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1 Introduction

Higgs production in association with a top quark pair was observed for the first time a
few years ago at the Large Hadron Collider (LHC) [1–3] and will play an important role at
the High-Luminosity (HL) LHC. The process pp → tt̄H is particularly interesting due to
its direct sensitivity to the top-Yukawa coupling yt, which is now being constrained with
increasing accuracy, including potential CP-violating couplings [4, 5]. The importance of
this process was realised a long time ago [6, 7], and NLO QCD corrections for on-shell tt̄H

production have been known for many years [8–12]. The corrections have been matched to
parton showers in refs. [13–15]. NLO EW corrections have first been calculated in ref. [16],
the EW corrections have been combined with NLO QCD corrections within the narrow-
width-approximation (NWA) for top-quark decays in refs. [17, 18]. NLO QCD corrections
to off-shell top quarks in tt̄H production with leptonic W -decays have been calculated in
ref. [19, 20] and full off-shell effects with H → bb̄ have been calculated in refs. [21, 22]. A
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combination of the NLO QCD corrections with NLO EW corrections has been presented
in ref. [23], NLO QCD corrections combined with electroweak Sudakov logarithms and a
parton shower have been studied in ref. [24].

Soft gluon resummation at NLO+NNLL has been performed in refs. [25–28], see also
ref. [29], soft and Coulomb corrections have been resummed in ref. [30]. The NLO+NNLL
resummed results have been further improved including also the processes tt̄W±, tt̄Z [31, 32],
where ref. [32] also includes EW corrections.

Given the projection that the statistical uncertainty will shrink to the order of 2-3%
after 3000 fb−1 [33], the measurement of tt̄H will be dominated by systematics. As the
dominant systematic uncertainties currently come from modelling uncertainties of signal and
backgrounds [1–3], there is a clear need to reduce the theory uncertainties. At NLO QCD
the scale uncertainties are of the order of 10-15%, therefore NNLO QCD corrections are
necessary to match the experimental precision at the HL–LHC.

First steps towards this goal already are available in the literature: in ref. [34], O(α4
s)

corrections to the flavour-off-diagonal channels have been calculated, exploiting relations
from qT -resummation [35]. In ref. [36], the total NNLO cross section has been presented,
where for the finite part of the two-loop virtual amplitude a soft Higgs boson approximation
has been used. The coefficients of the two-loop infrared singularities for this process have
been calculated in ref. [37]. In ref. [38], the order O(y2t αs) corrections to the perturbative
fragmentation functions and to the splitting functions relevant for associated top-Higgs
production have been calculated. Analytic results for the master integrals entering the
leading-colour two-loop amplitudes that are proportional to the number of light flavours
for the processes gg, qq̄ → tt̄H have recently been presented in ref. [39]. Furthermore, the
gg → tt̄H one-loop amplitude has been calculated semi-numerically up to second order in
the ε-expansion in ref. [40]. Results for the two-loop amplitudes for both the gluon and the
quark channel in the high-energy boosted limit have been provided very recently in ref. [41].

In this work we present numerical results for the two-loop virtual amplitudes for qq̄ → tt̄H

which contain closed fermion loops, i.e. are proportional to the number of light fermion flavours
nl, heavy fermion flavours nh, or both. Specifically, we calculate the renormalised interference
of the two-loop amplitude with the tree-level amplitude, with full dependence on the top
quark and Higgs masses, split into nine independent colour and fermion flavour factors. Many
of the master integrals appearing in this calculation are not currently known fully analytically,
we therefore choose to evaluate all integrals using the sector decomposition [42–45] approach.
Our results are visualised on one- and two-dimensional slices of the five-dimensional phase
space. These results can be regarded as a proof of concept for the calculation of the other
colour structures and partonic channels.

The paper is structured as follows. In section 2 we describe the kinematics of the
process, the structure of the qq̄ → tt̄H amplitude, and the workflow of our calculation. We
present our results in section 3 and conclude in section 4. Further details of our calculation,
including the UV renormalisation, the colour decomposition, the integral families used for
the integral reduction, and full numeric results at several example phase-space points are
given in appendix A.
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2 Description of the method

The calculation of the virtual two-loop amplitudes contains the channels qq̄ → tt̄H and
gg → tt̄H. Here we focus on the quark initial state.

2.1 Kinematics

We use “all incoming” kinematics,

q(p1) + q̄(p2) → t(−p3) + t̄(−p4) + H(−p5), (2.1)

such that

p21 = p22 = 0, p23 = p24 = m2
t , p25 = m2

H , (2.2)

and the Mandelstam invariants are defined by

sij = (pi + pj)2. (2.3)

Ten such invariants can be built; five of them are independent due to momentum conservation.
Out of these we use the following dimensionless variables:

x12 =
s12
m2

t

, x23 =
s23 − m2

t

m2
t

, x35 =
s35 − m2

t

m2
t

, x45 =
s45 − m2

t

m2
t

, x14 =
s14 − m2

t

m2
t

.

(2.4)
There is also an independent parity odd invariant,

ϵ(1234) = 4iϵµνρσpµ
1pν

2pρ
3pσ

4 = tr(γ5 ̸ p1 ̸ p2 ̸ p3 ̸ p4) . (2.5)

The square of the parity odd invariant is equal to the Gram determinant spanned by four
linearly independent external momenta and is not algebraically independent of the other
invariants. However, as ϵ(1234) picks up a sign under parity, while the square root of the Gram
determinant does not, the sign of the parity odd invariant must be specified to fully describe
a physical phase space point. QCD is invariant under parity, therefore, the QCD corrections
to the tt̄H production amplitudes ultimately must not depend on the sign of the invariant.

2.2 Phase space parametrisation

The phase space volume for tt̄H production is non-trivial when expressed in the variables
given in eq. (2.4). To parametrise it in a more explicit way we factorise it into sub-phase-space
volumes for the production of a “tt̄ state” and a Higgs boson, combined with the “decay”
of the tt̄ state into two top quarks, leading to the following expression:

dΦtt̄H = 1
210π4ŝ stt̄

√
λ(stt̄, m2

t , m2
t )
√

λ(ŝ, stt̄, m2
H)×

Θ(
√

ŝ − 2mt − mH)Θ(stt̄ − 4m2
t )Θ([

√
ŝ − mH ]2 − stt̄) dstt̄ dΩtt̄ sinθH dθH (2.6)

with dΩtt̄ = sinθt dθt dφt, the Källén function λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca,

ŝ = (p3 + p4 + p5)2, stt̄ = (p3 + p4)2, (2.7)
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Figure 1. The phase-space parameters. The angles θt and φt are local to the tt̄ rest frame, while θH

is local to the tt̄H rest frame.

and the angles θH , θt, and φt introduced as in figure 1 with precise definitions given in
appendix A.4.

As the production threshold of the tt̄H system is located at s0 = (2mt + mH)2, a
convenient variable for a scan in partonic energy is

β2 = 1− s0
ŝ

(2.8)

such that β2 → 0 at the production threshold and β2 → 1 in the high energy limit.
For a compact parametrisation of the fraction of kinetic energy which enters the tt̄

system, we define the variable fracstt̄
as

fracstt̄
= stt̄ − 4m2

t(√
ŝ − mH

)2
− 4m2

t

, (2.9)

with fracstt̄
= 0 corresponding to the production threshold of the tt̄ system with the Higgs

boson carrying the remaining energy, and fracstt̄
= 1 corresponding to the production

threshold of the Higgs boson, with the tt̄ system carrying the remaining energy. Note that
if the phase-space integration is performed in fracstt̄

, a Jacobian factor of dstt̄/dfracstt̄
has

to be included for the full phase-space density of

dΦtt̄H

dfracstt̄
dθHdθt dφt

=

√
λ(stt̄, m2

t , m2
t )
√

λ(ŝ, stt̄, m2
H)

210π4ŝ stt̄

((√
ŝ − mH

)2
− 4m2

t

)
sinθH sinθt.

(2.10)
The set of parameters {β2, fracstt̄

, θH , θt, φt} provide a way to parametrise the amplitude
which is equivalent to using the five invariants from eq. (2.4); the mapping between them is
defined by eq. (2.7), eq. (2.8), eq. (2.9), and the relations given in appendix A.4. In these
parameters the physical region of the phase space is found as

β2 ∈ [0, 1], fracstt̄
∈ [0, 1], θH ∈ [0, π], θt ∈ [0, π], φt ∈ [0, 2π]. (2.11)
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Note that the probability density of eq. (2.10) will suppress the low-β region as β4, and
enhance the high-β region as 1/(1− β)2. It will also suppress both low- and high-fracstt̄

regions as
√
fracstt̄

and
√
1− fracstt̄

, respectively. Nominally, the factors sinθH and sinθt

also suppress the polar cap regions in θH and θt, but this is only an artifact of the choice
to map the respective spherical regions to a hypercube.

2.3 Amplitude symmetries

The squared amplitude of qq̄ → tt̄H is invariant under the following transformations:

• φt → −φt, due to parity invariance;

• {θH , θt} → {θH + π, θt + π}, which is the simultaneous swapping of q with q̄, and t

with t̄;

• θH → θH + 2π, and {θH , θt} → {−θH ,−θt} due to θH being a polar angle;

• θt → θt + 2π, φt → φt + 2π, and {θt, φt} → {−θt, φt + π} due to θt and φt being polar
coordinates on a sphere;

• φt → anything when θt = 0 or π, due to analyticity of the amplitude at the poles of the
sphere in (θt, φt).

2.4 Ultraviolet renormalisation

To produce an ultraviolet (UV) and infrared (IR) finite 2-loop amplitude, we work in
conventional dimensional regularisation assuming that all momenta live in d = 4− 2ε space-
time dimensions, and use the expressions for the two-loop singularity structure of massive
amplitudes worked out in ref. [46], also used in ref. [47].

We expand the bare amplitude for qq̄ → tt̄H in the strong coupling as

Ab(α0
s, y0

t , m0, ε) = 4πα0
s

y0t√
2

Ab
0(m0, ε) +

(
α0

s

2π

)
Ab

1(m0, ε) +
(

α0
s

2π

)2

Ab
2(m0, ε) +O(α3

s)

 ,

(2.12)

where the dependence on kinematics is implicit. The renormalised amplitude has the form

AR (αs(µ), yt, m, µ, ε) =
(
µ2
)− 3

2 ε
S

3
2
ε Zq ZQ Ab(S−1

ε µ2εZααs, S
− 1

2
ε µεZmyt, Zmm, ε) , (2.13)

where

Sε ≡
(

eγE

4π

)−ε

, (2.14)

Zq (ZQ) are the on-shell wave-function renormalisation constants for light (heavy) quarks, µ is
the renormalisation scale, and the bare quantities are replaced by the respective renormalised
ones. The bare mass of the heavy quark, m0, is renormalised using Zm in the on-shell scheme

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
0
1
3

and the bare Yukawa coupling y0t is renormalised accordingly. In particular, we further
expand the coefficients of the expansion of the bare amplitude in eq. (2.12) to

Ab
n(Zmm, ε) = m−1−nε

[
An(ε) +

(
αs

2π

)
Z(1)

m A(1)mct
n (ε) (2.15)

+
(

αs

2π

)2 (1
2(Z

(1)
m )2A(2)mct

n (ε) + Z(2)
m A(1)mct

n (ε)
)]

+O
(
α3

s

)
, (2.16)

where A(k)mct
n (ε) = m1+nε

(
mk∂k

mAb
n(m, ε)

)
and the overall factor of m−1−nε is extracted

in order to have dimensionless amplitudes that depend on the dimensionless variables xij

introduced in eq. (2.4).
The bare coupling constant α0

s is defined as

α0
s = S−1

ε µ2ε Z
(Nf )
αs α

(Nf )
s (µ), (2.17)

which corresponds to the MS scheme with Nf = nl + nh active flavours. However, we do
not consider the top quark as an active flavour contributing to the running of αs and the
parton distribution functions. Therefore we use the decoupling relation

α
(Nf )
s = ζαsα(nl)

s , (2.18)

where ζαs is given in appendix A.1, together with the explicit expressions for the renormali-
sation constants. Our notation is such that αs ≡ α

(Nf )
s .

To split two-loop amplitudes into smaller building blocks, it is in general convenient
to project the amplitude onto scalar form factors multiplying the independent spinor and
Lorentz structures, or onto helicity amplitudes. The latter is however less convenient for
amplitudes involving massive fermions. For the qq̄ channel considered here, we use the Born
amplitude itself as a projector, and calculate the spin- and colour-summed interference term
of the renormalised and rescaled NNLO amplitude with the LO amplitude. We decompose
this quantity into colour and flavour factors as follows:

Re⟨AR
0 |AR

2 ⟩
∣∣∣
Nf -part

= CF NCTF C, (2.19)

C = n2
l T 2

F Cll + nlnhT 2
F Clh + n2

hT 2
F Chh

+ nlCF TF ClCF
+ nlCATF ClCA

+ nl
d33TF

CF NCTF
Cld33

+ nhCF TF ChCF
+ nhCATF ChCA

+ nh
d33TF

CF NCTF
Chd33 , (2.20)

where NC is the number of QCD colours, and the colour group factors CF , CA, TF , and d33
are given in ref. [48] for SU(N) as well as SO(N) and Sp(N): we allow the colour group
to be general here.

Similarly, the decomposition of the NLO and LO interference terms is

Re⟨AR
0 |AR

1 ⟩ = CF NCTF B, (2.21)

B = nlTF Bl + nhTF Bh + CF BCF
+ CA BCA

+ d33
CF NCTF

Bd33 , (2.22)

⟨AR
0 |AR

0 ⟩ = CF NCTF A. (2.23)
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The explicit expressions for the renormalized components A, Bi and Ci in terms of their bare
counterparts are given in eq. (A.9) to eq. (A.12) in appendix A.1.

Note that the colour factors of the tt̄H production amplitude are in principle the same
as for tt̄ production. The virtual amplitudes for top quark pair production at NNLO were
investigated in ref. [47], see also refs. [49–51] for analytic results in the quark channel. In
ref. [47], the colour factor decomposition is given after having formed the interference with
the Born amplitude, just as in eq. (2.19). In contrast to [47, eq. (2.8)] however, we do not
assume the colour group to be SU(N), and as a result, instead of seven independent colour
and flavour structures, we identify nine.

2.5 Infrared singularity structure of the virtual amplitude

The origin of the IR divergences present in 2-loop amplitudes with two massive coloured
final state particles has been discussed in the literature and their form at 2-loops is
known [46, 47, 52].

For the description of the IR divergences, we work in the colour space formalism.
The renormalised amplitude is expressed as a vector in colour space |AR(α(nl)

s , yt, m, µ, ε)⟩
and the divergences are removed by using a multiplicative MS renormalisation factor
Z ≡ Z({p}, {m}, µ, ε), which is a kinematic-dependent matrix in colour space. For the
colour decomposition for qlq̄k → tit̄jH we adopt the following basis elements:1

|c1⟩ = ta
ijta

kl, |c2⟩ = δijδkl, (2.24)

with full details given in appendix A.2. We use the following expressions:

|Afin(α(nl)
s , yt, m, µ)⟩ = Z−1|AR(α(nl)

s , yt, m, µ, ε)⟩. (2.25)

The renormalisation constant Z fulfills the differential equation

µ
d
dµ

Z({p}, {m}, µ, ε) = −Γ({p}, {m}, µ)Z({p}, {m}, µ, ε), (2.26)

which induces the following solution at two loops:

Z = 1 +
(

α
(nl)
s

2π

)(
Γ(1)′

4ε2
+ Γ(1)

2ε

)

+
(

α
(nl)
s

2π

)2

(
Γ(1)′

)2
32ε4

+ Γ(1)′

8ε3

(
Γ(1) − 3

4b0

)
+ Γ(1)

8ε2

(
Γ(1) − b0

)
+ Γ(2)′

16ε2
+ Γ(2)

4ε

 .

(2.27)

The coefficients of the anomalous dimension matrix are defined by the expansion

Γ =
(

α
(nl)
s

2π

)
Γ(1) +

(
α
(nl)
s

2π

)2

Γ(2), (2.28)

1This basis assumes the SU(N) colour group rather than a more general colour group, as the colour space
in the latter case can be of higher dimension. However, since only the 1,1-component (upper left entry) of the
colour matrix is needed for the Nf -part, our results are also valid for more general colour groups.
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with Γ′ = µ ∂
∂µΓ and b0 = [β0]Nf→nl

. The general form of the anomalous dimension matrix
up to two loops is given in ref. [46]. Here we present the explicit form of the expressions
for the process we study. With the colour basis of eq. (2.24) the anomalous dimension
matrix has the specific form

Γ =
(
CF

[
γcusp

(
α(nl)

s

)
log (α1) + γcusp

(
β34, α(nl)

s

)]
+ 2γq

(
α(nl)

s

)
+ 2γQ

(
α(nl)

s

))(1 0
0 1

)

+
(

CA

4
[
γcusp

(
α(nl)

s

)
log (α2)− 2γcusp

(
α(nl)

s

)
log (α1)− 2γcusp

(
β34, α(nl)

s

)]
+ d33

TF CF NC
γcusp

(
α(nl)

s

)
log (α3)

)(1 0
0 0

)

+ γcusp

(
α(nl)

s

)
log (α3)

((
0 1

TF CF
NC

0

)
+ CA

1
2

α
(nl)
s

2π
g(β34)

(
0 −1

TF CF
NC

0

))
+O

(
(α(nl)

s )3
)

,

(2.29)

with

α1 =
−sp12

µ2 , α2 =
sp13 sp14 sp23 sp24

m4µ4 , α3 =
sp13 sp24
sp23 sp14

, β34 = acosh−sp34
2m2 , (2.30)

and spij ≡ 2pi · pj + i0+. The anomalous dimensions γi are given in appendix A.3. Since we
are only interested in the interference with the LO amplitude, we only need the component
Γ11 of the anomalous dimension matrix Γ for the IR pole structure of those amplitude
parts proportional to the quark flavours at NNLO. Expanding in α

(nl)
s and in terms of light

flavour and colour factors leads to

Γ11 =
α
(nl)
s

2π

(
CFΓ(1)

11, CF
+ CAΓ(1)

11, CA
+ d33

CF NCTF
Γ(1)
11, d33

)

+
(

α
(nl)
s

2π

)2 (
nlCF TFΓ(2)

11, nlCF
+ nlCATFΓ(2)

11, nlCA
+ nl

d33TF

CF NCTF
Γ(2)
11, nld33

+ . . .

)
+O

(
(α(nl)

s )3
)

,

Γ′
11 =

α
(nl)
s

2π

(
−2CF γ(1)

cusp

)
+
(

α
(nl)
s

2π

)2 (
−2CF CAγ

(2)
cusp,CA

− 2nlCF TF γ(2)
cusp,nl

)
, (2.31)

where the parts irrelevant for the Nf -part of the amplitude are contained in the dots. The
relevant Z11 components then have the form

Z11 = 1 +
(

α
(nl)
s

2π

)CF

−2γ
(1)
cusp

4ε2
+

Γ(1)
11, CF

2ε

+ CA

Γ(1)
11, CA

2ε
+ d33

CF NCTF

Γ(1)
11, d33

2ε


+
(

α
(nl)
s

2π

)2 nlCF TF

−2γ
(1)
cusp

8ε3
+

Γ(1)
11, CF

6ε2
+ −2γ

(2)
cusp,nl

16ε2
+

Γ(2)
11, nlCF

4ε


+nlCATF

Γ(1)
11, CA

6ε2
+

Γ(2)
11, nlCA

4ε

+ nl
d33TF

CF NCTF

Γ(1)
11, d33

6ε2
+

Γ(2)
11, nld33

4ε

+ . . .

 ,

(2.32)
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which can now be used in order to construct the IR structure of the interference terms,
as will be shown in the following:

BIR
CF

=

−2γ
(1)
cusp

4ε2
+

Γ(1)
11, CF

2ε

A,

BIR
CA

=
Γ(1)
11, CA

2ε
A, BIR

d33 =
Γ(1)
11, d33

2ε
A, (2.33)

CIR
lCF

=

−2γ
(1)
cusp

8ε3
+

Γ(1)
11, CF

6ε2
+ −2γ

(2)
cusp,nl

16ε2
+

Γ(2)
11, nlCF

4ε

A+

−2γ
(1)
cusp

4ε2
+

Γ(1)
11, CF

2ε

Bl,

CIR
lCA

=

Γ(1)
11, CA

6ε2
+

Γ(2)
11, nlCA

4ε

A+
Γ(1)
11, CA

2ε
Bl,

CIR
ld33 =

Γ(1)
11, d33

6ε2
+

Γ(2)
11, nld33

4ε

A+
Γ(1)
11, d33

2ε
Bl, (2.34)

CIR
hCF

=

−2γ
(1)
cusp

4ε2
+

Γ(1)
11, CF

2ε

Bh,

CIR
hCA

=
Γ(1)
11, CA

2ε
Bh, CIR

hd33 =
Γ(1)
11, d33

2ε
Bh. (2.35)

The parts not shown here have no IR poles.

2.6 Workflow of the calculation

The leading order (LO) amplitude Ab
0 can be represented by two Feynman diagrams:

q

q̄ t

t̄

H and
q

q̄ t

t̄

H . (2.36)

The LO amplitude has no Nf -part itself, but it contributes to the renormalisation of the NNLO
Nf -part, because the αs beta-function contains Nf . The LO amplitude in the quark channel
has both ε0 and ε1 parts (but no higher parts). We derive the corresponding expression using
Alibrary [53], which is a Mathematica library interfacing with Qgraf [54], Feynson [55,
Chapter 4], Form [56], and Color.h [48] to generate amplitudes, sum over tensor structures,
construct integral families, and export the results to integration-by-parts (IBP) relation
solvers and/or pySecDec [57–60].

We can use the LO result to estimate the distribution of the events over the phase space
at the LHC, as done in figure 2. These plots tell us that most of the events are expected to
come from the region of moderately high β2 and medium fracstt̄

. In particular, the region of
β2 ∈ [0.34, 0.95] (that is,

√
ŝ ∈ [580 GeV, 2.1 TeV]) is expected to contain 90% of all events.

2.6.1 Amplitude generation

To generate the one-loop and two-loop amplitudes (Ab
1 and Ab

2 respectively) we use the
following procedure: first we generate the corresponding Feynman diagrams (using Qgraf),
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Figure 2. Event probability distribution in β2 (left), and β2 and fracstt̄
(right), according to the

LO qq̄ → tt̄H amplitude. For this plot we take the energy of incoming quarks to be distributed
according to the ABMP16 parton distribution functions [61] (which we evaluate via LHAPDF [62]),
with the collision energy set to 13.6 TeV. We have also applied cuts on the top quark momenta (as
we calculate with on-shell top-quarks) in line with those reported in [1, 3]: we enforce a minimal
transverse momentum of 25 GeV, a maximal rapidity of 4.5, and a separation ∆R in rapidity and
azimuthal angle between the top quarks of ∆R > 0.4. These cuts remove about 2% of the events, and
mostly affect the low-β region.

then we insert Feynman rules, apply the projectors, and sum over the spinor and colour
tensors (using Form and Color.h); all of this is done through Alibrary. This way, for
each diagram, we obtain a corresponding sum of many scalar integrals.

In total we find 31 non-zero one-loop diagrams and 249 two-loop diagrams. Examples
for one-loop diagrams with different colour factors are depicted in figure 3; examples for
two-loop diagrams can be found in figure 4.2

2.6.2 IBP reduction

The next step is to reduce the calculation of the approximately 20000 scalar integrals that
appear in the amplitudes to a much smaller number of master integrals using IBP relations [65].
To this end we first calculate the symmetries between the diagrams (using Feynson), and
sort them into integral families. For the qq̄ channel we use 4 one-loop and 43 two-loop
families. Out of the two-loop families, 28 are unique (shown in appendix A.5); the remaining
15 are obtained by crossing the external momenta.

The usual next step would be to write down a system of IBP equations and solve it
symbolically using e.g. the Laporta algorithm [66]. We employed Kira [67, 68] together with
Firefly [69, 70] for this purpose and observed that while the reductions for the one-loop
families may be obtained in a rather straightforward manner, for most of the two-loop families
the computation is quite challenging. Fully analytic reduction of the two-loop amplitude is
rendered largely unfeasible given the large number of variables (five ratios given in eq. (2.4),

2These diagrams were prepared using FeynGame [63, 64].
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q

q̄

t̄
t

H

(a) nhTF

q

q̄
t̄

H

t

(b) CA

q

q̄

t

t̄

H

(c) CA − 2CF

q̄

q t̄

t

H

(d) CF

q̄

q
H

t

t̄

(e) nlTF

q

q̄
H

t

t̄

(f) CACF NcTF −4d33
CF NcTF

q

q̄
H

t̄

t

(g) CACF NcTF +4d33
CF NcTF

Figure 3. Example diagrams for qq̄ → tt̄H at one-loop level. Massive quarks are depicted using solid
(blue) bold lines, while massless quarks are represented by lighter (grey/red) solid lines. The colour
factors correspond to applying the first colour projector from eq. (2.24).

the mass ratio m2
H/m2

t , and the dimensional regulator ε) along with the presence of internal
masses. Instead we opt for a numerical approach and solve the IBP systems for individual
phase-space points by substituting kinematic scales with rational numbers. Note that we
employ the same numerical approach for one-loop amplitudes as well so as to have a uniform
implementation for the whole calculation.

To set up the IBP reduction, we first select a basis of master integrals for each of the
amplitudes. We require a total of 33 master integrals for the one-loop amplitudes and 831
master integrals for the two-loop amplitudes. The choice of master integrals significantly
impacts both amplitude reduction as well as numerical evaluation of the master integrals.
Ideally we prefer a basis that is 1) quasi-finite [71], 2) d-factorising [72, 73], 3) fast to evaluate
with pySecDec, and 4) leads to simple polynomials in the denominators of the IBP reduction
tables. Finding a basis satisfying the first two requirements is rather straightforward by
considering integrals in higher dimensions (d = 6−2ε or d = 8−2ε) and with higher propagator
powers or dots, with up to 5 dots in some cases. We then apply heuristic arguments to choose
integrals that also satisfy the last two requirements in the following way. For each sector, we
perform a reduction neglecting sub-sector integrals, and we analyze the denominator factors
of the resulting IBP tables for different choices of master integrals. Selecting the master
integral basis with the smallest denominator factors, we observe a significant improvement
in the run-time for the full reduction. With this initial basis choice, we then evaluate the
amplitude as discussed below and we identify the integrals with a significant contribution
to the evaluation time. The basis of the corresponding sectors is then further refined by
repeating the above procedure, restricting the set of candidate masters to integrals showing
a relatively fast convergence with pySecDec.
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H
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H

(j) n2
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H
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t

q

q̄

t̄
H

(l) nlCACF NcT 2
F

t

q

q̄

t̄

H

(m) n2
l CF NcT 3

F

Figure 4. Example diagrams for qq̄ → tt̄H at two-loop level proportional to nl or nh. Massive quarks
are depicted using solid (blue) bold lines, while massless quarks are represented by lighter (grey/red)
solid lines. The colour factors correspond to applying the first colour projector from eq. (2.24).

After we select the basis, we use Kira to generate the IBP systems for each integral
family. We generate dimensional recurrence relations using Alibrary to be able to reduce
the amplitudes to master integrals in shifted dimensions. The combined system of equations
is then fed to Ratracer [74] which prepares and optimizes an execution trace of the solution.
Then we use Ratracer to perform a series expansion on this trace in ε; this results in
direct output of the ε-expansion of the IBP coefficients. Performing an expansion in ε

effectively removes it from the computation which, combined with substituting rational
numbers for the kinematic scales, results in a purely numerical system. This system is then
solved by Ratracer through replaying the trace in a parallelized manner and using finite

– 12 –



J
H
E
P
0
5
(
2
0
2
4
)
0
1
3

field methods. Note that finite field methods used for function reconstruction as a way of
solving IBP equations is by now an established practice, pioneered in refs. [75, 76]; our usage
however does not require function reconstruction, only rational number reconstruction and
the Chinese remainder theorem. Our setup allows us to compute reductions in around two
CPU minutes for the two-loop amplitude, and under a second for the one-loop amplitude on
a desktop CPU for most points. Overall this reduction method is fast enough, in the sense
that we are more constrained by the evaluation of the master integrals.

2.6.3 Evaluation of the master integrals
The families of integrals required in this calculation are complicated enough that analytic
evaluation is not currently achievable for many of the master integrals, such as topologies b81
or b82 shown in appendix A.5. Instead, we turn to evaluating the master integrals numerically,
using the approach of sector decomposition as implemented in pySecDec. Specifically, we
rely on pySecDec’s ability to integrate weighted sums of integrals (introduced in version 1.5,
see [58]), and define one sum for each of the bare amplitude’s symbolic structures as given
in eq. (2.19) and eq. (2.21). We require the two-loop amplitudes to be expanded up to
ε0, and one-loop up to ε1.

By default pySecDec expects the coefficient of the sums to be given as algebraic
expressions in terms of kinematic variables, but because we do not compute these in general
(as we do not perform a fully symbolic IBP reduction), we instead use the results of a test
IBP reduction at some fixed kinematic point for the coefficients to compile the pySecDec
integration library. This ensures that the pole structure of the amplitude is known at the
compilation stage, and so the needed depths of the ε-expansion of the masters can be correctly
determined. After the integration libraries are compiled, to evaluate the amplitudes at a
given kinematic point, we substitute the coefficients with the results of the IBP reduction.

The sector decomposition of the 831 two-loop master integrals results in a total of around
18000 sectors, and around 28000 sector/expansion-order pairs. To make the evaluation of
such a lage number of expressions efficient we rely on the performance improvements in
pySecDec 1.6 (see [57]) coming from the new Disteval evaluator (which was partially
developed as a response to the challenges of this calculation). We perform all the evaluations
of the two-loop amplitudes on NVidia A100 GPUs.

The one-loop amplitudes on the other hand are much simpler (180 sectors in total) and
quicker to evaluate; for them we only use CPUs.

Our target is to obtain the renormalised two-loop amplitudes with a precision better
than 1%. In the bulk of the phase space this is easily achievable, and the two-loop integration
time per point is around 5 minutes; for the one-loop amplitude it is around 10 seconds using
4 CPU threads. This however changes in the high-β region and in the regions near the
boundaries of fracstt̄

and θt: there we observe large numerical cancellations, both within and
between the integrals, that require the evaluation of the master integrals to higher precisions
to meet the amplitude precision goals.

These cancellations cause three separate problems:
1. They drive the evaluation times upward, and in principle we expect this growth to be

unbounded as β tends to 1 (i.e. ŝ → ∞).
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This problem could be mitigated by an asymptotic expansion in large ŝ for the high-β
region. However, we will not follow this strategy here, in favour of using a single method
for all regions.

2. They require increasingly large Quasi-Monte-Carlo lattice sizes, to an extent where we
run into the limitations of precomputed lattices available in pySecDec: the largest
such lattice has the size of around 7·1010, but some of the integrals need up to 1014
evaluations in the high-β region.

To solve this issue we employ the new “median QMC rules” [77] lattice construction
method implemented in pySecDec 1.6, that enables on-the-fly construction of lattices
of unbounded size.

3. At very high β2 (e.g. 0.99) the cancellations between some of the integrals become as
large as 20 decimal digits, which means that even evaluating the integrals to the full
precision of the double-precision floating point numbers (which is 16 digits) would be
insufficient to get any precision for the amplitudes.

Here we find that the integrals that cancel between each other and need high precision
are mostly simpler integrals with up to five denominators, most significantly the ones of
“sunset” and “ice-cone” [78] type, in various mass and external momenta configurations.
Such integrals converge relatively quickly, and obtaining them with more than 20 digits
of precision using sector decomposition would be well within our time budget if it was
not for the double-precision floating point limitation.

As a solution we have upgraded pySecDec with the ability to dynamically switch
from double floating precision to “double-double” for integrals that need it, allowing for
the maximum of 32 decimal digits of precision. Our implementation of the double-double
arithmetic is based on the methods described in [79, 80]. We choose this approach instead of
the more commonly used quadruple precision floating point numbers (float128) because
NVidia GPU compilers do not come with the support for either of them, and our benchmarks
show that double-double performs around 2.5 times faster than float128 on a CPU, while
being simple enough to be implemented on a GPU. Still, the performance penalty of double-
double integration is as high as a factor of 20 on the GPU compared to double.

To cross-check our double-double precision implementation we have also evaluated
the sunset and ice-cone type integrals using the series solution of differential equations as
implemented in the DiffExp package [81, 82] with boundary conditions obtained using the
Auxiliary Mass Flow (AMFlow) method [83]. We find agreement between our results up to
the error reported by our double-double implementation.

Once the integrals are evaluated, the last step is to combine the values of the bare Born,
one-loop and two-loop results to values for the renormalised virtual two-loop amplitude as
described in section 2.4, propagating the numerical uncertainties.
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2.7 Checks

To double-check our calculation we have independently computed the LO and NLO amplitudes
via GoSam [84, 85] at a number of points, verifying agreement within the reported accuracy.
Note that the comparison of the NLO amplitudes requires extra care, because GoSam
produces the results in the ’t Hooft-Veltman scheme [86], and these need to be converted to
get agreement with conventional dimensional regularisation that we use. Regularisation scheme
independence of the NLO virtual contribution is only obtained after full IR subtraction [87].
In the particular case of interest, the scheme difference of the subtraction term can be traced
to the O(ε1) part of the Born contribution which vanishes for the ’t Hooft-Veltman scheme.
Hence, we can convert the GoSam result to conventional dimensional regularisation by

Re⟨AR
0 |AR

1 ⟩ = Re⟨AR
0 |AR

1 ⟩GoSam
(
1− π2

12ε2
)
+ Z

(1)
11 A

∣∣∣
ε1-part

+O(ε). (2.37)

The factor 1− π2

12 ε2 is necessary because the convention for MS in GoSam uses (4π)ε

Γ(1−ε) instead
of Sε of eq. (2.14) as a prefactor.

We have also double-checked the IR poles of our amplitudes against ref. [37], where
the pole parts of the renormalised interference terms are given at four phase-space points.
To get agreement with this paper we need to set the renormalisation scale to mt, and use
6 fermion flavours in the running of αs.

While some of the symmetries listed in section 2.3 are trivially observed when deriving
the variables of eq. (2.4) from the parameters of eq. (2.11), we have verified the symmetry
of simultaneous exchange of q ↔ q̄ and t ↔ t̄.

Finally and most importantly, for each evaluated point we compute the predicted IR
pole coefficients of the amplitude as described in section 2.5, and compare them to the
ones obtained by numerical integration. We find agreement within the reported integration
accuracy, which provides us with a check on both the correctness of the renormalisation
procedure, and on the correctness of the reported numerical integration precision of the
two-loop results, since the IR poles only depend on the one-loop amplitudes, which are
integrated separately (and to a higher precision).

3 Results

In this section we visualise the two-loop amplitude as a function of slices of phase-space
variables. To this end we choose the following kinematic point to centre our slices on:

β2 = 0.8, fracstt̄
= 0.7, cos θH = 0.8, cos θt = 0.9, cosφt = 0.7; (3.1)

we also set m2
H/m2

t = 12/23, µ2 = s12/4, and m2
t = 1. The values of the amplitude at

this kinematic point is given in appendix A.6 (along with two other points), where we list
both the bare and the renormalised values of each component of the LO, one- and two-loop
amplitude (as defined in eq. (2.20), eq. (2.22), and eq. (2.23)). For brevity however we prefer
not to plot individual components, but rather the combined C and B values as defined in
eq. (2.19) and eq. (2.21). For this we set nl = 5, nh = 1, and the colour group to SU(3),
i.e. CF = 4/3, CA = 3, and d33 = 5/6.
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Figure 5. One-dimensional slices in β2 and fracstt̄
of the one- and two-loop amplitudes B and C

as defined in eq. (2.22) and eq. (2.20), normalised to the Born amplitude squared A from eq. (2.23),
around the centre point of eq. (3.1). The centre point is marked with a star. Each plot is an
interpolation from around 30 data points.

In figure 5 we have plotted one-dimensional slices of both C and B in β2 and fracstt̄
.

The plots illustrate the difference in behaviour of the one- and two-loop amplitudes across
the parameter space; the two-loop amplitude changes more rapidly, and is on average more
negative.

Both in figure 5 and further it is convenient to use the LO amplitude A as a reference; a
slice of A in β2 and fracstt̄

is presented in figure 6. Note that once the phase-space density
factor of eq. (2.10) is included to obtain the event probability density, the regions of low-β2,
low-fracstt̄

, and high-fracstt̄
are all suppressed. This suppression is important because starting

at the one-loop level the amplitude develops a Coulomb-type singularity in the low-fracstt̄

region. This singularity can be seen on the slices of B and C in β2 and fracstt̄
depicted

in figure 7. The inclusion of the phase-space density however suppresses this divergence,
as can be observed in figure 8.

To further illustrate the difference in behaviour between the one- and the two-loop
level results, we present the slice in θH and θt in figure 9. A similar slice in θt and φt is
presented in figure 10.

Finally, we illustrate the difference in behaviour between different components of B and
C in figure 11, with a slice in β2 and fracstt̄

for each of the individual components, aside from
Bl, Cll, which are not plotted because their ratio to A is constant.
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Figure 6. Slice of the LO amplitude around the centre point of eq. (3.1) in β2 and fracstt̄
. On the

right the amplitude is multiplied by the phase-space density of eq. (2.10). The centre point is marked
with a star.
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linear interpolation of grid of around 500 data points in total.
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the centre point of eq. (3.1) in θt and φt. The centre point is marked with a star.
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Figure 11. Contributions from the individual colour factors to the one- and two-loop amplitudes for
phase space slices around the centre point of eq. (3.1) in β2 and fracstt̄

. The centre point is marked
with a star.
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4 Conclusions

We have presented numerical results entering tt̄H production at NNLO QCD, for the quark
initiated Nf -parts of the two-loop amplitude including loops of both massless and massive
quarks. This calculation serves as a proof of concept that our setup is capable of calculating
two-loop pentagon amplitudes with internal massive propagators and three massive particles
in the final state. We have performed the UV renormalisation and subtraction of IR poles,
presenting the finite part of the two-loop amplitude, split into nine different colour structures
for a general colour group.

For the reduction to master integrals, we do not attempt to obtain a fully symbolic
reduction and instead perform a numerical reduction for each phase-space point leaving the
dimensional regulator symbolic. The master integrals are evaluated with a recent version
of pySecDec, which has been further extended to support integration over double-double
precision integrands, this allows us to obtain stable results also in the high-energy and
collinear limits where many digits of the master integrals cancel. The evaluation times vary
substantially over the phase space, being of the order of five minutes in the bulk of the phase
space, increasing substantially when approaching the β → 1 limit. We do not expect the full
quark channel to present further major obstacles within our calculational framework.

Although we have demonstrated that the amplitude can be evaluated with sufficient
precision at individual phase-space points, the largest remaining challenge for producing
realistic phenomenological applications is to sufficiently densely sample the full 5-dimensional
phase-space. One possible way of addressing this obstacle is to supplement the evaluated
phase-space points with a reliable interpolation framework that allows data points at any
5-dimensional phase-space point to be provided with sufficient accuracy. This is a challenge
for kinematic regions where the amplitude has a very steep gradient, for example in the
high-energy region with quasi-collinear configurations. While an interpolation covering the
whole phase space is feasible, assessing the associated uncertainties is challenging; this is
work in progress.
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A Additional details

A.1 Details of UV renormalisation
The renormalisation constants expanded up to order α2

s and ε2 are given by [47]:

Zq =1+
(αs

2π

)2
CF TF nh δ

(2)
Zq,nh

,

ZQ =1+
(αs

2π

)
CF δ

(1)
ZQ

+
(αs

2π

)2
CF

{
TF nh δ

(2)
ZQ,nh

+TF nl δ
(2)
ZQ,nl

+CF δ
(2)
ZQ,CF

+CA δ
(2)
ZQ,CA

}
,

Zm =1+
(αs

2π

)
CF δ

(1)
Zm

+
(αs

2π

)2
CF

{
TF nh δ

(2)
Zm,nh

+TF nl δ
(2)
Zm,nl

+CF δ
(2)
Zm,CF

+CA δ
(2)
Zm,CA

}
, (A.1)
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Zα = 1−
(

αs

2π

)
β0
2ε

+
(

αs

2π

)2
(

β2
0

4ε2
− β1

8ε

)

= 1 +
(

αs

2π

)(
CAδ

(1)
αs,CA

+ TF (nl + nh) δ
(1)
αs,Nf

)
+
(

αs

2π

)2 (
C2

Aδ
(2)
αs,C2

A
+ CATF (nl + nh) δ

(2)
αs,CANf

+ CF TF (nl + nh) δ
(2)
αs,CF Nf

+T 2
F

(
n2

l + 2nlnh + n2
h

)
δ
(2)
αs,N2

f

)
,

β0 =
11
3 CA − 4

3TF Nf , β1 =
34
3 C2

A − 20
3 CATF Nf − 4CF TF Nf ,

ζαs = 1 +
(

α
(nl)
s

2π

)
TF nh δ

(1)
ζαs

+
(

α
(nl)
s

2π

)2

TF nh δ
(2)
ζαs

. (A.2)

The renormalised amplitude in powers of α
(nl)
s
2π , up to the desired accuracy, is given by

AR
(
α(nl)

s , yt, m, µ, ε
)
= 4πα

(nl)
s yt√
2m

{
AR

0 (ε)

+
(

α
(nl)
s

2π

)
AR

1

(
µ

m
, ε

)
+
(

α
(nl)
s

2π

)2

AR
2

(
µ

m
, ε

)
+O

(
α(nl)

s

3)}
.

(A.3)

The explicit coefficients of the expansion are given by

AR
0 (ε) =A0(ε)

AR
1

(
µ

m
, ε

)
=
(
Z

(1)
Q + Z(1)

αs
+ Z(1)

m + ζ(1)αs

)
A0(ε) + Z(1)

m A(1)mct
0 (ε) +

(
µ2

m2

)ε

S−1
ε A1(ε)

AR
2

(
µ

m
, ε

)
=
(
Z(2)

q + Z
(2)
Q + Z(2)

αs
+ Z(2)

m + Z
(1)
Q Z(1)

αs
+ Z

(1)
Q Z(1)

m + Z(1)
αs

Z(1)
m

+ζ(2)αs
+ 2ζ(1)αs

(
Z

(1)
Q + Z(1)

αs
+ Z(1)

m

))
A0(ε)

+ 1
2(Z

(1)
m )2A(2)mct

0 (ε) +
(
Z(2)

m + Z(1)
m

(
Z

(1)
Q + Z(1)

αs
+ Z(1)

m + 2ζ(1)αs

))
A(1)mct

0 (ε)

+
(

µ2

m2

)ε

S−1
ε

((
Z

(1)
Q + 2Z(1)

αs
+ Z(1)

m + 2ζ(1)αs

)
A1(ε) + Z(1)

m A(1)mct
1 (ε)

)

+
(

µ2

m2

)2ε

S−2
ε A2(ε). (A.4)
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Below we list the renormalisation constants entering eq. (A.2) up to order ε2.

δ
(2)
Zq ,nh

= 1
4ε

+ 1
2 lµ − 5

24 ,

δ
(1)
ZQ

= CF

{
− 3

2ε
− 2− 3

2 lµ − 4ε − 2εlµ − 3
4εl2µ − π2

8 ε − 8ε2 − 4ε2lµ − ε2l2µ

− 1
4ε2l3µ − π2

6 ε2 − π2

8 ε2lµ + 1
2ε2ζ3

}
,

δ
(2)
ZQ,nh

= 1
4ε

+ 1
ε

lµ + 947
72 + 11

6 lµ + 3
2 l2µ − 5π2

4 ,

δ
(2)
ZQ,nl

= − 1
2ε2

+ 11
12ε

+ 113
24 + 19

6 lµ + 1
2 l2µ + π2

3 ,

δ
(2)
ZQ,CF

= 9
8ε2

+ 51
16ε

+ 9
4ε

lµ + 433
32 + 51

8 lµ + 9
4 l2µ − 49π2

16 + 4 ln(2π2)− 6ζ3,

δ
(2)
ZQ,CA

= 11
8ε2

− 127
48ε

− 1705
96 − 215

24 lµ − 11
8 l2µ + 5π2

4 − 2 ln(2π2) + 3ζ3 (A.5)

δ
(1)
Zm

= − 3
2ε

− 2− 3
2 lµ − 4ε − 2εlµ − 3

4εl2µ − π2

8 ε − 8ε2 − 4ε2lµ − ε2l2µ

− 1
4ε2l3µ − π2

6 ε2 − π2

8 ε2lµ + 1
2ε2ζ3,

δ
(2)
Zm,nh

= − 1
2ε2

+ 5
12ε

+ 143
24 + 13

6 lµ + 1
2 l2µ − 2π2

3 ,

δ
(2)
Zm,nl

= − 1
2ε2

+ 5
12ε

+ 71
24 + 13

6 lµ + 1
2 l2µ + π2

3 ,

δ
(2)
Zm,CF

= 9
8ε2

+ 45
16ε

+ 9
4ε

lµ + 199
32 + 45

8 lµ + 9
4 l2µ − 17π2

16 + 2 ln(2π2)− 3ζ3,

δ
(2)
Zm,CA

= 11
8ε2

− 97
48ε

− 1111
96 − 185

24 lµ − 11
8 l2µ + π2

3 − ln(2π2) + 3
2ζ3,

δ
(1)
αs,CA

= −11
6ε

, δ
(1)
αs,Nf

= 2
3ε

,

δ
(2)
αs,C2

A
= 121

36ε2
− 17

12ε
, δ

(2)
αs,CANf

= − 22
9ε2

+ 5
6ε

,

δ
(2)
αs,CF Nf

= 1
2ε

, δ
(2)
αs,N2

f
= 4

9ε2
,

(A.6)

where lµ = lnµ2/m2. The decoupling coefficients are given by [47, 88]

δ
(1)
ζαs

= 2
3 lµ + 1

3εl2µ + π2

18ε + 1
9ε2l3µ + π2

18ε2lµ − 2
9ε2ζ3, (A.7)

δ
(2)
ζαs

= 4
9TF nhl2µ + CF

[15
4 + lµ

]
+ CA

[
−8
9 + 5

3 lµ

]
. (A.8)
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Finally, we list the explicit expressions for the components A, Bi and Ci in eq. (2.19) and
eq. (2.21).3

A = A

Bl = δ
(1)
Zαs,Nf

A +
(

µ2

m2

)ε

S−1
ε Bl

Bh =
(

δ
(1)
Zαs,Nf

+ δ
(1)
ζαs

)
A +

(
µ2

m2

)ε

S−1
ε Bh

BCF
=
(
δ
(1)
ZQ

+ δ
(1)
Zm

)
A + δ

(1)
Zm

A(1)mct +
(

µ2

m2

)ε

S−1
ε BCF

BCA
= δ

(1)
Zαs,CA

A +
(

µ2

m2

)ε

S−1
ε BCA

Bd33 =
(

µ2

m2

)ε

S−1
ε Bd33 (A.9)

Cll = δ
(2)
Z

αs,N2
f

A +
(

µ2

m2

)ε

S−1
ε

[
2δ

(1)
Zαs,Nf

Bl

]
+
(

µ2

m2

)2ε

S−2
ε Cll

Clh =2
(

δ
(2)
Z

αs,N2
f

+ δ
(1)
Zαs,Nf

δ
(1)
ζαs

)
A +

(
µ2

m2

)ε

S−1
ε

[
2
(

δ
(1)
Zαs,Nf

+ δ
(1)
ζαs

)
Bl + 2δ

(1)
Zαs,Nf

Bh

]

+
(

µ2

m2

)2ε

S−2
ε Clh

Chh =
(

δ
(2)
Z

αs,N2
f

+ 2δ
(1)
Zαs,Nf

δ
(1)
ζαs

+ δ
(2)
ζαs,nh

)
A +

(
µ2

m2

)ε

S−1
ε

[
2
(

δ
(1)
Zαs,Nf

+ δ
(1)
ζαs

)
Bh

]

+
(

µ2

m2

)2ε

S−2
ε Chh (A.10)

ClCF
=
(

δ
(2)
ZQ,nl

+ δ
(2)
Zm,nl

+ δ
(2)
Zαs,CF Nf

+ δ
(1)
ZQ

δ
(1)
Zαs,Nf

+ δ
(1)
Zm

δ
(1)
Zαs,Nf

)
A

+
(

δ
(1)
Zαs,Nf

δ
(1)
Zm

+ δ
(2)
Zm,nl

)
A(1)mct

+
(

µ2

m2

)ε

S−1
ε

[
2δ

(1)
Zαs,Nf

BCF
+
(
δ
(1)
ZQ

+ δ
(1)
Zm

)
Bl + δ

(1)
Zm

B
(1)mct
l

]

+
(

µ2

m2

)2ε

S−2
ε ClCF

ClCA
= δ

(2)
Zαs,CANf

A +
(

µ2

m2

)ε

S−1
ε

[
2δ

(1)
Zαs,Nf

BCA
+ 2δ

(1)
Zαs,CA

Bl

]
+
(

µ2

m2

)2ε

S−2
ε ClCA

Cld33 =
(

µ2

m2

)ε

S−1
ε

[
2δ

(1)
Zαs,Nf

Bd33

]
+
(

µ2

m2

)2ε

S−2
ε Cld33 (A.11)

3Non calligraphic A, Bi and Ci denote the coefficients of the decomposition of the bare amplitude
interference.
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ChCF
=
(

δ
(2)
Zq,nh

+ δ
(2)
ZQ,nh

+ δ
(2)
Zm,nh

+ δ
(2)
Zαs,CF Nf

+
(

δ
(1)
Zαs,Nf

+ 2δ
(1)
ζαs

)(
δ
(1)
ZQ

+ δ
(1)
Zm

)
+ δ

(2)
ζαs,CF

)
A

+
(

δ
(1)
Zαs,Nf

δ
(1)
Zm

+ δ
(2)
Zm,nh

+ 2δ
(1)
ζαs

δ
(1)
Zm

)
A(1)mct

+
(

µ2

m2

)ε

S−1
ε

[
2
(

δ
(1)
Zαs,Nf

+ δ
(1)
ζαs

)
BCF

+
(
δ
(1)
ZQ

+ δ
(1)
Zm

)
Bh + δ

(1)
Zm

B
(1)mct
h

]

+
(

µ2

m2

)2ε

S−2
ε ChCF

ChCA
=
(

δ
(2)
Zαs,CANf

+ δ
(2)
ζαs,CA

+ 2δ
(1)
Zαs,CA

δ
(1)
ζαs

)
A

+
(

µ2

m2

)ε

S−1
ε

[
2
(

δ
(1)
Zαs,Nf

+ δ
(1)
ζαs

)
BCA

+ 2δ
(1)
Zαs,CA

Bh

]
+
(

µ2

m2

)2ε

S−2
ε ChCA

Chd33 =
(

µ2

m2

)ε

S−1
ε

[
2
(

δ
(1)
Zαs,Nf

+ δ
(1)
ζαs

)
Bd33

]
+
(

µ2

m2

)2ε

S−2
ε Chd33 (A.12)

A.2 Colour basis for qi1 q̄i2 → tf1 t̄f2H

The construction of the colour basis in this section describes the case of quarks in the defining
representation of a SU(N) gauge group for conciseness. Nevertheless, the procedure can be
extended to include additional orthogonal colour vectors for a more general gauge theory.

Since outgoing quark and incoming antiquark transform under colour representation N

and outgoing antiquark and incoming quark transform under colour representation N̄ , there
are only two possibilities to combine colour and anticolour to get a colour conserving scattering
amplitude. Thus, we have a two-dimensional colour space. Possible colour structures are
obtained with

|c1⟩ = (ta)i2i1
(ta)f1f2

|c2⟩ = δi2i1δf1f2 |c3⟩ = δi2f2δf1i1 (A.13)

(⟨ck|cl⟩) =

TF CF NC 0 CF NC

0 N2
C NC

CF NC NC N2
C

 (A.14)

|c1⟩ and |c2⟩ are the best choice for the basis, since the vectors are orthogonal. In addition, the
tree level is proportional to |c1⟩, hence we only need to recalculate the amplitude interference
with colour projector on |c2⟩, as explained in the following.

We expand the amplitudes in terms of colour vectors

|A(0)⟩ =|A(0)⟩ ⊗ |c1⟩

|A(n)⟩ =|A(n)
1 ⟩ ⊗ |c1⟩+ |A(n)

2 ⟩ ⊗ |c2⟩. (A.15)

Now we calculate the general form for the IR poles

⟨A(0)|Zi|A(n)⟩ =⟨A(0)|A(n)
1 ⟩ · ⟨c1|Zi|c1⟩+ ⟨A(0)|A(n)

2 ⟩ · ⟨c1|Zi|c2⟩. (A.16)
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We obtain the coefficients of the elements of the colour matrix by using the projectors

|p1⟩ =
1

TF CF NC
|c1⟩ |p2⟩ =

1
N2

C

|c2⟩ (A.17)

as colour vector of the tree amplitude

|P1⟩ =|A(0)⟩ ⊗ |p1⟩ |P2⟩ =|A(0)⟩ ⊗ |p2⟩, (A.18)

and multiply them on the loop amplitude

⟨P1|A(n)⟩ =⟨A(0)|A(n)
1 ⟩ · ⟨p1|c1⟩︸ ︷︷ ︸

1

= 1
TF CF NC

⟨A(0)|A(n)⟩.

⟨P2|A(n)⟩ =⟨A(0)|A(n)
2 ⟩ · ⟨p2|c2⟩︸ ︷︷ ︸

1

(A.19)

⟨ck|Z|cl⟩ is obtained by evaluating (⟨ck|TI ·TJ |cl⟩) and
(
⟨ck|ifabcTa

ITb
JTc

K |cl⟩
)
.

(⟨ck|T1 ·T2|cl⟩) =
(
−TF CF NC

(
CF − CA

2

)
0

0 −CF N2
C

)

(⟨ck|T1 ·T3|cl⟩) =
(
−d33 − TF CF CANC

4 −TF CF NC

−TF CF NC 0

)

(⟨ck|T1 ·T4|cl⟩) =
(

d33 − TF CF CANC
4 TF CF NC

TF CF NC 0

)

(⟨ck|T2 ·T3|cl⟩) =
(

d33 − TF CF CANC
4 TF CF NC

TF CF NC 0

)

(⟨ck|T2 ·T4|cl⟩) =
(
−d33 − TF CF CANC

4 −TF CF NC

−TF CF NC 0

)

(⟨ck|T3 ·T4|cl⟩) =
(
−TF CF NC

(
CF − CA

2

)
0

0 −CF N2
C

)
(
⟨ck|ifabcTa

1Tb
3Tc

4|cl⟩
)
=CA

2

(
0 −TF CF NC

TF CF NC 0

)
(
⟨ck|ifabcTa

2Tb
3Tc

4|cl⟩
)
=CA

2

(
0 TF CF NC

−TF CF NC 0

)
(A.20)

Therefore we need ⟨P1|A(0)⟩ up to O
(
ε2
)
, and ⟨P1|A(1)⟩ and ⟨P2|A(1)⟩ up to order O (ε).
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A.3 Anomalous dimensions

The anomalous dimensions entering eq. (2.29), expanded up to order
(
α
(nl)
s

)2
, are given by [47]

γq

(
α(nl)

s

)
=
(

α
(nl)
s

2π

)
CF γ(1)

q +
(

α
(nl)
s

2π

)2

CF

{
CAγ

(2)
q,CA

+ CF γ
(2)
q,CF

+ TF nlγ
(2)
q,nl

}
,

γQ

(
α(nl)

s

)
=
(

α
(nl)
s

2π

)
CF γ

(1)
Q +

(
α
(nl)
s

2π

)2

CF

{
CAγ

(2)
Q,CA

+ TF nlγ
(2)
Q,nl

}
,

γcusp

(
α(nl)

s

)
=
(

α
(nl)
s

2π

)
γ(1)

cusp +
(

α
(nl)
s

2π

)2 {
CAγ

(2)
cusp,CA

+ TF nlγ
(2)
cusp,nl

}
,

γcusp

(
β, α(nl)

s

)
= γcusp

(
α(nl)

s

)
β coth β

+
(

α
(nl)
s

2π

)2

2CA

{
coth2 β

[
Li3

(
e−2β

)
+ βLi2

(
e−2β

)
− ζ3 +

π2

6 β + 1
3β3

]

+coth β

[
Li2

(
e−2β

)
− 2β log

(
1− e−2β

)
− π2

6 (1 + β)− β2 − 1
3β3

]

+π2

6 + ζ3 + β2
}

, (A.21)

with explicit values

γ(1)
q = −3

2 , γ
(1)
Q = −1, γ(1)

cusp = 2,

γ
(2)
q,CA

= −961
216 − 11π2

24 + 13
2 ζ3, γ

(2)
Q,CA

= −49
18 + π2

6 − ζ3, γ
(2)
cusp,CA

= 67
9 − π2

3 ,

γ(2)
q,nl

= 65
54 + π2

6 , γ
(2)
Q,nl

= 10
9 , γ(2)

cusp,nl
= −20

9 ,

γ
(2)
q,CF

= −3
8 + π2

2 − 6ζ3. (A.22)

A.4 Momentum parametrisation

In the centre-of-mass (COM) frame of the 2 → 3 process,

q(q1) + q̄(q2) → t(qt) + t̄(qt̄) + H(qH), (A.23)

we have:

q1,2 =
√

s

2 (1, 0, 0,±1) ,

qH = (Eh, pH sin θH , 0, pH cos θH) ,

qtt̄ =
(√

stt̄ + p2H ,−pH sin θH , 0,−pH cos θH

)
,

pH =

√
λ(s, stt̄, m2

H)
2
√

s
= 1

2

√
s − 2

(
stt̄ + m2

H

)
+
(
stt̄ − m2

H

)2
s

,

EH =
√

p2H + m2
H . (A.24)

– 26 –



J
H
E
P
0
5
(
2
0
2
4
)
0
1
3

To describe q′t, q′
t̄

in the “rest frame of tt̄ decay”, with the direction of the (space-like)
momentum qtt̄ as new z-axis in the decay-frame. The coordinate transformation into the
decay-frame is obtained by:

1) rotation around y-axis with Ry =


1 0 0 0
0 − cos θH 0 sin θH

0 0 1 0
0 − sin θH 0 − cos θH

, such that:

q∗tt̄ =
(√

stt̄ + p2H , 0, 0, pH

)
; (A.25)

2) boost along new z-axis Bz =



√
stt̄+p2

H√
stt̄

0 0 − pH√
stt̄

0 1 0 0
0 0 1 0

− pH√
stt̄

0 0
√

stt̄+p2
H√

stt̄

, such that:

q′tt̄ =
(√

stt̄, 0, 0, 0
)

.

q′t =
(√

stt̄

2 , p′t sin θ′t cosφ′
t, p′t sin θ′t sinφ′

t, p′t cos θ′t

)
,

q′t̄ =
(√

stt̄

2 ,−p′t sin θ′t cosφ′
t,−p′t sin θ′t sinφ′

t,−p′t cos θ′t

)
,

p′t =

√
λ(stt̄, m2

t , m2
t )

2√stt̄

=
√

stt̄

4 − m2
t . (A.26)

The transformation back to the COM is given by:

qt = R−1
y B−1

z q′t,

qt̄ = R−1
y B−1

z q′t̄. (A.27)

he most general set of momenta is given by a global rotation around the z-axis in the
COM frame.
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A.5 Integral families

Generic integral families needed for the NNLO qq̄ → tt̄H:

b1 b3 b4 b8 b12

b13 b19 b20 b25 b38

b39 b41 b45 b46 b54

b55 b58 b62 b75 b78

b79 b81 b82 b84 b87

b90 b94 b98

A.6 Numerical results at example phase-space points

In this section we provide results for both the renormalised and bare amplitudes at three
example points. The first point is a rationalized version of the centre point from eq. (3.1);
it is given by

x12 = 778/21, x23 = −119/16, x35 = 232/17, x54 = 111/43, x41 = −184/25, (A.28)
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Amplitude\Point 1 2 3

A +6.035834626751872 +5.245314383987918 +4.787293854651411
Bl −1.12818724680(1) −0.980427258104(8) −0.894816410239(8)
Bh +5.04894231999(3) +1.89923463609(2) −0.53804290284(2)
BCF

+33.2585182(3) +27.14075277(9) +26.3240645(4)
BCA

−9.9464334(2) −10.03564577(5) −10.4615214(2)
Bd33 −20.3981186(7) +3.27341269(5) +6.4743383(4)
Cll −26.2652567(5) −22.8252656(6) −20.8321652(6)
Clh −52.05077(8) −42.5368(1) −33.0462(2)
Chh −19.97468(2) −19.18048(3) −14.51338(2)
ClCF

+77.28(4) +98.12(5) +56.70(3)
ClCA

−29.78(2) −29.09(1) −18.77(2)
Cld33 +62.46(1) −16.896(4) −27.186(6)
ChCF

+269.333(4) +191.919(5) +98.002(6)
ChCA

−51.512(8) −32.936(7) −10.338(8)
Chd33 +62.444(4) −12.869(4) −15.198(6)

Table 1. Results for the renormalised amplitudes at the three phase-space points given in A.6.
The numbers in the parentheses indicate the uncertainty of the final digits, e.g. 1.234(5) means
1.234± 0.005.

which corresponds to

β2 ≈ 0.79996, fracstt̄
≈ 0.69990, θH ≈ 0.64365, θt ≈ 0.45105, φt ≈ 0.79563 . (A.29)

The second point is

x12 = 509/20, x23 = −187/15, x35 = 156/23, x54 = 97/29, x41 = −300/29; (A.30)

β2 ≈ 0.70880, fracstt̄
≈ 0.80662, θH ≈ 1.68565, θt ≈ 0.96986, φt ≈ 1.48048 . (A.31)

The third point is

x12 = 1045/49, x23 = −332/45, x35 = 27/7, x54 = 244/31, x41 = −259/22, (A.32)

β2 ≈ 0.65250, fracstt̄
≈ 0.54757, θH ≈ 0.49515, θt ≈ −0.53510, φt ≈ 0.05988 . (A.33)

For all three points we set m2
H/m2

t = 12/23, m2
t = 1, and µ2 = s12/4. The ε0 parts of the

renormalised results are given in table 1. The corresponding bare results are given in table 2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Amplitude\Point 1 2 3

A ε0 +6.035834626751872 +5.245314383987918 +4.787293854651411
ε1 −7.519314317124661 −6.966230138192461 −5.852146603415052

Bl ε−1 −4.023889751168(3) −3.496876255992(3) −3.191529236434(2)
ε0 +4.979593966290(1) +3.302193921836(8) +2.112504306161(7)
ε1 +16.27790898725(2) +15.63480325240(1) +14.56344620751(1)

Bh ε−1 −4.023889751168(4) −3.496876255992(3) −3.191529236434(3)
ε0 +2.19990820228(3) −0.28883877784(1) −2.87224904596(2)
ε1 +16.8522808781(2) +15.04583104135(6) +10.31556316624(4)

BCF
ε−2 −6.035834626752(4) −5.245314383988(4) −4.787293854651(3)
ε−1 +47.50645250594(3) +36.76901095667(3) +28.96795514643(2)
ε0 +82.8900101(3) +71.98685363(9) +69.3832423(4)
ε1 +10.1664278(5) −12.2056345(6) +16.743047(1)

BCA
ε−1 +6.38676000270(2) +6.29876756710(1) +5.90321310713(1)
ε0 −25.4696877(2) −22.15585574(5) −19.5366653(2)
ε1 +41.3310335(7) +33.4761392(3) +24.472308(1)

Bd33 ε−1 +12.49071290385(3) −2.49052049845(2) −4.40305429926(2)
ε0 −23.7968559(7) +3.01592475(5) +5.2408179(4)
ε1 +8.456396(3) +3.9717895(3) +4.764632(2)

Cll ε−2 +2.68259318(2) +2.33125085(2) +2.12768616(1)
ε−1 −3.29754111(7) −1.30682292(6) −0.21571834(6)
ε0 −48.1798268(5) −43.5116000(6) −39.7488578(6)

Clh ε−2 +5.36518633489(1) +4.662501674656(4) +4.255372315246(9)
ε−1 −2.88884(2) +2.17440(2) +6.21486(4)
ε0 −94.30589(8) −80.2102(1) −61.3569(2)

Chh ε−2 +2.682593167445276 +2.3312508373279632 +2.127686157623(2)
ε−1 +0.4087065(2) +3.4812207(5) +6.4306195(5)
ε0 −45.35684(2) −35.29000(3) −18.74365(2)

ClCF
ε−3 +5.02986221(5) +4.37109534(4) +3.98941156(4)
ε−2 −44.5433305(3) −32.8089814(2) −24.8738667(2)
ε−1 −242.637(6) −216.388(7) −200.168(5)
ε0 −21.44(4) −49.71(5) −154.50(3)

ClCA
ε−2 −10.075326(1) −9.5042367(7) −8.8287811(7)
ε−1 +73.197(3) +59.106(1) +51.344(2)
ε0 −43.93(2) −2.58(1) +26.79(2)

Cld33 ε−2 −12.490710(4) +2.4905207(7) +4.403055(1)
ε−1 +19.527(3) −0.896(1) −1.104(2)
ε0 +50.43(1) −21.997(4) −32.660(6)

ChCF
ε−3 +8.04777950232(2) +6.993752511979(8) +6.38305847286(2)
ε−2 −46.649196(7) −32.454596(5) −21.50151(2)
ε−1 −271.8951(7) −243.9427(3) −222.9754(3)
ε0 +58.513(4) −59.977(5) −249.499(6)

ChCA
ε−2 −8.51570(3) −8.398366(6) −7.87093(3)
ε−1 +65.1827(5) +46.6892(3) +31.8517(9)
ε0 −29.121(8) +14.636(7) +36.464(9)

Chd33 ε−2 −16.6542837(3) +3.320693935(9) +5.87073910(8)
ε−1 +9.6379(3) +1.5642(3) +4.9777(3)
ε0 +61.991(4) −17.139(4) −18.893(6)

Table 2. Results for the bare amplitudes at the example points from A.6.
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