractive index of index-guided modes surpasses that of the light line. The discrepancy

in the effective refractive indices of the dual BSW modes elucidates the effective refrac-

tive index contrast intrinsic to the BSW framework, which fundamentally facilitates the

surface guidance of propagating modes along the multilayer stack. Modifying the spatial

configuration of the functional layer affords control over the BSW’s propagation, laying

the groundwork for the optimization strategies discussed in the following.
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3.3 Optimization setup

3.3 Optimization setup

We aim to improve functional photonic devices that can extract light emitted by a dipole-

like source that couples into a surface mode sustained by a dielectric multi-layer stack

into a waveguide, which could be used for on-chip light sources. The proposed setup

is shown in Fig. 3.2, with a change in coordinates from 𝑥 → 𝑧 from the discussion

in Section 3.2. The system under consideration is optically large, making optimizing

using full-wave 3D simulations impractical. Instead, we use an effective index method to

transform the problem into a 2D one. This method has been successfully applied to design

functional devices for manipulating BSWs because of the low refractive index contrast of

such systems [89, 8, 90].

z
x
y

Desig
n re

gion

PM
L

x

y

5.7 μm

0.4 μm

Figure 3.2: A depiction of a standard material setup conducive to Bloch Surface Waves (BSWs) is presented

on the left. In this schematic, a functional layer is patterned atop a dielectric multi-layer structure, which is

itself placed on a base substrate. The framework for optimizing the 2D effective index simulation is shown

on the right. It features a design area shaped as a circle with a 5.7 µm radius, encompassing a central spacer

zone with a 0.4 µm radius and a predetermined material configuration. Positioned at the center of this spacer

zone is an 𝑥-polarized dipole source. A waveguide protrudes from the design area’s bottom edge, measuring

0.3 µm in width. Reprinted from [P2], licensed under the Creative Commons license CC BY 4.0.

In the outlined configuration, we position a dipole source to emit along the x-axis, with its

emission characterized by a Gaussian spectrum peaking at a wavelength of 𝜆0 = 570 nm.

This source is located at the heart of the spacer area, denoted by a black circle. The design

zone, circular in shape as depicted in Fig. 3.2, has a radius of 5.7 µm. The objective function

𝐹 is expressed as

𝐹 = |𝛼0 |2 , (3.24)

with 𝛼0 being the mode coefficient for the primary TM-polarized mode (signifying the

in-plane electric field) moving forward in the waveguide. This coefficient is normalized so

that |𝛼0 |2 corresponds to the total power.

Our approach uses the filter-and-project parameterization technique [91, 61, 92] alongside

the method of moving asymptotes (MMA) [93] and integrated within the nlopt soft-

ware [14] (version 2.7.1) for executing constrained, nonlinear topology optimization. The
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3 Cavity-enhanced Bloch surface waves coupled to integrated waveguides

design process utilizes a 2D grid for discretization with a resolution of100
px

µm
. For design

parameterization, we employ the three-field scheme described in Subsection 2.2.1, with a

Gaussian filtering kernel and the standard projection function from Eq. (2.25). The parame-

ter 𝛼 controls the binarization intensity, incrementally raised throughout the optimization

procedure to achieve ultimately binary designs. To prevent reverting to less binary designs

when the optimization is restarted with a higher 𝛼 , we compute the “gray indicator” by

summing over 𝑛 pixels:

𝑐g

(
�̂�
)
=

1

𝑛

𝑛∑︁
𝑖=1

4𝜌𝑖 (1 − 𝜌𝑖) . (3.25)

This indicator function is a parabola with a maximum of 1 at 𝜌𝑖 = 0.5 and 0 at 𝜌𝑖 = 0 and

𝜌𝑖 = 1. It approaches zero the more the values of �̂� are shifted towards 0 and 1, i.e., it
measures how “gray” the design is. By evaluating this function directly after increasing 𝛼

and constraining its value to be smaller than a threshold 𝛾 (given by the computed value)

in the subsequent optimization.

Following the projection step, the design variables are subjected to a circular mask to en-

sure the device maintains a circular shape. The geometric configurations of the devices are

subsequently mapped linearly to their specific refractive indices for simulation purposes,

conducted using Meep [3]. The objective function’s sensitivities with respect to the pa-

rameterization are derived through Meep’s adjoint module [94], and the sensitivities of the

parameterization with respect to the optimization variables 𝜌 are calculated using [95].

The full optimization problem can thus be stated as:

max

𝝆
|𝛼0 |2 (3.26a)

s.t. 𝛼0 =

∫
𝑆

[
Ẽ∗(𝒓) × H̃0(𝒓) + Ẽ0(𝒓) × H̃∗(𝒓)

]
· n̂ d𝐴 (3.26b)

𝑐g

(
�̂�
)
− 𝛾 ≤ 0 (3.26c)

0 ≤ 𝝆 ≤ 1 , (3.26d)

with the Fourier-transformed fields Ẽ, H̃ in Eq. (3.26b) at the target wavelength of 570 nm

at the mode monitor (c.f. Fig. 3.2) and Ẽ0, H̃0, which are the fields corresponding to the

fundamental mode in the waveguide (obtained using the eigenmode solver MPB [96]).

The base effective index for the surface mode, before adding the functional layer, is set at

𝑛eff,0 = 1.019. The optimization process explores various effective index differences, Δ𝑛eff,
starting from 0.01 up to 0.13, with a step increase of 0.01. In the scenario with the maximum

index contrast of Δ𝑛eff = 0.13, the surface mode, when integrated with the functional layer,

achieves an effective index of 𝑛eff,1 = 1.149, aligning with the specifications of the material

framework discussed in previous research [90], which comprises a stack sequence that

sits on top of a glass coverslip with ten repetitions of alternating Ta
2
O
5
(𝑛Ta

2
O
5

= 2.08,

𝑑Ta
2
O
5

= 95 nm) and SiO
2
(𝑛SiO

2

= 1.46, 𝑑SiO
2

= 137 nm) layers, a top layer of SiO
2
with

𝑑SiO
2
,top = 127 nm, and a final layer of PMMA (𝑛PMMA = 1.48, 𝑑PMMA = 75 nm), which

serves as the patterned functional layer.
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3.4 Results and discussion

The optimization’s 2D simulations are conducted using the MPI-parallel implementation

of Meep (version 1.23.0) on a desktop equipped with a 10-core Intel Core i9-10900 CPU

operating at 2.80 GHz, with a simulation resolution of 50
px

µm
.

3.4 Results and discussion

This section will discuss the results obtained using the previously described optimization

setup. These results are further validated using 3D full-wave simulations in Subsec-

tion 3.4.2.

3.4.1 Optimization and evaluation in 2D

By conducting a series of optimization processes across a spectrum of effective refractive

index contrasts, specifically within the range of Δ𝑛eff = 0.01 to 0.13, we engage in a detailed

numerical exploration into how variations in the refractive index contrast of different

potential material platforms for sustaining surface waves can impact the performance

capabilities of the devices under consideration.
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Figure 3.3: Optimized device designs (top row) and corresponding electric field intensities (bottom row) in

log scale at the target wavelength of 570 nm. Four selected devices are designed for different effective index

contrasts (columns). Note that a short length of waveguide is included for clarity but it is not part of the

design region. Reprinted from [P2], licensed under the Creative Commons license CC BY 4.0.

The optimization results for four selected devices and the corresponding electric field

intensities (log scale) are shown in Fig. 3.3.

Across all the device designs evaluated, a recurring outcome of the optimization is the

emergence of a structure resembling a distributed Bragg reflector (DBR), predominantly
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3 Cavity-enhanced Bloch surface waves coupled to integrated waveguides

manifested in the design’s upper half-space. This outcome can be considered quite expected

and logical, given that the amount of power funneled into the waveguide is intrinsically

linked to the power emitted by the source. From this perspective, it becomes clear why

the optimization process gravitates towards configurations that, to some extent, create an

electromagnetic cavity: it is a straightforward and effective means to enhance the coupling

of emitted power into the waveguide.

However, the actual coupling of power from the source into the waveguide is influenced by

more than the total emitted power; it also hinges on how adeptly the device can direct this

emitted field into the waveguide. The refractive index constrains this guiding efficiency

contrast the device can leverage to manipulate the electromagnetic fields. Notably, as

the refractive index contrast increases, the device gains a greater capacity to exploit

subtle spatial variations within the patterned layer for more effective light guidance. This

phenomenon becomes increasingly apparent upon examining the variations among the

devices, as shown in Fig. 3.3, where the influence of different refractive index contrasts on

device performance is visually and quantitatively illustrated.

For the device with a minimal refractive index contrast of Δ𝑛eff = 0.01, the design transi-

tions smoothly from a Distributed Bragg Reflector (DBR) configuration in the upper portion

to a structure that resembles a tapered waveguide at the bottom. This gradual transition

suggests a design intent to reflect light within the upper half while primarily focusing

on enhancing light coupling efficiency into the waveguide by appropriately directing the

light. The potential for emission enhancement due to cavity effects is minimally observed,

which aligns with expectations given the low index contrast contributing to cavities with

limited quality factors.

In contrast, the device designed for a higher refractive index contrast of Δ𝑛eff = 0.13

showcases a complex and less predictable configuration. Its central design is characterized

by several sub-wavelength features, diverging from the simpler waveguide-like structure

seen in devices with lower Δ𝑛eff. The upper section still functions in a manner reminiscent

of a DBR, yet the lower section – specifically the area linking the source to the waveguide

– demonstrates a sophisticated balance. This design meets the dual objectives of achieving

high coupling efficiency and significantly enhancing the power extracted.

To comprehensively assess the performance of these optimized devices, our evaluation

focuses on two key metrics: the Purcell enhancement experienced by the source within

the spacer region, and the efficiency of coupling into the waveguide. These measurements

allow us to quantitatively understand the impact of the device’s design on its ability to

enhance light emission and guide it effectively into the waveguide, thereby providing a

detailed insight into the practical efficacy of each device configuration in optimizing light

manipulation.

For all optimized devices, spectra within the range of (570 ± 30) nm are acquired, as pre-

sented in Fig. 3.4, while the values at the specific target wavelength of 570 nm are detailed

separately in Fig. 3.5. The computation of Purcell enhancement involves determining the

power flow ratio from the source within the device (termed as "cavity") compared to that

in a uniform medium, identified by 𝑛eff,1. This measurement is obtained by encircling the
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Figure 3.4: Depiction of both Purcell enhancement (on the left) and coupling efficiencies (on the right) for

each design, derived from the 2D effective index method used for device optimization. Reprinted from [P2],

licensed under the Creative Commons license CC BY 4.0.
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Figure 3.5: Data on Purcell enhancement and coupling efficiency at the specified target wavelength of

570 nm, based on 2D effective index simulations. Reprinted from [P2], licensed under the Creative Commons

license CC BY 4.0.

source with a cubic flux monitor having a 0.5 µm edge, subsequently gathering the relevant

Fourier-transformed fields. In a similar manner, the coupling efficiency is measured as the

power ratio within the waveguide’s fundamental mode, expressed as

𝑃mode = |𝛼0 |2 (3.27)

to the power radiated by the source.

The devices, once optimized, demonstrate a notable Purcell enhancement at the target

wavelength. Specifically, the device with an index contrast of Δ𝑛eff = 0.01 showcases a

Purcell factor approximately equal to 2. This factor grows exponentially with an increase

in Δ𝑛eff, as highlighted in Fig. 3.5), peaking with the device at Δ𝑛eff = 0.13, which exhibits

a Purcell enhancement near 70. Additionally, it is observed that designs with a greater

index contrast tend to have improved coupling efficiency, with the Δ𝑛eff = 0.13 design

achieving the highest at 54 %.
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3 Cavity-enhanced Bloch surface waves coupled to integrated waveguides

Designs featuring higher index contrasts also demonstrate a markedly greater specificity

to the target wavelength than those with lower index contrasts, which display a broader

response spectrum (cf. Fig. 3.4). This observation underscores the earlier discussion

regarding the advantage of high index contrasts in optimization, which allows for more

precise tuning of the device’s “guiding performance” towards the desired wavelength.

Conversely, at very low index contrasts, the benefits are relatively minimal.

Moreover, a substantial increase in coupling efficiency is noticed as Δ𝑛eff grows from

0.01 to 0.04, after which the efficiency gradually approaches saturation, leveling around

0.5 for higher contrasts. This phenomenon can be attributed to the fact that devices

optimized for extremely low (Δ𝑛eff ≈ 0.01) to moderate (Δ𝑛eff ≈ 0.1) index contrasts

exhibit a significant performance disparity. Nevertheless, the index contrast across all

optimized devices remains on the lower end, leading to a considerable loss of dipole-emitted

radiation in the design’s upper half-space. These findings reflect the theoretical discussions

and observations regarding the variance in device performances across different index

contrasts, further validating the empirical data gathered from optimizing these devices.

3.4.2 Comparison between 2D and 3D

We will now transition from assessing the performance of optimized devices within a two-

dimensional framework, specifically under the guise of an effective index approximation, to

scrutinizing the fidelity of these approximations against the envisioned three-dimensional

scenarios. To undertake this examination, we integrate a dielectric multi-layer stack as

outlined by [90]. This construct features a combination of Silica and Tantalia layers atop a

glass substrate, distinguished by a refractive index of 𝑛glass = 1.5, capped with a PMMA

layer in which the device geometry is etched. The arrangement comprises ten layers

alternating between Ta
2
O
5
(with a refractive index of 2.08 and thickness of 95 nm) and

SiO
2
(with a refractive index of 1.46 and thickness of 137 nm), followed by an additional

Ta
2
O
5
layer, a 127 nm thick SiO

2
layer, and concluding with a PMMA layer (refractive index

1.48, thickness 75 nm. Assuming a dispersion-free wavelength range of (570 ± 30) nm, the

effective indices at the 570 nm wavelength without and with the PMMA layer are 1.019

and 1.149, respectively. These indices align with the design parameters for the device

optimized for a Δ𝑛eff = 0.13.

The 2D optimized design is extruded vertically by 75 nm to form the functional PMMA

layer, incorporating an 𝑥-polarized dipole source within the PMMA, 35 nm below its

surface. The 3D simulations employ finite-difference time-domain (FDTD) methodology

via Meep, with a computational resolution of 80 µm
−1
, leveraging the computational power

of 76 CPU cores across two Intel Xeon Platinum 8368 processors, clocked at 2.4 GHz.

These simulations, spanning 16.5 hours, mimic the 2D analysis by tracking power flux from

the dipole in every spatial direction using flux monitor planes, each with a 0.5 µm edge.

These measures permit the computation of Purcell enhancement and coupling efficiency

analogously to the 2D scenario, thus offering a direct comparative insight between the 2D

effective index and 3D full-wave simulations.
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Figure 3.6: A juxtaposition of Purcell enhancement (left) and coupling efficiency (right) derived from 2D

effective index simulations against those from a comprehensive 3D full-wave simulation. The optimization

targeted an effective index contrast of Δ𝑛eff = 0.13, in line with the material configuration detailed by Stella

et al. [90]. Reprinted from [P2], licensed under the Creative Commons license CC BY 4.0.

The juxtaposition of outcomes from the comprehensive 3D full-wave simulation with

those derived from the corresponding 2D effective index simulation, as depicted in Fig. 3.6,

reveals notable discrepancies between the two methodologies. Despite these differences,

the 3D simulation outcomes underscore a pronounced improvement in both the Purcell

enhancement and coupling efficiency at the optimization’s target wavelength. Specifically,

whereas the 2D simulation estimated a Purcell factor of 70, the 3D simulation demonstrates

a reduced Purcell enhancement factor of 23. This reduction aligns with expectations, given

that 2D effective index simulations overlook out-of-plane scattering losses, which account

for a significant portion of radiation emitted by the source. Such losses are neither captured

by the patterned PMMA layer in 3D nor contemplated in the 2D simulations. Nonetheless,

the Purcell factor achieved by the analytically devised Distributed Bragg Reflector (DBR)

structure, as per Stella et al. [90], stands at 32. Our optimized device, designed to balance

Purcell enhancement and coupling efficiency, naturally exhibits a diminished enhancement,

reflective of the ongoing energy extraction from the system.

This disparity between 2D and 3D simulation results, albeit significant, does not under-

mine the utility of the effective index method; the optimized devices still demonstrate

commendable performance in a 3D setting. The coupling efficiency observed mirrors this

trend, with values of 0.54 in 2D simulations and 0.28 in 3D, attributable to substantial

out-of-plane scattering losses, limiting the power that can be effectively coupled into the

waveguide.

Given the PMMA layer’s exclusive patterning, the design’s degrees of freedom in the

3D setup remain essentially two-dimensional, lacking any 𝑧-direction patterning. Conse-

quently, the additional losses encountered in the 3D scenario are likely consistent across

different devices when transitioning from the 2D effective index framework to the full 3D

geometry. This consistency suggests that the optimized structures remain near-optimal
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3 Cavity-enhanced Bloch surface waves coupled to integrated waveguides

even in a 3D context, validating the effective index method’s applicability and effectiveness

for device optimization within this specific design domain.

Practicality is crucial in device optimization, especiallywhen factoring in the computational

demands of 3D full-wave simulations. In the abovementioned case, a single high-resolution

3D simulation can take approximately 16 hours on a high-performance computing setup.

Utilizing the adjoint method for sensitivity calculations doubles this timeframe to around

32 hours for each gradient-based update, making a full optimization, which typically

requires several hundred iterations, practically unfeasible.

Contrastingly, effective index simulations in 2D are considerably more time-efficient, each

taking about 30 seconds on a standard mid-range computer. These simulations still lead

to device designs exhibiting satisfactory performance. A potential middle ground could

involve optimizing devices via the effective index method and refining the solution with a

handful of full-wave simulation steps. Yet, even a mere ten such refinement steps could

extend the process to several weeks, exceeding the scope of this investigation.

In recent years, significant progress has been made in exploring alternative design strate-

gies for photonic devices, both in 2D and 3D. Nonetheless, the primary bottleneck in

our optimization process remains the computational expense of performing simulations.

While various optimization techniques exist, none circumvent the necessity for numerical

simulations. Gradient-free methodologies, like swarm or evolutionary optimization, de-

mand extensive solution space exploration through numerous simulations [97, 98, 99, 100].

These strategies can excel in scenarios where gradients are inaccessible, such as discrete

optimization problems, but they inherently require more objective function evaluations

due to the absence of gradient information.

Data-driven approaches, including machine learning, effectively shift the computational

burden of simulations towards the creation of a dataset, which is then used to train a

rapid surrogate model [101, 102, 103]. This strategy can be advantageous for repetitive

tasks or when a dataset is versatile enough for multiple applications. However, the initial

dataset generation often demands more simulations than would be necessary for solving a

singular task or a limited number of tasks directly, as we will show in later chapters.

Therefore, our proposition to leverage 2D effective index simulations instead of more

computationally intensive 3D full-wave simulations seeks to expedite the optimization

process substantially. This approach incurs a trade-off in accuracy for significantly faster

simulation times, a compromise we consider worthwhile for enhancing the feasibility and

efficiency of photonic device optimization within this framework.
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3.5 Conclusion

In this chapter, we have demonstrated how to apply topology optimization to design

devices capable of efficiently guiding light from a dipole source into a waveguide within a

dielectric system with low index contrast. Our method utilizes an effective index approach

to simplify the representation of the three-dimensional system, facilitating a direct com-

parison between the performance of the optimized device and its expected functionality

based on well-established experimental results. This comparison demonstrates notable

improvements in Purcell enhancement and coupling efficiency in the three-dimensional

context.

The devices developed through this optimization process not only enable the effective

integration of spontaneous light emission into integrated photonic circuits but also open

new possibilities for controlling the flow of Bloch Surface Waves. This development

represents a considerable advancement in the ability to manipulate and control light on

the nanoscale, with potential implications for optical communication, sensing, and other

applications. Our work bridges an important gap in coupling spontaneous emission to

waveguides in environments of low index contrast, marking a significant step towards

more efficient and adaptable photonic device architectures.

33





4 Inverse-designed photonic wire bond
couplers

In this chapter, we explore the development of compact, high-performance couplers for

fiber-to-chip interfaces through inverse design, focusing on photonic wire bonding (PWB).

We begin with an introduction in Section 4.1 that outlines the challenges in fiber-to-

chip coupling and the potential of PWBs. Following this, Section 4.2 details the system

configuration and parameterization we employ to define the coupler’s geometry. We then

demonstrate the efficacy of our design in Section 4.3, showcasing significant improvements

over traditional designs. Finally, we conclude with Section 4.4 and summarize our work’s

achievements and potential applications in the context of PWB couplers, emphasizing the

broader implications for nanophotonic device integration and efficiency.

4.1 Introduction

Fiber-to-chip interfaces pose a significant bottleneck in the design of nanophotonic devices

due to the high loss associated with coupling light into and out of photonic chips. This

challenge is crucial as efficient coupling is essential for the overall performance of photonic

integrated circuits (PICs). Coupling approaches fall into two main categories: in-plane and

out-of-plane. Out-of-plane coupling, often employed for its ability to directly interface with

fibers or free-space beams, typically utilizes diffraction gratings etched onto the PIC surface.

These gratings are devices that diffract the light from a usually close-to-normal incidence

into the chip’s plane. While they can achieve relatively low losses, typically ranging

between 1 dB and 2 dB [104, 105, 106, 107], their performance is inherently wavelength-

specific. The efficiency of these gratings peaks around a narrow wavelength band centered

at their target wavelength. This narrow-band performance directly results from their

resonant nature, making them unsuitable for use in systems where broadband performance

is critical.

Addressing this issue, broadband fiber-to-chip coupling primarily relies on in-plane (edge)

coupling techniques, where light from an optical fiber is directly coupled into a side of the

photonic chip [108, 109, 110], an approach frequently called “butt-coupling”. This method

stands out for its potential to achieve broadband coupling efficiency. Still, it introduces the

complexity of matching the fiber’s mode profile – which is considerably larger than that of

any single waveguide on the PIC – with the edge coupling device on the chip. Efficiently

bridging this mode size discrepancy poses a significant design challenge. One strategy
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to mitigate this involves collimating the fiber mode by printing microlenses directly

onto the fiber [111, 112]. While this can improve the situation, it does not fully address

the fundamental challenge of mode matching. On-chip edge couplers often necessitate

elaborate designs, incorporating multiple chip layers and extensive propagation lengths to

optimize the match between the incoming mode and the chip’s waveguides. During these

lengths, the mode undergoes an adiabatic tapering process to the dimensions required on

the chip.

Though such design and fabrication approaches are widely adopted, they are not without

drawbacks. The intricacy of these devices renders them susceptible to fabrication inaccu-

racies and occupies significant chip estate, a valuable resource in PIC design. Additionally,

the scalability of these coupling mechanisms is constrained by the physical dimensions

of the couplers, limiting the density of fibers that can be interfaced with a PIC. This

scalability challenge presents a crucial bottleneck, particularly in applications requiring

many input/output waveguides, underscoring the need for innovative design solutions

that can streamline the coupling process while minimizing the footprint and enhancing

the scalability of fiber-to-chip interfaces.

Photonic wire bonding [113, 114, 115] emerges as a compelling solution to the limitations

encountered in traditional fiber-to-chip coupling methods. This technique involves the

3D printing of transparent polymer waveguides that interface directly to the chip. These

waveguides facilitate chip-to-chip interconnections and serve as efficient interfaces for

fiber-to-chip coupling. The flexibility in shaping PWBs allows them to adapt to the chip’s

local topology, thus supporting the dense integration of photonic components. This

adaptability is advantageous in applications like connecting multi-core fibers directly

to a PIC [116], showcasing the technique’s potential for enhancing device integration

density.

A key attribute of PWBs is their relatively small diameter, typically around 2 µm, which

results in mode profiles significantly smaller than those of fibers. This characteristic makes

PWBs inherently more compatible with the mode profiles prevalent in low-index materials

employed in CMOS processes, such as silicon nitride, facilitating efficient coupling to PIC

waveguides. Despite the advantage of smaller mode profiles for seamless integration with

PICs, a critical consideration remains: the mode profile of the PWB must be matched to

that of the optical fiber on one end and converted to align with the structures fabricated

on the PIC on the other [117].

On the fiber side of the system, these structures are typically relatively large linear ta-

pers [116] (on the order of 100 µm). This chapter is dedicated to investigating the applica-

tion of inverse design in developing coupling devices for fiber-to-chip interfaces utilizing

PWBs. We will demonstrate that with this technique, we can design couplers that exhibit

high performance and significantly reduce the spatial footprint.
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Figure 4.1: Illustration depicting the configuration for optimizing the coupling between an SMF and a PWB.

The optimized coupling interface, referred to as the “design region,” is positioned over the SMF’s core

(represented by the shaded area within the SMF) to efficiently channel the light into the PWB. It is important

to note that the fiber’s geometry is not depicted to scale in this visualization. The SMF’s cladding extends

significantly beyond the core and the diameter of the design region is twice the diameter of the SMF’s core.

4.2 Setup

In this section, we will outline the general setting of our optimization problem, describe

the physical layout, and describe the simulation and optimization setup. We will then

detail the parameterization used to create the geometries of our designs, as our approach

here significantly deviates from typical schemes used in topology optimization.

4.2.1 Problem statement

We will first need to specify the system’s physical setup to optimize a device for coupling

light from a single-mode optical fiber (SMF) into a PWB. An illustration of this setup is

shown in Fig. 4.1.

The SMF’s core has a diameter of 𝑑SMF,core = 8.2 µm with a refractive index of 𝑛SMF,core =

1.449. The core is surrounded by a cladding with an index of 𝑛SMF,clad = 1.444 with a

spatial extent much larger than the core. The design region for the optimization is attached

directly to the SMF, with a spatial extent of 16.4 µm along the SMF’s radius (twice the size

of the core) and a length of 20 µm (the target length of the coupler). On the right side of

the coupling region, the PWB is attached, with a diameter of 𝑑PWB = 2.2 µm. The PWB and

the optimized coupler are made from a polymer with a refractive index of 𝑛resist = 1.53,

as they are envisioned to be 3D-printed. The PWB and the coupler are embedded in a

low-index cladding material with a refractive index of 𝑛clad = 1.4. The target operational

wavelength for the device is 𝜆0 = 1.55 µm.

Given these parameters, the simulation setup is relatively simple - an eigenmode source is

placed in the SMF, exciting its fundamental mode. A mode monitor is then placed in the

PWB, which records the power in the fundamental mode of the PWB. The optimization

target is to maximize the power coupled into this mode. Note that since the SMF’s cladding

is much larger than the core diameter, the cladding boundaries are not included explicitly
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in the simulation. Instead, we truncate the simulation within the cladding. This assumption

is valid as long as the simulation domain is large enough to capture the guided mode

carried in the SMF fully. The simulation is truncated with PMLs on all sides.

The figure ofmerit to bemaximized in the optimization is the normalized power transmitted

into the forward-propagating fundamental mode of the PWB and can be written as

𝐹 = 𝑇 =

��𝛼0,out

��2��𝛼0,in

��2 , (4.1)

where 𝛼0,in is the mode coefficient of the fundamental mode of the SMF and 𝛼0,out is the

mode coefficient of the fundamental mode as measured in the PWB. These coefficients are

normalized such that |𝛼𝑛 |2 represents the total power carried in the 𝑛-th mode.

4.2.2 Parameterization

A notable aspect of addressing the optimization challenge is the inherent rotational sym-

metry of the SMF and the PWB. This symmetry is reflected in their modes, naturally

suggesting that a similar symmetry should be adopted within the design region. This

approach is underpinned by the anticipation that an optimally designed device would

inherently conform to this symmetry, rendering exploring design spaces that diverge from

this principle counterproductive. Furthermore, the device’s intended role as a bridging

component between the SMF and the PWB necessitates a unified, singularly connected

structure. Considering the envisioned manufacturing process via two-photon lithography,

it is essential that the design accommodates feasibly large feature sizes – specifically, lateral

dimensions on the order of 500 nm and vertical dimensions approximating 1 µm. This

consideration ensures the device’s structural integrity and manufacturability, precluding

designs that might incorporate unconnected voids potentially filled with unpolymerized

resist. Given these criteria, a strategic approach to the design would prioritize the shape of
the design region over detailed patterning within its confines, tailoring the optimization

process to the specific constraints and symmetries intrinsic to the system.

In the context of our simulations, which utilize a discretized FDTD grid, every component

including fields, geometrical structures, and gradients, is mapped onto this grid. This

discrete nature poses a challenge for shape optimization, where the device’s boundary is

explicitly defined, for example, through splines, due to the necessity of gradient propaga-

tion through such a parameterization. To navigate this complexity, we have developed a

variation of the filter-and-project parameterization scheme. The details of this parameteri-

zation are illustrated in Fig. 4.2, showcasing how it effectively enables shape optimization

within the constraints of the FDTD grid.

In our modified projection approach, the initial setup involves defining the design density,

denoted as 𝝆𝑥𝑦 , across a two-dimensional grid reflecting the discretized dimensions of the

device’s length and radius. This grid is populated with a linear gradient that transitions

from 0 to 1 along the radial direction, or the 𝑦-axis. The design density is then assumed
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Figure 4.2: Overview of the parameterization scheme for the coupler optimization. Illustration a shows

the parameters in the optimization, which represent the offset values 𝛽 of a soft thresholding function

(projection). The projection is then applied row-wise to an array filled with a linear gradient, mapping it to

a binary design. The exemplary design is shown in b. This binary design undergoes a rotation about its

central axis to achieve a three-dimensional, rotationally symmetric design shown in c.

to be fixed and is not modified during the optimization. Instead, we let 𝜷 be an array of

parameters instead of a scalar, and apply the projection along the 𝑥-axis of the design

density, with a different 𝛽𝑥 for each 𝑥 along the length of the device. Remember that the

projection is essentially a (differentiable) thresholding function, with 𝜷 parameterizing

the level at which the threshold is applied. Additionally, we apply a Gaussian filter to 𝜷 ,
which correlates neighboring threshold levels and creates a smooth boundary, with the

size of the filter implicitly imposing different minimum radii of curvature, analogous to

how the filtering step in the standard three-field parameterization imposes a minimum

feature size.

By assigning distinct 𝛽𝑥 values to each position along the 𝑥-axis within 𝝆𝑥𝑦 , this method

introduces varying threshold levels across the density field, kept constant throughout the

optimization process. Consequently, the array 𝜷 becomes the principal agent for defining

the geometry’s boundary post-threshold application to 𝝆𝑥𝑦 . In this optimization framework,

the design variables are the individual 𝛽𝑥 elements within 𝜷 , which effectively delineate

the geometry’s contours by intersecting the static density field 𝝆𝑥𝑦 at varying heights. A
significant advantage of this technique is its efficiency in decreasing the optimization’s

degrees of freedom from the total grid points, 𝑛𝑥 × 𝑛𝑦 , to merely 𝑛𝑥 , the count of grid

points along the 𝑥-axis. Following the projection phase, the modified density field 𝝆𝑥𝑦
undergoes a rotational operation around the 𝑥-axis to achieve a rotationally symmetric

design. Subsequently, the processed density, now represented as �̂�𝑥𝑦 , undergoes linear
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Figure 4.3: Illustration of the tailored projection method for optimizing the coupler. Solid lines represent the

adapted soft threshold function across various 𝛽 offsets, contrasting with the dashed lines that depict the

original projection approach at equivalent offsets. The two projections converge for 𝛽 = 0.5, yet exhibit

significant differences towards the interval’s extremes.

interpolation to assign the final permittivity values, completing the transformation from a

discretized density field to a geometrically and materially defined device.

A slight subtlety of this approach lies in the regular projection scheme’s assumption that

the design density always lies within [0, 1], with 𝛽 generally assumed to be equal or

close to 0.5. However, this standard approach to projection exhibits a non-linear reaction

in relation to 𝛽 within this bounded interval and tends towards divergence for values

extending beyond these confines. To address this characteristic, a revised projection

formula is employed here, expressed as:

�̂�
mod

(𝜷) = 1

2

(
tanh

(
𝛼 (𝝆𝑥𝑦 − 𝜷)

)
+ 1

)
, (4.2)

where 𝛼 denotes the standard projection strength, 𝝆𝑥𝑦 represents the consistent density
field, and 𝜷 signifies the array of threshold levels. This adjusted function ensures a linear

threshold level adjustment across the entire spectrum of 𝜷 values, a feature illustrated

in Fig. 4.3.

Initially, we start with a projection strength of 𝛼 = 10 and a vector of 𝜷 uniformly initialized

to 0.5, which leads to a straight device with “washed out” edges. The value of 𝛼 is then

doubled every 30 iterations until the optimization converges, i.e., the design is sufficiently

binary, and the objective function does not improve further. For the optimization, we

choose Adam [118] as our optimizer, mainly for its insensitivity towards discontinuous

gradients when 𝛼 is increased.

With this, the optimization problem and its parameterization are comprehensively defined,

setting the stage for the subsequent phase of actual device optimization.
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Figure 4.4: Evolution of the figure of merit during optimization. The gray arrows indicate the iterations at

which the optimization was restarted with a larger 𝛼 value in the projection, leading to stronger binarization

and dips in the objective function. A cross-section of the final optimized coupler design is shown in the

inset.

4.3 Results

After running the optimization for 150 iterations, it converges to a final transmission

in the PWB of around 92 %. The optimization history is shown in Fig. 4.4. We can

observe dips in the objective function when the projection strength 𝛼 is increased, and the

initial adjustment, increasing 𝛼 from 10 to 20, is marked by the most pronounced drop

in the objective function, indicating a substantial modification to the design’s boundary.

Subsequent increments in the binarization strength yield progressively milder impacts

on the objective, as the design’s boundary approaches a nearly binary state post the first

adjustment. The following steps further refine the design, enhancing the boundary’s

definition towards an optimal binary configuration.

The inset in Fig. 4.4 showcases a cross-sectional view of the final design, while a complete

three-dimensional rendering of the system is presented in Fig. 4.5. Upon examination, it

becomes evident that the device’s design intricately tapers from a dimension approximately

equivalent to the SMF’s core to a width matching that of the PWB. This transition is

characterized by oscillating boundaries that collectively define a gradual tapering profile,

culminating in a notably sharper taper near the device’s endpoint.

To elucidate the mechanism through which the coupler channels light into the PWB, we

present the absolute electric fields in Fig. 4.6. This illustration encompasses the fields of

the fundamental modes of both the SMF (left) and the PWB (right), alongside a cross-

sectional view of the electric field within the coupler (center). The simulation extends

from within the SMF, where the SMF mode is initially excited, to a point just beyond the

optimized coupler, terminating within the PWB. The simulation results show that the

device efficiently transitions the light from the SMF mode on the left to the PWB mode on
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Figure 4.5: Rendering of the optimized SMF to PWB coupling system. The optimized coupler has a total

length of 20 µm.
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Figure 4.6: Mode profiles and field distribution for the optimized coupler. The SMF mode (left) is injected

into the coupler (middle), which couples it into the fundamental mode of the PWB (right). Note that the

SMF mode appears dimmer than the PWB mode because it carries the same power spread over a larger area.

The geometry of the coupler is overlaid on top of the field. The device can be seen to guide the light from

the SMF into the PWB. efficiently

the right. The oscillating peaks and valleys along the coupler’s boundary, which might

initially appear unconventional, effectively serve as a series of “lenses”. They sculpt the

beam profile to match the target mode profile at the output. This unique guiding effect can

likely be attributed to the system’s minimal index contrast, indicated by a mere Δ𝑛 = 0.13

difference between the resist (𝑛resist = 1.53) and the cladding (𝑛clad = 1.4). Given this slight

index contrast, the light experiences only weak confinement, suggesting that directing the

light along the structure’s boundaries, akin to traditional waveguide behavior, may not be

viable over such a short device.

To further illustrate this point, we examine the transmission spectrum of the optimized

coupler in comparison to that of a linear taper, the latter spanning a length of 20 µm,

as depicted in Fig. 4.7. Observations indicate that both devices exhibit a broadband

response, demonstrating a remarkable level of insensitivity to wavelength fluctuations
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Figure 4.7: Transmission spectra of the optimized PWB coupler (top) and a 20 µm long linear taper (bottom),

measured as the power coupled into the fundamental mode of the PWB, normalized to the input power

from the SMF mode. The optimized device shows good broadband coupling performance, with transmission

being above 92 % over a 100 nm bandwidth. In contrast, the linear taper shows a transmission of only 72 %

over the same wavelength range.

across a 100 nm spectrum, specifically within the range 𝜆 ∈ [1.5 µm, 1.6 µm]. Notably, the
optimized design achieves a substantially enhanced transmission, reaching 92 % across

the spectrum, in stark contrast to the linear taper’s transmission rate of merely 72 %. This

comparative analysis underscores the efficacy of the optimized design, especially when

considering that the performance metrics of the linear taper are consistent with findings

reported in existing literature [116]. Critically, to match the performance of our optimized

coupler, one would require a linear taper extending approximately 100 µm in length. This

comparison not only illustrates the advanced capability of the optimized design but also

underscores the pivotal role inverse design plays in enhancing device performance and

reducing physical dimensions, thereby advancing the development of compact and efficient

photonic systems.

4.4 Conclusion

In this chapter, we have demonstrated the inverse design of a coupling device that connects

a single-mode fiber to a photonic wire bond. A modified parameterization scheme, which

defines the coupler’s shape through a static, radially graded density field, was central to

optimizing such a coupler. We reformulated the standard three-field topology optimization

parameterization by optimizing the levels at which the density field is thresholded instead

of directly modifying it. This approach enables the implicit parameterization of the device’s

boundary, which we subsequently optimize.

A comparative analysis with a conventional linear taper revealed a significant improvement

in performance for our optimized design, yielding a transmitted power of 92 % compared
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to 72 % for the linear taper. This comparison underscored the inefficiency of traditional

designs and showcased the optimized coupler’s ability to achieve superior performance

within a considerably reduced length.

While our focus was primarily on coupling from a SMF to a PWB, the potential applications

of these couplers extend to linking multi-core fibers with chips via PWBs similar to the

application showcased in Lindenmann et al. [116]. Our design methodology, characterized

by its emphasis on rotational symmetry and gradient-based inverse design, harbors broader

applicability. For instance, it could be adapted for crafting free-form lenses that are 3D-

printed directly onto fibers. Such applications could, for example, include modifying the

fiber’s mode profile to achieve a target Gaussian beam for free-space edge coupling.

To conclude this chapter, our work has successfully demonstrated the design of boundary-

parameterized coupling elements that leverage enforced rotational symmetry for gradient-

based inverse design. The resulting devices not only exhibit superior performance in

comparison to conventional linear tapers but also facilitate efficient optical coupling across

previously unattainable length scales.
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polarization-independent free-form
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Having investigated the minimization of device footprints for broadband coupling in

an in-plane setting in Chapter 4, In this chapter, we will investigate the application of

inverse design, coupled with additive manufacturing, for the design of a device for an

out-of-plane coupling scheme. We will begin with a motivation in Section 5.1, which

we will keep relatively brief as it mirrors the discussion in Section 4.1 to an extent. We

then introduce the problem setting and optimization setup in Section 5.2, which we will

follow with a discussion of the optimization results in Section 5.3. The chapter concludes

with Section 5.4, summarizing our findings and discussing possible future paths.

5.1 Introduction

Efficient coupling from optical fibers to photonic integrated circuits (PICs) is a major

bottleneck in integrated optics. It is typically where the most significant chunk of loss is

incurred in such a system, as we have previously discussed in Chapter 4. A key challenge

in designing such coupling devices is the mode mismatch arising from the low refractive

index contrast in optical fibers and the typically much higher refractive index contrast

available on the chip. The two dominant schemes for coupling light from fibers into

photonic integrated circuits are edge couplers (in-plane) and diffraction gratings (out-of-

plane). This chapter will focus on the latter, where we will design a free-form device for

surface-normal coupling from an optical fiber into a photonic chip.

The performance of grating couplers is usually highly polarization selective, as standard

designs use slab-shaped waveguides. However, many applications require polarization-

insensitive devices, such as, e.g., optical interconnects. Here, the polarization may shift

during propagation in a fiber, and non-uniform coupling across different polarizations

will lead to signal errors. A common approach to remedy this is to design polarization-

splitting grating couplers that split the incoming light into two (usually orthogonal) output

waveguides [119, 120, 121]. However, these designs are more difficult to integrate on-chip

as they require additional routing. Moreover, they may fundamentally have limitations in

terms of coupling efficiency for off-normal incidence due to symmetry constraints.
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As such, polarization-insensitive coupling into a single waveguide that supports both

polarization states is a desirable property for many applications and has been the subject of

multiple prior studies [122, 123, 124]. However, these couplers typically suffer from lower

coupling efficiencies than their polarization-sensitive counterparts due to the additional

complexity of supporting two polarizations. To remedy this, we explore the feasibility of

designing free-form polarization-insensitive grating couplers using adjoint optimization

in this chapter.

5.2 Setup

The setup for our inverse design challenge is straightforward – we aim to couple light

at a wavelength of 𝜆0 = 1.55 µm, originating from an optical fiber at normal incidence,

into a photonic integrated circuit via a bespoke, 3D-printed coupling structure placed atop

a substrate. This configuration is depicted in Fig. 5.1, where a gray box, specifying the

design region with dimensions of 20 µm × 20 µm and a height of 5 µm, is illustrated.

20 μm

5 
μm

x
y

z

SiO2

n = 1.53
Design region

n = 1.444

Figure 5.1: Setup of the coupling problem. The incoming 𝑥- or 𝑦-polarized (indicated by blue and red waves)

with a target wavelength of 𝜆0 = 1.55 µm should be coupled into a 3D-printed waveguide at normal incidence.

Attached to the waveguide and positioned beneath the source, a designated area is reserved for an optimized

coupling structure, denoted as the design region. The device is placed on a substrate of silicon dioxide.

Given the anticipated manufacturing method of laser nanolithography, the material within

the design area is presumed to possess a refractive index identical to that of a typical resist,

such as IP-Dip, noted as 𝑛Resist = 1.53. The device integrates a 3D-printed rectangular

waveguide, having a cross-sectional area of 2 µm × 2 µm, which is conceptually designed
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5.2 Setup

to smoothly transition into the waveguides on the chip, for example, those made of silicon

nitride, to facilitate low-index contrast coupling. The entire assembly is mounted on a

buried oxide cladding, characterized by a refractive index of 𝑛BOX = 1.444, and the entire

setup is encased in air with 𝑛 = 1.

The incoming light originates from an optical single-mode fiber, characterized by a mode

field diameter (MFD) of 𝑑MFD = 10.4 µm. This specification informs the selection of the

design region’s dimensions, intentionally chosen to be approximately twice that size, to

fully encompass the incoming beam and afford ample space to transform this light into a

waveguide mode at the device’s output. In our simulations, the optical fiber’s geometry is

omitted. Instead, the fiber mode is represented by a Gaussian beam, with its beam waist

equating to the fiber mode’s MFD. The beam is directed to propagate in free space in the

negative 𝑧 direction. Although it will show divergence propagating in free space after

exiting the fiber, we assume this divergence to be negligible since the fibers are typically

placed very close to the coupling device.

To fulfill our design goal of optimizing the coupling from the LP
𝑥
01
fiber mode, modeled

as an 𝑥-polarized Gaussian beam, into the fundamental transverse electric (TE) mode, as

well as from the LP
𝑦

01
fiber mode, represented as a 𝑦-polarized Gaussian beam, into the

fundamental transverse magnetic (TM) mode of the output waveguide, we establish the

following objective function:

𝐹obj =

���𝛼+
TE00

���2
𝑥
+

���𝛼+
TM00

���2
𝑦

𝑃in,𝑥 + 𝑃in,𝑦
, (5.1)

where 𝑃in,𝑥 and 𝑃in,𝑦 signify the input power of the incident 𝑥- and 𝑦-polarized Gaussian

beams, respectively. Moreover, |𝛼+
TE00

|2𝑥 and |𝛼+
TM00

|2𝑦 represent the power transmitted

into the forward propagating fundamental TE and TM modes within the waveguide,

respectively. This objective function quantitatively measures the efficiency of the designed

coupling structure in channeling the incoming light into the desired waveguide modes,

thus serving as a crucial metric for evaluating and guiding the optimization process toward

our target of maximizing mode-specific transmission efficiencies.

Note that the 𝑥- and𝑦-polarized input beamsmay also partially couple into the waveguide’s

TM and TE modes, respectively, which means that both input beams need to be simulated

with two independent simulations to ensure accurate mode coefficients for 𝛼+
TE00

and

𝛼+
TM00

.

The design region has a size of 20 µm × 20 µm × 5 µm, which we discretize at 10 px µm
−1
,

leading to a total of 2 × 10
6
degrees of freedom in the optimization. The simulations are

performed at a spatial resolution of 20 px µm
−1

(twice that of the design region) using

the Meep [3] FDTD package. For design region parameterization, we choose a standard

three-field approach where design density 𝜌 is initialized as a three-dimensional array

representing the discretized design region, which is then filtered using a Gaussian filter to

impose minimum feature size, and projected and linearly interpolated to the corresponding

permittivity values for simulation. To account for the physical dimensions of the focal spot
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5 Inverse design of polarization-independent free-form vertical couplers

of the laser during printing, we choose a prolate Gaussian filter size of 500 nm laterally and

800 nm vertically, which is a parameterization scheme that leads to somewhat elongated

features in the 𝑧 direction. Note that this does not perfectly correspond to the laser’s actual

spot size, so a Lorentzian filter shape along the 𝑧 direction would probably be more suitable.

We choose a purely Gaussian filter here as a proof of concept and because of its favorable

computational properties. It is a linearly separable filter, making the parameterization

step in the optimization significantly more efficient. The projection is initialized with a

strength of 𝛼 = 3, which is doubled every 20 optimization iterations, starting at iteration

15, until the optimization converges to a binary design. As in Section 4.2, we use Adam as

the optimization algorithm, as it is robust to changes in projection and suitable for large

optimization problems such as this one.

5.3 Results

The optimization is run for 160 iterations, comprising 460 simulations in total – two per

polarization, with one forward and adjoint simulation each. The evolution of the objective

function during this optimization is shown in Fig. 5.2.
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Figure 5.2: History of the objective function for the grating coupler optimization. The gray arrows indicated

iterations when the optimizer was restarted with a higher binarization factory 𝛼 in the projection.

Interestingly, the increase in binarization strength (gray arrows) does not lead to a drop

in the figure of merit from which the optimization needs to recover, as observed in the

previous chapter. Instead, we observe that the earlier increases in binarization strength

benefit the overall objective function. We posit that this is due to the filter’s interaction

with the projection step and the optimization problem’s physical nature. The first thing to

realize is that inherently, we are designing a resonant device here, in the sense that to couple

light at normal incidence via a (approximately) planar device layer, the structure’s mode of

operation will be mostly based on reflection – as opposed to creating an adiabatic transition
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between incident light and waveguide mode, which would necessitate a significantly more

elongated design dimension 𝑧. Reflection, however, is most pronounced at interfaces with

strong contrast in refractive index, a property that is exponentiated with grating-like

structures. So, fundamentally, a device with continuous transitions between materials can

not be a good reflector, i.e., the performance of such a device with respect to the design

problem at hand will perform sub-optimally. A large filtering radius, coupled with a low

projection strength, essentially removes such binary designs from the design space in the

optimization, which is likely the reason why we see only a very slight improvement in the

objective within the first 40 iterations in the optimization, which is when the projection

strength 𝛼 has increased four-fold from 3 to 12. Essentially, the optimization moves as close

as possible to a feasible design within the design space it can operate in. This design then

already exhibits the overall topology of the “intended” device but with soft boundaries,

which is then immediately made more efficient by a stronger projection, which preserves

the overall topology of the device but makes the material interfaces more pronounced.

This can be observed by investigating the device at different points in the optimization as

illustrated in Fig. 5.3. The figure shows top views of the design density in the 𝑥-𝑦-plane

and a slice along the center of the design density in the 𝑥-𝑧-plane at different points in

the optimization. At first glance, we can see how the design progresses from a “grayscale

image” into a binary one throughout optimization – not surprising, given that we increase

the strength of the projection throughout. Interestingly, though, and in support of our

previous argument about binarization, we can observe that the overall layout of the device

is already established after the first iteration of the optimization. In particular, when

looking at the device after the first design variable update in the first column of Fig. 5.3,

we already see a structure that resembles a conventional grating coupler from the top and

a series of “Bragg mirrors” at an approximately 45 deg angle when viewed from the side.

These general features remain until the end of the optimization and are still present in the

final design shown in Fig. 5.4.

Apparently, this is the dominant mode of operation of the optimized device. Subsequent

design iterations then enhance the index contrast and add additional, finer features, the

purpose of which is more difficult to elucidate. It seems that the most intricate features

emerge on the right side of the device, towards the output waveguide. Particularly in the 𝑥-

𝑦-plane, it looks like a light-guiding structure is created whose purpose is to funnel as much

light as possible from the fringes of the design region toward the waveguide. In the 𝑥-𝑧-

plane, this structure entails something akin to a tapered extension of the output waveguide,

effectively increasing the area over which light can couple into the waveguide.

To observe this behavior, we simulate the design using the commercial FDTD solver

Tidy3D [125] and plot slices along the center of the device for both input polarizations

in Fig. 5.5, with the top row showing a slice in the 𝑥-𝑦-plane at 𝑧 = 2.5 µm and the bottom

row showing a slice in the 𝑥-𝑧-plane. Overall, we see that the field profiles look similar for

both polarizations. The electric field seems to extend a bit further to the left in the case of

𝑥-polarized input, but overall, the device’s behavior seems to match its intended design

goal, polarization-independent coupling. Qualitatively, it seems like the mode is coupled

relatively well into the output waveguide, with the field profile looking approximately
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Figure 5.3: Slices of the design region in the 𝑥-𝑦-plane and 𝑥-𝑧 plane at different optimization steps. The

optimization starts by forming a basic grating structure, which is enhanced with more intricate features

as the optimization goes on. The initial design features a continuous permittivity distribution, which is

transformed into a fully binarized design by the end of the optimization.

Gaussian, without any apparent beating patterns or ripples. However, some portion of the

light seems to radiate into the cladding, with the tails of the fields on the right side of the

device extending far beyond the waveguide.

This is best illustrated by comparing the normalized power carried in the fundamental

TE/TM modes of the waveguide (our design target) to the flux that passes through the

waveguide, as illustrated in Fig. 5.6. The power is normalized to the incident (source)

power. We first observe that the flux passing through the output side of the coupler for

both polarizations carries around 88 % of the incoming power, with a maximum centered

around the target wavelength of 𝜆0 = 1.55 µm and dropping down to a minimum of around

50 % for 𝑥-polarization and 72 % for 𝑦-polarization. We notice a slight shift in wavelength
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x
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z

Figure 5.4: 3D rendering of the optimized polarization independent coupler. The device exhibits a Bragg-like

grating on the top, with intricate features along the 𝑧-axis.

for the peak flux for the two polarizations of around 20 nm. The power carried in the

fundamental modes shows essentially the same line shape as the respective flux, but they

carry around 10 % less power, with both TE and TM modes peaking at around 78 %. Upon

further investigation, we find that only around 1.5 % of this difference is due to coupling

to higher order waveguide modes, while the remaining discrepancy can be explained by

radiation losses into the substrate, which is also apparent from the previously discussed

field tails in Fig. 5.5.

It proves tricky to compare the coupling efficiency of our design to that of existing

literature because, to the best of our knowledge, only one variation on the concept of

3D-printed vertical couplers has been reported in literature [126], where coupling elements

are designed that adiabatically taper down in the 𝑧-direction, with a reported coupling

efficiency of 66 %. While these couplers share the same material platform, they are based

on adiabatic coupling and are, therefore, much larger than our reported design, featuring

a length of around 100 µm and a height of around 60 µm. Numerous studies have been

conducted on both polarization-splitting [119, 120, 121], where two polarization are

separated into different output waveguides (usually at a 90 deg angle) and polarization-

independent [122, 123, 124] grating couplers, where both polarizations enter the same

waveguide such as here, for standard CMOS platforms, which is another comparison we

can draw. We find that perhaps unsurprisingly, polarization-splitting grating couplers,

where the coupling efficiency is typically in the range from 60 % to 80 %, are generally more

efficient than polarization-independent ones, where the reported coupling efficiencies

generally lie between 25 % to 50 %. While our design handily outperforms the reported

polarization-independent couplers and can keep up with the reported performance of
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Figure 5.5: Amplitude of the absolute electric field distribution of the optimized grating upon illumination

with an 𝑥-polarized (left) and a 𝑦-polarized (right) Gaussian beam. The top row depicts a slice of the fields

in the 𝑥-𝑦-plane at 𝑧 = 2.5 µm and the bottom row shows a slice in the 𝑥-𝑧-plane at 𝑦 = 0 µm, where the

funneling of the light into the waveguide can be seen. A slice of the structure in the corresponding plane is

overlaid on top of the fields.

polarization-splitting designs, we stress that this is not a straightforward comparison as

our design is incompatible with standard CMOS processes.
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Figure 5.6: Source-normalized power coupled into the waveguide for an 𝑥-polarized (red) and a 𝑦-polarized

(blue) source. The solid lines indicate the power carried in a waveguide mode. For 𝑥-polarization, the light is

coupled mainly into the fundamental TE00 mode of the waveguide, while for 𝑦-polarization it is coupled into

the fundamental TM00 mode. The dashed lines indicate the flux passing through a flux monitor placed in

the output waveguide, indicating that some light is also coupled into higher-order and/or radiating modes.

5.4 Conclusion

In this chapter, we have explored the inverse design of a fully free-form, polarization-

independent coupling element that resembles an on-chip grating coupler. Due to the

device’s comparatively large volume of 20 µm × 20 µm × 5 µm and free-form nature, the

optimization comprises a very large number of degrees of freedom (2 × 10
6
parameters),

making this truly a large-scale optimization problem that would not be possible to tackle

without the adjoint method.

The optimized couplers achieve polarization-independent vertical coupling with peak

coupling efficiencies at the target wavelength 𝜆0 = 1.55 µm of 78 %, on par with state-of-

the-art grating couplers designed for a single polarization [106, 127, 128] and more efficient

than comparable designs designed with multiple polarizations in mind [122, 123, 124].

The optimized device is free-form and should be regarded as a proof of concept for

the potential performance of coupling elements created using additive manufacturing

techniques. Here, we have outlined the general optimization process and a path toward

3D-printed couplers; however, further efforts are needed to ensure the manufacturability of

the proposed (or alternate) designs. There are three main aspects regarding this challenge:

feature sizes, sensitivity to perturbations, and mechanical stability.

The first two points can be tackled via more advanced parameterization and additional

optical simulations. In this chapter, we adopted a rather crude approximation to feature

size constraints by filtering with a prolate Gaussian kernel. A more accurate alternative

would be to develop an approximate fabrication model that is integrated directly into the

53



5 Inverse design of polarization-independent free-form vertical couplers

optimization. For example, instead of filtering with a Gaussian kernel, the point spread

function of the focal spot could be used directly, leading to an implicit integration of the

writable feature sizes of the system. This could be further enhanced by modeling the

resist’s polymerization threshold and the degrees of freedom in the 3D printing process,

such as focal spot intensity and writing speed. The design’s sensitivity to perturbations

in the geometry can be incorporated through erosion/dilation schemes [18, 24] or, more

implicitly, by targeting multiple wavelengths in the optimization.

Lastly, mechanical stability presents a unique challenge in free-form electromagnetic

structures designed for additive manufacturing. This aspect has largely been neglected,

as the focus of nanophotonic inverse design has been on planar structures for on-chip

applications. This is an aspect that we will explore in more detail in the next chapter.
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constraints

In Chapter 5, we have demonstrated the inverse design of a fully three-dimensional de-

vice. This chapter will outline some of the challenges associated with fabricating such

devices and propose a solution to address them – co-designing for both electromagnetic

and structural design objectives. After an introduction in Section 6.1, we will discuss the

required theory for the following sections in Section 6.2; in particular, we will introduce

structural topology optimization. Section 6.3 will then showcase some results for devices

optimized using our proposed method, demonstrating structural integrity while main-

taining high optical performance. After a brief summary, Section 6.4 will discuss possible

future developments related to this work. The results presented in this chapter are based

on [P1].

6.1 Introduction

Most studies in inverse design have so far focused on planar devices [129, 130, 131, 30,

132], with three-dimensional geometries receiving significantly less attention [133, 45].

This limited application in three-dimensional designs is primarily due to the constraints

of existing manufacturing technologies. However, recent advancements in additive man-

ufacturing, mainly 3D laser nanolithography [134, 135], now enable the production of

complex three-dimensional microstructures. This evolution in manufacturing technologies

paves the way for creating optical devices with customizable functionalities, provided that

precise design blueprints are available. In nanophotonics, the ability to explore topology-

optimized free-form geometries introduces new challenges that must be addressed to

realize their potential fully.

This chapter explores an important issue that arises with additive manufacturing tech-

niques, such as 3D laser nanolithography. Specifically, it addresses the challenge of

maintaining the structural integrity of free-form structures created through such methods.

In contrast to traditional planar devices produced through subtractive processes, free-form

geometries lack inherent support from a substrate, so it is necessary to ensure that the

material layout remains fully connected to prevent collapse.

Interestingly, the importance of structural integrity in the context of electromagnetic

topology optimization has been largely overlooked until now. However, it is a critical con-
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sideration when it comes to designing free-form geometries using additive manufacturing

techniques.

To address this challenge, we propose a new approach to topology optimization in nanopho-

tonics, which considers compliance minimization as part of the optimization framework.

This methodology simultaneously addresses the structural and electromagnetic optimiza-

tion challenges and enables the design of devices that integrate optical and mechanical

functionalities.

As an example, we demonstrate the design of a photonic nanolens and a waveguide-

integrated mode converter, both of which showcase enhanced structural integrity. By

broadening the scope of topology optimization in this way, we open up new possibilities

for creating functional elements in nanophotonics.

6.2 Topology optimization for nanophotonics and structural
mechanics

In nanophotonic device optimization, the inclination towards feature sizes that align

with the wavelength scale is a natural consequence of an optimization trying to utilize

interference to maximal effect. However, this attribute often compromises the structural

integrity of the devices. To navigate the inverse design of devices that do not suffer from

such structural issues, we explore insights from a field where topology optimization is a

cornerstone: structural mechanics, as referenced in seminal works [136, 137, 138]. The

core principle in mechanical topology optimization is the inherent mechanical stability of

the optimized structures, which mandates the formation of interconnected structures as

solutions.

Leveraging this foundational principle, we introduce a holistic optimization framework

combining electromagnetic and mechanical topology optimization. This dual-focus frame-

work is designed to refine the structural robustness and optical performance of devices

concurrently. It incorporates considerations for external forces acting upon the structure,

thereby ensuring the structural integrity of the device under specified loads. The method

dictates the pattern of material connectivity based on the forces’ distribution, which could

be imposed either as hypothetical constructs to guide material connectivity along desired

axes or as representations of actual physical stresses expected on the device. The formula-

tion supports both abstract and realistic force applications, and illustrative examples are

provided for each scenario in this chapter.

The convergence of structural and electromagnetic topology optimization within this multi-

physics methodology involves delineating these two optimization problems separately.

Following this, we introduce a unified optimization challenge that encapsulates compliance

minimization (for structural integrity) and electromagnetic performance enhancement.

This combined approach allows for a detailed examination of each optimization indepen-

dently before merging them into a single objective. This integrated strategy paves the
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way for designing nanophotonic devices that excel in their optical functionality and are

engineered to withstand physical demands.

Here, we employ a three-field parameterization scheme as discussed in Subsection 2.2.1 for

structural and electromagnetic optimization. To prevent the emergence of minor features

within the optimized design, we implement a Gaussian filter on the design variables:

𝜌𝑖 =

∑
𝑗∈D𝑖

𝑤𝑖 𝑗𝜌 𝑗∑
𝑗∈D𝑖

𝑤𝑖 𝑗
with 𝑤𝑖 𝑗 =


𝑟min exp

(
− |𝒓𝑖−𝒓 𝑗 |2

2𝜎2

)
∀𝒓 𝑗 ∈ D𝑖

0 otherwise ,

(6.1)

wherein D𝑖 denotes the collection of elements situated within the vicinity, defined by

the filter radius 𝑟min, from element 𝑖 . The weights 𝑤𝑖 𝑗 correspond to the weights in the

filtering kernel. The standard deviation, 𝜎 , is set as 𝜎 = 𝑟min/√3, mirroring the behavior

observed in the widely utilized cone filter [139], with a chosen minimum feature size of

𝑟min = 100 nm. To obtain the projected density �̂�, we use the standard projection scheme

presented in Eq. (2.25), where we set the parameters 𝛼 = 30 and 𝛽 = 0.5.

Following the application of the filtering and projection, the resulting design densities

are subjected to linear interpolation to determine the permittivities and Young’s modulus

necessary for electromagnetic and structural analyses, respectively. This is mathematically

represented for the permittivities as:

𝝐𝑟 = 𝜖min + �̂� (𝜖max − 𝜖min) , (6.2)

where 𝝐𝑟 represents the relative permittivity distribution used in the electromagnetic

simulations. Similarly, for Young’s modulus, the relationship is given by:

𝒀 = 𝑌min + �̂� (𝑌max − 𝑌min) , (6.3)

where 𝒀 denotes the spatial distribution of Young’s modulus utilized in the structural

analysis. It is important to note that, aside from the final material interpolation step,

all other aspects of the parameterization remain the same for both simulations. This

ensures that a single design density leads to corresponding material distributions for both

the electromagnetic and structural simulations, thus avoiding discrepancies in geometry

between the two types of analyses.

In the electromagnetic optimization, the optical response of the structure is analyzed

through simulations conducted using the finite-difference frequency-domain (FDFD)

method, as implemented in [140]. The goal of the optimization is to minimize an electro-

magnetic objective, denoted as 𝐹EM(𝝆), with regard to the design variables 𝝆. This can be

formulated as follows:

min

𝝆
𝐹EM

(
𝝆
)

(6.4a)

s.t. ∇ ×
1

𝜇0

∇ × 𝑬 − 𝜔2𝜇0𝜖0𝝐𝑟
(
𝝆
)
𝑬 = −𝑖𝜔 𝒋 (6.4b)

0 ≤ 𝝆 ≤ 1 , (6.4c)
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where 𝑬 represents the electric field, 𝒋 stands for the electromagnetic current source, and

𝝐𝑟 is the relative permittivity derived from the design variables. The analysis assumes

a uniform relative permeability 𝜇𝑟 = 1 across the entire domain. The definition of the

electromagnetic objective function 𝐹EM(𝝆) varies depending on the specific requirements

of the optimization problem. The gradients of this objective function with respect to the

design variables are calculated using adjoint sensitivity analysis, as detailed in [16, 141].

The structural optimization focuses on minimizing compliance and is executed through a

custom implementation of the direct stiffness method, as highlighted in Sigmund [142].

The formulation of this optimization problem is presented as follows:

min

𝝆
𝐹C

(
𝝆
)
= 𝑼⊤K𝑼 =

𝑁∑︁
𝑒=1

𝑌𝑒 (𝜌𝑒)𝒖⊺𝑒 k0𝒖𝑒 (6.5a)

s.t. K𝑼 = 𝑭 (6.5b)

0 ≤ 𝝆 ≤ 1 , (6.5c)

where 𝐹C(𝝆) signifies the compliance objective, 𝑲 denotes the global stiffness matrix, 𝑼 is

the global displacement vector, 𝒌0 represents the stiffness matrix for a unit element, 𝒖𝑒 is
the displacement vector for an element, and 𝑭 symbolizes the external mechanical force

vector applied. The Young’s modulus 𝑌𝑒 (𝜌𝑒), which is dependent on the design variable,

specifies the stiffness for each of the 𝑁 elements.

While a volume constraint, which limits the material volume in the design domain Ω to

not exceed a predetermined volume fraction𝑉 , is commonly applied in such optimizations,

it is not enforced in this scenario. This decision is made to avoid unnecessarily limiting

the design space for the optical optimization, as the electromagnetic design objectives

naturally prevent trivial solutions. Furthermore, volume constraints are typically not a

concern in developing nanophotonic devices.

Knowledge of compliance sensitivity concerning the design variables is crucial for effective

topology optimization. This sensitivity is obtained as:

𝜕𝐹C

𝜕𝜌𝑒
= −𝜕𝜌𝑒

𝜕𝜌𝑒
× (𝑌max − 𝑌min) × 𝒖⊤𝑒 𝒌0𝒖𝑒 , (6.6)

where
𝜕𝜌𝑒
𝜕𝜌𝑒

is determined by the selected filtering and projection method.

The structural and electromagnetic problems are discretized identically for a cohesive

approach to optimization. This allows for using a unified set of design variables to define

the material geometry for both simulations without the need for spatial interpolation on

two disparate grids. This strategy enables the combination of both the compliance and
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optical objectives into a singular objective function, thereby creating a comprehensive

optimization problem. This is represented as:

min

𝝆
𝐹
(
𝝆
)
= (1 − 𝜔C) 𝐹EM

(
𝝆
)
− 𝜔C 𝐹C

(
𝝆
)
+ 𝐹B

(
𝝆
)

(6.7a)

s.t. ∇ ×
1

𝜇0

∇ × 𝑬 − 𝜔2𝜇0𝜖0𝝐𝑟
(
𝝆
)
𝑬 = −𝑖𝜔 𝒋 (6.7b)

K
(
𝝆
)
𝑼 = 𝑭 (6.7c)

0 ≤ 𝝆 ≤ 1 , (6.7d)

where 𝜔C ∈ [0, 1] serves as the compliance factor, allowing for the adjustment of the

emphasis placed on each termwithin the objective function. This flexibility in prioritization

facilitates the balancing of structural and electromagnetic performance criteria within

the optimization process, enabling the achievement of a design that meets specified

requirements in both domains.

Furthermore, to enhance the binarization of the structure, we include a binarization penalty

𝐹B(𝝆). This metric is formulated as:

𝐹B(𝝆) = min

(
− log

(∑𝑛
𝑖=1

4𝜌𝑖 (1 − 𝜌𝑖)
𝑛

)
, 𝛾

)
(6.8)

and is introduced late in the optimization process – specifically when the optimization is

nearing convergence, indicated by the relative change in the total figure of merit dropping

below a certain threshold (e.g., 1× 10
−3
). The 𝛾 parameter caps the binarization objective’s

maximum value, with a value of 𝛾 = 2 found effective for achieving desirable binarization

while maintaining numerical stability.

The calculation of gradients for each term within the objective function and those related

to the material parameterization is facilitated by automatic differentiation [95]. This

methodological choice permits modifications to the objective function and material param-

eterization without requiring the manual derivation of new gradients for each alteration.

While the resultant material distributions are inclined towards connected features, they

embody a compromise between the mechanical and optical optimization goals, hence not

unequivocally precluding the presence of isolated elements. To address this, a multi-step

optimization strategy is employed: initially, the optimization is executed until convergence;

after this, a post-processing step involving connected component labeling [15] eliminates

any isolated elements from the material distribution. The refined material distribution is

then subjected to a second optimization phase, culminating in final designs exclusively

composed of connected material structures.

6.3 Example applications

Here, we showcase the application of the previously detailed methodology to the inverse

design of two distinct nanophotonic devices. By systematically varying the compliance
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6 Nanophotonic devices with mechanical constraints

factor 𝜔C within the range [0, 1], we conduct multiple optimizations for each device. Here,

a compliance factor of 0 signifies an optimization exclusively focusing on electromagnetic

topology optimization (serving as our baseline), whereas a value of 1 entirely omits the

optical design objective, emphasizing structural considerations. The structural simulation’s

driving forces are calibrated such that the compliance’s lower boundary aligns inmagnitude

with the electromagnetic figure of merit 𝐹EM(𝝆) from the baseline optimization at 𝜔C =

0. The chosen parameters for structural analysis are a minimum element stiffness of

𝑌min = 1 × 10
−6

and a maximum stiffness of 𝑌max = 1. For electromagnetic simulations,

the selected operational wavelength is 𝜆 = 1 µm, with potential materials being polymers,

typical for 3D laser nanolithography with a refractive index of 𝑛 = 1.5, and air with

𝑛 = 1. The simulation domain extends over 12 × 8 µm
2
, with a resolution of 30 µm

−1
and

is surrounded by perfectly matched layers (PML) of 1 µm thickness on each side. For

simplicity, this investigation is confined to 2D simulations, although it is noted that the

underlying equations remain applicable in 3D scenarios.

The primary aim here is the inverse design of functional photonic elements that also possess

structural integrity, thus making them suitable for production via additive manufacturing

techniques. While the electromagnetic simulation sources are predefined based on each

device’s requirements, defining structural loads can be less straightforward. Considering

that mechanical forces typically do not significantly impact nanophotonic devices, and no

load-bearing optical elements are recognized, the optimization’s main target is the creation

of connected structures. To achieve this, fictitious forces may be employed to steer the

optimization towards designs with connectivity, underscoring the method’s adaptability

to arbitrary loading scenarios, including real physical forces.

These simulations are implemented using Python, with the L-BFGS-B [143] algorithm

from the nlopt [14] library employed for local gradient-based optimization. When run on

a computer equipped with an Intel Core i7-7700 processor, each optimization process is

estimated to converge within approximately 30 minutes.

6.3.1 Photonic nanolens

In our first demonstration, we target the inverse design of a photonic nanolens by employ-

ing our optimization framework. The configuration for this design challenge is visualized

in Fig. 6.1, delineating the setup for optimizing a nanophotonic focusing element. The

photonic nanolens comprises two sections of solid material flanking a central design area,

destined for the optimized material layout. A plane wave, linearly polarized perpendicular

to the depicted plane and incident normally on the design’s upper boundary, illuminates

the structure. The optical design objective focuses on concentrating this light into a small

focal spot beneath the design zone.
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Figure 6.1: Illustration of the optimization setup for a photonic focusing element. The design domain,

outlined by the dashed red rectangle, spans an area of 8 × 3 µm
2
, nestled between two solid slabs of material

(𝑛 = 1.5) secured at both ends of the simulation domain and enveloped by air (𝑛 = 1). An 𝐸𝑧-polarized plane

wave source, with an operational wavelength of 1 µm, is positioned at the domain’s upper boundary to

illuminate the structure. The objective in the electromagnetic design is to maximize the electric field intensity

at a focal spot situated 1.5 µm below the structure’s lower edge. The structural challenge is articulated as

reducing the material’s compliance within the design region under a vertically applied load at its center.

Adapted with permission from [P1]. Copyright 2020 American Chemical Society.

We define the electromagnetic figure of merit, 𝐹EM, as the intensity ratio of the electric

field 𝐸𝑧 within the focal regionM to that within the design region D:

𝐹EM =

∫
M |𝐸𝑧 |2d𝐴∫
D |𝐸𝑧 |2d𝐴

, (6.9)

where the division by the field intensity in the design area D aims to discourage designs

that leverage intense field amplification due to resonances within the design space, as

such configurations are highly sensitive to manufacturing inaccuracies. Prior studies,

such as [8], have illustrated that optimizing for elevated electric field intensities within

a compact spatial region, specifically a square measuring 60 × 60 nm
2
, effectively yields

sharp focal points in inverse design endeavors.

For the design’s structural stability, the photonic structure is presumed to be mechanically

secured at both the left and right edges of the domain. This could be practically achieved

by incorporating structural support pillars, to which the end blocks are connected and

positioned outside the confines of the simulation area. A vertical load is applied along the

centerline of the design region, representing the weight exerted by the lens element itself.

The objective of the structural optimization is to enhance the device’s rigidity in response

to this vertical load. Achieving optimal stiffness necessitates the device’s anchorage to the

solid material at the domain’s extremities.

Although framed as a hypothetical scenario, it is important to recognize that when con-

sidering rotationally symmetric configurations, this setup bears a resemblance to the
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6 Nanophotonic devices with mechanical constraints

design of free-form fiber coupling elements and microlens systems as explored in previous

research [144, 145, 146, 147]. These studies highlight the practical applications of such op-

timization problems in developing photonic devices that meet specific optical performance

criteria and are structurally sound.
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Figure 6.2:Optimization outcomes for a photonic nanolens. Panels a–d depict the evolution of optimized

lens configurations, with a contour of each design being presented alongside the normalized intensity of the

electric field, |𝐸𝑧 |2, for compliance factors 𝜔C of 0.0, 0.2, 0.5 and 0.9. Panel e visualizes the electromagnetic

figure of merit, 𝐹EM, and panel f the structural stiffness, 𝐹C, across a range of compliance factors from 0

to 1 for the optimized designs. The specific designs shown in panels a–d are marked on the graph. It is

important to note that the values for structural stiffness at 𝜔C = 0 and for the electromagnetic figure of

merit at 𝜔C = 1 are excluded, reflecting the focus on solely optical or mechanical optimizations at these

particular compliance factors, respectively. Adapted with permission from [P1]. Copyright 2020 American

Chemical Society.

The initial design, showcased in Fig. 6.2(a) for a compliance factor of 𝜔C = 0 presents

a configuration with several disconnected elements within the design space. Although

this purely electromagnetic topology optimization yields a lens with an efficient focal

point, the design is not feasible for production through 3D laser nanolithography due to its

disjoint nature. However, the refined designs illustrated in Fig. 6.2(b)–(d), corresponding to

higher compliance factors, demonstrate progressively more interconnected structures with

enhanced stiffness. These designs, devoid of any isolated elements, closely emulate the field

profile observed in the baseline design. As the compliance factor increases, prioritizing

structural considerations leads to a noticeable decline in focal region intensity.

The illustration in Fig. 6.2(e) plots the electromagnetic figure of merit 𝐹EM

(
𝝆
)
, and Fig. 6.2(f)

the inverse of material compliance 𝐹−1

C

(
𝝆
)
for the generated designs, revealing that a higher

compliance factor tends to compromise the optical performance objectives. Nonetheless,

the design optimized at a compliance factor of 𝜔C = 0.2 nearly matches the base design’s

field intensity, falling short by only 0.8 %, while forming a coherent, single-structure design.

This example demonstrates that the proposed design methodology can yield photonic

nanolenses that are structurally sound and perform nearly optimally.
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6.3.2 Mode converter

Mode converters are a fundamental example of integrated photonic devices [148], widely

utilized in on-chip optical systems [21, 22]. The capacity to craft such devices for free-form

geometries could enable their integration into, for example, photonic wire bonds [113,

116]. However, a critical design criterion for such applications is eliminating unattached

elements within the device layout.

1 μm

F Design region
TE0 TE1

x

y

Figure 6.3: Configuration for waveguide mode converter optimization. Encapsulated within a dashed

red rectangle, the design area spans 4 × 6 µm
2
and represents a section of a waveguide with a width of 3 µm

(refractive index 𝑛 = 1.5) surrounded by air (𝑛 = 1). The task involves injecting the fundamental TE0 mode

at an operational wavelength of 1 µm from the waveguide’s left side. The aim of the electromagnetic design

is to enhance the mode coupling with the TE1 mode toward the waveguide’s right terminus. Structurally,

the challenge is to minimize compliance within the design space under the influence of opposing forces

applied at its lateral boundaries, utilizing a material with a maximum stiffness (𝑌max = 1). Adapted with

permission from [P1]. Copyright 2020 American Chemical Society.

In this subsequent case study, we design a mode converter that facilitates the transition

from the fundamental to the second-order TE mode within a waveguide, as showcased

in the depicted optimization setup in Fig. 6.3. The fundamental TE mode is excited at

the waveguide’s entrance, located on the left side of the design space. Our goal is to

maximize the coupling between the outgoing electric field 𝑬 and the targeted second-order

TE mode field 𝑬TE1, as measured across the surface 𝑆 of a field monitor M positioned on

the simulation’s right side. This objective is quantitatively captured by the electromagnetic

figure of merit 𝐹EM, calculated as:

𝐹EM =

����∫
M
𝑬∗

TE1
𝑬 d𝑆

���� . (6.10)

The optimization process employs the finite-difference frequency-domain (FDFD) method

to simulate and iteratively refine the design. Subsequently, the finite-difference time-

domain (FDTD) method is utilized to assess the mode conversion efficiency [3] precisely.

The initial design, as showcased in Fig. 6.4(a), manages to achieve a mode conversion

efficiency of 98.6 %. This design, however, includes multiple disconnected elements, notably

a significant ridge-like feature that channels the field through the bottom half of the design

space, rendering it unsuitable for incorporation into a free-form waveguide. As the

compliance factor is incremented, we observe a transition towards designs that exhibit
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Figure 6.4: Results of the mode converter optimization. Panels a–d show the evolution of design

configurations alongside their associated normalized field intensities |𝐸𝑧 |2, for varying compliance factors

of 𝜔C values 0.0, 0.2, 0.5 and 0.9. A contour of the design is overlaid on top of the fields. Panel e shows the
electromagnetic figure of merit 𝐹EM, with the structural robustness 𝐹C show in panel f across a continuum
of compliance factors from 0 to 1. The designs in a–d are highlighted with markers. It is noted that the

𝐹C values at 𝜔C = 0 and the 𝐹EM values at 𝜔C = 1 are excluded as the optimization targets are exclusively

optical or mechanical at these specific factors, respectively. Adapted with permission from [P1]. Copyright

2020 American Chemical Society.

enhanced structural cohesion (Fig. 6.4(b)–(d)), though this improvement often comes at the

expense of mode coupling efficiency, particularly at higher compliance values as illustrated

in Fig. 6.4(e)–(f).

Interestingly, for designs with compliance factors up to 0.3, the coupling efficiency re-

mains on par with or even surpasses the baseline design, peaking at a 99.2 % efficiency

at a compliance factor of 0.1. This finding suggests a scenario where structural enhance-

ment does not detract from optical performance up to a certain threshold. Thus, a mode

converter design that maintains connectivity throughout its structure, such as the one pre-

sented in Fig. 6.4(b), could be fabricated using additive manufacturing processes, marrying

structural solidity with high optical performance.

6.4 Conclusion & outlook

In this chapter, we introduced a topology optimization framework that seamlessly in-

tegrates optical and mechanical design goals. Through this approach, we successfully

demonstrated the feasibility of generating well-structured devices amenable to additive

manufacturing processes by factoring in mechanical constraints within the optimization

phase. Notably, the integration of mechanical objectives does not inherently compromise
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the optical performance metrics and, in some instances, can even uncover superior solu-

tions compared to approaches focused solely on electromagnetic topology optimization.

Although our exploration was limited to two-dimensional constructs for ease of demonstra-

tion, extending the methodology to three-dimensional geometries is conceptually direct,

and even necessary. We did not explore strategies for enhancing manufacturing tolerance,

such as erosion-dilation [149, 150] techniques commonly referenced in the literature, yet

these could be readily incorporated into this framework.

One possible improvement of this work is tackling the somewhat arbitrary selection of

forces applied to the structures under consideration. The process, as described, involves

speculatively determining forces that would lead to a desired structural configuration,

an approach that might not be universally insightful or practically applicable. A shift

towards a more physically grounded methodology, such as incorporating self-weight under

gravity into the optimization process, presents a more tangible and realistic strategy. This

approach would aim to optimize the structure to be self-supporting under the influence of

gravity, which is a natural and omnipresent force, as opposed to relying on artificial or

"magic" forces.

This approach of applying body forces is complicated somewhat by the fact that these forces

dynamically evolve with each iteration of the optimization. Specifically, the challenge

lies in accounting for the derivatives of the objective function concerning changes in

these forces, necessitating differentiation with respect to the right-hand side of the linear

system governing the optimization. This requirement diverges from conventional practices

in photonic inverse design, where source forces are typically static and unchanging

throughout the optimization process. In practice, this could be as simple as incorporating

the material density at each point into the total force calculation for each optimization

iteration. This methodological pivot towards incorporating physical forces like gravity not

only enriches the optimization process with more realistic constraints but also potentially

simplifies the decision-making process regarding the application of external forces, aligning

the optimization closer to practical and physically achievable designs.

The project embarked with the primary aim of incorporating connectivity into photonic

devices, addressing a common issue in photonic inverse design where the resultant struc-

tures often feature disconnected segments, such as Bragg gratings. The incorporation of

mechanical optimization, applying forces merely served as a mechanism to foster con-

nectivity, without a genuine emphasis on ensuring mechanical robustness beyond the

requirement for connectivity.

An intriguing alternative to achieving structural coherence could involve employing a

thermal solver in lieu of the mechanical framework. This method would entail designing

the device to produce heat, which is then dissipated at the simulation boundaries. The opti-

mization goal is to minimize the device’s overall temperature. Theoretically, unconnected

elements would result in excess heat due to inadequate dissipation pathways, leading to

their exclusion from the optimization process. Additionally, by simulating voids as heat

generators in a parallel scenario, the approach could facilitate the formation of connected

material domains alongside connected voids, thereby eliminating enclosed voids. Such a
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configuration is advantageous for manufacturing processes, particularly when considering

the removal of unpolymerized resist from within enclosed voids.

This thermal-based strategy for ensuring connectivity is not novel, as highlighted by Li

et al. [151], who applied a similar concept for structural topology optimization. Their

work, however, focused solely on the connectivity of voids, given that structural integrity

is inherently maintained to prevent the stiffness matrix from becoming singular. The

challengewithin optical design encompasses ensuring connectivity across both thematerial

and voids, necessitating a nuanced optimization formulation that diverges slightly from the

structural domain. This approach underscores the adaptability and innovation required in

optimizing photonic devices. It moves beyond traditional methods to explore new avenues

for achieving desired structural and functional outcomes.

Deciding whether to incorporate these connectivity and physical considerations as penal-

ties within the objective function or as explicit constraints in the optimization problem

presents another avenue of possible future investigation. In this work, we have included

them as terms in the objective function for ease of implementation and flexibility; however,

it only approximates the desired outcome without guaranteeing complete connectivity.

On the other hand, formulating these considerations as constraints could provide more

definitive assurances regarding the structure’s connectivity but would complicate the

optimization process, necessitating careful normalization and potentially limiting the

choice of optimization algorithms. Establishing a benchmark temperature for a fully con-

nected design could provide a clear constraint target for thermal constraints. In contrast,

defining a reference compliance for self-weight considerations in a mechanical context is

less straightforward and would require further deliberation.

In conclusion, the methods outlined in this chapter combine electromagnetic with struc-

tural topology optimization, thereby enabling the concurrent optimization of functional

photonic devices’ optical and mechanical properties. This enables the design of devices

that rely critically on their structural and optical characteristics.
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7 Machine learning-based surrogate
solvers for simulation and inverse
design

After a short introduction in Section 7.1, this chapter will explore the use of machine

learning, specifically in the form of neural networks trained as surrogate models, for

solving Maxwell’s equations. We will present an overview of different model architectures

in Section 7.2, their training in Section 7.3, and their application to model electromagnetic

scattering problems in Subsection 7.4.1. Subsequently, the focus shifts to applying these

trained models for the inverse design of scatterers, detailed in Section 7.5. The chapter

concludes by reflecting on the overall viability of such models and envisaging potential

future directions in the field, as outlined in Section 7.6. The insights and findings delineated

in this chapter are primarily derived from [P3].

7.1 Introduction

In nanophotonics, tools for solving Maxwell’s equations effectively play a pivotal role

in simulating the interaction between light and matter at the wavelength scale and, con-

sequently, in the innovation of novel optical devices. Prominent methods are the finite

element method (FEM) [4, 5] in the frequency domain and the finite difference method

(FDM) in the frequency (FDFD)[152, 153] and time domains (FDTD)[3, 154, 2], respectively.

Solvers based on these methods only discretize Maxwell’s equations suitably but do not

impose additional approximations. Thus, these techniques constitute the most detailed

and precise category of tools for electromagnetic system simulations. Nonetheless, achiev-

ing full-wave solutions frequently entails substantial computational resources and time,

thereby setting practical constraints on the complexity of problems that can be addressed.

This challenge becomes even more pronounced in scenarios like inverse design [6, 25, 155,

P1, 39], where it is expected to undertake hundreds of simulations to derive satisfactory

outcomes. Although there is continuous progress in developing more efficient full-wave

solvers [156, 157], alternative semi-analytical methods [158, 159, 160, 161] exist, offering

significant speed improvements by making specific physical presumptions, thus limiting

their scope to particular types of problems.

A relatively new strategy involves the application of machine learning-based surrogate

models [162, 163, 164, 165] for approximating solutions to partial differential equations
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(PDEs). Thesemodels have the potential to surpass semi-analytical methods in speed during

inference. They can be adapted for a broad spectrum of problems due to their inherent

capability as universal function approximators [166, 164]. Recently, the integration of

machine learning in nanophotonics has been accelerating [167, 168], with surrogate solvers

finding applications in both forward modeling and inverse design tasks [169, 170, 171,

172, 103]. However, these models introduce their own challenges, notably regarding

accuracy and data efficiency. The term “data efficiency” refers to the capability of using

less data to achieve more, which usually inversely correlates with accuracy. A model

can be trained to yield more accurate predictions and vice versa by utilizing more data.

Given that high-quality training data is typically produced using traditional methods,

like full-wave solvers, the balance between accuracy and data generation costs becomes

a critical factor in employing surrogate solvers, as their advantages diminish when the

data production becomes a bottleneck. Therefore, it is paramount to enhance the data

efficiency of such models and identify scenarios where surrogate solvers can significantly

reduce data generation costs.

A promising approach to enhancing the data efficiency of surrogate solvers is to leverage

advancements in scientific machine learning by introducing models endowed with partial

physical insights. This can be achieved by either directly incorporating governing equa-

tions into the model, as seen with physics-informed neural networks (PINNs) [173, 174],

or by penalizing solutions that deviate from physical principles during the training pro-

cess [102, 103], which can be broadly applied given known governing equations. Alongside

embedding physics into machine learning, the exploration of novel model architectures

has been crucial. Notably, models that learn operator mappings between function spaces,

such as graph kernel networks (GKN) [175], deep operator networks (DeepONets) [164,

176], and Fourier Neural Operators (FNO) [177], have shown superior performance in

solving PDE-constrained problems compared to their predecessors.

In this chapter, we develop an enhanced version of the FNO to act as a surrogate solver

for electromagnetic scattering problems [P3]. Our model, trained on a varied dataset of

electromagnetic scatterers, demonstrates improved data efficiency and accuracy compared

to the conventional convolutional network architecture (UNet) in a two-dimensional

setting. Further, we employ this model in the computationally intensive task of gradient-

based inverse design of three-dimensional free-form scatterers starting from various initial

conditions, showcasing the practical advantages of this approach over traditional full-wave

solvers.

7.2 Neural network architectures

This section offers an introductory overview of the neural network architectures, which

will be discussed in subsequent sections. It aims to outline the fundamental aspects of

each architecture without engaging in an exhaustive exploration of their intricacies. For

those interested in a more detailed understanding, references to relevant literature will be

provided for further reading.
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7.2.1 Convolutional neural networks

Convolutional Neural Networks (CNNs) are a fundamental part of deep learning and are

used for solving problems in areas such as computer vision and image processing. They

trace their origins back to pioneering work by LeCun et al. [178]. This early application

of CNNs was notable for utilizing backpropagation for gradient descent, enabling the

network to iteratively learn optimal filter weights directly from the input data. The later

resurgence of interest in CNNs was catalyzed by the advent of the AlexNet architec-

ture [179], which outperformed traditional computer vision methods by a large margin.

This success highlighted the power of deep learning for image processing tasks, leading

to a rapid evolution in CNN architectures. The introduction of the UNet [180] in 2015

marked another milestone, featuring several architectural innovations, such as its unique

symmetric structure and skip connections that facilitate precise localization by preserving

spatial information lost during downsampling. The general layout of a UNet architecture

is shown in Fig. 7.1. This efficient design allowed it to excel on small datasets, making it a

versatile and powerful tool for various applications beyond computer vision.

Conv + ReLU

MaxPool
Upsample
Skip

Figure 7.1: Illustration of the UNet architecture, showcasing its symmetrical structure with convolutional

layers with ReLU activation (depicted as light blue boxes), followed by downsampling via maximum pooling

(red arrows). After four levels of downsampling, the layers are symmetrically upsampled again, indicated by

green arrows. Layers on opposite sides of the network are connected via skip connections.

Various applications in photonics leverage UNets, notably in approximating solutions

to Maxwell’s equations, thus serving as surrogate solvers as an alternative to full-wave

solvers [181, 171]. Typically, these deep learning architectures ingest a grid-discretized

distribution of physical properties, such as permittivity, akin to an image format. Their

objective is to estimate specific electromagnetic field components. This estimation is accom-

plished through supervised learning, employing a dataset of scatterers and their resulting

electromagnetic fields after illumination generated via traditional solvers, which facilitates

the training of these networks. Acknowledging that these networks do not genuinely

“solve” Maxwell’s equations is crucial since they do not understand the underlying physical

principles. Instead, they process the input similarly to an image, employing convolutions

and nonlinear transformations to approximate the desired field distribution.

69



7 Machine learning-based surrogate solvers for simulation and inverse design

CNNs distinguish themselves by employing local convolutions on the input. In these

operations, convolution kernels interact solely with a pixel’s immediate vicinity in a

sliding window manner, termed the receptive field. This field usually spans a width of 3 to

7 pixels. The convolution’s output is referred to as a feature map, with the convolutional

kernels’ weights, responsible for producing these feature maps, being the degrees of

freedom learned during the training phase.

An individual feature map 𝐹 in a CNN can be formulated as follows:

𝐹𝑚𝑛 (𝑥) =
∑︁
𝑚

∑︁
𝑛

𝑥𝑖−𝑚,,𝑗−𝑛 ∗ 𝑘𝑚𝑛 + 𝑏 , (7.1)

where𝑚 and𝑛 represent the kernel’s (𝑘) dimensions, and 𝑖 , 𝑗 denote the input dimensions of

the image 𝑥 . Convolutional layers often include a bias term 𝑏, adding an extra parameter.

UNets are renowned for their unique architecture, featuring contracting and expanding

paths linked by skip connections. The contracting path is realized through the application

of max pooling following convolutional stages, effectively lowering the spatial dimensions

of the input by selecting the maximum value from each distinct sub-region of the input

feature map, usually within a 2 × 2 pixel window, as expressed by:

MaxPool(𝑥𝑚𝑛) = max

𝑖∈𝑚,,𝑗∈𝑛
𝑥𝑖 𝑗 , (7.2)

where𝑚 and 𝑛 are the dimensions of the receptive field. These dimensions are usually

chosen as 2×2, meaning that the spatial dimensions are halved after one such max pooling

operation. Max pooling is not considered an actual network layer since it merely maps the

input without any trainable parameters. With each downsampling step, the contracting

path broadens the convolutional filters’ field of view, enabling CNN to identify features

across varied scales.

Conversely, the expanding path seeks to restore the input’s spatial dimensions, essential for

producing an output that matches the input image’s size. This restoration is accomplished

via feature map upsampling followed by convolutional stages, ensuring symmetry in the

UNet architecture to match the downsampling layers’ sizes. This symmetry facilitates the

integration of skip connections, merging feature maps from the contracting path with

their upsampled counterparts, aiding in retaining spatial details that are potentially lost

during downsampling. Additionally, this approach can help to improve network training

by mitigating the vanishing gradient issue.

UNets have demonstrated remarkable proficiency as surrogate solvers for electromagnetic

challenges, establishing themselves as the benchmark architecture against which alterna-

tive methodologies are evaluated [102, 103]. The forthcoming subsection will explore an

alternative method recently emerging as a promising contender.

7.2.2 Neural operators

Neural operators represent a novel category of neural network designs aimed at learning

mappings between infinite-dimensional function spaces. They are specifically tailored to
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create surrogate models for solving partial differential equations (PDEs). These models

are purpose-built for use as surrogate solvers, showing superior performance in solving

PDEs over traditional methods like convolutional neural networks across various problem

domains [182, 183, 184, 176, 185].

Specifically, neural operators aim to emulate an operator O : A → B through a parametric

mapping O(𝜃 ) : A → B, formulated as

O(𝜃 ) = P ◦ 𝜎 (𝑊𝑛 + K𝑛 + 𝑏𝑛) ◦ · · · ◦ 𝜎 (𝑊1 + K1 + 𝑏1) ◦ L , (7.3)

where 𝜎 denotes a pointwise nonlinearity,𝑊 is a local operator typically instantiated by a

fully connected layer, K is a learned kernel integral operator, and 𝑏 is a bias function. The

operators L and P, serving as lifting and projection functions respectively, elevate the

input into a higher-dimensional space – its dimensionality defined by a hyperparameter

– before projecting it back to the output’s solution space. These functions are often

implemented as fully connected layers, with output channel dimensions matching the

targeted dimensionality.

The defining feature of different neural operator architectures is the learnable kernel

integral operator K , leading to a variety of implementations such as Graph Kernel Op-

erators [175], Fourier Neural Operators [177], DeepONets [164], and Spectral Neural

Operators [186], among others. Given the rapid advancements in this area, a thorough

exploration of these architectures is best found in existing literature [187, 188, 189]. This

chapter will concentrate on employing FNOs for electromagnetic scattering problems.
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Figure 7.2: Illustration of the Fourier Neural Operator framework. Initially, the input undergoes expansion to

𝑤 channels through a linear transformation, followed by an addition of zero-padding of 𝑝 pixels. Subsequently,

the data navigates through a sequence of 𝑛 Fourier blocks, each comprising a linear transformation, Fourier

space convolution with the learned kernel 𝑅𝑚 , a batch normalization process, and applying a GELU activation

function. The process concludes with removing zero-padding and reducing channel dimensions to the

required output size via a linear transformation. Adapted with permission from [P3]. Copyright 2023

American Chemical Society.

Here, we will first introduce some of the foundational aspects of the original FNO, as

presented in [177], and highlight certain architectural modifications specific to this work.

At its essence, the FNO’s approach involves the development of a kernel defined in

the Fourier domain, enabling each Fourier layer to execute a global convolution on the

input. The procedure begins by elevating the input 𝑣 (𝑥) – with 𝑥 being a point on the

computational grid – to a more complex representation 𝑦 (𝑥) via:

𝑦 (𝑥) = 𝐶in(𝑣 (𝑥)) ∈ R𝑤 , (7.4)
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7 Machine learning-based surrogate solvers for simulation and inverse design

where 𝐶in : R𝑑in → R𝑤 denotes a linear transformation characterized by input dimension

𝑑in and output dimension𝑤 . The input dimension, 𝑑in, is typically limited and pre-defined

by the specific problem. In contrast, the output dimension,𝑤 , is a hyperparameter known

as the FNO’s “width”, indicating the number of kernels (or feature channels) within each

Fourier layer.

Following this dimensional enhancement, the data traverses through a series of 𝑛 “Fourier

blocks”. Each block encompasses a Fourier layer 𝜅𝑚 (𝑦) combined with a linear transfor-

mation, a batch normalization layer as described in [190], and a ReLU activation function

𝜎BN:

𝑢 (𝑦) = 𝜎BN
(
F −1(𝑅𝑚 · F (𝑦)) +𝑊𝑦 + 𝑏

)
, (7.5)

where F and F −1
signify the Fourier transform and its inverse, respectively, with 𝑅𝑚 ,

𝑊 , and 𝑏 as the adjustable parameters. The elements𝑊 and 𝑏 constitute the linear layer

adjustment, with𝑊 being a weight matrix that operates locally on 𝑦 and 𝑏 acting as the

bias vector. The complex-valued tensor 𝑅𝑚 functions as the convolution’s kernel matrix in

Fourier space. After the Fourier blocks, the transformation 𝑦 is remapped to the output’s

required dimensionality 𝑑out through a linear layer:

𝑧 (𝑥) = 𝐶out(𝑦 (𝑥)) ∈ R𝑑out . (7.6)

A distinctive characteristic of FNOs is the Fourier layer 𝜅𝑚 (𝑦), which limits the Fourier

series to the 𝑚-th coefficient, meaning that 𝑅𝑚 comprises entries only up to that fre-

quency mode’s index. This selective inclusion acts as a built-in low-pass filter, inherently

smoothing out high-frequency spatial details in the network’s output, thus producing

smoother results based on the selected𝑚 value. This feature proves particularly beneficial

for modeling physical systems described by partial differential equations (PDEs) that

yield wave-like solutions, such as Maxwell’s equations, making FNOs especially apt for

these scenarios. This inherent smoothing ability obviates the need for external smoothing

techniques or loss function adjustments to achieve similar effects, methods that, while

effective, add layers of complexity. Nonetheless, loss function modifications to enhance

model predictions’ consistency with Maxwell’s equations, as seen in works like Chen et al.
[103] and Lim and Psaltis [102], can still be integrated into FNO training if necessary.

In Sections 7.3 and 7.4, we aim to outline a performance benchmark for FNOs in tackling

electromagnetic scattering problems.

To improve accuracy, traditional FNO implementations usually incorporate a process

known as feature expansion for the inputs [183, 177, 187]. A typical method involves

augmenting the input with a Cartesian coordinate grid, effectively increasing the input

dimensionality, for example, from R𝑑 to R𝑑+3
in three-dimensional spaces. Our find-

ings indicate that comparable levels of accuracy can be achieved by applying a modest

zero-padding (𝑝 = 2) to the inputs before their procession through the Fourier blocks, sub-

sequently removing this padding before the network’s final layer, thereby circumventing

the need for explicit feature expansion. Additionally, our empirical analysis suggests the

Gaussian Linear Error Unit (GELU) activation function [191] offers a slight improvement in

reducing prediction errors over the traditionally used ReLU. The adapted FNO architecture

employed here is visually detailed in Fig. 7.2.
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7.2.3 Variational autoencoders

Autoencoders are a neural network architecture designed for unsupervised learning [192].

They primarily focus on encoding input data into a compressed, lower-dimensional repre-

sentation called the latent space and then reconstructing it as closely as possible to the

original input. This process is achieved through two main components: the encoder, which

compresses the input into a latent space representation, and the decoder, which attempts to

reconstruct the input from this latent representation. By training the network to minimize

the reconstruction error, autoencoders learn to capture the most salient features of the data

in the latent space. This capability makes them highly versatile, and they find applications

in dimensionality reduction, feature learning, and denoising images, among others. Their

simplicity and effectiveness in learning data representations without labeled data have

made autoencoders a fundamental tool in machine learning and deep learning research.

A common variation of the autoencoder architecture employs convolutional layers, aptly

named Convolutional Autoencoders (CAEs), which are particularly effective for tasks in-

volving image data. In a CAE, the encoder comprises convolutional layers to progressively

downsample the input image, capturing spatial hierarchies and features in a compressed

latent space representation. Pooling layers typically follow these convolutional layers to

reduce the spatial dimensions, thereby compressing the essential information. The decoder

then uses convolutional layers in reverse, often supplemented by upsampling or trans-

posed convolutional layers, to reconstruct the input image from the latent representation

progressively. This configuration enables CAEs to effectively capture spatial correlations

within images, aligning them with applications in image compression, denoising, and

generative modeling [193]. While the architecture shares some similarities with that of a

UNet, a notable distinction lies in the structural symmetry; unlike UNets, the encoder and

decoder components of a CAE are not strictly required to mirror each other, provided the

output dimension matches the input dimension. Additionally, the encoder and decoder

operate more independently within a CAE framework, focusing on their respective tasks of

compression and reconstruction without the direct feature-level communication facilitated

by skip connections found in UNets.

While effective in learning compact data representations, traditional autoencoders face

certain limitations. In particular, autoencoders tend to learn a dense, entangled latent

space, making it challenging to interpret the encoded representations or perform controlled

manipulations of the generated outputs. These limitations have spurred the development

of advanced models like Variational Autoencoders (VAEs) [194] and Generative Adversarial

Networks (GANs) [195], which address these issues by introducing probabilistic latent

spaces and adversarial training regimes, respectively, to improve the quality and diversity

of generated data. Unlike traditional autoencoders, which aim to compress data into a

latent space and reconstruct it, VAEs introduce a statistical layer that models the data

distribution in the latent space. This approach generates new data points similar to the

original input data, making VAEs particularly useful for tasks involving interpolation in

the latent space.
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Figure 7.3: Diagram depicting a variational autoencoder architecture, where the input 𝑥 is processed by the

encoder to produce the parameters 𝜇 and 𝜎 , parameterizing a normal distribution. These parameters are

then used to sample a latent vector 𝑧, from which the decoder generates 𝑥 , approximating the original input.

The architecture of a VAE is similar to that of a standard autoencoder, comprising an

encoder, a latent space, and a decoder, shown in Fig. 7.3. The encoder maps the input

data to a distribution over the latent space, typically characterized by mean and variance

parameters. This distribution is then sampled to produce latent variables, which the decoder

uses to reconstruct the input data. A key innovation of VAEs lies in their training process.

It involves optimizing the reconstruction loss and a regularization term that encourages

the learned distribution in the latent space to approximate some prior distribution, usually

a Gaussian. This regularization is termed the Kullback-Leibler (KL) divergence, which

ensures that the latent space is well-structured and enables the generation of new data

points by sampling from the prior distribution.

For training, VAEs employ a loss function called the “evidence lower bound” (ELBO), which

consists of the aforementioned KL divergence and an additional reconstruction loss term
that quantifies how well the VAE can reconstruct the input in its output.

We will later (in Section 7.5) use such a VAE to parameterize geometries for inverse design

using an FNO-based surrogate solver, particularly due to their smooth latent space, making

it feasible to interpolate between different geometries freely.

7.3 Data generation & model training

As the training and hyperparameters are crucial in neural networks, we will detail the

data generation procedure in Subsection 7.3.1 and discuss the training and validation

setup for the surrogate solvers in Subsection 7.3.2 and for the VAE in Subsection 7.3.3,

respectively.

7.3.1 Dataset generation

The methodology for creating an extensive array of random scatterer shapes follows

the approach detailed in [S1] and is illustrated in Fig. 7.4. We initiate this process by

distributing points randomly within the range [0, 1[ across a uniformly spaced square
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PML
Sample

Figure 7.4: Procedure for generating training data. A binary image is initially created by applying smoothing

and thresholding techniques to an image derived from a random uniform distribution. This image is

subsequently treated as a distribution of materials, which is then simulated under plane-wave illumination

using the finite-difference time-domain method. The resulting dataset for training comprises the scatterer

(as input) alongside the individual components of the electromagnetic field (as the target). Adapted with

permission from [P3]. Copyright 2023 American Chemical Society.

grid (or cubic grid for 3D scenarios) with each side measuring 128 px. Subsequently, the

entire grid is subjected to a Gaussian blur with zero-padding (𝜎 = 12 px), followed by

a thresholding operation at 0.5. Zero-padding is crucial here to ensure that scatterer

formations are confined within the simulation space, avoiding overlap with the domain

boundaries. This technique yields smooth, randomly generated geometries, potentially

featuring single or multiple scatterers. The intricacy of these generated shapes is primarily

influenced by the Gaussian blur’s kernel size, akin to the “filtering” strategy employed in

topology optimization to define minimum feature sizes [91, 59].

These random geometries are then interpreted as variations in material distribution, with

the designation of 1 representing material presence (𝑛high = 1.5) and 0 signifying air (𝑛low =

1). Each sample is illuminated by a plane wave at a wavelength of 𝜆0 = 1 µm, choosing

𝑛high = 1.5 to approximate the refractive index of standard polymers utilized in 3D laser

nanoprinting. The simulations are conducted at a spatial fidelity of 25 px µm
−1
, equating

to a 5.12 µm span along each axis, with the simulation domain further encapsulated by

perfectly matched layers (PMLs) extending 0.5 µm on every side to achieve a total domain

length of 6.12 µm. This dataset includes pairs of scatterers with their corresponding steady-

state electric fields, excluding the regions affected by PMLs. The generation of these

samples, applicable to two-dimensional and three-dimensional datasets, utilizes Meep [3],

with a summarized dataset overview provided in Table 7.1.

The 2D dataset encompasses a total of 16384 (2
14
) training samples, alongside 256 validation

samples and 400 test samples. This larger dataset is the source from which smaller 2D

datasets, referred to later in Subsection 7.4.1, are selectively extracted. Each 2D sample

was simulated on a single core of an Intel Xeon Platinum 8368 CPU, and the generation
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Table 7.1: Summary of the datasets of random scattering geometries used for training all models.

Type Samples Input shape Output shape Output

2D 17040 128 × 128 2 × 128 × 128 𝐸𝑧
3D 8720 128 × 128 × 128 6 × 128 × 128 × 128 𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧

of the whole dataset was parallelized over one compute node (2 × 38 cores), with each

sample taking a few seconds to simulate.

Conversely, the 3D dataset comprises 8192 training samples, with 128 designated for

validation and 400 allocated for testing. The simulation of each 3D sample consumed

approximately 20 minutes parallelized across 4 cores of an Intel Xeon Platinum 8368 CPU,

albeit with minor variations attributed to the differing complexities of scatterers. The data

generation was distributed across 40 nodes within the HoreKa HPC cluster, where each

node simultaneously conducted simulations for 19 samples (2 × 38 cores per node, divided

by 4 cores per sample). As a result, the comprehensive assembly of the 3D dataset was

achieved in just under four hours.

7.3.2 FNO & UNet training

Hyperparameters for the FNO are detailed in Table 7.2. The UNet model has five down-

sampling (max pooling) stages and five corresponding upsampling segments. Each stage

comprises six convolutional layers integrated with batch normalization and ReLU activa-

tion functions. Here, we reference the UNet architecture described by Chen et al. [103]
without implementing it directly. However, we modify their design by substituting the

periodic padding within the convolutional layers with zero padding. This adjustment has

enhanced the UNet’s performance on our dataset by approximately 1 % in all experimental

iterations.

We configure the FNO such that its input comprises the distribution of dielectric materials

discretized over a regular grid, leading to a single input feature, 𝑑in = 1. The desired output

is the complex electromagnetic field components, each split into two channels to represent

the real and imaginary parts separately. The FNO architectures examined here are fully

detailed by a set of hyperparameters listed in Table 7.2.

Table 7.2: FNO architecture hyperparameters with specified values for the networks investigated in this

chapter, applicable to both 2D and 3D configurations.

Parameter Description Value

𝑛 No. of Fourier blocks 10

𝑚 Truncation order for Fourier modes 12

𝑤 Width (hidden channels) 32

𝑝 Zero-padding per spatial dimension 2
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7.3 Data generation & model training

For the purpose of training the models, we construct datasets comprising scatterers and

their corresponding fields using a comprehensive full-wave Maxwell solver, details of

which are elaborated in Subsection 7.3.1. The evaluation and training of the models are

conducted using the normalized 𝐿𝑝 loss metric, defined as

𝐿𝑝 (𝒚, �̂�) =
1

𝑛

𝑛∑︁
𝑖=1

(
∥𝑦𝑖 − 𝑦𝑖 ∥𝑝
∥𝑦𝑖 ∥𝑝

)
, (7.7)

where 𝒚 is the network’s output and �̂� the target field distribution. Specifically, the models

undergo training employing the normalized 𝐿2 loss, essentially the normalized root mean

square error, to refine their accuracy. However, we predominantly reference the normalized

𝐿1 loss for discussions and evaluations due to its straightforward interpretation as the

absolute discrepancy between two samples. It is important to note the minor variation

between 𝐿1 and 𝐿2 losses in the context of this study, indicating their near-interchangeable

applicability. Evaluation relies on a distinct test dataset, consisting of 400 samples not

previously utilized in either training or validation phases, to ensure an unbiased assessment

of model performance.
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Figure 7.5: Illustration of 𝐿2 loss curves for training and validation phases across all training sessions for UNet

and FNO-2D, using various dataset sizes. Adapted with permission from [P3]. Copyright 2023 American

Chemical Society.

Each model undergoes training over 100 epochs, leveraging the AdamW optimizer [196]

combined with a one-cycle learning rate strategy [197], and uses a minibatch size of 32.

The relative 𝐿2 error (refer to Eq. (7.7), 𝑝 = 2) is employed as the loss function for training.

In contrast, both relative 𝐿1 and 𝐿2 errors are evaluated during validation after every epoch,

utilizing a validation subset comprising 256 samples in 2D. The curves depicting training

and validation losses are presented in Fig. 7.5. Training sessions for both FNO-2D and

UNet models are conducted on a single NVIDIA A100 SXM4 GPU.

We maintain the same effective batch size for the 2D variants to facilitate the training of the

FNO-3Dmodel. Due to the constraints posed by GPUmemory capacity, direct training with
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this batch size is infeasible. Therefore, we adopt a parallel training approach, distributing

the workload across two nodes, each equipped with 4 GPUs, wherein each GPU processes

only four samples concurrently. To further alleviate memory demands, we employ activa-

tion checkpointing techniques [198] within the FNO blocks. This strategy allows for the

temporary release of intermediate activations from memory. After each training iteration,

gradient values are aggregated and averaged across all participating processes through the

utilization of PyTorch’s DistributedDataParallel framework [199], ensuring coherent

and unified model updates. The entire training process for the FNO-3D model spanned

approximately 11 hours, with specific details on the training hyperparameters provided

in Table 7.3.

Table 7.3: Training hyperparameters used for the surrogate solver models.

Model Parameters Learning rate (min / max) Batch size Validation split

UNet 23 617 970 5 × 10
−5

/ 5 × 10
−4

32 256

FNO-2D 5 909 250 1 × 10
−3

/ 1 × 10
−2

32 256

FNO-3D 141 568 902 1 × 10
−3

/ 1 × 10
−2

2x4x4
∗

128

∗
Trained on two nodes with 4 GPUs each and four samples per GPU (NVIDIA

A100 SXM4).

Various approaches were adopted to train the surrogate solver models, catering to the

specific requirements and characteristics of the UNet and FNO architectures. A critical

aspect of this training process involved adjusting learning rates, given that UNets tended

to be unstable when trained at higher learning rates comparable to those suitable for

FNO models. Extensive hyperparameter sweeps were conducted to ensure a balanced

evaluation and optimize performance, focusing on learning rates and learning rate schedul-

ing strategies specifically for the UNet models. This process aimed to identify the most

effective configurations, leading to the selection of the best-performing models for each

architecture, as presented in this work.

7.3.3 VAE setup & training

In this work, the Variational Autoencoder (VAE) is structured around a convolutional

encoder-decoder architecture tailored explicitly for processing three-dimensional image

data. The encoder component features five downsampling blocks designed to condense an

input image – represented by a 128 × 128 × 128 grid depicting material distribution – into

a compact latent space with 2048 elements. Each downsampling block comprises a 3D

convolutional layer, succeeded by batch normalization and SELU activation [200]. These

convolutional layers employ a kernel size of 5, stride of 2, and padding of 2, with a channel

count that doubles sequentially through the layers. Conversely, the decoder reverses

the encoder’s structure, substituting convolutional layers with transposed convolutions

for upsampling [201]. The entire VAE network comprises a total of 86 433 514 trainable

parameters.
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For the network’s training, we minimize the evidence lower bound (ELBO) [194], aug-

mented by a penalty for binarization, expressed as:

𝐿VAE(𝑥, 𝑥) = 𝛾KL(𝐿KL(𝑥, 𝑥) − 𝐿R(𝑥, 𝑥)) − 𝛾B𝐿B , (7.8)

where 𝑥 represents the original image, 𝑥 the reconstructed version, 𝐿KL the Kullback-

Leibler divergence, 𝐿R the reconstruction loss, and 𝐿B the binarization penalty. These

components are detailed as follows:

𝐿KL = E𝑞 [log𝑞(𝑧 |𝑥) − log𝑝 (𝑧)] (7.9)

𝐿R = E𝑞 [log𝑝 (𝑥 |𝑧)] (7.10)

𝐿B =
1

3

min

[
− log

10

(
1

𝑁

𝑁∑︁
𝑖

4𝑥𝑖 (1 − 𝑥𝑖)
)
, 3

]
, (7.11)

with the expected value E𝑞 under 𝑞, the normal distribution 𝑝 , 𝑞 the encoder-parameterized

distribution given an input 𝑥 , and 𝑧 being a sample drawn from 𝑞. The introduction

of annealing parameters 𝛾KL and 𝛾B serves to fine-tune the impact of the 𝐿KL and 𝐿B
components throughout training.
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Figure 7.6: Depiction of the total VAE loss 𝐿VAE during the training phase, alongside the evolution of the

annealing weights 𝛾KL and 𝛾B (left), and the individual contributions from the components 𝐿KL, 𝐿R, and 𝐿B
to the overall VAE loss (right). Adapted with permission from [P3]. Copyright 2023 American Chemical

Society.

Distinctively, the VAE model does not rely on a pre-existing dataset for training. Instead,

it employs the geometry sampling method described in Subsection 7.3.1 to dynamically
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generate images of random scatterers throughout the training process. This methodology

eliminates the traditional concept of training epochs, as each sample is uniquely presented

to the network simultaneously, rendering the dataset “infinite”. This continuous generation

of unseen data samples ensures that the network is consistently exposed to fresh examples,

fostering a robust learning environment that mitigates the risk of overfitting and enhances

the model’s ability to generalize across a broad spectrum of input geometries. Training

curves for 𝐿VAE as well as all terms in the loss function are visualized in Fig. 7.6. Training

is executed with a batch size of 64 over a total of 60 000 batches, culminating in a training

duration of 48 hours on a single NVIDIA A100 SXM4 GPU.

7.4 Field inference

After training the surrogate solvers, we will now proceed to use them as a tool for solving

electromagnetic scattering problems. In particular, we will systematically compare the

performance of FNOs and UNets in Subsection 7.4.1 in 2D. We will then incorporate a

physics-driven term in the loss function and examine its effects on network performance

in Subsection 7.4.2. This section concludes with a further modification of the FNO archi-

tecture via a tensor decomposition, which we will explain in detail in Subsection 7.4.3.

7.4.1 Comparing FNO & UNet performance

In this first subsection, we explore the application of FNOs as surrogate solvers for

Maxwell’s equations, aiming to replace conventional full-wave methods like the finite-

difference time-domain (FDTD) method for specific scattering problems. In our discussions,

specific model designations are used to denote their dimensional training context: “FNO-

2D” refers to models trained with two-dimensional data, whereas “FNO-3D” identifies

those trained on three-dimensional datasets. We simply employ “FNO” for broader insights

or principles encompassing both types.

There has been significant interest in using UNet-like convolutional architectures [180]

for field inference [171, 103, 102], given their proficiency in handling complex spatial data.

In our work, to enable a direct and fair comparison of the FNO’s capabilities against UNet

for electromagnetic field inference, we adopt the UNet architecture detailed by Chen et al.
[103] as a benchmark. Both FNO and UNet models are subjected to training using a wide

variety of simulated random scatterer datasets in two dimensions, with a specific focus

on assessing and comparing their data efficiency – essentially evaluating the number of

training samples required by each model to achieve a predefined level of predictive accu-

racy. This comparative analysis entails utilizing dual output channels for both models to

represent the real and imaginary components of the electromagnetic field’s 𝑧-component,

𝐸𝑧 . Uniform training conditions are applied to both models, ensuring any observed perfor-

mance disparities are attributable solely to the inherent architectural differences rather

than external variables, with exact training details as discussed in Subsection 7.3.2.
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Figure 7.7: a Visualization via a raincloud plot [202] comparing normalized 𝐿1 error distributions across a test

dataset comprising 400 samples, for both FNO-2D and UNet models across varied sizes of training datasets.

For each training sample size, the plot illustrates a kernel density estimate (left, bandwidth determined

by Scott’s rule [203]), a box plot highlighting the distribution’s range and median (center), and a scatter

plot displaying individual sample errors (right). b A side-by-side scatter plot analysis of the 𝐿1 error for

every test sample against the sizes of the training sets for both FNO-2D and UNet, with the dashed gray line

demarcating identical error levels between the two models. Adapted with permission from [P3]. Copyright

2023 American Chemical Society.

The evaluation outcomes performed on the test set, consisting of 400 samples, are graphi-

cally presented in Fig. 7.7, with the quantitative findings detailed in Table 7.4. These results

offer insights into the comparative performance of the models under study, highlighting

the effectiveness of each model in terms of accuracy and error metrics as they apply to the

specific task at hand.

The analysis reveals a notable improvement in test error reduction for both FNO-2D

and UNet with an increase in the number of training samples. However, a consistent

trend emerges where FNO-2D surpasses UNet regarding prediction accuracy. Not only

does FNO-2D achieve markedly higher accuracy, but its error distribution on the test

set demonstrates a tighter concentration around the mean. This suggests that FNO-2D

predicts with greater accuracy on average and shows superior generalization across diverse

samples, including those significantly divergent from the dataset’s mean. This efficiency

is particularly impressive given FNO-2D’s parameter count of only 5 909 250, starkly

contrasting to UNet’s 23 617 970 parameters, underscoring FNO-2D’s better parameter

efficiency.
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Table 7.4: Summary of median normalized 𝐿1 and 𝐿2 errors across 400 test samples, with

models trained using different sizes of training datasets. The minimal error recorded

for each dataset size is highlighted in bold.

Samples Model 𝐿1 (%) 𝐿2 (%) 𝜎 (𝐿2) (%) Time per epoch (s)
∗

1024

FNO-2D 11.18 12.07 4.39 8.31

UNet 22.64 24.42 6.80 10.15

2048

FNO-2D 7.19 7.72 3.15 10.10

UNet 16.68 18.01 5.59 13.24

4096

FNO-2D 4.32 4.64 2.12 13.72

UNet 11.09 11.92 4.15 18.96

8192

FNO-2D 2.48 2.65 1.30 21.13

UNet 7.10 7.58 2.88 30.92

16384

FNO-2D 1.59 1.68 0.89 35.81

UNet 4.52 4.84 1.99 55.26

∗
Timing was performed on a single NVIDIA A100 SXM4 GPU.

For FNO-2D to approximate a test error around 5 %, it necessitates 4096 training samples,

whereas UNet demands a fourfold increase in training samples to achieve similar accu-

racy levels. This pattern is consistent across all examined training set sizes, as depicted

in Fig. 7.7a, with UNet’s performance trailing FNO-2D’s by a substantial margin regarding

the number of required training samples. These observations align with prior studies

comparing FNO and UNet efficiency in solving PDE-constrained tasks [177, 187].

Moreover, FNO-2D’s training process is approximately 30 % quicker than UNet’s, a disparity

that becomes more pronounced with larger training datasets. This speed advantage largely

stems from FNO-2D’s leaner parameter architecture. Notably, FNO-2D is slower than

UNet on a per-parameter basis, highlighting its computational efficiency in leveraging a

smaller parameter set for rapid training.

Exploringwhether FNO-2D’s superior test error is consistent across all samples is insightful

in determining if its lower average error comes with exceptions where UNet might excel.

This investigation could reveal instances where, despite FNO-2D’s overall lower error, UNet

provides more accurate predictions for specific sample geometries, suggesting a potential

niche advantage for UNet in some cases. The comparative analysis of 𝐿1 losses for each test

sample across all training iterations between FNO-2D and UNet is depicted in the scatter

plot within Fig. 7.7b, with the dashed line denoting the point of error equivalence between

the two models. This visualization unmistakably demonstrates FNO-2D’s dominance.

It shows that it outperforms UNet across the board for every test sample, regardless of

the size of the training set utilized. This uniform superiority indicates that FNO-2D’s

enhanced predictive accuracy extends universally across the dataset without exceptions,

underscoring its robustness and wide-ranging applicability compared to UNet.

Figure 7.8 presents an illustrative example from the test dataset, evaluated using the

FNO-2D and UNet models, each trained with 16k samples. This particular sample was
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|Ê
z
−

E
z
|

Figure 7.8: Visualization of the real component of the electric field 𝐸𝑧 : a depicts the ground truth from a

test set sample, while b and c show the fields as predicted by FNO-2D and UNet, respectively. The absolute

error in the predictions compared to the ground truth is also presented for d FNO-2D and e UNet. The

FNO-2D model demonstrates a normalized 𝐿1 error of 1.58 %, in contrast to the UNet model’s 4.29 % for this

sample. Each network underwent training with a dataset comprising 16k samples. The scatterer’s boundary

is delineated in all figures, with illumination provided by a plane-wave source from the negative y-direction.

Adapted with permission from [P3]. Copyright 2023 American Chemical Society.

selected to closely match the median 𝐿1 error observed in the FNO-2D’s performance

across the test set, registering a relative 𝐿1 error of 1.58 % for FNO-2D and 4.29 % for UNet.

A qualitative examination reveals a reasonably high level of agreement between the actual

fields and those predicted by both models, as depicted in Figs. 7.8a to 7.8c. However, a

deeper analysis of the absolute error maps highlighted in Figs. 7.8d and 7.8e uncovers

a more pronounced deviation in the UNet predictions than FNO-2D, corroborating the

numerical error data.

More notably, the error distribution for FNO-2D (Fig. 7.8d) demonstrates a smoother

pattern relative to UNet’s (Fig. 7.8e), suggesting reduced spatial noise. This outcome aligns

with the inherent architectural distinctions between the models: UNet relies on localized,

pixel-wise convolutions, whereas FNO engages in global convolutions, systematically

omitting Fourier components beyond a certain threshold. This design choice ingrains

FNO’s propensity to learn and produce more continuous solutions, an attribute directly

observable in its smoother error distribution. This inherent characteristic underscores

FNO’s architectural advantages in learning to predict complex field distributions with a

more uniform error profile.

7.4.2 FNO with Maxwell loss

In this subsection, we study the impact of incorporating a physics-informed loss compo-

nent into the training of the FNO, as illustrated on other network architectures by prior
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studies [103, 102]. The premise of this strategy involves either augmenting [103] or com-

pletely substituting [102] the conventional data-driven loss function with a physics-based

one that seeks to minimize the residuals derived from the governing physical equations,

specifically Maxwell’s equations, in relation to the model’s outputs.

It is important to delineate a physics-informed loss function, which we use here, from

so-called physics-informed neural networks (PINNs), which are another class of neural

networks altogether and have been gaining some popularity in recent years [204, 205,

174]. While PINNs also make use of the governing physical equations, they incorporate

them much more directly into their architecture, e.g., by parameterizing a PDE directly

using a neural network. In particular, PINNs can be trained purely by minimizing the

residual function, i.e., they can be trained in an unsupervised manner and do not require

any data in principle. In that sense, they are similar to iterative PDE solvers, both in terms

of accuracy and speed. However, it should also be noted that this distinction is not always

made clearly, and the term “physics-informed” neural network can refer to both PINNs in

the original sense and other machine learning techniques that use the governing physical

equations – in this subsection, we will be doing the latter.

Introducing a physics-informed loss does not aim to directly enhance the model’s perfor-

mance on the standard data-driven training loss. Instead, it serves as an additional regular-

ization mechanism during the training process. This method nudges the model’s outputs

closer to solutions that are not only consistent with the input data but also adhere to the

underlying physical laws. Such a refinement has been demonstrated to bolster the model’s

ability to generalize across different scenarios and to mitigate errors associated with

subsequent computations on the predicted fields, like far-field transformations [103].

Implementing this physics-informed loss is relatively straightforward and does not necessi-

tate alterations to the network’s architecture or the overarching training methodology. The

governing physical equations are incorporated as an extra term within the loss function.

This approach underlines a harmonious blend of data-driven learning with physical theory,

aiming to enhance the reliability and accuracy of surrogate models like FNO in simulating

complex physical phenomena.

In this exploration, we enhance the existing data-driven loss function by incorporating an

additional term that enforces adherence to the wave equation for a source-free region:

∇ × ∇ × �̃� (𝒓, 𝜔) − 𝜔2𝜇0𝜖0𝜖 (𝒓)�̃� (𝒓, 𝜔) = 0 , (7.12)

where �̃� (𝒓, 𝜔), representing the network’s output, is expected to conform to the wave

equation’s constraints. This formulation implies that the network’s output should remain

unchanged after undergoing a double-curl operation and scaled by appropriate constants.

This principle is aptly captured in a loss function specifically designed for this purpose:

𝐿MW(𝒙,𝒚) =
∇ × ∇ ×𝒚 − 𝜔2𝜇0𝜖0 𝒙 ⊙ 𝒚


2

∥∇ × ∇ ×𝒚∥
2

, (7.13)
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where 𝒚 symbolizes the network’s output (the fields) and 𝒙 represents its input (the

permittivity distribution). Combining this with Eq. (7.7), the comprehensive loss function

for guiding the network’s training is formulated as

𝐿 = 𝐿2(𝒚, �̂�) + 𝐿MW(𝒙,𝒚) , (7.14)

integrating the standard data-driven loss with the physics-informed Maxwell wave (MW)

equation loss. The outcomes of this training approach and its comparative analysis against

a purely data-driven FNO model are detailed in Table 7.5. Here, “FNO-2D” refers to the

original FNO model, while “FNO-2D MW” designates the variants that incorporate the

Maxwell loss component, showcasing the impact of this physics-informed regularization

on model performance.

Table 7.5: Summary of median normalized 𝐿2 errors across 400 test

samples, with FNO models trained using different sizes of training

datasets and with and without the addition of a physics-driven

loss term.

Samples Model 𝐿1 (%) 𝐿2 (%) 𝐿MW (%)

1024

FNO-2D 11.18 12.07 48.55

FNO-2D MW 8.33 8.85 3.39

2048

FNO-2D 7.19 7.72 37.90

FNO-2D MW 5.50 5.84 2.47

4096

FNO-2D 4.32 4.64 27.21

FNO-2D MW 3.51 3.72 1.92

8192

FNO-2D 2.48 2.65 19.62

FNO-2D MW 2.48 2.63 1.57

16384

FNO-2D 1.59 1.68 14.11

FNO-2D MW 1.52 1.62 0.78

The findings detailed in Table 7.5 reveal that incorporating the Maxwell loss term into the

training process results in a modest, yet significant, enhancement in performance over the

baseline training loss. This improvement tends to exhibit diminishing returns as the size

of the training dataset increases. Importantly, the addition of the Maxwell loss (FNO-2D

MW) consistently achieves better precision across various evaluation metrics (𝐿1, 𝐿2, and

𝐿MW) and all sizes of training datasets.

The most notable disparities between the models emerge in the 𝐿MW errors. Models trained

without the Maxwell loss term show a substantial initial error of 48.55 % with a smaller

dataset, which significantly decreases to 14.11 % as the dataset size expands. This trend is

expected since achieving greater accuracy, even solely in terms of the 𝐿2 loss, inherently

requires the generation of higher fidelity fields, yielding outputs that better adhere to

Maxwell’s equations and, thus, a lower Maxwell loss.

However, the difference in performance between models trained with and without the

Maxwell loss term is particularly striking. Incorporating the 𝐿MW term reduces the error
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dramatically from 48.55 % to as low as 3.38 %, even with the smallest dataset, further

narrowing down to a mere 0.78 % for the largest dataset. This significant reduction

underscores that the fields predicted by models trained with the physics-informed loss are

substantially more self-consistent with physical laws than those trained using a purely

data-driven approach. Consequently, this evidence strongly supports the premise that

integrating a physics-based loss into the training regimen offers substantial benefits,

promotingmore physically accurate and self-consistent solutions, and should be considered

a valuable practice in model training where applicable.

7.4.3 Tensorized FNO

In Subsection 7.2.2, we introduced the FNO as

𝜅𝑚 (𝑦) = F −1(𝑅𝑚 · F (𝑦)) , (7.15)

where 𝑅𝑚 is the operator’s learnable kernel during training. In practice, this kernel is

represented as a multi-dimensional array, commonly referred to as a tensor [206]. This
tensor contains a total of 2

𝑑𝑛𝑑 + 1)𝑤in𝑤out +𝑤out trainable parameters, where 𝑑 represents

the input dimensionality, 𝑛 is the number of Fourier modes, and𝑤in,𝑤out represent the

number of input and output channels of the Fourier block, respectively. It is easy to see

that the number of trainable parameters can quickly explode due to the exponential scaling

factor, depending on the dimensionality of the problem and the number of Fourier modes

considered in the expansion.

To alleviate this problem, Kossaifi et al. [207] introduce “tensorized” neural operators, where
the parameter tensor is parameterized efficiently through a low-rank tensor factorization

using a Tucker decomposition. This decomposition acts as a low-rank constraint on the

entire weight tensor, which regularizes the model. Additionally, and most importantly, it

leads to a large reduction in the number of parameters in the model, depending on how

the dimensionality of the factorization is chosen. A Tucker decomposition of a rank 𝑛

tensor 𝑇 can be written as

𝑇 = T ×1 𝑈
(1)

×2 𝑈
(2)

×3 . . . ×𝑛 𝑈
(𝑛)

, (7.16)

where T ∈ C𝑑1×𝑑2×...×𝑑𝑛
is the so-called core tensor containing the singular values of 𝑇 and

𝑈 (𝑖)
are unitary matrices in C𝑑𝑖×𝑛𝑖 , and ×𝑛 denotes the 𝑛-mode product defined as

(T ×𝑛 𝑈 )𝑖1𝑖2 ...𝑖𝑛−1 𝑗𝑛 𝑗𝑛+1 ... 𝑗𝑁
=

𝐼𝑛∑︁
𝑖𝑛=1

𝑡𝑖1𝑖2 ...𝑖𝑛−1𝑖𝑛𝑖𝑛+1 ...𝑖𝑁 × 𝑢 𝑗𝑛𝑖𝑛 . (7.17)

In the case of 𝑑𝑖 = 𝑛𝑖 , the Tucker decomposition is always an exact representation of 𝑇 .

However, by choosing 𝑑𝑖 < 𝑛𝑖 , 𝑇 can be compressed and efficiently approximated. By

choosing the ranks of 𝑑𝑖 , different compression ratios for the number of model weights

can be achieved.
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In the following, we will investigate the predictive performance of a “tensorized” FNO

(termed TFNO) and compare them with our baseline FNO-2D regarding accuracy and

the number of model weights. To do this, we train two TFNO models with different

compression ratios on a dataset of 2048 training samples, with all hyperparameters being

exactly the same as the FNO-2D trained on the same number of samples. The results of

this training, along with the final losses, are detailed in Table 7.6.

Table 7.6:Comparative results of validation losses for FNO and TFNOmodels

trained on 2048 samples with different compression ratios.

Model 𝐿1 (%) 𝐿2 (%) Parameters Compression ratio

FNO-2D 7.19 7.72 5.90 × 10
6

1

TFNO 3.25 3.50 7.55 × 10
5

8

TFNO 3.76 4.06 1.60 × 10
5

37

The comparison between the baseline FNO-2D and the TFNO architectures presents a

compelling case for factorization. The baseline FNO model, which employs 5.9 million

parameters, completed its training cycle with a final 𝐿1 loss of 7.5 %. In contrast, the TFNO

model with a compression ratio of 8 minimizes the parameter count to 755 000 while

simultaneously cutting the final 𝐿1 loss in half, down to 3.25 %. Even more impressively,

the TFNO with only 160 000 parameters still achieves almost the same low 𝐿1 loss at 3.76 %

while decreasing the model parameter count by a factor of almost 37. This substantial

decrease in model complexity, alongside enhanced prediction accuracy, underscores the

potential of TFNOs to make neural network models more efficient and effective. However,

it is important to note the nuanced aspect of computational cost. Despite the significant

parameter reduction leading to much smaller final model sizes, TFNOs do not necessarily

equate to reduced computational demands during training. Due to the requirement of

expanding the factorized weight matrix throughout the training process, the computational

load can be similar to or slightly exceed that of the baseline FNO-2D. Consequently,

while TFNOs offer a promising avenue for enhancing model efficiency and accuracy,

they might not directly address challenges associated with handling larger problem sizes.

For such scenarios, alternative strategies like domain decomposition [208] or multi-grid

methods [207] present viable pathways for further exploration and optimization.

7.5 Inverse design

The deployment of data-driven surrogate solvers for Maxwell’s equations might initially ap-

pear inefficient, considering the significant investment in time and computational resources

required to generate an extensive dataset via a full-wave Maxwell solver from which the

surrogate model is trained. This investment may seem especially disproportionate if the

surrogate is intended for a limited number of scattering problem solutions. Moreover, the

utility of such surrogate models is inherently confined to the problem types encapsulated
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within the training dataset, thus limiting their applicability as a broad-spectrum solution

for various scattering issues.

Nonetheless, the field of inverse design, particularly when leveraging gradient-based

methodologies, stands to significantly gain from the expedited computational capabilities

offered by surrogate models, with their limitations having potentially minimal impact, as

evidenced in prior research [103, 209]. In gradient-based inverse design, the optimization

process involves iteratively refining a device’s geometry to enhance a specific performance

metric, employing gradients of this metric with respect to geometrical modifications.

Traditional approaches, such as topology optimization [59], typically require several

hundred iterations for convergence. Each iteration necessitates two full-wave simulations

– one to assess the performancemetric and another to calculate its gradient using the adjoint

method. In three-dimensional scenarios, a single optimization could last several days,

and the starting conditions heavily influence the outcomes. Since gradient descent-based

optimization finds locally optimal solutions, the starting point (e.g., the initial permittivity

distribution) is a deciding factor in which local optimum the solution will fall into, which

necessitates an exploration of multiple initial conditions to evaluate the solution’s quality.

Moreover, the sequential nature of these updates limits the potential for parallelization,

leaving the acceleration of individual simulations as the sole avenue for expediting the

inverse design process.

Thus, while surrogate models may not universally supplant traditional simulation methods

for direct problem-solving, their integration into gradient-based inverse design presents

a compelling strategy for substantially reducing computation times. This acceleration

is invaluable, particularly in applications where rapid prototyping or iterative design

processes are critical, offering a practical and impactful use case for surrogate models in

specialized engineering and design tasks.

Neural network-based surrogate solvers present an optimal solution for overcoming the

challenges associated with traditional gradient-based optimization techniques. The key

advantages of these surrogate solvers lie in their significantly reduced inference times

compared to conventional full-wave simulations, the ability to generate training samples

in parallel due to their independent nature, and their inherent differentiability. This last

attribute, in particular, enables their seamless integration into existing gradient-based

optimization pipelines as functional equivalents to differentiable Maxwell solvers, as

highlighted in recent studies [153, 94].

Moreover, some of the limitations traditionally associated with neural network surrogates

are less impactful in the context of inverse design. Since the simulation parameters remain

constant throughout such optimizations, with only the device geometry undergoing

variation, it becomes viable to employ specializedmodels trained onminimal data, ensuring

operations remain well within the confines of the training distribution. Additionally, the

demand for extreme numerical precision is often relaxed in many inverse design scenarios,

where achieving a practically viable solution is more critical than attaining high numerical

accuracy. This relaxation is further justified by the inherent uncertainties in fabrication

processes, which typically introduce a margin of error on the order of a few percent,

overshadowing minor inaccuracies in simulation results.
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In situations where utmost precision is necessary, surrogate models’ initial device designs

produced with lower numerical accuracy could serve as starting points. These preliminary

designs can be refined usingmore accurate simulationmethods in just a few extra iterations,

providing an efficient pathway to high-quality solutions. Therefore, neural network-based

surrogate solvers expedite the optimization process and offer a pragmatic balance between

computational efficiency and the precision demands of inverse design tasks, making them

highly advantageous tools in the field of optical and electromagnetic device design.

zEncoder Decoder
μ

σ
FNO

...

Objective

Figure 7.9: Diagram illustrating the process of iterative inverse design. This methodology employs the

decoder segment of a previously trained variational autoencoder (highlighted by the dashed gray box)

to create scatterer configurations from a given latent vector 𝑧 (indicated by the red box). Subsequent to

scatterer generation, the corresponding electric field is determined using the FNO model, facilitating the

loss computation. The optimization process leverages backpropagation to derive gradients of the target

objective relative to the latent variables, which are then progressively refined through iterative updates until

convergence is achieved. Adapted with permission from [P3]. Copyright 2023 American Chemical Society.

Here, we explore the inverse design of intricate, three-dimensional nanophotonic devices

by applying an FNO model specifically trained on a dataset comprising 8192 volumetric

scatterer-field pairings. The methodologies behind the data compilation and the training of

the FNO-3D model are elaborated upon in Subsection 7.3.1 and Subsection 7.3.2. Following

a training duration of 100 epochs, the FNO-3D model demonstrated a normalized 𝐿1 loss

of 5.05 % on a test set of 400 samples, showcasing its predictive capabilities.

The inverse design approach utilized herein deviates from traditional methods by incorpo-

rating FNO-3D as a surrogate for the conventional Maxwell solver. This substitution allows

the objective function to remain an arbitrary differentiable function of the electromagnetic

fields, maintaining the usual flexibility of inverse design. However, a distinctive aspect

of our methodology lies in the parameterization of the scatterers. Rather than adjusting

the scatterers’ properties directly on the computational grid, we represent them within

the latent space of a variational autoencoder (VAE) that has been pre-trained [194]. This

strategy is motivated by one of the limitations of our surrogate solver – a direct grid-based

parameterization could inadvertently cause permittivity values of the scatterer to vary

continuously, diverging from the binary data the FNO-3D was trained on, potentially

undermining the model’s field inference accuracy for non-binary permittivity values. By
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leveraging the latent space of a VAE, we maintain the scatterer’s representation’s binary

nature, aligning it with the data the FNO-3D model was trained on and ensuring the

integrity of the inverse design process. This approach enhances the feasibility of designing

complex devices and aligns with the model’s training, ensuring more reliable and accurate

design outcomes.

Incorporating a broader range of permittivity values into the training dataset is theoretically

straightforward but practically challenging, as it necessitates dense sampling across the

spectrum of possible permittivities for seamless inverse design. However, this approach

would balloon the dataset’s size, undermining the efficiency that a dedicated surrogate

solver brings to rapid inverse design. To circumvent this, we employ a convolutional

Variational Autoencoder capable of generating random scatterer configurations, mirroring

the distribution of the initial training dataset. This enables the direct optimization of the

desired device within the VAE’s latent space. Notably, the latent space representation

allows for continuous interpolation, with the VAE’s decoder translating these modifications

into binary geometries that FNO-3D can model accurately. It is worth noting that the

VAE’s encoder segment is utilized solely during the training phase and is not required for

the inverse design tasks. Generating data for training the VAE is notably cost-effective,

as it eliminates the need for simulations and allows for real-time data production during

the training phase, as detailed in Subsection 7.3.3. It is also important to mention that

employing a VAE to parameterize the inverse design task with FNO is not obligatory.

Theoretically, any parameterization strategy that results in binary scatterers, such as direct

geometrical or boundary parameterization, could be applied. A visual diagram illustrating

the inverse design workflow is presented in Fig. 7.9.

In this example, we demonstrate the optimization of two nanophotonic devices using FNO-

3D, leveraging a straightforward objective function based on the electric field intensity:

𝐽 (�̃�) =
∑︁
D

���̃� (𝒓)��2 ∀𝒓 ∈ D , (7.18)

where D denotes the set of spatial points where we aim to enhance the electric field

intensity. The objective of the first device is to maximize the intensity at a single point

located at the center of the 𝑥-𝑦 plane, effectively designing a basic nanophotonic lens. In

the second scenario, the goal shifts to intensifying the electric field at four distinct focal

points, positioned centrally within each quadrant of the 𝑥-𝑦 plane. The design considers

plane wave illumination across the 𝑥-𝑦 plane, entering from the top at 𝑧 = 0 µm, with the

focal plane positioned at 𝑧 = 4.8 µm. Both devices undergo a 300-iteration optimization

process using the AdamW optimizer [196]. While alternative optimization strategies like

L-BFGS-B [13] or MMA [210] are viable, AdamW is selected for its advantages in GPU

compatibility and the facility to optimize several devices concurrently. The outcomes of

these optimization endeavors are detailed in Fig. 7.10.

We conduct 64 separate trials, each starting from a unique initial condition represented by

random vectors in the latent space of the VAE, leading to the creation of 64 distinct opti-

mized devices for each design challenge. We subsequently select the highest-performing

model from these as our final device (refer to Figs. 7.10a and 7.10e). Numerous attempts
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Figure 7.10: This figure illustrates the inverse design process using FNO-3D for two nanophotonic devices:

one is designed to focus light into a single point (a-d) and another intended to create four distinct focal spots
(e-h), both under plane-wave illumination. Panels (a, e) display the optimization trajectories for each device,

conducted over 64 trials with varied initial conditions, where the blue line highlights the best-performing

device. Panels (b, f) and (c, g) reveal slices of the electric field intensity, |𝑬 |2, in the 𝑥-𝑧 and focal 𝑥-𝑦 planes,

respectively, for the optimal devices as verified by comprehensive full-wave FDTD simulations. Finally,

panels d and h provide three-dimensional representations of the devices, including volumetric renderings of

the electric field intensity, emphasizing regions of the highest intensity. Adapted with permission from [P3].

Copyright 2023 American Chemical Society.

result in outcomes substantially inferior to the optimal one, indicating a pronounced

sensitivity to initial parameter selection – a common challenge encountered in local opti-

mization. Unlike the full-wave solver approach, which limits the feasibility of testing a

wide array of initial conditions and often restricts it to only a handful of additional trials,

our method stands out in its efficiency.

Specifically, an individual optimization with FNO-3D is completed in roughly 10 minutes,

with each iteration taking about 2 seconds on an NVIDIA A100 SXM4 GPU. Moreover,

conducting two parallel optimizations on a single GPU is feasible. By leveraging 32 GPUs

to run all 64 trials simultaneously, the duration for each complete optimization sequence

remains capped at 10 minutes. This efficiency is, however, contingent on the available

computational resources. Even if the optimizations were to be executed sequentially, the

total time required would extend to slightly over 5 hours – a stark contrast to the several

days as are necessary for a single optimization using traditional full-wave solvers, where

each simulation within an iteration consumes about 20 minutes, with two simulations

per iteration as detailed in Subsection 7.3.1. This substantial difference underscores

91



7 Machine learning-based surrogate solvers for simulation and inverse design

the impracticality of exploring numerous initial conditions with full-wave solver-based

methods, starkly contrasting the feasibility demonstrated in our approach.

To ascertain the performance of the optimized devices, we conducted full-wave simulations.

The lens depicted in Fig. 7.10d exhibited an 𝐿1 error of 10.2 % between the simulated

and predicted field intensities, |�̃� |2, whereas the four-point lens showcased in Fig. 7.10h

demonstrated a marginally lower error of 9.1 %. Despite these errors being slightly elevated

compared to those observed in the test dataset, they remain acceptably accurate, especially

when considering the variability inherent in microfabrication technologies, such as 3D

laser nanoprinting, which could be employed to manufacture these devices.

The observed increment in error, relative to the test dataset, is attributed to the inherently

higher discrepancies associated with squared absolute field values. However, when eval-

uating the 𝐿1 losses based on |�̃� |, the results – 5.8 % for the single-point lens and 5.0 %

for the four-point lens – are consistent with the average errors of the test set. Notably,

the primary source of intensity error is the absolute numerical discrepancies in field com-

ponents. However, the qualitative agreement between the FDTD and FNO-3D predicted

fields remains strong. This qualitative alignment further underscores that both devices

successfully achieve their design objectives. The fields depicted in Fig. 7.10 are derived

from comprehensive full-wave FDTD simulations.

7.6 Conclusion

Utilizing surrogate models for addressing scattering problems presents a seemingly ad-

vantageous aspect regarding their significantly reduced inference times compared to

conventional full-wave solvers. Nonetheless, this efficiency comes with notable trade-offs

that warrant careful evaluation to determine their suitability for specific applications.

Among the primary concerns are issues of generalization and accuracy. Surrogate solvers,

particularly those trained on limited datasets, struggle to extend their applicability be-

yond the specific conditions and distributions they were trained under. Moreover, the

minimization of inference errors is contingent upon the model’s complexity and the

comprehensiveness of the training dataset [211, 195].

In optical simulations, this limitation manifests in the model’s capacity to accurately

“solve” only a subset of scattering problems it has been explicitly trained on, such as certain

types of source distributions, material properties, and geometrical configurations. While

augmenting the model’s architecture, diversifying training samples, and enlarging the

dataset can mitigate these issues to an extent, thereby enhancing both generalization

and accuracy, the effectiveness of this approach is bounded by practical considerations.

Specifically, if the effort and resources required to amass an adequate training dataset

surpass the expenses of traditional computational methods, the rationale for opting for a

surrogate model diminishes.

As depicted in Fig. 7.11, we compare the cumulative durations required for FDTD and FNO-

3D simulations alongside the time necessary for generating FNO-3D’s training data. These
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Figure 7.11: Illustration of a comparison between the time needed for completing full-wave simulations using

FDTD and generating predictions with FNO-3D across various simulation counts, with each FDTD simulation

estimated at 20 minutes. It also presents the cumulative duration for FNO-3D inferences, including the time

for generating samples (8192 samples) and network training (approximately 24 hours). The comparison is

depicted for scenarios of serial (solid gray line) and parallel (dashed gray line) data generation methodologies.

timings can significantly fluctuate based on the hardware and simulation configurations

employed. Hence, the data presented in Fig. 7.11 should be interpreted specifically within

the context of this study. Although FNO-3D demonstrates a remarkable speed advantage

over FDTD during the inference phase – being faster by three orders of magnitude – this

comparison in isolation does not fully capture the broader context when juxtaposed with

traditional solvers. The predominant portion of time expenditure is attributed to data

generation, dwarfing the time allocated for training and inference, which are comparatively

minimal.

A notable benefit of data-driven methodologies is the independence of individual samples,

allowing for parallel data generation constrained only by the availability of computational

resources. To achieve a break-even point with a full-wave solver, a surrogate model must

be utilized for inference at least as many times as the dataset size used in its training.

Past this threshold, a surrogate model becomes more cost-effective regarding time and

computational resources, including energy consumption. The benchmark for total time

can be significantly reduced through parallel sample generation, as demonstrated in our

approach, detailed in Subsection 7.3.1.

The reliance of data-driven methods on datasets produced by classical computational

techniques underscores the continued indispensability and, in numerous instances, the

superior efficacy of these traditional methods when a holistic assessment of all pertinent

aspects is undertaken. This dynamic, however, may evolve over time, especially with

the increasing availability of high-quality datasets suitable for training surrogate solvers.

Reflecting a noteworthy and praiseworthy trend within the photonics community, there

is a movement towards the publication of training datasets, an initiative that mirrors
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earlier progressions seen within the machine learning field, whether through individual

contributions or collective endeavors [212].

Although this shift does not alter the fundamental premise that data must originate from

conventional solvers, it is important to recognize that a significant portion of this data

would be generated regardless. Thus, releasing it into the public domain represents

a minimal extra burden. Importantly, the emergence of a comprehensive database of

simulation results could lead to the development of more robust surrogate models. Such

models could potentially bypass the need to generate new training data for each specific

project, provided access is granted to an extensive repository of pre-existing simulation

data. This possibility opens the door to creating more universally applicable models that,

despite their dependency on vast quantities of training data, would not necessitate the

production of this data anew for subsequent research.

In the broader landscape of scientific machine learning, especially in the surrogate solvers

domain, the emphasis on data efficiency cannot be overstated. It demands a critical and

open examination [213]. Within this work, we highlight three pivotal considerations for

integrating deep learning techniques: architecture, specialization, and application. Selecting
an appropriate model architecture can dramatically diminish the volume of training data

needed to achieve sufficiently low error rates in test scenarios. This principle is exemplified

in our electromagnetic scattering problem discussed in Subsection 7.4.1, with corroborating

evidence found across various physical sciences [214, 176]. Moreover, physics-informed

methodologies, which integrate fundamental equations into the training loss function, as

seen in studies like [215, 184, 102, 103], markedly enhance data utilization efficiency.

Secondly, the concept of model specialization merits attention. Designing a surrogate

solver to excel within a narrowly defined range of problem settings can be far more data-

efficient than striving for universal applicability. Such broad-spectrum generalization

often demands an impractical amount of data, underscoring the value of focused model

development.

Minimizing data demands necessitates a strategic narrowing of the model’s application do-

main. Moreover, deploying a surrogate solver should yield tangible benefits that outweigh

the investment in development and training. This concept is exemplified in Section 7.5,

where a surrogate solver facilitates the free-form, three-dimensional inverse design of

electromagnetic scatterers. In this instance, the model is trained using a dataset compris-

ing 8192 samples and is employed across 128 distinct optimizations, each involving 300

iterations. To draw a parallel, a similar optimization effort employing an adjoint-based

technique, would necessitate approximately 128 × 300 × 2 = 76, 800 full-wave simula-

tions. This figure starkly surpasses the simulation count required for dataset compilation,

underscoring the efficiency of the surrogate approach in this particular case.

While surrogate models hold considerable promise and are poised to impact future research

endeavors significantly, it is important to recognize the continuing relevance of more tra-

ditional methods. Specifically, when a problem’s nature permits, fast “classical” strategies,

including semi-analytical approaches, should remain the preferred option. Such methods
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not only compete in terms of speed but also boast superior accuracy and well-defined

error metrics, offering a reliable and precise solution.

In this chapter, we have illustrated the capabilities of a neural operator-based model in

addressing electromagnetic scattering problems, showcasing a performance that signifi-

cantly exceeds the benchmarks set by contemporary state-of-the-art solutions. Despite

the intrinsic trade-offs in accuracy and broad applicability accompanying the transition

from conventional full-wave solvers to a data-driven surrogate model, our findings reveal

the practicality of such an approach for specific applications, including the gradient-

based, free-form inverse design of three-dimensional electromagnetic scatterers. Machine

learning-based surrogate solvers show substantial promise for nanophotonic applications,

conditional on the discovery and implementation of efficient model architectures alongside

carefully selecting tasks to which they are best suited.
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8 Summary & outlook

This work focused on shedding light on the inverse design process of nanophotonic devices,

emphasizing the challenges associated with large-scale optimization problems and the

creation of devices with free-form geometries from several perspectives. The foundational

tools utilized in this endeavor were detailed in Chapter 2, where the adjoint method’s

application to Maxwell’s equations and the principles of topology optimization were

discussed. We commenced with optimizing a device to enhance the excitation and steering

of Bloch Surface Waves in Chapter 3. This initial step allowed for comprehensive analyses

of the optimized devices, particularly in terms of the effective index contrast of the surface

modes, facilitated by the relatively lower complexity of the problem.

Progressing further, we explored the design of a compact and efficient coupler for in-

terfacing optical fibers with photonic wire bonds in Chapter 4. This exploration led to

developing an innovative boundary parameterization approach tailored for topology opti-

mization of devices exhibiting rotational symmetry. The designs that emerged from this

process matched the coupling efficiencies of prior couplers while occupying only one-fifth

of their spatial footprint. This achievement underscores the potential of inverse design,

particularly when applied to the domain of 3D laser nanoprinting.

Remaining in the realm of additive manufacturing while elevating the complexity of the

design challenge, our efforts were directed towards optimizing a polarization-independent

grating coupler, detailed in Chapter 5. Here, designed a device with state-of-the-art

coupling efficiencies but also illuminated the complexities of free-form nanophotonic

device design, a challenge which we further elaborated on in Chapter 6. We discussed

the trade-offs between theoretical optimality and practical manufacturability, specifically

considering additive manufacturing. We developed a framework for integrating struc-

tural considerations into the photonic design process to address the unique challenges

of free-form device optimization. By co-designing devices’ photonic and structural prop-

erties, we demonstrated the feasibility of achieving both structural integrity and high

optical performance, highlighting the untapped potential of holistic design approaches in

nanophotonics.

Lastly, we explored computational methods for reducing the cost associated with large-

scale inverse design, where we designed and used a neural network-based surrogate solver

in Chapter 7. We demonstrated the proposed architecture’s effectiveness for solving elec-

tromagnetic scattering problems, achieving results that surpass the performance metrics

of current state-of-the-art approaches to surrogate modeling. Further, we use this model

for the gradient-based, free-form inverse design of three-dimensional electromagnetic

scatterers.
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Throughout this thesis, strides have been made in addressing the physical principles

and computational strategies pertinent to the inverse design of nanophotonic devices

tailored for additive manufacturing. Yet, numerous pathways for future research remain

open. One significant limitation in achieving realizable structures is the lack of accurate,

differentiable models for 3D laser nanoprinting fabrication processes. A critical issue in this

context is dose accumulation within the material, where polymerization may occur under

repeated illumination that is nominally below the threshold for polymerization. This effect

means that the minimum feature size in actual devices is a function of the illumination’s

intensity and the surrounding voxel environment. Additionally, being a diffraction-limited

system, closely positioned voxels tend to merge due to shared exposure, complicating the

fabrication of small, intricate structures near the minimum feature size. Considering these

challenges is crucial when designing devices for realization via 3D laser nanoprinting,

as it is straightforward to optimize structures that perform well in simulations but are

unfeasible in practical applications. The common approach of imposing a minimum feature

size in topology optimization through low-pass filters does not adequately address these

nuances.

Furthermore, the phenomenon of shrinking associated with this fabrication method

presents another layer of complexity. In the direct laser writing process, a photoac-

tive liquid polymer, or photoresist, is exposed to a high-intensity laser to polymerize and

form the desired 3D structure selectively. The subsequent removal of unpolymerized resist

results in shrinkage of the solid structure, partially due to the voids left by the removed

liquid resist, among other factors. This shrinkage is typically non-uniform, constrained by

the attachment to a substrate, leading to upward shrinkage. Given the sensitivity of inverse-

designed structures, especially in optics, to their geometric configurations, non-uniform

shrinkage can severely compromise their intended functionality. As such, integrating

knowledge of this shrinkage phenomenon into the optimization process itself would be

highly advantageous. This integration would enable the generation of devices that are

pre-compensated for shrinkage or, at the very least, exhibit resilience to it. This would

allow their printing with minimal manual adjustment without significantly detracting

from their functional performance.

The research findings and developments documented in this thesis aim to provide insights

into the free-form inverse design of nanophotonic devices and the particular challenges

encountered when doing so in the context of 3D printing, and I hope it may inspire future

research.
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