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A B S T R A C T

The accurate estimation of a battery’s state of charge (SOC) is critical in battery management systems for
various applications. Lithium Iron Phosphate (LFP) batteries, preferred for their long cycle life, cost efficiency,
and enhanced safety, have emerged as favourable choices for stationary storage. Yet, they still face challenges
in precise SOC estimation due to the flatness and hysteresis of their open circuit voltage. Addressing this, our
study integrates a hysteresis model into a third-order battery model for BMS controlling a stationary storage
system in frequency containment reserve (FCR) application. We analysed three advanced SOC estimation
techniques — extended Kalman filter (EKF), dual unscented Kalman filter (DUKF), and particle filter (PF)
— with the hysteresis model using a model-in-the-loop (MiL) toolchain. Performance testing under a 48-hour
FCR load profile showed EKF with a 4% error, DUKF achieving the best result with a 1.1% error, and PF’s
performance varying between 2.9% and 4% depending on particle count. Robustness tests against initialization
and current sensor errors under an 8 hr profile revealed DUKF maintained a 2% error boundary irrespective
of the error introduced, highlighting the hysteresis model’s effectiveness. Broadening the scope, the study also
explores extending the method to other lithium-ion chemistries.
1. Introduction

Currently, the energy sector is witnessing a massive changeover,
with multiple policies and initiatives to set pathways to decarboniza-
tion [1]. This has led to the massive adoption of power generation from
various renewable energy sources (RES) [2]. Electrical energy storage
(EES) improves the reliability and overall use of the entire power sys-
tem and in the form of batteries offers rapid response capabilities while
still having reasonable energy density [3]. This makes it a suitable
technology for primary control of the electricity grid with services such
as frequency control and voltage regulation [4]. Favourably, with the
recent increase in Electric Vehicle (EV) sales numbers, prices of lithium-
ion batteries (LIBs) have been steadily decreasing [5,6]. Thus, due to
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economic and technical suitability, the LIB technology is now being
considered extensively for stationary storage applications both as large-
scale storage systems (LSS) and home storage systems [7,8]. In 2017,
across the vast stationary storage installations around the world, elec-
trochemical storage systems accounted for 1.6GW (2.8 bne), of which
LIB alone accounted for 81% (in terms of power capacity), i.e. 1.3GW
(0.85 bne) [5]. Additionally, as per the projections of IRENA, this
installed stationary storage capacity as of 2017 would increase by 9
to 15-folds in a standard case or 17 to 38-folds in a doubling case
by 2030 [9]. Cells with Lithium Iron Phosphate (LFP), Lithium Nickel
Cobalt Aluminium Oxide (NCA) or Lithium Nickel Manganese Cobalt
Oxide (NMC) cathodes and Graphite or Lithium Titanate Oxide (LTO)
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Nomenclature

̄ Resampled particles at step 𝑘
𝛥𝑡 Time difference between steps (s)
�̂�+𝑘 , �̂�+𝑘 Post priori state at step 𝑘
�̂�−𝑘 , �̂�−𝑘 , 𝐗∗

𝑘 Priori state at step 𝑘
𝐗+
𝑘 Sigma points or particles at step 𝑘

𝐘∗
𝑘 Estimated output at step 𝑘

𝛹 Factor depicting position of OCV during tran-
sition from charging to discharging direction

𝐪[𝑖]𝑘 Weight/likelihood of particle 𝑖 at step 𝑘
𝐰[𝑖]
𝑘 Normalized weight/likelihood of particle 𝑖 at

step 𝑘
𝜃𝑘 Battery parameters at step 𝑘
𝐴, 𝐵 State matrices of the battery model
𝐶nom Nominal capacity of cell (Ah)
𝐼cell Current through the cell (A)
𝑘 Time step
𝑀 Number of particles used in particle filter
𝑚i, 𝑚ii Hysteresis coefficients of 𝑖th integral
𝑁 Number of sigma points
𝑛 Count of integrals representing hysteresis
𝑢𝑘 Inputs to state space at step 𝑘
𝑈cell Cell terminal voltage (V)
𝑣𝑘 Measurement noise at step 𝑘
𝑤𝑘 System noise at step 𝑘
𝑥𝑘 State at step 𝑘
𝑦𝑘 Output of stat space representation at step 𝑘

anodes are the common options for lithium-ion battery applications.
LFP, in particular, distinguishes itself due to its cost-effectiveness,
prolonged cycle life, satisfactory energy density, and enhanced safety
features [10]. The inherent stability of LFP batteries, even under harsh
operating conditions, devoid of environmentally concerning materi-
als like cobalt [11], makes them an appealing option also for car
manufacturers eyeing affordable and well-accepted mobility solutions.

Yet, choosing the appropriate battery chemistry is merely one facet
of EES planning. Equally vital, though sometimes overlooked, is the im-
plementation of a suitable diagnostic platform, specifically the Battery
Management System (BMS). The BMS plays a central role in ensuring
safety, especially under challenging conditions, and in the accurate esti-
mation and control of the battery system [12]. Precise State-of-Charge
(SOC) estimations in an EES setup are imperative, aiding in the pre-
vention of over(dis)charging and laying the groundwork for advanced
energy management strategies allowing high availability of the system,
which is necessary for cost-optimized operation [13]. Nevertheless,
the inherent characteristics of LFP, such as its pronounced nonlinear
behaviour due to large voltage plateaus and associated hysteresis in
combination with steep OCV only at very low and very high SOCs,
challenge conventional diagnostic methods around Coulomb count-
ing [10,14]. This is particularly the case in the context of applications
with rare full charge or discharge conditions, such as in frequency
control reserve or mild hybrid vehicles, since these methods rely on
the lookup of the SOC–OCV relationship to compensate unavoidable
integration errors [13–15].

To address these challenges with the diagnostics of LFP battery
systems, a variety of algorithms and modelling techniques have been
proposed and investigated in the literature. Table 1 provides a de-
tailed outlook on the available literature around the topic of hysteresis
modelling and SOC estimation of various lithium-based chemistries.
From the literature, it is evident that predominantly applications in
2

electromobility are researched whose constraints are not universally
applicable due to significant differences in the application scenario
of e.g. LSS or 48 V mild hybrid electric vehicles (HEV) [13,16,17],
as detailed in Section 4. Additionally, modelling hysteresis of lithium
battery’s OCV for SOx estimations has not been focused for real-
life implementations of BMS due to its known complexity. Utilizing
the various mentioned modelling techniques in Table 1 variety of
SOC estimation algorithms are available in literature namely, variants
of Kalman Filters (EKF, UKF, AEKF, DUKF) [18,19], H-infinity filter
(HIF) [20] and particle filters (PF) [21]. Meanwhile authors of [22–24]
employ optimized versions of recursive least-squares algorithms in their
approaches to dynamically estimate the model parameters for improved
SOC estimation. Lastly, with gaining popularity, machine learning tech-
niques such as support vector machine [25], deep neural network [15]
and recurrent neural network [14,26] have also been proposed. Such
machine learning techniques are employed mainly to accurately model
the complex non-linearity of the SOC–OCV relationship.

In addressing the diagnostic challenges associated with LFP and
similar cell chemistries for LSS operated in the frequency contain-
ment reserve (FCR) market, this study provides the following main
contributions:

• Demonstration of seamless incorporation of a simplified hysteresis
model into an RC-based battery model, priming it for integration
within modern BMS frameworks.

• Showcasing the integration of the hysteresis model into differ-
ent model-based SOC estimation approaches, and evaluating the
resulting accuracy and robustness of the estimators in a very
challenging application scenario for the BMS.

• Presenting, testing and validation of selected SOC estimation
algorithms under multiple but identical conditions of a frequency
containment reserve LFP battery application, set by a sophisti-
cated Model-in-the-loop toolchain, in order to enable comparable
and realistic conclusions.

• Offering a forward-looking perspective on model-based SOC es-
timation tailored for cell chemistries echoing LFP traits — pre-
dominantly the flat OCV curve and pronounced OCV hysteresis,
to enable the broad application of knowledge gained.

The paper is structured as follows. At first, an introduction to
LFP characteristics is given in Section 2 and the proposed modelling
techniques as per [10,41] are explained. Second, in Section 3, a general
overview of common SOC estimation algorithms in literature is given,
and the considered SOC estimation algorithms are studied in detail.
In Section 5, the whole system setup is briefly explained. Following
this, in Section 6, the results from various experiments are evaluated to
determine the optimal choice of an SOC estimation algorithm. Finally,
in Section 7, a theoretical analysis is carried out to analyse if other
chemistries with similar characteristics to LFP could also benefit from
the proposed SOC estimation setup.

2. Characteristics of LFP and approaches to modelling

Introduced in 1997 by Professor John B. Goodenough, LiFePO4
exhibits an olivine-type crystallographic structure, which inherently
is more stable than the spinel structure found in other cathode ma-
terials, creating high intercalation/de-intercalation reversibility [11].
As depicted in Fig. 1(a), LFP showcases a flat OCV characteristic
compared to other chemistries. A theoretical explanation as per [42]
could be described as a ‘two-phase’ transition process where the surface
concentration of lithium ions is almost the same during both interca-
lation and de-intercalation processes, resulting in a flat potential. Such
characteristics pose a major challenge to SOC estimation techniques,
as the observability of change in SOC concerning OCV is very low.
Additionally, as depicted in Fig. 1(b), one can observe the presence of
a pronounced hysteresis in the OCV of LFP especially with respect to

the low voltage gradient, which is mainly attributed to thermodynamic
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Table 1
Taxonomy table of recent literature aiming to assess the hysteresis effect of various battery chemistries.

Ref. Modelling technique Applicability in BMS Cell chemistry Application aimed

[27]

nth order RC model + hysteresis unit

Yes LFP
EV[18] Yes NMC

[28] Yes LiMnO

[20] Yes LiPo
Experimental[29] Yes NMC

[30] Yes LFP

[31] Yes LFP 2nd life/LSS

[32] Preisach model + hysterons to produce the hysteresis effect No NMC Experimental

[33]

nth order RC model

Noa

LFP

EV/experimental
[34] Yes LSS
[35] Yes HEV
[19] Yes EV
[36] Yes Experimental

[37] Multi-sensor fusion Yes EV
[14,15,38–40] Machine learning techniques Yesb EV

LiPo: Lithium Polymer, LiMnO: Lithium Manganese Oxide, NMC: Lithium Nickle Manganese Cobalt, LFP: Lithium Iron Phosphate, LSS: Large
scale storage system, EV: Electric Vehicles, HEV: Hybrid Electric Vehicles.
a Authors propose acquiring model parameters with ultrasonic experiments, which could be a costly BMS implementation.

b When externally trained.
Fig. 1. Characteristics of LFP: (a) depicts OCV flatness compared to other chemistries, and (b) represents OCV hysteresis (between 10%–90% SOC) measured after two relaxed
conditions, i.e. after 5min and 3 h based on [10].
l
o
b
c

ffects and mechanical stress within the electrodes [42]. In practice, the
bserved hysteresis behaviour is furthermore affected by comparably
ong relaxation time constants, temperature influence and significant
hanges in shape due to the ageing of the cell [10]. Thus significantly
ncreasing the system’s nonlinearity and making voltage model-based
OC estimations more difficult.

While the gradient of the OCV curve remains an intrinsic charac-
eristic that is beyond external control, the impact of hysteresis on
odel-based SOC estimation can be mitigated through the employment

f an OCV hysteresis model. An exemplar of such a model has been
utlined by [10], as described subsequently.

𝐶𝑉 (𝑆𝑂𝐶,𝛹 ) = 𝛹 ⋅ 𝑂𝐶𝑉𝐶𝐻 (𝑆𝑂𝐶) + (1 − 𝛹 ) ⋅ 𝑂𝐶𝑉𝐷𝐶𝐻 (𝑆𝑂𝐶) (1)

𝛹 =

⎧

⎪

⎨

⎪

⎩

0, 𝑔 < 0
𝑔, 0 ≤ 𝑔 ≤ 1
1, 𝑔 > 1

(2)

=
𝑛
∑

𝑖=1
𝑚𝑖𝑖 ∫

𝑚𝑖 ⋅ 𝐼𝑐𝑒𝑙𝑙
𝐶𝑛𝑜𝑚

𝑑𝑡, where 𝑛 > 0 (3)

The OCV at any given point in time can be represented as a function
of SOC and 𝛹 as defined in Eq. (1), where 𝑂𝐶𝑉 and 𝑂𝐶𝑉
3

𝐶𝐻 𝐷𝐶𝐻
depict the charging (CH) and discharging (DCH) boundaries of the OCV
obtained from lab experiments, respectively. As defined in Eq. (2), 𝛹
is a factor depicting the position of the OCV during the transition from
CH to DCH boundaries or vice versa. 𝛹 is calculated as per the variable
𝑔, which in turn is dependent on the current through the cell, i.e. 𝐼𝑐𝑒𝑙𝑙,
having a nominal capacity 𝐶𝑛𝑜𝑚, also defined in Eq. (3). As depicted
in Fig. 2, 𝛹 ranges from 0 to 1, where 0 indicates the OCV is at the
discharge boundary and 1 indicates the OCV is at the charge boundary.
The variation of 𝛹 depends on the amount of charge transferred by
the current profile and is depicted as per Eq. (2). The factors 𝑚𝑖𝑖 and
𝑚𝑖 are obtained after multiple minor loop testing and curve fittings at
aboratory conditions. It is clear from Eq. (3) that with a larger value
f 𝑛, i.e., with a higher number of integrals, the accuracy increases,
ut at the cost of higher computation load [10]. To minimize the
omputational effort on the BMS, 𝑛 is set to 1 in this work.

For the cell used for experimental validation as defined in Section 5,
1st to 4th order of Thevenin models were used to fit the Electrochemical
Impedance Spectroscopy (EIS) measurements, of which 3rd and 4th
order provided good and similar results. Thus, to keep the modelling
precision high, and also the computational cost low a 3rd order battery

model as shown in Fig. 3 is used in this work. Here, 𝑅0 models the
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Fig. 2. Representation of major and minor loops in OCV hysteresis model.
Source: Based on [10].
Fig. 3. 3rd-order RC battery model, with OCV, ohmic resistance 𝑅0, resistances of the
RC network 𝑅1, 𝑅2 and 𝑅3 and capacitances of the RC network 𝐶1, 𝐶2 and 𝐶3.

ohmic resistance and the 3 RC elements in series with short to long time
constant respectively model the polarization over-voltages. Based on
Coulomb counting and the linear differential equations of RC circuits,
the discrete-time dynamic equations of the cell model and cell voltage
are expressed by Eqs. (4), and (5).

𝑆𝑂𝐶(𝑘) = 𝑆𝑂𝐶(𝑘 − 1) + 𝐼(𝑘) ⋅ 𝛥𝑡∕𝐶nom (4)

𝑈𝑐𝑒𝑙𝑙 = 𝑂𝐶𝑉 (𝑆𝑂𝐶(𝑘), 𝛹 (𝑘)) + 𝐼(𝑘) ⋅ 𝑅0 + 𝑈1(𝑘) + 𝑈2(𝑘) + 𝑈3(𝑘) (5)

In reference to Fig. 3 and denoting 𝐼(𝑘) as the input (𝑢(𝑘)) to
the model with positive values of 𝐼(𝑘) corresponding to charging the
battery, and 𝑈𝑐𝑒𝑙𝑙 as the output (𝑦(𝑘)), the state vector of the system 𝑥𝑘
is chosen as

𝐱𝑘 = [𝑆𝑂𝐶,𝑈1, 𝑈2, 𝑈3]𝑇 (6)

Thus, the whole system could be represented as Eq. (7), which also
facilitates usage in model-based estimation methods discussed in the
next section.

𝐱𝑘 = 𝐀 ⋅ 𝐱𝑘−1 + 𝐁 ⋅ 𝑢𝑘 (7)

and

𝐲𝑘 = 𝑔(𝐱𝑘, 𝑢𝑘) (8)

where 𝐀 is the dynamic matrix, 𝐁 is the input matrix and g(⋅) is the
non-linear process output model.

3. SOC estimation algorithms

The primary and most common method of estimating the SOC is
using a Coulomb counting approach, which samples the battery current
4

and computes the accumulated charge and discharge to finally estimate
the SOC [43–45]. Although such a method is simple and inexpen-
sive to implement, it faces the drawbacks of high dependence on the
initial SOC accuracy and accumulated error over time due to mea-
surement inaccuracies. While obtaining an accurate initial SOC value
is possible under lab conditions, measurement errors are inevitable
in a real-life scenario [46]. OCV-based approaches of SOC estimation
are typically used to solve the problem due to accumulative errors,
wherein the SOC is reset to a known value according to the OCV–
SOC relationship. As also explained in Section 5, this is not feasible
for stationary storage applications, such as primary control reserve, as
there are no suitable relaxation pauses in power requirement where
the measured voltage could be approximated as OCV. Especially in the
case of LFP, as discussed earlier, such a method will not be meaningful
in a wide range of SOC, as the OCV barely changes during most
of the SOC range, thus providing little to no information of change
in SOC [10]. Furthermore, advanced SOC estimation algorithms per-
tain to model-based techniques, namely: Luenberger observers [47,48],
Kalman Filtering [48–57], Particle filtering [58,59] and others. These
methods obtain the SOC using Coulomb integration but, at the same
time, are self-corrected with the error between model-based cell voltage
estimation and measurements. Of these, Kalman filters specifically have
been researched a lot mainly because of their computational simplicity,
estimation accuracy, fast cumulative error mitigation, and modularity,
which enables them to be adapted for high accuracy under various
degrees of non-linearity.

As described in Section 2, an LFP battery is a highly non-linear
system. Therefore, higher-order model-based estimations are typically a
good choice. Thus, three model-based non-linear filtering methods were
implemented and tested in this work, namely: Extended Kalman Filter
(EKF), Dual Unscented Kalman Filter (DUKF), and Particle Filter (PF).
The underlying principle of operation for all the methods mentioned
is the same, i.e., correction of states estimated using the difference
between the measured and estimated output voltage. The differences
in the functionality of the algorithms are described as follows:

3.1. Extended Kalman filter

The EKF is widely used in industry due to its simplicity and low
computation cost [60]. The term ’Extended’ in EKF refers to the lin-
earization process of the non-linear input system. EKF is preferred for
systems with lower non-linearity, as the non-linearity is linearized only
with the first order of the Taylor series expansion [61]. Nevertheless,
since an OCV hysteresis model is used in the battery model for this

work, it is interesting to analyse to which degree it reduces the system’s
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Fig. 4. Operational differences between an EKF and UKF (i.e. using sigma points).
Source: Based on [49].

nonlinearity and thus makes the EKF an acceptable estimator. Follow-
ing the linear state space description in (7) and (8), the considered state
space is as follows:

𝐱𝑘 = 𝐀 ⋅ 𝐱𝑘−1 + 𝐁 ⋅ 𝑢𝑘 + 𝐰𝑘 (9)

and

𝐲𝑘 = 𝑔(𝐱𝑘, 𝑢𝑘) + 𝐯𝑘 (10)

here vector 𝐰𝑘 and 𝐯𝑘 are system and measurement noise, respec-
ively. Both 𝐰𝑘 and 𝐯𝑘 are assumed to be uncorrelated, zero-mean
aussian white noise and their covariances are known as 𝐐𝑘 and 𝐑𝑘

espectively. In brief, the evaluation with EKF happens in two steps: 1.
ime update (prediction) and 2. Measurement update (correction). The
irst step generates the new predicted state as per the model defined,
lso termed as an a priori state estimate (�̂�−𝑘 ). In the second step based
n the measured output and the predicted output from �̂�−𝑘 , Kalman gain
s calculated. This is then further used to calculate the corrected state of
he system, also termed as post-priori state estimate (�̂�+𝑘 ). Please refer
o [50] for detailed equations.

.2. Sigma point Kalman filter

The Sigma Point Kalman Filter (SPKF) or Unscented Kalman Fil-
er (UKF) enhances the linearization process by using deterministi-
ally spaced state estimates (𝐗+

𝑘−1), so-called sigma-points, as shown in
ig. 4. This enhances the linearization until the third-order of the Taylor
eries expansion [49], which makes it more accurate but significantly
ncreases the computational cost in comparison to EKF.

The sigma points are located at the mean and symmetrically along
he main axes of the covariance and are calculated as per G. L. Plett
n [51]. The total number of sigma points 𝐗+

𝑘−1 calculated at every
teration is 2𝑁 + 1. In this work 𝑁 is 4, as defined in (6), thus the
otal number of sigma points is 9. The overall process of evaluation is
imilar to that of an EKF as defined in Section 3.1 and follows [51].

To address the high non-linearity of the LFP system and to provide
more sophisticated alternative to the EKF for this study, a DUKF is

sed as also described in [51]. In this system, both states (𝐱𝑘 as defined
n (6)) as well as model parameters (𝜽𝑘) are estimated simultaneously
ith two UKFs (see Fig. 5). In our case the second UKF responsible for
stimating the model parameters estimates only the internal resistance
5

𝑖 and rest, i.e. 𝐶𝑖 and 𝑅0 are kept constant. Although there are two
UKFs implemented in this setup, the computational cost is nearly the
same as the case of a single UKF [51]. Such a system is more robust
and precise, as both the filters complement each other in different time
scales (states in minutes to hours, parameters in months to years) and,
over time, reduce errors due to model parameters as well as states.

As shown in Fig. 5 and detailed in [51], both filters are coupled to
each other, wherein the estimated states are fed to the parameter filter
and vice versa. It is important to note that only the priori parameter
estimate (�̂�−𝑘 ) is sent to the state filter, whereas post-priori states (�̂�+𝑘−1)
re sent to the parameter filter. For this, the time update of the state
ilter is modified as:

̂ ∗
𝑘 = 𝑓 (𝐗+

𝑘−1, �̂�
−
𝑘 , 𝑢𝑘, �̄�𝑘−1, 𝑘 − 1) (11)

nd similarly, for the parameter filter, it would be:

̂ ∗
𝑘 = 𝑓 (�̂�+𝑘−1,𝐖

+
𝑘−1, 𝑢𝑘, �̄�𝑘−1, 𝑘 − 1) (12)

here �̂�∗
𝑘 are the predicted updates of the sigma points, 𝐖+

𝑘−1 are the
arameter sigma points and �̄�𝑘−1 is the process noise in case of the
arameter filter. Unlike the state filter, the parameter filter’s prediction
pdate step is as follows:

̂−
𝑘 = �̂�+𝑘−1 (13)

For more detailed equations of parameter filter and state filter in a
UKF please refer to [51].

.3. Particle filter

Kalman filtering methods, as described above, are based on Gaus-
ian distributions. In contrast, Particle Filters (PF) employ Monte Carlo-
ased sampling techniques. This gives the PF the advantage to deal with
ny kind of distribution by approximating the respective probability
ensity function of samples, or in other words, particles [59]. For a
ighly non-linear system such as LFP, PF can provide good performance
ith SOC estimation [59]. Similar to the Kalman filter, PF also works
ith the same state space representation as defined in (9) and (10).
he PF process is implemented as by Schwunk et al. [59] and can be
ummarized as follows:

• Particle generation
Unlike, mathematically calculating the sigma points in the UKF,
the particles initialized in this step, are randomly distributed
with the previously estimated value as the seed. Instead of us-
ing a Gaussian distribution, the Cauchy Lorentz distribution is
employed in this work. As illustrated in Fig. 6, the Cauchy–
Lorentz distribution enhances the robustness of the Particle Filter
(PF) owing to its heavy-tailed nature compared to the Gaussian
distribution. This characteristic effectively mitigates the issue of
sample impoverishment [59,62,63]. Cauchy’s Probability Density
Function is generated as [59]:

𝐏𝐃 = 𝐏𝑘 ⋅ tan(𝜋(𝑟𝑎𝑛𝑑(𝐌, 1) − 0.5)) (14)

where 𝐌 is the number of particles to be generated and must
always be 𝐌 > 0, and 𝐏𝑘 is the set of variance for random
particle distribution. With a given 𝐏𝐃 the particles are generated
as follows:

𝐗+
𝑘−1

[𝑖] = �̂�+𝑘−1 + 𝐏𝐃, 𝑖 = 1, 2,… ,𝑀 (15)

• Time update (prediction)
Similar to prediction step of EKF, a priori state (𝐗∗

𝑘) of for every
particle from 𝑖 = 1,2, . . . , 𝐌 is generated through the model
defined in Eq. (9).

• Measurement update
Every 𝑖th predicted particle is used to predict the output (𝐘∗

𝑘)
as per Eq. (10), which is later used for comparison with the

measurement.
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Fig. 5. Block diagram of DUKF with state and parameter filters coupled to each other. Signals for coupling are in blue.
Source: Adapted from [51].
• Determine Particle weights
In this step, the likelihood of the 𝑖th particle is calculated with
the equation:

𝐪[𝑖]𝑘 = 𝑒𝑥𝑝

(

− 1
2
√

𝐑𝑘
(𝐲𝑘 − 𝐘∗

𝑘)
2

)

∕
√

2𝜋𝐑𝑘 (16)

where 𝐲𝑘 is the actual measurement at step 𝑘. Then 𝐪[𝑖]𝑘 is normal-
ized for each particle by:

𝝎[𝑖]
𝑘 =

𝐪[𝑖]𝑘
∑𝑀

𝑗=1 𝐪
[𝑗]
𝑘

(17)

where 𝝎[𝑖]
𝑘 is the normalized weight for the 𝑖th particle. In other

words, 𝝎[𝑖]
𝑘 represents the probability of observing the measure-

ment from the corresponding particle’s state.
• Re-sample

This is one of the most crucial steps of PF in terms of com-
putational cost. All the predicted particles are re-sampled or
qualitatively selected based on the weights calculated in the
previous step. In this work, a Low Variance resampling method is
used as defined in [64] and explained as a pseudo-code in (18). 𝜆,
𝑈 , 𝑐 and 𝑖 are internal variables and ̄𝑘 is the resampled output:

𝜆 = 𝑟𝑎𝑛𝑑(0,M−1), 𝑐 = 𝜔[0]
𝑘 , 𝑖 = 1, ̄𝑘 = [ ]

𝑓𝑜𝑟 𝑚 = 1 ∶ M 𝑑𝑜
𝑈 = 𝜆 + (𝑚 − 1) ⋅𝑀−1

𝑤ℎ𝑖𝑙𝑒 𝑈 > 𝑐
𝑖 = 𝑖 + 1
𝑐 = 𝑐 + 𝜔[𝑖]

𝑘
𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒
𝑎𝑑𝑑 X∗

𝑘
[𝑖] 𝑡𝑜 ̄𝑘

𝑒𝑛𝑑 𝑓𝑜𝑟
𝑟𝑒𝑡𝑢𝑟𝑛 ̄𝑘

(18)

• State estimation
Finally, the average of the resampled states is the estimated (or
post priori) state.

�̂�+𝑘 = 1
𝐌

𝐌
∑

𝑖=1
̄ [𝑖]
𝑘 (19)

4. Application scenario

Unlike many other works that focus on batteries in electric vehicles,
in this study we focus on a LSS application. Specifically, we have
chosen a 5MW stationary energy storage system (M5Bat [13,65,66]),
6

operated in the FCR market [4] and located in Aachen, Germany, as
Fig. 6. A qualitative comparison between Probability Density Function (PDF) of Cauchy
and Gauss distribution.

an example. The operating profile utilized for this study was recorded
in the field in January 2019 and is depicted in Fig. 7 as a scaled-down
representation adapted to the capabilities of a single LFP cell under
study. The corresponding data is available at [67].

In contrast to electric vehicles or home energy storage systems, as
can be seen in Fig. 7, the FCR function in the energy grid leads to
operation without pauses or constant charging regimes [4]. In addition,
due to regulatory measures in this operation, the SOC window is limited
to a range between 20 and 80% SOC or even less [4]. As a result, this
application excludes almost all operating points at which a recalibra-
tion of the SOC estimator would normally take place [15,43]. Hence,
the diagnostic algorithms for such systems must exhibit exceptional
robustness and online precision to handle these kinds of errors until
a rare and expensive maintenance break [13]. From a diagnostics
perspective, this use case can therefore be considered a worst-case
scenario, especially when using LFP batteries.

5. Model-based validation environment

The architecture of a BMS is multifaceted, comprising components
such as sensors, filtering circuits, data acquisition systems, and di-
agnostic as well as control algorithms. In this study, we employ a
Model-in-the-Loop (MiL) toolchain, previously outlined in [68] and
illustrated in 8. This toolchain replicates each of these components to
study their individual and collective impact. A critical component of
the toolchain is the High Precision Reference Battery Model (HPRM),
which accurately mimics an actual battery’s voltage, temperature, and
other key characteristics like SOC, OCV, and polarization voltages
through a physically motivated high-order electrical equivalent circuit
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Fig. 7. Grid primary reserve application profile recorded at M5Bat [66] in January 2019, with voltage and SOC response emulated by HPRM of an LFP cell. The corresponding
data is available at [67].
Fig. 8. Model-in-the-Loop toolchain with an application model, high precision reference battery model, and BMS model.
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odel [10,69]. By using such a model instead of direct measurement
ata from cells, it is possible to accurately know the reference states
hat cannot be measured directly.

The reference model in this study is configured to emulate an
Ah high-power LFP cell, specifically the OMTLIFE8AHC-HP from
MT GmbH, investigated and characterized in chapter 5 of [10]. BMS

unctionalities are realized through a MATLAB/Simulink-based model,
eing responsible for computing all reference state variables, including
OC, SOH, and SOP. The toolchain allows to be configured for various
pplication scenarios, for this study it replicates the LSS application
ith FCR operation described in 4, which is permanently close to room

emperature due to air conditioning. In the scope of this work, we
oncentrate primarily on exploring the particularly challenging appli-
ation scenario and delve into the influence of hysteresis modelling
n diagnostic accuracy and robustness in such a scenario. Due to the
omplexity and the extensive range of parameters and simulations
equired to thoroughly investigate the effects of ageing and temperature
n SOC estimation, we have decided not to include an analysis of these
spects in this study, even though we are aware of the importance of
nderstanding these factors. Accordingly, all analyses were performed
t 100% SOH and 25 °C.

To assess the considered SOC estimation methodologies, they are
xecuted under exactly the same operating conditions, including tem-
erature and sensor inaccuracies. The SOC obtained from the HPRM
s considered the reference value while evaluating the outcome of the
OC estimation algorithms. The MiL toolchain also enables the manip-
7

lation of operating conditions, allowing the algorithms’ performance b
to be evaluated under varying SOC initializations and sensor errors.
Subsequent analysis focuses on key performance indicators such as
estimation convergence rate, accuracy, computational cost, and the
robustness of the algorithms, which are elaborated upon in Section 6.

6. Results and discussions

6.1. SOC estimation performance comparison

Fig. 9 demonstrates the results of the proposed estimation ap-
proaches, i.e. EKF, DUKF and PF (with 100 particles, 𝐌 = 100). The
orresponding data is available at [67]. Each estimation approach is
alsely initialized to 50% SOC, whereas the actual start SOC was 60%.
he load profile described in Section 5 extends over two days. This

onger period for evaluation allows to collect enough data to support
he findings properly.
SOC tracking and estimation error
The SOC tracking, displayed in Fig. 9(a), indicates that both the

UKF and the PF perform well in tracking the reference SOC. Whereas
he EKF starts to deviate after a certain period. This is apparently due
o the fact that EKF has limited linearizing capability [61], which is
utplayed by the heavy non-linearity caused due to LFP’s OCV gradient
nd hysteresis. Although in this work a hysteresis model has been
ntegrated into the battery model to reduce such non-linearity, EKF
ould not sufficiently benefit from this.

Fig. 9(b) gives a clearer view of the SOC estimation error recorded

y individual approaches during the whole simulation. The estimation
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Fig. 9. Results of the model-in-the-loop tool chain simulation for the primary control reserve application profile spanning 2 days. (a) Comparison of SOCs estimated from three
different algorithms against the reference SOC calculated by the HPRM. (b) Comparison of error between the estimated and reference SOC values, with boundaries of ±2% and

5%. (c) Root Mean Square Error comparison over time, with 2% and 5% error boundaries. (d) Comparison of estimation performance of EKF, DUKF and PF with various particles.
e) Comparison of computational performance in terms of computation time on the same PC under the same load.
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rror is calculated as per Eq. (20).

𝑆𝑂𝐶 [%] = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑂𝐶 [%] − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑂𝐶 [%] (20)

rom the figure, it is evident that the implemented DUKF is comparably
ast in converging to the reference SOC and at the same time, stays
ithin acceptable error limits of ±5%. Interestingly, both DUKF and PF
ave greater error values at higher SOC values, i.e. around 80%–90%
OC. This behaviour is probably due to modelling inaccuracies that are
sually difficult to compensate for in very high or low SOC areas. Since
8

R

he DUKF consists of two KFs, one of which estimates the cell’s internal
esistance, it is capable enough of reducing such modelling issues, thus
esulting in a higher estimation performance compared to the PF.
Instantaneous Root Mean Square Error
The Root Mean Square Error (RMSE) is the standard deviation of

he estimation errors. To understand the dynamics of change in squared
rror at every point, the instantaneous RMSE value is proposed as a per-
ormance evaluation factor, as available in Fig. 9(c). The instantaneous
MSE value is the evolution of the RMSE for the whole test. Thus it
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can be defined as per Eq. (21).

𝑖𝑛𝑠𝑡. 𝑅𝑀𝑆𝐸 = [0, 𝑅𝑀𝑆𝐸𝑡1 𝑡𝑜 𝑡2 , 𝑅𝑀𝑆𝐸𝑡1 𝑡𝑜 𝑡3 … , 𝑅𝑀𝑆𝐸𝑡1 𝑡𝑜 𝑡𝑛 ] (21)

where

𝑡𝑖𝑚𝑒 = [𝑡1, 𝑡2, 𝑡3, … 𝑡𝑛]

As evident in the figure, once the system starts entering a higher
SOC range, both DUKF and PF start deviating from their steady states,
but DUKF maintains a lower error level compared to the PF.

Average error
It is fair to say that a higher number of particles in a PF could lead

to increased accuracy. Thus, results from different setups, i.e. varying
numbers of particles in the PF, are compared with the results of EKF
and DUKF. Fig. 9(d) showcases the average error recorded for EKF,
DUKF, and PF. In this scenario, only estimation errors recorded after
the first 10 min from the start of the profile are considered. This period
is assumed to be sufficient for the estimators to converge to the actual
value and to meet the requirements of the application. Fig. 9(d) demon-
strates that the estimation accuracy enhances with a rising number of
particles; however, this is accompanied by an increased computational
demand. Notably, the enhancement in performance reaches a plateau
at approximately 125 particles.

Computational cost
Fig. 9(e) shows the simulation time for the complete simulation on

the same personal computer under the same computational load. From
the figure, it is clear that the computation time of the PF increases
nearly linearly to the increased number of particles. But, the most
crucial point to note is that the computation cost of the PF is always
higher than for the DUKF while still being less accurate than the DUKF.

6.2. Robustness testing

The simulation results presented above show the performance of the
SOC estimators under defined states and initializations. For a method
to be used in real-life applications, an SOC estimator must be able to
suppress all the system uncertainties and disturbances, which is ensured
by robustness testing [70].

One of the primary system-level uncertainties is the setup of the
estimators themselves, i.e. implementations, initializations and tun-
ing parameters. System-level initializations such as SOC, offsets, and
over-voltages play a significant role in determining optimal tuning
parameters. Thus poor initializations could also lead to improper tuning
of the SOC estimators [43]. Therefore, robustness testing in terms of
different SOC initializations was carried out with the first 8 hrs of the
load profile from M5Bat discussed in Section 5, results of which are
shown in 10(a) and the data being available at [67]. From this robust-
ness analysis, it is evident that the DUKF converges to the reference
SOC value irrespective of how the system is initialized, thus showcasing
its superiority in performance. EKF is slow in convergence, and at the
same time has poorer estimation accuracy when compared to DUKF
and PF, for different SOC initializations. Also, as already discussed in
the previous Section 6.1, the results tend to deviate later onwards. On
the other hand, PF shows similar results to EKF, but as we saw in the
previous Section 6.1, it has a better tracking behaviour compared to
EKF.

All the components in a BMS degrade over time. Thus, to sufficiently
evaluate the robustness of the estimators, system disturbances due to
the sensors must be considered [71,72]. Therefore, robustness analysis
of all the SOC estimators (with SOC0 = 50%) is carried out against
sensor errors: gain (1.1), offset (0.1A) and noise (10× nominal noise),
observed in the current sensor. As shown in Fig. 10(b) not only the
above-mentioned individual current sensor errors but also its combina-
tions were employed in robustness testing, to investigate the behaviour
of the estimators to each error. The box plot in Fig. 10(b) defines
the median and overall range of estimation error recorded after the
9

first 10 min of the load profile. As suggested in Section 6.1, this is to
avoid substantial estimation errors before the system converges to the
reference SOC. From the figure, it is evident that DUKF maintains well
within the error limit of ±2%, irrespective of what kind of sensor error
it is subjected to. PF and EKF on the other hand are able to maintain
the errors within the ±5% error range. Offset error seems to be the
most difficult to suppress while considering DUKF, which reflects its
respective combination Gain + Offset, Noise + Offset and Gain + Offset
+ Noise as well. Overall, it can be concluded from the robustness testing
that the DUKF has the best performance under real-life conditions.

7. Potential application on other chemistries

Building on the research surrounding LFP batteries, this section
transitions towards exploring the implications for other lithium-ion
chemistries. LFP’s distinctive combination of non-negligible hystere-
sis behaviour and a predominantly flat OCV curve has necessitated
specialized diagnostic techniques, specifically model-based approaches
with powerful estimators. Similar attributes can be observed in other
cell chemistries, albeit with varying degrees of expression, raising the
question of the generalizability of our diagnostic approaches [73].

The central objective here is to conduct a theoretical assessment of
the potential applicability of the SOC estimators optimized for LFP to
other chemistries. This inquiry focuses on two primary metrics. Firstly,
it evaluates the voltage difference across the OCV curve between the
empty and full states, specifically between 3% and 97% SOC based
on our measurements. This approach excludes the steep sections that
could distort the result. The evaluation then culminates in calculat-
ing the average gradient of the OCV curve. This parameter indicates
SOC observability by OCV measurement with standard frontend ADCs,
which have an accuracy of 1–3mV [74]. Second, the extent of the
hysteresis is compared to understand its influence on SOC observability
and the impact of incorporating a hysteresis model. Finally, the voltage
gradient and the hysteresis are combined, leading to a parameter of
𝛥SOC through hysteresis. All these values are summarized in Table 2
for easy comparison and the underlying data is available at [67]. A
graphical representation can be found in Fig. 11.

In light of the application to stationary storage — this work’s
primary focus — this section examines other promising contenders,
specifically NMC/LTO, NMC/C, NCA/C+Si, and NMC/C+Si. This com-
parative analysis seeks to extend SOC estimation techniques’ applica-
bility and assess their efficacy across a broader spectrum of battery
chemistries. Nevertheless, it must be noted that all showcased OCV
characteristics in this work are specific to the cells tested in the lab and
might also vary with design parameters not investigated in this work
(e.g. electrode thickness, electrolyte additives).

7.1. NMC/LTO

NMC/LTO denotes a cell chemistry with NMC cathode and lithium
titanate (LTO) anode instead of the standard graphite (C) anode. A cell
of 23Ah capacity is considered for evaluation. NMC/LTO is a chem-
istry which still has high costs but shows brilliant C-rate capabilities
(over 70C) and cycle life performance (over 15,000 full equivalent cy-
cles) [75]. Thus, it enables ultra-fast charging and discharging solutions
with very high cycle numbers. A major drawback, however, is the lower
achievable cell voltage and, thus, lower energy density compared to the
carbon-based anodes.

The OCV characteristics and its corresponding hysteresis shown
by the cell are compared in 11(a). The figure shows that the overall
cell voltage is much lower than for graphite anodes due to the LTO
potential vs. Lithium. At the same time, the OCV curve has a certain
degree of flatness but is not as flat as LFP under comparison. The
change in OCV throughout the whole SOC range in LTO is ∼470mV
compared to ∼160mV of LFP. Thus, the OCV curve has a certain degree
of non-linearity, which implies that complex SOC estimators such as
DUKF might be required. OCV characteristics not only vary with the
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Fig. 10. Robustness testing of SOC estimation on an application of primary control reserve spanning for 8 h. (a) Robustness analysis on EKF, DUKF and PF with 100 particles for
various SOC initializations. (b) Box plot of robustness testing by including artificial current sensor errors of Gain: 1.1, Offset: 0.1A, Noise: 10×Nominal noise and its combinations.
Table 2
Comparison of the characteristics of the investigated cell types; SOC range from 3% to 97% taken into calculation.

LFP/C NMC/LTO NMC/C NCA/C+Si NMC/C+Si

Voltage range (V) 0.16 0.47 1.01 1.27 1.21
𝛥SOC per mV (%) 0.584 0.214 0.099 0.079 0.082
Mean (max) hysteresis (mV) 18.8 (27.5) 4.2 (5.7) 26.0 (65.5) 63.4 (357.0) 75.9 (302.1)
𝛥SOC through hysteresis (%) 11.7 (17.1) 0.9 (1.2) 2.5 (6.5) 5.0 (28.2) 6.3 (24.9)
v
t
s

chemistry but also with the exact materials, manufacturing processes,
and many more, as discussed in [76,77]. On the other hand, the
hysteresis is remarkably low and within the accuracy of measurement
and simulation. From the combination of the OCV slope and the mean
hysteresis, an error in the SOC estimate of <1% (>10% for LFP) can be
expected, as given in Table 2. Thus, a hysteresis model is not conducive
to diagnostics for this chemistry.

7.2. NMC/C

Nickel–Manganese–Cobalt (NMC) cells with graphite anodes have
emerged as a mature technology over the past decade in lithium-
ion batteries. The specific cell scrutinized in this study is a 13 Ah
capacity model from Kokam. The NMC/C chemistry is particularly
10

versatile, offering several variants that adjust the proportions of Nickel v
(N), Manganese (M), and Cobalt (C). NMC presents a good trade-off
among critical parameters such as safety, longevity, energy density,
and cost [78]. Furthermore, the ability to alter the ratios of Nickel,
Manganese, and Cobalt allows manufacturers to tailor the battery’s
properties, be it for extended lifespan or enhanced power output.

Fig. 11(b) presents a comparative analysis of the OCV curve and
its associated hysteresis for the examined chemistry. Unlike LFP, the
OCV curve of this chemistry exhibits an apparent gradient, indicating
a lower degree of flatness. Specifically, the OCV variation spans about
1V across the SOC range, compared to the much more limited 160mV
ariation observed in LFP. Such characteristics imply that SOC estima-
ors with limited non-linearity handling, such as the EKF, could yield
atisfactory results for this particular chemistry.

The hysteresis behaviour mirrors that of LFP, albeit with slightly ele-

ated levels compared to the measured LFP cell. However, it is essential
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Fig. 11. OCV curve and hysteresis comparison of various chemistries to LFP. (a) NMC/C vs. LFP/C, (b) NMC/C vs. LFP/C, (c) NCA/C+Si (graphite anode doped with silicon) vs.
FP/C, (d) NMC/C+Si (graphite anode doped with silicon) vs. LFP/C.
o note that the time required for the system to reach its resting OCV
s notably longer in the case of LFP. Consequently, considering both
he gradient of the OCV curve and the mean hysteresis magnitude, a
edium SOC estimation error of 2.5% is anticipated due to hysteresis,
hich is substantially lower than that generally observed for LFP.

.3. NCA/C+Si

As an enhancement of the NCA/C chemistry, NCA/C+Si denotes a
ell with an NCA cathode and a graphite anode doped with Silicon
Si). Theoretically, Si can store 3.75 Li atoms per atom of Si (when
vailable as Li15Si4). Thus, the chemistry has an improved gravimetric
apacity [79], which makes the chemistry an option for various high-
nergy applications. The cell under consideration here is a 3.5Ah cell

from Samsung (INR18650-35E).
Fig. 11(c) showcases the OCV curve and hysteresis comparison

for NCA/C+Si and LFP chemistries. Notably, NCA/C+Si demonstrates
a steep OCV gradient, substantially differentiating it from the flat
OCV curve of LFP. The OCV variation across the entire SOC range
is approximately 1.27V for NCA/C+Si, contrasting sharply with the

ere 160mV for LFP. Such a pronounced gradient suggests that SOC
stimators like the EKF, with its limited ability to handle non-linearity,
ould be adequate for NCA/C+Si chemistry.

The introduction of Si in the anode distinctly manifests as a strong
ysteresis at low SOCs (as evident in Fig. 11(c)), confirmed by prior lit-
rature citing the mechanical stress imposed by the Si component [79–
1]. The hysteresis at low SOC levels is remarkably more significant
han what is typically observed in LFP. Despite this, the combination of
he OCV gradient and mean hysteresis points to an anticipated SOC esti-
ation error of around 5.0%, which is a substantial improvement over

FP. However, it is important to note that SOC estimators for NCA/C+Si
ould achieve improved accuracy by incorporating a hysteresis model,
11

articularly for SOC levels below 40%. This is because the hysteresis
is induced by the silicon content, meaning the SOC level at which a
hysteresis model becomes beneficial depends on the silicon content in
the anode.

7.4. NMC/C+Si

Similar to NCA/C+Si, NMC/C+Si features a graphite anode doped
with silicon, improving gravimetric capacity and therefore augment-
ing its already favourable attributes of safety, durability, and cost-
efficiency. For the purpose of this comparison, a 3.5Ah cell by LG (LG
INR18650MJ1) is evaluated.

Fig. 11(d) offers a comparative assessment of the OCV curve and
hysteresis phenomena with LFP. At the outset, the resemblance to
the attributes of NCA/C+Si, as previously discussed in 7.3, is evident.
The OCV curve, spanning a voltage range exceeding 1.21V, not only
parallels the gradient of NCA/C+Si but also significantly exceeds that
of LFP. Hence, conventional SOC estimators like the EKF appear to
be equally effective for this chemistry. Remarkably, this chemistry
exhibits the highest level of hysteresis among all the cells considered.
Despite this, integrating the OCV gradient and mean hysteresis yields
an estimated SOC error of 6.3%, still a considerable improvement
over LFP. Consequently, the implementation of a hysteresis model can
further refine the performance of SOC estimators for NMC/C+Si.

8. Conclusion

This research primarily investigates SOC estimation techniques tai-
lored for Lithium Iron Phosphate batteries. As discussed, LFP batteries
present distinctive challenges for SOC estimation. This is particularly
the case in the context of applications with rare full charge and idle
conditions, as investigated. The analysis carried out in this work leads

to the following contributions and observations:



Journal of Energy Storage 92 (2024) 112042D. Jöst et al.

r
a
a
t
e
v
t

a
I
t
b

C

d
i

(i) Demanding Applications: The study has shown that there are
very challenging applications for battery diagnostics outside of
(H)EVs. As has been shown, these applications can also be effec-
tively covered with appropriate state estimation approaches.

(ii) OCV Hysteresis Model for BMS: To accurately capture the hys-
teresis inherent in LFP, an OCV hysteresis model capable of
replicating minor loops was utilized. This model adds accuracy
to the model-based SOC estimation process.

(iii) SOC Estimation Algorithms: Three model-based SOC estimators
with an integrated hysteresis model, namely the EKF, DUKF,
and PF, were evaluated. Real-world load profiles from a LSS
with FCR, served as the testbed. DUKF outperformed the other
estimators largely due to its dual Kalman Filter mechanism that
dynamically updates internal parameters, thereby compensating
for model errors.

(iv) Robustness Testing: Validation was performed to also assess the
robustness of the SOC estimators with hysteresis model. DUKF
exhibited resilience in simulations with different state initial-
izations and with the introduction of real-world sensor errors
like gain, offset, and noise, thus confirming its suitability for
practical applications.

(v) Other Li-Ion Chemistries: Evaluations suggest that the findings
could extend to other Lithium-Ion chemistries which may also
benefit from higher-order models and SOC estimators like DUKF.
Further, chemistries with silicon doping in the anode, such as
NCA/C+Si and NMC/C+Si, could likely gain from incorporating
hysteresis models, given their strong presence at low SOCs.

As the OCV, especially in LFP batteries, is affected by ageing to a
elevant extent for diagnostics, applications of the proposed diagnostic
pproaches should also be developed and validated in the future, taking
geing into account. This can be done, for example, by reconstructing
he OCV from half-cell curves as described in [82]. Even if the influ-
nce of temperature is considered to be significantly lower, a suitable
alidation of the approaches should still be carried out in a relevant
emperature range for the application.

The study not only addresses SOC estimation for LFP batteries but
lso lays the groundwork for extending the methodology to other Li-
on chemistries. The results warrant further research, particularly in
he application of these SOC estimation methods to a broader range of
attery chemistries.
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