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Abstract Many companies offer their customers the possibility to configure
their products online and thus to tailor them to their needs and wants. Today,
this capability is implemented via sophisticated product-configurators which
in parallel record those consumer-generated configurations. However, while a
huge volume of such configuration data is recorded, little research has been
conducted in the field of mining such configuration data. This is at least in part
due to the non-availability of open configuration data sets. For the workshop
of the special interest group for data analysis of the German Classification
Society in Karlsruhe on 20–21 November 2015, the German market research
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company TNS Infratest has made available an anonymized configuration data
set of a major car manufacturer. In this contribution a first report on mining
this data set is given. We show that the development of data models which
are specific for the analysis planned reduce the resource requirements several
orders of magnitude, both for data storage and processing time. Furthermore,
we use ordinal utility theory in iso-price segments of cars to operationalize
the detection of interesting patterns: We detect irrational car configurations of
consumers and the attribute sets for a rational choice. We show and discuss the
use of such attribute combinations for sales communication in the purchase
process of cars.

1 Introduction

We start this article with the following definition of a product configurator:

A product configurator is a software-based expert system that supports the user in the creation
of product specifications by restricting how predefined entities (physical or non-physical) and
their properties (fixed or variable) may be combined. (Haug, 2007, p. 19)

An Internet-based end-consumer car configurator is the data source of a car
configuration data set of a major car manufacturer made available by TNS
Infratest, a German market research and marketing consulting company, for a
workshop of the German Classification Society in Karlsruhe from November
20th to November 21st, 2015. The data set donated contains more than 900,000
configurations of more than 470,000 prospective customers and covers three
consecutive days of a six month period in 2012. Since fall 2016, TNS Infratest
belongs to the global Kantar group and changed its name to Kantar TNS.

Section 2 gives a short description of the development and use of prod-
uct configurators in industry and of the idea of using product configurators as
marketing research tools. In section 3 we discuss a generic car configuration
process similar to the actual processes used by the car industry which could
have been used for data collection.

The data set analyzed is introduced in section 4. A first analysis of the data
set follows in the next three sections: Section 5 starts with the development
of a storage-efficient physical data model for car configurations and describes
the preprocessing phase implemented. In section 6 we analyze the iso-price
segments in the dataset with an a-priori segmentation base consisting of the
line, engine, and price attributes.
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In section 7 we explain the concept of finding interesting patterns as the de-
tection of formally irrational choice behavior defined as violation of axiomatic
utility theory. Recommendations are defined as the difference between ratio-
nal and formally irrational car configurations. We have deferred its axiomatic
treatment to appendix A and the description of the algorithms for ordinal util-
ity theory to appendix B. In section 8 we show how recommendations can be
used for a variety of sales communication strategies during the closing phase
of a car purchase. The paper ends with a short summary of our findings as well
as an outlook on future research in section 9.

2 Product Configurators: The State-of-the-Art

The history of product configurators reaches back to the days of rule-based ex-
pert systems of the late 1970s. R1/XCON, a configurator for the VAX11-780
computer systems developed by John McDermott at Digital Equipment Corpo-
ration (DEC), is known for being the first expert system in daily use in industry
(Barker et al (1989) and McDermott (1982)). The main motivation for the de-
velopment of configurators like R1/XCON with expert systems technologies
were twofold: First, the failure of applying procedural software development
approaches to configuration problems and, second, the enormous potential of
cost savings by delivering valid and completely configured systems: The over-
all net return of using R1/XCON for DEC was estimated at 40 million dollars
a year (Felfernig et al, 2014, p. 9).

The generation of rule-based product configurators proved to be less flex-
ible than expected. The if-then structure of rules assumes a direction of ex-
ecution from the condition to the action part and this restricts the inference
of consequences when arbitrary variables are bound: The separation between
knowledge of configuration models and knowledge of configuration search is
violated. Because of these maintenance problems of rule-based knowledge rep-
resentations, all product configurators should be based on feature models as
Sabin and Weigel (1998) point out. However, a recent study of industrial prac-
tices in variety modeling by Berger et al (2013) indicates that although feature
models are used by almost three quarters of the survey participants, several
other specifications are also used. E.g. about one third of the participants also
use spreadsheets, key/value pairs, domain-specific languages, and UML-based
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representations. It is also remarkable, that almost 40 percent of the participants
use home-grown domain-specific tools (Berger et al, 2013).

Benavides et al (2013, p. 165) introduce the following definition of a feature
model configuration problem:

Definition 1. A feature model configuration problem is defined by the tu-
ple (F,D,R) where F = { f1, . . . , fn} is a set of features, D = {dom( f1),
. . . ,dom( fn)} is the set of corresponding binary feature domains dom( f ) =
{true (=1), false (=0)}, and the set of restrictions (or constraints) R=UR∪FR.
It consists of the set of user requirements UR = {r1, . . . ,rl} (e.g. as the set of
features configured or not configured by the user) and FR = {rl+1, . . . ,rk} a
set of potentially complex feature model constraints (e.g. expressed in a fea-
ture constraint language) which can be translated into a constraint satisfaction
problem.

Definition 2. A feature model configuration for a given (F,D,R) is a complete
binding of variables f ∈ F . It is consistent, iff all contraints r ∈ R are fulfilled
by the given binding of variables.

The term feature model configuration (short: configuration) of a car has two
possible interpretations: The individual configuration of a car selected by a
consumer, but also a set of attributes common to identically configured cars.
To separate these meanings we follow Soininen et al (1998, p. 360) and we
refer to the first meaning as (individual) configuration and to the second as
configuration type.

In the rest of this article, we adopt the following terminology: We denote
the set of all possible consistent feature model configuration types of (F,D,R)
as C . A dataset of consumer configurations collected by a product configura-
tor contains a set of configuration types C ⊂ C . C is represented as a m× n
boolean matrix. The i-th row of C is denoted as cT

i = Ci,•, it represents a single
configuration type as boolean feature vector of length n. The j-th column of
C is denoted as c j = C•, j. It represents the configuration of feature j of all
configuration types of C as boolean feature vector of length m.

For recent surveys on the automated analysis of feature models and the state
of the art in product configuration we refer the reader e.g. to the papers of
Benavides et al (2005), Benavides et al (2010), Benavides et al (2013), and
Zhang (2014). The extraction of a set of attributes common to a subset of
configuration types as atomic sets (sets of attributes which can be treated as
one attribute in a reduced model) used in section 9 is addressed repeatedly in
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the literature. See e.g. Zhang et al (2006), Zhang et al (2004), Mendonca et al
(2008b), Mendonca et al (2008a), and Segura (2008).

Constraint-based problem solvers are model-based knowledge representa-
tion formalisms which can propagate consequences of assignments to other
variables and for which the order of variables does not matter (Mackworth,
1977). The theoretical foundations for todays efficient constraint-based solvers
are deeply rooted in algorithms for the solution of the propositional satisfia-
bility problem (see Biere et al (2009)). Last, but not least, most configurators
heavily need component-oriented knowledge representations as introduced e.g.
by Mittal and Frayman (1989).

The migration from rule-based expert systems to constraint-based problem
solvers with component-oriented knowledge representations opened the way
for mainstream configuration environments integrated into enterprise resource
planning environments at SAP, BAAN, and ORACLE in the early 1990s. For
a history, see Felfernig et al (2014, pp. 11–13).

At the turn of the millenium, fierce competition in global industry markets
led to the fall of mass production strategies and to the development of a system
of mass customization at an industrial scale (Pine, 1999): The customer should
get what he or she wants, when he or she wants it and at an attractive price.
For the fulfillment of this strategic requirement, the end-consumer must be en-
abled to autonomously build his own product (BYO) – even, if the product is
complex. To ease the burden of data entry by the consumer Jannach and Kal-
abis (2011) propose the dynamic selection of default values for configurator
attributes based on patterns detected by association rules. In a recent literature
survey Zhang (2014) discusses several approaches to integrate existing recom-
mender technology into product configurators and their short-comings.

Product configurators turned into Internet-based mass customization tools
seem to be the technological solution for this requirement and – as the data
set provided by the German market research and marketing consulting com-
pany TNS Infratest shows – they are the source of a big data style source of
consumer preference data. Rich Johnson, the founder of Sawtooth Inc. (the
leading provider of conjoint analysis software), and his coworkers already
published blueprints how product configurators and conjoint analysis can be
married (Johnson et al (2006), and Rice and Bakken (2006)).

However, as far as we know, TNS Infratest’s data set is the first large scale
data set from an industrial production-use car configurator publicly available.
We observe that the dataset provided by TNS Infratest contains a bag of con-
sistent feature model configurations of consumers. Our knowledge of the set
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of constraints R is incomplete. We do not know the complete set of user re-
quirements, because we do not know the default settings of the features and
because of this which features have been actively selected by the users. We can
not deduce the complete information on RF , because attributes and subsets of
attributes which are not configured do not allow the inference that a certain
attribute or subset of attributes can not be configured. In addition, although
prices of all first car configurations configured by a consumer are available,
the pricing functions for the car product lines are not disclosed.

3 Data Collection by End-Consumer Car Configurators

Modern end-consumer car configurators allow a customer to build his or her
own car by following a multi-media supported navigation path through the con-
figuration space of a model line. Car configurators check for the compatibility
of options and allow only feasible configurations. All conflicts are resolved in
the user dialogue.

In practice, car manufacturers have structured the configuration process for
consumers in different ways: For example, BMW1 groups its car configurator
options into the following categories: Performance and efficiency; handling,
ride and braking; exterior; interior seating and trim; instrumentation and con-
trols; comfort and convenience; audio system; safety and security. In addition,
different warranty options are offered. In contrast, Daimler for its Mercedes
brand2 structures the configuration process into 4 major phases, namely the
configuration of the exterior, of the interior, of the entertainment and conve-
nience options, and of the performance and safety options.

The actual car configurator used in the data collection process is unknown.
However, in Fig. 1 we show a 7-step configuration process derived from the
additional description of the data set for collecting all the attribute values avail-
able in the data set:

The configuration process starts with the choice of engine (engine power
and type, fuel type) and line (e.g. sports line, luxury line) in steps 1 and 2 which
determine the technical component system from which the car is built. In step

1 http://www.bmwusa.com/Standard/Content/BYO/standardfeatures.aspx?NAModelCode=16X0 as
of June 3rd, 2016
2 http://www.mbusa.com/mercedes/vehicles/build/class-C/model-C63WS/buildId-2610975 as of
June 3rd, 2016
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3, the exterior colour of the car is selected by the customer. In most modern
configurators, the pictures of the car displayed in the graphic configuration
interface are adapted accordingly. In step 4, rims are chosen. Next, steps 5 and
6 determine the interior design: colour and material of upholsteries as well as
trims used in the interior. Finally, in step 7 accessories and options provide
additional possibilities for the customization of the car.

Line (4)

Engine (9)

Exterior 
Colour (12)

Rims (24)

Interior Colour &
Upholsteries (16)

Interior
Trims (11)

Accessories &
Options (36)

Fig. 1 The Configuration Process. (X)
indicates the number of options in a
step.

The end-consumer experiences configura-
tion constraints only occasionally. If an op-
tion incompatible with the previous choices is
selected, the consumer must either add addi-
tional options to make the option feasible or
he must undo some of the previously selected
options. Most car configurators offer recom-
mendations for resolving such conflicts. How-
ever, the complete constraint and conflict res-
olution system implemented in the car config-
urator used for data collection is not disclosed
with the data set. Nevertheless, the constraint
system reduces the number of feasible config-
uration types considerably. Each stored con-
figuration in the data set represents a naviga-
tion path through the car configurator and a
point in configuration space.

4 The Car Configuration Data Set

The original dataset of the German market research and marketing consulting
company TNS Infratest contains car configuration data collected from 473,819
prospective customers on three randomly selected days between January 2nd
and July 1st, 2012 (the first 26 weeks of 2012). Each record consists of the
identifier of the customer, the budget he or she is willing to spend, the price and
the configuration for the first car and up to three additional car configurations
with the same engine, but without price.

A car configuration type has 42 attributes which are mapped to 112 binary
features. The two most important attributes – because of the a priori market
segmentation of the car manufacturer – are engine (9 types) and model line
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(4 lines). We call this group segmentation attributes. The engine attribute is
described by a numerical identifier only for reasons of anonymity, the model
line attribute by a short name (e.g. sports line) probably indicating a rough
customer segment. The next group of 4 attributes (with partial information on
extra charges (called add on price)) consists of colour (12 variants), trims (11
variants), cushions (16 variants), and rims (24 variants). For these six variables,
only a single variant (one feature variable out of the group of feature variables
representing the attribute) can be configured.

The second group of attributes (called accessories and options) consists of
36 binary attributes or options including packages (sport, comfort, light inte-
rior, storage), driving assistants (14 variants, e.g. parking assistant), security
systems (alarm system), interior comfort (11 variants, e.g. seat heating), con-
sumer electronics (5 variants, e.g. hifi-system), and trailer tow hitch. In this
group of variables, one attribute maps to one feature. Combinations of fea-
tures are possible. From experience with actual car configurators, we know
that constraints between options exist. However, the actual constraint system
of the product configurator which was used during data collection has not been
disclosed. Therefore, in the worst case (the configurator has no constraints)
the size of the configuration space is 9 · 4 · 12 · 24 · 16 · 11 · 236 = 247 · 34 · 11
configuration types (≈ 1.25 ·1017).

5 Preprocessing and Improved Data Representation

An exploratory analysis of the data set revealed that the configuration space is
only sparsely populated: Out of 1.25 ·1017 possible configuration types (in the
worst case, see section 4), a mere 943 configuration types exist in the data set
of nearly a million configurations. Consequently, many consumers configured
identical cars. We also found that the data set was denormalized.

Normalizing the data model considerably reduced the size of the data set,
chiefly because it eliminates the large number of duplicate configurations. This
normalization implicitly entails the switch from a table of configurations to a
table of configuration types.

Fig. 2 illustrates the normalized data model. The information on the se-
quence of configurations of a respondent is stored in the table Configura-
tionSequence, more specifically in the sequence number. The 42 attributes
of each car configuration are transformed into 112 binary attributes. Note, that
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Respondent Configuration AttributeDescription

1..N 1..4Id: Integer
Budget: Integer
...

Id: Integer
Price: Integer
<Attribute: Boolean
(112 times)>

Id: Integer
PositionInConfig: Integer
Name: String
Category: String
Description: String
...

ConfigurationSequence

SequenceNumber: Integer
...

AddOnPrices

SequenceNumber: Integer
AddOnPrice: Integer 1..4

1

Fig. 2 Normalized Data Model as Class Diagram in the Unified Modeling Language (UML).

the table AddOnPrices contains the attribute prices used for the n-th configu-
ration of a customer.

During the exploratory analysis, we additionally discovered that the car con-
figurations of about 30,000 customers were broken. In most of these cases, an
intact configuration was apparently split into two complementary parts. In the
data set thus existed two invalid configurations for each of these customers,
which had a valid attribute value exactly were its counterpart had a missing
value. These complementary configurations were merged to recover the valid
configuration. For a small number of cases, configurations contained missing
values but no way of recovering the missing data was apparent. We discarded
these incomplete configurations.

After preprocessing the data set contains a total of 962,799 configurations
(469,112 first configurations and 493,687 subsequent configurations). The data
set contains a total of 943 configuration types with known price. All 943 con-
figuration types occur as a first configuration. 711 configuration types occur
as a second configuration, 490 as a third and 262 as a fourth. The number of
follow-up configurations drops sharply.

The configuration table in the new physical data model, which included
most notably the transformation from car configurations to car configuration
types, is reduced in size by the order of 103. At the same time, the physical
data model still contains the same information as the original data set.

For practitioners, we emphasize that the development of improved, special-
ized data models – even if they are not generic – integrated into the data col-
lection process lead to a reduction in storage of several orders of magnitude
and additional savings in infrastructure, maintenance, and data analysis costs.
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The life cycle of most major car models lasts between 8 and 10 years. The
complete data set of TNS Infratest collected over a period of 6 months has a
size of approximately 2TB with 60 million configurations. A rough estimate
over the life cycle of this car model leads to a data volume of 40 TB with 240
million configurations at the end of the life cycle of the car models without
transformation.

6 Exploratory Data Analysis: A Segmentation-Based Approach

We divide the set of 943 car configuration types in a total of 36 engine/line
segments. The rationale for this decision comes from the prevalent corporate
strategy of the automotive industry itself: In the 1920s, Alfred Sloan invented
the new organizational structure of the multidivisional company for General
Motors (Sloan, 1964). Today, this organizational structure can be considered
the organizational blue-print for companies in the automotive industry.

In a multidivisional company, each division has complete autonomy to pro-
duce and sell a product (e.g. car) for its assigned market segment (Chandler,
1962). Market segmentation thus plays a strategic role for multidivisional com-
panies. We can, therefore, expect car manufacturers to distinguish consumer
segments by distinctive consumer profiles based on market research and to of-
fer a product line for each segment. In this context, the line attribute in the data
set seems to be designed as exactly such a segmentation base. We consequently
use the attribute as a segmentation attribute.

In addition, we chose the engine type as the second segmentation attribute,
because this attribute has the highest impact on the price of a car configuration
of a specific line and on product performance (Fuhrmann et al, 2017, p. 67).
It, therefore, reflects the usage pattern, intended by the consumer, to a large
extent.

An even finer market segmentation is achieved with the price variable as
further segmentation variable. Considering price as a segmentation variable is
a common normative segmentation method that is based on the theory of con-
sumer demand functions (Wedel and Kamakura, 2001, p. 26). Price reflects a
mixture of a consumer’s willingness to pay (Keeney and Raiffa, 1976, pp. 125–
127) and his budget constraints mitigated by his financing options. However,
the second motivation to look into iso-price segments is the question of formal
consistency of the observed car configuration behavior to be discussed in sec-
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tion 7. An iso-price segment is defined as the set of all configuration types with
the same price (within an engine/line segment). The fact that 175 out of the 225
iso-price segments in the sample consist of more than one configuration type,
indicates that the segmentation base was not chosen too granular.

By providing an a-priori structure for the data set, the segmentation reduces
the complexity and thus supports subsequent exploratory data analysis and the
data analysis of the following sections.

Fig. 3 shows the structure of the iso-price market segments for engine 1 and
the sports line: 26 configuration types in 7 iso-price segments with 1, 1, 3, 3,
10, 4, and 4 configuration types. Each horizontal line of identical symbols in
the configuration type/price plot of Fig. 3 forms an iso-price segment.

●

0 5 10 15 20 25

30
00

0
35

00
0

40
00

0
45

00
0

Prices − Engine: 1, Line: Sports Line

Configuration Type Ranked by Decreasing Frequency

P
ric

e

Fig. 3 Segment Engine 1/Sports Line: Iso-Price Lines of Car Configuration Types (Decreasing fre-
quency). Symbols of data points show configuration types with the same price.

Table 1 shows the engine/model line segments covered by the car configu-
rator. Each segment is characterized by two groups of attributes:

• The first attribute group measures the variety in the segment (and the com-
putational complexity needed for further analysis). No. of. Conf. Types is
the number of configuration types, whereas (Max) specifies the maximum
number of configuration types with the same price, i.e. the maximum size
of an iso-price line in this segment. Price range and (Levels) indicate the
number of iso-price lines in the respective segment and their price range.

• The second group, consisting of No. of Cars Configured, Price Average and
Value relates to the overall size and value of the segment.
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Model Line No Line Sports Line Luxury Line Modern Line
Engine 1: No. of Conf. Types (Max) 50 (12) 26 (10) 4 (3) 24 (7)
No. of Cars Configured 53,773 28,908 7,156 27,982
Price Average (Euro) 33,870 35,269 33,604 35,864
Price Range (in 1,000 Euro) (Levels) 20 - 55 (10) 29 - 45 (7) 31 - 35 (2) 28 - 55 (9)
Value (in Mio Euro) 854 546 143 445
Engine 2: No. of Conf. Types (Max) 49 (9) 87 (23) 43 (11) 44 (9)
No. of Cars Configured 48,999 89,675 40,532 41,566
Price Average (Euro) 37,633 39,134 37,672 38,122
Price Range (in 1,000 Euro) (Levels) 28 - 47 (14) 35 - 45 (10) 28 - 45 (9) 34 - 45 (11)
Value (in Mio Euro) 770 1,885 781 714
Engine 3: No. of Conf. Types (Max) 15 (6) 61 (7) 9 (4) 9 (4)
No. of Cars Configured 13,479 60,977 9,252 10,910
Price Average (Euro) 42,556 47,426 46,452 45,154
Price Range (in 1,000 Euro) (Levels) 40 - 46 (4) 38 - 83 (13) 40 - 55 (3) 40 - 50 (5)
Value (in Mio Euro) 219 1443 232 238
Engine 4: No. of Conf. Types (Max) - (-) 2 (2) 1 (1) - (-)
No. of Cars Configured - 1,865 3,639 -
Price Average (Euro) - 45,000 45,500 -
Price Range (in 1,000 Euro) (Levels) - (-) 45 - 45 (1) 45 - 45 (1) - (-)
Value (in Mio Euro) - 64 80 -
Engine 5: No. of Conf. Types (Max) 37 (16) 51 (11) 11 (5) 9 (6)
No. of Cars Configured 37,097 52,270 11,153 8,033
Price Average (Euro) 35,337 37,558 36,481 38,019
Price Range (in 1,000 Euro) (Levels) 28 - 40 (7) 34 - 45 (11) 34 - 40 (4) 32 - 40 (4)
Value (in Mio Euro) 597 1,000 215 135
Engine 6: No. of Conf. Types (Max) 56 (15) 99 (31) 24 (8) 39 (13)
No. of Cars Configured 55,179 101,272 24,991 37,783
Price Average (Euro) 38,716 40,687 42,093 39,525
Price Range (in 1,000 Euro) (Levels) 34 - 45 (11) 30 - 52 (14) 35 - 50 (9) 35 - 48 (9)
Value (in Mio Euro) 873 2,041 468 884
Engine 7: No. of Conf. Types (Max) 24 (10) 39 (11) 18 (16) 17 (9)
No. of Cars Configured 23,476 42,913 18,020 17,456
Price Average (Euro) 43,583 42,805 43,944 45,168
Price Range (in 1,000 Euro) (Levels) 39 - 50 (5) 38 - 50 (9) 40 - 45 (2) 40 - 50 (4)
Value (in Mio Euro) 464 867 362 460
Engine 8: No. of Conf. Types (Max) 12 (3) 34 (7) 2 (1) 12 (4)
No. of Cars Configured 10,510 34,578 1,721 11,054
Price Average (Euro) 50,192 52,582 54,371 63,145
Price Range (in 1,000 Euro) (Levels) 48 - 55 (6) 47 - 62 (11) 53 - 55 (2) 50 - 94 (5)
Value (in Mio Euro) 146 938 17 440
Engine 9: No. of Conf. Types (Max) 3 (2) 17 (5) 8 (4) 7 (4)
No. of Cars Configured 3,662 18,359 8,172 6,387
Price Average (Euro) 57,433 63,094 57,061 50,682
Price Range (in 1,000 Euro) (Levels) 55 - 65 (2) 47 - 96 (5) 50 - 65 (3) 45 - 96 (3)
Value (in Mio Euro) 58 632 202 158

Table 1 Engine/Model Line Segments and Their Price Structure. Prices and values truncated. (Max)
is the maximal number of different configuration types with the same price. (Levels) is the number
of iso-price segments in an engine-model line segment with a total of 225 iso-price segments.
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Table 1 shows that for about 2/3 of the engine/model line segments less than
30 different configuration types have been configured over the whole price
range. 50 iso-price segments consist of one configuration, 35 of two config-
urations. Just a single segment (Sports Line with engine 6) has an iso-price
segment with more than 30 configuration types. Since the number of config-
uration types per segment is a major factor in the computational complexity
needed for further analysis, this is generally good news for the subsequent
analysis.

7 Detecting Patterns of Interest: Preferences and Deviations from
Rationality

Configuration data reveals the economic choices of consumers (Ben-Akiva and
Gershenfeld, 1998; Liechty et al, 2001). A rational consumer always chooses a
non-dominated car configuration. Non-dominated means, that no car configu-
ration exists in the set considered which – all other attributes equal – is strictly
better in at least one attribute. The set considered is operationalized by the set
of configurations in an iso-price segment.

Only(A) := A∩ (¬B) and means “set of features configured in A but not in
B”. Consider a segment with {A,B,C,D}, then Only(A∩B) := A∩B∩ (¬C)∩
(¬D) serves as a short notation to express the set of common attributes of A
and B which are not configured in the rest of the segment, namely C and D.

In an iso-price segment with two configuration types A and B, non-dominance
means,

1. if we do not know the utility function of the consumer (ordinal case) that
Only(A) and Only(B) are both not empty,

2. if we know the utility function of the consumer (cardinal case)
that U(Only(A)) =U(Only(B)).

We call consumers who configure dominated car configurations formally ir-
rational and this only means that they could have configured a car with more
attributes at the same price. An axiomatic analysis of this situation and its inter-
pretation is given in appendix A. For us, interesting patterns are dominated car
configurations, because they identify consumers who could have done better.

In the rest of this section we illustrate the concepts of non-dominance (case
1) and dominance (cases 2 and 3) of three iso-price segments with 2 configu-
ration types A and B.
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Color: Black Sapphire Metallic
Rims: 18 Inch Alu Luxury
Cushions: Leather Dakota Black II
Trims: Real wood fineline anthrazite with  high-grade inlay
           and  a chrome design strip

Comfort package 
Automatic transmission
Seat heating for front seats
Navigation system business
Parking assistant
Xenon  light 1,491 Cars

Engine 3/Luxury Line/45,000 Euro Only(A and B)

Digital radio
Climate control
Adaptive cornering light
Sports seats for front seats
Light package interior 1,035 Cars

Only(A)

Mobile phone prep with bluetooth usb

456 Cars

Only(B)

Fig. 4 Partially Ordered Attribute Sets for the Segment Engine 3/Luxury Line at a Price of 45,000
Euro

Case 1. For the Engine 3/Luxury Line/ 45,000 Euro segment (see Fig. 4) con-
sumers choose either the attribute set Only(A) with digital radio, climate con-
trol, adaptive cornering light, sports seats for front seats, and light package
interior or the attribute set Only(B) mobile phone prep with bluetooth usb.
The assumption of rational consumers combined with unknown part-worths of
attributes allows us to deduce that the attribute sets Only(A) and Only(B) are
of equal value (indicated by the price of the configuration) to the consumers
of this segment. The observed choice behavior in this segment does not violate
the axioms of utility theory (see appendix A).

From the choice behavior of the consumers in this segment, we can con-
struct an empirical conditional (on the segment) preference distribution: We
infer that almost 70% of the consumers prefer Only(A) to Only(B):

P(U(Only(A))≻U(Only(B)) | A,B) = 1,035
1,491

= 0.69

where P(·) denotes the probability of an event and U(·) the utility function of
the customers in the segment. This is information can be used for extracting
probabilistic preferences between attribute sets conditioned on the segment.
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Case 2. For the Engine 4/Sports Line/ 45,000 Euro segment (see Fig. 5)
the set of attributes of configuration type B is a proper subset of the set of
attributes of configuration type A. In this segment we observe a violation of
the axioms of utility theory by the 426 consumers choosing configuration type
B: They could have added a navigation system and climate control for the same
price. The set difference A−B is the set of attributes which can be offered to a
formally irrational consumer at the same price. In addition, these attributes are
potential recommendations in the sales process, because empirical evidence
for their choice exists.

In 12 iso-price segments with two configuration types (more than one third)
we observe violations of the axioms of utility theory in this way. Note, that to
detect a violation, we do not need to know the part-worth utility function of
the consumers.

Navigation system business
Climate control 1,002 Cars

Only(A)

Color: Glacier Silver Metallic
Rims: 18 Inch Alu Sport II
Cushions: Cloth Imola Anthracite with red contrast stitching
Trims: Black high-gloss with red design strip
           and  a chrome design strip 1,428 Cars

Engine 4/Sports Line/45,000 Euro Only(A and B)

Fig. 5 Partially Ordered Attribute Sets for the Segment Engine 4/Sports Line at a Price of 45,000
Euro

Color: Black
Rims: 16 Inch Steel Basis
Trims: Satin Silver Matt 2,588 Cars

Engine 1/No Line/30,000 Euro Only(A and B)

808 Cars

Only(B)

Cushions: Cloth AnthraziteCushions: Leather Dakota Black I
Mobile phone prep with 
      bluetooth usb 1,780 Cars

Only(A)

Fig. 6 Partially Ordered Attribute Sets for the Segment Engine 1/No Line at a Price of 30,000 Euro
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For the iso-price segments contained in the engine/model line segments of
table 1 a large number of deviations from rationality which violate the no
proper subset condition for rationality of this case have been detected. We have
relegated the description of the algorithms for this analysis to appendix B. A
complete analysis of all 225 iso-price segments shows that 81,947 consumers
(17.5%) of the 469,112 consumers in the dataset showed formally irrational
behavior by choosing configuration types which violate the no proper subset
condition. 50 iso-price segments consist of a single configuration type. 68 iso-
price segments of the 175 segments with more than one configuration type
do not contain irrational configuration types, when using ordinal utility theory
only.

Case 3. For the Engine 1/No Line/ 30,000 Euro segment (see Fig. 6) our ca-
pability to detect a a violation of rationality depends on our knowledge of the
part-worths of the attributes: We know that leather cushions add 1,750 Euro to
the configuration price whereas cloth anthrazite is the standard configuration
for cushions and, therefore, does not change the configuration price. In addi-
tion, the mobile phone preparation provides additional value to the customer,
so configuration type A offers more value than configuration type B. Customers
which prefer configuration type B violate the axioms of utility theory.

This case shows that knowledge of the part-worth function of the attributes
configurations of a consumer segment allows the detection of additional viola-
tions of the axioms utility theory which can not be detected by making use of
ordinal information only. However, in this article we neither estimate the cardi-
nal utility (part-worth) functions of consumers nor attempt to reverse engineer
the pricing function of the manufacturer embedded in the product configurator.

A first finding is that the car configurator allows the configuration of cars
which do not maximize the utility of the consumers. To remedy the situation,
we could recommend that the car configurator should be improved by a recom-
mendation function which in the last step suggests improvements so that the
configuration is not an inferior choice in the iso-price segment.

A second finding is that the detection of configuration choices deviating
from rationality is an implementable and scalable operationalization of the ex-
traction of patterns of interest (or of e.g. anomalies as in Fayyad et al (1996))
from car configuration data, a topic on which the literature on data mining is
remarkable silent (Geyer-Schulz, 2016). Deviation from rationality is used in
this article as a purely formal (and testable) concept without additional seman-
tic interpretation. The strengths of this concept is that it is:
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• Formally testable on the ordinal level (in this article) as well as on the car-
dinal level.

• A minimal model. Instead of finding a model for each consumer group, one
single model, namely that of the rational consumer, is used.

• Directly operationally useful by extracting attribute sets as recommenda-
tions for sales communications as described in section 8.

To summarize, we use axiomatic utility theory as a purely descriptive the-
ory which helps in the process of detecting deviations from rational behavior.
Irrational behavior is formally defined as a violation of the axioms of utility
theory. It is well known from behavioral economic and psychological exper-
iments that homo economicus is a rather weak and unrealistic model for the
explanation of the actual behavior of consumers (see e.g. Kahneman and Tver-
sky (2009), Thaler (2009), and Koehler and Harvey (2004)). However, in the
context of detecting interesting patterns in car configurations axiomatic utility
theory is a strong theory for detecting anomalies in an economic way – we
have to formalize only a single model – as long as we do not insist on finding
causes or interpretations of formally irrational behavior.

8 Recommendations for Hard-Sell

How we proceed from the discovery of formally irrational car configurations
in section 7 depends on the philosophy of marketing management used by the
car manufacturer who owns the car configurator: Marketing or selling?

For a car manufacturer following the marketing concept (Kotler, 1980, pp.
31-33) which respects the time honoured concept of customer sovereignty (for
the origins of this concept, see Schwarzkopf (2011)) the recommendation is
obvious: We suggest an improvement of the product configurator which we
consider as being defective, so that the customer is offered his/her configura-
tion and, in addition, a non-dominated car (best) configuration which contains
the attributes of his/her configuration for the same price.

For car manufacturers which want to establish a direct Internet sales chan-
nel, this additional offer can be offered as a service guarantee: The best car
configuration available at a certain price is always offered in addition to the
car configuration found by the consumer. This reduces the consumer’s risk and
uncertainty in using the product configurator and helps in establishing a repu-
tation of fairness for the manufacturer.
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Next, selling: Instead of interpreting the existence of formally irrational car
configurations as evidence of a defect in the product configurator, we con-
sider the existence of formally irrational car configurations as evidence of the
implementation of the selling concept (Kotler, 1980, pp. 29-30) by the car
manufacturer. For such a manufacturer, “goods are sold, not bought.” (Kotler,
1980, p. 29): Sales volume drives profitability because of economies of scale
and scope. That the remuneration throughout the sales organisation (dealers
and sales persons) heavily depends on sales volume is an important part of an
integrated selling strategy.

Kotler claims that car dealers “often are prime practitioners of the sell-
ing concept” (Kotler, 1980, p. 30). By 2015 all major car manufacturers fea-
tured Internet-based car configurators of their main brands for end consumers
(Blazek et al, 2016). However, a full integration of the configurators into the
sales process is still missing. After configuring a car, the consumer is guided
to a near-by dealer for arranging a test-drive with his/her preferred car and for
conducting the bargaining process.

Rein (1972b) presents a vivid introduction to several sales communication
strategies used in bargaining. He devotes a whole chapter to sales communica-
tion strategies used by car dealers (Rein, 1972a), most noteably hard-sell and
up-sell strategies. A hard-sell sales communication strategy combines a logi-
cal appeal to a rational consumer’s self-interest with a psychological pressure
aiming at a fast close of the contract. Psychological pressure and exploitation
of information advantages as well as of behavioral biases (e.g. risk aversion)
are often part of the strategies of sellers and have contributed to the bad repu-
tation of these strategies. As one of the reviewers of a previous version of this
paper has put it: “I do not think that research works should suggest what can
be considered as short-sighted or even unethical behavior”. However, a deeper
economic analysis of hard-sell reveals (1) that hard-sell can be a profitable
strategy in a competitive environment, (2) that it is detrimental and annoying
to all consumers including those consumers who avoid direct exposure to the
practice, and, (3) that moderate hard-sell increases the well-fare of society as
a whole, because it is not a zero-sum game (sellers gain more than consumers
lose) (Chu et al, 1995). For the car industry, hard-sell leads to a reduction of
configuration types produced and as a consequence to a considerable reduction
of unit cost. Another often neglected effect is a faster dissemination of infor-
mation on innovative add-ons which, when properly packaged, have a positive
impact on consumer satisfaction.
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In the following, we restrict our efforts to the support of a hard-sell commu-
nication strategy of the dealer. We also think that the true reasons for formally
irrational configurations are best uncovered in the sales encounter at the dealer.
For example, preference of a cheap synthetic cloth for cushions over natural
leather cushions can be explained e.g. by an allergy to leather or to a vegan life
style (Fig. 6). Note that, support of the up-sell strategy can be done by choos-
ing an engine/line segment spanning several price levels, and of cross-sell by
segments spanning lines or engines or both.

Beard (2004) studied the first century of the debate between hard-sell killers
and soft-sell poets in advertising. He emphasizes the fact that for over a cen-
tury, hard-sell always has favored logical appeals to a rational consumer’s self-
interest. The most influential message strategists in the U.S. of the second half
of the 20th century, namely Leo Burnett and John Caples, pragmatically com-
bined rational arguments with persuasive, emotional, and subconscious argu-
ment which stirs the consumer into action. The importance of actually selling
cars by sales communication campaigns for car dealers is best illustrated by the
forced resignation of Nissan USA President Bob Thomas in 1997 because of a
highly lauded advertising campaign which failed to move inventory (Vagnoni,
1997).

Violations of the no proper subset condition in iso-price segments of config-
urations can be exploited for generating data-based hard sell configurations for
those consumers who selected a configuration which is a proper subset. One
rationale for this is that other consumers of the same segment have configured
additional valuable attributes of a car with the same price and that there is a
quantified empirical support that these additional attributes are preferred by a
certain number of consumers. Another rationale comes from a self-selection
argument: Consumers who have configured a subset of attributes might also
have the same preferences with regard to the attributes which have been con-
figured by consumers who have configured a superset of attributes at the same
price. If a car dealer knows the preference structure on such attribute sets, a set
of hard sell strategies can be formulated by constructing time-limited offers
either with the whole set of attributes as an add-on of a car with the same price
or with subsets.

Fig. 7 illustrates this analysis for the segment Engine 8/Sports Line at a
price of 47,000 Euro which contains a set of 4 configuration types {A,B,C,D}
configured by 1759 consumers. We detect that the 639 consumers choosing
configuration types B and C show formally irrational behavior.

For these customers such offerings of a seller might look like this:
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Only (D)

Only(A and B and C and D)

Only(A and B and D)

Only(A and B and C)

Only(A and C and D)

Only(A∩B∩C∩D) (1,759 Cars)
Trims: Aluminum with Fine Longitudinal Grain with
Black Accent Strip
Rims: 18 Inch Alu Sport III
Cushions: Fabric Imola Anthracite with Grey
Contrasting Seam
light package interieur
variable sports steering
xenon light
performance leather steering wheel
seat heating for front seats
lumbar support for front seats
navigation system business
mobile phone preparation with bluetooth usb

Only(A∩C∩D) (1,339 Cars)
climate control
arm rest for front seats
Only(A∩B∩D) (1,540 Cars)
parking assistant
Only(A∩B∩C) (1,646 Cars)
Colour: Black Sapphire Metallic
automatic transmission
glass sunroof
comfort access
Only(D) (113 Cars)
Colour: Black

Fig. 7 Partial Order of Irreducible Attribute Sets for the Segment Engine 8/Sports Line at a Price of
47,000 Euro. The frequency of configuration type A is 1007, of B 420, of C 219, and of D 113. A is
a superset of B and of C.

• For consumers who configured a car of type C, because configuration type
A is a superset of configuration type C: If you sign the contract today, I can
offer you the car you configured with climate control and arm rests for front
seats for free . . . (The dealer knows that 1,540 consumers have selected this
option).

• For consumers who configured a car of type B, because configuration type
A is a superset of configuration type B: If you sign the contract today, I can
offer you the car you configured with a parking assistant for free . . . (The
dealer knows that 1,339 consumers have selected this option).

A marketer takes out the psychological pressure:
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• For consumers who configured a car of type C, because configuration type
A is a superset of configuration type C: Are you aware that you can add
climate control and arm rests for front seats to your car configuration and
still buy it at the same price . . . (1540 other consumers have preferred this
configuration).

• For consumers who configured a car of type B, because configuration type
A is a superset of configuration type B: Are you aware that you can add a
parking assistant to your car configuration and still buy it at the same price
. . . (1339 other consumers have preferred this configuration).

Formally, if a customer has configured a car with a configuration type A
which is a subset of an other configuration type B, the recommendation of
additional attributes contains the set difference A\B = ∪Ri∈RRi. R is the set of
all irreducible attribute sets which contain attributes of A but not of B.

Subset X ⊂ Y Cars |Y | Y \X = ∪i∈RIi Recommendations Y \X for n = |X |
A⊂ E 223 EG storage package A 1,479
C ⊂ B 968 B rear view camera C 438
D⊂C 438 BC hitch D 232
D⊂ B 968 B∪BC hitch, rear view camera D 232
F ⊂ D 232 BCD climate control F 116
F ⊂C 438 BCD∪BC climate control, hitch F 116
F ⊂ B 968 BCD∪BC∪B climate control, hitch,

rear view camera F 116
G⊂ E 223 AE comfort package G 112

Table 2 Recommentations for the Segment Engine 1/No Line at a Price of 33,000 Euro. BCD is short
for Only(B∩C∩D).

Fig. 8 is an example of a larger iso-price segment with 8 configuration types.
It illustrates how configuration types, namely A, C, D, F , and G which are
subsets of other configuration types (5 of 8) can be exploited for generating
recommendations for consumers. Fig. 8 depicts two different results: The set of
irreducible attribute sets for this segment (left column) (see section 9) and the
visualization of the partial order of irreducible attribute sets (top, right column)
(see section 9).

The partial order induced by the subset relation for this segment which is
shown in Fig. 9 has 3 components: the subsets A and G of E, the subset chain
F−D−C−B with B as superset and the singleton H.
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Irrecudible Attribute Sets (Ii)
Only(A∩B∩C∩D∩E∩F∩G) (3,568
Cars)
Cushions: Fabric Anthracite
Only(B∩C∩D∩F∩H) (1,858 Cars)
Color: Alpine White
parking assistant
digital radio
Only(B∩C∩D∩F) (1,754 Cars)
Rims: 16 Inch Alu Basis I
Trim: Fine-Wood Burr Walnut with
Black Accent Strip
seat heating for front seats
alarm system
Only(A∩E∩G∩H) (1,918 Cars)
Rims: 16 Inch Steel Basis
Trims: Matt Satin Silver
adaptive cornering light
Only(A∩E∩G) (1,814 Cars)
Color: Glacier Silver Metallic
xenon light
glass sunsroof
Only(B∩C∩D) (1,638 Cars)
climate control
Only(B∩C) (1,406 Cars)
hitch
Only(E∩G) (335 Cars)
storage package
Only(A∩E) (1,702 Cars)
comfort package

BCDF

ABCDEFG BCDFH

AE

AEG

H

AEGH

EG

B

BC

BCD

Only(B) (968 Cars)
rear view camera
Only(H) (104 Cars)
Cushions: Leather Dakota Black I
adaptive chassis with lowering
sport leather steering wheel
sport seats for front seats

Fig. 8 Irreducible Attribute Sets and Their Partial Order for the Segment Engine 1/No Line at a Price
of 33,000 Euro with 3,672 cars. BCD is short for Only(B∩C∩D). Cars: A= 1,479, B= 968, C = 438,
D = 232, E = 223, F = 116, G = 112, H = 104.

The recommendations derived from the subset relation of the partial order of
configuration types (Fig. 9) and computed from the irreducible subsets (Fig. 8)
are shown in table 2. This table lists recommended attributes for the subset
configurations A, C, D, F , and G. Note, that for consumers of a car of con-
figuration type F at least three sets of recommendations are detected which
are potentially useful in subsequent sales communications. Again, there is a
difference, how this information is used by a marketer and a seller:

• The marketer makes an unconditional offer of upgrading the user’s car con-
figuration with climate control, hitch, and rear view camera.
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H

E

GA F

D

C

B

Fig. 9 Partial Order induced by Subset Relation of Configurations for the Segment Engine 1/No Line
at a Price of 33,000 Euro with 3,672 cars. Subsets in bold, arrows point to subsets.

• The seller judges the psychological profile of the consumer and decides
either on a frontal attack by offering the upgrade free, but only if you sign
today. Or he can choose a protracted haggling in which he adds one add-on
after the other until the set of recommendations is exhausted.

The last column of table 2. indicates for how many consumers a recommen-
dation has been found.

In this iso-price segment (with a total of 3,672 consumers) recommenda-
tions for 2,377 consumers (64.7%) have been found.

Last but not least this segment contains several asymmetrically dominated
alternatives (A, G, C, D, and F, bold in Fig. 9). An asymmetrically dominated
alternative is both dominated by at least one alternative and not dominated by at
least one alternative of the choice set. Huber et al (1982) provide experimental
evidence that the presence of an asymmetrically dominated alternative in a
choice set increases the probabiblity of choosing the alternative that dominates
it. The asymmetrically dominated alternative, although seldom chosen, acts as
a decoy which attracts sales to the dominating alternative.

A complete analysis of all 225 iso-price segments shows that for 81,947
consumers (17.5%) of the 469,112 consumers in the dataset one or more rec-
ommendations have been found. 50 iso-price segments consist of a single con-
figuration type. 68 iso-price segments of the 175 segments with more than one
configuration type do not contain irrational configuration types.

For the consumers in these iso-price segments, no recommendations can be
given by the approach proposed in this section. However, because the dataset
made available by the German market reseach and marketing consulting com-
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pany TNS Infratest is a sample of only 2% of the complete dataset, the cover-
age of 17.5 % of consumers is a pessimistic lower bound.

9 Conclusion

In this article we have reported on an exploratory data-driven analysis of a large
car configuration data set provided by TNS Infratest. The main contributions
of this article are

1. Two information preserving transformations of the original data set: First,
from individual car configurations to weighted configuration types, and sec-
ond from car configuration types to irreducible attribute sets for sets of car
configuration types (segments). The first transformation reduces the size of
the data set by at least three orders of magnitude. This allows the develop-
ment of fast analysis and visualization algorithms for irreducible attribute
sets whose complexity – for naive implementations – is of the order of O(n2)
subset tests with n the number configuration types in a segment. The sec-
ond transformation to irreducible attribute sets reduces the cost of a subset
test by one order of magnitude. The number of elements of irreducible at-
tribute data sets is bounded by the number of attributes and independent of
the number of configuration types.

2. We emphasize the role of background knowledge in identifiying meaningful
contexts for further analysis: The segmentation base of line, engine, and
price (although almost obvious after ist detecttion) provides the context for
an efficient extraction of sales recommendations and for the visualization of
meaningful car configuration lattices.
Several data mining and machine learning methods (association rule min-
ing and gradient boosted neural networks) could not automatically extract
useful information.

3. By applying utility theory to iso-price segments we have formalized a way
of automatically identifying interesting patterns in sets of configuration
types: Sets of configuration types with the same price form iso-price seg-
ments. From such segments, we show how partial group preferences can be
extracted and we analyze two types of deviation from rationality: The first
is the identification of configurations which are proper subsets of other con-
figurations, the second is the identification of configurations of lower value
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in iso-price segments by exploiting known markup prices for attributes. In
this paper we have implemented the first approach.

4. Last, but not least, we exploit the identification of configurations which are
proper subsets of other configurations in iso-price segments for the extrac-
tion of recommendations a dealer could use e.g. for hard sell offers in the
closing phase of the sales process.

Automatic detection of lower value configurations in iso-price segments as
well as systematic preference extraction between attribute sets is left for fur-
ther research. It requires the proper estimation of part-worth utility functions
for homogeneous consumer segments. A second challenge is reengineering the
pricing function of the product-configurator. The decomposition of the con-
figuration types of an iso-price segment might help with the model selection
problem for bundle pricing. The implementation of recommendation support
for cross- and up-selling is an other topic for future extension.

Appendix A. Utility Theory and Car Configurations

Preferences, Weak Order, Utility, Rationality . . .

Let X a finite set of choices, e.g. 2 cars.
A binary relation R⊆ X×X is (see Fishburn (1970, p. 10))

1. reflexive, if xRx,∀x ∈ X ;
2. symmetric, if xRy⇒ yRx,∀x,y ∈ X ;
3. asymmetric, if xRy⇒¬(yRx),∀x,y ∈ X ;
4. transitive, if xRy,yRz⇒ xRz,∀x,y,z ∈ X ; and
5. negatively transitive, if ¬(xRy),¬(yRz)⇒¬(xRz),∀x,y,z ∈ X .

A weak order (X ,≺) is asymmetric and negatively transitive.
x≺ y means x is less preferred than y, e.g. the consumer has configured car

x and not car y.
x∼ y⇔¬(x≺ y)∧¬(y≺ x).
If (X ,≺) is a weak order, then

1. (i) exactly one of x≺ y, y≺ x, x∼ y holds, ∀x,y ∈ X ,
2. (ii) ≺ is transitive, and
3. (iii) (X ,∼) is an equivalence relation (reflexive, symmetric, transitive).
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For a proof, see Fishburn (1970, p. 13).
If (X ,≺) is a weak order and X/ ∼ is countable, then there exists a utility

function U : X→R, such that x≺ y⇔U(x)<U(y). For a proof, see (Fishburn,
1970, p. 13).

An ordinal utility function U is unique up to monotone transformations.
Utility differences can not be compared. A cardinal utility function U is unique
up to linear transformations. Utility differences can be compared.

Given X , a rational consumer always chooses the best x, this means ∄y∈ X :
x≺ y, respectively argmaxx∈X U(x).

Sets of Attributes: Preferences, Weak Order, Utility, . . .

The configuration space of cars with n binary attributes is A = {0,1}n. We
denote a single car configuration a ∈A by a = (ai) with ai ∈ {0,1}.

(A ,<) is a partial order with < defined as follows: Let a,b ∈A . a < b (a
is dominated by b), if for all ai,bi bi ≥ ai, and bi > ai for some ai,bi.

A car configuration a is efficient, if it is not dominated. This means ∄b ∈
A : a < b.

The attributes in A are mutually preferentially independent, if every subset
of these attributes is preferentially independent of its complementary set of at-
tributes. This simplifies to: If every pair of attributes is preferentially indepen-
dent of its complementary set, then the attributes are mutually preferentially
independent. For a proof, see Gorman (1968)).

For a complete and transitive weak order (A ,<) a linear part-worth utility
function P : A → R exists. For a proof see Debreu (1960).

Rational consumers

A rational consumer always prefers more money to less money. His prefer-
ences form a weak order (X ,≺). Therefore, his valuation function for cars and
money U : X→R is a utility function. In addition, a rational consumer also has
a valuation function for car configuration functions P : A →R which is also a
utility function. Both functions are isomorphic under linear transformations.

Product configurators for a product line are closed world models, this means
measuring the part-worth utility function P(A) of rational consumers is possi-
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ble only relative to a default configuration of a car. Let C the set of all binary
attributes configurable in a product line. Let D⊂C the set of binary attributes
of the default configuration. Let M ⊂ C the set of binary attributes not in the
default configuration.

The simplest rational relative pricing model for a product line is a linear
pricing function P(A):

P(A) = β0︸︷︷︸
Default Configuration

D = {ai | ai /∈M}

+ ∑
a j∈M

β j ·a j︸ ︷︷ ︸
Contribution of change to a j

(1)

We set up the price equations for |C| configurations: A = (C1, . . . ,C|C|)T and
b the vector of configuration prices of the car producer. The general solution
of the linear least squares problem (GLS) Aβ ≈ b is

β = A+b+(I−A+A)w, w arbitrary. (2)

with A+ the Moore-Penrose inverse of A. We compute the coefficients of the
GLS solution and get a family of infinitely many isomorphic pricing/utility
functions:

βGLS = βGLS|w=0 + N (A) ·w︸ ︷︷ ︸
Affine linear Transformation

For the variables in D to be 0 in order to get an OLS solution, the following
constraint system must hold:

0 = βGLS,D +N (A)D ·wD (3)

To compute the weights wD for which the constraint system (3) holds, we
solve the following linear equation for the default configuration D:

wD = N (A)−1
D · (−1) ·βGLS,D (4)

And we get βOLS = βGLS +N (A)wD. By an appropriate choice of D, we
can always find at least one default configuration for which βOLS ≥ 0 holds.
If βOLS,M > 0 holds, then R = M with R the set of all attributes relevant for
price/value increases. Else, the set of attributes E for which βOLS,M = 0 is ir-
relevant for price changes, and R = M \E.
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As consequence of this relative pricing model a linear part-worth utility
function with βOLS,R > 0 exists for a rational consumer. This implies that a
configured attribute (ai = 1, ai ∈ R) is always preferable to an unconfigured
attribute (ai = 0), because βi > 0.

The pricing function of the producer

In practice, the producer’s price configurator PC(A) is not necessarily a utility
function. E.g., bundle pricing functions which are often used in the car industry
violate the axioms of utility theory given above.

Let P(A) denote the set of all subsets of the attributes of a configuration
and let B ∈P(A) denote a specific subset of attributes (a bundle). The func-
tion I(A,B) is a boolean function which is true if at least one attribute of B is
configured in A.

I(A,B) =
{

1 if ∃ak ∈ A : ak ∈ B
0 else

(5)

PC(A) = β0 + ∑
B∈P(A)

βB · I(A,B) (6)

The economic rational for such bundle pricing functions is either based on
common infrastructure necessary for a set attributes in a bundle (e.g. all Inter-
net services of the car (e.g. digital radio, media streaming, navigation) require
a common bus system) or on the aim of increasing economies of scale and
scope by a reduction of the number of configuration types.

The analysis of exchange in an iso-price segment

An iso-price segment contains a set of configurations S at a price p. For exam-
ple, S = {A,B} with A and B two car configurations. A consumer buys a car,
only if p ⪯ A or p ⪯ B. The producer set the prices of A and B to p = PC(A)
and p = PC(B).

For the consumer, ¬(A≺ p) or ¬(B≺ p) holds. The producer is indifferent
which car he sells: A∼ B, because p = PC(A) and p = PC(B) (transitivity).

Next, let us consider the level of car configurations A = a and B = b for the
set of attributes R.



Mining Consumer-Generated Product-Configuration Data 29

Theorem 1. b⊂ a violates the axiom for preferences that exactly one of x≺ y,
y≺ x, x∼ y holds, ∀x,y ∈ X.

Proof. Assume that b⊂ a. Then a = (a∩b)∪ (a\b) and b = (a∩b)∪ /0.
Let β = βOLS,R. Next, compute: P(A) = ∑i∈(a∩b) βiai + ∑ j∈(a\b) β ja j and

P(B) = ∑i∈(a∩b) βiai +0. Because for the first sum P(A) = P(B) holds, and for
the second sum of P(A) is greater than 0, P(A) > P(B). This implies B ≺ A.
However, this contradicts B∼ A.

The existence of dominated car configurations in an iso-price segment im-
plies that the pricing function PC of the producer is inconsistent and violates
the axioms of utility theory. If E = /0, this holds independent of the concrete
form of P(A), we do not have to estimate P.

However, this does not mean that using PC is irrational behavior of the
producer, because this depends on the unknown profit function of the producer.

Even a consumer who has chosen the dominated car configuration has not
shown irrational behavior, because he may not have realized that he could con-
figure a better configuration. The information that the consumer perceives dur-
ing the configuration process is not revealed by the dataset and not described.
And, last but not least, the actual purchase decisions of consumers are not con-
tained in the dataset. Therefore, we call dominated car configurations formally
irrational car configuration of the iso-price segment S and we label consumers
who configured dominated car configurations as formally irrational.

Dominated car configurations in an iso-price segment (b⊂ a) operationalize
the concept of finding interesting patterns and a\b is the set of attributes which
should be recommended to formally irrational consumers.

Appendix B. The Lattice of Irreducible Atomic Sets and Its
Visualization

The generalization of the detection of configuration types with proper subsets
of attributes in a set of configuration types of a market segment (case 2 of
section 7) represented as a s×n matrix S which contains a subset of s rows of
C is straightforward: A naive operationalization of this idea requires pairwise
subset tests of all configuration types in in S as shown in Algorithm 1. This
implies s2 subset tests. However, this has essentially two drawbacks: First, for
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larger sets of configuration types, it is costly. Second, it does not reveal the
structure of common attribute sets in the segment S.

Algorithm 1 Algorithm for finding subsets in sets of configuration types
Require: S a boolean matrix where each row represents a configuration type

1: function FINDSUBSETS(S)
2: s← nrow(S) ▷ number of rows of S
3: s⃗ub← replicate(0,s) ▷ generate a vector of zeros of length s
4: for i ∈ 1, . . . ,s do
5: for h ∈ 1, . . . ,s do
6: if S[i, ]⊂ S[h, ] then
7: s⃗ub[i]← 1
8: return s⃗ub

Whenever a subset of configuration types in a market segment S has a set
of common features J, then all columns s j, j ∈ J are equal. To improve the
computational efficiency, we transform the boolean matrix S with duplicate
columns into a boolean matrix SIAS without duplicate columns and we build a
vector of index sets IAS with ncol(SIAS) sets as elements. The g-th set of IAS
contains the indices of the feature columns in S which are duplicates of the g-
th column of SIAS. Algorithm 2 converts a set of configuration types S into its
irreducible atomic set configuration (SIAS, IAS). It returns SIAS and the vector
IAS of index sets.
Example (Fig. 7): The representation of S (with 19 of 112 features configured)
in terms of irreducible attribute sets is given by the labelled boolean matrix SIAS

and by the 5 attribute tables shown in Fig. 7.

SIAS =


{A,B,C,D} {A,B,C} {A,C,D} {A,B,D} {D}

1 1 1 1 0
1 1 0 1 0
1 1 1 0 0
1 0 1 1 1


(A)
(B)
(C)
(D)

(7)

With regard to the subset-relation, the matrix SIAS allows the extraction of
the partial order of configuration types and of the partial order of irreducible
subsets. The idea of representing the lattice of car configuration types as a lat-
tice of irreducible subsets of car configuration attributes comes from Gusfield’s
irreducible partially ordered representation of the set of stable matchings in
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Algorithm 2 Algorithm for computing irreducible atomic set representation of
a set of configuration types
Require: S a s×n boolean matrix

1: function COMPUTEIARS(S)
2: s← nrow(S)
3: n← ncol(S)
4: SIAS← matrix(s,0) ▷ Reduced matrix
5: ⃗IAS← /0 ▷ Vector of attribute index sets
6: for j ∈ 1, . . . ,n do
7: if S[, j] /∈ columns(SIAS) then
8: SIAS← cbind(SIAS,S[, j])
9: ⃗IAS← ⃗IAS∪{ j}

10: else
11: h← columnIndex(SIAS,S[, j])
12: ⃗IAS[h]← ⃗IAS[h]∪ j
13: return SIAS, ⃗IAS

the basic stable marriage problem (Gusfield and Irving, 1989, Chapter 2, pp.
67-102). Note that the representation of a set of car configurations as a par-
tial order of irreducible attribute sets is a concrete formalization of the idea of
atomic sets as informally introduced by Zhang et al (2006), Zhang et al (2004),
Mendonca et al (2008b), Mendonca et al (2008a), and Segura (2008).

Algorithm 3 Algorithm for extracting edge list of partial order and set differ-
ence from a set of configuration types represented as irreducible atomic sets

Require: S← SIAS for partial order of configuration types or
Require: S← ST

IAS for partial order of irreducible atomic sets

1: function EDGELIST(S)
2: s← nrow(S)
3: ⃗EdgeLst← /0
4: ⃗SetDi f f Lst← /0
5: for i ∈ 1, . . . ,s do
6: for h ∈ 1, . . . ,s do
7: if S[i, ]⊂ S[h, ] then
8: ⃗EdgeLst← ⃗EdgeLst ∪ (i,h)
9: ⃗SetDi f f Lst← ⃗SetDi f f Lst ∪{setDi f f erence(S[h, ],S[i, ])}

10: return ⃗EdgeLst, ⃗SetDi f f Lst
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We adapt the naive algorithm 1 to extract the edge list of the two partial
orders and the set difference for each successful subset test. We use algorithm 3
to extract the partial order of

1. configuration types and the set differences (e.g. table 2) : EDGELIST(SIAS).
The nodes of the graph are labelled by the configuration types A,B, · · · ∈ S.
Note, that, if the edge list is empty, the graph is disconnected.

2. irreducible atomic sets of attributes (e.g. Fig. 7): EDGELIST(ST
IAS)

The nodes of the graph are labelled with the names of the irreducible at-
tribute sets. The edge list contains arcs for all subset relations between
atomic sets. In the graphs shown in this paper, the edge list is pruned, so
that only a minimal graph is shown.

Note, that we draw only the partial order between the irreducible attribute
sets and that we represent each irreducible attribute set as a table of attributes
common to all configuration types in the irreducible atomic set.

The algorithms described above are implemented in Python. However, in
contrast to the pseudo-codes presented, the dataset and the results of the anal-
ysis are stored in a PostgreSQL data base with the help of the psycopg2
Python-PostgreSQL adapter. For the visualization of graphs, the Python pack-
age graphviz is used.
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