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Abstract The study focuses on the model reduction of an internally damped chain of particles confined within
a weakening potential well subjected to polyharmonic excitation to investigate the chain’s escape dynamics.
The chain features strong linear coupling between particles and nonnegligible viscous damping forces arising
from their relative motion. The potential well is modeled to have no energy dissipation, which means that
damping arises solely from the internal interactions among particles and not from their motion through a
resisting medium. Polyharmonic excitation frequencies are chosen to excite both the center of mass of the
chain and at least one of the internally resonant frequencies, which are significantly higher than the linearized
angular eigenfrequency of the center of mass within the well. The relative motion of the particles quickly
reaches a steady state because of the non-small internal damping, allowing for the derivation of an efficient
force field for the center of mass. Eliminating fast dynamics reduces the system’s degrees of freedom to one,
employing a probabilistic approach based on the relative motion’s probability density function. The reduced
1 DoF model is appropriate for further investigation using various methods established in the literature.

1 Introduction

Escape from a potential well is an extensively researched topic in the field of nonlinear dynamic systems [1–5],
finding applications in various domains including chemical reactions [6,7], physics of Josephson junctions
[8], MEMS devices [9–14], celestial mechanics, and gravitational collapse. It also plays a crucial role in
energy harvesting [15] and is closely related to the dynamics of oscillatory systems [16,17], as well as specific
phenomena, such as the capsize of ships [4,18]. Despite the significant body of previous research, unresolved
issues still require further investigation [19].

Various aspects of the escape phenomenon have been studied. For example, the problem of the sharp
minimum of the critical excitation amplitude near the primary resonance has been examined under unlimited
potential and homogeneous initial conditions [20]. Another area of research focuses on determining safe
basins, which represent non-escaping initial conditions under specific excitations, and investigating integrity
measures that quantify the size of the non-escaping set [2,21–23]. However, providing accurate analytic results
for nonquadratic potential wells is a challenge. Approximation methods such as Melnikov’s method [2] or the
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use of adiabatic invariants and action-angle variables [24] offer formulas suitable for small excitation values
but lose accuracy away from the 1:1 resonance.

Previous studies have addressed the escape problem of weakly damped particles from truncated quadratic
potential wells under harmonic excitation, focusing on the location and size of safe escape basins in the initial
conditions plane [25]. The escape problem of two strongly coupled particles in a truncated quadratic potential
under biharmonic excitation has also been investigated [26]. When the relative vibrations of the particles are
significantly faster than the oscillation of the particle’s center of mass within the potential, the system can
be effectively reduced to a one-degree-of-freedom system by introducing an effective potential. The effective
force field is derived by cross-correlating the original potential with the probability density function of the fast
relative motion [27].

This study aims to expand the scope of previous investigations by focusing on a strongly coupled n-
particle chain subjected to polyharmonic excitation, a rather peculiar mechanical system per se, although
often resulting as a discretized model of slender, continuous structures. To reduce the dynamics of the particle
chain, we provide a more rigorous analytical foundation for the classical probability-density-based reduction
method previously employed on a heuristic basis in [26]. Although the investigated system is quite unusual,
the theoretical results of this article may be used in a wide variety of “slow-fast” systems, where polyharmonic
functions are involved and averaging is applicable. Extending the theoretical results for the composition of
general periodic functions with linearly independent time periods over the rational numbers is straightforward.

The structure of this paper is as follows. Section2 discusses the problem setting and provides the solution
for relative vibrations in a chain of n particles. Section3 delves into the model reduction approach based
on averaging. Section4 illustrates these concepts with an example involving a three-particle chain. Section5
contains a comprehensive discussion, and, finally, Sect. 6 offers conclusions and highlights the scope for future
research.

2 Problem setting

We consider the following problem setting depicted in Fig. 1.
The movement is one-dimensional and occurs along the x axis. The masses of the n individual particles are

denoted by m1, m2,…, mn . The damping coefficient of the n − 1 dashpot dampers is represented by k1, k2,…,
kn−1, while the stiffness of the n − 1 linear springs between the particles is denoted by c1, c2,…, cn−1. Each
particle can be stimulated by a polyharmonic force, which is expressed as F1(t), F2(t),…, Fn(t). Initially,
the particles are situated in a potential well. For each particle, this is individually given by V1(x1), V2(x2),…,
Vn(xn), where Vi (xi ) = miV (xi ), with V (·) defined in more detail below.

Additionally, it is essential to note that, in this system, the particles can penetrate each other, reflecting that
the equilibrium distance between the particles is zero.

Fig. 1 Problem setting of an internally damped, coupled n-particle system in a potential well, where particles have an equilibrium
distance of zero, implying the possibility for mutual penetration without physical constraints
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2.1 Equations of motion

Applying the Euler–Lagrange equations, we can derive the equations of motion of the above system.

d

dt

∂T

∂q̇i
(t, q̇(t)) = −∂U

∂qi
(t,q(t)) − ∂D

∂q̇i
(t, q̇(t)) + Q∗

i (t) for i = 1, . . . , n, (1)

where the general coordinates are chosen to be qi = xi and

T =
n∑

i=1

1

2
mi ẋ

2
i , (2)

U =
n−1∑

i=1

1

2
ci (xi+1 − xi )

2 + Vi (xi ), (3)

D =
n−1∑

i=1

1

2
ki (ẋi+1 − ẋi )

2, (4)

Q∗
i (t) = Fi (t) = Fi,0 sin(�0t + βi,0) +

P∑

p=1

Fi,p sin(�i,pt + βi,p), (5)

where P ∈ N
+. We require that the general, continuous potential V (x) is bounded above, i.e., it fulfills

lim|x |→∞ V (x) ≤ C, for some C ∈ R. (6)

Furthermore, we require that the potential well has a stable equilibrium at x = 0, and its linearized angular
eigenfrequency around this equilibrium is 1, i.e.:

V ′(x = 0) = 0, (7)

V ′′(x = 0) = 1. (8)

In the following, frequency refers to the angular frequency in radians per second.
Furthermore, we assume that V (x) is softening and has a single well, i.e.,

V ′′(x) ≤ V ′(x)
x

≤ 1. (9)

In equality (9) is obtained from the definition of a “softening characteristic,” that is, the stiffness of the potential
c(x) := V ′(x)/x decreases monotonically as the distance from the bottom of the well |x | increases. On the
other hand, the maximum stiffness at x = 0 is given by

lim
x→0

V ′(x)
x

= lim
x→0

V ′(x) − V ′(0)
x − 0

= V ′′(x)|x=0 = 1. (10)

Given that V (x) is bounded above, we define the location of the left supremum of V (x) as xl , where xl ∈
R

− ∪ {−∞}, and the location of the right supremum as xr , where xr ∈ R
+ ∪ {∞}. We refer to the interval

(xl , xr ) as the interior of the well. The term escape is used when the chain leaves this region. For a detailed
definition of escape, see Sect. 2.3. Figure2 shows a graphical representation of a feasible potential.

We assume that the masses mi are of magnitudeO(1) and that the forces of the coupling springs are much
greater than those of the potential, that is, ci 	 1 ≥ maxx∈(xl ,xr ) V

′′
i (x), or equivalently ci ∈ O(ε−1). Addi-

tionally, we assume the existence of non-small damping, denoted by ki ∈ O(1). With the above assumptions
on ci and ki , the chain’s internal modes are underdamped (cf. Sect. 2.5). Thus, the corresponding receptance
frequency response function has n − 1 local maxima (cf. Fig. 3). We refer to the location of the local maxima
as resonant frequencies. We postulate that the lowest resonant frequency of relative movements in the particle
chain significantly exceeds the linearized eigenfrequency of any singular particle in the potential well.

Each particle is excited by up to P + 1 harmonic forces. We assume low-frequency excitation for each
particle with possibly different amplitudes Fi,0 and initial phases βi,0, but with identical frequency�0 ∈ O(1).



A. Genda et al.

Fig. 2 Example of a feasible potential. The interior of the potential stretches from xl to xr

Fig. 3 Amplification and phase depicted against the excitation frequency with n = 4 particles for m = 1, k = 0.8, c = 1000.
The second particle of the chain is excited. The analytic peak frequencies given by Eq. (54) are depicted with dashed black lines

The rest of the excitation frequencies are considered significantly higher than the base frequency, i.e.,
�i,p 	 �0, and are not necessarily identical for all particles, i.e., �i,p is independent of � j,p.

Such excitation patterns are relevant in models of cantilever beams used as sensors in Micro-Electro-
Mechanical Systems (MEMS). An important application of this can be found in Atomic Force Microscopy
(AFM), where a transcendental equation determines the eigenfrequencies of the cantilever beam, which are
linearly independent over the rational numbers (cf. Definition 1). This example reflects a realistic physical
situation in which the proposed model can be helpful.

Insertion of Eqs. (2–5) in Eq. (1) yields the nonlinear differential equation system

Mẍ + Kẋ + Cx + v′(x) = f(t), (11)

where the matrices and vectors are

M = diag (m1,m2, . . . ,mn) ∈ Rn×n, (12)
K = diag (k1, k1 + k2, . . . , kn−2 + kn−1, kn−1) − subdiag (k1, k2, . . . , kn−1)

− superdiag (k1, k2, . . . , kn−1) ∈ Rn×n, (13)
C = diag (c1, c1 + c2, . . . , cn−2 + cn−1, cn−1) − subdiag (c1, c2, . . . , cn−1)

− superdiag (c1, c2, . . . , cn−1) ∈ Rn×n, (14)

x = [
x1, x2, . . . , xn

]� ∈ Rn, (15)

v′(x) = [
V ′
1(x1), V

′
2(x2), . . . , V

′
n(xn)

]� ∈ Rn, (16)
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f(t) = [
F1(t), F2(t), . . . , Fn(t)

]� ∈ Rn, (17)

where diag(·), subdiag(·) and superdiag(·) denote diagonal, subdiagonal, and superdiagonal matrices. Fur-
thermore, bold lowercase symbols denote vectors in the time domain, while bold uppercase symbols indicate
matrices. Consistent with the standard literature, vectors containing the Laplace transforms of vector values are
also represented using bold uppercase letters. The reader should be mindful of this notation to avoid confusion.

2.2 Decoupling coordinate transformation

The differential equation is strongly coupled in each coordinate nonlinearly in the present form. Furthermore,
the springs’ large stiffness but the potential’s moderate restoring force result in a slow-fast system. By applying
an appropriate coordinate transform,we can obtain a system that is onlyweakly coupled by nonlinear terms, and
strong coupling is only present in linear terms. Then, ignoring theweak nonlinear coupling in the corresponding
equations, we can easily handle the remaining “fast” linear system of ODEs analytically, which allows us to
obtain an analytic solution for the “fast” variables and to focus solely on the remaining “slow” variable. We
proceed as follows.

We introduce new coordinates, η and yi for i ∈ {2, . . . , n}.

η =
∑n

i=1mi xi∑n
i=1 mi

and yi = xi − xi−1, for i ≥ 2. (18)

Thus, the first coordinate represents the center ofmass of the chain, and the rest of the coordinates are the relative
distances between two consecutive particles. By defining M = ∑n

i=1 mi , we can write the transformation as

y =

⎡

⎢⎢⎢⎢⎢⎢⎣

η

y2
y3
.
.
.

yn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1
M

m2
M

m3
M . . . mn

M
−1 1 0 . . . 0

0 −1 1
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 . . . 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:S−1

⎡

⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
.
.
.

xn

⎤

⎥⎥⎥⎥⎥⎥⎦
. (19)

For the calculation of S, see Eq. (127) in the Appendix.
Inserting x = Sy into Eq. (11), we can write the equations of motion in the new coordinates as

MSÿ + KSẏ + CSy + v′(Sy) = f(t), (20)

ÿ + S−1M−1KS︸ ︷︷ ︸
=:K̃

ẏ + S−1M−1CS︸ ︷︷ ︸
=:C̃

y + S−1M−1v′(Sy)︸ ︷︷ ︸
=:ṽ′

= S−1M−1f(t)︸ ︷︷ ︸
=:f̃(t)

. (21)

The matrices K̃ and C̃ are given in the Appendix by Eqs. (128–129), respectively. Further, we calculate

ṽ′ = S−1M−1

⎡

⎢⎢⎢⎢⎣

m1V ′(s1y)
m2V ′(s2y)

.

.

.

mnV ′(sny)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

∑n
i=1 mi V ′(si y)

M

V ′(s2y) − V ′(s1y)
.
.
.

V ′(sny) − V ′(sn−1y)

⎤

⎥⎥⎥⎥⎥⎦
, (22)

using the notation S = (s1, s1, . . . , sn)T with si ∈ R
n .

Based on [28] and [29], the particular solutions of y2 . . . yn are only negligibly influenced by their coupling
to η, which is due to the strong damping between the particles and the fact that the coupling to the “outer”
potential field is weak since ci/mi ∈ O(ε−1), while themaximal stiffness of the potential maxx∈(xl ,xr ) V

′(x)/x
is of magnitude O(1).

Considering small relative displacements, i.e., |yi | < 1 for i = 2 . . . n, and assuming that the particles are
primarily inside of the potential well, i.e., xi ∈ (xl , xr ), the force of the potential can be linearized around xi−1
as

V ′(x) ≈ V ′(xi−1) + V ′′(xi−1)(x − xi−1), (23)
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and by siyi = xi we find

V ′(siy) − V ′(si−1y) ≈ V ′(xi−1) + V ′′(xi−1)(xi − xi−1) − V ′(xi−1) (24)

≈ V ′′(xi−1)yi , (25)

which we can neglect since V ′′(x) ≤ 1 
 ci by our assumptions. Thus, the vector can be rewritten as

ṽ′ ≈
[∑n

i=1 mi V ′(siy)
M , 0, . . . , 0

]�
. (26)

Similarly, we find

f̃(t) =
[∑n

i=1 Fi (t)
M ,

F2(t)
m2

− F1(t)
m1

, . . . ,
Fn(t)
mn

− Fn−1(t)
mn−1

]�
. (27)

It isworth noting that only the “fast” systemcanbe approximatedwell by a linear one byneglecting the nonlinear
terms. The modal decoupling of the “slow” part is not possible in this way since neglecting nonlinearities in
the equation of η significantly alters the dynamics of the system (cf. Eq. 28). The reason is that the linear
springs and dampers mainly affect the “fast” dynamics. However, their effects cancel each other out in the
“slow” system, leaving only the potential’s force as the main contributor to the center of mass dynamics.

2.3 Escape definition

The definition of escape is, in general, problem-specific, depending on V (x). The following is suitable for a
particle chain in a single-welled potential (i.e., the potential has only one local minimum). The chain escapes if
“∃i ∈ {1, . . . , n} such that limt→∞|yi (t)| = ∞”. This definition allows for an escape of the whole chain in one
direction limt→∞|η(t)| = ∞, or for the splitting of the chain for i ∈ {2, . . . , n}. Due to the strong coupling
between the particles, this second scenario is possible for certain potentials, but only with unrealistically large
excitation values; therefore, we do not consider it in the following.

The definition of escape can differ for particles or particle chains in a multi-welled potential since the
previous definition must not or cannot hold. For example, in the case of a ship capsize, the dynamics is
described in angle coordinates, and escape means going from the upright well into a lateral well, but not into
infinity.

2.4 The steady-state solutions of the fast subsystem

In general, an analytic expression for the eigenmodes and eigenfrequencies, and so for the particular solutions
of y2(t) . . . yn(t), cannot be given with a closed formula. Therefore, we limit the investigation to a special case
where the masses, dampers, and springs are all equal, that is, mi = m for all i ∈ 1, . . . , n and ki = k and
ci = c for all i ∈ 1, . . . , n − 1. The equation of motion of the center of mass becomes

η̈ +
∑n

i=1 V
′(siy)

n
=
∑n

i=1 Fi (t)

nm
. (28)

To address Eq. (28), it is essential to obtain solutions for y2, . . . , yn first, which requires focusing on the
submatrix formed by excluding the first row and column of our current matrices, leading to the following
simplified expressions.

ȳ = [y2 y3 . . . yn]� ∈ R
n−1, (29)

K̄ = K̃2:n,2:n ∈ R
(n−1)×(n−1), (30)

C̄ = C̃2:n,2:n ∈ R
(n−1)×(n−1), (31)

f̄ = f̃2:n ∈ R
n−1, (32)

where p : q in the vector index denotes the vector obtained by taking the entries from the pth row to the q th

row. Similarly, p : q, r : s in the matrix index denotes the matrix block obtained by taking the entries between
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the rows p and q and between the columns r and s. The equations of motion of the reduced system can be
written as

¨̄y + K̄ ˙̄y + C̄ȳ = f̄(t), (33)

where K̄ and C̄ are tridiagonal Toeplitz matrices.
As the chosen damping value is non-small and the damping is pervasive (present in all vibration modes, cf.

Eq. (36) and observe that K < n), the homogeneous equation will decay rapidly. Hence, we are only interested
in the particular solution given to the polyharmonic excitation. Using the linearity of the simplified problem,
we can obtain the solution by applying the Laplace transform. Assuming zero initial conditions, the Laplace
transform of Eq. (33) becomes

s2Ȳ(s) + sK̄Ȳ (s) + C̄Ȳ (s) = F̄(s), (34)

where Ȳ(s) = L{ȳ(t)} and F̄(s) = L{f̄(t)}, which is equivalent to
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2 + 2 k
m s + 2 c

m − k
m s − c

m 0 . . . 0

− k
m s − c

m

. . .
. . .

. . .
.
.
.

0
. . .

. . .
. . . 0

.

.

.
. . .

. . .
. . . − k

m s − c
m

0 . . . 0 − k
m s − c

m s2 + 2 k
m s + 2 c

m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:A(s)

⎡

⎢⎢⎢⎢⎢⎢⎣

Y2
Y3
.
.
.

Yn−1

Yn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

F̄2
F̄3
.
.
.

F̄n−1

F̄n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

Based on [30] the eigenvalues sK ,1/2, K = 1 . . . n − 1 of the matrix are given as

sK ,1/2 = − k

m

(
1 + cos

Kπ

n

)
±
√

k2

m2

(
1 + cos

Kπ

n

)2

− 2c

m

(
1 + cos

Kπ

n

)
, (36)

and the eigenvectors (mode shapes) are

vK =
[
sin

(
πK

n

)
, . . . , sin

(
(n − 1)πK

n

)]�
, for K ∈ {1, . . . , n − 1}. (37)

The eigenvectors do not have unit lengths in this representation, so the next step is normalizing them. The K th

eigenvector has length

∣∣∣vK
∣∣∣ =

√√√√
n−1∑

l=1

sin2
(
lπK

n

)
=
√√√√√√√

n − 1

2
− 1

2

n−1∑

l=1

cos

(
2πlK

n

)

︸ ︷︷ ︸
=-1

=
√
n

2
, (38)

which follows from the trigonometrical identity sin2 x = 1−cos 2x
2 and the fact that the roots of unity add up to

zero. We can observe that, independently of the value of K , all eigenvectors have the same magnitude
√
n/2.

We normalize them by this factor and obtain the matrix

Q =
√
2

n

[
v1, v2, . . . , vn−1

]
, (39)

which is orthogonal and symmetric, i.e., Q = Q−1 = Q�. The matrix A ∈ C
(n−1)×(n−1) can be written as

A = Q�Q� = Q�Q, (40)

and so due to the above-mentioned properties the inverse of A can be written as

A−1 = Q�−1Q. (41)
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We can give the entries of A−1 as follows.

A−1
i j (s) = 2

n

n−1∑

K=1

sin
( iπK

n

)
sin
(

jπK
n

)

s2 + 2 k
m s + 2 c

m − 2
( k
m s + c

m

)
cos

(
πK
n

) . (42)

The system’s linearity can be used to find the particular solution for polyharmonic excitation. First, we calculate
the effect of a harmonic excitation. Then, we take the superposition of all harmonics that act on the particle
chain.

To start with, we investigate the response to the harmonic Fi sin(ωi t+βi ), acting at the i th∈ {1, . . . , n−1}
reduced coordinate, not to be confused with the i th particle. We find

Ȳ(s = jωi ) = A−1(jωi )
[
0, . . . , Fiejβi , . . . , 0

]� = Fie
jβi a−1

i (jωi ), (43)

where a−1
i denotes the i th column of the matrix A−1 and j is the imaginary unit. Then the K th row of vector

ȳ(t) has the form

ȳK (t) = ∣∣ȲK (ωi )
∣∣ sin(ωi t + 
̄K (ωi )), (44)

where 
̄K (ωi ) = � ȲK (ωi ) is the phase angle.
If we excite the i th particle according to Eq. (5) in the y coordinates, this excitation manifests twice,

as indicated by Eq. (27), except at the end of the chain where it occurs only once. Consequently, we have
2(P + 1)(n − 1) distinct harmonic terms superimposed.

Let us define Ȳi,p,+ and Ȳi,p,− as the complex amplitudes of the simple harmonic excitation caused by the
pth harmonic excitation, p ∈ {0, . . . , P}, of the i th particle, i ∈ {1, 2, . . . , n} when having a plus or minus
sign as in Eq. (27):

Ȳi−1,p,+(j�i,p) = Fi,pe
jβi,pa−1

i (j�i,p), i ∈ {2, . . . , n}, p ∈ {0, 1, . . . , P}, (45)

Ȳi,p,−(j�i,p) = −Fi,pe
jβi,pa−1

i (j�i,p), i ∈ {1, 2, . . . , n − 1}, p ∈ {0, 1, . . . , P}. (46)

The particular solution of the relative distances become

yK+1(t) =
n−1∑

i=1

P∑

p=0

∑

q∈{−,+}

∣∣Ȳi,p,q,K (j�i,p)
∣∣ sin(�i,pt + 
̄i,p,q,K (j�i,p)), (47)

with K ∈ {1, . . . , n − 1}, and Ȳi,p,q,K denoting the K th row of the vector Ȳi,p,q . Thus, we obtain accurate
estimates for y2(t), . . . , yn(t).

2.5 Resonant frequencies

We are generally interested in the system’s behavior near its resonant frequencies. Therefore, we derive the
frequencies of the resonance peaks and the relative amplifications at these points. In order to do that, it is
enough to examine the system with a single harmonic excitation, as given in Eq. (43), which acts on the i th
reduced coordinate (not on the i th particle). Writing the explicit expression for the K th row of the vector, we
have

ȲK (jωi ) = 2

n

n−1∑

l=1

sin
( iπl

n

)
sin
( Kπl

n

)

s2 + 2 k
m s + 2 c

m − 2
( k
m s + c

m

)
cos

(
πl
n

)
∣∣∣∣
s=jωi

Fi e
βi (48)

= 2

n

n−1∑

l=1

sin
( iπl

n

)
sin
( Kπl

n

)
[
2 c
m

(
1 − cos

(
πl
n

))− ω2
i

]− j
[
2ωi

k
m

(
1 − cos(πl

n

)] Fieβi . (49)

Large vibrations can occur when |Yi | is large, which might occur when at least one of the denominators in
the sum approaches (although, due to the pervasive damping, never reaches) zero in its absolute value. The
absolute value of the denominator is
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∣∣∣∣

[
2c

m

(
1 − cos

(
πl

n

))
− ω2

i

]
− j

[
2ωi

k

m

(
1 − cos

(
πl

n

))] ∣∣∣∣ (50)

=
√[

2c

m

(
1 − cos

(
πl

n

))
− ω2

i

]2
+ 4ω2

i
k2

m2

(
1 − cos

(
πl

n

))2

(51)

=
√

ω4
i + 4

(
1 − cos

(
lπ

n

))[
k2

m2

(
1 − cos

(
lπ

n

))
− c

m

]
ω2
i +

(
2c

m

(
1 − cos

πl

n

))2

. (52)

Since k > 0, the absolute value of the denominator is a continuously differentiable function for any ωi ∈ R,
and we can find its minimum value by setting its derivative equal to zero.

Moreover, since the square root function is monotonic, the expression attains its minimum value where
the fourth-order polynomial inside the root reaches its minimum. Given that this polynomial is symmetric and
ω4
i has a positive coefficient, two scenarios can be anticipated. In the first scenario, the polynomial reaches

its local maximum at ωi = 0, and its two local minima occur symmetrically around this point. In the second
scenario, there is a single local minimum at ωi = 0. As we move away from zero, the function values increase
monotonically. The latter case corresponds to a strongly overdamped aperiodic system, which is not within
the focus of our study (cf. Eq. 58). We obtain the following result by differentiating the expression within the
square root.

4ω3
i + 8

(
1 − cos

(
lπ

n

))(
k2

m2

(
1 − cos

(
lπ

n

))
− c

m

)
ωi = 0, (53)

which is solved by

ωi,12 = ±
√

2

(
1 − cos

(
lπ

n

))(
c

m
− k2

m2

(
1 − cos

(
lπ

n

)))
, (54)

ωi,3 = 0. (55)

Substituting values for l = 1 . . . n − 1, we obtain reasonable analytic estimates for the resonant frequencies
of the particle chain. A graphical example with n = 4 particles is shown in Fig. 3.

The frequencies given by Eq. (54) are the set of frequencies at which a resonant system response might
occur. When exciting at a given node, however, not each frequency will cause resonant motion, since for that
it is also required that in Eq. (49) the numerator sin

( iπl
n

)
sin
( Kπl

n

)
does not vanish. A graphical example with

n = 4 and l = 2 is given in Fig. 3, where ȳ2 ≡ y3 (thus, K = 2) cannot be excited by the second resonant
frequency i = 2, since the numerator there becomes 0.

Based on Eq. (54), we can also give an estimate of the maximal value of the damping coefficient kcrit, for
which all internal modes of the chain are oscillatory. All resonant peaks exist if the expression under the square
root for all l ∈ {1, . . . , n − 1} is real. Which is the case for

c

m
>

k2

m2

(
1 − cos

(
lπ

n

))
, ∀l ∈ {1, . . . , n − 1}, (56)

cm > k2
(
1 − cos

(
(n − 1)π

n

))
= k2

(
1 + cos

(π

n

))
, (57)

√
cm

2
>

√
cm

1 + cos π
n

=: kcrit > k. (58)

Possible values of n range from 2 to ∞, thus the critical damping coefficient has the range

kcrit ∈
(√

cm

2
,
√
cm

]
. (59)

Lehr’s damping ratio for each mode can be expressed from the modes’ characteristic polynomials given as

s2 + 2

(
1 + cos

πK

n

)
k

m︸ ︷︷ ︸
=:2Dω0

s + 2

(
1 + cos

πK

n

)
c

m︸ ︷︷ ︸
=:ω2

0

= 0, (60)
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from which we have

D = k√
2cm

√
1 + cos

πK

n
, (61)

taking the largest values for the highest frequencies (K small).

2.6 Special case: harmonic excitation

In the equations of relative motion, the potential force is of the orderO(1). It is considered negligible compared
to the forces of linear springs of the order O(ε−1). Consequently, the equations are linearized. Owing to the
validity of the superposition principle for this simplified linear system, our primary interest is directed toward
the behavior of the i th body when it undergoes simple harmonic excitation.

In order to examine the motion relative to the common center of mass of the particles, it is necessary to find
the analytic solutions for y2(t), . . . , yn(t) under excitation solely by the high-frequency force Fi,p sin(�i,pt +
βi,p), where p ∈ {1, . . . , P}. The equation governing η is an undamped second-order nonlinear differential
equation. The absence of damping implies that the motion never settles into a steady state. In contrast, the
system of equations that describe the evolution of y2(t), . . . , yn(t) can be well approximated by a damped
linear second-order differential equation system. Due to the significant damping, the motion rapidly converges
to the steady-state solution as given by Eq. (47). In the case of single harmonic excitation, steady-state solutions
y2(t), . . . , yn(t) are all pure harmonics. The following gives the oscillations around the center of mass η(t).

z(t) := x(t) − η(t)e = Sy(t) − η(t)e,

= 1

n

⎡

⎢⎢⎢⎢⎣

−(n − 1) −(n − 2) . . . −1
1 −(n − 2) . . . −1
1 2 . . . −1
...

...
. . .

...
1 2 . . . n − 1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
∈Rn×(n−1)

⎡

⎢⎢⎣

y2
y3
...
yn

⎤

⎥⎥⎦ , (62)

with e = [1 1 . . . 1]�. Due to Eq. (62), the entries of z are all linear combinations of y2, . . . , yn . The sum
consists of n − 1 sine functions with different amplitudes and phases but with identical frequency �i,p. The
following trigonometric identity is helpful for such an addition of sine functions.

n∑

i=1

Ai sin(ωt + ϕi ) = A sin(ωt + ϕ), (63)

with

A =
√√√√
(

n∑

i=1

Ai cosϕi

)2

+
(

n∑

i=1

Ai sin ϕi

)2

, (64)

ϕ = atan2

(
n∑

i=1

Ai sin ϕi ,

n∑

i=1

Ai cosϕi

)
, (65)

where atan2(y, x) denotes the two-argument arctangent, a more precise version of arctan(y/x), by providing
phase information on (−π, π), rather than only on (−π/2, π/2). To determine the amplitude and phase of the
harmonic oscillation of the j th body, the use of complex numbers is advantageous, using the solution obtained
in Eq. (43) for Ȳ(j� j2):

Z(j� j2) = S̄Ȳ(j� j2), (66)

AK = |ZK (j� j2)|, (67)


K = � ZK (j� j2), (68)
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zK (t) = AK sin(� j2t + 
K ). (69)

These equations indicate that the relative motions of the particles around the center of mass can be expressed
as sinusoidal functions. Although these functions share the same frequency, their amplitude and phase values
differ.

When subjected to multiple harmonics simultaneously, the linearity of Eq. (33) allows the development of
complex relative motions z(t) within the particle chain around its center of mass. These motions result from
the superposition of sinusoidal functions of varying frequencies. The number of frequencies in the excitation
force directly equals the number of sinusoidal functions involved.

In addition, given our strong coupling assumption between the particles, it is apparent that the frequencies
that excite the center of mass of the particle chain within the potential well are significantly lower than those
that excite internal vibrations. Consequently, we can effectively neglect the low-frequency excitation terms
when calculating z. See Fig. 5 for a graphical illustration in Sect. 4.

Considering this, we can now revisit Eq. (28). To simplify the equation, we will employ a method proposed
byGenda et al. [26], which models the high-frequency oscillations based on the classical probability density of
the position of the particles. This approach offers a straightforward means of capturing the system’s dynamics.

3 Averaging-based model reduction

In the previous section, we have derived analytic expressions for the motion of particles around their common
center of mass. These can be substituted into Eq. (28). Making use of Eq. (62), we obtain

η̈ +
∑n

i=1 V
′(η + zi (t))

n
=
∑n

i=1 Fi (t)

nm
. (70)

Considering that zi (t) and Fi,p sin(�i,pt + βi,p) are “fast,” we can average the equation and keep only the
“slow” dynamics of the system. To denote the averaged position of the center of mass, we introduce ξ := 〈η〉.
The fast harmonic forces all vanish, and we obtain the following result.

ξ̈ +
〈∑n

i=1 V
′(ξ + zi (t))

n

〉
=
∑n

i=1 Fi,0 sin(�0t + βi,0)

nm
. (71)

Using Eq. (63) we can reduce Eq. (71) further as

ξ̈ +
〈∑n

i=1 V
′(ξ + zi (t))

n

〉
= F0 sin(�0t + β0), (72)

with

F0 : =
√(∑n

i=1 Fi,0 cosβi,0
)2 + (∑n

i=1 Fi,0 sin βi,0
)2

nm
, (73)

β0 : = atan2

(
n∑

i=1

Fi,0 sin βi,0,

n∑

i=1

Fi,0 cosβi,0

)
. (74)

The averaging of the left-hand side of Eq. (71) takes more effort. [27] showed that the time average of the
function f (x + g(t)), where g(t) represents the “fast” variable, can be obtained not only by a time integral but
also by a cross-correlation integral of f (x) and the classical probability density (CPD) ρ(x) of g(t), that is,

〈 f (x + g(t))〉 = 1

T

∫ T

0
f (x + g(t))dt =

∫ ∞

−∞
f (y)ρ(y − x)dy. (75)

Furthermore [27], demonstrated that the averaged function can be expressed using the moments of the classical
probability density ρ(x) for analytic functions. The expression is given by:

〈 f (x + g(t))〉 =
∫ ∞

−∞
f (y)ρ(y − x)dy =

∞∑

K=0

mK
f (K )(x)

K ! . (76)
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Here, mK represents the K th moment of ρ(x). The result is valid if the support of ρ(x) lies within the
convergence domain of the Taylor series expansion of f (x).

Hence, once themoments of the “fast” variables zi (t) are known, the averagingofEq. (72) is straightforward,
especially if f (x) is some polynomial of order p, in which case only the first p moments must be calculated.

3.1 Derivation of the CPD and moments of the fast motion

For a precise definition of the CPD and the CPDs of various functions derived in the literature, refer to [27]
and [31].

The 0th moment for any CPD is invariably 1. In our specific case, zi (t) approximates a polyharmonic
function, which is the superposition of multiple harmonic components. Given certain conditions, moments of
this polyharmonic sum can also be ascertained. It is well established that the probability density function (PDF)
for a sum of independent variables can be derived through the convolution of their individual PDFs [32]. CPDs
exhibit mathematical characteristics identical to PDFs; they are nonnegative and integrate to 1. However, the
variables they represent differ fundamentally. Unlike random variables, which their PDFs fully characterize,
CPDs are formed by disregarding the precise timing of particle positions. They retain information on spatial
distribution by accounting solely for the duration for which a particle resides at a specific location. Theorem
1 offers an analytical method for determining the CPD of polyharmonic functions.

Definition 1 (Linear independence overQ) The numbers ω1, . . . , ωP ∈ R are said to be linearly independent
over Q if

P∑

i=1

riωi �= 0, (77)

for any ri ∈ Q, except r1 = . . . = rP = 0.

Weyl showed that the P-dimensional flow on a torus T
P = R

P/ZP is equidistributed [33], i.e., a
particle starting at x0 = [x0,1, . . . , x0,P ]� ∈ T

P and moving with uniform velocity in the direction
ω = [ω1, . . . , ωP ]� ∈ R

P on TP , i.e.,

x(t) = (x0 + ωt) mod 1 = ({x0,1 + ω1t}, {x0,2 + ω2t}, . . . , {x0,P + ωPt})� , (78)

has a relative dwell time in any volume element V as indicated by the hypervolume of the volume element
|V |, if and only if the numbers ω1, . . . , ωP are linearly independent over Q.

Here, {·} signifies the fractional part function. By relative dwell time, we refer to the limit limt→∞ tV /t ,
where tV represents the time spent within the volume element V over the entire observation period t . This
concept is congruent with the idea that flow on a P-dimensional torus is ergodic with respect to the Haar
measure on TP [34].

Consequently, if we sample particle positions in uniformly distributed random time instances within the
interval [0, T ], as T → ∞, the positions sampled during these instances will adhere to a uniform multivariate
distribution inTP .We can interpret these positions as the realizations of a P-dimensional random variableX =
[X1, . . . , XP ]�, where the scalar components are uniformly distributed in [0, 1] and are mutually independent.
This understanding enables us to compute the CPD for a polyharmonic excitation.

Theorem 1 Assume that the frequencies ω1, . . . , ωP are linearly independent over Q. Then, the CPD of

z(t) =
P∑

i=1

Ai sin(ωi t + βi ) (79)

can be obtained by

ρ(x) = (ρ1 ∗ ρ2 ∗ · · · ∗ ρP)(x), (80)

where ρ1 ∗ρ2 ∗· · ·∗ρP denotes the convolution of the functions ρ1, ρ2, . . . , ρP , which are given by the arcsine
distribution

ρi (x) = 1

π

√
A2
i − x2

. (81)
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Proof As previously demonstrated, the line on T
P parameterized by the arguments of the sines is ergodic,

which is synonymous with the flow of these arguments on T
P being uniform. In other words, sampling

coordinates of this flow at uniformly randomly selected times produces statistics equivalent to those of a
P-dimensional uniform distribution on the torus, which suggests that the sum in Eq. (79) yields the same
probability distribution as the sum of P uniformly distributed, random variables on [0, 2π], after applying the
transformation Ai sin(�i Xi + βi ), respectively.

By [27], the CPD of a simple harmonic term Ai sin(�i t +βi ) is readily given by Eq. (81). CPDs and PDFs
share the same statistical properties.

Furthermore, it is well known [35] that the PDF of the sum of independent random variables is given by
the convolution of the individual PDFs (cf. Eq. 80), which finishes the proof of the theorem. ��
Remark 1 Since the convolution is commutative, it does notmatter inwhich order the operations are performed.

Remark 2 The moments of the centered arcsine distribution with half-width A are given by [27]

mK =
{
AK 1

2K
( K
K/2

)
for K even,

0 for K odd,
for K ≥ 0. (82)

Theorem 2 Let m j, ji be the j thi moment of the j th term’s CPD in Eq. (79)with ji ∈ N
+ for all j = {1, . . . , P}.

The K th moment of ρ(x) in Eq. (80) is given by

mK =

⎛

⎜⎜⎝
∑

(∑P
j=1 ji

)
=K

P∏

j=1

m j, ji

ji !

⎞

⎟⎟⎠ K ! (83)

Proof The moment-generating function of a random variable X has the form

MX (t) =
∞∑

K=0

mK

K ! t
K . (84)

It is well known that the product of the moment-generating functions of independent random variables
X1, X2, . . . , XP yields the moment-generating function of the random variable that is obtained by the sum of
X1, X2, . . . , XP [36]. In other words, the moment-generating function of X = ∑P

i=1 Xi is given by

MX (t) = MX1(t)MX2(t) . . . MXP (t). (85)

Since the moment-generating functions are power series, the Cauchy product rule can be applied, resulting in
Eq. (83). ��

By combining Eq. (76) with Theorem 2, the effective restoring force in Eq. (72) can be obtained. In
the general case, solving Eq. (76) may still be difficult or only numerically possible. However, if V (x) is a
polynomial potential, the results are straightforward and can be obtained analytically.

Thus, the reduction of the originally n degree-of-freedom system to a 1 DoF system is complete, given that
the distinct “fast” excitation frequencies �i,p are linearly independent over Q. A graphical example showing
the differences in the CPDs for commensurable and incommensurable ω1 and ω2 is shown in Fig. 4.

In what follows, we present examples illustrating the utility of the analytic results discussed earlier. After
reducing the system to 1 DoF, numerous methods have been documented in the existing literature to analyze
the escape behavior of the system further [19,20,24,26,37]. Thus, the focus will be primarily on the reduction
process rather than on subsequent analytic approaches specific to 1 DoF escape problems.
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Fig. 4 Comparison of commensurability effects on the CPD of motion. Figures re-used from [27]

4 Example

4.1 Analytical treatment

In the following, we consider an example with n = 3 and

V (x) = x2

2
− x4

4
. (86)

Without loss of generality, we consider m = 1. The equations of motion are given by

⎡

⎣
ẍ1
ẍ2
ẍ3

⎤

⎦+
⎡

⎣
k −k 0

−k 2k −k

0 −k k

⎤

⎦

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦+
⎡

⎣
c −c 0

−c 2c −c

0 −c c

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦+
⎡

⎣
V ′(x1)
V ′(x2)
V ′(x3)

⎤

⎦ =
⎡

⎣
F1,0 sin (�0t + β0)

F2,1 sin (�2t + β2)

F3,1 sin (�3t + β3)

⎤

⎦

︸ ︷︷ ︸

=:

⎡

⎢⎢⎣

F1(t)

F2(t)

F3(t)

⎤

⎥⎥⎦

. (87)

Where �0 ≈ 1 is a low frequency and �2 and �3 are high frequencies, exciting the inner vibrations modes
of the chain. The new coordinates, i.e., the center of mass and relative displacements, are defined as follows

⎡

⎣
η

y2
y3

⎤

⎦ =
⎡

⎢⎣

1
3

1
3

1
3

−1 1 0
0 −1 1

⎤

⎥⎦

⎡

⎣
x1
x2
x3

⎤

⎦ . (88)
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Thus, the differential equations in the new coordinates become

η̈ + V ′(η − 2
3 y2 − 1

3 y3) + V ′(η + 1
3 y2 − 1

3 y3) + V ′(η + 1
3 y2 + 2

3 y3)

3
=
∑3

i=1 Fi (t)

3
, (89)

or more compactly

η̈ +
∑3

i=1 V
′(η + zi (t))

3
=
∑3

i=1 Fi (t)

3
, (90)

with zi := xi − η. The equations describing the relative motions are given by

[
ÿ2
ÿ3

]
+
[
2k −k

−k 2k

] [
ẏ2
ẏ3

]
+
[
2c −c

−c 2c

] [
y2
y3

]
+
[
V ′(x2) − V ′(x1)
V ′(x3) − V ′(x2)

]

︸ ︷︷ ︸
negligible

=
⎡

⎣
F2(t) −F1(t)︸ ︷︷ ︸

negligible
F3(t) − F2(t)

⎤

⎦ , (91)

where in Eq. (91), the force of the potential and the low-frequency excitation can be neglected, being much
smaller than the force of the springs. The remaining equation system is linear, and its Laplace transform is
given by

[
s2 + 2ks + 2c −ks − c

−ks − c s2 + 2ks + 2c

]

︸ ︷︷ ︸
=:A(s)

[
Y2(s)

Y3(s)

]
= F(s), (92)

where F(s) is the Fourier transform of the excitation. The inverse of the system matrix A(s) is given by

A−1(s) = 1(
s2 + ks + c

) (
s2 + 3ks + 3c

)
[
s2 + 2ks + 2c ks + c

ks + c s2 + 2ks + 2c

]
. (93)

To facilitate the calculations, let us define the functions

Gl(s) := s2 + lks + lc for l ∈ {1, 2, 3}, (94)

G0(s) := ks + c. (95)

The transfer function is obtained by inserting s = jω. Then, we can rewrite Eqs. (94–95) which we can also
write as

Gl(jω) = lc − ω2 + jωlk =
√

(lc − ω2)2 + l2k2ω2 exp

(
j arctan

lkω

lc − ω2

)
, (96)

G0(jω) = c − jωk =
√
c2 + k2ω2 exp

(
j arctan

kω

c

)
, (97)

thus, we can write Eq. (93) as

G(jω) = 1

G1(jω)G3(jω)

[
G2(jω) G0(jω)

G0(jω) G2(jω)

]
. (98)

Based on Eq. (54), resonant frequencies are to be found around the values

ω1,peak =
√

c − k2

2
and ω2,peak =

√

3

(
c − 3k2

2

)
. (99)

We now define the values of the high-frequency excitations as follows.

�2 = ω2,Peak, (100)

�3 = ω1,Peak. (101)
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We can obtain the amplitude and phase of the stationary solutions corresponding to F2(t) by
[
Y2,2
Y3,2

]
= 1

G1(j�2)G3(j�2)

[
G2(j�2) G0(j�2)
G0(j�2) G2(j�2)

] [
F2ejβ2

−F2ejβ2

]
. (102)

Using the identity G2(jω) − G0(jω) = G1(jω) we can simplify Eq. (102) as follows.
[
Y2,2
Y3,2

]
= 1

G3(j�2)

[
1

−1

]
F2e

jβ2 , (103)

[
Y2,2
Y3,2

]
= 2

√
3F2

9k
√
4c − 3k2

e
j

(
β2−arctan

(√
12c−18k2

3k

)) [
1

−1

]
, (104)

where Eq. (104) is obtained by inserting Eq. (100) in Eq. (103).
Similarly, we can derive the stationary solution corresponding to F3(t). The results are as follows.

[
Y2,3
Y3,3

]
= 1

G1(j�3)G3(j�3)

[
G0(j�3)
G2(j�3)

]
F3e

jβ3 . (105)

Inserting Eq. (101) in Eq. (105) yields
[
Y2,3
Y3,3

]
= 2F2ej(β3−γ1−γ3)

k
√
4c − k2

√
16c2 + 44ck2 − 17k4

[√
4c2 + 4ck2 − 2k4ejγ0

√
4c2 + 20ck2 − 7k4ejγ2

]
, (106)

with

γ0 := arctan � G0(jω1,Peak) = arctan

(
k
√
4c − 2k2

2c

)
, (107)

γl := arctan � Gl(jω1,Peak) = arctan

(
lk

√
4c − 2k2

(2l − 2) c + k2

)
for l ∈ {1, 2, 3}. (108)

With the complex amplitudes Y2,2 . . . Y3,3 we can write the steady-state solutions as

y2(t) = |Y2,2| sin
(
ω2,Peakt + � Y2,2

)+ |Y2,3| sin
(
ω1,Peakt + � Y2,3

)
, (109)

y3(t) = |Y3,2| sin
(
ω2,Peakt + � Y3,2

)+ |Y3,3| sin
(
ω1,Peakt + � Y3,3

)
. (110)

The particles’ oscillations around their center of mass are given by

z1(t) = −2

3
y2(t) − 1

3
y3(t) = Z1,1 sin(ω1,Peakt + ζ1,1) + Z1,2 sin(ω2,Peakt + ζ1,2), (111)

z2(t) = 1

3
y2(t) − 1

3
y3(t) = Z2,1 sin(ω1,Peakt + ζ2,1) + Z2,2 sin(ω2,Peakt + ζ2,2), (112)

z3(t) = 1

3
y2(t) + 2

3
y3(t) = Z3,1 sin(ω1,Peakt + ζ3,1) + Z3,2 sin(ω2,Peakt + ζ3,2), (113)

where Z1,1 . . . Z3,2 and ζ1,1 . . . ζ3,2 are determinedwith the help of Eqs. (63–65). Thus, the particle’s vibrations
around their center of mass are given by biharmonic functions, respectively. Since ω1,Peak and ω2,Peak are
incommensurable, i.e., linearly independent over Q, Theorem 1 can be applied to obtain the moments of the
fast variable’s CPD.

zl with l ∈ {1, 2, 3} is a biharmonic motion (see Fig. 5). In [27], for a function of the form f (t) =
A1 sin(ω1t + β1) + A2 sin(ω2t + β2) with ω1 and ω2 incommensurable and A1 ≥ A2 (without loss of
generality) the CPD was derived analytically. However, here, only the first few moments are necessary. By
Theorem 2 with P = 2, we have

mK =

⎛

⎜⎜⎝
∑

(∑2
j=1 ji

)
=K

2∏

j=1

m j, ji

ji !

⎞

⎟⎟⎠ K !, (114)
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Fig. 5 Comparison of the numerical solution of z1(t) with the analytic one for n = 3, m = 1, k = 3, c = 10, 000, F0 = 0.33,

F2 = 200, F3 = 100, �0=1, �2 =
√
3(c − 3k2

2 ), �3 =
√
c − k2

2 , β0 = β2 = β3 = π
2

where m j,1 and m j,2 are given by Eq. (82), respectively. The first few moments are

m0 = 1, (115)

m1 = m3 = m5 = 0, (116)

m2 = A2
1 + A2

2

2
, (117)

m4 = 3

8
A4
1 + 3

2
A2
1A

2
2 + 3

8
A4
2. (118)

Therefore, the corresponding moments of zl are obtained by substituting A1 and A2 with Zl,1 and Zl,2,
respectively.

Let us denote the averaged center of mass by ξ = 〈η〉 . In Eq. (90), the only terms that are challenging to
average are V ′(η + zl(t)) for l ∈ {1, 2, 3}. As shown in Eq. (76), for analytic functions f (x), such as Eq. (86),
averaging can be performed based on a series expansion. Using Eq. (76), the averages are calculated by

〈
V ′(η + zl(t)

〉 = m0V
′(η) + m1︸︷︷︸

=0

V ′′(η) + m2V ′′′(η)

2
+ . . .︸︷︷︸

=0

(119)

= (1 − 3m2)η − η3 =
(
1 − 3

Z2
1,l + Z2

2,l

2

)
η − η3, (120)

where all the terms above m4 disappear due to V (k)(x) = 0 for k ≥ 4. Inserting this result into Eq. (90), we
find

ξ̈ +

⎛

⎜⎜⎝1 −
∑3

l=1 Z
2
1,l + Z2

2,l

2︸ ︷︷ ︸
=:d

⎞

⎟⎟⎠ ξ − ξ3 = F1,0 sin (�0t + β0)

3
, (121)

ξ̈ + ω2
dξ − ξ3 = F1,0 sin (�0t + β0)

3
. (122)

Here, d represents a detuning parameter influenced by all the underlying factors that contribute to steady-state
vibrations around the center of mass, denoted as z1(t), z2(t), and z3(t). This equation mirrors the motion of
a single particle under harmonic excitation. However, the linear eigenfrequency of the system is detuned to
ωd = √

1 − d. Introducing appropriate dimensionless time and space coordinates

τ := ωd t, χ := ξ

ωd
, (123)
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we obtain

χ ′′ + χ − χ3 = F sin(�τ + β0), (124)

with

F := F1,0
3ω3

d

, � := �0

ωd
, (125)

where �′ denotes differentiation with respect to τ .
Equation (124) has been extensively investigated in the literature using various methods, including trans-

formation to action-angle coordinates and subsequent averaging or multiple-scale analysis, [19,24,37–39].
Therefore, it will not be discussed further in this article. However, in the next section, numerical simulations
will be performed to compare the slow dynamics of the direct solution of Eq. (87) to the reduced system
dynamics given by Eq. (124).

4.2 Numerical validation

In the following sections, we perform a comparative numerical simulation between the original 3 DoF model
and the reduced 1 DoF model. The analysis calculates the escape time for a parameter region specified for �0
and F1,0. The nondimensional parameter values used for the simulations are as follows: n = 3, m = 1, k = 3,

c = 10,000 , F2 = 1000, F3 = 400, �2 =
√
3(c − 3k2

2 ), �3 =
√
c − k2

2 , β0 = β2 = β3 = π
2 .

With these values, the reduced system results in

ξ̈1 + 0.6471 ξ − ξ3 = F0
3

. (126)

Eq. (126) followed after a lengthy calculation to consider the impact of the internal vibrations of the chain on the
center of mass of the chain. One might approach the problem naively simply by neglecting the effect of internal
vibrations. However, this primitive approach leads to incorrect results, which shall be demonstrated in Fig. 6
showing the time evolutions of the original 3 DoF (cf. Eq. 87), the CPD-based reduced (with ωd = 0.6471)
and the naive 1 DoF models (by inserting ωd = 1 into Eq. (122)) for two different F0 and �0 values and
homogeneous initial conditions.

Although the CPD-based reduced model does not perfectly match the original one, it undoubtedly agrees
better with it than the naive model: a detuning parameter of this magnitude renders the predictive power of the
naive model useless.

In Fig. 7, the sensitivity for initial conditions is shown when the parameters are chosen from the chaotic
domain. Indeed, we can observe that even a small perturbation in the initial velocity (�u0 = 0.01) results in
a larger change in the solution than what substitution of the original model by the reduced one causes.

Using Melnikov analysis, it has been shown that escape from a quadratic-cubic potential may be preceded
by chaotic motion [2,5]. There is no compelling reason to believe that this would also not hold for a quadratic-
quartic potential. Such a scenario, however, suggests the existence of a fractal boundary separating the escaping
and non-escaping regimes. In this chaotic context, the system is susceptible to minor alterations in initial
conditions or model errors. Consequently, the precise prediction of the escape time using a reduced model
becomes infeasible within the chaotic region. However, the reduced model may yield accurate results in areas
adjacent to this chaotic region. To test this hypothesis, we conducted a parameter study. The range for�0 is set
between 0 and 1.2, and for F0, it is set between 0 and 1. Parallel to that, we also show how the averaging-based
method performs compared to the naive method that neglects the internal vibrations of the chain. In Fig. 8, the
escape times of the original model (cf. Fig. 8a), together with the escape times of the averaging-based reduction
method (cf. Fig. 8b) and the naive reduction method (cf. Fig. 8c) are presented, respectively. Naive reduction
results in a noticeable shift and scaling of the V-shaped escape boundary along the force and frequency axes,
indicating that neglecting internal vibrations leads to an inaccurate reducedmodel, in agreement with Eq. (125)
where scaling by 1/ω3

d and 1/ωd is described, respectively.
Comparing escape times to evaluate the models’ goodness is an arbitrary choice. However, comparing

trajectories using a single scalar number is challenging.There are probably bettermeasures formodel validation.
However, the escape time chosen as the measure is adequate to gain insight into the escape dynamics of an
n-particle chain, which is one of the authors’ primary interests.
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Fig. 6 Time evolution comparison between the center of mass of the original 3 DoF (cf. Eq. 87), the CPD-based, reduced
(d = 0.5813) and naive (d = 0) 1 DoF models with homogeneous initial conditions. The remaining parameters are set as
indicated in the main text. The discrepancies between the two models are salient. Although the CPD-based reduced model does
not align perfectly with the original system, the agreement is much better than with the model reduced naively
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Fig. 7 The figure shows the sensitivity of a model to initial conditions. The red curve represents time series data for homogeneous
initial conditions, while the black curve represents data for a small perturbation of the initial velocity (x0, u0) = (0, 0.01). The
green curve shows time series data for a perturbed reduced model. The plots demonstrate that the system is more sensitive to small
changes in initial conditions than to being replaced by a 1 DoF model, given the parameter and excitation values. F0 = 0.13,
�0 = 0.7 and the remaining parameters are as defined in the main text

Fig. 8 Model validation: panel a represents the escape times of the original system, varying the parameters F0 and �0 with
homogeneous initial conditions applied. Panel b shows the escape times of the reduced system with a detuning parameter of
d = 0.5813. Panel c shows the naive model reduction approach that neglects the impact of internal vibrations corresponding to
d = 0. The naive approach shows a notable shift in the frequency and force amplitude of the V-shaped escape boundary (cf. Eq.
125), while the reduced model based on averaging agrees well with the original. Parameters not specified here adhere to those
delineated in the main text

The reduced model we derived is no longer stiff, which markedly improved computational efficiency and
significantly decreased simulation time in our executed example. Specifically, the computational cost was
reduced by 99.75%, which corroborates the effectiveness of the model reduction technique.

5 Discussion

This paper presented amodel reduction approach for an externally excited, strongly coupledn-particle chain in a
potential well. The reductionmethod leverages the different frequency scales between the chain’s quick internal
vibrations and the slow movements of its center of mass within the potential well. The choice of excitation is
notably flexible; a polyharmonic excitation affecting all particles is acceptable as long as it includes only one



Model reduction for an internally damped n-particle

low frequency. This feature ensures that the remaining frequencies primarily trigger high-frequency internal
vibrations of the chain.

In addition to the strong coupling between the particles, it is also assumed that non-small damping forces
exist among them. This results in the rapid decay of high-frequency transient motions. Such a setting permits a
straightforward analytical calculation of steady-state fast vibrations, assuming that the forces from the potential
are negligible compared to the linear spring forces. Consequently, the fast relative motions become known
time-dependent functions in the nonlinear differential equation governing the motion of the chain’s center of
mass. The net effect of these fast oscillations on the differential equation of the center of mass can be accurately
approximated by averaging.

A theorem is introduced that extends the cross-correlation-based averaging technique [27] to scenarios
where polyharmonic fast motions are present, provided the frequencies are linearly independent over Q. A
second theorem outlines how to calculate the moments of the CPD for such composite motions, which is
especially useful for averaging a polynomial function. Building on these findings, we derive the effective
potential, resulting in a reduced system with one degree of freedom.

As an illustrative example, a chain of three particles in a quadratic-quartic potential well, excited by a
triharmonic force, is presented. The model reduction is carried out analytically, and the numerical validation is
performed by computing the escape time for both models across various excitation force and frequency values.
In the case of the chosen quadratic-quartic potential, the impact of high-frequency excitation manifests solely
as a detuning of the potential’s linearized natural frequency, which allows for the use of several analytical
methods already available in the literature.

In order to apply the reduction method, some assumptions had to be made.

• The particle chain is stiff compared to the outer potential: if the particle chain represents the discretization
of a continuous, slender structure, such as a beam or a strut, the applied n-particle chain model is typical.
An external field, such as a magnetic one, will have much less stiffness than the stiffness elements that
model the material’s elasticity.

• Nonnegligible damping acts within the particles: In practical cases, this is always true; material damping
is omnipresent. Equation (61) allows for determining the Lehr damping ratio. The values of the modal
damping used in the example in Sect. 4 correspond to D = 0.015 and D ≈ 0.026, which are realistic
values for metals and construction materials.

• The excitation frequencies are linearly independent over Q, i.e., they are not internally resonant: If the
different components of the excitation are generated independently from each other, it is highly unlikely
that any of them will be an exact rational combination of the remaining ones. It is well known that there
are “infinitely many” irrational numbers as rational ones; therefore, randomly choosing real numbers
will almost always result in linearly independent ones over Q. Furthermore, if the excitation frequencies
happen to be linearly dependent but the corresponding ri values in Def. 1 are such that their numerators
and denominators are large relative primes, the change in the resulting CPD is negligible compared to the
convoluted CPD of periodic functions that are linearly independent over Q.

Wemust address the issue of the accuracy of the reducedmodel. According to [27], cross-correlation-based
averaging is equivalent to the “common” averaging method, which involves evaluating the averaging integral
in time. On the other hand [40], demonstrated that the averaging method with a right-hand side of order ε
produces a solution that is close to the original system’s solution on a timescale of O(1/ε).

However, comparing the solutions of the original and reduced systems is not always feasible. Inmany cases,
other system properties, such as determining amplification functions or finding periodic, stationary solutions,
are more important than matching the exact solution shapes, including transients. For these specific objectives,
a rudimentary 1-DoF model serves as an invaluable tool.

6 Conclusions and scope for future research

Model reduction offers twomain advantages. First, it enables us to grasp the fundamental slow dynamics of the
system and identify the underlying slow force field. Second, the computational cost is significantly reduced.
The simple example involving three particles achieved a simulation time reduction of 99.75%. Importantly,
as the number of particles increases and their interactions become stronger, making the differential equation
system stiffer, the benefits of model reduction become increasingly pronounced.

Future research could extend in several directions. First, the model reduction techniques could be applied
to more complex potential wells beyond polynomial forms to test the range of applicability of the current
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methods. Second, other types of excitation, such as stochastic or time-dependent forces, could be incorporated
to see how they affect both slow dynamics and computational efficiency.

It would be interesting to compare the reduced model with the original model using criteria other than
the escape time. Not all dynamical systems can escape, for which the reduction method still works. A more
general criterion could be used to address this, such as comparing the acceleration of the original system’s
center of mass (after appropriate low-pass filtering) to the acceleration predicted by the model, which could
be a more general and quantifiable measure.

Also worth exploring is how the model scales with more particles and complex interaction mechanisms.
Quantifying the computational advantages would be informative in stiff systems. In line with the observed
99.75% time reduction in the three-particle example, a scaling law could be developed to save computational
time in larger systems.

Extending the model reduction to 2- and 3-dimensional potentials could also be a valuable line of inquiry,
providing insights into more physically realistic systems.

A separate area of focus could be investigating cases where there is no damping between the particles. This
aspect is fascinating because it would influence the model’s effectiveness and accuracy since no advantage can
be gained from the decay of fast transients.

A further extension could involve examining particle chains with nonlinear couplings, a plausible gener-
alization, to ascertain how such complexities influence the system’s slow and fast dynamics.
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Appendix

Introducing the notation Mkl = ∑l
i=k mi , with l > k ∈ N

+, we can calculate S, the matrix of coordinate
transformation from y to x:

S = 1

M

⎡

⎢⎢⎢⎢⎢⎢⎣

M −M2n −M3n . . . . . . . . . −Mnn
M M11 −M3n . . . . . . . . . −Mnn
M M11 M12 −M4n . . . . . . −Mnn
...

. . .
...

M M11 . . . M1(k−1) −M(k+1)n . . . −Mnn
M M11 . . . . . . . . . M1(n−2) M1(n−1)

⎤

⎥⎥⎥⎥⎥⎥⎦
. (127)

http://creativecommons.org/licenses/by/4.0/
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The damping and stiffness matrices corresponding to the new coordinates y are given by

K̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . . . . 0
0 k1

m1
+ k1

m2
− k2

m2
0 . . . 0

... − k1
m2

k2
m2

+ k2
m3

− k3
m3

. . .
...

. . .
. . . 0

... 0 − kn−3
mn−2

kn−2
mn−2

+ kn−2
mn−1

− kn−1
mn−1

0 . . . 0 − kn−2
mn−1

kn−1
mn−1

+ kn−1
mn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (128)

C̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . . . . 0
0 c1

m1
+ c1

m2
− c2

m2
0 . . . 0

... − c1
m2

c2
m2

+ c2
m3

− c3
m3

. . .
...

. . .
. . . 0

... 0 − cn−3
mn−2

cn−2
mn−2

+ cn−2
mn−1

− cn−1
mn−1

0 . . . 0 0 − cn−2
mn−1

cn−1
mn−1

+ cn−1
mn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (129)

It is clear that in the new coordinates, the inner viscous damping has no more effect on the center of mass η.
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