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A B S T R A C T

The rapid ramp-up of heat pump installations in modern power systems constitutes an outstanding challenge
for energy community and distribution grid operators. Accurate load forecasts can help community and grid
operators to reduce electricity demand peaks by managing flexible devices. This paper shows that installed
heat pumps change the load patterns, autocorrelation and peak loads of energy communities, as well as the
most suitable forecasting methods. Based on a case study with real-world household and heat pump loads
from Hamelin, Germany, we show significant improvements in forecasting quality by employing Transformer
models. We publish our underlying data set, feature engineered data, forecasting results, best-performing
methods, and benchmarking pipeline open-source, to contribute to the advancement of load forecasting in
energy communities with heat pumps.
1. Introduction

Many European countries plan to install hundreds of thousands of
heat pumps annually over the coming decades [1]. This leads to addi-
tional loads and burdens for distribution grids, for instance, through
the overloading of transformers and power lines [2,3]. To postpone
heat pump-induced grid reinforcement measures, alternatives such as
Demand Side Management or Battery Energy Storage Systems (BESS)
can be used [4,5]. One widely discussed concept for managing low
voltage nodes are so-called energy communities, which combine tens
to hundreds of households in a neighborhood to manage electricity
needs [6] collectively. Operators of energy communities have to plan
supply and demand under grid constraints to minimize purchase costs
for the community members. A critical aspect of managing energy com-
munities and distribution girds is scheduling flexibility measures. This
requires an accurate forecast of upcoming and day-ahead loads [7].

Although several studies discuss different methods to forecast day-
ahead loads in energy communities and distribution grids, most fo-
cus on traditional load patterns, mainly dominated by conventional
household appliances [7,8]. These traditional load patterns will change
in many countries by transforming the heating sector towards heat
pumps [9]. This development has a severe impact on the operators
of energy communities. Previous studies have not addressed two main
questions: First, it is unclear if the same forecasting methods perform
well for traditional household loads and heat pump loads. Second, the

∗ Corresponding author.
E-mail addresses: leo.semmelmann@kit.edu (L. Semmelmann), matthias.hertel@kit.edu (M. Hertel), kkirche@purdue.edu (K.J. Kircher), ralf.mikut@kit.edu

(R. Mikut), veit.hagenmeyer@kit.edu (V. Hagenmeyer), weinhardt@kit.edu (C. Weinhardt).

potential impact of the aggregation level on energy community load
forecasts has not been investigated: it is unclear if operators of energy
communities should directly forecast the whole load of the energy
community, consisting of heat pump and traditional household loads,
or if separate forecasts for the household and heat pump loads should
be conducted and then aggregated. Several past studies underline that
a higher aggregation level improves the quality of the forecast [10,11].
However, it has not been investigated if this holds true for forecasting
different types of loads that follow distinct distributions.

In summary, this paper addresses the following research questions:

• Do the same methods perform well for forecasting traditional
household loads and heat pump loads?

• Does the aggregation level of energy community loads – in partic-
ular, the decision between directly forecasting the whole energy
community load vs. forecasting heat pump loads and household
loads separately – have an impact on the forecasting quality?

• How are the presented forecasting methods and aggregation
strategies performing in an actual battery-based peak shaving use
case of energy community operators?

We answer these questions by suggesting a state-of-the-art method-
ology, including feature engineering, feature selection, sophisticated
Bayesian hyperparameter optimization, sliding window forecasting,
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Nomenclature

𝛥𝑡 Time resolution [h]
𝐷 Amount of days
𝐸𝑡𝑜𝑡 Maximum energy capacity [kWh]
𝑃𝐵𝐸𝑆𝑆 Battery charging or discharging power [kW]
𝑃𝐶𝑜𝑚𝑏 Aggregated load (including heat pump and house-

hold load) [kW]
𝑃𝐻𝐻 Household load [kW]
𝑃𝐻𝑃 Heat pump load [kW]
𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 Predicted load [kW]
𝑃 𝑟𝑒𝑎𝑙 Observed load [kW]
𝑆𝑂𝐶 State of Charge [%]
𝑇 Amount of time steps
𝑡 Time index

and detailed benchmarking. The presented methodology is applied
to a recent dataset of heat pump and household loads from an en-
ergy community in Hamelin, Germany [12]. We publish our pre-
processing approach, the feature-engineered data, our results and the
best-performing methods open-source.

The present paper is structured as follows. In Section 2, state-of-
the-art related work is presented. Section 3 covers our methodology,
focusing on the investigated models. Section 4 depicts the researched
case study with energy community load data from Hamelin, Ger-
many [12]. Section 5 presents our results in light of the previously
introduced research questions. In Section 6, the results are discussed
in detail. Finally, Section 7 presents the conclusion.

2. Related work

A wide range of studies discuss potential methods for load fore-
casting [7,8,13]. The overarching goal of these methods is to forecast
upcoming loads based on previous observations. The time horizon of
the load forecast can range from the next minutes to the next day, up
to several days, months, and years [8,14,15]. Also, the time resolution
of the underlying data can range from a few minutes to a single hour,
multiple hours, and whole days. All these factors play a role in the
resulting quality of the forecast and the selection of the best-performing
methods [8]. Our study mainly focuses on a day-ahead forecast of
hourly loads, which is especially relevant for operational aspects in
energy communities such as energy trading or scheduling flexibilities,
as applied in several studies [16–19].

A broad spectrum of possible methods for day-ahead load fore-
casting tasks is discussed in the literature. The first advances in the
field were made through statistical models such as the Autoregressive
Integrated Moving Average (ARIMA) method [20]. The Seasonal Au-
toregressive Integrated Moving Average with Exogenous Factors (SARI-
MAX) [21] is an extension of the method. A different approach for load
forecasting is using tree-based methods such as random forests [22]
or XGBoost [21]. Tree-based methods use decision trees at their core
to split the input data to make predictions over upcoming loads.
Advantages of tree-based methods, for instance, XGBoost, are a high
computational efficiency, good performance, and easy handling of
multivariate data [23]. For multivariate load forecasting, further input
features like temperature measurements can be used, which can also be
an important factor of electrical load forecasts [24]. Over recent years,
also neural networks have been increasingly used for load forecasting
tasks, such as Long Short-Term Memory neural networks [25] or Trans-
formers [26,27]. The same methods are analogously commonly used for
heat load forecasts [28,29].

Most papers on load forecasting strictly differentiate between fore-
2

casts for traditional household loads and heat loads, which are either
based on district heating systems [28,30], radiators installed at single-
family houses [31] or individual heat pumps [32,33]. However, the
effective and reliable management of distribution grids and energy
communities of the future requires consideration of heat pump-induced
loads, which will lead to significant additional loads [34]. This leads
to several practical considerations. First, it is unclear if the same
methods that perform well for the forecasting of common household
loads also perform well for the task of heat pump load forecasting.
Through an increased share of heat pumps and thereby, a change
of load structures, the recommended forecasting methods might also
change. Second, whether the aggregation type impacts the load fore-
casting quality has not been investigated. Although many studies have
shown that the higher the aggregation level, the better the forecast-
ing quality due to stochastic smoothing [10,11], it is unclear if this
holds true for aggregating household and heat pump loads. Hence,
we investigate if household and heat pump loads should be directly
aggregated and then forecasted or if the different loads should be
individually forecasted, and then the forecasts should be aggregated.
This also has practical implications for the management of the energy
community: If individually-aggregated forecasts perform better than a
directly-aggregated forecast, it might be worthwhile to advocate for
data sharing of heat pump loads of households [35]. Fourth, most
forecasting studies are decoupled from the actual use case in energy
communities and distribution grids. The quality of the presented fore-
cast methodologies is solely measured in terms of metrics such as the
Mean Absolute Percentage Error (MAPE) or Root Mean Squared Error
(RMSE) [36], without a thorough discussion of the metrics and its
applicability for distribution grid-related tasks, such as peak shaving
at transformers [37].

The present paper fills these research gaps with a state-of-the-art
methodology that considers the latest developments in load forecasting
research [38]. We also aim to address some common pitfalls in fore-
casting and machine-learning-based science itself. Recent studies found
that many machine learning results are not reproducible due to a lack of
transparency [39,40], which is further aggravated through scarce open-
source datasets [41]. We address that by making our underlying data,
results, and evaluation methodology open-source, thereby enabling
researchers to easily build upon our results and benchmark their results
against this study. In addition, for the sake of reproducible results [40],
we avoid the use of complex hybrid models and instead focus on base
models. However, we encourage researchers to use our open-source
data set, results, and benchmarking methodology to show possible
advances of sophisticated hybrid models over the presented models.

3. Methodology

Our methodology follows the latest advances and common practices
in load forecasting literature [13,38]. In the first step, additional in-
put features are engineered to enrich the dataset. Subsequently, the
feature set is reduced through a feature selection technique. Then,
several forecasting models are presented. In the next step, we intro-
duce another recent advance in load forecasting, the decomposition
technique Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) [42]. We conclude our methodology by
introducing the two investigated aggregation levels, the underlying
metrics, and our investigated peak shaving application of the presented
forecasting strategies.

3.1. Feature engineering

An integral step in load forecasting is to create additional features
that might help to capture additional patterns underlying the data [43].
We create the following features, in addition to given load and perfect
foresight weather data, based on previous studies:

Type-of-day features: Several load forecasting related studies cre-
ate additional features for type-of-day variables [44]. These binary



Applied Energy 368 (2024) 123364L. Semmelmann et al.
features indicate if the given observation lies on a weekday, weekend,
or holiday. We create the corresponding binary type-of-day features
based on the timestamps of given observations.

Cyclical calendric features: Features such as the hour or month
have a cyclical character, which might not be captured by representing
them with their actual values [45]. For instance, hour 0 and hour 24
would be interpreted as far away through a regression model, although
they are the same value. This misinterpretation can be avoided by
applying a sine and cosine transformation to the day and month ob-
servations, as described in [45]. We also create features for a twofold
and fourfold sine and cosine transformation for possible consideration
of patterns that occur with a higher frequency.

Rolling average of apparent temperature: It has been shown
that rolling averages of the observed temperature are important input
features for load forecasts due to the thermal inertia of buildings [24,
46]. Hence, we create a rolling average for the apparent outdoor
temperatures’ last 24 and 48 h. We selected these intervals based
on a pre-evaluation of correlations between temperatures and loads.
We created the rolling temperature features based on the apparent
temperature instead of the actual temperature due to the higher cor-
relation between loads and apparent temperature observations. The
actual temperature is the objective air temperature measurement, while
the apparent temperature includes factors that affect the perception of
temperature, for instance, humidity, wind speed and solar radiation.

Average load at same time step: For a better capture of the
medium-term effects on (heat) load, [29] suggest creating an additional
feature with the average load at the same hour over the last week.
Considering the load of the previous seven days goes beyond including
lagged variables, which are only provided for two days in this study for
computational reasons.

Past loads: Previous studies showed that past loads are amongst
the most important load forecasting features [38]. How these previous
loads are given as input features to the model depends on the type of
the model. While the following neural network-based methods, such
as LSTMs, can handle whole feature vectors as input [47], classical
machine learning methods, such as Random Forests, require a tabular
representation of the data [23]. This means a one-dimensional feature
vector is used to predict one target value. Past load features are
included as lagged to accommodate the tabular representation. On day
𝑑, the feature vector includes 48 past loads 𝑥𝑡 based on the first timestep
𝑡0(𝑑): {𝑥𝑡0(𝑑)−1, 𝑥𝑡0(𝑑)−2,… , 𝑥𝑡0(𝑑)−48}. Given the hourly time resolution,
we consider 48 past loads, which equal two days, based on literature
and initial experiments [48,49]. We take lagged features in relation to
the first timestep of the respective day, 𝑡0(𝑑), to ensure that the classical
machine learning methods are working with the same input features as
the neural network-based methods, which receive the two day-before
past loads as an input vector.

3.2. Feature selection

We select the most relevant features through a filter and an em-
bedded feature selection method [50] for computational efficiency
and a reduction of potential overfitting. We separately conduct the
feature selection process for the household-only, heat pump-only and
aggregated energy community datasets, to ensure a fair comparability
of the aggregation levels, which is described later in further detail. First,
we filter out irrelevant features with a Pearson correlation lower than
0.1 [51]. Then, the Random Forest algorithm is used as an additional
embedded method to rank the potential features based on their pre-
dictive power [50]. We only consider the ten features with the highest
Random Forest feature ranking [51]. The Random Forest method itself
is explained in detail in the following ‘‘Models’’ subsection. Thereby, we
combine the advantages of the correlation-based filter method (quickly
reducing the search space) and the random forest-based embedded
method (identifying features with high predictive power through a
3

forecasting model) [50,52]. The final feature set includes only features
that pass both feature selection methods. The feature selection pro-
cess is applied before enriching the dataset with the lagged features,
to ensure comparability between neural network-based and classical
machine learning methods.

We note that we include the cyclical hourly features, based on
the previously described 𝑠𝑖𝑛𝑒 and 𝑐𝑜𝑠𝑖𝑛𝑒 transformation, independently
from the feature selection results, to maintain a relationship between
past loads and the current observation for the classical machine learn-
ing methods. Since the past loads are based on the first daily time step
𝑡0(𝑑) for the classical machine learning methods, the timesteps of the
observations are essential to capture the relationship with past loads.

3.3. Models

In the following section, we introduce the investigated models in
our study. We selected the underlying models based on a thorough
analysis of benchmarking studies, identifying the most common and
latest methods used for load forecasting tasks [29,38]. We note that we
excluded hybrid models for the sake of reproducibility of our results
and that there are several further potential candidate models whose
evaluation would go beyond the scope of this study.

3.3.1. Random forests
Random forests are a machine learning method that combines an

ensemble of decision tree predictors with random sampling [53]. In
the first step, random samples are drawn from the underlying dataset
used to build decision trees. The splitting of these trees is based on a
random subset of features from which the best split is used. Possible
splitting decisions are evaluated according to decision tree algorithms
such as the Classification and Regression Tree (CART) method. Finally,
an ensemble of a large number of trees is created, which is then used to
make its prediction as the average of the included trees. Random forests
have been applied in several studies for day-ahead load forecasting
tasks due to their high computational efficiency, rather low overfitting,
and good quality of forecasts [54,55].

3.3.2. XGBoost
The XGBoost algorithm, introduced by [23], is a highly efficient

machine learning algorithm applied in various forecasting tasks. Com-
parable to the previously introduced Random Forest method, XGBoost
utilizes an ensemble of CART models. During the model’s training,
the loss function’s gradient is constantly calculated. At the same time,
new tree learners are added iteratively to the model to reduce the
error of the model. The optimization function of the model includes
a regularization term, which helps the model to prevent overfitting.
Additional measures to prevent overfitting are the ‘‘shrinkage method’’
which reduces the influence of individual trees in the model, and
column subsampling, which also increases the computational speed of
the model. In general, the high computational efficiency and strong
prediction accuracy make XGBoost a popular model for load forecasting
studies [56].

3.3.3. LSTMs
A highly popular method for time series forecasting problems are

Long Short-Term Memory networks (LSTMs) [47,57]. LSTMs are a
special form of Recurrent Neural Networks, that use gate units and
memory cells to ‘‘forget’’ irrelevant information over long-term patterns
but remember important information. The ability to recognize patterns
and to capture long-term dependencies makes LSTMs a popular choice
for time series forecasting problems, amongst other load forecasting
tasks. The original study from Hochreiter and Schmidhuber [57] only
contains one input layer, one hidden layer (which includes the memory
cells and gate units and can be called ‘‘LSTM layer’’) and one output
layer. Based on recent studies that apply LSTM networks for load
forecasting, we include an additional hidden layer [25] and the option
to include a dropout layer to prevent from overfitting [58].
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3.3.4. Transformers
A novel neural network architecture was introduced by [59], which

is increasingly used for natural language processing and computer
vision tasks. Recently, the Transformer architecture was successfully
applied to short-term load forecasting problems, due to its good per-
formance in handling long-term patterns [42,60]. In a more recent
study, the applicability of Transformer models for long-term time se-
ries forecasting was debated, given that simple linear models were
outperforming them on several datasets [61]. However, with the right
training strategy and enough training data, Transformers outperform
linear models and other baselines for short-term and long-term load
forecasting [27,62].

The standard Transformers are based on an encoder–decoder struc-
ture, although other variants exist [63]. The load, calendar and weather
features for the past time steps are fed into the encoder, and the
calendar and weather features for the time steps to predict are fed
into the decoder. The encoder layer consists of a stack of identical
layers which in turn include two sublayers: a multi-head self-attention
mechanism and a fully connected feed-forward network. The multi-
head attention layer allows the model to access information from
various representation subspaces at varying positions. The decoder
contains, in addition to the multi-head self-attention layers, multi-head
cross-attention layers accessing the output of the encoder. Overall, the
Transformer architecture incorporates attention mechanisms at three
different points: self-attention in the encoder, self-attention in the
decoder and cross-attention that allows the decoder to access the output
of the encoder. A final linear layer transforms the decoder output into
the predicted load values.

3.4. Bayesian hyperparameter selection

An essential part of setting up machine learning models is the
selection of the right model parameters, so-called hyperparameter tun-
ing. A novel method for the optimal selection of hyperparameters is
based on a Bayesian Optimization model [64], which especially comes
with the benefit of high computational efficiency and fast convergence
times. The model utilizes a Gaussian Process probabilistic model to
map hyperparameters to an underlying optimization function, which
aims to minimize the forecasting error of the model. The model uses an
acquisition function to determine new hyperparameters, as a trade-off
between exploration of new areas in the space of possible hyperpa-
rameters and the exploitation of existing well-performing observations.
Our Bayesian hyperparameter model is initialized with 10 randomly
drawn hyperparameter sets, the 𝜅 value of the model is set at 3,
determining the trade-off between exploration and exploitation. We
run the Bayesian model for 100 iterations. For every iteration, we run
the target model with the respective hyperparameters given by the
Bayesian model, which is then updated with the Root Mean Squared
Error (RMSE) achieved by the target model. The data used for the
hyperparameter tuning is not included in the test dataset, which is later
used for the evaluation. We note that we discretize the hyperparameter
search space, which is commonly done, but comes with some draw-
backs, since the parameter spaces of categorical variables, such as the
activation function of neural network methods, are disjoint [65,66]. We
accept this drawback for the sake of the computational efficiency of
the method and given the fairness since all models are using the same
approach.

3.5. CEEMDAN decomposition

An increasing number of load forecasting studies is applying de-
composition techniques to improve the model performance [42,67,68].
Decomposition techniques decompose a given signal – such as a time
series of loads – into subcomponents for a better understanding of un-
derlying patterns and trends. One recent advance is the so-called Com-
plete Ensemble Empirical Mode Decomposition with Adaptive Noise
4
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(CEEMDAN) method [69]. The method first adds white noise to the
target signal. Then, the signal is decomposed into different Intrinsic
Mode Functions (IMFs) and the respective residue is calculated. The
process is repeated and the IMFs are re-calculated until the residue
cannot be decomposed anymore. For a thorough description of the
method we refer to [42,69]. Aggregating the resulting IMFs and residue
yields the underlying signal.

The CEEMDAN algorithm has several advantages over alternative
decomposition methods like the Empirical Mode Decomposition: it
exhibits an improved handling of the mode mixing problem (having
similar oscillations in different modes), it is more robust to noise,
as well as being non-stationary [69]. We first decompose the target
load time series into IMFs with the CEEMDAN method on a monthly
rolling basis [70]. Then, we train a dedicated model for every IMF.
Finally, we aggregate the forecasts of the forecasted IMFs to get the
resulting forecast for the target load. We compare the CEEMDAN
method extension with the respective base models, taking over the
same Bayesian-optimized hyperparameters from the base model.

3.6. Aggregation levels

Our study aims at forecasting loads at a low-voltage transformer
(which would be for our German case between the 400 V low-voltage
level and the 20 kV medium-voltage level [71]), to which multiple
households of an energy community are connected. Given a dataset of
multiple individual household loads, we retrieve the aggregated energy
community household load 𝑃𝐻𝐻

𝑡 by aggregating the individual loads of
ll 𝑁 households for each time step 𝑡:

𝐻𝐻
𝑡 =

𝑁
∑

𝑖=1
𝑃 𝑖,𝐻𝐻
𝑡 ∀𝑡 ∈ 𝑇 (1)

The same procedure is repeated for the energy community heat
ump load 𝑃𝐻𝑃

𝑡 :

𝐻𝑃
𝑡 =

𝑁
∑

𝑖=1
𝑃 𝑖,𝐻𝑃
𝑡 ∀𝑡 ∈ 𝑇 (2)

The final transformer power 𝑃𝐶𝑜𝑚𝑏
𝑡 consists of the sum of the house-

hold and heat pump load:

𝑃𝐶𝑜𝑚𝑏
𝑡 = 𝑃𝐻𝐻

𝑡 + 𝑃𝐻𝑃
𝑡 ∀𝑡 ∈ 𝑇 (3)

From the perspective of the energy community or distribution grid
perator, it remains unclear if household and heat pump loads should
e:

• Separate: equaling to an individual forecast of the aggregated
heat pump and household loads, and then summing the forecasts
up to get the whole transformer load. This approach is reasoned
by the different underlying distributions of heat pump and house-
hold load data (as shown later in the paper), which might make it
reasonable to train distinct models for more accurate forecasting
results [72].

• Combined: equaling to aggregating first all heat pump and house-
hold loads, and then predicting the whole transformer load. This
approach is reasoned by the frequently observed pattern that
the higher the aggregation level, the better the forecasting re-
sults [11].

Analyzing the effects of the aggregation level on forecasting qual-
ty has practical implications: predicting household and heat pump
oads individually requires the operator to be able to separately ac-
ess them, which might be challenging given the currently low level
f observability in distribution grids [73]. Our study investigates if
aving additional, separate heat pump load data leads to a respective
mprovement in forecasting accuracy, justifying additional efforts for

ata retrieval.
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Fig. 1. Forecasting methodology.
We illustrate the overall methodology in Fig. 1. To enable a fair
comparison of methods, we conduct a separate feature engineering,
feature selection and Bayesian hyperparameter optimization for every
dataset (Households (𝐻𝐻), Heat Pumps (𝐻𝑃 ) and Combined Load
(𝐶𝑜𝑚𝑏)). Thereafter, we conduct a sliding window forecast over one
year for the presented forecasting models, either as a standalone model
or combined with the CEEMDAN decomposition. Based on the sliding
window forecast, we train the models on every first day of the investi-
gated months based on the data from the past year. Then, the day-ahead
loads of every day in the investigated month are forecasted. The process
is repeated for every month in the test set. Then, the forecasting results
are evaluated based on the metrics depicted in the following.

3.7. Metrics

We evaluate the forecast quality by widely proliferated evalua-
tion metrics, such as the Mean Absolute Percentage Error (MAPE),
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and
𝑅2 [36]. The presented metrics combine advantages like intuitive in-
terpretability (MAPE, MAE, 𝑅2), share of explained variance through
the forecasting model (𝑅2), appropriate consideration of large errors
(RMSE) and reduced sensitivity to outliers (MAE) [36,74,75].

The MAPE is calculated as the mean of the percent deviation from
predicted loads 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑡 from real observations 𝑃 𝑟𝑒𝑎𝑙
𝑡 over all timesteps

𝑇 , multiplied by 100:

MAPE = 1
𝑇

𝑇
∑

𝑡=1

|

|

|

|

|

|

𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡 − 𝑃 𝑟𝑒𝑎𝑙

𝑡

𝑃 𝑟𝑒𝑎𝑙
𝑡

|

|

|

|

|

|

× 100 (4)

The RMSE is calculated as the root of the mean squared deviation
between 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑡 and 𝑃 𝑟𝑒𝑎𝑙
𝑡 :

RMSE =

√

√

√

√
1
𝑇

𝑇
∑

𝑡=1
|𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑡 − 𝑃 𝑟𝑒𝑎𝑙
𝑡 |

2
(5)

The MAE is the mean of the absolute errors:

MAE = 1
𝑇

𝑇
∑

𝑡=1
|𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑡 − 𝑃 𝑟𝑒𝑎𝑙
𝑡 | (6)

𝑅2 is calculated by dividing the squared error between 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡 and

𝑃 𝑟𝑒𝑎𝑙
𝑡 and the squared error between the average load 𝑃𝑚𝑒𝑎𝑛 and actual

values 𝑃 𝑟𝑒𝑎𝑙
𝑡 :

R2 = 1 −
∑𝑇

𝑡=1(𝑃
𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡 − 𝑃 𝑟𝑒𝑎𝑙

𝑡 )2
∑𝑇 𝑚𝑒𝑎𝑛 𝑟𝑒𝑎𝑙 2

(7)
5

𝑡=1(𝑃 − 𝑃𝑡 )
Higher values of 𝑅2 indicate a higher forecast quality; values can
range from −∞ to 1. When a model yields negative 𝑅2 values, it
indicates that its predictions for the target variable are less accurate
than simply using the mean as a forecast [75].

3.8. Applicability

Most forecasting literature solely focuses on comparing and improv-
ing methods based on widely proliferated metrics, such as the MAPE or
RMSE [36]. However, a critical evaluation of how well the presented
methods perform in actual use cases is often missing. Hence, our study
compares the performance of the presented forecasting methods for
the whole energy community load in an actual use case: reducing
the peak aggregated energy community load by scheduling day-ahead
charging and discharging of a BESS based on the day-ahead load
forecast [37]. Reducing the peak load of the energy community is
important to save the underlying distribution grid from degradation, to
avoid costly reinforcement measures and to reduce possible peak power
grid charges [76].

We formulate the underlying optimization based on [37], simul-
taneously targeting peak shaving and load smoothing. For that, we
minimize the squared sum of the forecasted load 𝑃 (𝑡)𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and the
BESS power 𝑃 (𝑡)𝐵𝐸𝑆𝑆 multiplied by the time resolution 𝛥𝑡, over the
forecasting horizon 𝑁 , as depicted in Eq. (8). The BESS operations are
accommodated with a few constraints: the maximum power 𝑃𝑚𝑎𝑥 shall
never be exceeded (Constraint (8b)). The State of Charge 𝑆𝑂𝐶 at time 𝑡
is defined by the previous charging operations 𝑃 (𝑡)BESS multiplied with
the time resolution 𝛥𝑡 and divided by the maximum BESS capacity 𝐸𝑡𝑜𝑡

(Constraint (8c)). Furthermore, the 𝑆𝑂𝐶 has to be kept within 0 and
1 (Constraint (8d)). For our study, we simply set the maximum BESS
capacity 𝐸𝑡𝑜𝑡 at the peak load of the previous year 𝑃𝑚𝑎𝑥,𝑦−1 times the
time resolution 𝛥𝑡, which is in our case one hour. The maximum BESS
charging and discharging power 𝑃𝑚𝑎𝑥 is set at half the capacity 𝐸𝑡𝑜𝑡,
divided by the time resolution 𝛥𝑡. Finally, in Constraint (8e), we limit
the amount of allowed full cycles to one equivalent full cycle per day
𝑑 (equaling to one full charging and one full discharging cycle). We
note that investigating different BESS sizes and peak shaving strategies
might bring additional insights, but this would go beyond the scope of
this study.

min

( 𝑇
∑

𝑡=1
𝛥𝑡[𝑃 (𝑡)predict + 𝑃 (𝑡)BESS]2

)

(8a)

s.t. 𝑃max ≥ |𝑃 BESS
𝑡 |, ∀𝑡 ∈ 𝑇 , (8b)

𝑆𝑂𝐶 = 𝑆𝑂𝐶 +
𝛥𝑡 ⋅ 𝑃 (𝑡)BESS

, ∀𝑡 ∈ 𝑇 , (8c)
𝑡 𝑡−1 𝐸tot
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Fig. 2. Exemplary load profiles of energy community in Hamelin, Germany.
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0 ≤ 𝑆𝑂𝐶𝑡 ≤ 1, ∀𝑡 ∈ 𝑇 , (8d)
𝑇
∑

𝑡=1
|𝑃 (𝑡)BESS

| ⋅ 𝛥𝑡 ≤ 𝐸tot ⋅ 𝛥𝑡 ⋅𝐷 ⋅ 2 (8e)

For every forecasting method, the previously depicted peak shaving
nd smoothing optimization is conducted using the Mixed-Integer Lin-
ar Programming solver Gurobi [77]. Then, the suggested BESS charg-
ng operations 𝑃𝐵𝐸𝑆𝑆 are applied to the actual observed loads 𝑃 𝑟𝑒𝑎𝑙.
ubsequently, based on the respective forecasting methods, we can
ompare the achieved peak reductions through a day-ahead scheduling
f BESS operations. Thereby, we can evaluate the actual applicability
f the presented methods for an energy community peak shaving task.

. Case study

In this section, the underlying dataset and the results of our hyper-
arameter tuning process are presented.

.1. Data

The previously presented methodology is applied to a high-quality
ataset of household loads in an energy community in Hamelin, Ger-
any [12]. Initially, the dataset includes active and reactive power,

oltage and current measurements of 38 households equipped with
ater-to-water heat pumps and an additional heating rod as backup
eater. The dataset includes separate measurements for the households
nd heat pumps in 10 s to 60 min resolution from mid-2018 to the
nd of 2020. The heat pumps from the dataset are both responsible
or covering heating and hot water demand. For our study, we use the
ourly resolution of the active power and 21 out of the 38 households
hat do not have missing data. We see the agglomeration of the 21
ouseholds as an exemplary, small energy community, which can be
ound in a comparable size in existing studies [78,79]. We note that
e are solely focusing on forecasting the aggregated active power.
owever, phase imbalance or voltage issues might arise through the

nstallation of heat pumps [80] in single- or three-phase configurations,
nd these are interesting directions for future work.

We depict an exemplary weekly load profile of the household and
eat pump loads in Fig. 2. We can observe that the underlying house-
old loads follow a completely different pattern than the heat pump
oads. While the household loads follow a daily pattern, with load
eaks in the morning and evening, and load valleys in the night, the
eat pump loads are rather on a constant high level over days, mainly
aused by low temperatures. Furthermore, the heat pumps are for
he exemplary illustrated winter weeks up to 8 times higher than the
ousehold loads, underlining the additional stress caused by heat pump
6

nstallations on distribution grids [2]. Overall, through the installation
f heat pumps the peak load in our dataset is raised from 20.1 kW to
0.1 kW, which represents a fourfold increase.

In Fig. 3, the yearly energy community load is illustrated, showing
gain the heavy impact of heat pump installations on the load curve,
ith distinct new peak loads during winter months. Also, the auto-

orrelation profile depicted in Fig. 4 shows the differences between
eat pump and common household loads. While household loads are
trongly correlated with the same daily hours, heat pump loads strongly
orrelate with loads in the previous hours. Potential autocorrelation
atterns of future energy communities, including both household and
eat pump loads, rather resemble the heat pump load autocorrelation
tructure.

The distinct profile of heat pump loads and their difference to the
egular household loads underlines our question if separately forecast-
ng aggregated household and heat pump loads before summing them
ight yield an advantage over directly forecasting the whole energy

ommunity loads, due to the different distributions and properties of
he load curves.

Of the presented dataset, we use observations between the begin-
ing of 2019 till the end of 2020 for our study. The data of 2019
s used for hyperparameter selection, with the first 6 months being
sed for training and the last six months for testing. We split our data
alf-half during the hyperparameter tuning process, since we want to
over different seasonalities. Then, the data in 2020 is used for the
ctual benchmarking of the methods, with the previously determined
arameters. We use a sliding window forecast, that trains the models
t the beginning of each month based on the last twelve months. For
orecasting the day-ahead hourly loads, features from the past two days
re used, as previously described.

In the following, we present the results of the feature selection
rocess and the subsequent hyperparameter selection, as well as the
articular structure of the utilized models.

.2. Feature selection

After conducting our feature selection process for the household,
eat pump and combined dataset separately, we obtain the resulting
eature sets in Table 1. We conduct separate feature selection processes
o ensure an unbiased evaluation process in light of the comparison be-
ween individually aggregated or directly combined energy community
oad forecasting.

We find differences in relevant features between the different types
f loads. For instance, the cosine of the hour would usually not be
ncluded in the heat pump load dataset, which is instead more focused
n temperature features such as the apparent temperature or the prob-
bility of precipitation, which would not be included in the household
nd directly combined model. We note that we include the sine and
osine of the hour nonetheless (marked in brackets in Table 1), to
aintain the temporal relationship between current and past loads for

he tree-based models, as explained in Section 3.1.
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Fig. 3. Yearly aggregated energy community load.
Fig. 4. Autocorrelation of household and heat pump loads.
Table 1
Resulting feature sets for different load models. Features that were excluded by
the feature selection process, but were kept in the dataset to maintain temporal
relationships, are marked in brackets (further details in the text).

HH HP Comb

Apparent temperature ✓ ✓

Apparent temperature: Rolling average 24 h ✓ ✓ ✓

Apparent temperature: Rolling average 48 h ✓ ✓ ✓

Past loads (48 h) ✓ ✓ ✓

Probability of precipitation ✓

Relative humidity ✓ ✓ ✓

Temperature ✓ ✓

Wind speed ✓ ✓ ✓

Cosine of hour ✓ (✓) ✓

Sine of hour (✓) (✓) (✓)
Average load at same hour last week ✓ ✓ ✓

Dropped features (e.g. wind direction, . . . )

4.3. Hyperparameters and model structure

Based on the previously described Bayesian hyperparameter op-
timization and selected feature sets, we investigate for each model
optimal parameters.

We use the first six months of 2019 for training during the hy-
perparameter selection process, and evaluate based on the last six
months. Through our Bayesian hyperparameter optimization, we ob-
tain different hyperparameters for heat pump, household and directly
combined loads, as depicted in Table 2. The XGBoost parameter search
space is based on [29,81], the Random Forest (RF) search space is
based on [29,82], the LSTM parameters are based on [35,83], and the
Transformer search space is based on [27].

The LSTM neural network is built with one bi-directional LSTM
layer, two dense layers, from which the second dense layer has half
the neurons of the first ones, and one dropout layer, before one final
dense layer with neurons in the amount of the prediction horizon (in
our case 24 h) [35].

5. Results

In this section, we present the results of our study. First, reached
metrics for household and heat pump load forecasting are presented.
7

Second, the results of different aggregation strategies are depicted.
Finally, we show the results for the application of the forecasted loads
on the peak shaving case study.

5.1. Forecasting results

Table 3 displays the results for the forecasting of household loads.
Depending on the metrics the best results are achieved by the Trans-
former (RMSE, 𝑅2) and Random Forest (MAPE, MAE) model. Although
the Transformer model is amongst the best models, we do not see a
remarkably better performance of it over tree-based models such as the
Random Forest. In addition, the CEEMDAN extension deteriorates the
models rather than improving them.

Table 4 shows the forecasting results for heat pump-only loads,
which differ strongly from the household-only results. The Transformer
models significantly outperform the alternative models. Based on the
MAPE and MAE, the Transformer model yields the best results, while
based on the RMSE and 𝑅2 metric, the Transformer-CEEMDAN model
yields the best results. The CEEMDAN extension improves the forecast
quality for the neural network-based methods while significantly dete-
riorating the tree-based methods. We note that we have compared the
variance of the forecasting results over multiple runs of the underlying
methods after obtaining the initial results, to analyze the uncertainty
connected with them, as depicted in Appendix. Although we observe
a higher standard deviation of the RMSE of the neural network-based
methods, the order of the results remains the same.

5.2. Aggregation level

Table 5 presents the results over the aggregation levels and meth-
ods. Overall, the results underline the superiority of the Transformer
models: the ‘‘Transformer-CEEMDAN: combined’’ model achieves the
best result for two of four metrics (RMSE, 𝑅2), the ‘‘Transformer: sepa-
rate’’ model achieves the best results for three of four metrics (MAPE,
MAE, 𝑅2). All Transformer models reach the highest observed 𝑅2 score
of 0.9. While the tree-based methods yielded comparable results for
the household-only case, they are significantly worse when heat pump
loads are added. This has implications for energy community and grid
operators: forecasting models that have achieved good results in the
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Table 2
Results of the Bayesian hyperparameter tuning process for each model.
Model Parameter Values HH HP Comb

XGBoost max_depth (3,10) 3 5 6
subsample (0.4,1.0) 0.569 0.467 0.711
min_child_weight (2,6) 2.172 2.059 4.693
colsample_bytree (0.6,1.0) 0.633 0.887 0.744
n_estimators (10,200) 29 21 19

RF max_depth (1,500) 326 32 368
learning_rate (0.01,0.2) 0.035 0.079 0.01
min_samples_split (2,10) 2 6 10
min_samples_leaf (1,10) 5 4 1
n_estimators (10,200) 20 176 162

LSTM batch_size [32,64,128,256,512,1024] 256 128 64
lstm_neurons [32,64,128,256] 256 256 128
lstm_first_layer [32,64,128,256] 256 256 32
dropout (0.3,0.7) 0.3 0.7 0.3
activation_function [tanh, relu, sigmoid] sigmoid sigmoid relu
optimizer [adam, adagrad, rmsprop] sigmoid sigmoid sigmoid
learning_rate (0.0001,1) 0.0001 0.0001 0.0001

Transformer num_layers (1,6) 1 1 1
d_model [16,32,64,128,256,512,1024] 128 1024 128
num_heads [1,2,4,8] 8 1 2
batch_size [16,32,64,128,256,512] 16 64 16
learning_rate (0.0001,0.1) 0.0008 0.0001 0.0014
Table 3
Household load forecasting results for evaluation data set (2020).

MAPE MAE RMSE 𝑅2

Random Forest 12.84 959.35 1362.61 0.74
Random Forest CEEMDAN 15.51 1093.85 1481.39 0.69
XGB 13.11 969.79 1362.03 0.74
XGB CEEMDAN 14.53 1036.19 1421.26 0.71
LSTM 14.08 1041.63 1447.21 0.70
LSTM CEEMDAN 17.12 1161.97 1522.47 0.67
Transformer 13.19 965.39 1352.30 0.74
Transformer CEEMDAN 15.60 1049.55 1373.21 0.73

Table 4
Heat pump load forecasting results for evaluation data set (2020).

MAPE MAE RMSE 𝑅2

Random Forest 52.20 2054.40 2756.48 0.88
Random Forest CEEMDAN 97.54 2985.40 3897.60 0.76
XGB 49.17 2064.44 2817.45 0.88
XGB CEEMDAN 70.06 2617.10 3458.96 0.81
LSTM 70.51 2240.22 2908.37 0.87
LSTM CEEMDAN 49.32 1860.33 2482.39 0.90
Transformer 33.03 1602.49 2280.83 0.92
Transformer CEEMDAN 47.93 1690.77 2226.14 0.92

past might not be the most suitable ones in a future with significant
heat pump loads.

We compare the effects of the aggregation level in Fig. 5. Although
separately forecasting heat pump and household loads and then aggre-
gating the forecast brings improvements for some methods, especially
the best-performing methods only exhibit negligible performance dif-
ferences, or even perform better when using the directly combined
aggregation level (Transformer-CEEMDAN).

5.3. Applicability

In the following, we investigate the applicability of the presented
forecasts for day-ahead scheduling of a BESS sized at the hourly peak
energy consumption of the year before (80.1 kWh). The overall yearly
peak reduction, based on the optimization model detailed in Sec-
tion 3.8, is presented in Fig. 6. We can again observe a strong per-
formance of the Transformer-based methods, yielding solid peak re-
ductions. The highest peak reduction of 5.7 kW is achieved with
the Transformer model and the ‘‘combined’’ aggregation level, which
8

Table 5
Forecasting results for the whole energy community, including household and heat
pump loads, for evaluation data set (2020).

MAPE MAE RMSE 𝑅2

Random Forest: Separate 16.79 2377.94 3137.00 0.87
Random Forest: Combined 17.24 2466.57 3269.30 0.86
Random Forest CEEMDAN: Separate 25.40 3274.45 4247.91 0.77
Random Forest CEEMDAN: Combined 22.94 3277.46 4478.73 0.74
XGB: Separate 16.48 2375.88 3168.89 0.87
XGB: Combined 16.58 2432.93 3256.33 0.86
XGB CEEMDAN: Separate 20.80 2913.93 3827.78 0.81
XGB CEEMDAN: Combined 21.31 3056.01 4097.77 0.78
LSTM: Separate 18.76 2525.47 3265.96 0.86
LSTM: Combined 17.11 2509.65 3330.41 0.86
LSTM CEEMDAN: Separate 16.47 2314.98 3029.79 0.88
LSTM CEEMDAN: Combined 17.66 2426.39 3167.11 0.87
Transformer: Separate 13.43 2014.11 2743.59 0.90
Transformer: Combined 13.76 2062.61 2776.97 0.90
Transformer CEEMDAN: Separate 16.16 2150.27 2754.22 0.90
Transformer CEEMDAN: Combined 14.95 2089.65 2736.40 0.90

represents 57% of the theoretical optimal peak reduction based on a
perfect foresight forecast.

On the other hand, models with weak forecasting performance, such
as the Random Forest CEEMDAN model, yield negligible or even neg-
ative peak reductions through the day-ahead scheduling, underlining
the importance of high-quality forecasts. We compare peak shaving
on the day with the highest peak load with the method that yields
the best peak reduction results (Transformer Combined) and the worst
(Random Forest CEEMDAN Combined) by considering the load curves
depicted in Fig. 7. The Random Forest CEEMDAN method forecasts
the highest peak in the afternoon, while the actual peak takes place
in the morning. In addition, the load is consistently underestimated.
Consequently, the peak load is not sufficiently reduced. Although the
Transformer model also forecasts an afternoon peak, the overall load
level and timing of peaks is forecasted better. Consequently, the BESS
operation reduces the peak load level. We also observe that the three
methods achieving the highest peak reduction follow the ‘‘combined’’
aggregation level, thereby delivering another indication that obtaining
separate heat pump measurements does not necessarily lead to an
operationally relevant improvement of the forecasting quality.

Although we see a tendency that models with good overall forecast-

ing quality yield a reasonable decision basis for day-ahead BESS peak
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Fig. 5. RMSE per method and aggregation level.
Fig. 6. Achieved peak reduction based on day-ahead scheduling of BESS based on forecasts. RMSE displayed in blue squares.
shaving scheduling, the ‘‘LSTM-CEEMDAN: Separate’’ or ‘‘Transformer-
CEEMDAN: Separate’’ forecast with individually predicted household
and heat pump loads raise awareness for potential problems when re-
lying too much on forecast results. Even though both methods exhibit a
solid forecasting performance, they lead to only limited peak reductions
since they fail to correctly forecast the peak shape on the day with the
worst peak load.
9

6. Discussion

The results of our study have implications for energy community
and grid researchers and operators. We show that through the in-
stallation of heat pumps in energy communities, the autocorrelation
patterns and peak load magnitudes significantly change. Based on
that, the choice of adequate forecasting methods should be reviewed
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Fig. 7. Peak shaving results on the day with the highest peak load, based on day-ahead scheduling with the Random Forest CEEMDAN and Transformer model.
a
a
h

and re-evaluated. While for traditional energy communities, tree-based
forecasting models, such as XGBoost or Random Forests, are delivering
reasonable forecasting results, it is not the case anymore when heat
pumps are installed. Then, in our case study, Transformer-based models
are significantly outperforming all other investigated models.

Thereby, we also contribute to the general discussion about Trans-
former models in load forecasting: [61] find that linear models out-
perform multivariate Transformer models for long-term forecasting.
However, with a global training strategy, Transformer models outper-
form linear models and other baselines for short-term and long-term
forecasting [27,62,63]. On very aggregated load time series, Trans-
former models can also outperform several baselines significantly [60].
In our experiments with traditional household loads, we see no large
difference in forecasting quality between the Transformer model and
tree-based models. However, when investigating heat pump loads and
total energy community loads including heat pumps, the Transformer
models considerably outperform the other models.

We can see a comparable pattern for the CEEMDAN technique,
which decomposes the load time series in different Intrinsic Mode
Functions that are separately forecasted and later aggregated. While the
method does not improve the traditional energy community forecast, it
constitutes one of the best methods for forecasting loads of heat pumps
and energy communities with them.

We can transfer these results also to our application case, in which
peak loads are reduced through an external BESS, based on the forecast
of the depicted methods. The highest peak reductions are consistently
reached through the Transformer method, which also achieved good
forecasting results. However, we note that we only analyzed a limited
case study with a given storage size and limited load data. Hence, future
research should also critically evaluate the applicability of load fore-
casts on energy community- and grid operation-related, actual tasks.
Although the forecasting methods that achieve good forecasting metrics
also tend to show good results in the actual peak reduction task, we
can also see discrepancies between forecast quality and actual effectiv-
ity, for instance through failing predicting the peak load. Since most
forecasting literature is focused on evaluating common metrics like the
RMSE, without considering an actual use case, we call for a more task-
centric forecast evaluation and the consideration of alternative metrics
that might be more aligned with the task at hand.

Our result that separately predicting aggregated household and
heat pump loads and then summing the forecasts up does not bring
a meaningful advantage over forecasting directly the load of the whole
energy community indicates that efforts to gather separate heat pump
data might not be worthwhile. Instead, energy community and grid
operators should focus on gathering solid load measurements at the
transformer level, which can be used for forecasting models and op-
erational decisions built upon them. We note that our study is focused
on the low-voltage level. It has to be investigated if our findings hold
true for the medium- and high-voltage levels.
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m

Our study is based on the energy community household and heat
pump load data from [12]. The water-to-water heat pumps from the
dataset are operated based on desired household temperature lev-
els, neglecting potential price-based demand response signals [84].
Through an increasing level of households with dynamic household
prices, the load forecasting uncertainty could also rise, which should
be considered in future studies [84]. In addition, new heat pump
technologies, tariff structures and regulation can lead to concept drifts
that make an adjustment of forecasting models necessary [85]. For
instance, the German government has announced a new set of rules
for controllable consumer devices – which will be implemented from
1st January 2024 on (§14a EnWG) [86] – allowing grid operators to
reduce the electricity consumption of heat pumps and electric vehicle
chargers down to 4.2 kW during overloading events. Applying these
new rules could lead to considerable changes of heat pump load profiles
and an increase in forecasting uncertainty. Also, we note that the most
proliferated type of heat pumps in Germany are air-to-water ones [1],
which can exhibit slightly different load profiles than the water-to-
water heat pumps from in the underlying data set. However, due to
comparable heat pump coefficients of performance, we argue that the
heating demand of energy communities with water-to-water and air-
to-water heat pumps – and respective forecasting outcomes – should
be comparable [87].

Overall, we understand our work as a first step towards the discus-
sion of forecasting energy community loads with heat pumps, which
will get increasingly important over coming years, given the increasing
number of heat pump installations [1]. Because of the observed changes
in load curves, novel forecasting methods should be discussed and ap-
plied. However, we note that we have only explored a limited amount
of models, given the high number of novel models published in recent
years [13]. Hence, we publish large parts of our study open-source,
including the feature engineering and selection steps, the underlying
final data set, the evaluation pipeline, the peak shaving application, the
best-performing methods and our resulting forecast. Thereby, we sim-
plify benchmarking novel methods against our results and contribute
to open-source load forecasting research1.

We note that our study has a couple of limitations. The peak shaving
application of our forecasted loads is based on a retrospective simu-
lation, which might neglect practical factors. We aim to empirically
validate our results in further studies. Also, we focus on forecasting
aggregated energy community loads. In further studies, it might be
interesting to analyze the effects of forecasting individual household

1 Our best performing forecasting models, all our feature-engineered
nd preprocessed data, our benchmarking pipeline and all our results
re published open-source at https://github.com/leloq/load-forecasting-with-
eatpumps. We encourage fellow researchers to benchmark novel forecasting
ethods against our results.

https://github.com/leloq/load-forecasting-with-heatpumps
https://github.com/leloq/load-forecasting-with-heatpumps
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loads before aggregation. Furthermore, the underlying dataset includes
perfect foresight weather data, which might lead to slightly overesti-
mating the forecasting quality. We argue that this does not interfere
with the general direction of our results, given the overall good level
of weather data forecasts and that all models are based on the same
data, hence a fair comparison is given.

7. Conclusion

Our study investigates the impact of the installation of heat pumps
in energy communities on day-ahead load forecasting with a state-
of-the-art forecasting pipeline. The installation of heat pumps leads
to remarkable changes in autocorrelation patterns and peak loads
of the energy community. This has implications for the overall load
forecasting process. In particular, we find that:

• The best-performing forecasting methods change after the instal-
lation of heat pumps. While for traditional energy communities,
also tree-based models such as Random Forests or XGBoost de-
liver a reasonable forecasting quality, after installing heat pumps,
Transformer-based methods outperform them significantly.

• The day-ahead energy community load forecasting quality can-
not be notably increased by obtaining separate measurements of
heat pump loads, which would constitute an additional effort for
energy community or distribution grid operators.

• Transformer-based models are also delivering the best perfor-
mance in a real-world peak reduction BESS use case for the
investigated energy community with heat pumps. However, we
see a discrepancy between forecasting metrics and actual results
in the application task for some models.

Our findings have practical implications for operators of distribution
rids and energy communities, making a re-evaluation of applied fore-
asting methods necessary and advocating against potentially expensive
fforts to obtain separate heat pump load measurements.

We note that our study has some limitations: it is limited to a
elected energy community, the practical application is based on a
etrospective simulation and has not been empirically validated, the
nderlying data only includes water-to-water heat pumps, the forecast
s based on perfect foresight weather data and only a selection of
orecasting methods were applied.

Hence, we encourage researchers to use our dataset, results and
valuation pipeline, which we publish open-source, to benchmark novel
ethods against them to advance accurate forecasting techniques for

oads of energy communities with heat pumps and to apply our method-
logy on alternative datasets. We also call for a more task-centric
valuation of forecasting methods, which might include the introduc-
ion of novel metrics that are more aligned with the application area
f the produced forecasts. Also, future studies should investigate the
mpact of heat pump installations and aggregation levels on the forecast
uality of the medium- and high-voltage grid, and empirically validate
ur results for energy communities and underlying low-voltage grids.
urther studies should also consider the effect of severe weather events
n the forecasting quality of energy communities with heat pumps.
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Appendix

See Table 6.

Table 6
Descriptive statistics of five runs per method, showing higher standard deviation (std)
of neural network-based methods. Focusing on non-CEEMDAN methods, since the
CEEMDAN method exhibits multiple runs internally through several IMFs.

Mean std min max

LSTM HH 1452.56 6.33 1447.21 1461.48
LSTM HP 2989.20 90.29 2908.37 3083.38
LSTM Comb 3096.27 58.89 3014.16 3152.67
XGB HH 1362.03 0.00 1362.03 1362.03
XGB HP 2817.45 0.00 2817.45 2817.45
XGB Comb 3256.33 0.00 3256.33 3256.33
Random Forest HH 1368.29 6.93 1362.01 1374.83
Random Forest HP 2761.41 4.09 2756.48 2765.77
Random Forest Comb 3256.02 10.81 3242.94 3269.30
Transformer HH 1324.57 13.72 1310.44 1340.74
Transformer HP 2319.38 27.72 2277.90 2335.79
Transformer Comb 2727.31 41.40 2688.11 2764.41
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