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Abstract: The  battery  thermal  management  of  electric  vehicles  can  be  improved  using  neural  networks

predicting quantile sequences of the battery temperature. This work extends a method for the development of

Quantile Convolutional and Quantile Recurrent Neural Networks (namely Q*NN). Fleet data of 225 629 drives

are clustered and balanced, simulation data from 971 simulations are augmented before they are combined for

training and testing. The Q*NN hyperparameters are optimized using an efficient Bayesian optimization, before

the Q*NN models are compared with regression and quantile regression models for four horizons. The analysis

of point-forecast and quantile-related metrics shows the superior performance of the novel Q*NN models. The

median  predictions  of  the  best  performing  model  achieve  an  average  RMSE of 0.66°C and  of  0.84.  The

predicted 0.99 quantile covers 98.87% of the true values in the test data. In conclusion, this work proposes an

extended development and comparison of Q*NN models for accurate battery temperature prediction.
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1　Introduction

An  improvement  in  energy  efficiency  of  a  Battery
Electric  Vehicle  (BEV)  reduces  energy  costs  and
increases  its  range.  Depending  on  the  share  of
renewable energies in electricity production, it can also
contribute  to  greenhouse  gas  emission  reduction[1, 2].
Therefore,  a  Battery  Thermal  Management  System
(BTMS)  needs  to  be  designed  energy  efficient  due  to

its impact on vehicle energy consumption[3]. Efficiency
can  be  improved  with  BTMS  components  optimized
for battery cooling or preheating[4, 5], as well as with an
improved  BTMS  control.  For  example,  Refs.  [6–8]
show  the  potential  of  a  predictive  BTMS  to  reduce
energy  consumption,  while  taking  additional  effects,
such  as  battery  ageing  and  derating,  into  account.
Furthermore,  data-driven  methods  can  be  used  for
improved battery state estimation, as in Ref. [9].

Predictive  control  of  BTMS  uses  physical  or  data-
driven models  to predict  future battery states[6–8, 10–13].
The  prediction  model  needs  to  provide  predictions  for
sufficiently  large  horizons  while  keeping  the
computational  costs  low[14, 15].  Physical  or  empirical
battery simulation models can be used for a prediction
of  the  battery  thermal  behavior,  validated  with  real
drive cycle data[16]. Model predictive control of BTMS
with neural networks as prediction models shows good
performance in real-time control,  given their  ability to
represent  complex  systems[17–19].  A  direct
consideration  of  foresight  input  data  can  improve  the
control  strategies,  for  example  using  a  predicted
velocity  profile  or  weather  data[8, 20, 21].  Velocity
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prediction  can  be  implemented  by  time-series
forecasting  using  Long  Short-Term  Memory  (LSTM)
models[22].  Predictive  control  can  additionally  benefit
from  models  that  provide  the  prediction  uncertainty,
considering the complexity of the physical processes of
the BTMS and the uncertainty of the route ahead[7, 23].
The  control  strategy  of  a  predictive  control  is  derived
by  optimization  costs  based  on  predictions  for  a
moving  horizon[11, 13].  For  BTMS,  cooling  energy
consumption as  well  as  temperature-dependent  battery
ageing  and  power  derating  can  be  considered  by  the
cost function[6]. For example, high battery temperatures
lead to accelerated ageing and a limitation of maximum
available power.

The  predictive  BTMS  proposed  in  Ref.  [6]
incorporates a Quantile Convolutional Neural Network
(QCNN) for battery temperature prediction. The novel
approach  reduces  battery  cooling  costs  by  9% with
unchanged  ageing  costs.  The  development  of  the
QCNN is presented in Ref. [24]. It provides the model
uncertainty  as  quantiles  of  the  predicted  battery
temperature  and  uses  data  from  the  previous 5 km as
well as foresight input data of the following 20 km for
its  predictions.  Due  to  the  needed  prediction  accuracy
for  cost  calculation of  the  proposed predictive  BTMS,
an optimization of the prediction model is suggested in
Ref. [6].

In Ref. [24], the best performing QCNN shows good
performance  and  its  predictions  plausibly  adapt  to  the
battery  cooling  thresholds.  The  predicted  quantiles
successfully  provide  information  about  the  prediction
uncertainty  and  do  not  suffer  from  quantile  crossing.
However,  both  the  considered  metrics  and  the
exemplary  analysis  indicate  limitiations  in  the
prediction  accuracy  of  the  best  performing  QCNN.
Several  aspects  for  performance  improvement  are
discussed  in  Ref.  [24],  such  as  an  increased  size  of
datasets  as  well  as  improved  model  architectures  and
hyperparameters  using  optimization  algorithms.  The
model  should  be  compared  with  classic  regression
models  for  reference  and  tested  in  the  predictive
BTMS.  In  the  following,  these  aspects  will  be
introduced in more detail.

The performance of Machine Learning (ML) models
depends  on  the  size  of  the  dataset[25–28].  On  the  one
hand, larger datasets with more variance provide more
information  about  the  underlying  physical  processes,
cover  more  scenarios,  and  allow  more  complex
architectures.  On  the  other  hand,  large  datasets  bring

additional  challenges  concerning  the  handling  of  the
data,  such  as  computation  time,  anomalies,  and
redundancy.

Anomaly  or  outlier  detection  refers  to  the
identification  of  rare  non-conform  data,  that  can  be
removed for better performance and robustness of ML
models[29, 30–32].  Outlier  detection  methods  differ  in
complexity,  accuracy,  suitability  for  high-dimensional
data,  and  assumptions  concerning  the  occurrence  of
outliers[31].  Isolation forest from Liu et al.[33] shows to
be a suitable method considering its good accuracy and
linear  complexity[31].  It  can  be  further  improved  for
high-dimensional  data  by  using  attribute  reduction
methods[33]. Dimension reduction methods can address
the noise from less relevant features that  hide relevant
outliers[31].  They  can  also  be  used  for  anomaly
detection  of  time-series  data[34].  Uniform  Manifold
Approximation and Projection (UMAP) from McInnes
et  al.[35] is  a  well-performing  method  for  dimension
reduction,  outperforming  Principal  Component
Analysis (PCA) for numerical data in Ref. [36].

Data  balancing  is  a  popular  method  to  reduce  data
redundancy  and  improve  predictions  of  rare  cases  in
classification.  It  can  be  addressed  by  data  resampling,
such as undersampling of classes with high occurrence,
oversampling  of  classes  with  low  occurrence,  or
combining  both[37–39].  Popular  methods  are  random
undersampling,  random  oversampling,  and  Synthetic
Minority  Oversampling  Technique  (namely
SMOTE)[40].  Data  balancing  is  also  possible  for  time-
series forecasting, for instance based on the distribution
of  input  or  output  variables,  as  proposed  by  Ref.  [41]
for  improved  motor  temperature  predictions  of  rare
cases,  and  also  done  in  Ref.  [24]  for  battery
temperature prediction. In Ref. [41], the best prediction
performance  is  achieved  with  different  target
distributions,  dependent  on  the  chosen  ML  model.
Alternatively,  data  balancing  for  time-series
forecasting  can  be  handled  by  an  adapted  Deep
Learning  (DL)  architecture  as  done  in  Ref.  [42].  Data
resampling using a relevance bias improves prediction
accuracy  especially  for  rare  cases  of  a  time-series
forecasting  model[25, 43].  Resampling  of  time-series  is
also  possible  by  distinction  of  normal  and  extreme
blocks, which increases prediction accuracy for normal
events as well as prediction and classification accuracy
of  extreme  events[44].  Random  undersampling
improves  the  performance  of  a  Deep  Neural  Network
(DNN) for  time-series  anomaly detection in  Ref.  [28].
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In  Ref.  [45],  time-series  clustering  is  conducted  to
divide  time-series  of  battery  cell  voltage  during
discharge  into  a  majority  and  a  minority  classes.  The
classes  are  then  resampled  to  address  their  imbalance,
followed  by  the  training  of  a  Convolutional  Neural
Network  (CNN)  for  classification.  Time-series
classification  is  improved  in  Ref.  [46]  by  combining
data  balancing  with  data  augmentation  using  Fourier
transform to iteratively produce surrogates as proposed
by Ref. [47].

Data augmentation is a technique that can be applied
on  time-series  data  for  increasing  dataset  size  and
variance  in  order  to  reduce  model  overfitting  or  to
balance  the  dataset[48, 49].  Augmented  data  can  be
obtained  in  different  ways,  such  as  transformation  in
time or frequency domain (e.g., scaling, stretching, and
warping),  matching  time-series  patterns  (e.g.,
SMOTE[40] and  Dynamic  time  warping  based
Barycentric  Averaging (DBA)[50]),  or  using generative
models (e.g.,  auto-encoder and Generative Adversarial
Networks  (GAN)[51, 52]).  Many  methods  address  data
augmentation  for  time-series  classification  to  increase
the  accuracy[48, 49, 52–54].  Data  augmentation  can  also
improve  the  performance  of  time-series  regression  or
forecasting models[49, 51, 55]. Existing data augmentation
methods  might  ignore  non-linear  correlations  and
underlying physical dependencies[46] and add noise[52].
Data augmentation using pattern matching can improve
model generalization, but need high computation times
for long time-series patterns[48].

Various  ML  methods  can  be  used  for  time-series
prediction,  including  classic  regression  methods,  as
well  as  DL  methods,  such  as  CNN  and  Recurrent
Neural  Networks  (RNN)  (e.g.,  Gated  Recurrent  Unit
(GRU), LSTM)[56–61].  They can differ in sampling and
horizon,  they  can  be  uni- or  multi-variate  and  be
implemented  with  a  recursive  strategy  (with  one-
step  prediction)  or  direct  strategy  (multi-step
prediction)[58, 60, 62].  One-step  forecasting  can  be  done
by  regression  models,  as  implemented  for  load- and
energy  forecasting  in  Refs.  [61, 63, 64],  using  the
Python  package  Pycaret[65] for  an  automated  training
and  evaluation  of  different  algorithms.  Multi-step
prediction  models,  such  as  CNN,  improve  the
prediction  performance[66],  while  recursive  strategies
can be subject to an increasing error over the prediction
horizon[60].  An  example  of  battery  temperature
prediction  with  LSTM  is  provided  by  Ref.  [67]  using

real-world  driving  data,  with  a  focus  on  seasonal
characteristics  and  thermal  faults.  In  Ref.  [68],  LSTM
is  further  applied  to  a  synchronous  prediction  of  the
battery  temperature,  State  Of  Charge  (SOC),  and
voltage.  Additionally,  LSTM  improves  the  State  Of
Health  (SOH)  estimation  in  Ref.  [69]  and  in
combination with CNN in Ref. [70]. A combination of
CNN  and  LSTM  obtains  accurate  SOC  estimation  in
Ref. [71] and remains useful life estimation in Ref. [72]
with an auto-encoder for feature augmentation.

Model  uncertainty  can  be  provided  as  quantile
predictions  for  a  predictive  BTMS[6].  Quantile
regression can be used for time-series forecasting, such
as  in  Quantile  Random  Forest  (QRF)  and  Quantile
Extra  Trees  Regressor  (QETR)  from  the  Python
package  scikit-garden[73].  It  can  be  combined  with
neural  networks[74, 75],  CNN[24, 76, 77],  RNN[76–78],  and
other DL models[77, 79].  The models from scikit-garden
can be used as reference models, as done by Refs. [75,
78, 79].  For  example,  different  one-step  prediction
models can be trained for different horizons[78].

Optimization  algorithms  can  be  used  to  tune
hyperparameters  of  ML  models  to  increase  their
performance[80].  A  popular  method  is  Bayesian
optimization,  which  tunes  hyperparameters  with
consideration  of  results  from  previous  trials[81, 82].  It
can find better hyperparameters in shorter computation
time  than  grid  search  or  random  search[80].  The
computation  time  of  Bayesian  optimization  can  be
further  improved  by  parallelized  optimization  on
subsets of the training data[83] or by using training data
subsets  with increasing size,  until  the  whole dataset  is
used in the last stage[84]. Improved performance is also
achieved  by  the  hyperband  method[85] and  a
combination  of  hyperband  and  Bayesian
optimization[86].  Besides  model  hyperparameters,
parameters of data balancing methods can be included
in the search space as well[87, 88]. Bayesian optimization
has  been  successfully  used  for  hyperparameter
optimization of time-series forecasting models in Refs.
[89, 90].

In  this  work,  improved  battery  temperature
prediction models are developed. The models are based
on  the  method  of  developing  QCNN  from  Ref.  [24].
They  predict  quantile  sequences  of  the  battery
temperature change, including the prediction accuracy.
The method is adapted to make use of a larger dataset.
The contributions of this work include clustering-based
data  balancing  and  a  novel  data  augmentation
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technique related to  pattern  matching.  Besides  using a
CNN  architecture,  models  using  GRU  and  LSTM
architectures  are  developed.  The  hyperparameters  of
each  architecture  are  optimized  using  an  efficient
Bayesian  optimization  approach.  Regression  and

quantile  regression  models  are  trained  on  the  same
dataset  for  comparison,  which  concludes  the
contributions of this work.

The  nomenclatures  used  in  this  paper  are  shown
in Fig.1.

 

Latin symbols

A Segment A of a trip
B Segment B of another trip
k Horizon size
L Loss
n Number (quantity)
p Occurrence
q Quantile
s Share of training data
T Temperature
t Trial
v Speed

Reduced dimension X
Reduced dimension Y

X
Y

Abbreviations and acronyms

ADAM ADAptive Moment estimation
BEV Battery Electric Vehicles
BTMS Battery Thermal Management System
CNN Convolutional Neural Network

QL Qualifier
QLSTM Quantile Long Short-Term Memory
QRF Quantile Random Forest
R2 Coefficient of determination
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SDT Shallow Decision Tree
std Standard deviation
SMOTE Synthetic Minority Oversampling Technique
SOC State Of Charge
SOH State Of Health
UMAP Uniform Manifold Approximation and Projec-

tion

US06 US06 drive cycle
WLTC Worldwide harmonized Light vehicles Test Cycle
WS Winkler Score

Greek symbols

α Weight
∆ Difference
µ Quantile weight
ψ Sharpness

Subscripts

1 Referring to the part of a trip before a segment
(A or B)

2 Referring to the part of a trip after a segment
(A or B)

a Ambient
avg Average
b Battery
b, cool, lower Lower battery cooling threshold
b, cool, upper Upper battery cooling threshold
d, abs Absolute difference
i Index i, related to horizon step
j Index j, related to quantile
µ Quantile weight
MSE Mean Squared Error
pb Pinball

CORS Crossover Rate Score
DBA Dynamic time warping based Barycentric Av-

eraging

DL Deep Learning
DOE Design Of Experiments
ETR Extra Trees Regressor
GAN Generative Adversarial Networks
GRU Gated Recurrent Unit
IBA Intersection-Based Assembly
LGBM Light Gradient Boosting Machine
LSTM Long Short-Term Memory
MAE Mean Absolute Error
max Maximum
min Minimum
ML Machine Learning
MSE Mean Squared Error
PCA Principle Component Analysis
QCNN Quantile Convolutional Neural Network
QRNN Quantile Recurrent Neural Network
Q*NN Quantile Neural Network based on a deep learn-

ing architecture (e.g., with convolution or recur-
rent layers)

QNN Quantum Neural Network
QETR Quantile Extra Trees Regressor
QGRU Quantile Gated Recurrent Unit

 
Fig. 1    Nomenclature.
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2　Method and Material

The proposed method for improved battery temperature
prediction  and  model  comparison  is  described  in  this
chapter.  The  main  steps  are  shown  in Fig.  2.  At  first,
simulation  data  and  vehicle  fleet  data  are  collected.
Time-series clustering is applied to the fleet dataset for
data  understanding,  outlier  removal,  and  balancing.
The  simulation  dataset  is  augmented  for  better  data
balance between fleet data and simulation data,  before
both are used for model building and training. Custom
quantile  prediction  models  using  different  neural
network  architectures  are  developed  with  Bayesian
optimization  for  hyperparameter  tuning.  Models  are
retrained  for  the  best  hyperparameter  sets.  Reference
models  using  regression  and  quantile  regression  are
trained  on  the  same  datasets.  The  reference  models
provide  one-step  predictions  rather  than  time-series,
such that one model for each of four different horizons
is  developed.  All  models  are  tested,  compared,  and
evaluated  with  respect  to  an  application  for  predictive
BTMS.  Model  application  (inference)  consists  of

vehicle  data  collection  during  a  trip,  data
preprocessing, and battery temperature prediction with
the chosen model.

2.1　Cross-domain data collection and processing

This  section  focuses  on  the  collected  datasets  and  the
processing  techniques,  such  that  they  can  be  used  for
model building and training.
2.1.1　Vehicle fleet data
Compared  to  Ref.  [24],  a  new  data  source  is  used
which consists of a larger amount of fleet data. In total,
the  available  fleet  dataset  covers 225 629 drives  with
9 917 426 km  total  drive  distance  between  December
2021  and  October  2022.  In  contrast  to  Ref.  [24],
additional  weather  data  cannot  be  joined  to  the  new
vehicle  fleet  dataset  because  it  does  not  include
location  data.  Only  trips  with  distances  larger  than
20  km  and  battery  temperatures  higher  than 15°C are
considered,  since  the  focus  of  this  work  is  on  the
cooling  behavior.  The  battery  temperature  is  clustered
as  sequences  using  the  mini-batch  k-means  algorithm
from the Python package scikit-learn for a window size
of 20 km and  an  overlap  of  25%.  The  number  of
clusters  is  determined  using  elbow  method  (with  sum
of squared distance, the lower the better) and silhouette
score  (the  higher  the  better)[91].  UMAP  is  used  for
dimension  reduction  to  two  dimensions  in  order  to
visualize  the  clustering  result.  Outliers  are  removed
based on the reduced dimensions using isolation forest
with a threshold of 1%. The remaining time-series data
are  balanced  with  random  undersampling  to  a
maximum  of 20 000 time-series  per  cluster.  After  the
data are split into training (70%), validation (15%), and
test  data  (15%),  random  oversampling  is  applied  to
each  cluster  in  each  of  the  datasets.  The  results  of
clustering and balancing are provided in Section 3.1.1.
2.1.2　Simulation data
Simulation  data  are  based  on  the  same  Design  Of
Experiments  (DOE)  than  in  Ref.  [24],  but  with  more
simulated profiles. It consists of 971 simulations with a
drive  time  of  one  hour,  covering  five  battery  cooling
thresholds  (25°C, 30°C, 35°C, 40°C,  and 45°C).  The
included  simulation  test  dataset  is  the  same  as  that  in
Ref. [24]. Due to the increased vehicle fleet dataset, the
share of simulation data is significantly lower. In order
to  address  this  imbalance,  the  simulation  dataset  for
training  and  validation  is  augmented  using  a  time-
series  data  augmentation  method  proposed  in  this
work. Additionally, a higher overlap of 75% is chosen

 

Cross-domain data collection and processing

SimulationElectric vehicle fleet

Data augmentation

Time-series clustering

Outlier removal and
data balancing

Model building and training

Q*NN (CNN, RNN) Reference models

Bayesian optimization

Retraining (Quantile) regression
for four horizons

Model testing ande valuation

Model application (inference)

Electric vehicle data

Preprocessing

Battery temperature prediction
 
Fig. 2    Pipeline  for  model  development  and  comparison
using  cross-domain  input  data,  as  well  as  main  steps  for
application (inference) in a vehicle.
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for  the  simulation  training  and  validation  dataset,  and
all test data are used (i.e., with no overlap filter).

A1B2

B2A1

The  novel  data  augmentation  method  proposed  in
this work is referred to as Intersection-Based Assembly
(IBA). Figure 3 shows how an extended dataset can be
composed  of  the  original  dataset  and  augmented  data.
The  method  searches  for  segments  that  match  given
criteria  for  each  data  point  (250 m segment)  in  the
original  data.  A  match  is  found  if  the  difference
between  the  signal  values  is  within  a  matching
tolerance.  The tolerance can be adjusted dependent  on
the  amount  of  data  needed  and  the  tolerated  value
difference.  As  additional  constraint,  the  drive  of  the
matched  segment  has  to  be  from  another  velocity
profile  and  has  the  same  battery  cooling  threshold.
Furthermore,  cabin  air-conditioning  has  to  be  in  the
same state (on or off) and the segment may not be from
the  first  20  segments  of  the  matched  drive.  For  each
match, possible matches with neighboring segments are
filtered  (with  a  tolerance  of  8  segments).  The
augmented data are extracted by combining the part of
the  drive  before  Segment A with  the  part  after  the
matched Segment B (i.e., a combination ) and vice
versa  ( ).  Both  new  drives  are  cut,  such  that  the
intersection  of  the  two  drives  is  included  in  either  the
history  or  foresight  horizon  of  the  model.  This  avoids
the duplication of existing data points from the original
dataset. An example for augmented data is provided in
the results section.

2.2　Model building and training

The collected and processed datasets are combined for

model  building  and  training.  Vehicle  fleet  data  and
simulation  data  are  mixed  and  treated  equally  during
training.  The  same  data  are  used  for  the  development
of  the  proposed  Quantile  Neural  Network  DL
architecture  (namely  Q*NN),  as  well  as  for  the
reference models.
2.2.1　Q*NN

Ltotal

nµ

In this work, the proposed architecture is called Q*NN
(not  related  to  Quantum  Neural  Networks  (QNN)[92]).
It  combines  quantile  sequence  predictions  with  one-
dimensional CNNs or with one of two types of RNNs,
namely GRU and LSTM. The models are referred to as
QCNN, QGRU, and QLSTM. The base architecture is
the  same  as  that  in  Ref.  [24],  which  includes  an
architecture  diagram.  In  the  following,  only  the  key
elements  and  the  differences  to  Ref.  [24]  are  further
described.  The  architecture  consists  of  two  input
channels  (history  and  foresight),  separately  processing
input  data  of  the  previous 5 km and  the  following
20 km. A list of the input features is provided in Table
A1  in  Appendix  A.  The  sequential  information  are
processed by blocks with 1D convolutional (QCNN) or
recurrent  (QGRU  and  QLSTM)  layers.  After  separate
processing of history and foresight input data, they are
flattened  and  merged  in  a  combined  channel  with
additional  convolutional  or  recurrent  layers.  Seven
output layers provide a quantile sequence prediction of
the  battery  temperature  change  with  respect  to  the
current  temperature.  In  case  of  the  RNN  models  with
recurrent  layers,  the  MaxPooling  layers  are  removed.
Dropout, batch normalization, data balancing, and data
augmentation  are  applied  to  reduce  overfitting.  The
layer parameters are the same as those in Ref. [24]. The
used  activation  functions  are “relu” and “linear” (for
each  quantile  output  layer).  ADAptive  Moment
estimation  (ADAM)  optimizes  the  total  loss  during
training with an early stop patience of 20. The custom
layer from Ref. [24] is used for loss calculation  of
k segments  in  the  prediction  horizon,  including 
constrained quantile weights μ,
 

Ltotal =
1−αMSE

k (2nµ+1)

2nµ∑
j=0

k∑
i=1

µ jLpb (i, j)+αMSE×LMSE (1)

Ltotal

LMSE αMSE

Lpb

where  is  a  weighted  sum  of  the  Mean  Squared
Error  (MSE,  as  with  weight )  and  pinball
loss  ( )  from  quantile  regression.  It  considers  over-
and  under-estimation  differently  dependent  on  the
corresponding quantile[77].
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Fig. 3    Time-series  data  augmentation using IBA.  For each
segment  in  a  (simulated)  drive A,  the  method  looks  for  a
segment in another drive B that matches predefined criteria.
Augmented  data  are  composed  by  the  drives  around  the
matched segments.
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The  hyperparameters  are  tuned  by  Bayesian
Optimization. Their ranges are defined as follows (and
based on Ref. [24]):

•  Base  number  of  layer  nodes  (filters  for  1D
convolutional  layers  and  units  for  GRU  or  LSTM
layers) in range [128, 256] with step size 32;

• Dropout rate in range [0.2, 0.4];
αMSE• Loss weight  in range [0.01, 0.1];

•  Learning  rate  in  range  [0.001, 0.000 01]  with
logarithmic sampling;

• Mini-batch size in range [32,128] with step size 16;
• Number of convolutional or recurrent layers in the

combined channel (after merge) either two or four (the
latter is referred to as the deeper network).

nt

The  TensorFlow/Keras  package  is  used  for  Q*NN
building  and  training  in  Python.  The  hyperparameters
are optimized using the Keras Tuner implementation of
Bayesian  optimization  with  20  trials  (steps)  and  3
(QLSTM:  2)  executions  (models)  per  trial.  For  each
execution,  a  model  is  trained  from  scratch  with  the
same  hyperparameters,  and  the  lowest  validation  loss
of  all  training  epochs  is  taken.  The  validation  loss  of
the  trial  is  calculated  as  average  of  the  executions,
which  is  used  by  the  Bayesian  optimization  algorithm
to evaluate the hyperparameters of the trial. The usage
of  several  executions  per  trial  addresses  the  random
initialization of neural network weights which can lead
to bad training even for good hyperparameters.  In this
work, Bayesian optimization is used for all three neural
network  architectures  (QCNN,  QGRU,  and  QLSTM).
In  order  to  reduce  computation  time,  an  efficient
Bayesian optimization approach is proposed, similar to
Ref.  [84].  The  amount  of  training  data  is  reduced  for
the  first  trials  (by  random  selection),  with  increasing
training data size for each trial. In this work, the share
of  training  data  per  trial s is  defined  as  follows,  with
trial number t and the total number of trials :
 

s (t) =

⌈
100× (0.1+

0.9
1+ exp(−12× ( t

nt
−0.4))

)
⌉

100
(2)

The  random  training  data  selection  is  performed
individually  for  each  execution  per  trial,  which
addresses the impact of a potentially bad data selection
on  model  training.  After  the  Bayesian  optimization
evaluated  all  trials,  the  hyperparameters  of  the  trial
with  lowest  validation loss  are  selected.  Three  models
are  trained  with  the  according  hyperparameters  using
the whole training dataset.  The best performing model
will  be  used  in  the  next  steps  of  model  testing  and

comparison.
2.2.2　Reference models
In this  work,  reference models  are  created for  a  better
understanding  of  the  Q*NN  performance.  For  each
prediction horizon of 5 km, 10 km, 15 km, and 20 km,
the  prediction  task  is  simplified  to  a  single-value
regression.  The  prediction  output  is  the  difference
between  current  battery  temperature  and  the
temperature  at  the  end  of  the  according  horizon.  The
input  foresight  features  are  reshaped  to  the  following
12 input values calculated for each horizon:

• Battery temperature: current value;
• Ambient temperature: current value;
• Upper battery cooling threshold: current value;
• Lower battery cooling threshold: current value;
• Velocity: maximum, minimum, mean, and standard

deviation.
•  Velocity  difference:  maximum,  minimum,  mean,

and standard deviation.
Based on the reshaped data, regression models can be

trained  for  each  horizon.  The  Python  package
Pycaret[65] is  used  for  training  and  comparison  of
classic regression models. The best model according to
the  Root  Mean  Squared  Error  (RMSE)  is  chosen  for
each  horizon.  A  Shallow  Decision  Tree  (SDT)  is
trained  as  a  reference  model  with  low  complexity,
which  has  lower  computational  requirements.  This
allows  an  investigation  if  such  a  simple  rule-based
model  is  sufficient.  Furthermore,  the  SDT  serves  as
additional  reference  for  the  prediction  performance  of
more  complex  models  (e.g.,  Q*NN).  Hyperparameter
optimization  for  the  SDT  is  conducted  using  grid
search  to  find  the  best  suitable  maximum  tree  depth
and number  of  leaves.  Scikit-garden[73] is  used for  the
training of a quantile regression model, which provides
single-step quantile predictions. In total, twelve models
are  used  for  testing  and  comparison  with  the  Q*NN
models,  consisting  of  a  regression  model,  a  shallow
regression  model,  and  a  quantile  regression  model  for
each of the four horizons.

2.3　Model testing, evaluation, and application

The  developed  models  are  evaluated  with  point-
forecast and quantile-related metrics for the test dataset
as described in Ref. [24]. Point-forecast metrics treat a
predicted quantile as a classic time-series forecast. The
focus  of  the  point-forecast  metrics  is  on  the  0.5-
quantile  (median)  prediction  since  it  is  the  closest  to
the  true  values  on  average  (by  definition).  It  can  be
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compared  with  the  reference  regression  models,  for
which  the  predicted  values  for  the  four  reference
horizons are  taken.  The smoothness  is  the only metric
that cannot be compared, because it requires sequences
which  are  not  provided  by  the  reference  models.
Quantile-related  metrics  describe  quantile  properties,
including  quantile  crossing,  the  width  of  the  quantile
intervals,  and  the  share  of  true  values  within  the
predicted quantiles compared with their definition, also
known  as  calibration[93].  They  are  additionally
calculated  for  the  four  horizons  of  the  quantile
regression  models.  Further  comparison  includes  the
different  Q*NN  architectures  and  the  best  performing
QCNN  from  Ref.  [24]  (in  this  work  referred  to  as
QCNN22).  Besides  the  calculated  metrics,  further
evaluation  includes  regression  plots  and  exemplary
analysis.

3　Result

The  results  of  the  proposed  development  and
comparison  of  battery  temperature  prediction  models
are  presented  in  this  section.  Its  structure  mirrors
Section 2.

3.1　Cross-domain data collection and processing

The  presented  methods  for  time-series  data  balancing
and  augmentation  are  used  to  provide  a  balanced
dataset  for  model  training  and  evaluation.  They  are
applied  on  the  collected  vehicle  fleet  data  (balancing)
and simulation data (augmentation).
3.1.1　Vehicle fleet data
Time-series  clustering  is  applied  on  the  change  in
battery  temperature  as  sequence  over  a  horizon  of
20 km.  7  clusters  are  obtained  using  mini  batch
k-means with  elbow method and silhouette  score.  The
time-series  data  are  reduced  to  two  dimensions  using
UMAP,  and  visualized  in Fig.  4 with  the  according
cluster  number.  The  clusters  show  only  few  overlap
which indicates a successful clustering. After isolation
forest  has  been  applied  with  1% outlier  removal,  the
DBA  of  each  cluster  is  calculated  and  presented  in
Fig.  5.  The data  share  of  each cluster  is  included next
to  each  DBA.  Data  without  a  change  in  battery
temperature  (Cluster  4)  takes  a  share  of  53% of  the
whole  fleet  dataset.  31% of  the  data  show  a  rising
battery  temperature  (Clusters  1  to  3)  and  16% of  the
data  show  a  falling  battery  temperature  (Clusters  5  to
7). For all DBA of rising or falling temperature, bigger

changes  plausibly  occur  at  later  points  in  the  horizon.
Data balancing is needed considering the difference in
the  shares  between  the  clusters,  because  a  good
prediction accuracy is also required for higher changes
in battery temperature.
3.1.2　Simulation data
The  proposed  data  augmentation  method  IBA  is
applied  on  the  simulation  dataset  to  increase  its  share
compared to the vehicle fleet data size. The amount of
augmented  data  depends  on  the  chosen  matching
tolerance. Figure  6 shows  this  dependency  for  the
given  simulation  dataset.  The  augmentation  factor
describes  the  increase  of  the  total  dataset.  The
matching tolerance is chosen to the smallest value that
results  in  the  required  data  size.  For  this  work,  a
tolerance  of  3% is  chosen  for  a  1.64  times  larger
simulation dataset,  such that  the  amount  of  simulation
data  roughly  equals  the  amount  of  balanced  fleet  data
per  cluster.  An  example  of  augmented  profiles  is
provided in Figure A1 in Appendix B.

The  data  used  in  the  following  steps  consist  of  the
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Fig. 4    Reduced  dimensions X and Y of  the  change  in
battery  temperature  using  UMAP,  with  labels  from  time-
series clustering.
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Fig. 5    DBA  of  the  battery  temperature  change  for  each
cluster  after  outlier  removal.  The  share  within  the  fleet
dataset is included next to each cluster.
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balanced  vehicle  fleet  dataset  and  the  augmented
simulation dataset. Table 1 shows the dataset sizes.

3.2　Model building and training

The  results  from  model  training  of  both  the  proposed
Q*NN  and  the  reference  models  are  presented  in  this
section. The best performing model is selected for each
model type based on the validation loss. The hardware
used for model training and testing consists of an Intel
Xeon  Silver  4114  (2.2  GHz),  64  GB  RAM,  and  a
NVIDIA  Quadro  RTX  4000.  The  TensorFlow/Keras
package  version  is  2.5.0  and  the  Python  version
is 3.7.5.
3.2.1　Q*NN
The  hyperparameters  of  each  Q*NN  architecture  are
obtained  using  the  proposed  efficient  Bayesian
optimization.  The  average  validation  loss  of  each  trial
and each architecture is shown in Fig. 7, with the share
of training data as gray shaded area in the background.
The  trials  with  lowest  validation  loss  are  trial  18
(QCNN), trial 20 (QGRU), and trial 11 (QLSTM). The
average  training  time  per  model  is 1.87 h (QCNN),
2.78 h (QGRU),  and 3.51 h (QLSTM).  For  each
architecture,  three  models  are  trained  with  the  best
hyperparameters, and the model with lowest validation
loss is used in the following comparisons. Table A2 in
Appendix  A  shows  the  hyperparameters  of  the  best
trials with lowest validation loss.
3.2.2　Reference models
The RMSE is calculated for the validation data set for
all  18  reference  regression  models  compared  by

Pycaret.  The  results  for  the  four  considered  horizons
are  shown  in Table  2.  For  each  horizon,  the  best
performing  model  is  chosen  as  reference  model  for
model  testing.  This  means  Light  Gradient  Boosting
Machine (LGBM) is chosen for a horizon of 5 km and
Extra Trees Regressor (ETR) for 10 km, 15 km, and 20
km. The reference model is referred to as LGBM-ETR.
Each  model  consists  of  100  estimators,  i.e.,  boosting
stages  for  LGBM  and  trees  for  ETR.  Their  feature
importance is  included in Fig.  A2 in Appendix C.  For
all  four horizons, the top three features are the current
ambient  temperature,  battery  temperature,  and  the
maximum velocity.

The  SDT  hyperparameters  are  optimized  by  grid
search on the following ranges:

• Maximum tree depth: 4, 5, 6, 7, 8, 9;
• Maximum number of leaves: 9, 11, 13, 15, 17.
Both  ranges  are  limited  such  that  the  resulting  tree

will  be  shallow,  thus  easier  to  implement  as  a  rule-
based  model.  The  hyperparameters  with  the  lowest
validation  loss  are  7  (tree  depth)  and  17  (number  of
leaves) for the 5 km horizon, and 5 and 17 for the other
horizons (10 km, 15 km, and 20 km).

The  quantile  regression  model  is  based  on  an  ETR,
since  ETR  shows  the  overall  best  performance  in  the
comparison  of  regression  models  by  Pycaret.  In  this
work it is referred to as Quantile Extra Trees Regressor
(QETR)  and  trained  using  scikit-garden.  According  to
the  Pycaret  models,  100  estimators  are  chosen.  The
minimum  sample  split  is  set  to  0.01.  The  feature
importance of all four resulting models is also included
in  Fig.  A2  in  Appendix  C.  The  three  most  important
features  are  battery  temperature,  ambient  temperature,
and the upper battery cooling threshold.
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Fig. 6    Achieved augmentation factor  of  IBA dependent  on
the tolerance, for the given simulation dataset. In this work,
a tolerance of 3 is chosen (dashed line).

 

Table 1    Share  and  number  of  data  points  (in  brackets
unique drives) for each dataset after preprocessing.

Dataset Training Validation Test

Vehicle fleet 86.5% (94.8%) 80.4% (92.7%) 85.7% (99.8%)
Simulation 13.5% (5.2%) 19.6% (7.3%) 14.3% (0.2%)

Total 142 809 (52 333) 13 634 (7607) 13 107 (7072)

 

2 4 6 8 10 12 14 16 18 20
10−4

10−3

10−2

Trial number

Va
lid

at
io

n 
lo

ss

0

25

50

75

100

Tr
ai

ni
ng

 d
at

a 
sh

ar
e 

(%
)

QCNN

QGRU
QLSTM

 
Fig. 7    Validation  loss  for  all  trials  of  efficient  Bayesian
optimization of all three Q*NN architectures. For each trial,
the  average  of  the  lowest  validation  loss  of  three  (QLSTM:
two) trained models is shown. The best trial is marked with
an arrow.
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3.3　Model testing, evaluation, and application

The  best  performing  Q*NN  and  reference  models  are
compared using  their  predictions  on  the  test  data.  The
comparison is divided into point-forecast and quantile-
related  comparison.  A  prediction  example  is  included
for better understanding of the model differences.
3.3.1　Point-forecast comparison
All  models  can  be  compared  as  a  one-step  prediction
for  the  respective  horizon.  For  the  quantile  models
(Q*NN  and  QETR),  the  0.5-quantile  (median)
prediction is used for the comparison. Figure 8 depicts
the  RMSE  and  coefficient  of  determination  (R2)
metrics  for  the  four  horizons.  A  smaller  RMSE and  a
higher R2 value indicate better performance. A table of
the  metrics  averaged  over  the  horizons  is  included  in
Table A3 in Appendix D.

The  Q*NN  models  show  the  best  performance,
followed  by  the  LGBM-ETR  model  from  Pycaret.
QGRU  performs  better  than  QCNN  and  QLSTM,
which  are  on  a  similar  level.  The  QGRU  achieves  an
RMSE  of  0.66°C  and  an R2 of  0.84.  The  absolute
difference  between  its  median  prediction  and  the  true
values  is  maximum  1.00°C  in  90% of  the  test  data,

averaged over the four horizons. QGRU will be used as
best QRNN model for the following comparisons. The
LGBM-ETR  model  is  followed  by  QETR  and
QCNN22  (on  rank  five  and  six).  Their  order  depends
on the horizon, for which QCNN22 performs better for
5 km and 10 km, and QETR performs better for 15 km
and 20 km. The SDT performs worst for all horizons.

Regression  plots  for  the  best  Q*NN  (Figs.  9a  and
9b), QCNN22 (Fig. 9c), and reference models (Figs. 9d
and 9f) are provided in Fig. 9. The difference between
true value and prediction is  marked in different  colors
for  all  four  horizons.  The  prediction  models  plausibly
predict  larger  battery  temperature  changes  for  larger
horizons.  Better  performance  is  achieved  when  the
shape  of  the  point  cloud  follows  the  identity  line
(dashed).  Thus,  LGBM-ETR  (Fig.  9d)  shows  worse
performance  compared  to  the  novel  Q*NN  models
(Figs.  9a  and 9b),  particularly  for  larger  changes  in
battery  temperature.  The  Q*NN models  slightly  differ
in performance for increasing battery temperature.  For
instance,  the  QGRU  model  (Fig.  9b)  shows  more
overestimation  but  less  underestimation  of  the  true
change compared  with  the  QCNN model  (Fig.  9a)  for
horizon 15  km and 20  km.  QCNN22 (Fig.  9c)  largely
underestimates the battery temperature change in a few
cases,  but  except  that  follows  the  identity  closer  than
LGBM-ETR (Fig. 9d). The SDT (Fig. 9e) shows worst

 

Table 2    RMSE  (°C)  of  each  regression  model  for  each
reference horizon in the validation data.  The table is  sorted
by  the  values  for  20  km,  and  the  best  value  per  horizon
marked  in  bold.  The  top  three  models  are  separated  by  a
line. All models are trained using Pycaret.

(°C)
Model 5 km 10 km 15 km 20 km

Extra trees regressor 0.58 0.87 1.12 1.33
Light gradient boosting machine 0.57 0.88 1.14 1.36

Random forest regressor 0.59 0.89 1.16 1.39
Gradient boosting regressor 0.60 0.92 1.20 1.44

Decision tree regressor 0.77 1.13 1.47 1.78
K neighbors regressor 0.70 1.10 1.47 1.79

Huber regressor 0.66 1.06 1.46 1.80
Bayesian ridge 0.66 1.07 1.46 1.81

Least angle regression 0.72 1.07 1.46 1.81
Linear regression 0.66 1.07 1.46 1.81
Ridge regression 0.66 1.07 1.46 1.81

AdaBoost regressor 0.76 1.28 1.76 2.16
Dummy regressor 0.76 1.28 1.77 2.18

Elastic net 0.76 1.28 1.77 2.18
Lasso least angle regression 0.76 1.28 1.77 2.18

Lasso regression 0.76 1.28 1.77 2.18
Orthogonal matching pursuit 0.77 1.29 1.80 2.19
Passive aggressive regressor 1.42 1.14 1.54 2.93
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Fig. 8    Point-forecast  metrics  (a)  RMSE  and  (b) R2 of  all
models on the test data for four horizons.
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performance  with  an  almost  horizontal  point  cloud
shape, which means it underestimates larger changes in
battery  temperature.  The  performance  of  the  QETR
model  (Fig.  9f)  is  between the  LGBM-ETR and SDT,
with  a  significant  underestimation  of  high  rises  of
battery temperature by its median prediction.

An  error  histogram  of  the  best  performing  model
QGRU is given in Fig. 10. In 91.89% of the test  data,
the  error  is  between −1  and 1°C,  and  in  98.38%
between −2  and 2°C.  The  peak  of  the  histogram  is
located  at 0.2°C,  which  indicates  a  small

overestimation of the battery temperature change.
3.3.2　Quantile-related comparison
One-step  quantile  predictions  are  obtained  from  the
quantile models (Q*NN, QCNN22, and QETR) for all
four  horizons.  The  quantile-related  metrics  from  Ref.
[24] are calculated, and their average over the horizons
is  shown  in Table  3.  Better  performance  is  achieved
with  lower  values  for  all  metrics.  Additionally,  the
share  of  true  values  below  the  0.5  quantile  (median)
and 0.99 quantile is given as average over the horizons.

ψavg

p (q j)d, abs

p (q j,1−q j)d, abs

The QCNN22 model shows the best performance for
the average sharpness , but performs worst for the
occurrences  within  quantiles ,  and  quantile
intervals , as well as the Winkler Score
(WS).  Except  for  quantile  crossing  indicated  by
Crossover Rate Score (CORS), the Q*NN models from
this  work  perform  better  than  QETR,  but  no  model
outperforms in all metrics. For the QGRU predictions,
the true values are lower than the median prediction in
56.19% of  the  test  data.  The  true  values  for  the  0.99
quantile prediction are lower in 98.87% for the QGRU.
The reference model QETR performs comparably well
for  the  0.99  quantile  prediction  (98.29%),  but  bad  for
the median (40.40%).
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Fig. 9    Regression  plots  of  the  battery  temperature
predictions  for  the  test  data.  The  plots  are  shown  for  (a)
QCNN, (b)  QGRU, (c)  QCNN22,  (d)  LGBM-ETR, (e)  SDT,
and  (f)  QETR.  The  colors  indicate  the  horizon,  increasing
from inner to outer with 5 km (orange),  10 km (purple),  15
km  (green),  and  20  km  (blue).  The  rectangles  (red)  mark
areas discussed in the text.
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Fig. 10    Error histogram of the QGRU with steps of 0.1°C.

 

Table 3    Quantile-related metrics on the test data, average over all four horizens. Bold values indicate the best value for each
metric.

Model
Metric

p (q j)d,abs p (q j,1−q j)d,abs WS ψavg  (°C) ψmax  (°C) CORS (×10−3) 0.50 quantile (%) 0.99 quantile (%)

QETR 0.05 0.06 1.54 2.67 7.67 0 40.40 98.29

QCNN22 0.20 0.44 16.81 1.03 6.10 1.83 41.27 68.95

QCNN 0.03 0.05 2.42 1.37 4.51 12.09 46.35 95.99

QGRU 0.04 0.06 1.27 1.54 4.11 0.02 56.19 98.87

QLSTM 0.05 0.02 1.39 1.86 5.37 1.70 60.10 98.13
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3.3.3　Prediction example
Further  comparison  can  be  conducted  by  exemplary
analysis  of  the  predictions  on  test  data. Figure  11
depicts  the  prediction  on  a  test  fleet  data  sample  for
the  QCNN  (Fig.  11a),  QGRU  (Fig.  11b),  QCNN22
(Fig.  11c),  and  one-step  reference  models  (Fig.  11d).
The  QGRU model  follows  the  true  values  closer  than
the QCNN model, as can be seen in the distance 0 km
to 5 km (with negative battery temperature change) and
15 km to 20 km where the median is closer to the true
values.  This  is  one  example  that  shows  the
underestimation  of  the  QCNN  compared  with  the
QGRU  as  observed  by  the  regression  plots.
Furthermore,  the  range  of  the  predicted  quantile
intervals  is  smaller  for  the  QGRU.  For  instance,  the
QGRU model predicts a change in battery temperature
between 3°C and 6°C after 20 km with 98% certainty,
while the QCNN predicts a range of 1.5°C to 6.5°C.

In comparison with the Q*NN models, predictions of

the  reference  models  provide  less  information.  While
each  Q*NN  model  provides  quantiles  as  sequences
over the prediction horizon, the reference models only
provide  a  single-step  prediction  for  one  horizon,
without a connection between the different steps in the
horizon. In the shown example, the LGBM-ETR model
shows  comparable  results  to  the  median  prediction  of
the QCNN. This is followed by the median predictions
of  the  QETR  and  the  prediction  of  the  SDT  with  the
largest  underestimation  of  the  battery  temperature
change.  The  quantile  intervals  of  QETR  are  much
wider than for the Q*NN predictions. Additionally, the
true  values  are  more  often  in  the  outer  quantile
intervals  with  lower  predicted  model  certainty  of  the
QETR.

4　Discussion

This  work  addresses  several  aspects  discussed  in  Ref.
[24]  for  battery  temperature  prediction,  such  as  the
need  for  larger  datasets  and  their  handling.
Additionally,  the dependency of  horizon on prediction
performance  has  been  considered.  Model  building
includes recurrent layers (GRU and LSTM) and deeper
networks.  Bayesian  optimization  is  used  instead  of
random  grid  search  for  more  efficient  hyperparameter
optimization.  The resulting  models  are  compared with
regression  and  quantile  regression  models  for  further
evaluation.

As a consequence of the addressed aspects, the novel
Q*NN models perform better than the QCNN22 model
from  Ref.  [24].  The  QCNN22  model  has  not  been
trained on the larger fleet data. Consequently, it cannot
predict  well  new  situations  presented  in  the  new  fleet
data  due  to  possible  overfitting.  The  new  models  are
trained  on  the  bigger  fleet  data  with  clustering-based
data balancing that is assumed to cover more scenarios.
Thus,  they  are  expected  to  perform  better  in  later
application.  However,  there  remain aspects  need to  be
further investigated.

The  proposed  clustering  of  the  battery  temperature
enables an efficient analysis and data balancing. Novel
data  augmentation  for  simulation  data  allows  an
increase  in  training  data  by  assembling  existing  data
while  preserving physical  dependencies.  However,  the
effect  of  both  parts  of  data  preparation  has  not  been
examined  independently.  This  work  does  not  provide
quantified  information  about  the  individual  effect  of
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Fig. 11    Predictions for a test drive starting at 15°C battery
temperature  of  the  models  (a)  QCNN,  (b)  QGRU,  (c)
QCNN22,  and  (d)  the  reference  models.  The  latter  are
QETR  (quantiles  and  circles),  LGBM-ETR  (triangles)  and
SDT (diamonds). As in Ref. [24], the predicted quantiles are
represented  by  shaded  areas  for  the  intervals  (0.01/0.99,
0.1/0.9,  and  0.25/0.75  from  outer  to  inner),  and  boundaries
from  bottom  (0.01)  to  top  (0.99).  The  median  is  a  thin  line
(black),  the  true  values  a  thick  line  (red).  In  (d),  vertical
dashed  lines  indicate  the  prediction  horizons  for  the  single-
step reference models.
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these methods on the resulting prediction performance.
While this work compared convolutional with recurrent
Q*NN  architectures,  following  works  can  combine
both  layer  types  into  one  architecture  as  has  been
investigated  in  other  applications[94].  The  efficient
Bayesian  optimization  allows  faster  hyperparameter
optimization using an increasing share of training data
over  the  trials.  However,  future  works  need  to
investigate the effect on reduction of optimization time,
and  compare  the  prediction  performance  of  models
trained with the resulting hyperparameter sets.

Further  evaluation  of  the  prediction  model
performance  can  focus  on  model  application  in  a
predictive control. The prediction models can be tested
and compared in the predictive BTMS as introduced in
Ref.  [6].  Such  an  analysis  provides  information  about
the  needed  complexity  of  prediction  models  for  a
predictive BTMS.

5　Conclusion

Different  machine  learning  models  for  battery
temperature  prediction  of  battery  electric  vehicles  are
trained  and  compared  in  this  work.  The  following
contributions are achieved:

•  Data  processing  included  time-series  clustering,
outlier  removal,  and  data  balancing  of  a  large  fleet
dataset of 225 629 drives.

•  The  simulation  dataset  of  971  simulations  is
augmented using the newly proposed method IBA.

• QCNN and recurrent neural networks (QGRU and
QLSTM) are trained for battery temperature prediction
as  quantile  sequences,  with  an  efficient  Bayesian
hyperparameter optimization.

• The models are compared with the model from Ref.
[24],  one-step  regression  models,  and  quantile
regression models for four different horizons.

•  The  best  performing  model  QGRU  achieves  an
average RMSE of 0.66°C and an R2 of 0.84, which is a
large  improvement  compared  to  1.30°C  (RMSE)  and
0.47 (R2) for the model from Ref. [24].

•  The QGRU predictions differ from the true values
by maximum 1.00°C in 90% of the test data. The 0.99
quantile prediction covers 98.87% of the true values.

The  results  show  accurate  battery  temperature
prediction  of  the  developed  Q*NN  including  the
prediction uncertainty. In a future work, the models can
be  integrated  in  a  predictive  Battery  Thermal
Management  System  (BTMS),  such  as  Ref.  [6]  for

increased  efficiency  and  performance  comparison  in
application.  The  proposed  methods  should  be  further
investigated  considering  their  individual  impact  and
applied to other domains.

Appendix
 

Table A1    Features of the history input and foresight input
channel of the Q*NN.

Parameter HistoryForesight
Acceleration pedal (%) 1 0

Ambient temperature (°C) 1 1
Battery cooling threshold end (°C) 1 1
Battery cooling threshold start (°C) 1 1

Battery SOC rate (%/km) 1 0
Battery SOC squared (%2) 1 0

SOC (%) 1 0
Battery temperature (°C) 1 0

Battery temperature-ambient temperature (°C) 1 0
Battery temperature rate (°C/km) 1 0

Cabin target temperature (°C) 1 0
Cabin target temperature QL 1 0

Cabin temperature (°C) 1 0
Cabin temperature QL 1 0

DPMA acceleration propulsion (m/s2) 1 0
DPMA acceleration propulsion QL 1 0

DPMA acceleration recuperation (m/s2) 1 0
DPMA acceleration recuperation QL 1 0

DPMA speed propulsion (km/h) 1 0
DPMA speed propulsion QL 1 0

DPMA speed recuperation (km/h) 1 0
DPMA speed recuperation QL 1 0

Electric machine stator temperature (°C) 1 0
Electric machine stator temperature QL 1 0

Inverter temperature (°C) 1 0
Inverter temperature QL 1 0

Road height difference negative sum (m/km) 1 1
Road height difference negative sum QL 1 1

Road height difference positive sum (m/km) 1 1
Road height difference positive sum QL 1 1

Speed (km/h) 1 1
Speed difference (km/h) 1 1

Speed difference squared ((km/h)2) 1 1
Speed inverted (h/km) 1 1

Speed to the power of five ((km/h)5) 1 1
Temperature after heat pump (°C) 1 0
Temperature after heat pump QL 1 0

Vehicle torque (Nm) 1 0
Within horizon QL 1 1
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A

All  history  inputs  and  foresight  inputs  of  the  Q*NN
models are listed in Table A1 as in Ref. [24]. Qualifier
Values  (QL)  are  included  if  needed  for  the
corresponding feature. If a feature is used in the history
input  channel  or  foresight  input  channel,  it  is  marked
with  1  in  the  corresponding  column.  The  Q*NN
hyperparameters  of  the  trials  with  lowest  validation
loss are shown in Table A2.

B

Figure  A1 shows  an  example  of  augmented  profiles.
The  example  profiles  are  composed of  the  Worldwide
harmonized Light vehicles Test Cycle (WLTC)[95] and
the US06 cycle[96]. As described in Section 2.1.2, only
data  that  include  the  matched  intersection  point  in  the
foresight horizon (following 20 km) or history horizon
(previous 5 km) are considered. The resulting window
of  new  data  points  is  marked  as  gray  shaded  area  in
Fig. A1.

C

Ta Tb

Tb, cool, lower/upper

∆v

Figure  A2 shows  the  feature  importance  for  the
regression and quantile regression reference models for
each horizon. The features include the current value for
ambient  temperature  ( ),  battery  temperature  ( ),
and  lower  and  upper  cooling  threshold
( ),  as  well  as  the  minimum  (min),
maximum  (max),  mean  value,  and  standard  deviation
(std)  of  the  velocity  (v)  and  the  difference  in  velocity
( ).

D

The  point-forecast  metrics  are  averaged  over  the  four
horizons  and  shown  in Table  A3.  Two  additional
columns  include  the  maximum  absolute  difference
between predictions and true values for 90% and 95%
of  the  test  data.  In  case  of  the  quantile  prediction
models,  the  metrics  are  calculated  for  the  median

prediction.

CRediT

Andreas  M.  Billert:  conceptualization,  methodology,
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Fig. A1    Speed profiles of two augmented profiles using IBA
with  3% tolerance  for  simulations  of  WLTC  (A)  and  US06
(B)  cycle.  The  two  profiles  A  and  B  can  be  assembled  by
composition  of  the  simulations  around  the  matched
intersection point (dashed line) as (a) AB and (b) BA.
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Fig. A2    Feature  importance  from (a)  LGBM-ETR and (b)
QETR reference models for all considered horizons.

 

Table A2    Hyperparameters  and  validation  loss  of  the  trials  with  lowest  validation  loss.  Further  descriptions  of  the
hyperparameters are provided in Section 2.2.1.

Model
Parameter

Batch size Base node number Deeper network Dropout rate αMSE Learning rate Total loss (×10−4)

QCNN 32 256 False 0.2 0.01 3.50×10−5 3.16

QGRU 80 128 False 0.2 0.01 1.01×10−4 3.64

QLSTM 128 224 False 0.2 0.01 6.63×10−4 3.23
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