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Abstract: During the transition from liquid to solid, the thermal conductivity coefficient λ of concrete
decreases. Although λ of hardened concrete is well investigated, there is limited research on the
transition from liquid to solid and how it depends on hydration. Currently, only simplified qualitative
approaches exist for the liquid state and the transient process. An experimental method is not
available. For this purpose, a test rig is designed to experimentally capture the evolution of λ

for fine-grain concretes during transition. The performance of the test setup is evaluated on a
characteristic high-performance concrete (HPC). The results are compared to theoretical predictions
from the literature. The developed test rig is mapped in a digital twin to investigate extended
boundary conditions, such as different heat sources and temperatures of the experimental setup. It
allows the experiment to be repeated and optimized for different setups with little effort. The test
principle is as follows: A liquid concrete sample is heated through a controlled external source, while
the transient temperature distribution over the height is measured with a fiber optic sensor. The
thermal conductivity is derived from the heat flux induced and the temperature distribution over
an evaluation length. Experiments show that λ in the liquid state is approximately 1.4 times greater
than in the solid state and exponentially decreases for the transient process. Numerical results on
the digital twin indicate that the robustness of the results increases with the temperature of the heat
source. Moreover, the derivation in λ turns out to be strongly dependent on the evaluation length. A
length of three times the maximum grain diameter is recommended.

Keywords: temperature induction; thermal conductivity coefficient; high-performance concrete;
hydration-dependent thermal conductivity coefficient; digital twin

1. Introduction

The heat transfer in solid materials is driven by the thermal conductivity coefficient
λ [1]. Since λ depends on hydration [2], it decreases for young concrete during solidification,
which is the transition from liquid to solid. Although being an important aspect of thermal
material behavior, the transient course of λ during transition has not been thoroughly
studied. The change in λ is particularly relevant during the heat treatment of young
concrete, as it accelerates solidification and, thus, the transition of λ. The heat treatment of
young concrete has become an integral part of materials technology. It is used, among other
things, to accelerate strength development or reduce the long-term deformations of creep
and shrinkage [2–4]. Knowledge of the transient course of λ is relevant to numerically
modeling and optimizing the heat treatment process. While λ for hardened concrete is well
known, only simplified qualitative approaches exist for the liquid state and the transition
in between [5]. Currently, no experimental method is available to determine λ during
hydration.
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The thermal conductivity of hardened concrete depends on composition [6,7]. In
particular, the water/cement ratio (w/c), the aggregates, the fines, and the type and quan-
tity of admixtures are relevant [6,7]. Aerated concrete exhibits generally lower thermal
conductivity due to the insulating properties of the air [8].

Table 1 shows ranges of λ from the literature for various concrete categories [1,9].
Only a few studies are available for HPC and ultra-high-performance concrete (UHPC), so
specific ranges cannot be reported; only rough reference values are indicated.

Table 1. Thermal conductivity coefficients of common concrete categories.

Concrete Category Thermal Conductivity Coeff. λ [W/(mK)]

Aerated concrete 0.15–0.75
Normal concrete 1.15–1.65
High-performance concrete (HPC) 3.0
Ultra-high-performance concrete (UHPC) 6.0

Even for the same composition, the thermal conductivity of concrete depends on
its temperature and moisture content [6,7]. The investigations in [10] on the influence of
temperature on λ show that the thermal conductivity can be assumed to be constant at
temperatures up to 100 ◦C. At higher temperature much greater than 100 ◦C, as in the case
of fire, λ decreases significantly [10].

Under ambient temperature conditions, the moisture content becomes more
relevant [7,11] since the thermal conductivity of water is around 25 times greater than
that of air [7,11]. Therefore, the thermal conductivity of concrete increases with the mois-
ture content and consequently decreases with the air void content. During hydration, water
is chemically bonded; therefore, λ decreases [5].

In the literature, only simplified qualitative approaches for the hydration dependence
of λ are proposed. In ref. [5], a linear approach is presented with respect to the degree of
hydration α (Equation (1)). Therein, λ0 is the initial thermal conductivity of the freshly
mixed concrete in the liquid state, while λhard represents the fully hydrated state. The
parameter α is defined as the ratio of heat released up to the considered time to the total
hydration heat quantity with 0 ≤ α ≤ 1 [5,12].

λ(α) = λ0 − (λ0 − λhard)α (1)

To determine the initial conductivity λ0, in [5], an approach according to Kirch-
ner [13] is used (Equation (2)), which depends on the volume-related moisture excess
ϕ (Equation (3)). This indicates the proportion of the water that is not chemically bound by
the cement during mixing; in normal concrete, it amounts to about 75% [5,13]. Then, ϕ can
be calculated for a specific concrete as a function of the cement c and the water w contents.

λ(ϕ) = λhard·
1 + 12ϕ

1.6
(2)

with
ϕ = (w − 0.25c)/1000 (3)

Feeding ϕ from Equation (3) into Equation (2), λ0 can be calculated in relation to λhard.

λ0 =
λhard
1.6

(
1 +

12w − 3c
1000

)
(4)

According to [5], and depending on the w/c ratio, λ0 is 30% to 55% greater than λhard.
However, the evolution of λ during hydration is not considered in detail, and the approach
is limited to normal concrete.

Experimental methods to determine λ for solids can be divided into steady-state and
transient approaches [14]. The guarded hot-plate measurement [15–17] and the heat-flow
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meter [18,19] are the most commonly used steady-state methods for solid materials. In the
associated tests, a material sample is heated until a stationary temperature distribution is
reached within. Then, the λ-value is derived from the sample’s geometry, the heat flux in-
duced, and the temperature gradient over a defined length. In particular, for materials with
low thermal conductivity, such as concrete, it may take several hours to reach stationarity.
At this time, the concrete is already almost fully hydrated. So, the evolution of λ during
solidification cannot be determined with these methods.

Transient methods have the advantage of generating results in a short time. The
hot-wire method is most commonly used [20,21]. A material sample is heated using a
known power-immersed heating wire; λ is then derived from the temperature rising with
time at a certain distance from the wire. An alternative is the laser flash method [22,23]. A
material sample is heated with a laser pulse on one side, and the temperature increase is
recorded on the opposite side using an infrared thermometer. Then, λ is determined from
the sample thickness and the time elapsed between the laser pulse and the temperature
increase on the opposite side. However, transient methods have limitations in determining
λ during hydration. The material sample must maintain a constant temperature, allowing
for repeated measurements only after complete cooling. This means that changes in material
properties can only be recorded over long-time intervals. Additionally, transient methods
are less accurate than stationary methods and are most suitable for small material samples
with dimensions of a few millimeters only [24].

To fill this gap, a test rig is designed to determine the evolution of λ for fine-grain
concretes during solidification from experiments.

For this, the contribution is structured as follows: Section 2 presents the method
developed to experimentally derive λ during hydration in general and the implementation
of the test rig in a digital twin. The numerical model represents the thermal behavior of
concrete during hydration and is calibrated with the test data.

In Section 3, the test rig is verified in an experiment on a characteristic HPC. The
results are compared with the numerical ones obtained on the digital twin. The digital
twin is utilized to assess the suitability of the test rig for concretes with other boundary
conditions (Section 4).

2. Experimental Determination of the Transient Thermal Conductivity Coefficient
2.1. Theoretical Basis for the Development of the Test Rig

If heat is supplied to a system, the temperature in the system balances with time due
to the heat transfer. This comprises thermal conduction, radiation, and convection [1].
Heat transfer in solids is limited to thermal conduction. For homogeneous and isotropic
materials, the heat flux

.
Q can be calculated with Fourier’s law (cf. [1,25]). In case of one-

dimensional heat conduction,
.

Q depends on the thermal conductivity of the body, the
cross-sectional area A of the heat flux, and the temperature gradient dϑ over the length dx
(Equation (5)). λ is a scalar and describes the material’s ability to transfer heat [W/(mK)].
In general, it is considered as a constant material property.

.
Q = −λ·A·dϑ

dx
(5)

.
Q in the interval [x1, x2] is determined as follows:

x2∫
x1

.
Q·dx =

ϑ2∫
ϑ1

−λ·A·dϑ (6)
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Assuming a linear temperature gradient in the interval [x1, x2] with ∆x = x2 − x1 and
∆ϑ = ϑ1 − ϑ2 Equation (6) can be written as follows:

.
Q =

λ

x2 − x1
·A·(ϑ1 − ϑ2) = λ· A·∆ϑ

∆x
(7)

Solving for λ gives

λ =

.
Q·∆x
∆ϑ·A (8)

In what follows, Equation (8) is used to derive λ for homogeneous and isotropic
materials from the tests. Therefore, a linear temperature gradient in the interval ∆x
is required.

2.2. Design of the Test Rig

The idea of the test rig (Figure 1) is to generate a uniaxial linear temperature distribu-
tion in a test specimen (1) between an external heat source on top (2) and a free surface (sink)
on the bottom. The sides are thermally insulated (3). The heat supply and the temperature
distribution in the specimen are both measured continuously.
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Figure 1. Test principle for determination of the thermal conductivity coefficient of solid materials
and others with heat transfer just through thermal conduction.

For evaluation, the setup is interpreted as a 1D system, as shown in Figure 1 at the
center, with a linear temperature distribution in the steady state between the source and
the sink (right). To derive λ for the tested material, the temperature gradient ∆ϑ, over the
length ∆x (here, ∆x = specimen height), and the heat flux

.
Q from the external heat source

induced over the cross-sectional area A are substituted into Equation (8).

2.3. Evaluation of the Thermal Conductivity Coefficient

The test-based evaluation of λ according to Equation (8) requires a linear temperature
distribution over ∆x. Figure 2 sketches the temperature distribution in the specimen
for the steady state and when heating just has started (unsteady state). Initially, the
temperature only increases near the heat source; deeper layers do not yet experience a rise
in temperature—an almost linear temperature gradient only develops in the boundary
layer near the heat source. To derive λ at this early stage, the evaluation length ∆x needs to
be limited to a near-surface layer.



Materials 2024, 17, 2115 5 of 19Materials 2024, 17, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Temperature distributions in the specimen for the transient and steady-state conditions 
(top)—reduced evaluation length in the layer for an approximately linear temperature distribution 
(evaluation length, bottom). 

From this and just with time, an approximately linear temperature gradient forms 
over the entire sample length. Then, ∆𝜗 can be evaluated on the total height of the speci-
men. 

2.4. Digital Twin 
Along with the experimental investigations, a digital model is developed to analyze 

the thermochemical process of concrete heating and solidification. This development in-
cludes the identification of a mathematical representation of the system, its numerical so-
lution, and parametrization. The solidification process is described by a set of three (cou-
pled) partial differential equations (PDEs)      𝜌𝑐୮ ∂୲𝑇 = ∂୶(𝜆(𝑚) ∂୶𝑇) + ∂୲𝑄, (9)∂୲𝜃 = ∂୶(𝐷(𝜃)𝜕୶𝜃) − 𝜂 ∂୲𝑚, (10)         ∂୲𝑚 = 𝜇(1 − 𝑚)𝜃𝑒ିா/ோ், (11)

which are defined on the domain 𝛺 = (𝑥, 𝑡): 𝑥 ∈ (0, 𝐿), 𝑡 ∈ (0, 𝜏) [26]. Herein, 𝑇(𝑥, 𝑡) de-
scribes the evolution of the temperature in [K] (while 𝜗 is the temperature in [°C]), and 𝜃(𝑥, 𝑡)  is the (relative) moisture. To represent the degree of hydration, the maturity 𝑚(𝑥, 𝑡) is introduced. It should be noted that only the progression in the x-direction is 
considered due to symmetry considerations. The thermal characteristics are defined by 
means of heat capacity 𝑐୮, conductivity 𝜆(𝑚) and material density 𝜌. The generated heat 
caused by hydration is given by the source term. ∂୲𝑄 = 𝑄୫ ∂୲𝑚, 𝑄୫ = 𝐴𝑚𝑒ିమ, (12)

where 𝑎 = 1/2𝑚୶ଶ  and 𝐴 = 𝑄୶/𝑚୶ , with 𝑚୶  indicating the specific 𝑚  for which 𝑄୫ 
reaches its maximum 𝑄୶. Equation (13), with 𝐷୫ as moisture diffusivity coefficient, re-
flects the nonlinear behavior of moisture diffusion in the concrete according to [26]. 

Figure 2. Temperature distributions in the specimen for the transient and steady-state conditions
(top)—reduced evaluation length in the layer for an approximately linear temperature distribution
(evaluation length, bottom).

From this and just with time, an approximately linear temperature gradient forms over
the entire sample length. Then, ∆ϑ can be evaluated on the total height of the specimen.

2.4. Digital Twin

Along with the experimental investigations, a digital model is developed to analyze
the thermochemical process of concrete heating and solidification. This development
includes the identification of a mathematical representation of the system, its numerical
solution, and parametrization. The solidification process is described by a set of three
(coupled) partial differential equations (PDEs)

ρcp∂tT = ∂x(λ(m)∂xT) + ∂tQ, (9)

∂tθ = ∂x(D(θ)∂xθ)− η∂tm, (10)

∂tm = µ(1 − m)θe−E/RT , (11)

which are defined on the domain Ω = (x, t) : x ∈ (0, L), t ∈ (0, τ) [26]. Herein, T(x, t)
describes the evolution of the temperature in [K] (while ϑ is the temperature in [◦C]), and
θ(x, t) is the (relative) moisture. To represent the degree of hydration, the maturity m(x, t)
is introduced. It should be noted that only the progression in the x-direction is considered
due to symmetry considerations. The thermal characteristics are defined by means of
heat capacity cp, conductivity λ(m) and material density ρ. The generated heat caused by
hydration is given by the source term.

∂tQ = Qm∂tm, Qm = Ame−am2
, (12)

where a = 1/2m2
x and A = Qx/mx, with mx indicating the specific m for which Qm reaches

its maximum Qx. Equation (13), with Dm as moisture diffusivity coefficient, reflects the
nonlinear behavior of moisture diffusion in the concrete according to [26].

D(θ) = Dm[0.05 + 0.95(1 + tanh(20(θ − 0.8)))] (13)
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The sink term η∂tm in the moisture formula (Equations (9)–(11)) is the hydration
reaction ratio η. The activation energy, gas-constant, and reaction rate are given by E, R,
and µ. The required initial

T(x, 0) = T0(x), θ(x, 0) = 1, m(x, 0) = 0 (14)

and boundary conditions

−λ(m)∂xT|x=0 = σ1(T(x, t)− Ts, ∞),
λ(m)∂xT

∣∣x=L = σ2(T(x, t)− Tm, ∞) +
.
q,

−D(θ)∂xθ|x=0 = e(θa − θ(L, t)),
D(θ)∂xθ|x=L = 0,

(15)

for the PDEs in Equations (9)–(11) result from the experimental setup and the assumptions
that m(x, t) ∈ [0, 1], θ(x, t) ∈ [0, 1]. Here, e is the evaporation rate, and the heat transfer
coefficients—assumed as constants—are denoted as σ1 and σ2; Ts, ∞ refers to the temperature
of the steel plate at x = 0. The measured values of the heat mat temperature and heat flow
induced through it at position x = L can be referred to as Tm, ∞ and

.
q, respectively. The

experimental configuration incorporates a heat flux sensor and a protective foil between
the heat mat and the concrete surface, preventing any direct contact (see Section 3.1). A
combination of the heat flux and the Robin boundary condition, in which the temperature
of the mat is a contributing factor, is utilized as the energy input into the concrete to make
up for the absent energy input at the position x = L.

The parameter identification process was conducted to determine the values of cp,
µ, Dm, η, mx, Qx, σ1, σ2, T1, ∞, and T2, ∞, as well as the functional relationship of the
conductivity λ(m). Further parameters were taken from [26]. The parameters from the
literature and the identified ones are summarized in Table 2.

Table 2. System parameters of the dig. twin.

Symbol Value Units

ρ 2440 kg/m3

λ0 2.3 W/Km
η 2.05 ND 1

R 8.314 J/K
Qx 108 J/m3

σ1 16.1 W/(Km2)
σ2 9.9 W/(Km2)
cp 1320 J/(kgK)

Dm 109 m2/s
µ 56 1/s
E 35 kJ
e 0.02 m/s

Ts, ∞ 300 K
mx 0.174 ND
θa 0.01 ND

1 Nondimensional.

The system parameterization was performed using MATLAB, aiming to minimize the
magnitude of the Euclidean distance between the measured and numerically calculated
temperatures. Note that, currently, a measurement of moisture and maturity is not available
in the experiment. Additionally, for the determination of the thermal conductivity λ(m)
different ansatz functions were examined to express the dependency of λ on maturity,
eventually leading to the following formulation:

λ(m) = λ0
(
1 + e−m) (16)
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with λ0 adjusted to reduce the distance to the experimental results. The dependency on
maturity reflects the changes in thermal conductivity during the solidification process.

Given the inherent complexity of the equations involved, obtaining an analytical
solution is impractical in this scenario. Instead, the solution is approximated numerically
using the finite-difference method on a uniform grid, as exemplified in [27]. The numerical
simulation of the discrete system with the parameters from Table 2 and the difference
between the measured and numerically calculated temperatures are illustrated in Figure 3.
Comparing Figure 3a,b, which reflect the development of the maturity and moisture, it
is easy to see that both behave oppositely. During hydration, the water is bound, and
the moisture content decreases. The influence of hydration on temperature behavior can
be identified as a bulge, as shown in the first ten hours of the temperature course in
Figure 3c. The error between the measured and numerically simulated temperature is given
in Figure 3d. The maximum deviation along the simulation and measurement occurs in the
first hours, where also the most intense dynamics of the heating process occur.
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3. Experiments
3.1. Experimental Setup

The developed test rig was exemplarily evaluated on a characteristic HPC. The tested
concrete is based on a nanotechnologically optimized binder and has a compressive strength
fc > 125 N/mm2 [9,28]. The HPC is suitable for rapid heat treatment without pre-storage
and high temperatures (<100 ◦C). The investigations in [29] show rapid strength devel-
opment without any relevant damage influences due to secondary ettringite formation.
Table 3 shows the concrete composition.
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Table 3. Concrete composition of the HPC based on the binder Nanodur-Compound 5941.

Component Type Mass [kg/m3]

River Sand 0/2 426.0
Basalt 1/3 882.0
Binder Nanodur-Compound 5941 1042.0
Water 159.8
Superplasticizer Master Glenium ACE 430 12.3
Shrinkage reducer Eclipse Floor 8.0
Hardening accelerator Master X-Seed 100 12.3

The principle of the test rig according to Section 2.2 is given in Figure 4, with the imple-
mentation presented in Figure 5. The specimen had the dimensions h/w/l = 20/15/15 cm
and initially consisted of liquid concrete (Table 3), filled into a formwork. The sides of
the formwork were made of wood, and a steel plate was used at the bottom (thickness
h = 5 mm, λ = 50 W/(mK)) to ensure heat dissipation at the sink. With the formwork, the
specimen was supported laterally. The insulation was realized using polystyrene boards
(h = 20 cm, λ = 0.032 W/(mK)).
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Concrete was heated by a silicon heating mat of the same size as the cross-section area.
The mat had a wattage of 3000 W/m2 and was equipped with a two-point controller and a
temperature sensor to maintain a once-set temperature constant. To concentrate

.
Q in the

direction of the concrete, insulation (h = 20 cm) was placed on the upper side of the mat, too.
Additional weights pressed the mat against the liquid concrete to ensure full contact [30].
A heat-resistant Hostaphan foil (h = 0.05 mm) separated the mat from the liquid concrete.
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Figure 5. Test setup (a) and a thermal image during heating (b); in both photos, the upper insulation
is removed.

To measure the transient temperature field, fiber optic sensors (DFOS) were laid
longitudinally in capillaries in the concrete (no. 6 in Figure 4) [31]. The capillary prevents
contact between the fiber and the surrounding concrete, so the fibers are not subjected to
mechanical strains, allowing for the measurement of pure thermal strains [31]. The distance
of the measuring points (gauges) along the fiber was 0.65 mm, and the measuring frequency
was 1 Hz. Due to the heating mat on top and the steel formwork at the bottom, the DFOS
could not be laid straight through the test specimen. Instead, the fiber had to be led out to
the side geometrically following a circular arc (detail in Figure 4), with a 2 mm distance to
the surfaces on the top and bottom. A minimum radius of r > 1 cm is required to bend but
not destroy the fibers [32]. Here, that radius was selected as r = 3.5 cm. This bending of the
fiber had to be compensated in the postprocessing stage to ensure the precise location of
each gauge along the vertical axis (y). The gauges along the circular arc were converted
into an equivalent straight line, as shown in Figure 4 on the right.

Relevant points along the fiber (start and end of the arcs) were marked using the
hot-spot method [31]. This was accomplished by heating the points locally with a pin
before concreting, which identified the spots in the data record. The angle α = b/r is the
ratio of the arc length b to the radius r. For each point along the arc, the vertical distance (in
y) from the starting point of the arc is as follows: y′ = cos(α)*r.

Temperature changes relative to an initial state were measured in the fiber. An addi-
tional thermocouple next to the fiber recorded the absolute temperature and enabled the
calibration of DFOS measurements.

The time-dependent course of
.

Q induced by the heating mat was recorded with a heat
flux sensor (Hukseflux FHF04SC, h = 0.4 mm) placed between the concrete and the heating
mat [33,34]. The measurement uncertainty was ±0.2%.

3.2. Experimental Procedure

The fresh concrete was filled into the formwork and tempered for 22 h with a constant
temperature of the heating mat ϑM = 80 ◦C. This temperature limit was intentionally set to
not exceed 100 ◦C, even when additional hydration heat emerged. If the limit is not met,
the admixture water might start boiling, and structural damage must be expected. A safety
margin of 20 ◦C was considered to compensate for hydration heat.

Figure 5a shows a photo of the experimental setup and a corresponding thermal
image from infrared thermography during the experiment Figure 5b. Figure 5a shows
the heating mat with concrete underneath, temperature controller, and lateral insulation.
The insulation on the heating mat has been removed for the photo. The infrared ther-
mography on Figure 5b gives an impression of the heat propagation in the test specimen
and the effectiveness of the insulation. Heated areas with a temperature of about 80 ◦C
are color-coded in red to white, while the cold regions with temperatures of about 20 ◦C
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are blue. The heat induced at the top flows through the concrete and transfers to the
non-insulated bottom.

3.3. Results

The transient temperature distribution in the specimen as measured by DFOS is shown
in Figure 6 on the left. The diagram plots the temperature development over time t and
the specimen length x, with low temperatures in blue and high temperatures in orange to
yellow. In the beginning, the liquid concrete has an almost constant temperature of 21 ◦C.
Heating results in an uneven temperature increase in the specimen, beginning from the top.
Moreover, tempering accelerates hydration, and the hydration heat superposes with the
externally supplied heat. This effect reaches its maximum after approx. 6 h and a concrete
temperature of 76 ◦C. The concrete temperature at the sink decreases as the hydration heat
declines. After approx. 20 h, the temperature distribution becomes stationary.
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Figure 6 on the right displays the temperature distribution recorded over the sample
height at discrete time points. After 0.1 h of heating, the temperature distribution in the
boundary layer (x ≤ 0.04 m) is almost linear. The deeper layers do not yet exhibit any
significant temperature increase. With continued heating, the length of the almost linear
distribution increases. The maximum temperature in the stationary state is approx. 68 ◦C.
This is attributed to the measurement distance of 2 mm from the concrete surface and the
unavoidable unevenness of the tempered concrete surface with corresponding losses [4].

Figure 7 shows the induced
.

Q over time recorded with the heat flux sensor. The
heating mat induces

.
Qmax = 55 W in the beginning. Meeting the set temperature of 80 ◦C,

the controller of the heating mat keeps it constant by switching “On” and “Off” selectively
as soon as the measured temperature deviates from the wanted temperature by 0.5 ◦C. The
heating mat induces either full or no heat, which results in an alternating course of

.
Q in the

sensor (detail in Figure 7). Since the temperature gradient between the heating mat and the
concrete decreases with time,

.
Q also decreases on a global scale. In the period 5–10 h,

.
Q is

partially negative. This can be attributed to the dissipation of the hydration heat. In the
stationary state, the mean value of

.
Q is constant at about 6 W throughout.
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3.4. Evaluation of the Transient Thermal Conductivity Coefficient

The time-dependent evolution of λ is determined according to Section 2.3 and
Equation (8). In the transient state, the temperature distribution is evaluated over a reduced
∆x. It is necessary to determine a minimum evaluation length to ensure sufficient tempera-
ture gauges along the considered length and to assume an approximately homogeneous
concrete composition. According to [35], the minimum concrete thickness for thermal
evaluations should be at least three times the largest grain diameter of the concrete (Dmax).
Here, ∆x is 9 mm.

Figure 8 shows the time course of ∆ϑ over ∆x derived from the DFOS measurements,
with ∆ϑ = (ϑ(x = 0mm, t) − ϑ(x = 9mm, t)) in the interval 0.08 to 1.5 h. For t < 0.08 h,
the temperature distribution over ∆x is nonlinear. The alternating course of

.
Q (Figure 7)

is also found here to be attenuated in time due to the inertia of concrete heating. There-
fore, the linearization of the curve by minimizing the mean-squared error is required for
the evaluation.
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The influence of the hydration heat increases over time until t = 6 h. The internally
released heat flows toward both edges and thus partially in the opposite direction to the
externally supplied heat, reducing ∆ϑ. For t > 1.5 h, this results in a negative ∆ϑ, and λ
cannot be derived until the steady state is reached.

For the determination of λ, Equation (17) is used with the linearization of ∆ϑ(t)
(Figure 8),

.
Q(t) according to Figure 7, ∆x = 0.009 m, and A = 0.0225 m2.

λ(t) =

.
Q(t)·∆x
∆ϑ(t)·A (17)

Figure 9 shows the time-dependent development of λ for the investigated concrete.
At t = 0.08 h, λ is 4.3 W/(mK). For t > 1.0 h, λ stabilizes at 3.1 W/(mK). In the transition
phase, there is an exponentially decreasing course.
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Figure 9. Time course of the thermal conductivity of HPC in the transition from liquid to solid with
an indication of the evaluation length, compared to the literature [18].

For t = 20 h, the temperature distribution in the specimen reaches a stationary state,
allowing for the determination over the entire sample length (∆x = 20 cm) and resulting in
λ = 3.06 W/(mK). This value is in accordance with the result after one hour with a reduced
evaluation length.

The alternating course results from the alternation in
.

Q and the inertia of concrete
heating. In the stationary state, the heating mat has longer on/off phases to maintain a
constant temperature. Furthermore, the increased evaluation length amplifies the impact
of the inertia of concrete heating. Both effects result in a higher oscillation of the heat flux
with a greater time gap to ∆ϑ.

4. Discussion
4.1. Comparison of the Results with Approaches from the Literature

A simplified method to determine the hydration dependence of λ is suggested in
the literature. Table 4 gives a comparison of the theoretical and the experimental results.
Due to limitations in the experiment, it is not possible to determine an exact value for λ
before t = 0.08 h, but the approach λ0 = (1.3. . .1.55) λhard according to [5] approximates the
experiment well. According to [32], the investigated concrete has a thermal conductivity
of λhard = 3.0 W/(mK). The experimentally determined coefficient thus deviates from the
literature by less than 4%.
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Table 4. Comparison of the test results with literature data.

Experiment References [5,9,28,32]

λhard [W/mK] ≈3.1 ≈3.0
λ0 [W/mK] 4.3 (t = 0.08 h) 3.9–4.7

The experimental results show an exponentially decreasing slope for λ, which differs
from the simplified linear slope according to ref. [5] in Figure 9.

4.2. Evaluation Length

To evaluate λ according to Equation (8), a linear temperature distribution over ∆x is
necessary. Figure 10 shows the temperature distributions measured by DFOS in the interval
x = [0, 20 mm] of the specimen for t = 300 s Figure 10a and t = 540 s Figure 10b, with the
linearization of the temperature profile on varying ∆x. For t = 300 s, the temperature only
increases in the top layer (x ≤ 8.7 mm), as indicated by the vertical dashed line Figure 10a.
The temperature distribution measurements show high consistency with the linearization
for ∆x = 6 mm and ∆x = 9 mm, with determination coefficients of R2 = 0.91 and 0.95,
respectively. A more extended evaluation length underestimates the temperature gradient,
resulting in R2 = 0.83 and 0.74 for ∆x = 12 mm and 15 mm.
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Figure 10. Temperature distribution in the specimen recorded by DFOS at t = 300 s (a) and t = 540 s
(b) with linearized temperature gradients for different evaluation lengths ∆x.

For t = 540 s Figure 10b, a linear temperature distribution is reached up to x = 20 mm,
with a good approximation for all ∆x considered. The determination coefficients are all
R2 ≥ 0.95.

For an accurate assessment of λ, a short evaluation length of 9 mm is sufficient at early
times. As the tempering time increases, the permissible evaluation length also increases
but is not required.

Figure 11 shows the effect of varying ∆x (abscissa) in the range between 1 mm and
38 mm on λ (ordinate) at different times. At all times, a plateau of stable results for λ is
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achieved, starting from ∆x = 9 mm. The length of the plateau increases as the tempering
time increases. The curves rise for t = 300 s and t = 540 s as the temperature distribution
is nonlinear along the evaluation length. For longer temper times, the curve decreases
for ∆x > 20 mm due to the increasing impact of the hydration heat. For ∆x < 9 mm, the
linearization is less robust against the measurement uncertainty and nonlinearity of the
measured course due to the small number of measuring points. This causes the evaluated
λ-values to decrease almost linearly.
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Figure 11. Effect of evaluation length on λ at different time points.

The plateau defines the permissible ∆x. The results support the selection of ∆x = 9 mm
in Section 3.4. For ∆x > 9 mm, the evaluation is robust against measurement uncertain-
ties. On the other hand, a short evaluation length is more robust against the effects of
hydration heat.

This paper focuses on fine-grained concrete. The approach ∆x ≥ 3Dmax requires
adjusting ∆x for normal concretes since Dmax is larger. Consequently, the permissible
start time of evaluation shifts backward (see Figure 10). The permissible evaluation time
intervals are given in Figure 12 by the green area. To determine the permissible evaluation
time interval, a horizontal line is drawn from a chosen ∆x-value on the ordinate. From
the intersection points with the boundaries of the green area, two vertical lines are drawn
down to the abscissa, indicating the start and end of the evaluation time interval.

The boundaries of the permissible evaluation time follow from the minimum time to
reach linearity of the temperature distribution along the evaluation length (left boundary)
and the time when hydration effects become relevant to the temperature distribution (right
boundary). So, as ∆x increases, the permissible evaluation time interval decreases. An
evaluation length of ∆x ≥ 38 mm is not reasonable, as both boundaries overlap.
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4.3. Influence of Induced Heat and Hydration Test

In the experiment, a heating mat with a two-point control was used to generate a tem-
perature gradient in the concrete. After a certain time, the hydration heat superimposes the
induced

.
Q. Therefore, the choice of heat source influences the method and the robustness

of the results when deriving λ.
The used heating mat induces a nonconstant

.
Q over time, and therefore a heat flux

sensor is necessary to measure the time course (Figure 7). This also leads to an alternating
course of ∆ϑ damped in time, which must be linearly smoothed to derive λ.

One approach to simplify the evaluation is to induce a constant
.

Q. Figure 13 shows
the calculated temperature development of the heating mat and, consequently, the concrete
temperature at the top of the sample for constant

.
Q values of 6 W and 55 W. The calculation

is carried out using the digital twin described in Section 2.4, with 55 W corresponding to
the maximum

.
Q of the used heating mat and 6 W corresponding to the recorded mean

.
Q in

the stationary state to maintain the temperature constant at 80 ◦C. These are compared with
the calculated temperature curve for a two-point controlled heat flux with

.
Qmax = 55 W.

In the simulation with constant
.

Q = 6 W, the heating mat needs approximately 15 h
to reach the set temperature of 80 ◦C. In contrast, if a constant

.
Q of 55 W is induced, the

heating mat exceeds the critical temperature of 100 ◦C after approximately two hours.
After that, the concrete continues to heat up even further. After 20 h, the calculated
concrete temperature reaches over 300 ◦C. In the case of a controlled heat supply with
.

Qmax = 55 W, the temperature curves follow the course of 55 W (constant) until a tempera-
ture of 48 ◦C is reached;

.
Q is then continuously reduced so that the set temperature of 80 ◦C

is not exceeded.
A low constant value of

.
Q leads to a slow temperature increase in the concrete. As

a result, it takes longer to achieve a linear temperature distribution on ∆x; the earliest
permissible evaluation start is shifted backward. Additionally, lower concrete temperatures
are more vulnerable to the impact of hydration heat, and smaller values of ∆ϑ reduce the
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robustness of the evaluation. On the other hand, a high constant
.

Q leads to uncontrolled
concrete heating—structural damage must be expected. Therefore, the control of

.
Q is

essential to heat the concrete quickly without exceeding the temperature limits.
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The maximum concrete temperature results from the externally supplied heat plus the
hydration heat and is limited to 100 ◦C. The increase in the temperature due to the hydration
heat ∆TH is approx. 17 ◦C for the investigated concrete and dimensions [36]. The heating
mat reacts to the hydration heat with a delay due to the inertia of concrete heating and
reduces

.
Q, so the concrete does not exceed the set temperature. Therefore, the maximum

reached temperature in Figure 13 is only slightly above 80 ◦C. So, a temperature of the
heating mat ϑM > 80 ◦C is also possible, e.g., 95 ◦C. The experimental work in [36] shows
that a heat treatment accelerates hydration, but higher tempering does not increase ∆TH.
Consequently, if ϑM decreases, the proportion of ∆TH in concrete temperature increases.
For ϑM = (80, 70, 60, 40) ◦C, Figure 14 shows the proportion of ∆TH to (ϑM-ϑ0); the ambient
temperature ϑ0 = 21 ◦C is constant during the experiment. The relative share of ∆TH to ϑM
increases from 29% to 90% as ϑM is reduced.

The influence of different heating mat temperatures on the transient course of λ is ana-
lyzed with the digital twin (Section 2.4). The transient temperature distribution and the time
series of

.
Q are simulated for different heating mat temperatures ϑM = (80, 70, 60, 40) ◦C.

Then, λ is derived according to Section 3.3.
Figure 15 shows the simulation results for λ and the results from the experiment. For

ϑM = 80 ◦C, the determination coefficients between the experiment ( λe) and simulation
( λs) is R2 = 0.96. Reducing ϑM leads to an increase in the derived λ values; the curves
shift upward. This can be attributed to the effects of hydration heat on ∆ϑ.

.
Q between the

heating mat and concrete exhibits delayed response to the additional heat from hydration
and initially remains constant, resulting in a decrease in the derived λ. This effect increases
as ϑM decreases.
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A high heating mat temperature is thus less sensitive to the impact of hydration.
Therefore, the heating mat temperature should be as high as possible without exceeding
the limit of 100 ◦C. Therefore, 95 ◦C is a reasonable limit.

5. Conclusions

This paper presents a test rig for the experimental determination of the transient
thermal conductivity coefficient of fine-grained concretes in the transition from liquid to
solid. The test rig was exemplarily tested on a characteristic HPC. A digital twin of the test
was used for further investigations of the setup and its boundary conditions. The following
conclusions can be drawn:
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• The thermal conductivity of concrete decreases in the transition from liquid to solid
during hydration, following an exponentially decreasing course. For the investigated
concrete, the thermal conductivity before hydration is λ0 ≈ 4.3 W/(mK). In the solid
state, it is λhard ≈ 3.1 W/(mK); λhard is reached after about 1 h.

• In the transient state, only a short evaluation length can be considered for the tempera-
ture distribution. A minimum length must be maintained to reduce the influence of
inhomogeneities in the concrete composition and measurement uncertainty. On the
other hand, an extended evaluation length delimitates the permissible evaluation time
and is more susceptible to the influence of hydration heat. Therefore, an evaluation
length of three times the maximum grain diameter of the concrete is recommended.

• A high heating mat temperature reduces the relative influence of the released hydration
heat. The concrete temperature must not exceed the critical temperature of 100 ◦C.
The minimum heating mat temperature is 60 ◦C, and 95 ◦C is recommended under
laboratory conditions.

• In order to achieve a linear temperature distribution over the evaluation length in a
short time without exceeding the limit temperature of 100 ◦C, a controlled heat supply
is necessary. In the experiment, a heating mat with a two-point control was used.
The nonconstant-induced heat flux required using a heat flux sensor to measure the
development over time. The derived λ-curve shows the oscillations of the heat flux
and must be compensated by linearization. Using a more continuous control system
such as a PID controller may be helpful to reduce the effect.

The developed test method is adaptable to a wide range of concrete compositions, even
if the concrete is not suitable for heat treatment. The potential damage due to secondary
ettringite formation is negligible for the derivation of λ. The method can also be extended
to specimens of any size. The maximum grain size diameter of the tested concrete limits
the application. A large maximum grain size diameter requires an increased test length,
which increases the influence of disturbing variables such as the released hydration heat.
The applicability of the test rig to non-fine-grained concretes needs to be investigated in
further experiments.
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