
Quantifying Software Correctness by Combining Architecture
Modeling and Formal Program Analysis

Florian Lanzinger
Karlsruhe Institute of Technology

Karlsruhe, Germany
lanzinger@kit.edu

Christian Martin
Karlsruhe Institute of Technology

Karlsruhe, Germany
christian.martin@kit.edu

Frederik Reiche
Karlsruhe Institute of Technology

Karlsruhe, Germany
frederik.reiche@kit.edu

Samuel Teuber
Karlsruhe Institute of Technology

Karlsruhe, Germany
teuber@kit.edu

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Alexander Weigl
Karlsruhe Institute of Technology

Karlsruhe, Germany
weigl@kit.edu

ABSTRACT

Most formal methods see the correctness of a software system
as a binary decision. However, proving the correctness of com-
plex systems completely is difficult because they are composed
of multiple components, usage scenarios, and environments. We
present Quac, a modular approach for quantifying the correctness
of service-oriented software systems by combining software archi-
tecture modeling with deductive verification. Our approach is based
on a model of the service-oriented architecture and the probabilistic
usage scenarios of the system. The correctness of a single service is
approximated by a coverage region, which is a formula describing
which inputs for that service are proven to not lead to an erroneous
execution. The coverage regions can be determined by a combina-
tion of various analyses, e.g., formal verification, expert estimations,
or testing. The coverage regions and the software model are then
combined into a probabilistic program. From this, we can compute
the probability that under a given usage profile no service is called
outside its coverage region. We also present an implementation of
Quac for Java using the modeling tool Palladio and the deductive
verification tool KeY. We demonstrate its usability by applying it to
a software simulation of an energy system.

CCS CONCEPTS

• Software and its engineering→ Formal software verifica-

tion; Object oriented architectures.

KEYWORDS

Service-oriented architecture, Component-based architecture, Ar-
chitecture modeling, Deductive verification, Quantitative verifica-
tion, Architecture simulation, Software reliability estimation

ACM Reference Format:

Florian Lanzinger, Christian Martin, Frederik Reiche, Samuel Teuber, Robert
Heinrich, and Alexander Weigl. 2024. Quantifying Software Correctness by
Combining Architecture Modeling and Formal Program Analysis. In The

SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0243-3/24/04.
https://doi.org/10.1145/3605098.3636008

39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April 8–12,
2024, Avila, Spain. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3605098.3636008

1 INTRODUCTION

Motivation. Vehicles and critical infrastructure are increasingly
governed by software. Therefore, verifying that software behaves
according to its specification is becoming ever more important.
However, most formal methods used to prove a program’s correct-
ness simply output a binary decision, which does not do justice to
large software systems which combine many different components
in a complex usage environment.

An individual component may behave provably correctly under
assumptions that are not ensured by its environment or, conversely,
a component may behave incorrectly for inputs that never appear
when used within the evaluated system. Both cases can also be
considered more gradually: It may be the case that inputs leading
to incorrect behavior are very rare or extremely frequent. This
demonstrates the necessity for analyses which reach across mul-
tiple components and for more gradual, quantitative assessments.
There are some non-binary measures of software reliability based
on source code in the literature like test coverage. However, such
approaches often do not provide guarantees on the system’s re-
liability for concrete usage scenarios. Many quantitative source
code analyses only consider individual components, in which case
it remains unclear how to combine the metrics. Related work in
the architectural domain, such as by Brosch et al. [6], computes
reliability measures based on concrete usage scenarios, the sys-
tem structure, and abstract behavioral specifications. However, the
reliability-relevant information is only estimated by an expert.

Our work proposes to couple a quantitative analysis of the archi-
tecture model with a formal analysis of source code. By combining
these analyses, we can reason about larger systems while still pro-
viding fine-grained, quantitative feedback on reliability. In addition,
the coupling enables the usage of implementation details in the
architectural analysis rather than relying on assumptions by an
software architect [23].

Contribution. We introduce Quac (“Quantifying Architecture
and Code”), an approach to quantitatively determine the probability
that a piece of software respects its contract by combining architec-
ture modeling and formal source-code analysis. Quac answers the

1702

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0001-8560-6324
https://orcid.org/0009-0004-4332-1194
https://orcid.org/0000-0002-5993-0558
https://orcid.org/0000-0001-7945-9110
https://orcid.org/0000-0003-0779-9444
https://orcid.org/0000-0001-8446-4598
https://doi.org/10.1145/3605098.3636008
https://doi.org/10.1145/3605098.3636008
https://doi.org/10.1145/3605098.3636008
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605098.3636008&domain=pdf&date_stamp=2024-05-21

SAC ’24, April 8–12, 2024, Avila, Spain Lanzinger et al.

following query: “With what probability does a typical usage of the
system not lead to an error?” By error, we mean any program state
contrary to a method’s contract. Specifically, an error occurs when-
ever a method terminates in a state violating its postcondition and
whenever it calls another method in a state violating that method’s
precondition. To describe these states, we use coverage regions for
every method: a coverage region is a formula describing inputs
for which the current method is proven to behave correctly. All
coverage regions are inserted into an architectural model. Based on
this model and a usage profile describing the typical system usage,
we use model counting to calculate a coverage probability, which
is an under-approximation of the correctness probability that the
overall program behaves correctly.

To find coverage regions, we consider several approaches, which
makes Quac applicable both in the early and late stages of software
development. In the early stages, they are estimated by the develop-
ers. These estimations are later replaced by testing and verification
results, which are the main approaches considered in this paper. In
operation, the usage profile and coverage regions can be further
updated by information monitored at run time. This makes Quac
incremental: Information gathered in different phases leads to more
precise modeling and thus to a better risk assessment. In addition, it
allows developers to combine static verification approaches, which
are powerful but expensive – especially when aiming for 100% proof
coverage – with run-time verification and testing approaches in a
rigorous way.

We formally introduce the Quac approach and show that it is
sound, i.e., it never overestimates the correctness probability. We
provide a concrete implementation using the Palladio Component
Model (PCM) [22], a metamodel for component-based software
architectures and usage profiles, KeY [1], an interactive theorem
prover, and several probabilistic model counters. Finally, we demon-
strate its usability in a case study.

Limitations. Quac can be applied to programs modeled as a
service-oriented, component-based architecture. We require an as-
sociation between source-code elements (methods and classes) and
architectural elements (services and components). In addition, the
logic in which the coverage regions are expressed is restricted by
the analysis tools (e.g., KeY) and the model counter. So far, Quac
can be used for safety properties, i.e., the probability of certain
errors given certain input distributions. It is not suitable for other
properties like liveness. The implementation only supports syn-
chronous calls and the execution of a single usage profile. It does
not support multi-agent analyses. It is also limited to programs
without unbounded loops or recursion. We plan to extend it to
allow support for more general control flow structures both in the
service models and in the extraction of coverage regions.

2 PRELIMINARIES

Architecture and code. We combine fine-grained analyses on the
source-code level with coarse-grained analyses on the architectural
level. On the source-code level, we have an object-oriented program
consisting of classes which provide methods. On the architectural
level, we have a service-oriented, component-based architecture
consisting of components which provide services. We assume a map-
ping that maps every component to a class and every service to a

method (not necessarily vice versa). Component-based behavioral
specifications provide, in general, no information about the inner
state of a component, i.e., state variables. Every service or method
also has a contract consisting of two formulas (pre, post), where
pre is the precondition, which must hold whenever the service is
called, and post is the postcondition, which must hold whenever
the service terminates. In addition to the structure of the software,
we also have behavioral specifications, which are rough approxima-
tions of the internal behavior of a given service. Such specifications
include, for example, control flow constructs, like branches or loops,
and calls to other services. We assume that every behavioral spec-
ification in the architecture is respected by the implementation
of the corresponding method. This consistency can be achieved
manually, by applying consistency preservation approaches like
the one by Monschein et al. [21] or Vitruvius [17], or by inferring
the behavioral specifications from the source code.

Software modeling with the Palladio Component Model. We build
upon service-oriented, component-based architectures, which can,
e.g., be modeled in the Palladio Component Model (PCM) [22]. In
the PCM, architectures consist of independent components, which
provide services to the user or to other components. A component
must declare all services from other components that it requires.
Two components are connected if one component provides a ser-
vice required by the other one. Therefore, a service can be called
from outside a component; it takes a specified number of param-
eters and returns a result. Service calls are always synchronous.
For every service, a behavioral specification is provided in form
of Service Effect Specifications (SEFFs). A SEFF contains, among
others, nodes for control structures like loops and branches, the
usage of parameters in the behavior, external call actions modeling
calls to other services and the description of results from external
calls and their processing. Conditions in control-flow structures
are defined by expressions over values provided by local variables,
the parameters and other arbitrary specifications. This SEFF is an
abstraction of the source code that actually implements the ser-
vice: It exactly specifies the service’s behavior w.r.t. calls to other
services and modifications of the component state, but the imple-
mentation may contain additional computations or optimizations
not represented in the SEFF. We also use the PCM’s usage profile,
which describes the usage scenario of the system in form of a flow
chart and calls of the public services. It also specifies probabilistic
values to model the unknown user input. In essence, usage profiles
capture the observation of how the system is or should be used.
These probabilistic values are provided either from an expert of the
systems domain from prior projects (educated guess) or by mea-
surements [22]. Measurements can be taken from prior versions of
the product in an evolution scenario or in early versions taken from
a test group. The described system behavior under a usage profile
is a computation tree of service calls assembled by the execution of
the usage profile and the directly or indirectly called SEFFs and the
applied control structures. Because of the probabilistic usage profile,
each computation path in the tree has an associated probability.

Source code analysis. The most important tool we use to analyze
the source code is KeY, a deductive verification tool used to prove
Java programs specified in the Java Modeling Language (JML) [20].
KeY is semi-automatic, meaning that most JML specifications can

1703

Quantifying Software Correctness SAC ’24, April 8–12, 2024, Avila, Spain

be proven automatically, but for more complex cases, the proof can
be manually inspected and guided by a human verifier.

We define the necessary concepts of source code analysis through
the lens of dynamic logic (DL). A detailed overview of DL is given
by Harel et al. [12, 13]. Generic first-order DL is a multi-modal logic
which extends first-order logic (FOL) with programs that describe
possible state transitions. To assert that some postcondition post
holds after execution of a program 𝛼 , we use the box modality:
[𝛼] post. Using the usual logic operators from FOL, we can then
specify contracts, such as the following, which asserts that, if the
variable 𝑥 starts with the value 42, then it will always be larger
than 42 after we run the program in brackets for any positive 𝑎:
𝑥 = 42∧𝑎 > 0 → [𝑥 B 𝑥 + 𝑎] 𝑥 > 42. Formulas in DL are evaluated
using Kripke structures with state transitions where each state
𝜎 ∈ S contains (among other things) a first-order logic structure
assigning each variable a value of its respective domain. We use
𝜎 ⊨ 𝜌 to denote that a DL formula 𝜌 holds in 𝜎 ∈ S and ⊨ 𝜌 to
denote that a formula is valid, i.e., holds in all states.

There are many instances of DL, including Java Dynamic Logic
(JavaDL) [1, Ch. 3], which is implemented in KeY to deductively
verify Java programs specified by JML contracts. KeY’s calculus
operates on sequents of the form 𝜙 =⇒ 𝜓 , where 𝜙 is the antecedent
and consists of 𝑛 formulas 𝜙𝑖 while𝜓 is the succedent and consists
of 𝑚 formulas 𝜓 𝑗 . A sequent is satisfied by a state 𝜎 ∈ S iff 𝜎 ⊨∧

𝑖 𝜙𝑖 →
∨

𝑗 𝜓 𝑗 . A sequent satisfied by all states is called valid. A
formula 𝜌 can be proven true by applying axioms and rules that
construct a proof tree: The root is the sequent =⇒ 𝜌 , where the
succedent contains the formula to prove and the antecedent is
empty. By applying a rule to a node 𝐶 , we obtain several child
nodes 𝑃1, . . . , 𝑃𝑛 such that the validity of all sequents 𝑃𝑖 together
implies the validity of the sequent𝐶 . Rules may be locally or globally
sound [4]: A rule is globally sound if the validity of all 𝑃𝑖 implies
the validity of 𝐶 and locally sound if every state satisfying all 𝑃𝑖
also satisfies𝐶 . The tree’s leaves are called goals and may be closed
– i.e., tautologies – or open – i.e., yet to be proven.

We have defined an error as occurring whenever a method ter-
minates without satisfying its postcondition or whenever it calls
another method while violating that method’s precondition. To
handle the second case and to make our analysis modular, we use
a contract rule: a sequent like 𝜙 =⇒ [foo()]𝜓 is only provable
through the two premises 𝜙 =⇒ pre and 𝜙, post =⇒ 𝜓 where
(pre, post) is foo’s contract.

In addition to potentially slow, but powerful formal verification
tools like KeY, we can also use methods like testing, monitoring
or expert estimates. While such methods may be faster and give a
good first approximation, their use in Quac is generally unsound.

3 THEORETICAL OVERVIEW OF QUAC

Figure 1 illustrates our approach. The user-defined architectural
model is in the center, defining the software components and services.
Every service is modeled by a behavioral specification. In addition,
the component model contains a usage profile, which gives a dis-
tribution for the initial state and tells us what services are called
in the usage of the system. On the left, we have the source code,
which we assume is consistent with the behavioral specifications,
and which includes a contract for every method. After calculating

coverage regions, we add them to the service models. The extended
service models and the usage profile are then translated into a prob-
abilistic model, from which a model checker computes the coverage
probability, i.e., the probability that no service is ever called with an
input outside its coverage region. If all coverage regions are correct,
the coverage probability is less than or equal to the correctness prob-
ability, i.e., the probability that the implementation never violates
its specification.

Sec. 3.1 defines the parts of our architecture model in more detail.
Sec. 3.2 then explains how we compute the coverage probability
from the architecture model on a theoretical level and proves that
the coverage probability always under-approximates the correct-
ness probability. Sec. 4 explains how coverage regions are computed
using deductive verification or testing. Sec. 5 explains how the com-
putation of the coverage probability is implemented.

3.1 Modeling the System

Modeling a service. We model a service by two parts: its coverage
region, a formula describing the inputs for which its implementation
is proven to behave correctly, and its behavioral specification, which
is an abstraction of the implementation describing how the service
modifies the component state and what other services it calls. In
addition, we assume that every service has a contract (pre,post).

Definition 3.1 (Service model). Given a service 𝑠 , let Σ be a sig-
nature which includes the parameters of 𝑠 and every component’s
state variables. Let FmlΣ be the set of all quantifier-free first-order
formulas and TermΣ the set of all terms over Σ.

A service model is a tuple (cov, beh), where cov ∈ FmlΣ is a cov-
erage region and beh is a sequence of statements: every statement
is either a conditional assignment if (fml) var = trm assigning
the value of trm ∈ TermΣ to a variable var ∈ Σ of the same type
if fml ∈ FmlΣ holds, a conditional service call if (fml) var =

𝑓 (trm1, . . . , trm𝑛) calling the service 𝑓 with the well-typed parame-
ters trm𝑖 and assigning the result to var if fml holds, or a conditional
termination statement if (fml) that terminates the service pre-
maturely.

Coverage regions. A coverage region cov ∈ FmlΣ describes the
input parameters and component state under which a service’s
implementation is proven to behave correctly, i.e., not terminate
in a state that violates the postcondition nor call another method
in a state that violates the callee’s precondition. It is determined
by validating the method that implements the service separately
from all other methods using testing, formal methods, or run-time
monitoring. For services which are not yet implemented in an early
development stage, the coverage region can also be estimated to
obtain a what-if analysis. A coverage region does not necessarily
represent the set of initial states for which the service behaves
correctly, but the possibly smaller set of initial states for which we
can prove that this is the case. For the soundness in Thm. 3.6, we
must require that every coverage region be correct, i.e., that no
input inside the coverage region lead to an error.

Definition 3.2 (Errors and correctness regions). For a given method
𝑓 and its postcondition post, an error is either of the following: a
terminal program state for 𝑓 in which post does not hold, or a

1704

SAC ’24, April 8–12, 2024, Avila, Spain Lanzinger et al.

Architectural

Model

Coverage
Regions

Source Code &
Contracts

Verification

Test

User

Review & Estimation

Modeling
Architecture

Probabilistic
Model

Reliability
Estimation

Model
Checker

Figure 1: An overview of the Quac workflow.

WindTurbine

produce(int windSpeed);

Network

int load;

addLoad(int n);
useLoad(int n);

Consumer

consume(int demand);

void produce(int windSpeed) {
if (windSpeed < 9)
debuglog("producing");
network.addLoad(windSpeed*3/4);

}

void produce(int windSpeed) {
if (windSpeed < 9)
debuglog("producing");
network.addLoad(windSpeed*3/4);

}

void consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

void consume(int demand) {
debuglog("consuming");
network.useLoad(demand);

}

Figure 2: An example software architecture and implementation.

program state in which 𝑓 calls another method 𝑔 with precondition
pre in which pre does not hold.

We define the method’s correctness region correct to be the for-
mula which holds exactly in those initial states in which executing
𝑓 does not lead to an error.

Definition 3.3 (Correct coverage regions). For a given method
𝑓 and its contract (pre, post), a coverage region cov is correct iff
cov → correct.

Since a coverage region describes the inputs for which a ser-
vice’s implementation is proven to behave correctly, any coverage
region computed by a sound proof calculus is correct. While any
correct coverage region suffices to make our approach sound, larger
regions (i.e., weaker formulas) make it less precise by decreasing
the coverage probability. The goal is thus to find maximal correct
coverage regions.

Behavioral specifications. The behavioral specification beh of a
service model s is a sequence of statements according to Def. 3.1.

The implementation may be more complex than beh and con-
tain additional statements not represented in beh. However, the
implementation’s behavior w.r.t. calls to other services and changes
to state variables must be specified exactly. This is because, e.g., a

spurious call in a service model may both decrease (if it leads to an
error) and increase (if it changes the component state in way that
prevents a future error) the coverage probability.

This requirement is achievable with existing methodologies: In
model-driven development, behavioral specifications are created
first and then source code is generated from them, being kept con-
sistent with the specification by some consistency preservation
approach. However, one can also go the other way around and infer
behavioral specifications from source code.

Example. From now, we will use the architecture and source code
from Fig. 2 as a running example. It implements a heavily simplified
simulation of an energy network, consisting of three components
that offer four services in total. The produce() service produces
electricity based on the current wind speed; if the wind speed is too
high, the service produces no electricity. The consume() service
consumes electricity. And the addLoad() and useLoad() services
are called by the other two services to modify the current network
load. We assume that addLoad() and useLoad() are both specified
by the contract pre = post = (load ≥ 0) and the other two services
by pre = (windSpeed ≥ 0), post = true and pre = (demand ≥
0), post = true respectively. In other words, an error occurs if the
network load falls below zero.

1705

Quantifying Software Correctness SAC ’24, April 8–12, 2024, Avila, Spain

Since the source code is a refinement of the architecture, it may
contain elements not present in the architecture. In our example,
the calls to the debug log are present in the source code, but are
not a part of the behavioral specifications.

The maximal coverage region for useLoad() is 𝑛 ≤ load. For
all other services, the maximal coverage region is true. This holds
even though consume() may indirectly cause an error by calling
useLoad() because coverage regions only consider errors caused
by the service directly.

3.2 Approximating the Correctness Probability

Using the parts of the architecture model introduced in the previous
subsection, we can compute the coverage probability 1 − 𝑃𝑟 (|
JU(𝑆)K) that executing the service models 𝑆 under the usage profile
U does not lead to a premature termination. If all coverage regions
in 𝑆 are correct, this is less than or equal to the system’s correctness
probability.

Executable Semantics. We start by defining what it means to
execute a service model (cov, beh): If cov does not hold, we immedi-
ately terminate prematurely. Otherwise, we execute the behavioral
specification beh. Note that according to Def. 3.1, every service
called by beh must either terminate prematurely or return to the
caller.

To execute a set of service models 𝑆 , we must also have a usage
profile that tells us what services are called and with what values.
This profile models how the system’s implementation is used or
expected to be used. It is similar to a service model, but also includes
probabilistic variable assignments to model probabilistic user ac-
tions. In addition, the usage profile may only call a service if its
precondition holds.

Definition 3.4 (Usage profile). A usage profile U is a sequence
of statements. Every statement is either a conditional assignment,
service call, or termination statement as in Def. 3.1, or a conditional
probabilistic assignment if (fml) var ∼ dist where dist is a distri-
bution over the domain of the type of var . The condition of every
conditional service call inU must imply the service’s precondition.

Definition 3.5 (Semantics of usage profile). Let U be a usage pro-
file and 𝑆 a set of service models. Then JU(𝑆)K denotes the set of
all finite computation traces which are created by executingU and
𝑆 .

Each trace 𝑡 ∈ JU(𝑆)K has a probability of occurrence 𝑃𝑟 (𝑡)
which – since the service models are deterministic – is determined
solely by the distributions in the probabilistic assignments in U.
The coverage probability can then be computed as the probability
that a trace randomly chosen according to the distributions in the
usage profile does not terminate prematurely, i.e., never calls a
service outside its coverage region.

Returning to our example from Fig. 2, we assume a usage profile
which calls produce(windSpeed) followed by consume(demand)
where windSpeed is an integer uniformly distributed in [5, 9] and
demand is an integer uniformly distributed in [0, 4]. Then Quac
computes a probability of 4

5 , which is equal to the actual correctness
probability. This can be seen by considering that of the 25 possible
inputs, only the input windSpeed = 5, demand = 4 and the four
inputs windSpeed = 9, demand > 0 lead to an error. A smaller

coverage region leads to a lower coverage probability. E.g., if we
take the coverage region of useLoad() to be false, the probability
becomes 0.

Soundness. To ensure that the coverage probability under-ap-
proximates the correctness probability, it suffices to show that all
coverage regions are correct.

Theorem 3.6. Let U a usage profile. Let 𝑆, 𝑆 ′ be sets of service
models s.t. for each service s the coverage region in 𝑆 for s is smaller or
equal to the corresponding one in 𝑆 ′. Then 𝑃𝑟 (| JU(𝑆)K) ≥ 𝑃𝑟 (|
JU(𝑆 ′)K), where 𝑃𝑟 (| JU(𝑆)K) expresses the probability that by
executing the usage profileU using service models 𝑆 , we terminate
prematurely.

Proof. The probability 𝑃𝑟 (| JU(𝑆)K) is the sum of proba-
bilities of every prematurely terminating trace:

∑
𝑡 ∈JU(𝑆)K 𝑃𝑟 (|

𝑡) 𝑃𝑟 (𝑡 | JU(𝑆)K). Note that the service models are deterministic
and the only probabilistic choices are in the usage model U. Thus,
there is an isomorphism JU(𝑆)K ≃ JU(𝑆 ′)K. Assume 𝑡 ∈ JU(𝑆)K
and a corresponding 𝑡 ′ ∈ JU(𝑆 ′)K. For a single 𝑡 , the probability
𝑃𝑟 (| 𝑡) is either 0 or 1. Thus, we need to show that if 𝑡 ′ termi-
nates prematurely, then so does 𝑡 . Due to the assumption that each
coverage region in 𝑆 is smaller than or equal to the corresponding
one in 𝑆 ′, we know that if 𝑡 ′ hits calls a service 𝑠 outside its cover-
age region, then either the same service 𝑠 is also called outside its
coverage region in 𝑡 , or 𝑡 already terminates before 𝑠 is called. □

This theorem tells us that for any service model 𝑆 consisting only
of correct coverage regions, 𝑃𝑟 (| JU(𝑆)K) over-approximates the
actual error probability, and thus 1−𝑃𝑟 (| JU(𝑆)K) under-approx-
imates the actual correctness probability of the implementation.

Guiding with quantitative values. To apply Quac, we must spec-
ify and verify all components and all services they provide. How-
ever, formally specifying and verifying every service is very labor-
intensive. Instead, we can sacrifice soundness for practicability by
using Quac to calculate the probability of a certain service being
called and ignoring all rarely-called services in our analysis.

Furthermore, the severity of different kinds of errors can be con-
sidered: For example, logging is pervasive; each service may invoke
the logging service to trace the data processing. But an error during
logging may be uncritical if it does not influence other parts of the
program. To address this, we can manually set the coverage regions
of uninteresting services to true or even remove these service from
the model entirely (like we did with the debuglog() in our running
example) to focus only on those errors which interest us. Alterna-
tively, we can extend the architecture model with a new attribute
which reflects the cost of an error in a service and instrument the
probabilistic model generated by Quac such that it approximates
the expected error cost instead of the correctness probability.

4 COMPUTATION OF COVERAGE REGIONS

This section explains how coverage regions can be computed. As
mentioned before, we can use verification tools like KeY or testing
approaches, which, while faster, give incorrect results.

Using formal verification to compute coverage regions. Consider
a JML contract (pre, post). Beckert et al. [4] introduce the notion

1706

SAC ’24, April 8–12, 2024, Avila, Spain Lanzinger et al.

of state space coverage. Given a partially open proof, this is the set
of initial states for which we know that the method will satisfy
its postcondition. Assuming only locally sound proof rules were
applied, this set consists of all entry state in which all open goals
hold. Thus, the set of open goals induces a coverage region, as
formalized by the following theorem and corollary.

Theorem 4.1 (Local Contract Satisfaction). Let 𝜌 = pre →
[s] post be a JavaDL proof obligation for some contract. Let (O,C)
be the open and closed goals of an unfinished proof produced through
locally sound rules. If a state 𝜎 satisfies all open goals, i.e., 𝜎 ⊨∧

(𝜙=⇒𝜓) ∈O

(
𝑛∧
𝑖=1

𝜙𝑖 →
𝑚∨
𝑗=1

𝜓 𝑗

)
, then 𝜎 ⊨ 𝜌 .

Proof. Remember that for a locally sound proof rule, any state
satisfying all premises also satisfies the conclusion. Thus, any state
𝜎 which satisfies the conjunction of all open and closed goals∧

(𝜙=⇒𝜓) ∈O∪C

(
𝑛∧
𝑖=1

𝜙𝑖 →
𝑚∨
𝑗=1

𝜓 𝑗

)
satisfies 𝜌 . Since all closed goals

are (universally) valid, any state 𝜎 which satisfies the conjunction
of all open goals only also satisfies 𝜌 . □

This result directly induces a correct coverage region:

Corollary 4.2 (Open Branches as Correct Coverage Re-
gion). Let 𝜌 and (O,C) be as before. The following formula is an
correct coverage region for 𝜌 :

cov ≡
∧

(𝜙=⇒𝜓) ∈O

©«
𝑛∨
𝑖=1

¬𝜙𝑖 ∨
𝑚∨
𝑗=1

𝜓 𝑗
ª®¬ .

Given such a cov, any cov′ such that cov′ → cov is also a cor-
rect coverage region. In particular, for a cov in conjunctive normal
form, we may remove any atoms within a disjunction that contain
variables not represented in the architecture model.

Definition 4.3 (Projection). Let cov ≡ ∧
𝑖

∨
𝑗 𝐴𝑖 𝑗 be a formula in

conjunctive normal form. Let 𝑉 be a set of variables. The formula
obtained by removing all 𝐴𝑖 𝑗 with variables not in 𝑉 is called the
projection of cov on 𝑉 .

To summarize, for any given service, we use KeY to (automatically
or manually) find a partial proof for the service’s implementation.
We then construct a coverage region from the partial proof’s open
goals. Lastly, we make that coverage region usable in the archi-
tecture model by projecting away all variables that exist in the
implementation but not the model.

Approximate results. Testing results can be leveraged in two
manners: Either the complement of failed tests shapes a possibly
incorrect coverage region, or the successful tests shape a correct,
but small coverage region. Similarly, results from the monitoring
of deployed software components are usable to obtain approximate
coverage regions.

For components which have not yet been implemented, neither
verification nor testing is possible. In this case, a domain expert must
estimate the coverage regions. This is useful as an approximation
during development. After the service is implemented, the estimate
can be replaced by tests or verification results.

5 FROM COVERAGE REGIONS TO

PROBABILITIES

In this section, we describe how the probabilities to enter a coverage
region under a given usage profile are calculated. In Sec. 5.1, we
define the necessary elements of the Palladio Component Model
(PCM) and explain how to integrate the computed coverage regions.
In Sec. 5.2, we explain how to use the resulting model to calculate
the coverage probability.

5.1 Integration of Coverage Regions in the

Architectural Model

Quac builds on usage profiles and elements of a component-based
architecture as presented in Sections 2 and 3.

Relevant elements of behavioral specifications for Quac are
(1) branching nodes that specify the branching criteria based on
the value of a quantifier-free formula over the values of parame-
ters or by a fixed absolute probability. (2) bounded loop nodes that
specify the number of iterations based on the values of parameters.
(3) external call nodes, which define a call to a service and the pro-
vided input for the parameters. These calls may contain a condition
over the values of parameters as well as results of other services
invocations.

To support Quac’s service models in the PCM, it must also model
the relevant state of a component using state variables with a name,
type, and a probability distribution describing their possible initial
values. We introduce state variables and setter and getter nodes
in architectural behavioral specifications for the introduction of
coverage regions. We also extend all relevant elements which con-
tain some kind of condition to handle values of state variables in
addition to parameter values. We extend the PCMwith our required
information by applying the inheritance and plain referencing ex-
tension approach, described by Heinrich et al. [14]. We provide
a separate metamodel with classes extending the existing meta-
classes of the PCM, e.g., the getter and setter accesses, or elements
which reference an existing element, such as the assignment of
state variables to components. With this extension, we can insert
the coverage regions as a projection on the available state variables
and parameters in the model into the behavioral specification of
a service. Conditions for service calls and the symbolic values of
the actual arguments can be modeled by developers as part of the
behavioral specifications, or computed by KeY in a similar way as
the coverage regions. The rest of the behavioral specification can be
manually modeled or extracted from the source code with reverse
engineering approaches, such as the one by Becker et al. [3].

Figure 3 depicts the behavioral specifications corresponding to
the services from our running example.

5.2 Calculation of the Probabilities

Given a usage profile and the architectural model with the informa-
tion described in Sec. 5.1, we compute the coverage probability. To
this end, we translate each service model into a function in a proba-
bilistic program based on the service model’s executable semantics
as presented in Sec. 3. The usage profile is translated into the main
function with which the execution starts. Calls to services by the
usage profile or by other services can be translated into function

1707

Quantifying Software Correctness SAC ’24, April 8–12, 2024, Avila, Spain

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

if(windSpeed < 9)
network.addLoad(windSpeed*3/4)

Conditional service call

Required components:
network: Network

State variables:
—

Coverage region:
true

(a) Behavioral specification for produce().

if(true)
network.useLoad(demand)

Conditional service call

if(true)
network.useLoad(demand)

Conditional service call

Required components:
network: Network

State variables:
—

Coverage region:
true

(b) Behavioral specification for consume() .

load = load + n

Set

load = load + n

Set

Required components:
—

State variables:
int load (initial value: 0)

Coverage region:
true

(c) Behavioral specification for addLoad().

load = load - n

Set

load = load - n

Set

Required components:
—

State variables:
int load (initial value: 0)

Coverage region:
𝑛 ≤ load

(d) Behavioral specification for useLoad().

Figure 3: Behavioral specifications for the services from

Fig. 2.

calls. Branching nodes and bounded loops are translated to if or
while statements in the functions with a corresponding condition.

For example, let us again consider the behavioral specifications
in Figure 3. We assume the same usage profile given in Sec. 3.
Then the translation into a probabilistic program is shown in Fig. 4.

1 int load;
2

3 fun main():
4 load = 0; windSpeed ~ U(5,9); demand ~ U(0,4);
5 if (windSpeed >= 0): produce(windSpeed));
6 if (demand >= 0): consume(demand);
7

8 fun produce(int windSpeed):
9 if (!(true)): ;
10 if (windSpeed < 9): addLoad(windSpeed * 3 / 4);
11

12 fun consume(int demand):
13 if (!(true)): ;
14 if (true): useLoad(demand);
15

16 fun addLoad(int n):
17 if (!(true)): ;
18 load = load + n;
19

20 fun useLoad(int n):
21 if (!(n <= load)): ;
22 load = load - n;

Figure 4: Probabilistic program corresponding to Fig. 2.

Now, a model checker or model counter, e.g., PSI [9], Storm [15],
or counterSharp [24], can resolve the probabilities in Fig. 4.

5.3 Prototypical implementation

We provide a prototypical implementation of Quac using KeY as
the verification tool and the PCM as an architectural description
language [19]. We extend the PCM by introducing state variables,
getter and setter actions in the SEFFs as well as elements for the
attributes of our service model (Def. 3.1).

We extract the coverage regions with KeY and project the results
onto the state variables and parameters present in the model. We
can also use KeY to extract conditions of service calls.

We implement a transformation from the extended PCM into
a probabilistic program in the PSI [9] language similar to the one
described in Sec. 5.2. Transformations to other model checkers are
possible, but not yet implemented.

6 CASE STUDY

Structure. To demonstrate the feasibility of Quac, we first ran
our running example through our implementation and analyzed the
resulting probabilistic program with PSI. We obtained the expected
result of 4

5 (see Sec. 3). KeY found all coverage regions automatically
in 26.3s and PSI computed the probability in 1.3s.1

To test Quac’s scalability, we consider a more complex version
of the running example, shown in Fig. 5. Instead of one, we have
three energy producers: a wind turbine, a photovoltaic system, and
a gas turbine. In addition, we have an environment sensor, which
supplies the current wind speed and sun irradiance.

1On average over 3 trials in our artifact VM with 16GB RAM and 1 CPU.

1708

SAC ’24, April 8–12, 2024, Avila, Spain Lanzinger et al.

EnergyProducer

void run();

WindTurbine

int maxWindSpeed;

@Override
void produce();

Photovoltaics

@Override
void produce();

GasTurbine

int fuel;

@Override
void produce();

Network

int load;

void addLoad(int);
void useLoad(int);

EnergyConsumer

int demand;

void consume();

EnvironmentSensor

int getWindSpeed();
int getSunIrradiance();

Figure 5: Class diagram for the case study.

1 wt.maxWindSpeed = 15; gt.fuel = 2;
2

3 repeat ITERATIONS times:
4 cons.demand = 𝐷1;
5 sens.sunIrradiance = 𝐷1;
6 sens.windSpeed = 𝐷2;
7

8 wt.produce(); phv.produce();
9 if netw.load < cons.demand:
10 gt.produce();
11 cons.consume();

Figure 6: Usage profile for the case study.

In our usage profile, shown in Fig. 6, initial values for the demand,
sun irradiance, and wind speed are independently chosen from
the random distributions 𝐷1, 𝐷2. Then, both the wt.produce() and
phv.produce() services are called and increase the network load
based on the current wind speed and sun irradiance respectively. If
the wind speed exceeds 15, the turbine produces no energy. If the
demand is greater than the network load, GasTurbine.produce() may
be called as well; this decrements the gas turbine’s fuel and increases
the network load if there is still fuel left. Lastly, Consumer.consume()
is called and lowers the network load. All of this is repeated 𝑛 times.
Residual load is carried over into the next iteration.

We consider the following versions of this usage profile: First, we
vary the distributions used. In the first version,𝐷1 = U (0, 1999), 𝐷2 =
U (0, 19). In the second version, 𝐷1 = N𝑑 (𝜇 = 1000, 𝜎 = 32), 𝐷2 =
N𝑑 (𝜇 = 10, 𝜎 = 3) where N𝑑 is a discretized version of a nor-
mal distribution in which all possible values are integers. For both
distributions, we also vary the number of iterations. We consider
between 2 to 8 iterations and expect the run time of themodel check-
ers to rise and the coverage probability to sink with the number of
iterations.

The system architecture is modeled in the PCM, and there is a
SEFF given for every service. The SEFFs offer a behavioral specifica-
tion for each service, as explained in Sec. 5. In addition, all classes

are implemented in Java and specified in JML. Every method im-
plementation is consistent with the corresponding service’s SEFF.
The JML specification states that the network load is always non-
negative.

Extraction of coverage regions. We extract the coverage regions
(see Sec. 4) and service call conditions (see Sec. 5.1) from the source
code using KeY, then add them to the SEFFs. This yields the coverage
region arg ≤ load for Network.useLoad() and the coverage region
true for all other services.2

Computation of the coverage probability. Having computed the
coverage regions, we add them to the SEFFs. Then, the usage pro-
file and the extended SEFFs are translated into one probabilistic
program, as explained in Sec. 5.2.

In addition, wemanually translated the extended PCM into Prism
and checked the Prism program with the Storm model checker. We
also manually translated the extended PCM into a C program that
can be checked using the counterSharp approach, which uses model
counting in combination with a bounded model checker to quantify
the reliability of C programs as the ratio of failing runs to total runs.
As this assumes the initial values to be uniformly distributed, the
C program manually converts between a uniform distribution and
the distributions shown in our usage profile (Fig. 6). Unlike PSI and
Storm, counterSharp uses approximate model counting, meaning
that the result is not necessarily exact, but can be found in much
less time.

Results. KeY ran in 269.3s.3 All instances of our experiments with
exact model counters PSI and Storm ran out of memory. This is
because creating branches for every conditional service call and
coverage region resulted in a very large state space, which is further
enlarged by our usage profile containing 3𝑛 random variables with
(2000 · 2000 · 20)𝑛 total values for 𝑛 loop iterations in the usage
profile.

2Actually, the coverage regions extracted by KeY have additional conditions that deal
with non-nullness, exception freedom, etc., but since these do not interest us, we
manually remove them before adding the coverage regions to the SEFFs.
3On average after 3 trials in our artifact VM.

1709

Quantifying Software Correctness SAC ’24, April 8–12, 2024, Avila, Spain

Cycles Run time Coverage probability

U N𝑑 U N𝑑

2 1.7s 6.9s 100% 100%
3 13.5s 10.6s [99.89%, 99.97%] 100%
4 52.5s 14.6s [99.64%, 99.89%] 100%
· · · · · · · · ·
7 267.8s 96.4s [97.66%, 99.28%] 100%
8 313.9s timeout [96.58%, 98.95%] timeout

Table 1: Results of our case study with counterSharp: The

actual coverage probability lies in the provided interval with

80% probability.

However, using approximate model counting as in the coun-
terSharp approach proved to be practical. As we see in Table 1,
although counterSharp shows an exponential run-time increase
depending on the number of iterations, its run times are on the low
side considering the size of our state space.

We conclude that our approach is feasible and that while exact
results can only be achieved for very small programs (like our
running example), approximate results with a confidence interval [7,
24] can be found in an acceptable run time even for programs
with very large state spaces. The reliability of the intervals can be
improved by repeating the computation multiple times.

7 RELATEDWORK

Quantitative and probabilistic program analysis. Geldenhuys et
al. [10] introduce probabilistic symbolic execution, where for every
branch during symbolic execution, the branch’s probability is cal-
culated via model counting and multiplied with the path condition
so far. Thus, one obtains a probability for every path. Quac is also
connected to the field of statistical model checking, which applies
statistical methods like Monte-Carlo simulation or hypothesis tests
to probabilistic models [28]. Gerrard et al. [11] combine over- and
under-approximating verification tools to approximate the reacha-
bility condition of a given state, resulting in both lower and upper
bounds. Quac differs from these because it is model-based – i.e.,
the architectural model we use for the probabilistic analysis is more
abstract than the source code – and modular – i.e., we can use
different analyses for different services.

Model-based Safety and Reliability Analyses. Different approaches
use design models to analyze the safety and reliability of software
systems. There are approaches that analyze based on design models
and their transformations into other formalisms. Huszerl et al. [16]
transform UML state charts into stochastic reward nets (SRNs) to
perform a quantitative dependability analysis. Cortelessa et al [8]
transform architectural UML models into non-functional models
in form of General Stochastic Petri Nets (GSPNs). The generated
GSPN is used as an input model for a safety and reliability analysis.
The approach by Brosch et al. [6] performs a reliability analysis
based on an extension of the PCM which enables the annotation of
absolute probabilities for software and hardware elements. These
approaches rely on the manual annotation of the reliability infor-
mation retrieved through estimates, experience or calculation. In

contrast, Quac retrieves reliability-relevant information (the critical
regions) by an analysis of source code to compute the probabilities
to enter critical regions in the software. This approach connects
the architectural view explicitly to the final system and avoids er-
roneous results due to estimations and inconsistencies between
model and implementation.

Work by Töberg et al. [26] as well as Tuma et al [25] is similar
to Quac in that it combines architecture and code by using source-
code analyses to verify whether assumptions in an architectural
model hold in the implementation. However, these approaches do
not modify the architectural model based on the results of the
source-code analysis.

Kordon et al. [18] propose a discipline they call verification-
driven engineering, which is based on using software models for
verification. They identify several requirements, e.g., a mapping
between model elements and a mathematical framework, which we
achieve by mapping Palladio components to JML contracts. They
also identify several challenges, like the fact that different model
properties must be verified with different tools that are difficult
to unify in one model. Quac offers a partial answer by being able
to combine different analyses so long as all of their results can be
encoded as a critical region.

Cooperative verification. Quac is related to the field of coopera-
tive verification. Many approaches exist [2, 5, 27] that allow tools
to share proof obligations or partial results so that different compo-
nents of a program or different properties of the same component
can be proven by different tools. Alternatively, partial verification
results can be used to guide test cases. Quac’s coverage regions
serve both as an exchange format that allowsmultiple approaches to
used in Quac and as partial results that may guide tests or monitor-
ing. But in addition to allowing tools to cooperate, Quac computes
a correctness measure to quantify how much of the program has
been verified by a given combination of tools.

8 CONCLUSION

Summary. Quac is a modular approach to quantify software
correctness by combining architecture modeling and formal veri-
fication. We defined Quac formally and implemented it for a sub-
set of Java programs using the modeling tool Palladio, the formal
verification tool KeY, and various model counters. We use KeY to
analyze each individual service and extract its critical regions, i.e.,
the conditions under which it possibly behaves erroneously. These
regions are combined with the Palladio Component Model, which
includes an architecture model and usage profile, to compute an
over-approximate error probability for the overall system. Our case
study demonstrates that our approach is feasible. While computing
an exact error probability is impractical except for small programs,
approximative approaches lead to good run times.

Future work. Our approach allows us to modularly combine dif-
ferent kinds of analyses, but we mainly focused on deductive veri-
fication. We would like to investigate other analyses like tests and
type checkers and formally establish how they can be used to com-
pute coverage regions. In addition, we want to investigate how
we may increase Quac’s precision with tools that over- instead
of under-approximate the correctness probability. Furthermore,

1710

SAC ’24, April 8–12, 2024, Avila, Spain Lanzinger et al.

this paper only considered reliability properties. We want to ap-
ply Quac to security properties by extending the usage profile to
capture attacker capabilities and attack costs.

DATA AVAILABILITY STATEMENT

Our implementation, along with the input and logs for the case
study, is available on Zenodo. [19]

ACKNOWLEDGMENTS

We would like to thank the reviewers for their valuable feedback.
This work was supported by funding from the topic Engineering

Secure Systems and the pilot program Core Informatics of the
Helmholtz Association (HGF), KASTEL Security Research Labs,
the research project SofDCar (19S21002) funded by the German
Federal Ministry for Economic Affairs and Climate Action, and
the German Research Foundation (DFG) under project number
499241390, HE8596/3-1 (FeCoMASS).

REFERENCES

[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, and Mattias Ulbrich (Eds.). 2016. Deductive Software Verification - The
KeY Book - From Theory to Practice. Lecture Notes in Computer Science, Vol. 10001.
Springer. https://doi.org/10.1007/978-3-319-49812-6

[2] Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider. 2016. StaRVOOrS —
Episode II. In Leveraging Applications of Formal Methods, Verification and Vali-
dation: Foundational Techniques, Tiziana Margaria and Bernhard Steffen (Eds.).
Springer International Publishing, Cham, 402–415.

[3] Steffen Becker, Michael Hauck, Mircea Trifu, Klaus Krogmann, and Jan Kofroň.
2010. Reverse Engineering Component Models for Quality Predictions. In 2010
14th European Conference on Software Maintenance and Reengineering. 194–197.
https://doi.org/10.1109/CSMR.2010.34

[4] Bernhard Beckert, Mihai Herda, Stefan Kobischke, and Mattias Ulbrich. 2018.
Towards a Notion of Coverage for Incomplete Program-Correctness Proofs. In
Leveraging Applications of Formal Methods, Verification and Validation. Verification
- 8th International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11245), Tiziana Mar-
garia and Bernhard Steffen (Eds.). Springer, 53–63. https://doi.org/10.1007/978-
3-030-03421-4_4

[5] Dirk Beyer and Sudeep Kanav. 2022. CoVeriTeam: On-Demand Composition of
Cooperative Verification Systems. In Tools and Algorithms for the Construction
and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 561–579.
https://doi.org/10.1007/978-3-030-99524-9_31

[6] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf Reussner. 2012.
Architecture-Based Reliability Prediction with the Palladio Component Model.
IEEE Transactions on Software Engineering 38, 6 (2012), 1319–1339. https:
//doi.org/10.1109/TSE.2011.94

[7] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2016. Algorithmic
Improvements in Approximate Counting for Probabilistic Inference: From Linear
to Logarithmic SAT Calls. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI).

[8] Vittorio Cortellessa, Romina Eramo, and Michele Tucci. 2020. From software
architecture to analysis models and back: Model-driven refactoring aimed at
availability improvement. Information and Software Technology 127 (2020), 106362.
https://doi.org/10.1016/j.infsof.2020.106362

[9] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic
Inference for Probabilistic Programs. In Computer Aided Verification, Swarat
Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham,
62–83. https://doi.org/10.1007/978-3-319-41528-4_4

[10] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilis-
tic Symbolic Execution. In Proceedings of the 2012 International Symposium
on Software Testing and Analysis (Minneapolis, MN, USA) (ISSTA 2012). As-
sociation for Computing Machinery, New York, NY, USA, 166–176. https:
//doi.org/10.1145/2338965.2336773

[11] Mitchell Gerrard, Mateus Borges, Matthew B. Dwyer, and Antonio Filieri. 2022.
Conditional Quantitative Program Analysis. IEEE Transactions on Software Engi-
neering 48, 4 (2022), 1212–1227. https://doi.org/10.1109/TSE.2020.3016778

[12] David Harel. 1979. First-Order Dynamic Logic. Lecture Notes in Computer Science,
Vol. 68. Springer. https://doi.org/10.1007/3-540-09237-4

[13] David Harel, Dexter Kozen, and Jerzy Tiuryn. 2001. Dynamic logic. In Handbook
of philosophical logic. Springer, 99–217.

[14] Robert Heinrich, Misha Strittmatter, and Ralf Reussner. 2021. A Layered Reference
Architecture for Metamodels to Tailor Quality Modeling and Analysis. IEEE
Transactions on Software Engineering 47, 4 (2021), 775–800. https://doi.org/10.
1109/TSE.2019.2903797

[15] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and
Matthias Volk. 2022. The probabilistic model checker Storm. International
Journal on Software Tools for Technology Transfer 24, 4 (01 Aug 2022), 589–610.
https://doi.org/10.1007/s10009-021-00633-z

[16] Gábor Huszerl, István Majzik, András Pataricza, Konstantinos Kosmidis, and
Mario Dal Cin. 2002. Quantitative Analysis of UML Statechart Models of De-
pendable Systems. Comput. J. 45, 3 (01 2002), 260–277. https://doi.org/10.1093/
comjnl/45.3.260

[17] Heiko Klare, Max E. Kramer, Michael Langhammer, Dominik Werle, Erik Burger,
and Ralf Reussner. 2021. Enabling consistency in view-based system development
— The Vitruvius approach. Journal of Systems and Software 171 (2021), 110815.
https://doi.org/10.1016/j.jss.2020.110815

[18] Fabrice Kordon, Jérôme Hugues, and Xavier Renault. 2008. From Model Driven
Engineering to Verification Driven Engineering. In Software Technologies for
Embedded and Ubiquitous Systems, 6th IFIP WG 10.2 International Workshop, SEUS
2008, Anacarpi, Capri Island, Italy, October 1-3, 2008, Proceedings (Lecture Notes
in Computer Science, Vol. 5287), Uwe Brinkschulte, Tony Givargis, and Stefano
Russo (Eds.). Springer, 381–393. https://doi.org/10.1007/978-3-540-87785-1_34

[19] Florian Lanzinger, Christian Martin, Frederik Reiche, Samuel Teuber, Robert
Heinrich, and Alexander Weigl. 2022. QuAC – Quantifying Software Correctness
Using Architecture Modeling and Formal Program Analysis. https://doi.org/10.
5281/zenodo.7473812

[20] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, Daniel M. Zimmerman, and
Werner Dietl. 2013. JML Reference Manual. http://www.eecs.ucf.edu/~leavens/
JML//refman/jmlrefman.pdf Revision 2344.

[21] David Monschein, Manar Mazkatli, Robert Heinrich, and Anne Koziolek. 2021.
Enabling Consistency between Software Artefacts for Software Adaption and
Evolution. In 2021 IEEE 18th International Conference on Software Architecture
(ICSA). 1–12. https://doi.org/10.1109/ICSA51549.2021.00009

[22] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek,
Heiko Koziolek, Max Kramer, and Klaus Krogmann (Eds.). 2016. Modeling and
Simulating Software Architectures – The Palladio Approach. MIT Press.

[23] Sophie Schulz, Frederik Reiche, Sebastian Hahner, and Jonas Schiffl. 2022. Con-
tinuous Secure Software Development and Analysis. In Symposium on Software
Performance 2021 : Short Paper Proceedings of Symposium on Software Performance,
Leipzig, Germany, November 9.-10., 2021. Ed.: D. G. Reichelt, R. Müller, S. Becker,
W. Hasselbring, A. v. Hoorn, S. Kounev, A. Koziolek, R. Reussner (CEUR Workshop
Proceedings, Vol. 3043). RWTH Aachen. 46.23.01; LK 01.

[24] Samuel Teuber and Alexander Weigl. 2021. Quantifying Software Reliability via
Model-Counting. In Quantitative Evaluation of Systems, Alessandro Abate and
Andrea Marin (Eds.). Springer International Publishing, Cham, 59–79. https:
//doi.org/10.1007/978-3-030-85172-9_4

[25] Katja Tuma, Sven Peldszus, Daniel Strüber, Riccardo Scandariato, and Jan Jürjens.
2023. Checking security compliance between models and code. Software and
Systems Modeling 22, 1 (2023), 273–296.

[26] Jan-Philipp Töberg, Jonas Schiffl, Frederik Reiche, Bernhard Beckert, Robert Hein-
rich, and Ralf Reussner. 2022. Modeling and Enforcing Access Control Policies
for Smart Contracts. In 2022 IEEE International Conference on Decentralized Appli-
cations and Infrastructures (DAPPS). 38–47. https://doi.org/10.1109/DAPPS55202.
2022.00013

[27] Petra van den Bos and Marieke Huisman. 2022. The Integration of Testing and
Program Verification - A Position Paper. In A Journey from Process Algebra via
Timed Automata to Model Learning - Essays Dedicated to Frits Vaandrager on
the Occasion of His 60th Birthday (Lecture Notes in Computer Science, Vol. 13560),
Nils Jansen, Mariëlle Stoelinga, and Petra van den Bos (Eds.). Springer, 524–538.
https://doi.org/10.1007/978-3-031-15629-8_28

[28] Håkan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
2006. Numerical vs. statistical probabilistic model checking. Int. J. Softw. Tools
Technol. Transf. 8, 3 (2006), 216–228. https://doi.org/10.1007/s10009-005-0187-8

1711

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1109/CSMR.2010.34
https://doi.org/10.1007/978-3-030-03421-4_4
https://doi.org/10.1007/978-3-030-03421-4_4
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1145/2338965.2336773
https://doi.org/10.1145/2338965.2336773
https://doi.org/10.1109/TSE.2020.3016778
https://doi.org/10.1007/3-540-09237-4
https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1093/comjnl/45.3.260
https://doi.org/10.1093/comjnl/45.3.260
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1007/978-3-540-87785-1_34
https://doi.org/10.5281/zenodo.7473812
https://doi.org/10.5281/zenodo.7473812
http://www.eecs.ucf.edu/~leavens/JML//refman/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//refman/jmlrefman.pdf
https://doi.org/10.1109/ICSA51549.2021.00009
https://doi.org/10.1007/978-3-030-85172-9_4
https://doi.org/10.1007/978-3-030-85172-9_4
https://doi.org/10.1109/DAPPS55202.2022.00013
https://doi.org/10.1109/DAPPS55202.2022.00013
https://doi.org/10.1007/978-3-031-15629-8_28
https://doi.org/10.1007/s10009-005-0187-8

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

