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A B S T R A C T   

Current systems codes (SCs) do not assess the impact of plasma filament parameters and dynamics in the SOL 
when performing systems-level analyses. Simulation tools based on simplified turbulent transport models could 
address such need, such as the TOKES code, but these tend to run in timescales that are prohibitive for incor-
poration in SCs. This work presents a technique to build surrogate models for SCs, obtained with the modes of 
Reduced-Order Models (ROMs), and is exemplified with results from TOKES. These surrogates were developed 
with Principal Components Analysis (PCA), multivariate regression against TOKES inputs (filament tempera-
tures, densities, and ejection speeds) and k-fold cross-validation, applied to the results after transformations 
based on rational powers of the inputs to optimize the prediction capabilities of the surrogates. Selection was 
performed with a modified Kullback-Leibler Divergence (KLD), and validation, with withheld cases. Main results 
include validation of the methodology due to the relatively low number of modes needed to represent more than 
90% of the data variance, and the data transformation exponents that optimize the regression.   

1. Introduction 

While most particles ejected from confined tokamak plasmas are 
directed towards the Divertor, some are distributed along the First Wall 
(FW) of Breeding Blankets (BBs) by following magnetic field lines in the 
so-called “far” Scrape-Off Layer (far-SOL, as opposed to the first, the 
near-SOL) [1]. Even though these fluxes are not the only phenomenon 
adding to the heat deposited on the FW (e.g. photons, charge-exchange), 
they can contribute to 20%− 30% [2,3] of the challenging design issue 
that is the total heat expected on the FW armor (at least up to ~1 
MW/m2 in the EU-DEMO [4], not considering off-normal events). At the 
same time, these fluxes also contribute to particle implantation in the 
armor (ion bombardment), which can impact systems-level analyses 
such as tritium permeation into the FW coolant, tritium retention in BB 
steel, and effusion fluxes that lengthen the pump-down [5]. 

Thus, Fusion power plant systems must be designed with these heat 
and particle fluxes in mind, ideally in the form of poloidal flux profiles that 
depict pertinent information, e.g. “hot spots” on the FW. Empirical laws 
similar to the Eich scaling [6,7] are often employed for quickly estimating 
these profiles, which distribute the heat to be delivered to the FW over the 
flux lines in the SOL with an exponential expression characterized by a 
decay length, particular to each machine [8]. However, scaling laws are 
generally difficult to be modelled and validated for the far-SOL [9]. And, 

even when available, they do not compute consistent particle and heat 
fluxes, arguably of greater import in systemic analyses, since they do not 
model the processes with which these fluxes reach the walls. 

Current tokamak plasma physics prescribes that the continuous 
production and expulsion of plasma filaments from the confined region 
is a main phenomenon contributing to these far-SOL fluxes. Filaments 
are plasma objects spanned along the magnetic field lines with cross- 
sections in the order of centimeters, that arise from small plasma fluc-
tuations near the separatrix due to turbulence in that region. These 
plasma tubes propagate from the confined region into and across the 
SOL due to E→× B→ drift, deforming along the way. However, they 
exhibit properties closer to the confined plasma from where they orig-
inate, instead of the SOL, which affects their dynamics and impact to the 
walls. Yet, a complete model of the process by which they are created 
and ejected remains a challenge for plasma physicists [10]. 

Nonetheless, the dynamics of filaments in the SOL can be approxi-
mated with simplified fluid-dynamics models as a palliative measure. 
The TOKES code [11] has been augmented to compute the evolution of 
plasma parameters inside filaments with prescribed initial cross-section 
diameters and ejection speeds, for fixed maps of the 2D poloidal mag-
netic flux and chamber wall that characterize a reactor design. The 
plasma in a filament starts with uniform temperature and density dis-
tributions along the magnetic field line found at the filament formation 
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position, between the pedestal and the separatrix. Its evolution is 
computed by coupling the plasma dynamics in the directions parallel 
and perpendicular to the field lines, which results in variations of plasma 
parameters along the magnetic field, and in flow of that plasma towards 
the wall. Renormalization of the deposited heat flux distribution on the 
wall by a prescribed far-SOL fraction of the transport power across the 
separatrix allows TOKES to compute the highly peaked total heat load 
profiles on the FW, alongside the associated (i.e. consistent) particle 
loads. Some peaks that can be up to 3 times higher than those under-
estimated by usual scaling laws, e.g. 60 kWm− 2 instead of 20 near the 
upper X-point for a prescribed a far-SOL fraction of 69MW [12]. 

This type of result is a desirable addition to the MIRA systems code 
(SC) [13], which currently does not boast of any far-SOL transport 
modeling [14] and is under development to enable studies of the impact 
of a fixed reactor design on other power plant systems, such as in the 
Balance-of-Plant and the Fuel Cycle. It would provide high-fidelity 
load-consistent heat and particle flux profiles that can be used in the 
aforementioned systems-level analyses, while also being 
model-consistent with plasma transport/magnetic models, since MIRA 
already produces magnetic flux and wall maps, as well as 1D profiles for 
plasma parameters along the normalized flux coordinate. Subsequently, 
further model-consistency can be achieved between heat/particle loads 
from all SOL models with energy and mass balances and for a choice of 
partitioning between far-SOL, near-SOL and radiation contributions 
based on literature [2,3]. 

At the same time, direct coupling of TOKES to a SC is challenging; the 
timescale required for its calculations is not compatible with the 
framework of SCs, and its spatial meshing procedure is prone to require 
manual adjustment. That is, studies on the impact of these types of re-
sults in MIRA require employing an alternate approach. A potential 
strategy is the production of surrogate models with data-driven tech-
niques and, of those, the Principal Components Analysis (PCA) [15] is a 
promising candidate because it is less training-data greedy than options 
such as Artificial Neural Networks (ANNs) [16–18], given the compu-
tational cost of TOKES runs. The application of such technique requires 
the construction of a database of results for a fixed reactor configuration, 
i.e. a specific plasma equilibrium and wall geometry, which antecedes 
the production of surrogates. This methodology may limit the flexibility 
of this kind of model in the framework of systems codes, but the 
approach can be considered sufficient for the desired systemic analyses 
described; at least while direct coupling with TOKES is not enabled by 
code refactoring and optimization. 

This work presents a novel technique to build optimized surrogate 
models using the PCA, and the potential parametric dependencies it may 
reveal when applied to results of plasma simulations. It is exemplified 
with a collection of cases computed by the TOKES code for flux and wall 
maps representative of the European Demonstration Powerplant (EU- 
DEMO) and combinations of initial filament parameters (plasma tem-
perature and density, and ejection speed). Section 2 describes the TOKES 
simulation results and the proposed methodology. Section 3 describes 
the PCA solution and subsequent surrogate models built by regression 
against filament parameters. Section 4 describes the optimization pro-
cess, including a novel expression derived for model selection. Section 5 
discusses the results, including the new parametric dependency identi-
fied and proposes follow-up studies. 

2. Overview of the TOKES library and of the proposed 
methodology 

A collection of cases was built by running the TOKES code with the 
poloidal flux and wall maps shown in Fig. 1, produced by MIRA, and for 
the 32 combinations of the following initial filament parameters,1 

representatives for the reactor of interest:  

• temperature T(eV) ∈ [100, 300, 1000, 3000],  
• density N

(
m− 3) ∈

[
1019, 1020],  

• ejection speed V
(

m
s

)
∈ [100, 200, 500, 1000]. 

Each case produced by a TOKES simulation, lasting 10–30 min of 
computational time, provided poloidal profiles for both the heat flux 
Q→

(
MWm− 2) and the particle flux G→

(
m− 2s− 1) reaching the FW, as 300- 

point vectors of values along the coordinate following the plasma 
chamber wall in counterclockwise direction, starting at the lowest 
inboard (i-label) point and through the lowest outboard (o-label) point. 

Fig. 2 shows these profiles for a subset of the cases, normalized to 1 
MW of prescribed far-SOL power. Miniaturized versions of the full 
profiles show the difference in scale between local maxima close to the 
Divertor (lowest inboard/outboard points) and the most significant local 
maxima seen near the upper X-point (x label). Flux values between the 
lowest inboard and outboard points are null for all cases because fila-
ments in TOKES are restricted to the far-SOL and do not hit the Divertor. 
The red boxes in the miniaturized profiles depict the partial ranges in the 
profile plots that are magnified and displayed in the center of the figure; 
the different scales of these ranges, in comparison to the local maxima 
close to the Divertor, emphasizes the need of a model that concomitantly 
computes both heat and particle profiles, since one cannot be trivially 
derived from the other. 

A confront between the magnified cases, and between magnified and 
miniaturized profiles of each case, also demonstrates the non-linearity of 
the data, which implies that estimating these profiles cannot be achieved 
with simple multiplication factors applied to a fixed “template” profile. 
That is, the impact that these filament parameters have on the profiles 
cannot be straightforwardly mimicked by choices of modifiers for 
scaling laws and parameters, especially while also ensuring consistency 
with the confined plasma modelled by MIRA. Instead, building surro-
gates based on Reduced-Order Models (ROMs) is proposed. 

Fig. 3 shows a diagram of the strategy to build surrogates using 
ROMs, exemplified with values specific to building TOKES surrogates. 
The TOKES collection is split into two libraries (upper left corner): of 
“training” cases (24, for ROM construction) and of “withheld” cases (8, 
for surrogate validation), to ensure ~30% of the simulation results are 
reserved for validation. Withheld cases are cherry-picked to not include 
any extreme value of the T and V sets, to promote interpolative models 

Fig. 1. Poloidal flux and reactor chamber wall maps computed by MIRA for the 
EU-DEMO and passed to TOKES as reactor configuration. Letter labels (red) 
indicate points of interest on the surface for which particle and heat flux pro-
files due to filaments are computed: lowest inboard (i) and outboard (o) points; 
the upper (ex-vessel) X-point is also indicated in the magnetic saddle point (x). 

1 The plasma temperature refers to both electrons and ions, as expected for 
the plasma in the birthplace of filaments. 
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instead of extrapolative. Two datasets (for heat and particle profiles) are 
built from the training library, ordered into a matrix of “measurements” 
X and pre-processed into standardized data (mean-subtracted and with 
variance set to 1). Isomorphism parameters are stored for later inversion 
back to non-standardized space. Optionally, datasets can also be non- 
linearly transformed to improve the regression procedure tackled 
later; this is discussed in more detail in Section 4. 

The PCA is subsequently applied; the technique expresses datasets of 
large dimensionality in a basis of singular vectors (components). These 
“modes” of data are ensured by the Singular Value Decomposition (SVD) 
algorithm to be orthogonal and have maximal correlation with the 
original datasets, ranked by their associated singular values. Linear 
combinations of all modes reconstruct the original results and define a 
Full Order Model (FOM). The amount of data variance reproduced by 
each mode is classified by its singular value, and data reconstruction 
with only the most meaningful modes defines a ROM instead. The full 
number of modes amounts up to the number of cases in the dataset [15]. 
Successful generalization of trends in the data with modes usually re-
quires more cases than the dimensionality of a single case, but for highly 
structured data (e.g. human faces in classification algorithms, or far-SOL 
flux profiles that are strongly determined by the magnetic field geom-
etry) this may be accomplished with considerably smaller datasets. This 
possibility must be assessed with ratios between singular values, which 
identify the number of modes required to represent a meaningful portion 
of the data variance (e.g. >90%) [19]. 

The resulting truncated set of modes (i.e. the ROM) is then used to 
build multivariate regression models against the filament parameters 
used to run each case, as shown in Fig. 3 (green box), similarly to a 
Principal Components Regression (PCR) but using the filament 

parameters directly as explanatory variables [20]. The use of (i) a ROM 
instead of a FOM decreases the chance of overfitting, i.e. increased 
model complexity that worsens its prediction capabilities, as does [19]:  

(ii) a k-fold cross-validation procedure, by building k regression 
models out of random subsets of training cases (upper right 
corner); subset size (fold fraction) is usually about 70% of the 
training library. The average of each regression coefficient across 
all models defines the final coefficients for the surrogate model 
(lower right corner).  

(iii) comparing models using Information (loss) Criteria, such as the 
Kullback-Leibler Divergence (KLD): 

KLD =

∫

ds(x, β, μ)dx (1)  

ds(x, β, μ) = f(x, β)⋅ln
(

f(x, β)
g(x, μ)

)

, (2)  

which measures the distance between the true profile f(⋯) and 
the predictor model g(⋯), or the loss of information (“surprise”), 
by integrating the Surprise Distribution ds in the data space of X, 
given parameter sets β and μ. The quality of the surrogate is 
evaluated by comparing its predictions for profiles of each case (i. 
e. each (T,N,V) combination) with the original ones (lower left 
corner). 

Fig. 2. Heat (top) and particle (bottom) flux profiles that reach the FW, for a subset of cases simulated by TOKES. Full profiles are seen miniaturized (left), while 
partial ranges of the same profiles (red box) are magnified to exemplify the impact of initial filament simulation parameters (center). Variations of the temperature T 
(line color), density N (marker vs. no marker) and ejection speed V (continuous vs. dotted line) alter, e.g., the fraction of the profile deposited on the wall section close to 
the upper X-point; the letter label between plots (red x) indicates the same point of interest along the reactor chamber wall as in Fig. 1. 
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3. Data-driven surrogates for TOKES 

3.1. PCA of FW heat & particle flux profiles 

Fig. 4 shows the first 6 PCA modes before inversion of standardiza-
tion (i.e. nominal values not measured in Q→ and G→ units). Modes are 
plotted after projection in measurement space (i.e. versus the position 
along plasma chamber wall) to identify points of interest more easily. 
For example, as expected, peaks close to the Divertor and upper X-point 
are particularly visible on the first 2 modes, the ones that represent most 
of the variance captured by the PCA. 

Fig. 5 shows that these first 6 modes explain more than 90% of the 

data variances, which corroborates the hypothesis that a limited number 
of TOKES simulations can be used to build regression-based surrogates 
due to the strong impact of the magnetic field on the profiles. Filaments 
propagate following magnetic field lines and necessarily connect with 
solid surfaces (leading to fast deposition of particles and heat) where 
these lines are designed to meet the FW; this results in fluxes larger at 
certain wall positions, such as near the upper and lower X-points. 

3.2. Prediction of profiles by surrogate models 

Only the first 6 PCA modes were used to build surrogate models 
through k-fold regression (vide Fig. 2). The number of folds k was 
determined by studying the change in the averaged regression co-
efficients for varying values of k between 2 and 2000. It was chosen as 

Fig. 3. Diagram of the strategy to build and validate each surrogate model. In this context, the term “partition” refers to a cherry-picked subset, while “fraction” 
refers to a random subset. Data transformation (dashed lines/boxes) are optional steps and have only been employed in the follow-up study discussed in Section 4. 

i o       x

Fig. 4. Visualization of PCA modes in measurement space for standardized (i.e. 
dimensionless) data of heat and particle flux profiles. Letter labels (red) indicate 
the same points of interest along the reactor chamber wall as in Fig. 1. 

Fig. 5. Visualization of relevance of all PCA modes for heat fluxes (red) and 
particle fluxes (blue): scree plot for the singular values associated to each mode 
(left); ratio between cumulative and total sums of ranked singular values (right). 
For the 6 largest singular values, the associated modes already reproduce >90% 
of the data variance present in both datasets and suggest truncation (dotted 
lines) is possible. 
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the minimum for which deviation between the cumulative and the (3- 
elements) moving average for all averaged regression coefficients was 
below 10%; it was consistently computed to be between 20 and 40 
folds.2 

Fig. 6 shows a comparison between absolute values of KLD evalua-
tions for the predictions of PCA and surrogate models for each case 
simulated by TOKES. To characterize each curve by a single numerical 
evaluation, the figure also displays geometrically averaged values of the 
KLD evaluations for all cases (“geo-mean”, given the logarithmic 
spread). The curves and geo-means emphasize the following:  

• the FOM reconstruction of the original TOKES profiles is associated 
with a surprise value that is computationally indistinguishable from 
zero.  

• the ROM reconstruction of the original TOKES profiles is associated 
with surprise values between orders of magnitude 10− 5 and 10− 2, 
and its geo-mean of 10− 3can be considered a minimum baseline for 
model comparisons, probably given by an unavoidable loss of in-
formation due to PCA truncation.  

• the predictions for the training library (cases 1–24) computed by the 
surrogate models incur, on average, in surprise values of one order of 
magnitude higher than the reconstructions by the ROMs and coin-
cide with most surprises for the withheld library (cases 25–32). 

Fig. 7 can be used to further assess the capability of the surrogate 
models in predicting profiles. It shows two examples of predictions when 
compared to the original profiles computed by TOKES: one from the 
training library (case 2) and one from the withheld library (case 27). Of 
note: 

• most of the necessary profile shapes are well-captured by the sur-
rogates, with just some notable deviation in the local maxima close to 
the Divertor.  

• as expected from the original profiles, predicted values inside the 
Divertor region are null.  

• surrogate responses are similar for similar (T,N,V) combinations, 
even for combinations not used for model training, which is math-
ematically represented by the similar KLD evaluations between 
training and withheld cases. 

These, alongside the evaluations in Fig. 6, imply that the surrogate 
models presented so far can successfully reproduce the profiles simu-
lated by TOKES, albeit with the incursion of non-negligible error; the 
optimization procedure presented in Section 4 is proposed to potentially 
reduce this error. 

4. Optimization of TOKES surrogates 

Surrogate models based on multivariate regression might not be able 
to capture all data trends, such as non-linear dependencies. However, 
Koopman Operator theory suggests that it is possible to find an appro-
priate choice of dataset transformation prior to the application of the 
PCA that linearly represents the system, depicted as the optional step in 
Fig. 3 (dashed boxes) [19]. Heat and particle fluxes due to filaments 
might correlate, for example, with the electron collisionality in the 
far-SOL, which scales with N/(Te)

2 and whose low values is known to 
suppress filaments by shearing [10]. 

With this assumption, the elements Xp,c of the training matrix were 
transformed: 

X̃p,c = Xp,c⋅(Tc)
t⋅(Nc)

n⋅(Vc)
v
, (3)  

Fig. 6. Model evaluations using the KLD, for heat flux (red) and particle flux 
(blue) profiles, case-by-case, alongside geometric-averages for all cases of each 
library and model. By increasing order of magnitude of surprise: FOM recon-
struction of TOKES profiles (dashed lines, “untrimmed”); ROM reconstruction of 
TOKES profiles (continuous lines, “truncated”); averaged-regression model pre-
diction of training cases (dash-dotted lines, “training”); averaged-regression 
model prediction of withheld cases (dotted lines, “withheld”). 

Fig. 7. Comparison between original profiles simulated by TOKES (continuous 
lines) and predicted profiles (dashed lines), for the heat (red) and particle (blue) 
fluxes, in two representative cases: a training case (2) and a withheld case (27). 
Evaluations with the KLD of the predicted profiles computed with the surrogate 
models are displayed in the corners. 

2 The value k must not be strictly optimized, just big enough to allow for a 
relatively stable set of averaged regression coefficients. Some lower values of k 
might even produce better evaluation results, but it is statistically likely these 
represent models that are good at training-data reconstruction, but bad at 
predicting unknown profiles, and thus were avoided. 
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for all indexes representing positions p along the chamber wall and cases 
c of the training library. For varying combinations(t, n, v) of these ex-
ponents, the exponent-space of ε ∈ [− 10,10] was scanned for each 
exponent ε = t,n,v, with the goal of determining for which combination 
the geo-mean evaluation of each library is minimized (i.e. the surrogates 
that most correctly predict all TOKES profiles). For this scan, a Modified 
Divergence MD was defined: 

MD =

⃒
⃒
⃒
⃒

∫

dm(x, β, μ)dx
⃒
⃒
⃒
⃒ (4)  

dm(x, β, μ) =

⎧
⎨

⎩

f(x, β), ∀ (g = 0)
g(x, β), ∀ (f = 0) ∧ (g ∕= 0)
ds(x, β, μ), otherwise,

(5)  

since the conventional KLD Surprise Distribution ds (vide Eq. (2)) is not 
defined where surrogates predict regions with zero flux.3 The Modified 
Distribution dm (vide Eq. 5) ensures that discrepancies between the 
original and the predicted profiles are more strongly penalized, wher-
ever exclusively one of them displays non-trivial null-flux regions. 

Fig. 8 shows 3D plots of some selected results of evaluations using the 
MD during these exponent scans; as an example, evaluation geo-means 
are displayed only for the training cases. In both graphs, a point can 
be seen where the geo-mean is evidently minimized, found at the 
intersection where the geo-mean is lowest for each single-parameter 
scan (“best” mid-planes). This strongly suggests an optimal trans-
formation exists. 

Fig. 9 shows the search for lowest evaluation geo-means, when 
plotted against the variation of each single exponent. Each curve fixes 
two exponents and varies the last one within the exponent-space of ε, 
with a step of Δε = 0.02 within [− 1,1] and with a step of Δε = 1 for the 
rest. All curves identify a geo-mean minimum along its associated single- 
exponent scan, and that minimum determines the exponent value that 
defines the associated “best geo-mean” mid-plane. These minima iden-
tify the data transformations that best linearize the datasets in respect to 
(T,N,V) for each library, with an uncertainty given by the exponent step 
size Δε around each minimum, and are listed in Table 1. Results from 
training and withheld libraries were kept separate and optimal data 
transformations were estimated as their weighted average using the 
number of cases in each library as weights, again to promote interpo-
lative models. Such weighted averages were used to build optimized 
surrogates. 

Fig. 10 shows predictions for the same training and withheld cases 

given as examples in Section 3.2 (2 and 27, respectively), but produced 
by the optimized surrogates. Notably, the error between prediction and 
original profiles is considerably reduced, except for the discrepancies 

Fig. 8. Visualization of the distribution of (MD) evaluations geo-mean for the 
prediction of training cases for the heat flux (left) and particle flux (right) 
profiles in exponent-space. Results, displayed for an exponent scan in the ε ∈

[− 2, 2] range with a step of Δε = 0.1, show a point (intersection between “best 
geo-mean” mid-planes) in which the geo-mean is globally minimized. 

Fig. 9. Visualization of the geo-mean variation within each single-exponent 
scan, when keeping the other two exponents fixed at the values where they 
achieve minimum geo-mean during their own scans. Evaluations plotted 
separately for training (top) and withheld (bottom) cases, for both heat (left) and 
particle (right) flux profile predictions. 

Table 1 
Exponent values associated with the global minimum of the geo-mean (MD) 
evaluation scan for each flux profile (heat & particle) and library (training & 
withheld).  

flux ε exponent value (±0.02) [-] 

training (x24) withheld (x8) average (case-weighted) 

Q→
t 0.40 0.54 0.43 
n 0.24 0.22 0.23 
v 0.34 0.50 0.38 

G→
t 1.00 1.00 1.00 
n − 0.04 0.00 − 0.03 
v 0.06 0.08 0.06  

Fig. 10. Comparison between original profiles simulated by TOKES (continuous 
lines) and profiles predicted by optimized surrogates (dashed lines), for the heat 
(red) and particle (blue) fluxes, for (training) case 2 (top) and (withheld) case 27 
(bottom). Evaluations performed with the MD are displayed in the corners 
(“optimized”), alongside the MD evaluations for the base surrogates 
(“non-optimized”). 

3 For f(x,⋯) = 0, one can assume ds(x,⋯) = 0, but the same is not true for 
g(x, ⋯) = 0. Alternative failed attempts included variants of the KLD (e.g. 
Jeffreys, Jensen-Shannon) and treating the profiles (e.g. substitution of pre-
dictions by their moving-averaged versions before evaluation). 
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close to the Divertor region. This indicates that data transformation is 
largely successful in obtaining a better set of surrogate models. 

Fig. 11 shows the MD evaluations of predictions produced with the 
optimized surrogates (continuous lines). For comparison, the evaluations 
for the non-optimized surrogates are also displayed, computed with the 
MD (dashed lines) and the KLD (dotted lines). Comparison between the 
latter ones shows that KLD and MD evaluations coincide in most points; 
when not, the MD is always larger because it adds significant surprise 
wherever predictions either do not match null-regions in the profiles, or 
estimate zero for non-null regions. Furthermore, MD evaluations for 
optimized and non-optimized surrogates are similar for most cases, but 
are considerably better for others (e.g. 2, 13, 24, 25, 30, 31); the overall 
improvement of the capabilities of optimized surrogates is represented 
by smaller geo-means. 

5. Discussions & outlook 

Surrogates for the simplified turbulent transport model TOKES were 
developed using multi-variate regression on the modes of a Principal 
Components Analysis (PCA), with the goal of enabling consistent sys-
temic analyses in SCs that include filament far-SOL dynamics and heat/ 
particle flux profiles, unfeasible with scaling laws. This was done by 
presenting a systematic methodology to build and optimize these sur-
rogates, including a novel Modified Divergence (MD) expression used to 
evaluate their capabilities. 

The use of regression was proposed possible, despite the limited 
number of different TOKES simulations, due to the strong structuring of 
the flux profiles caused by the magnetic field geometry. This hypothesis 
was verified by the relatively low number of PCA modes necessary to 
represent more than 90% of the data variance of the training library for 
both profiles, even for the large ranges of initial filament parameters 
used as simulation inputs, which validated the approach. 

The optimization process relied on the assumption that the flux 
profiles could be linearized in relation to the initial filament parameters 
(T,N,V) by an appropriate choice of data transformation prior to the 
PCA. Scans over an exponent-space for powers of these parameters 
searched for the transformation that minimized model evaluations with 
the MD, which was developed to counteract limitations of conventional 
expressions. This revealed the exponents collected in Table 1 and 
implied the following dependencies: 

P→ TtNnVv =
∑

i
mi
̅→ (

cT,iT+ cN,iN+ cV,iV
)
, (6)  

with P→ representing either the heat flux profile Q→ or the particle flux 
profile G→, when mi

̅→ are the PCA profile modes associated with that flux, 
and c...,i are the likewise regression coefficients. Notably, these do not 

explicitly display the electron collisionality, which suggests that its 
correlation to filament behavior does not extend to their subsequent 
interaction with the walls. On the other hand, this result denotes the 
potential insights on unknown dependencies that the technique devel-
oped in this work may reveal when applied to results of physics-based 
simulations. These patterns may, in turn, be compared with modeling 
efforts to justify or challenge them. 

Before optimization, predictions by surrogates incur in non- 
negligible error when compared to the original profiles. However, it 
should be reiterated that all TOKES profiles are normalized to a pre-
scribed far-SOL power of 1 MW, i.e. their application requires re- 
normalization. Likewise, predicted profiles must also be renormalized 
by a far-SOL transport power computed by a confined plasma model, 
which implies a stronger importance of their shape over their nominal 
values. 

After optimization, the error in predictions was significantly reduced 
throughout most of each profile, with prevailing discrepancies on the 
peaks centered around the Divertor region. Arguably, however, this 
deviation is not significant, since the surrogate models are aimed at SCs; 
tools notoriously able to cope with relatively big deviations when the 
impact is not meaningful on parametric and scoping analyses, or inte-
grated design optimization. In qualitative terms, the absolute error 
incurred by these discrepancies in the predictions of far-SOL fluxes near 
the Divertor is likely considerably limited due to: (1) the narrow region 
in the chamber wall surface with which it is associated (and far from the 
equatorial line, which minimizes the effect of profile revolution); and (2) 
the extent of its contribution in comparison to near-SOL transport and 
radiation contributions. 

In fact, current experimental prescriptions distribute the total 
transport power across the separatrix approximately equally between 
near-SOL and far-SOL regions [3], if not considerably biased towards the 
near-SOL [2]. Considering that the wall surface area of the Divertor 
makes up for less than 9% of the total reactor chamber wall area (ge-
ometry referring to PROCESS SC modeling [21,22]), an application of 
the Eich scaling law for the near-SOL (such as the one currently imple-
mented in MIRA [14]) produces fluxes of at least one order of magnitude 
higher than those of the surrogate predictions, which effectively mini-
mizes the impact of far-SOL deviations on total SOL loads. 

In the framework of the MIRA SC simulating a fixed EU-DEMO 
reactor design (that is, for the fixed plasma equilibrium and wall ge-
ometry used to run TOKES), these optimized surrogates are expected to 
perform novel parametric analyses of the impact of filament properties 
to other power plant systems. This will enable the study of potentially 
relevant dependencies, such as between the design temperature of the 
FW and effusion fluxes during pump-down, given the (consistent) heat 
and particle load profiles. Initial filament temperatures and densities are 
planned to be derived from the confined plasma model in MIRA, while 

Fig. 11. Model MD evaluations for each case and their geo-means, for heat fluxes (top, red) and particle fluxes (bottom, blue) profiles, for two different surrogates: 
base (dashed lines), built with non-transformed data; and optimized (continuous lines) built with data transformed with exponents in Table 1. For comparison, base 
surrogate evaluations and geo-means are also provided for KLD evaluations in both graphs (dotted lines, black). 
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ejection velocities must be pre-defined (substituting the decay length in 
scaling models as user parameter). As seen in Fig. 2, the latter can 
redistribute heat and particles fluxes along the chamber wall and an 
assessment of its systems-level impact is also desirable, which cannot be 
achieved with conventional scaling laws. Ideally, empirical reports for 
the partitioning of filaments characterization should be used to describe 
their population in the SOL; but while unavailable, extreme values based 
on literature measurements can be conservatively used. 

Further improvement of the proposed methodology can be pursued 
with techniques like gradient-descent in the exponent-space scan, or 
SINDy to identify alternative transformations. Additionally, while a far- 
SOL model compatible with SC is not available, generalization of the 
surrogates to other magnetic field operational points can be investi-
gated, by including plasma and coils currents as appended regression 
parameters. 
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