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Abstract
In various applications, probabilistic forecasts are required to quantify the inherent uncertainty associated with the forecast.
However, many existing forecasting methods still only generate point forecasts. Although methods exist to generate proba-
bilistic forecasts from these point forecasts, these are often limited to prediction intervals or must be trained together with a
specific point forecast. Therefore, the present article proposes a novel approach for generating probabilistic forecasts from
arbitrary point forecasts. In order to implement this approach, we apply a conditional Invertible Neural Network (cINN) to
learn the underlying distribution of the data and then combine the uncertainty from this distribution with an arbitrary point
forecast to generate probabilistic forecasts. We evaluate our approach by generating probabilistic forecasts from multiple
point forecasts and comparing these forecasts to six probabilistic benchmarks on four data sets. We show that our approach
generally outperforms all benchmarks with regard to CRPS and Winkler scores and generates probabilistic forecasts with
the narrowest prediction intervals whilst remaining reasonably calibrated. Furthermore, our approach enables simple point
forecasting methods to rank highly in the Global Energy Forecasting Competition 2014.

Keywords Probabilistic forecasting · Uncertainty quantification · Conditional invertible neural networks · Machine learning ·
Normalising flows

1 Introduction

Probabilistic forecasts are required to quantify the inherent
uncertainty associated with any prediction of the future [23,
45]. These probabilistic forecasts are crucial for many appli-
cations such as stabilising energy systems [11], managing
congestion in traffic systems [39], or sizing servers of web
applications to copewith a certain number of daily visits [36].
Despite this necessity for probabilistic forecasts, many mod-
ern forecasting methods still generate point forecasts [44].
Although many recent machine learning libraries offer sup-
port for probabilistic loss functions to simplify the generation
of probabilistic forecasts, this may not be possible if an exist-
ing point forecast model that cannot easily be modified or
retrained is already in use.

One solution to overcome this challenge is to generate
probabilistic forecasts based on these existing point fore-
casts. For many years, such forecasts have been generated
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by analysing the residual errors of the point forecast. Based
on these errors’ standard deviation or quantiles, prediction
intervals can be calculated to generate probabilistic forecasts
[29, 56]. Moreover, such probabilistic forecasts can be gen-
erated by using machine learning methods exploiting the
residual errors [5, 54], by applying the Bayesian theory of
probability to a point method [37], or by considering Monte-
Carlo sampling methods [3]. Although these methods may
be effective, they also have various limitations. For example,
the prediction interval-based approaches can only generate
prediction intervals as probabilistic forecasts, while machine
learning methods depend on the point forecast and must be
retrained if the point forecast is altered. Ideally, such proba-
bilistic forecasts should be generated directly from arbitrary
point forecasts and should not require retraining if the point
forecast changes.

Therefore, in the present article, we present an approach
that generates probabilistic forecasts from arbitrary point
forecasts by using a Conditional Invertible Neural Net-
work (cINN) to learn the underlying distribution of the
time series data. Since time series have an inherent compo-
nent of randomness [29], we propose using this uncertainty
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within the distribution of the time series data to gener-
ate probabilistic forecasts. However, the underlying system
responsible for this uncertainty typically generates observa-
tions of an unknown probability distribution. Therefore, with
our approach, we first map this unknown probability distri-
bution of the underlying time series data to a known and
tractable distribution by applying a cINN. Then, we use the
output of a trained arbitrary point forecast method as an input
to the trained cINN and consider the representation of this
forecast in the knownand tractable distribution.We then anal-
yse the neighbourhood of this representation in the known
and tractable distribution to quantify the uncertainty associ-
ated with the representation. Finally, we use the backward
pass of the cINN to convert this uncertainty information into
the forecast. In our approach, the cINN is trained indepen-
dently of the point forecast and must not be retrained when
the point forecast is altered.

Thus, the main contribution of the present article is
twofold. First, we provide a novel approach for generating
probabilistic forecasts from arbitrary point forecasts whose
training is independent of the point forecast. Second, we
empirically evaluate the approach using different data sets
from various domains. In this empirical evaluation, we com-
pare our approach to six probabilistic benchmarks, evaluate
multiple metrics, and recreate the Global Energy Forecasting
Competition 2014 (GEFCom2014) competition setting.

The remainder of our article is structured as follows. First,
we present related work and highlight the research gap that
the present article addresses in Section 2. In Section 3, we
then explain our approach in detail and highlight how we use
a cINN to generate probabilistic forecasts from an arbitrary
point forecast. We detail the experimental setup in Section 4,
before presenting our results in Section 5. In Section 6 we
discuss our evaluation and key insights. Finally, we conclude
and suggest possible directions for future work in Section 7.

2 Related work

Our article is closely related to two research fields: previous
work that generates probabilistic forecasts based on point
forecasts and previous work focusing on probabilistic fore-
casts using a cINN. Table 1 presents an overview of the
identified related articles, and in this section, we present and
discuss these articles inmore detail and highlight the research
gap the present article addresses.

Generating probabilistic forecasts from point forecasts
Determining the uncertainty associated with a point pre-
diction is one of the key research areas of uncertainty
quantification [52].Manymethods focus on generating prob-
abilistic prediction intervals from existing point forecasts

by using the residual errors between the point forecast and
the true value [29]. These prediction intervals can be gener-
ated by assuming a Gaussian distribution of the errors [29],
using the empirical distribution of the errors [56], or consid-
ering nonconformity errors [8, 53, 59].While effective, these
methods are designed to generate prediction intervals rather
than approximate the full probability distribution, whichmay
be a limitation. Furthermore, if the point forecaster used is
changed, new residual or nonconformity errors must be cal-
culated to apply these methods. Although this calculation is
not a retraining process, it does require additional effort.

Similar approaches also use residual errors in combination
with further machine learning algorithms. [5], for example,
train a neural network to forecast the standard deviation of the
residual errors and generate probabilistic forecasts as reali-
sations of a Gaussian distribution centred around the original
point forecasts. Similarly, [54] use the residual errors from
a point forecast to train a Generative Adversarial Network
(GAN). This trained GAN is then used to generate multi-
ple residual scenarios, which are combined with the point
forecast to form probabilistic forecasts. The main limitation
of both approaches is that the additional machine-learning
models used to predict the uncertainty (i.e. standard deviation
or residual scenarios) depend on the selected point forecast
[5, 54]. Therefore, these machine-learning models must be
retrained whenever the point forecast is altered.

Further approaches include a Bayesian method involving
assumed priors [32], integrating uncertainty into the predic-
tion via an ensemble of predictions [10], and considering
uncertainty through Monte Carlo sampling approaches or
similar [4]. The main limitation of these approaches, apart
from the assumption regarding theBayesian prior, is the com-
putational complexity resulting from sampling or generating
a large ensemble pool.

Probabilistic forecasts using cINNs
To generate probabilistic forecasts, cINNs, also referred to
as normalising flows [1], are combined with other machine
learning methods. [2], for example, apply normalising flows
to learn the parameters of Bernstein polynomials, which are,
in turn, used to generate a probabilistic forecast. Moreover,
[46] combine normalising flows with recurrent neural net-
works to generate probabilistic forecasts. Normalising flows
are also combinedwith quantile regressionnetworks and cop-
ulas [55], or used to generate a conditional approximation of
aGaussianmixturemodel [31] to improve the accuracy of the
resulting probabilistic forecasts.Whilst these methods are all
effective, normalising flows are used to enrich existing com-
plex probabilistic forecasting methods, but not to provide
probabilistic forecasts themselves.

An alternativemethod that directly uses normalising flows
in the context of probabilistic forecasts is to learn multi-
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dimensional distributions of electricity price differences to
predict the trajectory of intraday electricity prices [9]. Sim-
ilarly, normalising flows may be applied multiple times to
generate scenario-based probabilistic forecasts [15, 21, 60],
or to generate a proxy for weather ensemble prediction sys-
tems based on numerical weather prediction models [18].
Thesemethods use the generative nature of normalisingflows
to generate multiple predictions drawn from the same distri-
bution. However, the forecasts are only probabilistic as an
ensemble, with each individual forecast still being a point
forecast. Furthermore, these forecasts assume that the under-
lying learned distribution remains constant and only partly
considers external features. Finally, these methods all focus
on directly generating probabilistic forecasts. Therefore,
such methods cannot be applied to generate probabilistic
forecasts from existing, well-designed point forecasts.

Research gap
As shown in Table 1, we identify a lack of existing work that
directly generates probabilistic forecasts from arbitrary point
forecastswithout the training process being dependent on this
point forecast or being limited to only generating prediction
intervals. In the present article, we aim to fill this research
gap by presenting an easy-to-use approach described in the
following section.

3 Generating probabilistic forecasts with a
cINN

To generate probabilistic forecasts from arbitrary point fore-
casts, we directly apply the uncertainty in the underlying time
series. This uncertainty usually reflects the inherent random-
ness or unpredictability of the measured underlying system.
However, this underlying system typically generates obser-
vations of an unknown distribution. Although this data is
not random, the distribution is still unknown, and it is chal-
lenging to include the corresponding uncertainty directly in
a forecast.

To solve this challenge, we aim to find a bijective map-
ping from the unknown distribution to a known and tractable
distribution. Since many time series are affected by exoge-
nous features such as weather, this bijective mapping should
also be able to consider such exogenous features, as shown
in Fig. 1. If such a mapping g exists, we will be able to map
a point forecast from the unknown distribution to its repre-
sentation in a known and tractable distribution. In the known
and tractable distribution, we could then analyse the neigh-
bourhood of this representation and gain information about
its uncertainty. Finally, we could map this uncertainty infor-
mation back to the unknown distribution using the inverse
mapping g−1 to generate probabilistic forecasts.

Table 1 An overview of previous research related to the present article. None of the identified articles proposes methods capable of generating
probabilistic forecasts from existing point forecasts without being limited to only generating prediction intervals or involving a training process
that is dependent on the training of the point forecast

Article Probabilistic Forecast Not Limited to Training Independent
from Point Forecasts Prediction Interval of Point Forecast

Chernozhukov et al [8] ✓ ✗ (✓)

Hyndman and Athanasopoulos [29] ✓ ✗ (✓)

Stankeviciute et al [53] ✓ ✗ (✓)

Williams and Goodman [56] ✓ ✗ (✓)

Zaffran et al [59] ✓ ✗ (✓)

Camporeale et al [5] ✓ ✓ ✗

Kaplan and Huang [32] ✓ ✓ ✗

Wang et al [54] ✓ ✓ ✗

Camporeale et al [4] (✓) ✓ ✗

Cramer et al [10] (✓) ✓ ✗

Arpogaus et al [2] ✗ ✓ ✓

Cramer et al [9] ✗ ✓ ✓

Dumas et al [15] ✗ ✓ ✓

Fanfarillo et al [18] ✗ ✓ ✓

Ge et al [21] ✗ ✓ ✓

Jamgochian et al [31] ✗ ✓ ✓

Rasul et al [46] ✗ ✓ ✓

Wen and Torkkola [55] ✗ ✓ ✓

Zhang and Zhang [60] ✗ ✓ ✓
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Fig. 1 Overview of the proposed approach. In the first step, an arbitrary point forecaster (a) and cINN (b) are trained independently, both considering
exogenous features, past observations, or past historical data. To generate a probabilistic forecast, as shown in (c), the arbitrary point forecaster first
generates a point forecast based on historical data and exogenous features. The resulting point forecast is combined with the exogenous features
as inputs to a bijective mapping realised by the trained cINN. This mapping generates a representation of the forecast in a known and tractable
distribution. We analyse the neighbourhood of this known and tractable representation to gain information about its uncertainty. Finally, we map
this representation back to the unknown distribution to generate a probabilistic forecast

In this section, we demonstrate that this mapping g does
exist under certain conditions, and we show how this map-
ping can be used to generate probabilistic forecasts. We then
explain how to apply this approachwith a cINN, startingwith
the training of this cINN, before describing how we generate
probabilistic forecasts using arbitrary point forecasts.

3.1 Including uncertainty from the underlying
distribution of the data

This section demonstrates that a bijective mapping from an
unknown distribution in a known and tractable distribution
exists. Given the existence of this mapping, we highlight the
equivalence of the uncertainty in the image and the inverse
image of the considered mapping. Finally, we describe how
this mapping is realised with a cINN

Bijective mapping
To introduce the bijective mapping, let us consider a times
series y = {yt }t∈T consisting of T observations as reali-
sations of a random variable Y ∼ fY (y) with a probability

density function (PDF) fY (y) in the realisation spaceY. Fur-
thermore, we consider a bijective mapping g : Y → Z from
the realisation space Y to the space of the tractable distri-
bution Z where y �→ g(y, ◦) = z, and g is a continuously
differentiable function.1 To calculate the PDF fZ (z) in terms
of fY (y), we can apply the change of variables formula [12,
42], i.e.

fZ (z) = fY (g−1(z, ◦))

∣
∣
∣
∣
det

(
∂g−1

∂z

)∣
∣
∣
∣
, (1)

where ∂g−1

∂z is the Jacobian matrix. Since g is bijective, this
equation describes a bijective mapping from the unknown
distribution fY (y) to the known and tractable distribution
fZ (z). Therefore, the change of variable formula provides
us with the required mapping.

1 The function g can include further parameters apart from y, such as
exogenous information. These further parameters are indicated via ◦.
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Equivalence of uncertainty
After introducing the bijective mapping, we need to show
the equivalence of the uncertainty in the unknown distri-
bution and known tractable distribution when applying (1).
More specifically, we show the equivalence of quantiles in
both the realisation space and the tractable distribution space
since quantiles serve as a non-parametric representation of
the uncertainty.

To show this equivalence, we first consider the cumu-
lative distribution function (CDF) of the random variable
Z = g(Y , ◦) ∼ fZ (z), defined as

FZ (z) =
∫ z

−∞
fZ (u)du. (2)

If we use the expression for fZ (z) from the change of vari-
ables formula (1) in the definition of the CDF (2), we obtain

FZ (z) =
∫ z

−∞
fY (g−1(u, ◦))

∣
∣
∣
∣
det

(
∂g−1

∂u

)∣
∣
∣
∣
du, (3)

describing the CDF of FZ (z) in terms of the CDF FY (y).
Since g is, per definition, a continuously differentiable func-
tion, we can apply integration by substitution for multiple
variables to rewrite (3) as

FZ (z) =
∫ g−1(z)

−∞
fY (v)dv = FY (g−1(z, ◦)),

which is simply the CDF of Y evaluated at the inverse of g.
Further, the quantiles zα of Z are defined by the inverse of
the CDF, i.e.

zα = F−1
Z (α) = inf z | FZ (z) ≥ α

= inf z | FY (g−1(z, ◦)) ≥ α

where inf refers to the infimum, the smallest value of z that
fulfils the condition, andα ∈ [0, 1] is the considered quantile.
Consequently, if we know that theα quantile of FZ is zα , then
we can also calculate the α quantile of FY as g−1(zα, ◦) =
yα . From this follows an equivalence between the quantiles
of Z and the quantiles of Y , which implies an equivalence in
the uncertainty.

Given the mathematical equivalence of the uncertainty
in the two considered distributions, we can include uncer-
tainty in a tractable and known distribution fZ (z) and use
the inverse mapping g−1 : Z → Y to map this uncertainty
to the original distribution fY (y).

Realising the bijective mapping
To realise this bijective mapping g, we use a cINN [1, 27].
A cINN is a neural network that consists of multiple spe-
cially designed conditional affine coupling blocks [1]. As
shown by [1], these coupling blocks ensure that the mapping

g : Y → Z learnt by the cINN is bijective. Furthermore,
with the conditional information, the cINN is able to consider
additional information, such as exogenous features, extracted
statistical features from the time series, or calendar informa-
tion, when learning the mapping [1, 27]. As a result, the
cINN is designed to learn an approximation of fZ (z) and
a mapping g, which is per definition bijective, thus ensur-
ing we can apply (1) as described previously. Since cINNs
are specifically designed to efficiently calculate the inverse
of a function [1], a well-trained cINN should be capable of
learning the bijectivemapping g, even if this mapping is non-
trivial.

3.2 Applying our approach

In the following, we describe how we realise the inclusion
of uncertainty with a cINN.2 We first detail how we train
a cINN that learns the distribution of the underlying data.
Second,wedescribe howweuse this trained cINN togenerate
probabilistic forecasts.

Training
To apply our approach, firstly an arbitrary base point fore-
caster F(◦, ψ) with trainable parameters ψ must be trained,
as shown in Fig. 1a. However, since the cINN is trained on
historical time series realisations and not with the point fore-
casts, the cINN is trained completely independently of the
point forecaster and must not be retrained if the point fore-
cast is altered. Furthermore, the cINN in our approach can
be applied to any arbitrary point forecast, including a point
forecast that has been previously trained and implemented.
Since these arbitrary point forecasters may have very dif-
ferent training procedures, we refrain from a more detailed
description of the training of the base point forecaster in the
present article. As a result of this training, however, the base
point forecasterF(◦, ψ̂OPT) has optimised parameters ψ̂OPT.

We use a cINN to realise the continuous differentiable
function g described previously. In addition to the origi-
nal realisation y, we also consider conditional information
c as an input to the function g. This conditional information
always includes calendar features such as time of the day,
and day of the week, but depending on the time series may
also include additional exogenous features that are available
for the forecast period. Thereby, the calendar information
extracted from the time series is necessary conditional infor-
mation to account for the temporal dependencies of the time
series, whilst the exogenous features are optional. Further-
more, statistical features extracted from the time series can
also be included as conditional information. We train the
cINN using past exogenous features and past observations,

2 The implementation is available via https://github.com/KIT-IAI/
ProbabilisticForecastsFromArbitraryPointForecasts.
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Algorithm 1 Forecasting with our approach.

Input: F(◦, ψ̂OPT), g(◦, θ̂OPT), σ 	 Trained base point forecaster,
cINN, and selected σ

ŷ ← F(yhist, c, ψ̂OPT)

ẑ = g(ŷ, c, θ̂OPT)

Ŷσ ← Initialise empty set to store samples
for i ∈ {1, . . . , I } do

ri ∼ N (0, σ ) ← Initialise random noise for sampling
z̃i ← ẑ + ri
ỹi ← g−1(z̃i , c, θ̂OPT)

Ŷσ ← Ŷσ ∪ ỹi
end for
ŷprob ← CalculateQuantiles(Ŷσ )

return ŷprob

as shown in Fig. 1b. The aim of the training is to ensure
that the cINN learns the function g, so that resulting realisa-
tions z = g(y, c) follow a known and tractable latent space
distribution fZ (z). In our approach, we define this known
and tractable latent space distribution as a multi-dimensional
Gaussian distribution, where the number of dimensions is
equal to the forecast horizon. Therefore, we apply the change
of variables formula to derive the loss function

LcINN = E

[

‖ g(y; c, θ) ‖22
2

− log | J |
]

+ λ ‖ θ ‖22,

where J = det(∂g/∂y) is the determinant of the Jacobian,
θ is the set of all trainable parameters, and λ ‖ θ ‖22 is an
L2 regularisation [1, 27].3 Training a cINN with this loss
function results in a network with the optimised parameters
θ̂OPT and ensures that the realised latent space distribution
fZ (z) achieves the best possible approximation of the desired
multi-dimensional Gaussian distribution [1].

Forecasting
The process of generating probabilistic forecasts with our
approach is shown in Algorithm 1. The process begins with
the output of the trained base point forecaster

ŷ = F(yhist, c, ψ̂OPT).

We then combine this output with the associated conditional
information c and pass it through the trained cINN to obtain
a latent space representation of the output, i.e.

ẑ = g(ŷ, c, θ̂OPT).

Given this latent space representation of the point forecast,
we explore the uncertainty in the neighbourhood of the fore-
cast with

z̃i = ẑ + ri , i ∈ {1, . . . , I }, ri ∼ N (0, σ ). (4)

3 Full details on the derivation of this loss function are presented in [1].

Using (4),we select a randomnoise ri froma standard normal
distribution with mean 0 and variance σ and add this noise to
the realisation ẑ.We define the variance used for the sampling
process σ as the sampling hyperparameter, which must be
selected in advance before generating a probabilistic forecast.
Due to the equivalence of uncertainty in both spaces shown
in Section 3.1, we can process this perturbed sample via a
backward pass of the cINN, i.e.

ỹi = g−1(z̃i , c, θ̂OPT),

to obtain a perturbed sample in the realisation space ỹi . Based
on the selected σ , we repeat the sampling process I times
to obtain multiple realisations of z̃i and, in turn, multiple
realisations ỹi that are all similar but not identical to the
original forecast. If we combine all these samples in a set
Ŷσ , i.e.

Ŷσ =
⋃

i∈I
ỹi ,

then this set of realisations provides a representation of the
uncertainty in the neighbourhood of the forecast, as schemat-
ically shown in Fig. 2 on the left. Given this set, there are
multiple possibilities for generating a probabilistic forecast.
We can use all the samples as an ensemble forecast, perform a
density estimation over the samples to generate a distribution
forecast, or calculate the quantiles of these samples. In the
present paper, we calculate the quantiles of these samples in
the original realisation space as schematically shown in Fig. 2
on the right. The resulting quantiles represent a probabilis-
tic forecast ŷprob, derived from the original arbitrary point
forecast.

4 Experimental setup

This section describes the experimental setup we use to eval-
uate our approach. We first introduce the data used, before
explaining the evaluation metrics. Furthermore, we describe
the selected base forecasters used to generate the point fore-
casts, introduce the benchmarks we compare our approach
to, and detail the implementation of the used cINN.

4.1 Data

We evaluate our proposed approach on four different openly
available data sets. In this section, we briefly introduce each
of these data sets before we describe their preprocessing.

The first considered data set isElectricity, namely the UCI
Electricity Load Dataset4 [13]. From this data set, we select

4 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams2011
2014
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Fig. 2 A schematic representation of the probabilistic forecast generated with our approach. Initially, a set of samples represents the uncertainty.
In the present paper, we then calculate the quantiles of these samples to generate the probabilistic forecast ŷprob. However, it would also be possible
to consider all samples as an ensemble forecast or to perform density information to obtain a distribution forecast

the time seriesMT_158 and resample it to an hourly resolu-
tion.

The second data set, Price, contains zonal electricity price
data recorded at a single location at an hourly resolution and
taken from the electricity price track of the GEFCom2014
[28]. To evaluate our approachon aperiod longer than a single
day, we combine data from all tasks in the GEFCom2014
price track.

Third, we consider a Solar data set which contains hourly
real-world solar power generation from a solar plant in Aus-
tralia. This data set is taken from the solar power forecasting
track of the GEFCom2014 [28] and, again, we combine data
from all tasks to enable evaluation on a period longer than a
day.

The fourth considered data set, Bike, contains hourly
records of rented bikes from the UCI Bikesharing Dataset
[13, 17].5

We normalise each of the above data sets before creating
separate test, validation, and training subsets for the train-
ing and testing of our approach. An overview of these splits
and the exogenous variables considered for each data set is
presented in Table 15 in Appendix A.

4.2 Evaluationmetrics

When evaluating probabilistic forecasts, it is important to
consider both sharpness and calibration [23]. According to
[23], probabilistic forecasts should aim to maximise sharp-
ness subject to calibration. This aim implies, for example,
that a prediction interval should be as narrow as possible
while still maintaining coverage close to the nominal cov-
erage rate. Probabilistic forecasts that are too sharp provide
misleading information about the uncertainty present, whilst
probabilistic forecasts that only focus on calibration may
not be sharp enough to deliver any useful information [23].
With these considerations in mind, we aim to evaluate our
approach comprehensively, considering both sharpness, cal-
ibration, and the trade-off between these two, and therefore

5 https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

consider multiple evaluation metrics. In the following, we
briefly present these metrics in the order they appear in the
evaluation.

Continuous ranked probability score
To evaluate the quality of the probabilistic forecasts, we con-
sider the Continuous Ranked Probability Score (CRPS) [41].
The CRPS is a proper scoring rule that measures both the cal-
ibration and sharpness of a predictive cumulative distribution
function F [22]. The CRPS is defined as

CRPS(F, y) =
∫

R

(F(z) − 1{y ≤ z})2 dz,

where 1{y ≤ z} is the indicator function which is one if
y ≤ z and otherwise zero. Since our approach and the bench-
marks provide samples drawn from a distribution, we use
the sample-based variant of the CRPS implemented in the
properscoring library.6

Quantile deviation
To analyse the calibration of our forecasts, we consider the
deviation of the forecast quantiles from the theoretical quan-
tiles. We define the quantile deviation for the α-quantile as

QDα =
(

1

n

n
∑

i=1

1{yi ≤ ŷi,α}
)

− α,

where ŷi,α is the α-quantile forecast, yi the true value, and
1 the indicator function. Ideally, QDα should be zero for all
values of α. However, a positive value indicates the quantile
forecast overestimates the theoretical quantile, whilst a nega-
tive value indicates that the quantile forecast underestimates
the theoretical quantile. To account for the total quantile devi-

6 https://github.com/properscoring/properscoring
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ation across all considered quantiles α ∈ Q, we calculate the
Mean Absolute Quantile Deviation (MAQD) defined as

MAQD = 1

| Q |
∑

α∈Q

∣
∣
∣
∣
∣

(

1

n

n
∑

i=1

1{yi ≤ ŷi,α}
)

− α

∣
∣
∣
∣
∣
.

Normalised prediction interval width
To measure the sharpness of the probabilistic forecasts, we
consider the normalised Mean β–PI Width (nMPI(β)). The
nMPI(β) is defined as

nMPI(β) = 1

ȳ

(

1

n

n
∑

i=1

|ŷi, 1+β
2

− ŷi, 1−β
2

|
)

,

where ŷi, 1+β
2

is the predicted upper quantile, ŷi, 1−β
2

the

predicted lower quantile for the forecast value ŷi , and ȳ the
mean of the target time series. We consider the nMPI(β) to
enable a comparison between different data sets.

Winkler score
To jointly assess calibration and sharpness, we assess the
quality of the prediction intervals of our probabilistic fore-
casts with the Winkler score [57]. As defined by [29], if the
100 · (1 − α)% prediction interval for observation i is given
as [	α,i , uα,i ], then the Winkler score for the α-quantile is
defined as

Wα,i =

⎧

⎪⎨

⎪⎩

(uα,i − 	α,i ) + 2
α
(	α,i − yi ) yi < 	α,i

(uα,i − 	α,i ) 	α,i ≤ yi ≤ uα,i

(uα,i − 	α,i ) + 2
α
(yi − uα,i ) yt > uα,i ,

where yi is the true value. In this manner, a Winkler score
without any violations is simply the width of the predic-
tion interval, whilst true values falling outside the prediction
interval are penalised. Therefore, low Winkler scores sug-
gest narrow but reasonably calibrated prediction intervals. In
our evaluation, we consider the Mean Winkler (MW) score
across all considered quantiles α ∈ Q, defined as

MW = 1

n | Q |
∑

α∈Q

n
∑

i=1

Wα,i .

Pinball loss improvement
To evaluate our approach in the recreated GEFCom2014
competition, we consider the scoring mechanism used in this
competition. Thismechanism relies on the Pinball Loss (PL),
a scoring rule that minimises the loss when issuing a point
forecast for the α-quantile [24]. For a set of considered quan-

tiles Q = [0.01, . . . , 0.99], the PL is calculated with

PL = 1

n | Q |
∑

α∈Q

n
∑

i=1

{

(yi − ŷi,α) · α yi ≥ ŷi,α
(ŷi,α − yi ) · (1 − α) ŷi,α > yi ,

where yi is the true value and ŷi,α is the quantile forecast for
the quantile α. For the GEFCom2014, the relative improve-
ment of the PL compared to a given baseline forecast is
considered, i.e.

PL% = PLForecast

PLBaseline
· 100,

where PLForecast is the PL for the considered forecast and
PLBaseline the PL for the baseline provided in the GEF-
Com2014.

4.3 Selected base forecasters

Our proposed approach can be applied to forecasts from arbi-
trary point forecasters. Thus, we evaluate our approach on
four simple and two state-of-the-art point forecasting meth-
ods. As simple base point forecasters we consider a Linear
Regression (LR), a Random Forest (RF), a Feed-Forward
Neural Network (NN), and the eXtreme Gradient Boosting
(XGBoost) Regressor. We select these methods due to their
robust performance in multiple studies, e.g. [16, 19, 47, 49,
50], and [51]. The two state-of-the-art base point forecast-
ers are Neural Hierarchical Interpolation for Time Series
Forecasting (N-HiTS) [6] and Temporal Fusion Transformer
(TFT) [38]. We provide implementation details for each of
the selected base point forecasters in Table 16 in Appendix
A.

When applying the base forecasters with the cINN to gen-
erate probabilistic forecasts, wemanually select the sampling
parameter σ that minimises the CRPS on the validation data
set. An overview of the selected sampling parameters is pre-
sented in Table 17 in Appendix A. Furthermore, all selected
base point forecasters are implemented in a pipeline with
pyWATTS7 [26].

4.4 Probabilistic benchmarks

To assess the quality of the probabilistic forecasts generated
with our approach, we compare them to multiple probabilis-
tic benchmarks. These benchmarks can be classified into the
following two groups: probabilistic forecasts generated from
existing point forecasts and directly generated probabilistic
forecasts. We focus on a selection of benchmarks that have
achieved state-of-the-art performance whilst being relatively

7 https://github.com/KIT-IAI/pyWATTS

123

https://github.com/KIT-IAI/pyWATTS


Generating probabilistic forecasts from arbitrary point forecasts

computationally inexpensive and therefore exclude compu-
tationally expensive benchmarks that may generalise poorly,
such as Bayesian Neural Networks [30]. In the following, we
introduce the benchmarks of both groups.

4.4.1 Probabilistic forecasts based on existing point
forecasts

The first group of probabilistic benchmarks considers meth-
ods that generate probabilistic forecasts from existing point
forecasts. All of these benchmarks operate on a similar prin-
ciple. They consider the empirical errors

εi =| ŷi − yi |,

between the point forecasts ŷi and true values yi on a valida-
tion data set. These empirical errors are then used to generate
prediction intervals. The benchmarks differ in how these
empirical errors are used to generate prediction intervals.8

The first considered benchmark is the Gaussian Predic-
tion Interval (Gaussian PI). In this case, the empirical errors
are assumed to be distributed according to a Gaussian dis-
tribution and the prediction intervals are calculated based on
the standard deviation of these errors [29].

Second, we consider the Empirical Prediction Interval
(Empirical PI). This benchmark does not assume any para-
metric distribution but instead uses the empirical distribution
of these empirical errors to calculate the prediction intervals
[56].

Finally, we consider a Conformal Prediction Interval
(Conformal PI). This benchmark, introduced for multi-
horizon time series forecasts by [53], calculates a critical
nonconformity score for each of the empirical errors and
applies Bonferroni and finite sample correction to ensure
temporal dependence between these critical scores across
the forecast horizon. These critical nonconformity scores are
combined with the point forecast to generate the prediction
intervals [53].

4.4.2 Direct Probabilistic Forecasts

The second group of probabilistic benchmarks considers
methods that directly generate probabilistic forecasts. The
first of these benchmarks is DeepAR [48], which is an
autoregressive recurrent neural network-based approach for
probabilistic forecasting. We implement DeepAR using the
PyTorch Forecasting library9.

8 These benchmarks are selected due to their simplicity and proven
performance. Due to computational cost, we explicitly excludemachine
learning methods that require retraining for each point forecast, such as
[5] and [54].
9 https://pytorch-forecasting.readthedocs.io/en/stable/api/
pytorch_forecasting.models.deepar.DeepAR.html

The second benchmark method is a Quantile Regression
Neural Network (QRNN). It trains a NN to directly fore-
cast selected or multiple quantiles instead of the mean or
median [35]. To realise the QRNN, we use a separate simple
feed-forward NN to forecast each of the selected quantiles,
training each NN with the appropriate pinball loss function.
The QRNN is implemented using TensorFlow10 with the
Keras11 library and the pinball loss function.

The third benchmark method uses the Nearest Neigh-
bour Quantile Filter (NNQF) proposed by [25]. Similar to
the QRNN, this method also forecasts quantiles. However,
instead of using a custom quantile loss function to directly
learn the quantiles, the NNQF finds similar values for each
time step based on similarity in the target variable to deter-
mine quantiles in the data. A forecasting method is then
trained to predict these calculated quantiles [25]. To realise
the NNQF, we use a multi-layer feed-forward NN with one
output per quantile, which is implemented using sklearn [43]
and pyWATTS [26].

4.5 Used cINN

In the evaluation, we use the same cINN architecture (see
Table 18 in Appendix A) for each of the considered data
sets. It is based on GLOW coupling layers that consider con-
ditional input [34]. Similar to [1, 27], the conditional input
is provided by a fully connected NN, which uses the same
exogenous information available to the base forecaster as
conditional information (see Table 15). We detail the imple-
mentation information for the used cINN in Tables 18, 19
and 20 in Appendix A. When training the used cINN, we
apply the Adam optimiser with a maximum of 100 Epochs.
Furthermore, when sampling in the latent space to generate
probabilistic forecasts, we consider a sample size of 100. We
implement the cINN in a pipeline with pyWATTS [26].

5 Evaluation

We evaluate our proposed approach in three steps. First,
we compare the probabilistic forecasts generated from our
approach when using different base point forecasters. Sec-
ond, we compare our approach with existing probabilistic
benchmarks. For each of these two steps, we first consider an
overviewof the normalised evaluationmetrics for eachmodel
across all metrics and all data sets to establish an overview
of the results. We then consider the probabilistic forecasts’
quality, calibration, sharpness, and prediction intervals sepa-
rately. Finally, in the third step, we recreate the price track of

10 https://www.tensorflow.org/
11 https://keras.io/
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GEFCom2014 and compare our approach to the competition
winners.

5.1 Comparison of different base point forecasters

In this section, we compare the performance of the different
base point forecasts combinedwith the cINN inour approach.
An overview of the normalised evaluation metrics for each
base point forecaster when combined with the cINN for all
considered evaluationmetrics and data sets is shown in Fig. 3.

For comparison purposes, the performance in each of the
considered metrics is normalised so that the best-performing
base point forecaster achieves a score of 0.1 and the worst-
performing base point forecaster a score of 1. We observe
that the best-performing base forecaster depends on the con-
sidered metric and the data set. However, the TFT performs
consistently well according to all metrics across all data sets
by ranking within the top three in all cases apart from the
CRPS and nMPI(β) for both β on the Electricity data set.
Furthermore, certain base point forecasters exhibit highly

Fig. 3 An overview of the normalised evaluationmetrics for each base point forecaster when combinedwith the cINN for each considered evaluation
metric across all data sets. The value of each metric is normalised between 0.1 and 1 for illustrative purposes to facilitate the comparison, with
lower values indicating better performance. The base point forecasters are ranked from best to worst for each metric
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variable performance. For example, the LR achieves the best
performance with regards to MAQD on the Price data set
but consistently performs as one of the worst models on all
other data sets. In the following, we report the results in more
detail by comparing the forecast quality, the calibration, the
sharpness, and the prediction intervals.

Quality
For each of the base point forecasters combined with the
cINN, we report the average CRPS across five runs in CRPS
Table 2.

We observe that the best-performing point forecaster com-
binedwith the cINNagain depends on the data set considered,
although the cINN base point forecaster combined with the
cINN results in the lowest CRPS on two of the four data sets.
Furthermore, although all base point forecasters combined
with the cINN perform similarly on the Price data set, there
are noticeable differences in the results of the other data sets.
For example, the N-HiTS and TFT point forecasters com-
bined with the cINN result in a noticeably lower CRPS on
the Bike data set than the other point forecasters when com-
bined with the cINN.

Calibration
To analyse the calibration of the probabilistic forecasts gener-
ated by combining different point forecasters with the cINN,
we report the cINN in Table 3.

We observe that the base forecaster that results in the
lowest MAQD when combined with the cINN depends on
the data set considered. However, XGBoost, when combined
with the cINN, achieves the lowest CRPS on two of the four
data sets. Furthermore, theMAQDvaries noticeably between
the data sets. On the Electricity data set, almost all base point
forecasters achieve a similarMAQDwhen combinedwith the
cINN. However, on the Bike data set, only the TFT combined
with the cINN result in a MAQD under 0.1.

Table 2 The average CRPS calculated on the test data set for each of
the considered base point forecasters combined with the cINN over five
runs. The best values for each data set are highlighted in bold

Forecasting Method Data Set
Electricity Price Solar Bike

LR-cINN 0.3180 0.1641 0.1686 0.4481

RF-cINN 0.2339 0.1689 0.1056 0.4992

NN-cINN 0.2542 0.1721 0.1399 0.4493

XGBoost-cINN 0.2337 0.1565 0.1072 0.4561

N-HiTS-cINN 0.2844 0.1552 0.1705 0.3454

TFT-cINN 0.2588 0.1404 0.1233 0.2641

Table 3 The averageMAQDbetween the theoretical and forecast quan-
tiles calculated on the test data set for each of the considered base point
forecasters combined with the cINN over five runs. The best values for
each data set are highlighted in bold

Forecasting Method Data Set
Electricity Price Solar Bike

LR-cINN 0.1360 0.0721 0.2079 0.1324

RF-cINN 0.1009 0.1246 0.0666 0.2023

NN-cINN 0.0886 0.1136 0.1780 0.1605

XGBoost-cINN 0.0811 0.0948 0.0431 0.1369

N-HiTS-cINN 0.0929 0.1010 0.1953 0.1236

TFT-cINN 0.0817 0.0959 0.1420 0.0945

Sharpness
We evaluate the sharpness of the probabilistic forecasts gen-
erated when combining different base learners with the cINN
by reporting the average nMPI(β) over five runs in Table 4.

Depending on the considered data set, we observe that dif-
ferent base point forecasters, when combined with the cINN,
result in the best nMPI(β). Only the RF, when combinedwith
the cINN, achieves the best nMPI(β) on more than one data
set, whilst the TFT as base point forecaster performs best on
the Price data set, and N-HiTS as a base forecaster on the
Bike data set. We observe varying nMPI(β)s across the data
sets, with the largest nMPI(β) of 1.2953 for β = 98% on the
Electricity data set and the narrowest nMPI(β) of 0.1329 for
β = 70% on the Price data set.

Prediction intervals
To evaluate calibration and sharpness at the same time, we
report the averageMW score across five runs as a measure of
the quality of the prediction intervals generated by different
point forecasters in Table 5.

Again, the performance varies depending on the con-
sidered data set. Probabilistic forecasts generated when
combining the TFT with the cINN result in the lowest MW
score for the Price andBike data sets, andRF as the base point
forecaster results in the lowest MW score for the Electricity
and Solar data sets. Regarding the MW scores, the per-
formance varies noticeably depending on which base point
forecaster is used on all data sets, although this variance is
smaller on the Price data set.

5.2 Comparison to benchmarks

In the second step of our evaluation,we compare probabilistic
benchmarks with the probabilistic forecasts generated when
combining a cINN with the XGBoost, N-HiTS, and TFT
base point forecasters. First, we compare the probabilistic
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Table 4 The average nMPI(β)
calculated on the test data set for
each of the considered base
point forecasters combined with
the cINN for β = 98% and
β = 70% over five runs. The
best values for each data set and
β are highlighted in bold

Forecasting Method Electricity Price Solar Bike
98% 70% 98% 70% 98% 70% 98% 70%

LR-cINN 1.2953 0.5653 0.4618 0.2043 0.8989 0.4146 1.1744 0.5085

RF-cINN 0.7795 0.3640 0.4619 0.2046 0.6268 0.2964 1.1179 0.4815

NN-cINN 1.0163 0.4571 0.5785 0.2530 0.8319 0.3821 1.1661 0.5014

XGBoost-cINN 0.8248 0.3803 0.4518 0.2022 0.7510 0.3362 1.1335 0.4915

N-HiTS-cINN 1.0811 0.4837 0.3741 0.1690 0.9315 0.4061 0.6906 0.3160

TFT-cINN 1.1376 0.5145 0.2893 0.1329 0.7408 0.3462 0.7051 0.3252

forecasts from our approach to benchmarks that also use
these same point forecasters to generate probabilistic fore-
casts. Second, we compare our approach to methods that
directly generate probabilistic forecasts.

5.2.1 Probabilistic forecasts based on existing point
forecasts

We report an overview of the normalised evaluation met-
rics for the TFT as the base point forecaster when combined
with the cINN and the other benchmarks based on exist-
ing point forecasts for all considered evaluation metrics and
data sets in Fig. 4. For comparison purposes, the perfor-
mance in each of the considered metrics is normalised so
that the best-performing model achieves a score of 0.1 and
theworst-performingmodel a score of 1.Wefirst observe that
for CRPS, MW, and nMPI(β) with β = 98%, our approach
using the cINNresults in the best performance on all data sets.
Additionally, our approach also achieves the lowest nMPI(β)
for β = 70% on the Price and Bike data sets and only per-
forms slightly worse than Conformal PI and Empirical PI on
the remaining data sets. The benchmarks only perform bet-
ter than our approach in terms of MAQD, with our approach
never achieving the lowest MAQD. The results for the two
remaining base point forecasters, namely XGBoost and N-
HiTS, are similar and can be found in Appendix C. In the
remainder of this section, we analyse quality, calibration,

Table 5 The average MW score calculated on the test data set for each
of the considered base point forecasters combined with the cINN over
five runs. The best values for each data set are highlighted in bold

Forecasting Method Data Set
Electricity Price Solar Bike

LR-cINN 30.0248 14.6476 10.7391 36.8567

RF-cINN 17.2494 13.9050 6.7742 35.9929

NN-cINN 21.5586 16.4061 9.3110 35.4235

XGBoost-cINN 19.4470 13.6459 7.3523 35.4601

N-HiTS-cINN 25.7098 12.5044 11.1579 27.2643

TFT-cINN 22.1819 11.1381 7.9020 22.0296

sharpness, and the prediction intervals for each considered
data set in more detail.

Quality
Weevaluate the quality of the different probabilistic forecasts
by reporting the average CRPS across five runs in Table 6.

First, our approach using a cINNgenerally performs better
or similarly to the benchmarks. The cINN results in proba-
bilistic forecasts with the lowest CRPS for each considered
point forecaster on the Price and Solar data sets and for two
of the three point forecasters on the Electricity and Bike data
sets. In the remaining two cases, the Conformal PI results
in the lowest CRPS, however, the CRPS resulting from our
approach is similar in all cases. Second, we observe that the
Gaussian PI consistently results in the highest CRPS. Finally,
we note that, across all data sets and for all considered point
forecasters, the Empirical PI generates probabilistic forecasts
resulting in almost identical CRPSs to those from the Con-
formal PI.

Calibration
To evaluate the calibration of the considered probabilistic
forecasts, we report the average MAQD for each data set
calculated across five runs in Table 7.

We first observe that the results depend strongly on the
base point forecaster and the data set considered. Whilst the
Conformal PI results in the lowest MAQD for all base point
forecasters on the Electricity data set, the results for the other
data sets are not as clear. On the Price and Solar data sets, the
Conformal PI and Empirical PI achieve the lowest MAQD
depending on the considered point forecaster, whilst each
of the three considered benchmarks performs best on the
Bike data set for one of the applied base point forecaster
applied. Our approach using the cINN never achieves the
lowest MAQD.

Sharpness
To assess the sharpness of probabilistic forecasts generated
from point forecasts, we report the average nMPI(β) over
five runs in Table 8.

Our approach using a cINN results in the lowest nMPI(β)
for all base point forecasters, considered values of β and data
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Fig. 4 An overview of the normalised evaluation metrics for the TFT base forecaster when combined with the cINN or used with the benchmarks
based on existing point forecasts for each considered evaluation metric across all data sets. The value of each metric is normalised between 0.1 and
1 for illustrative purposes to facilitate the comparison, with lower values indicating better performance. The considered models are ranked from
best to worst for each metric

sets almost all the time, with the exceptions being for β =
70% on the Electricity set with the TFT and on the Solar data
set with XGBoost and the TFT. Moreover, the nMPI(β) from
the Empirical PI and Conformal PI are generally the largest
for β = 98%, and noticeably so. For example, the nMPI(β)
for β = 98% for Conformal PI on all data sets are often more
than double the nMPI(β) generated with the cINN. Further,

the nMPI(β) for β = 70% are generally the largest with the
Gaussian PI. Finally, the nMPI(β) vary noticeably depending
on the data set and selected point forecaster.

Prediction intervals
To simultaneously consider calibration and sharpness, we
analyse the prediction intervals of the considered probabilis-
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Table 6 A comparison of the
average CRPS when generating
probabilistic forecasts based on
existing point forecasts. The
average CRPS is calculated
across five runs on the test data
set, and the best values for each
base point forecaster in each
data set are highlighted in bold

Data Point Forecaster cINN Gaussian PI Empirical PI Conformal PI

Electricity XGBoost 0.2337 0.2993 0.2341 0.2339

N-HiTS 0.2844 0.3630 0.2840 0.2835

TFT 0.2588 0.3543 0.2658 0.2657

Price XGBoost 0.1565 0.3496 0.1789 0.1786

N-HiTS 0.1552 0.2785 0.1713 0.1712

TFT 0.1404 0.2959 0.1607 0.1608

Solar XGBoost 0.1072 0.2083 0.1249 0.1250

N-HiTS 0.1705 0.2713 0.1781 0.1777

TFT 0.1233 0.2333 0.1398 0.1398

Bike XGBoost 0.4561 0.6075 0.4857 0.4856

N-HiTS 0.3454 0.4232 0.3368 0.3363

TFT 0.2641 0.3597 0.2680 0.2679

tic forecasts by comparing the average MW scores for each
data set calculated over five runs in Table 9.

Wefirst note that the probabilistic forecasts generatedwith
the cINN result in the lowest MW scores on all data sets and
for all considered point forecaster. Furthermore, the Win-
kler scores from our approach are noticeably smaller than
the benchmarks. Although all the prediction interval-based
benchmarks generate probabilistic forecasts with similar
Winkler scores, theGaussian PI results in slightly lowerWin-
kler scores on all data sets, with the difference being most
noticeable on the Price data set. Finally, we observe that sim-
ilar to the CRPS results, the MW scores for the Empirical
PI and Conformal PI are almost identical for every data set
and each considered point forecaster, with the Conformal PI
sometimes performing slightly better.

5.2.2 Direct probabilistic forecasts

An overview of the normalised evaluation metrics for our
approach using a cINN combined with three base point fore-
casters (XGBoost, N-HiTS, TFT) and the three considered
benchmarks that directly generate probabilistic forecasts for
all considered evaluation metrics and data sets is shown
in Fig. 5. For comparison purposes, the performance in
each of the considered metrics is normalised so that the
best-performingmodel achieves a score of 0.1 and the worst-
performing model a score of 1. We observe that combining
an appropriate base point forecaster with the cINN results
in the best-performing model for all data sets and across all
metrics in all but two cases. The exceptions are the MAQD
on the Price data set, where the NNQF performs best, and

Table 7 Comparison of the
average MAQD when
generating probabilistic
forecasts based on existing point
forecasts. The average MAQD is
calculated using five runs on the
test data set, and the best values
for each base point forecaster in
each data set are highlighted in
bold

Data Point Forecaster cINN Gaussian PI Empirical PI Conformal PI

Electricity XGBoost 0.0811 0.1029 0.0221 0.0220

N-HiTS 0.0929 0.1034 0.0117 0.0112

TFT 0.0817 0.1088 0.0241 0.0239

Price XGBoost 0.0948 0.1565 0.0390 0.0387

N-HiTS 0.1010 0.1467 0.0251 0.0245

TFT 0.0959 0.1534 0.0349 0.0351

Solar XGBoost 0.0431 0.1252 0.0124 0.0125

N-HiTS 0.1953 0.1239 0.0186 0.0194

TFT 0.1420 0.1290 0.0215 0.0215

Bike XGBoost 0.1369 0.1169 0.1273 0.1271

N-HiTS 0.1236 0.1099 0.0286 0.0281

TFT 0.0945 0.1169 0.0110 0.0111
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Table 8 Comparison of the
average nMPI(β) when
generating probabilistic
forecasts based on existing point
forecasts for β = 98% and
β = 70%. The average nMPI(β)
is calculated using five runs on
the test data set, and the best
values for each base point
forecaster and β in each data set
are highlighted in bold

Data Point Forecaster PI cINN Gaussian PI Empirical PI Conformal PI

Electricity XGBoost 98% 0.8248 1.5418 1.8594 1.8527

70% 0.3803 0.9276 0.4510 0.4529

N-HiTS 98% 1.0811 1.8780 2.1627 2.1579

70% 0.4837 1.1278 0.6265 0.6265

TFT 98% 1.1376 1.8769 2.2586 2.2469

70% 0.5145 1.1288 0.4886 0.4965

Price XGBoost 98% 0.4518 1.5271 1.9885 1.9193

70% 0.2022 0.8810 0.2434 0.2444

N-HiTS 98% 0.3741 1.1536 1.4098 1.3963

70% 0.1690 0.6493 0.2352 0.2364

TFT 98% 0.2893 1.3332 1.7665 1.7534

70% 0.1329 0.7571 0.2589 0.2592

Solar XGBoost 98% 0.7510 1.8661 2.4523 2.4564

70% 0.3362 1.0729 0.2617 0.2626

N-HiTS 98% 0.9315 2.3938 2.9698 2.9618

70% 0.4061 1.3934 0.5539 0.5475

TFT 98% 0.7408 2.0298 2.6828 2.6830

70% 0.3462 1.1668 0.2651 0.2668

Bike XGBoost 98% 1.1335 1.8288 1.9887 1.9885

70% 0.4915 1.1201 0.6329 0.6342

N-HiTS 98% 0.6906 1.3939 1.5342 1.5299

70% 0.3160 0.8199 0.4735 0.4749

TFT 98% 0.7051 1.2546 1.4288 1.4344

70% 0.3252 0.7332 0.3695 0.3706

Table 9 Comparison of the
average MW scores when
generating probabilistic
forecasts based on existing point
forecasts. The average MW
score is calculated across five
runs on the test data set, and the
best values for each base point
forecaster in each data set are
highlighted in bold

Data Point Forecaster cINN Gaussian PI Empirical PI Conformal PI

Electricity XGBoost 19.4470 35.5141 39.5519 39.4368

N-HiTS 25.7098 44.5813 47.7180 47.5730

TFT 22.1819 43.4597 48.7009 48.5111

Price XGBoost 13.6459 47.6781 56.1564 54.8959

N-HiTS 12.5044 35.9409 39.0527 39.0557

TFT 11.1381 40.1158 46.8259 46.8474

Solar XGBoost 7.3523 25.6594 29.7955 29.8464

N-HiTS 11.1579 34.2878 38.5077 38.4250

TFT 7.9020 28.6166 32.9194 32.9338

Bike XGBoost 35.4601 70.4294 72.7355 72.7596

N-HiTS 27.2643 51.1508 52.0275 51.8381

TFT 22.0296 44.1040 46.3018 46.3026
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Fig. 5 An overview of the normalised evaluationmetrics for our approach combining the cINNwith three base point forecasters (XGBoost, N-HiTS,
TFT) and the direct probabilistic benchmarks for each considered evaluation metric across all data sets. The value of each metric is normalised
between 0.1 and 1 for illustrative purposes to facilitate the comparison, with lower values indicating better performance. The considered models
are ranked from best to worst for each metric

the CRPS on the Solar data set, where the QRNN provides
the best performance. Furthermore, regarding MW, all three
of the base point forecasters, when combined with the cINN,
perform better than all of the direct benchmarks on all data
sets. Finally, our approach performs consistently across all
metrics and data sets, only once achieving the worst rank-

ing, whilst the performance of the direct benchmarks is far
more variable, with each of them being ranked worst at least

three times. To evaluate the performance in more detail, we
consider the forecast quality, calibration, sharpness and pre-
diction intervals for each of the direct benchmarks and our
approach with the cINN on the four considered data sets in
the following.

Quality
To analyse the quality of the probabilistic forecasts, we report
the averageCRPS across five runs for all data sets in Table 10.
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Table 10 Comparison of the average CRPS between the probabilistic
forecasts from the cINN and the direct probabilistic benchmarks. The
average CRPS is calculated over five runs on the test data set, and the
best values for each data set are highlighted in bold

Forecasting Method Data Set
Electricity Price Solar Bike

XGBoost-cINN 0.2337 0.1565 0.1072 0.4561

N-HiTS-cINN 0.2844 0.1552 0.1705 0.3454

TFT-cINN 0.2588 0.1404 0.1233 0.2641

DeepAR 0.3115 0.1583 0.1509 0.2985

QRNN 0.2866 0.1571 0.1013 0.4431

NNQF 0.2629 0.1825 0.1191 0.5415

Thefirst observation is that our approach results in the low-
est CRPS on three of the four data sets. Thereby, the choice
of the base point forecaster is important, with XGBoost
combined with the cINN performing best on the Electricity
data set, whilst the TFT combined with the cINN performs
best on the Price and Bike data sets. On the Solar data set,
the QRNN benchmark outperforms all others, although our
approach using the XGBoost as a base point forecaster per-
forms similarly. Furthermore,when combinedwith the cINN,
we observe that all base point forecasters outperform all the
direct benchmarks on the Price data set, and two of the three
base point forecasters outperform all the direct benchmarks
on the Electricity data set. In general, the performance of the
direct benchmarks is also highly dependent on the consid-
ered data set. Of the direct benchmarks, the NNQF performs
best for the Electricity data set, the QRNN for the Price and
Solar data sets, and DeepAR for the Bike data set.

Calibration
To assess the calibration of the direct probabilistic bench-
marks and our approach,we report the averageMAQDacross
five runs in Table 11.

Similar to the CRPS results, our approach using a cINN
results in the lowest deviation for three of the four data sets.
However, unlike the CRPS results, our approach using the
cINN results in the lowest MAQD on the Electricity, Solar,
and Bike data sets whilst the NNQF achieves the lowest over-
all MAQD, on the Price data set. With regards to the direct
benchmarks, the NNQF outperforms the other direct bench-
marks on all data sets except for the Solar data set, where the
lowest MAQD is achieved with the QRNN.

Sharpness
Tocompare the sharpness of probabilistic forecasts generated
with our approach and those from the direct benchmarks, we
report the average nMPI(β) over five runs in Table 12.

With regards to the nMPI(β), our approach results in the
smallest nMPI(β) for all data sets. Using the XGBoost as

a base point forecaster generates the narrowest prediction
intervals for the Electricity data set and the lowest nMPI(β)
for β = 70% for the Solar data set. Additionally, using the
TFT as a base point forecaster results in the narrowest predic-
tion intervals for the Price data set and the lowest nMPI(β)
for β = 98% for the Solar data set. Finally, using N-HiTS as
a base point forecaster results in the lowest nMPI(β) for the
Bike data set. The width of the prediction intervals for the
direct probabilistic benchmark depends on the data set. For
the Electricity and Price data sets, DeepAR generates proba-
bilistic forecasts with the lowest nMPI(β). However, for the
Solar data set, the nMPI(β) from the QRNN is the smallest.
The Bike data set is interesting for the benchmarks since the
nMPI(β) with β = 98% is the smallest for DeepAR, but the
nMPI(β) with β = 70% is the smallest for the QRNN.

Prediction intervals
To evaluate calibration and sharpness simultaneously, we
consider the quality of the prediction intervals generatedwith
our approach and the direct probabilistic benchmarks. For
this purpose, we report the average MW score across five
runs in Table 13.

We first observe that our approach results in the lowest
MW scores for every data set. Furthermore, the MW scores
for each point forecaster, when combined with the cINN,
are lower than any of the direct benchmarks on all data
sets. Regarding the direct probabilistic benchmarks, the best-
performing benchmark depends on the data set considered.
DeepAR results in the lowest MW scores for the Electricity,
Price, and Bike data sets, whilst QRNN results in the lowest
MW scores for the Solar data set.

5.2.3 Qualitative analysis

As a final comparison to the benchmarks, we qualitatively
compare prediction intervals and calibration for the Price
data set to gain further insight into the characteristics of
probabilistic forecasts generated by our approach and the

Table 11 Comparison of the average MAQD between the theoretical
and forecast quantiles from the cINN and the direct probabilistic bench-
marks. The averageMAQD is calculated across five runs on the test data
set, and the best values for each data set are highlighted in bold

Forecasting Method Data Set
Electricity Price Solar Bike

cINN-XGBoost 0.0811 0.0948 0.0431 0.1369

cINN-N-HiTS 0.0929 0.1010 0.1953 0.1236

cINN-TFT 0.0817 0.0959 0.1420 0.0945

DeepAR 0.2222 0.2139 0.2301 0.2478

QRNN 0.1420 0.1332 0.0708 0.2110

NNQF 0.0835 0.0692 0.1282 0.1303

123



K. Phipps et al.

Table 12 Comparison of the
average nMPI(β) between
forecasts from the cINN and the
direct probabilistic benchmarks
for β = 98% and β = 70%. The
nMPI(β) is calculated across
five runs on the test data set, and
the best values for each data set
and β are highlighted in bold

Forecasting Method Electricity Price Solar Bike
98% 70% 98% 70% 98% 70% 98% 70%

XGBoost-cINN 0.8248 0.3803 0.4518 0.2022 0.7510 0.3362 1.1335 0.4915

N-HiTS-cINN 1.0811 0.4837 0.3741 0.1690 0.9315 0.4061 0.6906 0.3160

TFT-cINN 1.1376 0.5145 0.2893 0.1329 0.7408 0.3462 0.7051 0.3252

DeepAR 1.1896 0.5204 0.5850 0.2672 1.9875 0.8517 1.1524 0.5204

QRNN 1.6227 0.5990 0.6956 0.2840 1.5715 0.6610 1.6535 0.4150

NNQF 1.4587 0.7790 0.8259 0.3708 1.8035 0.8962 1.5027 0.7468

considered benchmarks. In this analysis,we only consider the
Conformal PI from the first group of benchmarks since this
method performs overall best compared to the other bench-
marks in that group.

We plot the 98%, 70%, and 40% prediction intervals for
a single day in the test data set in Fig. 6. Compared to the
Conformal PI, our approach generates probabilistic forecasts
with the narrowest prediction intervals regardless of the base
point forecaster used. In fact, for probabilistic forecasts gen-
erated with the N-HiTS or TFT base point forecaster, our
approach using a cINN results in the narrowest prediction
intervals overall. Furthermore, whilst the 40% and 70%Con-
formal PIs are only slightly wider than those generated by
the cINN, the 98% prediction intervals are by far the widest
of all considered benchmarks. The three direct probabilistic
benchmarks generate prediction intervals that are generally
wider than those generated by the cINN but narrower than
the Conformal PIs.

To further analyse the calibration of our forecasts, we plot
the forecast quantile coverage against the theoretical quan-
tile coverage as a calibration plot in Fig. 7. We observe
that, for all base point forecasters, the Conformal PI pro-
vides themost calibrated forecasts, with hardly any deviation

Table 13 Comparison of the averageMWscore between the probabilis-
tic forecasts from the cINNand the direct probabilistic benchmarks. The
average MW score is calculated over five runs on the test data set, and
the best values for each data set are highlighted in bold

Forecasting Method Data Set
Electricity Price Solar Bike

XGBoost-cINN 19.4470 13.6459 7.3523 35.4601

N-HiTS-cINN 25.7098 12.5044 11.1579 27.2643

TFT-cINN 22.1819 11.1381 7.9020 22.0296

DeepAR 28.2175 17.6831 16.3384 36.7610

QRNN 32.2938 20.7876 15.4228 46.4754

NNQF 29.4266 24.5482 16.7298 47.0819

from the diagonal. However, our approach using a cINN also
results in forecasts that only slightly deviate from the diago-
nal by slightly overestimating the lower quantiles and slightly
underestimating the upper quantiles. From the direct prob-
abilistic benchmarks, the NNQF achieves similar results to
our approach using a cINN, whilst the results of DeepAR and
the QRNN are noticeably worse.

5.3 GEFCom2014 probabilistic price forecasting

For the final step of our evaluation, we test the proposed
approach by retrospectively determining its placement in
the GEFCom2014. The GEFCom2014 was a probabilistic
energy forecasting competition with four different tracks for
load, price, wind, and solar forecasting [28]. For the eval-
uation, we recreate the setup of the GEFCom2014 price
forecasting track in which 14 teams competed and com-
pare the performance of our approach to the leading entrants
from the competition. This comparison is based on the scor-
ing mechanism from GEFCom2014 that considers the final
twelve of fifteen tasks, each generating 24-hour quantile fore-
casts. Given the pinball loss improvement PL% for each task,
the final ranking is determined as the average pinball loss
improvement across all tasks weighted by the task number
[28]. For our approach, we apply all previous base point fore-
casters, select the best-performing sampling parameter over
the first three non-evaluated tasks, and use this for all remain-
ing tasks. The final weighted pinball loss improvement and
the resulting rank of our approach are shown in Table 14 (see
Table 22 for the results per task).

Overall, our approach with a cINN and various base fore-
casters performswell.With simple point forecastingmethods
such as RF regression and LR, we achieve an average
weighted pinball loss improvement that would have placed
these methods within the top five of the competition. Fur-
thermore, with a more advanced TFT base forecaster, we
achieve an average weighted pinball loss improvement that
would have resulted in a third-place finish.

123



Generating probabilistic forecasts from arbitrary point forecasts

Fig. 6 Exemplary 98%, 70%, and 40% prediction intervals for the Price data set. Probabilistic forecasts are generated by using XGBoost, N-HiTS,
and the TFT as base point forecasters and either combining them with our cINN or applying Conformal PI. Further, we compare the three direct
probabilistic benchmarks: DeepAR, QRNN, and NNQF

6 Discussion

In this section, we first discuss our results and the implica-
tions these have before we highlight some of the key insights
gained from the evaluation.

6.1 Results

With regard to our results, we discuss two aspects. First, we
focus on the forecasting performance of our approach before
considering the GEFCom2014.

Fig. 7 Exemplary calibration plots comparing the theoretical and forecast quantiles on the Price data set, with the red diagonal indicating zero
deviation. We compare probabilistic forecasts generated by using XGBoost, N-HiTS, and the TFT as base point forecasters and either combining
them with our cINN or applying Conformal PI. Further, we compare the three direct probabilistic benchmarks: DeepAR, QRNN, and NNQF
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Table 14 The overall weighted
pinball loss improvement all
tasks and final rank in the
GEFCom2014 price forecasting
challenge for all base forecasters
from Section 4.3 combined with
the cINN. The weighted pinball
loss improvement indicates the
improvement of a given method
over the GEFCom2014 baseline
forecast weighted by the task
number. The rank indicates the
placement in GEFCom2014
according to the weighted
pinball loss improvement

Average weighted pinball loss improvement Rank1

RF-cINN 65.9 4

LR-cINN 65.7 4

NN-cINN 61.5 9

XGBoost-cINN 65.0 4

N-HiTS-cINN 62.9 6

TFT-cINN 67.4 3

Tololo [20] 71.7 1

Team Poland [40] 67.7 2

GMD [14] 67.1 3

1This ranking is determined by how each individual method would have placed in the GEFCom2014 price
forecasting challenge in 2014 and, therefore, assumes that only one of the presented methods is considered
at a time when creating the respective ranking

Forecasting performance
With regard to forecasting performance, we first discuss the
performance of our approach with different point forecasters
before comparing our approach to other probabilistic bench-
marks.

When comparing different point forecasters in our approach,
we note that the quality of the point forecasts affects the
quality of the probabilistic forecasts when combined with
the cINN. This observation is unsurprising since the cINN
in our approach includes uncertainty around the initial point
forecast, and, therefore, the more accurate the point forecast
is, the easier it is to include uncertainty effectively. Addi-
tionally, the quality of the point forecasts is influenced by
the exogenous features considered. Therefore, it may be use-
ful to consider additional features or factors influencing the
forecast, similar to [58].

When comparing our approach to the selected bench-
marks, we make several observations. First, we observe that
our approach generally outperforms all benchmarks regard-
ing CRPS. In the three occasions where our approach does
not result in the lowest CRPS, the difference between the
best performing Conformal PI or QRNN and our approach
is small.

Second, our approach is not optimally calibrated. Although
the forecasts generated with our cINN are well calibrated
compared to the direct probabilistic benchmarks, the Empir-
ical PI and Conformal PI achieve lower MAQDs on all data
sets. However, it is worth noting that prediction interval-
based approaches are specifically designed to achieve certain
coverage levels, and further, considering the calibration plots
in Fig. 7 suggests that the difference in calibration may not
be as noticeable as the raw MAQD numbers suggest.

Third, our approach consistently generates the sharpest
probabilistic forecasts with the lowest nMPI(β). This obser-

vation is further highlighted by Fig. 6 where the forecasts
from the N-HiTS and TFT base point forecaster combined
with the cINN are far narrower than those of any other bench-
marks.

Fourth, our approach outperforms all considered bench-
marks on all data sets with regards to MW scores. Since
Winkler scores consider both calibration and sharpness, this
result suggests that the poorer calibration from our approach
is counteracted by the narrow prediction intervals. Consid-
ering again Fig. 6, although the prediction intervals of our
approach are narrow, the ground truth is still almost always
containedwithin the interval. In comparison, the other bench-
mark methods, specifically the prediction interval-based
approaches, appear to overestimate the width of the predic-
tion intervals, which adversely affects the Winkler score.

Fifth, we note that both our approach and each of the
considered benchmarks have strengths and weaknesses. Our
approach results in narrowprediction intervals and lowCRPS
scores, but this comes at the cost of calibration performance.
In contrast, the prediction interval-based benchmarks are
highly calibrated but generate far wider prediction intervals,
resulting in a worse performance regarding Winkler scores.
Therefore, the best probabilistic forecast may vary, depend-
ing on the requirements of the situation it is being used
for.

Finally, when considering the performance of our approach
across all metrics compared to the benchmarks (see Figs. 4
and 5), we conclude that the resulting probabilistic forecasts
are high quality and generally outperform all benchmarks.
Our approach’s small loss in calibration performance results
in a far sharper forecast, which is reflected in the gener-
ally better performance in CRPS and MW. Therefore, our
approach can be considered to deliver state-of-the-art prob-
abilistic forecasts.
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GEFCom2014
Not only does our approach perform competitively in the
considered track of the GEFCom2014, but several factors
undercut its true performance. All top-placing contestants in
the competition perform specialised operations to improve
forecasting performance, i.e. peak pre-processing [20], fil-
tering methods to weight certain days higher [40], or tailored
training data periods to improve performance [14]. In con-
trast, we consider all available data for training, refrain from
complex pre-processing steps, and only use the default hyper-
parameters for the base forecasters. Furthermore, the true
value of our approach is its ability to enable simple base
point forecasters, such as a LR or RF, to rank within the top
five compared to the original entrants. Finally, different base
point forecasters performbetter for different tasks.Therefore,
we expect an ensemble method that automatically selects the
best base forecaster for a given task to deliver even better
performance.

6.2 Insights

In addition to the results, there are a few insights regarding
the sampling in the latent space and the flexible nature of our
approach, which we discuss here.

Sampling in latent space
Our approach includes uncertainty in point forecasts via
latent space distribution sampling. Currently, this sampling
is performed by adding normally distributed random noise
ri ∼ N (0, σ ) to the point forecast. This approach has sev-
eral limitations. First, the sampling parameter σ is manually
selected to generate optimal forecasts according to CRPS.
However, by varying this sampling parameter, it is possible
to generate different probabilistic forecasts which follow the
same general shape but vary in the amount of uncertainty
considered. Therefore, it may be interesting to investigate
methods to automatically select an optimal sampling param-
eter given the observed data, a selected base forecaster, and
a specific evaluation metric. Such methods would enable the
generation of probabilistic forecasts with properties that are
specifically designed for a certain application.However, such
probabilistic forecasts will only be possible if the require-
ments of this application can be formulated via a probabilistic
loss metric that can be used to select σ .

Second, the current approach to optimise σ is rather rudi-
mentary and based on a single evaluation metric. Therefore,
it would be interesting to adapt this optimisation, perhaps
by adapting concepts from conformal prediction to calculate
the nonconformity scores of the samples. Furthermore, opti-
mising the samples based on the resulting quantiles used as
an output of the probabilistic forecast might be interesting.

With such a strategy, Bonferroni correction could possibly
be applied to improve the calibration of our approach.

Flexible nature
In the present article, we evaluate the probabilistic forecast-
ing performance of a single selected base point forecaster
combined with the cINN. However, our approach is inde-
pendent of the base point forecast considered, i.e. once the
cINN has been trained for a given data set, we can gener-
ate probabilistic forecasts from any arbitrary point forecast
without retraining. This is advantageous compared to other
methods using cINNs or GANs, which require the generative
model to be retrained whenever the point forecast is altered.
Moreover, such an approach allows us to easily generate an
ensemble of probabilistic forecasts based on different point
forecasts.

Furthermore, for similar data sets, it may be possible to
generate probabilistic forecasts with a generalised cINN that
is only trained once on all data sets or a subset thereof. Such
a generalised cINN could be beneficial for global forecasting
and be applied to scenarios where no data is available, e.g.
a new building similar to existing buildings is included in
a suburb. However, such a generalised cINN will only be
possible if the underlying distribution across the multiple
data sets is similar and can be accurately mapped to a single
tractable latent space distribution.

Another important aspect is that our approach is not lim-
ited to prediction intervals or specific quantiles. Whilst we
choose to calculate quantiles based on samples as the output
of our approach, the generative nature of the cINN enables
us to generate an arbitrary number of samples and either
use these directly to form an ensemble forecast or to out-
put an empirical forecast distribution. This is advantageous
compared to other probabilistic forecast methods that are,
by nature, limited to generating prediction intervals. Specif-
ically, applying an empirical density estimation algorithm to
obtain a non-parametric density forecast is simple based on
our approach. Such forecasts may be particularly useful if the
entire distribution is required, for example, for a stochastic
optimisation problem.

7 Conclusion

In the present article, we introduce an approach to generate
probabilistic forecasts from arbitrary point forecasts by using
a Conditional Invertible Neural Network (cINN) to learn the
underlying distribution of the time series data. Our approach
maps the underlying distribution of the data to a known and
tractable distribution before combining the uncertainty from
this known and tractable distribution with an arbitrary point
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forecast to generate probabilistic forecasts. Importantly, the
cINN is independent of the considered point forecast and
must not be retrained when the point forecast is altered.

We evaluate our approach by combining multiple point
forecasts with a cINN and comparing the resulting proba-
bilistic forecasts with six probabilistic benchmarks on four
data sets. We show that our approach generally outperforms
all benchmarks regarding CRPS and Winkler scores. Fur-
ther, our approach generates probabilistic forecasts with the
narrowest prediction intervals whilst maintaining reasonable
performance in calibration. Finally, we recreate the GEF-
Com2014 and show that our approach enables simple base
point forecasters to rank within the top five.

Our approach offers a solution to generate flexible prob-
abilistic forecasts based on arbitrary point forecasts. In
future work, this flexibility should be further investigated
by developing a more advanced strategy for selecting the
sampling parameter to improve the calibration of our prob-
abilistic forecasts. Furthermore, automating the selection
of this sampling parameter and considering how different

metrics for optimising this parameter affect the resulting
forecasts should be investigated. It would also be inter-
esting to extend our approach to multivariate probabilistic
forecasts. Finally, it may be interesting to explore the per-
formance of our approach using a generalised cINN to
generate probabilistic forecasts on multiple data sets without
retraining.

Appendix A additional implementation
details

This Appendix contains the following additional imple-
mentation details:

• An overview of the data sets in Table 15.
• An overview of the selected base forecasters in Table 16.
• The selected sampling hyperparameter σ for each base
point forecaster and each data set in Table 17.

• Implementation details for the applied cINN in Tables 18
to 19, 20.

Table 15 Overview of the data sets used including the exogenous features considered, and the used train, validation, and test sets

Target Exogenous Features Train Validation Test

Electricity MT_158 Calendar Information1 [0, 14716] [14717, 21023] [21024, 26280]

Calendar Information1,

Price Zonal Price Forecast Total Load, [0, 14541] [14542, 20773] [20774, 25968]

Forecast Zonal Load

Calendar Information1

Solar POWER SSRD2, TCC3 [0, 11033] [11034, 15762] [15763, 19704]

Calendar Information1,

Temperature,

Bike4 cnt Humidity, Windspeed, Weather Situation [0, 9824] [9825, 14034] [14035, 17544]

1Sine- and cosine-encoded time of the day, the sine- and cosine-encoded month of the year, and a Boolean that indicates whether the current day
is a weekend day or not
2Surface solar radiation downwards
3Total cloud cover
4To create a time index for this data, we merge the columns dteday and hr and deal with missing values using linear interpolation
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Table 16 Overview of the
selected base forecasters used to
generate point forecasts

Base Forecaster Classification Implementation Details Library Used

LR Statistical Default Hyperparameters SKlearn1

RF Statistical Default Hyperparameters SKlearn1

NN Machine Learning Hidden Layers: 3

Layer Sizes: 90-64-32

Hidden Activation

Function: relu

Output Activation Tensorflow3

Function: linear Keras4

Optimiser: Adam2

Batch Size: 100

Max Epochs: 100

XGBoost Gradient Boosting Default Hyperparameters XGBoost5

N-HiTS Deep Learning Default Hyperparameters PyTorch Forecasting6

TFT Deep Learning Default Hyperparameters PyTorch Forecasting6

1 [43]
2 [33]
3 https://www.tensorflow.org/
4 https://keras.io/
5 [7]
6 https://pytorch-forecasting.readthedocs.io/en/stable/index.html

Table 17 The selected sampling
parameter for each base point
forecaster and each data set used
in the evaluation

Data Set LR RF NN XGBoost N-HiTS TFT

Electricity 0.57 0.63 0.49 0.36 0.59 0.72

Price 0.73 0.98 0.92 0.48 0.69 0.76

Solar 0.14 0.77 0.21 0.45 0.22 0.44

Bike 0.54 0.97 0.57 0.46 0.33 0.36

GEFCom Competition 1.05 0.95 0.90 0.50 0.75 1.05

Table 18 The architecture of
the used cINN

Parameter Description

Layers per block Glow coupling layer and random permutation

Subnetwork in block Fully connected (see Table 19)

Number of blocks 5

Conditioning network Fully connected (see Table 20)
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Table 19 Implementation details of the subnetwork in the used cINN

Layer Description

Input [Output of previous coupling layer,

conditional information]

1 Dense 32 neurons; activation: tanh

2 Dense 24 neurons; activation: linear

Table 20 Implementation details of the conditioning network in the
used cINN

Layer Description

Input [Calendar information,

historical information,

exogenous forecasts if available]

1 Dense 8 neurons; activation: tanh

2 Dense 4 neurons; activation: linear

Appendix B point forecast evaluation

Since the quality of the base point forecaster influences the
resulting probabilistic forecast when combined with a cINN,
we briefly evaluate the point performance of the selected base

Table 21 Comparison of the average RMSE on the test data set for
each of the considered base point forecasters. The best values for each
data set are highlighted in bold

Base Forecaster Data Set
cline2-5 Electricity Price Solar Bike

LR 0.5246 0.4118 0.3331 0.8565

RF 0.4601 0.4253 0.2891 0.9913

NN 0.4894 0.4499 0.3257 0.9227

XGBoost 0.4532 0.4090 0.2966 0.9258

N-HiTS 0.5329 0.4124 0.3686 0.6471

TFT 0.5134 0.3672 0.3366 0.5457

forecasters. To evaluate the quality of the base point forecast-
ers, we consider the Root Mean Squared Error (RMSE). The
RMSE is given by

RMSE(y, ŷ) =
√
√
√
√

1

n

n
∑

i=1

(yi − ŷi )2 (B1)

with a true value yi , a forecast value ŷi , and n observations.
We report the average RMSE (B1) over five runs in

Table 21.
In general, we observe that the best-performing point fore-

cast depends on the data set considered,with the performance
of most point forecasters varying noticeably across the data
sets. However, the TFT performs most consistently, achiev-
ing the lowest RMSE on two of the four data sets.
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Appendix C additional result summaries

For completeness, we report the normalised evaluation met-
rics overview for the eXtreme Gradient Boosting (XGBoost)

in Fig. 8 and Neural Hierarchical Interpolation for Time
Series Forecasting (N-HiTS) in Fig. 9.

Fig. 8 Anoverviewof the normalised evaluationmetrics for theXGBoost base forecasterwhen combinedwith the cINNor usedwith the benchmarks
based on existing point forecasts for each considered evaluation metric across all data sets. The value of each metric is normalised between 0.1 and
1 for illustrative purposes to facilitate the comparison, with lower values indicating better performance. The considered models are ranked from
best to worst for each metric
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Fig. 9 An overview of the normalised evaluation metrics for N-HiTS base forecaster when combined with the cINN or used with the benchmarks
based on existing point forecasts for each considered evaluation metric across all data sets. The value of each metric is normalised between 0.1 and
1 for illustrative purposes to facilitate the comparison, with lower values indicating better performance. The considered models are ranked from
best to worst for each metric
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Appendix D Full GEFCom2014 Results

Table 22 GEFCom2014 results for each task. The performance of each base forecaster from Section 4.3 combined with the cINN is reported, as
well as the performance of the best three entrants from 2014. For each task, the pinball loss improvement PL% compared to the GEFCom2014
baseline is calculated. The final results are a linear weighted average of the pinball loss improvement in each task, weighted by the task number

Model Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

PL PL% PL PL% PL PL% PL PL% PL PL% PL PL%

RF-cINN 1.10 72.67 3.46 56.61 2.93 48.64 7.13 41.35 5.24 86.34 6.45 85.41

LR-cINN 1.76 56.25 2.95 62.97 1.92 66.36 2.97 75.53 8.59 77.60 12.14 72.55

NN-cINN 1.16 71.14 4.38 45.01 2.02 64.57 4.31 64.53 7.26 81.05 7.10 83.96

XGBoost-cINN 1.70 57.69 3.53 55.76 2.74 51.90 5.21 57.12 6.08 84.14 7.65 82.71

N-HiTS-cINN 1.70 57.87 2.45 69.21 1.05 81.57 3.75 69.15 8.03 79.06 10.08 77.21

TFT-cINN 1.22 69.80 2.50 68.64 1.16 79.67 3.08 74.65 6.30 83.57 9.20 79.21

Tololo2 1.71 57.62 1.45 81.80 1.10 80.65 2.02 83.40 9.16 76.11 4.68 89.41

Team Poland3 1.97 50.98 1.82 77.19 1.19 79.11 2.82 76.77 7.56 80.28 4.21 90.49

GMD4 3.73 7.48 1.78 77.63 0.92 83.84 5.09 58.12 6.21 83.79 3.83 91.35

Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Overall

PL PL% PL PL% PL PL% PL PL% PL PL% PL PL% Total Weighted PL% Rank1

RF-cINN 7.55 58.54 2.51 92.06 2.16 94.97 1.95 31.89 1.79 44.03 5.69 74.56 65.9 4

LR-cINN 12.66 30.53 1.85 94.14 2.39 94.44 1.50 47.36 1.66 48.33 7.54 66.32 65.7 4

NN-cINN 6.69 63.29 2.83 91.03 1.62 96.21 1.88 34.33 1.70 46.99 15.38 31.30 61.5 9

XGBoost-cINN 7.64 58.05 2.43 92.30 1.47 96.58 2.03 28.87 1.83 42.97 7.05 68.50 65.0 4

N-HiTS-cINN 11.70 35.79 1.40 95.58 1.28 97.01 2.31 19.17 2.06 35.72 6.37 71.53 62.9 6

TFT-cINN 8.53 53.21 1.67 94.71 1.43 96.67 2.42 15.41 1.66 48.18 4.95 77.88 67.4 3

Tololo2 1.60 91.24 0.75 97.61 2.46 94.27 2.96 -3.70 1.35 57.98 3.56 84.10 71.7 1

Team Poland3 2.60 85.75 1.05 96.68 1.24 97.11 4.06 -42.17 1.08 66.15 3.07 86.31 67.7 2

GMD4 4.93 72.92 1.48 95.32 1.66 96.14 2.06 27.82 2.12 33.72 6.85 69.41 67.1 3

1 This ranking is determined by how each individual model would have placed in the GEFCom2014 price forecasting challenge in 2014 and
therefore assumes that the other models introduced in this article are not included
2 [20]
3 [40]
4 [14]

123



K. Phipps et al.

Acknowledgements This project is funded by the Helmholtz Associ-
ation’s Initiative and Networking Fund through Helmholtz AI and the
Helmholtz Association under the Program “Energy System Design”.

Author Contributions Kaleb Phipps: Conceptualisation, Methodol-
ogy, Software, Investigation, Writing - Original Draft, Visualisation
Benedikt Heidrich: Conceptualisation, Methodology, Software, Inves-
tigation, Writing - Original Draft Marian Turowski: Conceptualisation,
Methodology, Investigation, Writing - Original Draft Moritz Wittig:
Conceptualisation, Methodology, Software, Investigation, Writing -
Review Ralf Mikut: Funding acquisition, Writing - Review & Editing,
Supervision Veit Hagenmeyer: Funding acquisition, Writing - Review
& Editing, Supervision

Funding Open Access funding enabled and organized by Projekt
DEAL.

DataAvailability Statement TheElectricity andBike data sets analysed
during the current study are available in the UCI repository via https://
archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014and
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset respective
ly. The Price and Solar data sets are available as a part of the GEF-
Com2014 forecasting challenge via [28]. The probabilistic forecasts
analysed in our article can be recreated via code provided in GitHub
upon acceptance of the paper.

Declarations

Competing interests The authors have no competing interests to
declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. ArdizzoneL, LüthC,Kruse J, et al (2019)Guided image generation
with conditional invertible neural networks, arXiv:1907.02392

2. Arpogaus M, Voss M, Sick B et al (2023) Short-term density
forecasting of low-voltage load using Bernstein-polynomial nor-
malizingflows. IEEETransactions onSmartGrid 14(6):4902–4911

3. Caflisch RE (1998) Monte Carlo and quasi-Monte Carlo methods.
Acta Numer 7:1–49

4. Camporeale E, Agnihotri A, Rutjes C (2017) Adaptive selection
of sampling points for uncertainty quantification. Int J Uncertain
Quantif 7(4):1–22

5. Camporeale E, ChuX,AgapitovO et al (2019)On the generation of
probabilistic forecasts from deterministic models. Space Weather
17(3):455–475

6. Challu C, Olivares KG, Oreshkin BN, et al (2023) N-HiTS:
Neural hierarchical interpolation for time series forecasting. In:

Proceedings of the AAAI conference on artificial intelligence, pp
6989–6997

7. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting
system. In: ACMSIGKDD International conference on knowledge
discovery and data mining. ACM, pp 785–794

8. Chernozhukov V, Wüthrich K, Zhu Y (2021) Distributional con-
formal prediction. Proc Natl Acad Sci 118(48):e2107794118

9. Cramer E, Witthaut D, Mitsos A et al (2023) Multivariate proba-
bilistic forecasting of intraday electricity prices using normalizing
flows. Appl Energy 346:121370

10. Cramer EY, Ray EL, Lopez VK et al (2022) Evaluation of individ-
ual and ensemble probabilistic forecasts of Covid-19 mortality in
the US. Proc Natl Acad Sci 119(15):e2113561119

11. Dannecker L (2015) Energy time series forecasting: efficient and
accurate forecasting of evolving time series from the energy
domain, 1st edn. Springer Vieweg, Wiesbaden, Germany

12. De La Vallée Poussin C (1915) Sur l’intégrale de Lebesgue. Trans
Am Math Soc 16(4):435–501

13. Dua D, Graff C (2019) UCI machine learning repository. http://
archive.ics.uci.edu/ml, (Accessed 10 March 2022)

14. Dudek G (2016) Multilayer perceptron for GEFCom2014 proba-
bilistic electricity price forecasting. Int J Forecast 32(3):1057–1060

15. Dumas J, Wehenkel A, Lanaspeze D et al (2022) A deep genera-
tive model for probabilistic energy forecasting in power systems:
normalizing flows. Appl Energy 305:117871

16. Elbeltagi A, Srivastava A, Deng J et al (2023) Forecasting
vapor pressure deficit for agricultural water management using
machine learning in semi-arid environments. Agric Water Manag
283:108302

17. Fanaee-T H, Gama J (2014) Event labeling combining ensemble
detectors and background knowledge. Progress in Artificial Intel-
ligence 2:113–127

18. Fanfarillo A, Roozitalab B, Hu W et al (2021) Probabilistic fore-
casting using deep generative models. GeoInformatica 25(1):127–
147

19. Fraccanabbia N, da Silva RG, Ribeiro MHDM, et al (2020) Solar
power forecasting based on ensemble learning methods. In: 2020
International joint conference on neural networks (IJCNN), IEEE,
pp 1–7

20. Gaillard P, GoudeY,Nedellec R (2016)Additivemodels and robust
aggregation for GEFCom2014 probabilistic electric load and elec-
tricity price forecasting. Int J Forecast 32(3):1038–1050

21. Ge L, Liao W, Wang S et al (2020) Modeling daily load profiles
of distribution network for scenario generation using flow-based
generative network. IEEE Access 8:77587–77597

22. Gneiting T, Raftery AE (2007) Strictly proper scoring rules, pre-
diction, and estimation. J Am Stat Assoc 102(477):359–378

23. Gneiting T, Balabdaoui F, Raftery AE (2007) Probabilistic fore-
casts, calibration and sharpness. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 69(2):243–268

24. Gneiting T, Wolffram D, Resin J, et al (2022) Model diagnostics
and forecast evaluation for quantiles. Annual Review of Statistics
and Its Application 10

25. González Ordiano JA, Gröll L, Mikut R et al (2020) Probabilistic
energy forecasting using the nearest neighbors quantile filter and
quantile regression. Int J Forecast 36(2):310–323

26. Heidrich B, Bartschat A, Turowski M, et al (2021)
pyWATTS: Python workflow automation tool for time series,
arXiv:2106.10157

27. Heidrich B, Turowski M, Phipps K, et al (2022) Controlling
non-stationarity and periodicities in time series generation using
conditional invertible neural networks. Appl Intell pp 1–18

28. Hong T, Pinson P, Fan S et al (2016) Probabilistic energy forecast-
ing: Global energy forecasting competition 2014 and beyond. Int J
Forecast 32(3):896–913

123

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1907.02392
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/2106.10157


Generating probabilistic forecasts from arbitrary point forecasts

29. Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles
and practice, 2nd edn. OTexts, Melbourne, Australia

30. IzmailovP,VikramS,HoffmanMD, et al (2021)What areBayesian
neural network posteriors really like? In: International conference
on machine learning, PMLR, pp 4629–4640

31. Jamgochian A, Wu D, Menda K, et al (2022) Conditional approxi-
mate normalizing flows for joint multi-step probabilistic electricity
demand forecasting, 2201.02753

32. Kaplan D, Huang M (2021) Bayesian probabilistic forecasting
with large-scale educational trend data: A case study using NAEP.
Large-scale Assessments in Education 9(1):1–31

33. Kingma DP, Ba JL (2015) Adam: A Method for Stochastic
Optimization. In: Bengio Y, LeCun Y (eds.) 3rd International Con-
ference on Learning Representations (ICLR 2015)

34. Kingma DP, Dhariwal P (2018) Glow: Generative flow with
invertible 1x1 convolutions. In: Advances in Neural Information
Processing Systems, pp 10215–10224

35. Koenker R, Chernozhukov V, HeX et al (2017) Handbook of quan-
tile regression. CRC Press

36. Koochali A, Schichtel P, Dengel A et al (2019) Probabilistic
forecasting of sensory data with generative adversarial networks-
ForGAN. IEEE Access 7:63868–63880

37. Krzysztofowicz R (1999) Bayesian theory of probabilistic fore-
casting via deterministic hydrologic model. Water Resour Res
35(9):2739–2750

38. LimB, Arık SÖ, Loeff N et al (2021) Temporal fusion transformers
for interpretable multi-horizon time series forecasting. Int J Fore-
cast 37(4):1748–1764

39. Liu J,WuN,QiaoY et al (2021)A scientometric review of research
on traffic forecasting in transportation. IET Intel Transport Syst
15(1):1–16

40. Maciejowska K, Nowotarski J (2016) A hybrid model for GEF-
Com2014 probabilistic electricity price forecasting. Int J Forecast
32(3):1051–1056

41. Matheson JE, Winkler RL (1976) Scoring rules for continuous
probability distributions. Manage Sci 22(10):1087–1096

42. Murphy KP (2023) Probabilistic Machine Learning: Advanced
Topics. MIT Press, http://probml.github.io/book2

43. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn:
Machine learning in Python. J Mach Learn Res 12:2825–2830

44. Petropoulos F, Apiletti D, Assimakopoulos V et al (2022) Fore-
casting: theory and practice. Int J Forecast 38(3):705–871

45. Raftery AE (2016) Use and communication of probabilistic fore-
casts. Statistical Analysis and Data Mining: The ASA Data Sci J
9(6):397–410

46. Rasul K, Sheikh AS, Schuster I, et al (2020) Multivariate proba-
bilistic time series forecasting via conditioned normalizing flows,
2002.06103

47. Ribeiro MHDM, da Silva RG, Ribeiro GT et al (2023) Cooper-
ative ensemble learning model improves electric short-term load
forecasting. Chaos, Solitons & Fractals 166:112982

48. Salinas D, Flunkert V, Gasthaus J et al (2020) DeepAR: Proba-
bilistic forecasting with autoregressive recurrent networks. Int J
Forecast 36(3):1181–1191

49. Saravanan A, Parida S, Murugan M et al (2023) Thermal per-
formance prediction of a solar air heater with a C-shape finned
absorber plate using RF, LR and KNN models of machine learn-
ing. Therm Sci Eng Prog 38:101630

50. Sauer J, Mariani VC, dos Santos Coelho L, et al (2021) Extreme
gradient boostingmodel based on improved Jaya optimizer applied
to forecasting energy consumption in residential buildings. Evolv-
ing Syst pp 1–12

51. Scott C, Ahsan M, Albarbar A (2023) Machine learning for fore-
casting a photovoltaic (pv) generation system. Energy 278:127807

52. Smith RC (2013) Uncertainty quantification: theory, implementa-
tion, and applications, vol 12. Siam

53. Stankeviciute K, M Alaa A, van der Schaar M (2021) Conformal
time-series forecasting.AdvNeural Inf Process Syst 34:6216–6228

54. Wang Y, Hug G, Liu Z et al (2020) Modeling load forecast uncer-
tainty using generative adversarial networks. Electric Power Syst
Res 189:106732

55. WenR, TorkkolaK (2019)Deep generative quantile-copulamodels
for probabilistic forecasting. In: 36th International conference on
machine learning (ICML2019)

56. Williams WH, Goodman M (1971) A simple method for the con-
struction of empirical confidence limits for economic forecasts. J
Am Stat Assoc 66:752–754

57. Winkler RL (1972) A decision-theoretic approach to interval esti-
mation. J Am Stat Assoc 67:187–191

58. Xu Z, Lv Z, Li J et al (2022) A novel perspective on travel demand
prediction considering natural environmental and socioeconomic
factors. IEEE Intell Transp Syst Mag 15(1):136–159

59. Zaffran M, Féron O, Goude Y, et al (2022) Adaptive conformal
predictions for time series. In: International conference onmachine
learning, PMLR, pp 25834–25866

60. Zhang L, Zhang B (2019) Scenario forecasting of residential load
profiles. IEEE J Sel Areas Commun 38(1):84–95

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Authors and Affiliations

Kaleb Phipps1 · Benedikt Heidrich1 · Marian Turowski1 · Moritz Wittig1,2 · Ralf Mikut1 ·
Veit Hagenmeyer1

Benedikt Heidrich
benedikt.heidrich@kit.edu

Marian Turowski
marian.turowski@kit.edu

Moritz Wittig
moritz.wittig@mobilityhouse.com

Ralf Mikut
ralf.mikut@kit.edu

Veit Hagenmeyer
veit.hagenmeyer@kit.edu

1 Institute for Automation and Applied Informatics, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1,
Eggenstein-Leopoldshafen 76344, Germany

2 The Mobility House GmbH, St.-Cajetan-Str. 43, Munich
81669, Germany

123

http://probml.github.io/book2
http://orcid.org/0000-0002-9197-1739
http://orcid.org/0000-0002-1923-0848
http://orcid.org/0000-0002-3776-2215
http://orcid.org/0000-0001-9100-5496
http://orcid.org/0000-0002-3572-9083

	Generating probabilistic forecasts from arbitrary point forecasts  using a conditional invertible neural network
	Abstract
	1 Introduction
	2 Related work
	3 Generating probabilistic forecasts with a cINN
	3.1 Including uncertainty from the underlying distribution of the data
	3.2 Applying our approach

	4 Experimental setup
	4.1 Data
	4.2 Evaluation metrics
	4.3 Selected base forecasters
	4.4 Probabilistic benchmarks
	4.4.1 Probabilistic forecasts based on existing point forecasts
	4.4.2 Direct Probabilistic Forecasts

	4.5 Used cINN

	5 Evaluation
	5.1 Comparison of different base point forecasters
	5.2 Comparison to benchmarks
	5.2.1 Probabilistic forecasts based on existing point forecasts
	5.2.2 Direct probabilistic forecasts
	5.2.3 Qualitative analysis

	5.3 GEFCom2014 probabilistic price forecasting

	6 Discussion
	6.1 Results
	6.2 Insights

	7 Conclusion
	Appendix A additional implementation details
	Appendix B point forecast evaluation
	Appendix C additional result summaries
	Appendix D Full GEFCom2014 Results
	Acknowledgements
	References


