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Embedding calculus for surfaces

MANUEL KRANNICH

ALEXANDER KUPERS

We prove convergence of the Goodwillie–Weiss embedding calculus for spaces of embeddings into a
manifold of dimension at most two, so in particular for diffeomorphisms between surfaces. We also relate
the Johnson filtration of the mapping class group of a surface to a certain filtration arising from embedding
calculus.

58D10; 57K20, 57R40, 57S05

1 Introduction

For smooth manifolds M and N , and an embedding e@ W @M ,! @N , we write Emb@.M;N / for the space
of embeddings that agree with e@ on @M , equipped with the smooth topology. Embedding calculus à la
Goodwillie and Weiss provides a space T1Emb@.M;N / and a map

(1) Emb@.M;N /! T1Emb@.M;N /;

which approximates the space of embeddings through restrictions to subsets diffeomorphic to a finite
collection of open discs and a collar. The space T1Emb@.M;N / arises as a homotopy limit of a tower
of maps whose homotopy fibres have an explicit description in terms of the configuration spaces of M

and N — see Weiss [27] — so its homotopy type is sometimes easier to study than that of Emb@.M;N /.
The main result in this context is due to Goodwillie, Klein and Weiss [11; 12] and says that if the difference
of the dimension of N and the relative handle dimension of the boundary inclusion @M �M is at least
three, then embedding calculus converges in the sense that (1) is a weak homotopy equivalence. If this
assumption is not met, little is known about for which choices of M and N embedding calculus converges
(but see Remark 1.1(ii) and (vi) below).

1.1 Convergence in low dimensions

In the first part of this work, we study (1) when the target N has dimension at most two. Our main result
shows that embedding calculus always converges under this assumption, even though the assumption on
the handle codimension is not satisfied.
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982 Manuel Krannich and Alexander Kupers

Theorem A For compact manifolds M and N with dim.N /� 2, the map

Emb@.M;N /! T1Emb@.M;N /

is a weak homotopy equivalence for any embedding e@ W @M ,! @N .

Perhaps the most interesting (hence eponymous) instance of Theorem A is when M DN is a surface †
and e@ D id@†. In this case Theorem A specialises to the following:

Corollary B For a compact surface †, possibly with boundary and nonorientable , the map

Diff@.†/! T1Emb@.†;†/

is a weak homotopy equivalence.

Remark 1.1 (i) We prove Theorem A as a special case of a more general result that also treats
embedding spaces of triads (see Theorem 3.1).

(ii) Theorem A is special to dimension at most 2: in [18], we show that this results fails for N DD3

and for most high-dimensional compact manifolds N . In the language of that paper, Theorem A
implies that the smooth Disc–structure space SDisc

@
.N / is contractible if dim.N /� 2.

(iii) The proof of Theorem A does not rely on Goodwillie, Klein and Weiss’s convergence results.

(iv) Theorem A is stronger than Corollary B, even if dim.M / D dim.N / D 2. It implies that
T1Emb@.†;†0/D¿ if † and †0 are connected compact surfaces that are not diffeomorphic.

(v) Composition induces an E1–structure on T1Emb@.M;M / with respect to which the map

Emb@.M;M /! T1Emb@.M;M /

is an E1–map. For a compact manifold M , the E1–space Emb@.M;M /DDiff@.M / is grouplike,
but it is not known whether the same holds for T1Emb@.M;M /. Theorem A implies that this is
the case if dim.M /� 2.

(vi) Theorem A provides a class of examples for which the map Emb@.M;N /! T1Emb.M;N / is
a weak equivalence in handle codimension less than three. A few examples of this form were
known before; see Knudsen and Kupers [17, Theorem C, Section 6.2.4]. In contrast, there are some
cases for which it is known that embedding calculus does not converge, such as for M DD1 and
N DD3 by an argument due to Goodwillie.

1.2 Embedding calculus and the Johnson filtration

The Johnson filtration
�0Diff@.†/D J.0/� J.1/� J.2/� � � �

of the mapping class group �0Diff@.†/ of an orientable surface † of genus g with one boundary
component is the filtration by the kernels of the action of �0Diff@.†/ on the quotients of the fundamental
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Embedding calculus for surfaces 983

group �1.†;�/ based at the point in the boundary, by the constituents of its lower central series. By
work of Moriyama [21], this filtration can be recovered from the action of �0Diff@.†/ on the compactly
supported cohomology of the configuration spaces of the punctured surface † n f�g. It is reasonable to
expect a relationship between the Johnson filtration and embedding calculus, as the latter may be viewed
as the study of embeddings via their induced maps between the homotopy types of configuration spaces
of thickened points in source and target.

The second part of this work serves to establish one such a relationship: we introduce a filtration

(2) �0Diff@.†/D T JH Z
@=2 .0/� T JH Z

@=2 .1/� T JH Z
@=2 .2/� � � �

arising from the cardinality filtration of embedding calculus in HZ–modules applied to the space of
self-embeddings fixed on an interval in the boundary (see Section 4 for precise definitions), and we use
[21] to show that this filtration contained in the Johnson filtration

T JH Z
@=2 .k/� J.k/ for k � 0:
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2 Generalities on spaces of embeddings and embedding calculus

We begin by fixing some conventions on spaces of embeddings, followed by recalling various known
properties of embedding calculus and complementing them with some new properties such as a lemma
for lifting embeddings along covering spaces in the context of embedding calculus.

2.1 Spaces of embeddings and maps

All our manifolds will be smooth and may be noncompact, disconnected, or nonorientable. A manifold
triad is a manifold M together with a decomposition of its boundary @M D @0M [ @1M into two
codimension-zero submanifolds that intersect at a set @.@0M /D @.@1M / of corners. Any of these sets
may be empty or disconnected. If this decomposition is not specified, we implicitly take @0M D @M and
@1M D¿.
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984 Manuel Krannich and Alexander Kupers

When studying embeddings between manifolds triads M and N , we always fix a boundary condition, ie
an embedding e@0

W @0M ,! @0N , and only consider embeddings e WM ,!N that restrict to e@0
on @0M

and have near @0M the form e@0
� idŒ0;1/ W @0M � Œ0; 1/ ,! @0N � Œ0; 1/ with respect to collars of @0M

and @0N . We denote the space of such embeddings in the weak C1–topology by Emb@0
.M;N /. We

replace the subscript @0 by @ to indicate that @0M D @M , and drop the subscript if we want to emphasise
that @0M D¿ holds. As a final piece of notation, given manifold triads M and L, we consider M tL

as a manifold triad via @0.M tL/D @0M t @0L.

Similarly, we also consider the space of bundle maps Bun@0
.TM;TN /. By this we mean the space

of fibrewise injective linear maps TM ! TN that restrict to the derivative d.e@0
/ on T @0M , in the

compact-open topology. Taking derivatives induces a map Emb@0
.M;N /! Bun@0

.TM;TN / which we
may postcompose with the forgetful map Bun@0

.TM;TN /!Map@0
.M;N / to the space of continuous

maps extending e@0
, equipped with the compact-open topology.

2.2 Manifold calculus

Given manifold triads M and N and a boundary condition e@0
W @0M ,! @0N as above, Goodwillie

and Weiss’s embedding calculus [12; 27] gives a space T1Emb@0
.M;N / (or rather, a homotopy type)

together with a map

(3) Emb@0
.M;N /! T1Emb@0

.M;N /:

Embedding calculus converges if the map (3) is a weak homotopy equivalence (shortened to weak
equivalence throughout this work). This fits into the more general context of manifold calculus, and we
shall need this generalisation at several places.

2.2.1 Manifold calculus in terms of presheaves Among the various models for the map (3) and
manifold calculus in general, that of Boavida de Brito and Weiss in terms of presheaves [1] is most
convenient for our purposes. We refer to Section 8 of their work for a proof of the equivalence between
this model and the classical model of [27].

To recall their model (in a slightly more general setting; see Remark 2.5), we fix a .d�1/–manifold K

possibly with boundary, thought of as @0M for manifold triads M . We write DiscK for the topologically
enriched category whose objects are smooth d–dimensional manifold triads that are diffeomorphic (as
triads) to K � Œ0; 1/t T �Rd for a finite set T with @0.K � Œ0; 1/t T �Rd / D K � f0g, and whose
morphisms are given by spaces of embeddings of triads as described in Section 2.1. If K is clear from
the context, we abbreviate DiscK by Disc@0

.

We write PSh.Disc@0
/ for the topologically enriched category of space-valued enriched presheaves on

Disc@0
, and we consider it as a category with weak equivalences by declaring a morphism of presheaves to

be a weak equivalence if it is a weak equivalence on all its values. Localising at these weak equivalences
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Embedding calculus for surfaces 985

(for instance as described in [7]) gives rise to a topologically enriched category PSh.Disc@0
/loc together

with an enriched functor

(4) PSh.Disc@0
/! PSh.Disc@0

/loc:

Denoting by Man@0
the topologically enriched category with objects all manifold triads M with an identi-

fication @0M ŠK and morphism spaces the spaces of embeddings of triads, a presheaf F 2 PSh.Disc@0
/

induces a new presheaf T1F 2 PSh.Man@0
/ by setting

T1F.M / WDMapPSh.Disc@0
/loc.Emb@0

.�;M /;F /:

If F is the restriction of a presheaf F 2 PSh.Man@0
/, then we have a composition of maps of presheaves

(5) F.M / Š�!MapPSh.Man@0
/.Emb@0

.�;M /;F /! T1F.M /

on Man@0
where the first map is given by the enriched Yoneda lemma and the second is induced by the

restriction along Disc@0
� Man@0

and the functor (4). Note that this is a weak equivalence whenever
M 2 Disc@0

, that is, manifold calculus converges on manifolds diffeomorphic to the disjoint union of a
collar on @0M and a finite number of open discs.

Example 2.1 (embedding calculus) For triads M and N and a boundary condition e@0
W @0M ,! @0N ,

we have a presheaf Emb@0
.�;N / of embeddings of triads extending e@0

. Choosing K D @0M , the
map (5) gives rise to a model for the embedding calculus map (3),

(6) Emb@0
.M;N /!MapPSh.Disc@0

/loc.Emb@0
.�;M /;Emb@0

.�;N //D T1Emb@0
.M;N /:

Remark 2.2 There are several alternative points of view on the maps (5) and (6), for instance in terms
of modules over variants of the little discs operad; see [1, Section 6] or [26].

2.2.2 A smaller model In some situations, it is convenient to replace Disc@0
by a smaller equivalent

category. There is a chain of enriched functors

(7) Disc�@0
! Discsk

@0
! Disc@0

:

The right arrow is the inclusion of the full subcategory Discsk
@0
�Disc@0

on the objects @0M �Œ0; 1/tn�Rd

for nDf1; : : : ; ng with n� 0. The category Disc�
@0

has the same objects as Discsk
@0

and space of morphisms
pairs .s; e/ of a parameter s 2 .0; 1� and an embedding of triads

e W @0M � Œ0; 1/t n�Rd
! @0M � Œ0; 1/tm�Rd

with ej@0M�Œ0;1/ D id@0M � s � .�/, where s � .�/ W Œ0; 1/! Œ0; 1/ is multiplication by s. Composition
is given by composing embeddings and multiplying parameters, and the functor to Discsk

@0
forgets the

parameters. Both functors in (7) are Dwyer–Kan equivalences, the first by a variant of the proof of
the contractibility of the space of collars and the second by definition, so we may equivalently define
T1F.�/ using any of the three categories (7).
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986 Manuel Krannich and Alexander Kupers

2.2.3 Two properties of manifold calculus The following two properties of the functor

(8) PSh.Disc@0
/ 3 F 7! T1F 2 PSh.Man@0

/

will be of use:

(a) Homotopy limits The mapping spaces resulting from the localisation (4) can be viewed equivalently
as the derived mapping spaces formed with respect to the projective model structure on PSh.Disc@0

/; see
[1, Section 3.1]. That is, the functor (8) models the homotopy right Kan-extension along the inclusion
Disc@0

�Man@0
[1, Section 4.2]. The functor (8) thus preserves homotopy limits in the projective model

structures, which are computed objectwise.

(b) J1–covers and descent If F is the restriction of a presheaf F 2 PSh.Man@0
/ then T1F can be

seen alternatively as the homotopy J1–sheafification of F : for 1� k �1 (we will only use the cases
k D 1;1), a nonempty open cover U of a triad M is called a Weiss k–cover if every U 2U contains an
open collar on @0M and every finite subset of cardinality � k of int.M / is contained in some element
of U. An enriched presheaf on Man@0

is a homotopy Jk–sheaf if it satisfies descent for Weiss k–covers
in sense of [1, Definition 2.2]. Note that a homotopy J1–sheaf is a homotopy sheaf in the usual sense,
and a homotopy Jk–sheaf is also a homotopy Jk0–sheaf for any k 0 � k. By [1, Theorem 1.2], the functor

PSh.Man@0
/ 3 F 7! T1F 2 PSh.Man@0

/

together with the natural transformation idPSh.Man@0
/)T1 is a model for the homotopy J1–sheafification.

In particular, if F is already a J1–sheaf, then F ! T1F is a weak equivalence, so any map F ! G

in PSh.Man@0
/ with G a homotopy Jk–sheaf for some 1� k �1 factors over F ! T1F up to weak

equivalence.

It is often convenient to use a stronger version of descent, namely with respect to complete Weiss1–
covers U, which are Weiss1–covers that contain a Weiss1–cover of any finite intersection of elements
in U. Regarding U as a poset ordered by inclusion, the map induced by restriction

T1F.M /! holim
U2U

T1F.U /

is a weak equivalence by [17, Lemma 6.7].

Remark 2.3 At several points in the remainder of this work, we will construct maps between spaces of
the form T1Emb@0

.M;N / by using the descent property from Section 2.2.3(b). Strictly speaking, these
will only be weak maps, ie zigzags of maps whose wrong-way maps are weak equivalences. This will be
good enough for all purposes. More formally, a weak map X ! Y gives an actual morphism from X and
Y in the localisation of the category of spaces at the weak equivalences, and all our statements involving
weak maps can be viewed as taking place in this localisation. In particular, when we say that a square
involving weak maps commutes up to canonical homotopy then we mean that the square can be enhanced
in a preferred way to a homotopy commutative square in this localisation.
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2.3 Properties of embedding calculus

We explain various features of embedding calculus which illustrate that T1Emb@0
.M;N / has formally

similar properties to Emb@0
.M;N / even in situations where embedding calculus need not converge.

(a) Postcomposition with embeddings Given triads M , N , and K, with boundary conditions

e@0M W @0M ,! @0N and e@0N W @0N ,! @0K;

there is a map
T1Emb@0

.M;N /�Emb@0
.N;K/! T1Emb@0

.M;K/

that is associative in the evident sense and compatible with the composition maps for embeddings spaces,
both up to higher coherent homotopy.

In the model of Section 2.2.1, these maps are given by applying the map

(9) Emb@0
.N;K/!MapPSh.Disc@0M /loc.Emb@0

.�;N /;Emb@0
.�;K//

induced by postcomposition in the second factor, followed by composition in PSh.Disc@0M /loc. Note that
the codomain of (9) does in general not agree with T1Emb@0

.N;K/.

(b) Naturality and isotopy invariance In the situation of (a), if we assume dim.M /D dim.N /, then
there are composition maps

(10) T1Emb@0
.M;N /�T1Emb@0

.N;K/! T1Emb@0
.M;K/

that are associative in the evident sense and compatible with (9) and the composition for embeddings,
up to higher coherent homotopy. Combining this with (a), we see that like spaces of embeddings,
T1Emb@0

.�;�/ is isotopy-invariant in source and target: if M �M 0 is a subtriad with @0M � @0M 0

such that there is an embedding of triads M 0 ,!M which is inverse to the inclusion up to isotopy of
triads, then the maps

T1Emb@0
.M 0;N /! T1Emb@0

.M;N / and T1Emb@0
.L;M /! T1Emb@0

.L;M 0/

induced by restriction and inclusion are weak equivalences. Here L is any other triad with a boundary
condition e@0

W @0L ,! @0M .

In the model described in Section 2.2.1, the composition map (10) can implemented as follows: the
codimension-0 embedding e@0M W @0M ,! @0N induces enriched functors

.e@0M /� W Disc
�

@0M ! Disc�@0N and .e@0M /� W PSh.Disc�@0N /! PSh.Disc�@0M /:

Writing d WD dim.M /D dim.N /, .e@0M /� sends objects @0M � Œ0; 1/tn�Rd to @0N � Œ0; 1/tn�Rd .
For morphisms, .e@0M /� keeps the parameter s fixed and sends an embedding e to the embedding given
by id@0N � .s � .�// on @0M � Œ0; 1/ and by .e@0M � Œ0; 1/t idn�Rd / ı ejn�Rd on n�Rd . The functor
.e@0M /� is given by precomposition with .e@0M /�. The restriction maps

Emb@0N .@0N � Œ0; 1/t n�Rd ;N /! Emb@0M .@0M � Œ0; 1/t n�Rd ;N /
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988 Manuel Krannich and Alexander Kupers

are weak equivalences by the contractibility of spaces of collars, and similarly for Emb@0
.�;K/, so we

have weak equivalences in PSh.Disc�
@0M

/,

.e@0M /�Emb@0N .�;N / '�! Emb@0M .�;N /; .e@0M /�Emb@0N .�;K/
'
�! Emb@0M .�;K/:

Using the model

T1Emb@0
.M;N /'MapPSh.Disc�

@0M
/loc.Emb@0

.�;M /;Emb@0
.�;N //;

the composition (10) is given by applying .e@0M /� to the second factor, composition in the category
PSh.Disc�

@0M
/loc, and using the weak equivalences of presheaves above.

(c) Convergence on disjoint unions of discs Embedding calculus converges if the domain M is
diffeomorphic (as a triad) to @0M � Œ0; 1/tT �Rd for a finite set T , where

@0.@0M � Œ0; 1/tT �Rd /D @0M � f0g:

This follows from the corresponding fact for manifold calculus (see Section 2.2.1). By isotopy invariance,
it remains true with T �Rd replaced by T1 �Rd tT2 �Dd for finite sets Ti .

(d) Comparison to bundle maps The derivative map Emb@0
.M;N /! Bun@0

.TM;TN / fits into a
natural commutative diagram (up canonical homotopy) of the form

(11)

Emb@0
.M;N / Bun@0

.TM;TN / Map@0
.M;N /

T1Emb@0
.M;N /

which is compatible with composition maps from (10) up to higher coherent homotopy. This follows from
Section 2.2.3(b) by observing that the target in the natural transformation Emb@0

.�;N /!Bun@0
.�;TN /

is a homotopy J1–sheaf, so the map Bun@0
.�;TN /! T1Bun@0

.�;TN / is a weak equivalence of
presheaves.

(e) Extension by the identity Suppose that we have another triad Q with an identification of @0Q

with a codimension-zero submanifold of @0M . Then we can form, up to smoothing corners, the triad
M[QDM[@0QQ with @0.M[Q/D .@0M nint.@0Q//[@1Q. If M and N are of the same dimension
and we are further given a boundary condition e@0

W @0M ,! @0N , we can form N [Q in the same
manner. Extending embeddings by the identity gives a map Emb@0

.M;N /! Emb@0
.M [Q;N [Q/

(strictly speaking this requires the addition of collars to the definitions to guarantee the glued map is
smooth but we forego the addition of this contractible space of data), which can be shown to fit into a
diagram

(12)

Emb@0
.M;N / Emb@0

.M [Q;N [Q/

T1Emb@0
.M;N / T1Emb@0

.M [Q;N [Q/
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commutative up to preferred homotopy. The existence of the dashed map in (12) is proved by noting that
T1Emb@0

.�[Q;N [Q/ is a homotopy J1–sheaf on Disc@0M ; see Section 2.2.3(b).

(f) Isotopy extension Suppose that the triads M and N are both d–dimensional, and e@0M W@0M ,!@0N

is a boundary condition. Fix a compact d–dimensional submanifold triad P �M (so, in particular,
@0P D @0M \ @P ) and consider the induced boundary condition e@0

W @0M � @0P ,! @0N . Suppose
that embedding calculus converges for triad embeddings of triads of the form P tT �Rd ,!N for finite
sets T in the sense that the map

Emb@0
.P tT �Rd ;N /! T1Emb@0

.P tT �Rd ;N /

is a weak equivalence. Then, fixing a triad embedding e W P ,!N disjoint from @N n e@0M .@0P /, there
is a map of fibration sequences

Emb@0

�
M n int.P /;N n int.e.P //

�
Emb@0

.M;N / Emb@0
.P;N /

T1Emb@0

�
M n int.P /;N n int.e.P //

�
T1Emb@0

.M;N / T1Emb@0
.P;N /

'

whose right square results from (10) and whose left square is an instance of the diagram (12). The
homotopy fibres are taken over the embedding e and its image in T1Emb@0

.P;N /, and

@0.M n int.P // WD @1P [ @0M n int.@0P /

with boundary condition induced by e and e@0M . For the upper row, this is a form of the usual parametrised
isotopy extension theorem. For the lower row, this is a mild generalisation of a result of Knudsen and
Kupers [17, Theorem 6.1 and Remarks 6.4 and 6.5]. Note that every triad embedding P ,!N is disjoint
from @N n e@0

.@0P / up to isotopy of triad embeddings, so if we would like to draw conclusions about all
homotopy fibres of the right horizontal maps, it suffices to restrict to embeddings of this form.

We record the following immediate corollary of properties (c) and (f) which will allow us to restrict to
triads with @0M ¤¿ when proving convergence results.

Lemma 2.4 Let M and N be d–dimensional triads , e@0
W @0M ,! @0N a boundary condition , and

Dd � int.M / an embedded disc. The map

Emb@0
.M;N /! T1Emb@0

.M;N /

is a weak equivalence if and only if for all embeddings e WDd ,! int.N /, the map

Emb@0

�
M n int.Dd /;N n int.e.Dd //

�
! T1Emb@0

�
M n int.Dd /;N n int.e.Dd //

�
is a weak equivalence , where @0.M n int.Dd //D @0M [@Dd and @0

�
N n int.e.Dd //

�
D @0N [@e.Dd /.
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Proof This is an instance of the fact that for a commutative square

E B

E0 B0

'

whose right arrow is a weak equivalence, the map E!E0 is a weak equivalence if and only if the map
hofib.E! B/! hofib.E0! B0/ is a weak equivalence for all choices of basepoints. We apply this to
the commutative square induced by restriction

Emb@0
.M;N / Emb.Dd ;N /

T1Emb@0
.M;N / T1Emb.Dd ;N /

whose right-hand map is a weak equivalence by the convergence on discs (property (c)). By isotopy
extension (property (f)), the map on homotopy fibres over an embedding e WDd ,! int.N / agrees with
the second map in the statement, so the claim follows.

We continue with a pair of remarks about these properties:

Remark 2.5 Boavida de Brito and Weiss [1, Section 9] restrict their attention to the case @0M D @M ,
but this turns out to be no less general: given a manifold triad M , the manifold triad M n @1M with
@0.M n @1M /D int.@0M /D @.M n @1M / is isotopy equivalent to M , so there is a weak equivalence
T1Emb@0

.M;N /' T1Emb@.M n @1M;N n @1N / by item (b) above.

Remark 2.6 As a consequence of property (d) above, to show that the map of Corollary B on path
components �0Diff@.†/! �0T1Emb@.†;†/ is injective, it suffices to prove that

(13) �0Diff@.†/! �0hAut@.†/

is injective, which is true for all compact surfaces and can be seen as follows.

First, one reduces to the case of connected surfaces. For this, it suffices to show that closed connected
surfaces are homotopy equivalent if and only if they are diffeomorphic, which is a consequence of the
fact that closed surfaces are classified by orientability and the Euler characteristic, and both of these
are preserved by homotopy equivalences relative to the boundary. In the connected case, the claimed
injectivity is proved for instance in [3, Theorem 4.6], with the exception of † D S2 and † D RP2.
These two cases can settled using the fibre sequence resulting from restricting to an embedded 2–disc and
the fact that the mapping class groups of a disc and a Möbius strip are trivial; see [24, Theorem B; 8,
Theorem 3.4].

In fact, the forgetful map (13) is often an isomorphism: for closed orientable surfaces of positive genus
this is an instance of the Dehn–Nielsen–Baer theorem [9, Theorem 8.1], but there is also an argument for
most surfaces with boundary [3, Theorem 1.1(1)].
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The proof of Theorem A relies on some additional properties of embedding calculus which we establish
in the ensuing subsections. These properties are not very surprising, but seem to have not appeared in the
literature before.

2.4 Thickened embeddings

The first property concerns the behaviour of embedding calculus upon replacing the domain M by a
thickening, that is, a vector bundle V over M .

Fix manifold triads M and N and a k–dimensional vector bundle p W V !M . We consider V as a triad
via @0V WD p�1.@0M /. Fixing a boundary condition e@0

W @0V ,! @0N , we obtain a boundary condition
e0
@0
W @0M ,! @0N by restriction along the zero-section M � V . From (11), we obtain the solid arrows

in the diagram

(14)

Emb@0
.V;N / Emb@0

.M;N /

T1Emb@0
.V;N / T1Emb@0

.M;N /

Bun@0
.T V;TN / Bun@0

.TM;TN /

Lemma 2.7 There exists a dashed map in (14) such that the diagram commutes up to preferred homotopy
and the two subsquares are homotopy cartesian.

Proof Let O be the poset of open subsets U �M containing a collar on @0M . Taking derivatives as
well as restricting embeddings and bundle maps induces a commutative diagram

Emb@0
.p�1.�/;N / Emb@0

.�;N /

T1Emb@0
.�;N /

Bun@0
.Tp�1.�/;TN / Bun@0

.T�;TN / T1Bun@0
.T�;TN /

'

of space-valued presheaves on O, where the bottom equivalence results from the discussion in Section 2.3(d).
Since homotopy pullbacks of presheaves are computed objectwise, this is a homotopy-cartesian square of
presheaves. We define a new presheaf F.�/ on O as the homotopy pullback

(15)

F.�/ T1Emb@0
.�;N /

Bun@0
.Tp�1.�/;TN / T1Bun@0

.T�;TN /

The result will follow by evaluation at M 2 O once we provide an identification

F.M /' T1Emb@0
.p�1.M /;N /D T1Emb@0

.V;N /
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compatible with the maps to Bun@0
.T V;TN / and from Emb@0

.V;N /. It follows from Section 2.2.3(b)
and (c) that it suffices to verify that

(a) F satisfies descent for the complete J1–cover U� O given by those open subsets U �M equal
to a collar on @0M and a finite collection of open discs, and

(b) the map Emb@0
.p�1.�/;N /! F.�/ is a weak equivalence when evaluated on U 2U.

For (a), we observe that all entries but F.�/ in the homotopy pullback diagram (15) defining F.�/ satisfy
descent with respect to J1–covers, so F.�/ does as well. For (b), we observe that on U 2U, the right
vertical map of (15) is a weak equivalence so it suffices to verify that

Emb@0
.p�1.U /;N /! Bun@0

.Tp�1.U /;TN /

is a weak equivalence. This is indeed the case because p�1.U / is a disjoint union of a collar on @0V and
a finite collection of open discs.

We derive from Lemma 2.7 two lemmas that will allow us to interpolate between convergence questions
for Emb@0

.M;N / and for Emb@0
.V;N /.

Lemma 2.8 Let M and N be manifold triads , p W V !M be a vector bundle considered as a triad by
@0V D p�1.@0M /, and e@0

W @0V ! @0N be a boundary condition. Then the map

Emb@0
.V;N /! T1Emb@0

.V;N /

is a weak equivalence if the map Emb@0
.M;N /!T1Emb@0

.M;N / is a weak equivalence with boundary
condition obtained by restricting e@0

to @0M � @0V .

Proof This follows from the upper homotopy cartesian square in (14) provided by Lemma 2.7.

Lemma 2.9 Let M be a d–dimensional manifold triad , N be a .dCk/–dimensional manifold triad , and
e@0
W @0M ,! @0N be a boundary condition. Then the map

Emb@0
.M;N /! T1Emb@0

.M;N /

is a weak equivalence if the map Emb@0
.V;N /! T1Emb@0

.V;N / is a weak equivalence for all k–
dimensional vector bundles V !M and boundary conditions @0V ,! @N extending e@0

.

Proof We write T1Emb@0
.M;N /ˇ for the path component of an element ˇ 2 T1Emb@.M;N / and

Emb@0
.M;N /ˇ for the union of path components mapping to the component of ˇ. It suffices to prove

that Emb@0
.M;N /ˇ! T1Emb@0

.M;N /ˇ is a weak equivalence for all ˇ.

Writing ˇ0 2 Bun@0
.TM;TN / for the image of ˇ under T1Emb@0

.M;N /! Bun@0
.TM;TN / from

Section 2.3(d), we choose a metric on TN , let V be the vector bundle over M whose fibre over
m 2 M is the orthogonal complement to ˇ0.TmM / in Tˇ0.m/N , and extend the boundary condition
e@0
W @0M ,! @0N to @0V by exponentiation. Writing Emb@0

.V;N /ˇ and T1Emb@0
.V;N /ˇ for the

Algebraic & Geometric Topology, Volume 24 (2024)



Embedding calculus for surfaces 993

unions of the path components mapping to ˇ in (14), Lemma 2.7 yields a homotopy pullback

Emb@0
.V;N /ˇ Emb@0

.M;N /ˇ

T1Emb@0
.V;N /ˇ T1Emb@0

.M;N /ˇ

'

whose left vertical map a weak equivalence by assumption. By construction, ˇ0 lifts to a bundle map
in Bun@0

.T V;TN / under the bottom horizontal map in (14), so it follows from Lemma 2.7 that
T1Emb@0

.V;N /ˇ is nonempty. As T1Emb@0
.M;N /ˇ is path-connected, this implies that the left

vertical map in the homotopy pullback is a weak equivalence.

2.5 Lifting along covering maps

The second property is concerned with the problem of lifting embeddings of triads M ,!N along covering
maps � W zN !N . To state the result, we consider the cover zN as a triad by setting @0

zN WD��1.@0N / and
@1
zN WD ��1.@1N /, and fix a boundary condition e@0

W @0M ,! @0N as well as a lift Qe@0
W @0M ,! @0

zN .
We pick a homotopy class Œ˛� 2 �0Map@0

.M;N / such that there exists a lift Œ Q̨ � 2 �0Map@0
.M; zN /. We

shall assume that @0M !M is 0–connected, so that this lift is unique. We write

Emb@0
.M;N /˛ � Emb@0

.M;N / and T1Emb@0
.M;N /˛ � T1Emb@0

.M;N /

for the unions of the path components that map to Œ˛� 2 �0Map@0
.M;N / via the maps in (11). We

similarly define subspaces Emb@0
.M; zN / Q̨ �Emb@0

.M; zN / and T1Emb@.M; zN / Q̨ �T1Emb@.M; zN /.

Lemma 2.10 In this situation , there exists a dashed map making the diagram

Emb@0
.M;N /˛ Emb@0

.M; zN / Q̨

T1Emb@0
.M;N /˛ T1Emb@0

.M; zN / Q̨

commute up to homotopy. Here the top map is given by sending an embedding ˇ 2 Emb@.M;N /˛ to its
unique lift Q̌ 2 Emb@.M; zN / Q̨ extending Qe@.

Proof Let Emb�@0
.�; zN /� Emb@0

.�; zN / be the presheaf on Disc@0
of those embeddings that remain an

embedding after composition with � . This fits in a pullback diagram

Emb�@0
.�; zN / Emb@0

.�;N /

Map@0
.�; zN / Map@0

.�;N /

�ı�

�ı�

of presheaves on Disc@0M whose vertical maps are given by inclusion. This is homotopy cartesian in the
projective model structure on PSh.Disc@0

/, since .� ı�/ WMap@0
.�; zN /!Map@0

.�;N / is a objectwise
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fibration by the lifting property of covering maps. Evaluating at M and using that T1.�/ preserves
homotopy limits by Section 2.2.3(a), we arrive at a commutative cube

Emb�@0
.M; zN / Emb@0

.M;N /

T1Emb�@0
.M; zN / T1Emb@0

.M;N /

Map@0
.M; zN / Map@0

.M;N /

T1Map@0
.M; zN / T1Map@0

.M;N /

' '

with front and back faces homotopy cartesian, and bottom diagonal maps weak equivalences since
Map@0

.�; zN / and Map@0
.�;N / are homotopy J1–sheaves (see Section 2.2.3(b)). By the uniqueness of

lifts (this uses that @0M !M is 0–connected), the bottom horizontal maps become weak equivalences
when we restrict domain and target to the path components of Œ Q̨ � and Œ˛� respectively. Doing so and using
the homotopy pullback property, the top of the cube provides a commutative square

Emb�@0
.M; zN / Q̨ Emb@0

.M;N /˛

T1Emb�@0
.M; zN / Q̨ T1Emb@0

.M;N /˛

'

'

with horizontal weak equivalences. The top map is even a homeomorphism, by the uniqueness of lifts.
Using the inclusion of presheaves Emb�@0

.�; zN /� Emb@0
.�; zN /, we obtain a commutative diagram

Emb@0
.M;N /˛ Emb�@0

.M; zN / Q̨ Emb@0
.M; zN / Q̨

T1Emb@0
.M;N /˛ T1Emb�@0

.M; zN / Q̨ T1Emb@0
.M; zN / Q̨

Š

'

whose top composition is given by sending an embedding to its unique lift extending Qe@, so we obtain a
map T1Emb@0

.M;N /˛! T1Emb@0
.M; zN / Q̨ , as desired.

Remark 2.11 If ˛ has no lift, then there is no component of Emb@0
.M; zN / mapping to Œ˛� under compo-

sition with � . In this case, the above argument shows that there is also no component of T1Emb@0
.M; zN /

mapping to Œ˛� under the map of Section 2.3(d) and composition with � .

2.6 Adding a collar to the source

The third property concerns the behaviour of embedding calculus when adding a disjoint collar to the
domain.
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We fix triads M and N and a boundary condition e@0
W @0M ,! @0N . Given a compact .dim.M /�1/–

manifold K, we replace M by the triad M tK � Œ0; 1/ with @0.M tK � Œ0; 1//D @0M tK � f0g and
fix an extension e0

@0
W @0.M tK � Œ0; 1// ,! @N of e@0

as boundary condition. By contractibility of the
space of collars, the restriction map

Emb@0MtK�f0g.M tK � Œ0; 1/;N /! Emb@0
.M;N /

is a weak equivalence. Embedding calculus has this property as well:

Lemma 2.12 In this situation , both horizontal maps in the diagram induced by restriction

Emb@0MtK�f0g.M tK � Œ0; 1/;N / Emb@0M .M;N /

T1Emb@0MtK�f0g.M tK � Œ0; 1/;N / T1Emb@0M .M;N /

'

'

are weak equivalences.

Proof Let U be the open cover of M tK � Œ0; 1/ given by subsets of the form U D V tK � Œ0; 1/

where V �M is the union of a open subset diffeomorphic to a collar on @0M and a finite disjoint union
of open discs. This is a complete Weiss1–cover of M tK � Œ0; 1/, and U0 D fU \M j U 2Ug is a
complete Weiss1–cover of M . Restriction thus induces a commutative diagram

Emb@0MtK�f0g.M tK � Œ0; 1/;N / holimU2U Emb@0MtK�f0g.U;N /

T1Emb@0MtK�f0g.M tK � Œ0; 1/;N / holimU2U T1Emb@0MtK�f0g.U;N /

'

'

whose bottom horizontal map is a weak equivalences by Section 2.2.3(b) and whose right vertical map is
a weak equivalence by Section 2.3(c). Similarly, we have a square

Emb@0M .M;N / holimU2U Emb@0M .U \M;N /

T1Emb@0M .M;N / holimU2U T1Emb@0M .U \M;N /

'

'

which receives a map from the former square by restriction, so it suffices to show that the maps

Emb@0MtK�f0g.U;N /! Emb@0M .U \M;N /

are weak equivalence. This follows from the contractibility of spaces of collars.

Combined with Lemma 2.4 this yields the following lemma, which is often useful to justify the hypothesis
needed to apply isotopy extension for embedding calculus (see Section 2.3(f)).
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Lemma 2.13 Let M and N be d–dimensional triads , and e@0
W @0M ,! @0N a boundary condition.

Then the map
Emb@0

.M t .T �Rd /;N /! T1Emb@0
.M t .T �Rd /;N /

is a weak equivalence for any finite set T , if the maps Emb@0
.M;N 0/! T1Emb@0

.M;N 0/ are weak
equivalences for all d–dimensional triads N 0 and all boundary conditions e0

@0
W @0M ,! @0N 0.

Proof By induction over jT j it suffices to prove the case jT j D 1. In that case, it suffices by Lemma 2.4
to prove that for all embeddings e WDd ,! int.N / the map

Emb@
�
M t .Rd

n int.Dd //;N n int.e.Dd //
�
! T1Emb@

�
M t .Rd

n int.Dd //;N n int.e.Dd //
�

is a weak equivalences. By Lemma 2.12 we may then forget the collars .Rd n int.Dd // on @Dd from the
source, so the result follows.

2.7 Taking disjoint unions

The fourth and final general property of embedding calculus we shall discuss concerns taking disjoint
unions in source and target. Its full strength is not needed to prove the main results of this paper — only
Corollary 2.15 is — but we believe it to be of independent interest.

Let M , M 0, N , and N 0 be triads with dim.M /D dim.M 0/ and dim.N /D dim.N 0/. Given boundary
conditions e@0

W @0M ,! @0N and e0
@0
W @0M 0 ,! @0N 0, we consider the boundary condition

e@0
t e0@0

W @0.M tM 0/ ,! @0.N tN 0/:

Disjoint union of embeddings induces

Emb@0
.M;N /�Emb@0

.M 0;N 0/! Emb@0
.M tM 0;N tN 0/

which is a weak equivalence (in fact, a homeomorphism) if both inclusions @0M ,!M and @0M 0 ,!M 0

are 0–connected. Embedding calculus has this property as well:

Lemma 2.14 In this situation , there is a dashed weak equivalence that makes

Emb@0
.M;N /�Emb@0

.M 0;N 0/ Emb@0
.M tM 0;N tN 0/

T1Emb@0
.M;N /�T1Emb@0

.M 0;N 0/ T1Emb@0
.M tM 0;N tN 0/

'

'

commute up to preferred homotopy.

Proof As in the proof of Lemma 2.12, the property of embedding calculus we shall use is descent for
complete Weiss1–covers (see Section 2.2.3(b)).
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We take UM to be the open cover of M given by open subsets U �M that are diffeomorphic to a collar
on @0M and a finite disjoint union of open discs, and similarly for UM 0 . We take UMtM 0 to be the open
cover of M tM 0 given by unions of an element of UM and an element of UM 0 . The covers UM , UM 0 ,
and UMtM 0 are all complete Weiss1–covers.

We consider UMtM 0 as a poset ordered by inclusion and let Embt@0
.�;N tN 0/ be the presheaf on

UMtM 0 that sends U tU 0 with U 2 UM and U 0 2 UM 0 to the subspace Embt@0
.U tU 0;N tN 0/ �

Emb@0
.U tU 0;N tN 0/ which maps U into N and U 0 into N 0. Defining Mapt

@0
.�;N tN 0/ similarly,

we have a homotopy pullback diagram of presheaves on UMtM 0 ,

(16)

Embt@0
.�;N tN 0/ Emb@0

.�;N tN 0/

Mapt
@0
.�;N tN 0/ Map@0

.�;N tN 0/

and this remains a homotopy pullback when taking homotopy limits over UMtM 0 .

To identify the term
holim

UtU 02UMtM 0

Embt@0
.U tU 0;N tN 0/

we note that there are isomorphisms UMtM 0 ŠUM �UM 0 of categories, and

Embt@0
.�;N tN 0/Š Emb@0

.�;N /�Emb@0
.�;N 0/

of presheaves, so the Fubini theorem for homotopy limits implies that this homotopy limit is given by

holim
U2UM

Emb@0
.U;N /� holim

U 02UM

Emb@0
.U 0;N 0/:

Combining descent with the fact that embedding calculus converges on U 2 UM and U 0 2 UM 0 by
Section 2.3(c), we conclude that

holim
UtU 02UMtM 0

Embt@0
.U tU 0;N tN 0/' T1Emb@0

.M;N /�T1Emb@0
.M 0;N 0/:

The same analysis holds for Mapt
@0
.�;M tM 0/ and since this is a homotopy J1–sheaf (see Section

2.2.3(b)), we conclude that

holim
UtU 02UMtM 0

Mapt@0
.U tU 0;N tN 0/'Map@0

.M;N /�Map@0
.M 0;N 0/:

By the same argument (using descent, convergence on U tU 0 2UMtM 0 , and that Map@0
.�;N tN 0/ is

a homotopy J1–sheaf), we have weak equivalences

holim
UtU 02UMtM 0

Emb@0
.U tU 0;N tN 0/' T1Emb@0

.M tM 0;N tN 0/;

holim
UtU 02UMtM 0

Map@0
.U tU 0;N tN 0/'Map@0

.M tM 0;N tN 0/;
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so altogether we obtain a homotopy pullback diagram of the form

T1Emb@0
.M;N /�T1Emb@0

.M 0;N 0/ T1Emb@0
.M tM 0;N tN 0/

Map@0
.M;N /�Map@0

.M 0;N 0/ Map@0
.M tM 0;N tN 0/

The condition that @0M ,!M and @0M 0 ,!M 0 are 0–connected implies that the bottom map is a weak
equivalence, so the top map is a weak equivalence as well. The proof is finished by tracing through the
weak equivalences to see that this makes the square in the statement homotopy commute.

Taking M 0 D¿, which is the only case used in this paper, Lemma 2.14 says:

Corollary 2.15 In this situation , in the diagram induced by the inclusion N ,!N tN 0,

Emb@0
.M;N / Emb@0

.M;N tN 0/

T1Emb@0
.M;N / T1Emb@0

.M;N tN 0/

'

'

both horizontal maps are weak equivalences.

Remark 2.16 Corollary 2.15 admits an alternative proof along the lines of Lemma 2.10: one observes
there is a homotopy pullback diagram of presheaves on Disc@0M given by

Emb@0
.�;N / Emb@0

.�;N tN 0/

Map@0
.�;N / Map@0

.�;N tN 0/

Taking T1 and evaluating at M yields a homotopy pullback diagram of spaces and if @0M !M is
0–connected, the map Map@0

.M;N /!Map@0
.M;N tN 0/ is a weak equivalence and hence so is the

map T1Emb@0
.M;N /! T1Emb@0

.M;N tN 0/.

3 Convergence in low dimensions

In this section we make use of the properties of embedding calculus discussed in the previous section to
prove the following convergence result. Theorem A is included as the special case @0M D @M .

Theorem 3.1 For compact manifolds triads M and N with dim.N /� 2, the map

Emb@0
.M;N /! T1Emb@0

.M;N /

is a weak equivalence for any boundary condition e@0
W @0M ,! @0N .
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Convention 3.2 Throughout this section, we adopt following conventions on triads:

(i) We write I D Œ0; 1� and call the manifold triads I and I�Œ0; 1�with @0I Df0; 1g and @0.I�Œ0; 1�/D

f0; 1g � Œ0; 1� the arc and the strip. We will use the convention and notation from Section 2.1,
so embeddings I � Œ0; 1� into a triad N will always be assumed to extend a boundary condition
e@0
W f0; 1g � Œ0; 1� ,! @0N which will either be specified or is clear from the context. We consider

I as a submanifold of I � Œ0; 1� via the inclusion
˚

1
2

	
� Œ0; 1�� I � Œ0; 1�, so a boundary condition

e@0
as above in particular induces a boundary condition e@ W f0; 1g ,!N for embedding of the form

I ,!N by restriction.

(ii) We consider the cylinder S1 � Œ0; 1� as a manifold triad with @0.S
1 � Œ0; 1�/D¿. We consider the

circle S1 as the submanifold of S1 � Œ0; 1� via the inclusion S1 �
˚

1
2

	
,! S1 � Œ0; 1�.

(iii) We consider the Möbius strip MoD .Œ0; 1�� Œ0; 1�/=�, with � the equivalence relation generated
by .0;y/� .1; 1�y/, as a manifold triad with @0.Mo/D¿. We consider S1 as the submanifold
of Mo via the inclusion S1 �

˚
1
2

	
,!Mo.

(iv) We write†g;n for an orientable compact surface of genus g with n boundary components, considered
as a manifold triad with @0†g;n D @†g;n.

The steps

The proof of Theorem 3.1 is divided into the following steps:

(1) dim.M / > dim.N / or dim.M /D 0;

(2) dim.M /� dim.N /D 2, with substeps

(2.1) M an arc or a strip,

(2.2) M a circle, a cylinder, or a Möbius band,

(2.3) M a line bundle over a 1–dimensional triad M 0 with @0M 0 D @M ,

(2.4) M a general 1–dimensional triad,

(2.5) M DD2 with @0M D @M ,

(2.6) M an orientable genus 0 surface with @0M D @M ,

(2.7) M a connected 2–dimensional triad with @0M D @M ,

(2.8) M a connected 2–dimensional triad with @0M ¤ @M ,

(2.9) M a general 2–dimensional triad;

(3) dim.M /D dim.N /D 1.

To avoid being repetitive, we say that convergence holds for a pair of triads .M;N / if the map

Emb@0
.M;N /! T1Emb@0

.M;N /

is a weak equivalence for all boundary conditions e@0
W @0M ,! @0N .

Step (1): Convergence holds for .M;N / if dim.M / > dim.N / or dim.M /D 0 Convergence for
dim.M /D 0 holds as a result of Section 2.3(c). For M ¤¿ and dim.M / > dim.N /, we consider the
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composition Emb@0
.M;N /!T1Emb@0

.M;N /!Bun@0
.TM;TN / from Section 2.3(d). If dim.M />

dim.N / then the final space in this composition is empty, so the same holds for the first and the second
space. This implies convergence.

Step (2.1): Convergence holds for .M;N / if M is an arc or a strip, and dim.N /D 2 We divide
this step into two substeps: the case where the boundary condition e@0

W @0M ,! @0N hits two distinct
boundary components of N , and the case where the boundary condition hits a single boundary component.
The arguments are inspired by Gramain’s work [13] and Hatcher’s exposition thereof in [14].

Substep: the boundary condition hits two distinct boundary components of N By Lemma 2.9 and
isotopy invariance (see Section 2.3(b)), it suffices to consider the case M D I � Œ0; 1� of a strip. To do
so, we glue a disc D to the boundary component of N hit by f1g, and consider L D .I � Œ0; 1�[D/.
Smoothing corners and an application of isotopy extension justified by the convergence on discs (see
Section 2.3(c) and (f)) yields a map of fibre sequence

Emb@0
.I � Œ0; 1�;N / EmbI�f0g.L;N [D/ Emb.D;N [D/

T1Emb@0
.I � Œ0; 1�;N / T1EmbI�f0g.L;N [D/ T1Emb.D;N [D/

'

with fibres taken over the standard inclusion. Since L is isotopy equivalent to I � Œ0; 1/ relative to I �f0g,
the middle vertical map is a weak equivalence by isotopy invariance and the convergence on collars (see
Section 2.3(b) and (c)), so the left vertical map is a weak equivalence as well.

Substep: the boundary condition hits a single boundary components of N The case of arcs and
strips connecting the same boundary component is harder and its proof is the heart of the overall argument.
It relies on Lemma 2.10 on lifting embeddings, which we spell out again in the special case we shall use.

This lemma involves a covering map zN ! N , a boundary condition e@ W f0; 1g ,! @N , a path ˛ of
Map@.I;N /, and a lift Q̨ W I ! zN of ˛ whose endpoints induce a boundary condition e@ W f0; 1g ,! @ zN .
Recall that Emb@.I;N /˛ � Emb@.I;N / and T1Emb@.I;N /˛ � T1Emb@.I;N / denote the collections
of path components that map to Œ˛� 2 �0Map@.I;N / via the maps in (11). Lemma 2.10 for the triad
M D I with @0I D f0; 1g then gives:

Lemma 3.3 In this situation , there exists a dashed map making the diagram

Emb@.I;N /˛ Emb@.I; zN / Q̨

T1Emb@.I;N /˛ T1Emb@.I; zN / Q̨

commute up to homotopy. Here the top map is given by sending an arc 
 2 Emb@.I;N /˛ to the unique
lift Q
 2 Emb@.I; zN / Q̨ starting at Q̨ .0/ 2 zN .
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˛

ˇ

N

P

Figure 1: The surface P . The original surface N is the region within the dotted circle.

Using this lemma, we now prove convergence for .M;N / if M is an arc or a strip, dim.N /D 2, and the
boundary condition e@0

W @0M ,! @0N hits a single boundary components of N .

By Lemma 2.8 and isotopy invariance (see Section 2.3(b)) it suffices to prove the claim for the arc, and
by Corollary 2.15, we may assume that the target N is connected. We attach a 1–handle I � Œ0; 1� to N

to the boundary component hit by f0; 1g, such that I � f0g and I � f1g are separated on that boundary
component by f0; 1g and are embedded with opposite orientation, resulting in a new surface P with an
additional boundary component; see Figure 1. The composition f0; 1g ,!N � P now hits two distinct
boundary components, so the right vertical map in the homotopy-commutative diagram induced by the
inclusion N � P (see Section 2.3(a))

(17)
Emb@.I;N / Emb@.I;P /

T1Emb@.I;N / T1Emb@.I;P /

'

is a weak equivalence by the previous substep.

We next investigate the set of path components. To do so, we will use that the dashed map in

�0Emb@.I;N /

.�0Map@.I;N //��0Map@.I;P/
.�0Emb@.I;P // �0Emb@.I;P /

�0Map@.I;N / �0Map@.I;P /

is surjective: if an embedding I ,! P is homotopic to a map I !N , then it is isotopic to an embedding
I ,! N within the homotopy class of I ! N . To see this, use the bigon criterion [9, Sections 1.2.4
and 1.2.7] to isotope I ,! P so that its geometric intersection number with the cocore ˇ of the 1–handle
is equal to the algebraic intersection number, which is 0 since it is homotopic to a map I !N . With this
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in mind, a diagram chase in the factorisation

�0Emb@.I;N / �0Emb@.I;P /

�0T1Emb@.I;N / �0T1Emb@.I;P /

�0Map@.I;N / �0Map@.I;P /

1

Š

2

shows that the maps 1 and 2 have the same image.

Let us now fix a class Œ˛�2�0Map@.I;N / in this image. As the map 1 is injective because two embedded
arcs are isotopic relative to the endpoints if and only if they are homotopic relative to the endpoints
(see [10]), there is a unique path component Emb@.I;N /˛ of Emb@.I;N / mapping to Œ˛�. Denoting
by T1Emb@.I;N /˛ � T1Emb@.I;N / the union of all path components that map to Œ˛�, it suffices to
show that the map Emb@.I;N /˛! T1Emb@.I;N /˛ is a weak equivalence for all choices of Œ˛�. Since
Emb@.I;N /˛ is contractible by [13, Théorème 5], the task is to prove that T1Emb@.I;N /˛ is (weakly)
contractible as well.

To do so, we will construct a homotopy-commutative diagram

(18)
Emb@.I;N /˛ Emb@.I;P /˛ Emb@.I;N /˛

T1Emb@.I;N /˛ T1Emb@.I;P /˛ T1Emb@.I;N /˛

.eı�/ılift

'

.eı�/ılift

whose horizontal compositions are homotopic to the identity. This will finish the proof, since it exhibits
T1Emb@.I;N /˛ as a retract of the contractible space T1Emb@.I;P /˛ ' Emb@.I;P /˛.

The left square in (18) is obtained by restricting the path components of the homotopy commutative
square (17). The right square arises as the composition of two squares

Emb@.I;P /˛ Emb@.I; zP / Q̨ Emb@.I;N /˛

T1Emb@.I;P /˛ T1Emb@.I; zP / Q̨ T1Emb@.I;N /˛

lift

'

eı�

lift eı�

which we explain now. The surface zP is an appropriate covering space of P : the construction of P gives a
decomposition �1.P /Š �1.N /�Z and zP is the cover corresponding to the subgroup �1.N /. Explicitly,
the cover zP can be constructed by cutting P along ˇ to obtain a surface R (see Figure 2) and gluing two
copies of the universal cover zR of this surface to the two dashed intervals in the boundary resulting from ˇ.
Note that R contains a preferred lift Q̨ of ˛ and hence so does zP . We denote the endpoints of ˛ and Q̨ in the
various surfaces generically by f0; 1g. The cover zP has the property that the map N!P lifts uniquely to zP
so that f0; 1g is fixed. Moreover, using that the interior of zR is diffeomorphic to R2, there is an embedding
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Q̨

R

Figure 2: The surface R.

e W zP ,!N fixing f0; 1g such that the composition N ! zP!N is isotopic to the identity relative to f0; 1g.
Viewing zP as being glued together by three parts — N , the two half-strips resulting from the cut 1–handle,
and the two copies of QR attached to these two half-strips — this embedding e W zP ,!N is given by the
identity on N � zP apart from a neighbourhood of the two arcs in the boundary to which the half-strips
are attached, and by pushing the half-strips and the copies of QR attached to them into this neighbourhood.

The right square is induced by postcomposition with e, so homotopy commutes in view of Section 2.3(a).
The homotopy commutative left square is obtained by invoking the lifting lemma Lemma 3.3 for the
covering map zP ! P . The top composition in (18) is homotopic to the identity by construction, but
it remains to justify this for the bottom composition. Justifying this requires the details of the proof of
Lemma 2.10, in particular the presheaf Emb�@ .�; zP / defined there. Viewing N as a submanifold of zP as
explained above, the projection � W zP !N is isotopic to the identity when restricted to N , so we have a
dashed inclusion map of presheaves on Disc@I that makes the triangle in the following diagram commute
up to homotopy:

Emb@.�;N / Emb@.�;P /

Emb�@ .�; zP / Emb@.�; zP / Emb@.�;N /

�
�ı�

eı.�/

:

Moreover, since N � zP !N is isotopic to the identity, the composition Emb@.�;N /! Emb@.�;N /

along the bottom is homotopic to the identity. Applying T1, evaluating at I , and restricting to path
components, we obtain a homotopy commutative diagram

T1Emb@.I;N /˛ T1Emb@.I;P / Q̨

T1Emb�@ .I; zP / Q̨ T1Emb@.I; zP / Q̨ T1Emb@.I;N /˛

'

eı.�/

whose composition along the bottom T1Emb@.�;N /˛! T1Emb@.�;N /˛ is homotopic to the identity.
The composition along the top involving a wrong-way weak equivalence agrees by construction with the
bottom composition of (18), so it is homotopic to the identity, as claimed (recall Remark 2.3).
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Mo n int.D2/

I � Œ0; 1�

Figure 3: The complement of an open disc in the Möbius strip. The red copy of I � Œ0; 1� differs
up to isotopy equivalence from Mo n int.D2/ only in the hatched region which is diffeomorphic
to I � Œ0; 1/t I � Œ0; 1/.

Step (2.2): Convergence for .M;N / if M is a circle, cylinder, or Möbius strip, and dim.N /D 2

By Lemma 2.9, it suffices to prove the claim for the cylinder and the Möbius strip. We will do so for the
Möbius strip M DMo; the argument for the cylinder is analogous. We pick a disc D2 � int.Mo/. By
Lemma 2.4, it suffices to prove that

Emb@0

�
Mo n int.D2/;N n int.e.D2//

�
! T1Emb@0

�
Mo n int.D2/;N n int.e.D2//

�
is a weak equivalence for all embeddings e WD2 ,! int.†/. To this end, we pick a subtriad I � Œ0; 1��

Mo n int.D2/ as in Figure 3 and attempt to show that the vertical restriction maps in the diagram

Emb@0

�
Mo n int.D2/;N n int.e.D2//

�
T1Emb@0

�
.Mo n int.D2//;N n int.e.D2//

�
Emb@0

�
I � Œ0; 1�;N n int.e.D2//

�
T1Emb@0

�
I � Œ0; 1�;N n int.e.D2//

�
are weak equivalences. Isotopy extension exhibits the homotopy fibre of the left vertical map up to
smoothing corners and isotopy equivalence as Emb@

�
I � Œ0; 1/ t I � Œ0; 1/;N n int.e.D2//

�
which is

contractible by the contractibility of spaces of collars. To see that the right vertical map is an equivalence,
one combines this observation with descent with respect to a Weiss1–cover of open discs and collars
on @D2 similarly to the proof of Lemma 2.12. As the bottom horizontal map is a weak equivalence by
step (2.1), the top horizontal map is a weak equivalence as well.

Step (2.3): Convergence for .M;N / if M D .T1 � I � Œ0; 1�/t .T2 �S 1 � Œ0; 1�/t .T3 �Mo/ for
(possibly empty) finite sets Ti and dim.N /D 2 The proof is by induction over t D jT1jC jT2jC jT3j.
The initial case t D 1 is provided by steps (2.1) and (2.2). For the induction step, we pick a component
of M , say of the form I � Œ0; 1�; the other cases are analogous. We consider M 0 WDM n I � Œ0; 1�. An
application of isotopy extension (see Section 2.3(f)) to P D I�

�
1
4
; 3

4

�
� I�Œ0; 1�, justified by Lemma 2.13
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and step (2.1), gives fibre sequences

Emb@0

�
M 0;N n int.e.P //

�
Emb@0

.M;N / Emb@0
.P;N /

T1Emb@0

�
M 0;N n int.e.P //

�
T1Emb@0

.M;N / T1Emb@0
.P;N /

'

Here we used Lemma 2.12 and isotopy invariance to replace M 0 t .I � Œ0; 1� n int.P // in the domain
with M 0. The left vertical map is a weak equivalence by the induction hypothesis, so the middle vertical
map is a weak equivalence too.

Step (2.4): Convergence for .M;N / if dim.M / D 1 and dim.N / D 2 Step (2.3) together with
Lemma 2.9 gives the result for those triads of the form M 0 D .T1 � I/t .T2 �S1/ for finite sets Ti and
@0M 0 D T1 � f0; 1g. The general case, which has

M D .T1 � I/t .T2 �S1/t .T3 � Œ0; 1�/t .T4 � Œ0; 1�/

for finite sets Ti and @0M D .T1 � f0; 1g/ t .T3 � f0g/ follows from this by Lemmas 2.12 and 2.13
together with isotopy invariance (see Section 2.3(b)).

Step (2.5): Convergence for .M;N / if M DD2 with @0M D@M and dim.N /D2 By Corollary 2.15
we may assume that N is connected.

We first prove the case where the target N is not diffeomorphic to D2. In this case Emb@.D2;N /D¿,
so we need to show T1Emb@.D2;N /D¿. If this were to fail, then the target of the map

T1Emb@.D
2;N /!Map@.D

2;N /

from Section 2.3(d) must be nonempty, so N would be a connected surface with a boundary component
whose inclusion is null-homotopic. We claim this is impossible unless N ŠD2. First, if N DN1 \ � � �\N1,
then �1.N / splits as a free product �1.N1/�� � ���1.Nn/ and we may choose this decomposition so that the
homotopy class of the boundary inclusion represents the free product of the homotopy classes of boundary
inclusions of those components at which we perform the boundary connected sums. By the classification
of connected compact surfaces, it then suffices to observe that all boundary inclusions are nontrivial in the
fundamental group of the surfaces †0;2, †1;1, and Mo. For †0;2, each inclusion represents a generator
of �1.†0;2/Š Z, for †1;1 the boundary inclusion represents xyx�1y�1 2 �1.†1;1/Š hx;yi, and for
the Möbius strip it represents twice a generator in �1.Mo/Š Z.

It remains to show that Emb@.D2;D2/! T1Emb@.D2;D2/ a weak equivalence for which we follow
the proof of what is sometimes called the Cerf lemma [4, Proposition 5]. We consider the triad H D

D2 \
��
�

1
2
;1

�
�R

�
with @0H D H \ @D2 and @1H D H \

�˚
�

1
2

	
�R

�
containing the strip J D

H \
��
�

1
4
; 1

4

�
�R

�
with @0J D J \ @D2; see Figure 4. Writing H0 D H n

��
�

1
4
; 1

4

�
�R

�
\H and

D2
0
DD2 n

��
�

1
4
; 1

4

�
�R

�
\D2, an application of isotopy extension (see Section 2.3(f)) justified by step

(2.1) in the case M D J Š I � Œ0; 1� and Lemma 2.13 gives a map of fibre sequences with connected
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D2 J H0

Figure 4: The triads J;H0�D2. Here H the union of J and H0, and H 0
0
�H0 is the component

to the right of J .

weakly equivalent bases and homotopy fibres over the standard inclusion J ,!D2:

Emb@0
.H0;D

2
0
/ Emb@0

.H;D2/ Emb@0
.J;D2/

T1Emb@0
.H0;D

2
0
/ T1Emb@0

.H;D2/ T1Emb@0
.J;D2/

'

As H is a closed collar on @0H , the middle vertical map is a weak equivalence by isotopy invariance
and the convergence on collars (see Section 2.3(b) and (c)). By Lemma 2.12 we may discard the collar
H0\ ..�1; 0��R/ from the source of the left vertical map, and obtain that for H 0

0
DH \

��
1
4
;1

�
�R

�
the map Emb@0

.H 0
0
;D2

0
/ ! T1Emb@0

.H 0
0
;D2

0
/ is a weak equivalence. Invoking Corollary 2.15 to

neglect D2
0
nH0 from the target and identifying H 0

0
with a disc upon smoothing corners, we conclude

that Emb@.D2;D2/! T1Emb@.D2;D2/ is a weak equivalence.

Step (2.6): Convergence for .M;N / if M is an orientable surface of genus 0 with n� 1 boundary
components and @0M D @M and dim.N / D 2 Note that by gluing n� 1 discs to M we obtain a
disc D2. We also glue n� 1 discs to the corresponding boundary components of N to obtain a triad N 0

with a canonical embedding e W n� 1�D2 ,!N 0. Then isotopy extension and the convergence on discs
(see Section 2.3(f) and (c)) yields fibre sequences

Emb@.M;N / Emb@.D2;N 0/ Emb.n� 1�D2;N 0/

T1Emb@.M;N / T1Emb.D2;N 0/ T1Emb.n� 1�D2;N 0/

'

The middle vertical map a weak equivalence by step (2.5), so the left map is one as well.

Step (2.7): Convergence for .M;N / if M is connected, @0M D @M , and dim.M /D dim.N /D 2

As a result of Lemma 2.4, we may assume that @M ¤¿, so M is a boundary connected sum

†0;n \ .†1;1/
\T1 \ .RP2/\T2
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Figure 5: Left: M D†0;4 \ .†1;1/
\2 with subtriad P D 2�S1 � Œ0; 1��M whose complement

has genus 0 and 8 boundary components. Right: M D†0;3\†1;1 with @1M dashed, with subtriad
P D 2� I � Œ0; 1�tS1 � Œ0; 1��M ; the component of M n int.P / containing †1;1 is M 0.

for n� 1 and possibly empty finite sets T1 and T2. Thus we may find an embedding

P D .T1 �S1
� Œ0; 1�/t .T2 �Mo/!M

such that M n int.P / Š †0;n0 with n0 D nC 2jT1j C jT2j; see Figure 5, left, for an example. For any
embedding e W M ,! N extending the boundary condition, an application of isotopy extension (see
Section 2.3(f)), justified by step (2.3) and Lemma 2.13, gives a map of fibre sequences

Emb@
�
†0;n0 ;N ne.int.P //

�
Emb@.M;N / Emb.P;N /

T1Emb@
�
†0;n0 ;N ne.int.P //

�
T1Emb.M;N / T1Emb.P;N /

'

whose left vertical map a weak equivalence by step (2.7). Varying the embedding e W M ,! N , we
conclude that the middle vertical map is also a weak equivalence.

Step (2.8): Convergence for .M;N / if M is connected, @0M ¤ @M , and dim.M /D dim.N /D 2

Choose a triad embedding P D .T1 � I � Œ0; 1�/ t .T2 � S1 � Œ0; 1�/ ,! M such that M n int.P / is
the disjoint union of a component M 0 with @M 0 DM \ @0.M n int.P // and collars on components of
@0.M n int.P //; see Figure 5, right, for an example. By step (2.3) and Lemma 2.13, we may apply isotopy
extension as in step (2.3) to the restriction map Emb@0

.M;N /! Emb@0
.P;N / and its T1–version.

From step (2.7) and Lemma 2.12 we see that the map between fibres is a weak equivalence, from which
we conclude the claim.

Step (2.9): Convergence for .M;N / if dim.M /D dim.N /D 2 This is a induction on the number
n of components of M . The initial case nD 1 is the previous one, and for the induction step we write
M DM 0 tM 00 with M 0 connected. The induction hypothesis applied to M 0 together with Lemma 2.13
ensures that we may apply isotopy extension (see Section 2.3(f)) to the restriction

Emb@0
.M;N /! Emb@0

.M 0;N /
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and its T1–version from which the claim follows by noting that the map on fibres is a weak equivalence
by applying the induction hypothesis to M 00.

Step (3): Convergence for .M;N / if dim.M /D dim.N /D 1 This can be proved similarly to step (2)
but is easier. We outline the argument.

First one proves the case M D D1 with @0.D
1/ D f�1; 1g by a strategy analogous to step (2.5): one

first uses Corollary 2.15 to reduce to N DD1 as in the case for surfaces. Then one takes H D
�
�

1
2
; 1
�
,

J D
�
�

1
4
; 1

4

�
, and D1

0
DD1 n int.J / and develops a map of fibre sequences

Emb@0
.H0;D

1
0
/ Emb@0

.H;D1/ Emb@0
.J;D1/

T1Emb@0
.H0;D

1
0
/ T1Emb@0

.H;D1/ T1Emb@0
.J;D1/

' '

similar to step (2.5). Using Lemma 2.12 and Corollary 2.15, the map on fibres agrees with

Emb@.D
1;D1/! T1Emb@.D

1;D1/;

so it is a weak equivalence.

Next one shows the case of a general connected triad M : the case M D S1 follows directly by an
application of isotopy extension (see Section 2.3(f)) together with the case M DD1 above, and the cases
M D Œ0; 1� with @0.M /D f0g or @0.M /D¿ hold by Section 2.3(c).

Finally, the case of a possibly disconnected triad M can be settled as in step (2.8).

3.1 Automorphisms of the E1– and E2–operad

The above arguments do not rely on the fact that Diff@.Dd /D Emb@.Dd ;Dd / is contractible for d � 2

(this is folklore for d D 1 and due to Smale for d D 2 [24]). Using this fact, we may conclude from
Theorem 3.1 that T1Emb@.Dd ;Dd / is contractible for d � 2. Combining Theorems 1.2, 1.4, and 6.4
of [2],

T1Emb@.D
d ;Dd /'�dC1Auth.Ed /=O.d/

where Auth.Ed /=O.d/ is the homotopy fibre of the map BO.d/ ! BAuth.Ed / resulting from the
standard action of O.d/ on the little discs operad by derived operad automorphisms, so we deduce:

Corollary 3.4 �dC1Auth.Ed /=O.d/' � for d � 2.

Remark 3.5 Horel [15, Theorem 8.5] proved that Auth.E2/=O.2/ ' � with different methods. His
proof crucially uses that the spaces of k–arity operations in the operad E2 are K.�; 1/ for all k. This
fact can also be used to give an alternative proof of �2Auth.E2/' � (and thus of Corollary 3.4): the
derived mapping space Maph.O;P / between operads O and P can be computed as a homotopy limit of
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a diagram whose values are products of spaces of operations in O and P ; this follows by (for example)
using the alternative model of operads in terms of dendroidal Segal spaces. Applied to O D P DE2, one
sees that Maph.E2;E2/ is a homotopy limit of K.�; 1/, so it is contractible after looping twice.

4 Embedding calculus and the Johnson filtration

This section serves to introduce the filtration (2) of the mapping class group �0Diff@.†g;1/, and to prove
in Theorem 4.2 that it is contained in the Johnson filtration.

4.1 The cardinality filtration

Returning to the general setting of manifold calculus of Section 2.2.1 with a fixed .d�1/–manifold K,
possibly with boundary, we consider the filtration

(19) Disc@0;�0 � Disc@0;�1 � � � � � Disc@0;�1 WD Disc@0

of the topologically enriched category Disc@0
by its full subcategories Disc@0;�k on triads that are

diffeomorphic to K � Œ0; 1/ t T � Rd for finite sets T of bounded cardinality � k. Localising the
categories PSh.Disc@0;�k/ at the objectwise weak equivalences as we did for k D1 in Section 2.2.1,
given a presheaf F 2 PSh.Disc@0

/ we obtain presheaves on Man@0
by

TkF.M / WDMapPSh.Disc@0;�k/loc.Emb@0
.�;M /;F /

which are related by maps of presheaves

(20) T1F.M /! � � � ! T2F.M /! T1F.M /

induced by restriction along the inclusions (19). If F is the restriction of a presheaf on Man@0
, we can

precompose this tower with the canonical map F.M /! T1F.M / from (5).

4.1.1 Sheaf-theoretic point of view The tower (20) can also be seen from the point of view of Jk–
sheaves as described in Section 2.2.3(b): by [1, Theorem 1.2] the functor

PSh.Man@0
/ 3 F 7! TkF 2 PSh.Man@0

/

together with the natural transformation idPSh.Man@0
/)Tk is a model for the homotopy Jk–sheafification.

From this point of view the maps (20) are induced by the universal property of homotopy sheafification,
using the fact that any JkC1–sheaf is in particular a Jk–sheaf.

In particular, in the case of embedding calculus, ie for presheaves F.�/DEmb@0
.�;N / for triads M and

N and a boundary condition e@0
W @0M ,! @0N (see Example 2.1), this implies that there is a factorisation

of the map from the discussion in Section 2.3(d) of the form

(21) T1Emb@0
.M;N /! � � � ! T1Emb@0

.M;N /! Bun@0
.TM;TN /!Map@0

.M;N /:

Algebraic & Geometric Topology, Volume 24 (2024)



1010 Manuel Krannich and Alexander Kupers

4.2 H Z–embedding calculus

Much of the above goes through for presheaves valued in categories other than spaces. We have use for
one such generalisation, which we discuss now.

It involves the topologically enriched category Sp of spectra and the topologically enriched category
HZmod of module spectra over the Eilenberg–Mac Lane spectrum HZ, both modelled for example
using symmetric spectra in spaces as in [20]. We denote by PShH Z.Disc@0

/ the category of HZ–module
spectrum-valued enriched presheaves on Disc@0

, and its localisation at the objectwise stable equivalences
by PShH Z.Disc@0

/loc. The composition of the left-adjoints †1C W Top! Sp and �^HZ W Sp!HZmod

induces the vertical arrows in the commutative diagram

(22)

PSh.Disc@0
/ PSh.Disc@0

/loc

PShH Z.Disc@0
/ PShH Z.Disc@0

/loc

.�/C^H Z .�/C^H Z

For a presheaf F 2 PSh.Disc@0
/ we define presheaves

T H Z
k F.M / WDMapPShH Z.Disc@0;�k/loc.Emb@0

.�;M /C ^HZ;FC ^HZ/

for 1� k �1, giving rise to an extension of the tower (20) to a map of towers

(23)

T1F.M / � � � T2F.M / T1F.M /

T H Z
1 F.M / � � � T H Z

2
F.M / T H Z

1
F.M /

whose vertical maps are induced by (22) and horizontal maps are induced by restriction along (19). Note
that for F.�/D Emb@0

.�;M /, composition induces an E1–structure on TkF.M /D TkEmb@0
.M;M /

and T H Z
k

F.M /D T H Z
k

Emb@0
.M;M / which upgrades (23) to a diagram of E1–spaces.

Remark 4.1 In [28], Weiss considers manifold calculus applied to the space-valued presheaf

�1.Emb@0
.�;M /C ^HZ/:

This agrees with the above HZ–embedding calculus since the adjunctions †1C a�
1 and �^HZ a U ,

with U WHZmod! Sp the forgetful functor, induce adjunctions on presheaf categories, which in turn
induces for F 2 PSh.Man@0

/ and 1� k �1 an identification

MapPSh.Disc@0M;�k/loc.Emb@0
.�;M /;�1.FC ^HZ//

T H Z
k

F.M /DMapPShH Z.Disc@0M;�k/loc.Emb@0
.�;M /C ^HZ;FC ^HZ/

'

which is compatible with the restrictions maps.
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4.3 An H Z–embedding calculus filtration of �0Diff@.†/

We fix a compact orientable † of genus g with a single boundary component. A naive attempt at a
filtration of the mapping class group �0Diff@.†/ as promised in the introductory Section 1.2 would be
to consider the kernels of the maps �0Diff@.†/D �0Emb@.†;†/! �0TkEmb@.†;†/ for varying k,
but these turn out to be trivial for all k � 1 simply because the composition of the above map with the
map to �0Map@.†;†/ from (21) is injective (see Remark 2.6). To obtain a more interesting filtration,
we perform two modifications.

Firstly, we change the triad structure of †. Instead of @0†D @† we choose @0†� @† to be an embedded
interval. We think of @0† as “half the boundary” and abbreviate @=2 WD @0† Š Œ0; 1�. Note that the
inclusion Diff@.†/�Emb@=2.†;†/ is a homotopy equivalence since its homotopy fibres are equivalent to
Diff@.D2/'�. The maps �0Diff@.†/D�0Emb@=2.†;†/!�0TkEmb@=2.†;†/ still do not give rise to
an interesting filtration, for a similar reason as above since the map �0Map@.†;†/! �0Map@=2.†;†/
is injective. The filtration becomes more interesting after the second modification: we switch from
embedding calculus to embedding calculus in HZ–modules as described above. More precisely, we
consider the filtration

(24) �0Diff@.†/D T JH Z
@=2 .0/� T JH Z

@=2 .1/� T JH Z
@=2 .2/� � � �

defined by
T JH Z

@=2 .k/ WD kerŒ�0Diff@.†/! �0T H Z
k Emb@=2.†;†/�;

where we formally set �0T H Z
k

Emb@=2.†;†/ WD �. Denoting by

(25) �0Diff@.†/D J.0/� J.1/� J.2/� � � �

the usual Johnson filtration

J.k/ WD ker
�
�0Diff@.†/! Aut

�
�1.†;�/

�k.�1.†;�//

��
;

where �i.�/ is the i th stage in the lower central series of a group (so �0.G/DG and �1.G/ is the derived
subgroup of G), the purpose of this section is to relate the filtrations (24) and (25) as follows.

Theorem 4.2 For a compact orientable surface † with a single boundary component , the subgroup

T JH Z
@=2 .k/D kerŒ�0Diff@.†/! �0T H Z

k Emb@=2.†;†/�

is contained in the k th stage J.k/ of the Johnson filtration for k � 0.

Remark 4.3 (i) The group �1.†;�/ is free, so it is residually nilpotent (ie
T

k �k.�1.†;�//D f1g),
which implies that the Johnson filtration is exhaustive, ie

T
k J.k/D fidg. By Theorem 4.2, the

same holds for fT JH Z
@=2

.k/g so in particular the map �0Diff@.†/ ! �0T H Z
1 Emb@=2.†;†/ is

injective.
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(ii) If the genus of † is at least 3, then the inclusion T JH Z
@=2

.1/� J.1/ is strict. Indeed, an element of
the mapping class group lies in T JH Z

@=2
.1/ if and only if induced the identity on the homology of

frame bundle Fr.T†/. By [25, Theorem 2.2 and Corollary 2.7], this is the case if and only if it lies
in the Chillingworth subgroup of the Torelli subgroup J.1/ [5; 6].

Theorem 4.2 and the final part of the previous remark suggest:

Question 4.4 What is the precise relationship between the Johnson filtration J.k/ and the filtration
JH Z
@=2

.k/ arising from the HZ–embedding calculus tower?

We will deduce Theorem 4.2 from Moriyama’s work [21]. The key step for this deduction is not special
to surfaces and applies to a general d–dimensional manifold triad M , so we will formulate it in this
generality. To do so, we fix a presheaf F 2 PSh.Disc@0;�k/, restrict it to Disc@0;�k�1 and homotopy left
Kan extending it back along the inclusion �k W Disc@0;�k�1 � Disc@0;�k to obtain a presheaf hLan�k F

with a natural map hLan�k F ! F . Evaluating it at

@0 tRd
k WD @0M � Œ0; 1/t k �Rd

where k WD f1; : : : ; kg we get a map of †k oO.d/–spaces .hLan�k F /.@0tRd
k
/!F.@0tRd

k
/, and then

taking homotopy quotients by the subgroup O.d/k �†k oO.d/ gives a map

(26) .hLan�k F /.@0 tRd
k /==O.d/k ! F.@0 tRd

k /==O.d/k :

In Proposition 4.5 below, we relate this map for F.�/D Emb@0
.�;M / to a certain “boundary inclusion”

of the ordered configuration spaces Emb.k;M /. For this, recall the Fulton–MacPherson compactification
FMk.M / of Emb.k;M / (eg from [23]) which comes with a natural inclusion Emb.k;M / ,! FMk.M /

that is homotopy equivalence, and a “macroscopic location” map � W FMk.M /!M k that extends the
inclusion Emb.k;M / ,!M k . We write @0 FMk.M / for the preimage ��1.�k [Ak/ of the union of
the subspace Ak �M k where at least one point lies in @0M and the fat diagonal

�k WD f.m1; : : : ;mi/ 2M k
jmi Dmj for some i ¤ j g �M k :

The key step in the proof of Theorem 4.2 is to identify the map (26) for F.�/D Emb@0
.�;M / with the

boundary inclusion @0 FMk.M /� FMk.M / in the following sense:

Proposition 4.5 There is zigzag of compatible weak equivalences

.hLan�k Emb@0
.�;M //.@0 tRd

k
/==O.d/k � � � @0 FMk.M /

Emb.@0 tRd
k
;M /==O.d/k � � � FMk.M /

' '

' '

which , when varying M , defines a zigzag of weak equivalences in the arrow category of Fun.Man@0
; S/.

Before turning to the proof of Proposition 4.5, we explain how it implies Theorem 4.2.
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Proof of Theorem 4.2 An element � 2 Diff@.†/ induces a commutative diagram

(27)
@0 FMk.†/C ^HZ @0 FMk.†/C ^HZ

FMk.†/C ^HZ FMk.†/C ^HZ

��

��

Abbreviating E† WD Emb@0
.�; †/, this agrees by Proposition 4.5 with the square

..hLan�k E†/.@0 tRd
k
/==O.d/k/C ^HZ ..hLan�k E†/.@0 tRd

k
/==O.d/k/C ^HZ

.Emb.@0 tRd
k
; †/==O.d/k/C ^HZ .Emb.@0 tRd

k
; †/==O.d/k/C ^HZ

��

��

up to a zigzag of weak equivalences of maps of squares. As .�/C^HZ commutes with taking homotopy
orbits and left Kan extensions, we conclude that the square (27) depends up to natural weak equivalences
only on the endomorphism �� W Emb@0

.�; †/C ^HZ! Emb@0
.�; †/C ^HZ in PShH Z.Disc�k/ and

moreover, as homotopy orbits and homotopy left Kan extensions preserve weak equivalences, only on its
image in PShH Z.Disc�k/

loc. Taking vertical cofibres in (27) and homotopy groups, we conclude that the
map

(28) �� WH�.FMk.†/; @0 FMk.†/IZ/!H�.FMk.†/; @0 FMk.†/IZ/

depends only on the image of � under the map �0Diff@.†/! �0T H Z
k

Emb@0
.†;†/. In particular, if �

lies in the kernel T JH Z
@=2

.k/ of this map, then (28) is the identity. Using excision as in [19, Section 5.4.1]

one see that the macroscopic location map � W .FMk.M /; @0 FMk.M //! .M k ; �k[Ak/ is a homology
isomorphism, so � induces the identity on H�.M

k ; �k [Ak IZ/. But the subgroup of mapping classes
with this property is exactly J.k/, by [21, Theorem A, Proposition 3.3].

Remark 4.6 It might be interesting to study the various filtrations of the mapping class group obtained
by replacing HZ in the definition of T JH Z

@=2
.k/ with HR for any ring R, such as Q or Fp.

As long as R has characteristic 0, the resulting filtration is contained in the Johnson filtration. This
follows from the proof for Z we gave above, together with the fact from [21, Proposition 3.3] that
H�.†

k ; �k [Ak IZ/ is trivial if � ¤ k and free abelian for � D k.

4.4 The proof of Proposition 4.5

It will be convenient for us to work with an explicit model for the homotopy left Kan extension as a bar
construction, which we recall next.

4.4.1 The enriched bar construction Given enriched space-valued functors F and G on a topologically
enriched category C where F is contravariant and G is covariant, the bar construction B�.G;C;F / is the
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semisimplicial space given by

Œp� 7!
G

c0;:::;cp

�
G.c0/�

pY
iD1

C.ci�1; ci/�F.cp/

�
where the coproduct is taking over ordered collections c0; : : : ; cp of objects in C and face maps are
induced by the composition in C and the functoriality of F and G. We denote the geometric realisation
of this semisimplicial space by omitting the �–subscript. Since geometric realisations of levelwise weak
equivalences of semisimplicial spaces are weak equivalences, the object B.G;C;F / is weakly homotopy
invariant in triples .G;C;F /, in the appropriate sense.

Given an enriched functor � W C!D and d 2D, the space B
�
D.d; �.�//;C;F

�
agrees, naturally in d , with

the homotopy left Kan extension hLan� F.d/ (see eg [22, Example 9.2.11]; the cofibrancy conditions are
not relevant for us as we consider the bar construction as a semisimplicial space and geometric realisations
of semisimplicial spaces preserve weak equivalences). Moreover, if F extends to a functor on D, then
there is a natural augmentation map

(29) B�
�
D.d; �.�//;C;F

�
! F.d/

induced by composition and evaluation, which agrees upon geometric realisations with the canonical map
hLan� F.d/! F.d/ (or rather, it provides a model thereof).

In particular, using the notation introduced above, the left vertical map in the statement of Proposition 4.5
is given by the map induced by (29) and taking homotopy orbits

(30) B
�
Emb@0

.@0 tRd
k ;�/;Disc@0;�k�1;Emb@0

.�;M /
�
==O.d/k �

�! Emb@0
.@0 tRd

k ;M /==O.d/k :

To compare (30) to the boundary inclusion @0 FMk.M /� FMk.M /, we first show the following.

Lemma 4.7 The map induced by the augmentation

B
�
@0 FMk.�/;Disc@0;�k�1;Emb@0

.�;M /
�
! @0 FMk.M /

is a weak equivalence.

Proof sketch The strategy is to show that this map is a Serre microfibration and has weakly contractible
fibres, which implies the statement by a lemma of Weiss [29, Lemma 2.2]. This is a standard argument,
so we will explain the idea somewhat informally and avoid spelling out lengthy but routine technical
details that are similar to eg [16, Section 4].

To verify that the map is a Serre microfibration the task is to show that in a commutative diagram

Di � f0g B.@0 FMk.�/;Disc@0;�k�1;Emb@0
.�;M //

Di � Œ0; "� Di � Œ0; 1� @0 FMk.M /�
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� �

�

�

�

Figure 6: An element of B.@0 FM4.�/;Disc@0;�3;Emb@0
.�;M // for @0M D @M , consisting of

a configuration x 2 @0 FM4.M / where two points are infinitesimally close, so that its macroscopic
image �.x/ consists of three points, and two levels of discs and collars indicated by the orange
and light-orange coloured regions. We suppressed the weights .t0; t1/ 2�1.

whose solid arrows are given, there exists an " > 0 and dashed lift. To see why this holds, it is helpful to
think of the space B.@0 FMk.�/;Disc@0;�k�1;Emb@0

.�;M // as the subspace of

@0 FMk.M /�B.�;Disc@0;�k�1;Emb@0
.�;M //

consisting of pairs .x; ŒEe; Et �/ of element x in @0 FMk.M / and an equivalence class of a collection Ee
of p C 1 levels of nested embedded discs in M with weight Et 2 �p. The pair ŒEe; Et � must have the
property that the image �.x/ of x under the macroscopic location map is contained in the interior of
the deepest level (see Figure 6 for an example) and the equivalence relation is that if a coordinate of
Et 2�p D f.t0; : : : ; tp/ 2 Œ0; 1�

pC1 j t0C � � �C tp D 1g is 0 then we may forget it and the corresponding
level of discs.

In these terms, the right vertical map in the diagram sends .x; ŒEe; Et �/ to x. The map

Di
! B.@0 FMk.�/;Disc@0;�k ;Emb@0

.�;M //

provides for each s 2Di a configuration x.s/ 2 @0 FMk.M / together with nested embedded discs and
weights ŒE�.s/; Et.s/�. The map Di � Œ0; 1�! @0 FMk.M / defines a homotopy xt .s/ with t 2 Œ0; 1� starting
at x.s/. If t is small enough then this remains within the deepest level of the discs for x.s; 0/, and by
compactness of Di we find a single " > 0 such that this is the case for all .s; t/ with t � ". The dashed
lift is then given by sending .s; t/ to .x.s; t/; ŒEe.s/; Et.s/�/.

To see that the fibre over x 2 @0 FMk.M / is weakly contractible, ie any map from S i to the fibre extends
over DiC1, we observe that given an equivalence class ŒEe; Et � represented by a family of nested embedded
discs in M with weights, whose deepest level contains x, we find a smaller collection of � .k � 1/ discs
around points in the macroscopic image �.x/ of x and contained in the deepest level. By compactness
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we can find a single such small collection which works for all images of s 2 S i . Adding this collection
and transferring all weight to this collection provides an extension to DiC1.

Proof of Proposition 4.5 For brevity, we abbreviate

Dk WD Disk@0;�k ; EM WD Emb@0
.�;M /; E

@0tRd
k WD Emb@0

.@0 tRd
k ;�/;

FMk D FMk.�/; @0 FMk D @0 FMk.�/:

We claim that the commutative diagram

B.E
@0tRd

k ;Dk�1;EM /==O.d/k B.FMk ;Dk�1;EM / B.@0 FMk ;Dk�1;EM / @0 FMk.M /

@0 FMk.M / @0 FMk.M /

Emb@0
.@0 tRd

k
;M /==O.d/k FMk.M / FMk.M / FMk.M /

1 3 4

2

provides a zigzag as claimed. Here all vertical arrows are induced by the augmentation (29) or the
inclusion @0 FMk � FMk . Maps 1 and 2 are induced by the composition

(31) Emb@0
.@0 tRd

k ;�/! Emb.Rd
k ;�/! Emb.k;�/! FMk.�/

induced by restriction and inclusion, 3 is induced by inclusion, and 4 is another instance of (29). As the
diagram is natural in M and the leftmost vertical map agrees with the left vertical map in the statement
by the discussion around (30), it remains to show that 1 – 4 are weak equivalences.

The map 1 factors as a composition

B.E
@0tRd

k ;Dk�1;EM /==O.d/k ! B.E
@0tRd

k==O.d/k ;Dk�1;EM /! B.FMk ;Dk�1;EM /

whose first map is a weak equivalence since left Kan extensions commute with homotopy orbits. To
show that the second map in this composition (and also the map 2 ) is a weak equivalence, we argue that
the composition (31) consists of weak equivalences upon applying .�/==O.d/k to the first two spaces.
For the first map this follows by shrinking the collar, for the second map it holds because the derivative
Emb.Rd

k
;N /! k �Fr.N / is a weak equivalence for any manifold N where Fr.N / is the frame bundle,

and for the third map it is clear.

The map 3 is a weak equivalence because @0 FMk.�/� FMk.�/ is a weak equivalence when evaluated
on objects U of D�k�1. Indeed, if U consists of a collar and l � k � 1 discs,

FMk.U /Š
G

n0C���CnlDk

FMn0
.@0M � Œ0; 1//�FMn1

.Rd /� � � � �FMnl
.Rd /

and @0 FMk.U / is the union of such terms where one FMni
is replaced by @0 FMni

. By the pigeonhole
principle we have n0 � 1 or ni � 2 for some 1 � i � l , so it suffices to observe that in these cases
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@0 FMn0
.@M � Œ0; 1// ,!FMn0

.M � Œ0; 1// or @0 FMni
.Rd / ,!FMni

.Rd / are inclusions of deformation
retracts, either by modifying configurations such that one has a macroscopic location in @0M � f0g �

@0M � Œ0; 1/ or such that all have macroscopic location at f0g 2Rd . Finally, 4 is a weak equivalence
by Lemma 4.7.
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