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Abstract
We present a freely available data set of surgical case mixes and surgery process duration distributions based on processed
data from the German Operating Room Benchmarking initiative. This initiative collects surgical process data from over
320 German, Austrian, and Swiss hospitals. The data exhibits high levels of quantity, quality, standardization, and multi-
dimensionality, making it especially valuable for operating room planning in Operations Research. We consider detailed steps
of the perioperative process and group the data with respect to the hospital’s level of care, the surgery specialty, and the type
of surgery patient. We compare case mixes for different subgroups and conclude that they differ significantly, demonstrating
that it is necessary to test operating room planning methods in different settings, e.g., using data sets like ours. Further, we
discuss limitations and future research directions. Finally, we encourage the extension and foundation of new operating room
benchmarking initiatives and their usage for operating room planning.

Keywords Surgical Process Data · Data analysis · German Perioperative Procedural Time Glossary · Operating Room
Benchmarking Initiative · Operating Room Planning · Operations Research

Highlights

• We show the suitability of the surgery process data (with
high levels of quantity and quality, standardization, and
multi-dimensionality) from theGermanOperating Room
Benchmarking initiative for operating room planning.

• We present a processed data set of case mixes and
detailed surgery process duration distributions grouped
with respect to hospital level of care, surgical specialty,
and type of surgical patient.

• We make the processed data set freely available for
researchers working on operating room planning.
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• We show the necessity of operating room planning meth-
ods to be tested on different realistic settings since, e.g.,
hospitals of different care levels exhibit significantly dif-
ferent case mixes.

• We show benefits for practitioners to join or set up new
benchmarking initiatives.

1 Introduction

The operating room (OR) plays a crucial role in a hospital’s
operations since, for most hospitals, a significant fraction of
treated patients and generated revenues are associated with
surgical services [49]. Because of this and because an OR
is typically a highly complex system with many different
stakeholders, expensive resources, time-sensitive processes,
and an inherently high level of uncertainty, optimizing the
efficiency of OR operations through adequate planning is
crucial.

Research on operating room planning in Operations
Research is popular and extensive [14, 16, 31, 35, 38, 41, 70,
75, 94, 99]. To test modeling and solution approaches, input
data is needed, which is the focus of our work. We believe
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that to compare different models and solution techniques,
they should be tested on different data sets representing dif-
ferent OR settings. Here, so-called benchmarking sets can
be used [53]. Benchmarking sets represent collections of
instances for particular (optimization) problems [47]. They
can be based on fictional (i.e., generated) or real-world data
[53]. Since the research on OR planning is implementation-
oriented [14], the real-world data approach is more desirable.
To generate such benchmark sets, real data should be col-
lected systematically and in a standardizedmanner. The latter
aspect is crucial to enable comparisons across organizations
and aggregation of multiple data sources if desired.

However, data collection costs regarding technical, orga-
nizational, and financial resources are high [55], while the
purposes aside from mandatory legal compliance might not
always be apparent to the decision-makers. Consequently,
real-world data for the research on OR planning is still
scarce. If real data sets are used, they are often small or
low-dimensional. Typically, the data from only one hos-
pital is used [38]. Thus, only this hospital’s specific OR
context regarding organization, resources, surgical portfo-
lio, and procedures is being investigated. In the face of the
just-described scarcity of real-world OR data, it is remark-
able that there is an OR benchmarking initiative in the case of
German-speaking countries. This initiative has been around
for almost 15 years. Over 320 1 German, Austrian, and Swiss
clinics record and submit their surgical data in a standardized
way. The database of the benchmarking program contains
millions of surgical records [9]. Each data point represents
a performed surgery and includes data on different surgery-
related parameters.

For the participating hospitals, the primary purposes of
the benchmarking initiative are to compare their OR per-
formance regarding particular KPIs such as OR utilization
among each other and to evaluate the development of one’s
performance over time [9]. However, we argue that the data
collected for benchmarking purposes can also be used for
scientific purposes and research on OR planning.

We find the data suitable for studies on OR planning
for multiple reasons. In a nutshell, the data shows high
levels of quantity and quality, standardization, and multi-
dimensionality. Multiple process time stamps are recorded
per surgery, which enables detailed modeling of the surgical
process, i.e., by breaking a surgery down into several process
steps. For our purpose, by “surgical process data”, we denote
the data on surgical process steps durations and consider the
entire perioperative process as the scope of this definition.

Weargue that the surgical process data from theORbench-
marking initiative of German hospitals especially has the

1 As of 2022.

potential for detailed modeling approaches of the short-term
(“operational”) [37] OR planning, i.e., surgery scheduling,
in particular. However, it can also be used for studies on
OR process design. Regarding the investigation approach,
the highly detailed data seems most suitable for simulative
approaches and Job-Shop-like models. We note that the data
can be aggregated to a lower level of detail to be used as input
for low-detailed types of planning models as well.

This study aimed to process a data set from the OR bench-
marking initiative ofGerman-speaking countries for research
on OR planning for the first time and to make it ready for fel-
low researchers to use. For this, we used the benchmarking
data from 2019 and derived different OR settings based on
parameters such as hospital level of care (LOC) or surgical
specialty. For each setting, we have calculated distributions
of surgical process durations and case mixes of surgical pro-
cedures, representing the surgical portfolio of the respective
OR setting. One particular focus of our study was to model
a surgery, not in its entirety, but to distinguish several pro-
cess steps and to view them separately so that the data could
be used in detailed model approaches, as mentioned previ-
ously. Concrete benchmark sets and problem instances can
be generated from our collection of surgical case mixes and
process duration distributions. We discuss in detail how this
could be approached and suggest several OR planning prob-
lems and investigation approaches forwhich such benchmark
sets could be useful. The collection of casemixes and process
duration distributions can be accessed freely online [48].

One purpose of our study is to justify the practical rele-
vance of the systematic collection of surgical process data
in the context of prospective OR planning and to encour-
age hospitals and OR managers to re-evaluate their current
data collection practices. Joining many fellow researchers,
we want to draw the practitioners’ attention to the poten-
tial of (data-based) OR planning methods from the field of
Operations Research.

The paper is organized as follows: In Section 2, we present
related literature on surgical process data and its use in prac-
tice and OR planning research, as well as on benchmark sets
and their suitability for testing different modeling and solu-
tion approaches.Wealso list further existing internationalOR
benchmarking initiatives, which might have a potential for
scientific studies similar to the potential of the benchmarking
programwe describe here. In Section 3.1, we present the said
ORbenchmarking initiative ofGerman-speaking countries in
detail before we describe the data collected throughout the
initiative and howwe processed the 2019 data set and present
it in our data collection in Section 3.2. Section 3.3 discusses
the general potential and benefits of the benchmarking data
and specifically of our collection of surgical case mixes and
process duration distributions for different OR settings. We
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finish with a detailed discussion on the limitations of the
benchmarking data and our approach and suggest ways to
address those issues. Section 4 presents a concluding sum-
mary of our work and an outlook for future research.

2 Literature review

2.1 Surgical process data in OR practice

In OR operations, collecting specific surgical process data
can be mandatory for hospitals for quality assurance and
accounting reasons, based on prevalent regulations [55].
While data collection standards might not always be manda-
tory, it is essential to ensure consistent documentation over
time and valid benchmarking [7, 11]. The data on process
durations is usually routinely collected during surgery as time
stamps for particular process milestones, e.g., OR entry or
incision [7, 11]. The data on surgery process durations are
being used in practice for retrospective performance anal-
ysis [11] as well as for duration forecasting in prospective
surgery planning. The latter represents its own widely elab-
orated research field in the literature [30]. Typically, specific
parameters are identified as significant predictors for surgery
duration, e.g., surgery type or operating surgeon [42, 86].

2.2 Surgical process data in studies on OR planning

Several systematic reviews touch upon the use of surgical
process data within the reviewed studies [14, 31, 35, 38].
However, we could not find any reviews that would give a
comprehensive insight into this topic. We present a short
summary of our literature findings.

Researchers either use real-world data to model surgi-
cal process durations or generate fictional problem instances
[38]. The former is usually preferred to ensure better imple-
mentability of the model or algorithm [14]. In a model, the
data is used for two purposes: To model the realized and the
predicted process duration. Both can be done deterministi-
cally, e.g., by using actual recorded durations for the former
[30] and calculating mean values from historical data for
the latter [49, 58]. Typically, however, the realized process
durations are modeled stochastically [14] by fitting distribu-
tions for the process durations from empirical data [99]. The
predicted process durations can bemodeled using the param-
eters of the fitted distributions [36] or, alternatively, by using
linear regression [49] or other Machine Learning algorithms
[30].

Surgical process data is typically either grouped by spe-
cific parameters within a study or chosen from an overall
data set according to the scope of the study. This corre-
sponds with the above research on potential predictors of
surgical process durations [42]. For example, the differenti-

ation by hospital or hospital type is mostly done implicitly,
as many studies use data from one hospital. The same holds
for surgical specialty unless several surgical departments are
being considered simultaneously, e.g., for a Master Surgery
Schedule construction [57] or joint surgery scheduling [36].
Surgery or patient characteristics can be used to break down
the data further. For example, surgery urgency (elective vs.
non-elective) [96] or type of surgical patient (inpatient vs.
outpatient) [97], although again - many studies focus on one
urgency or case type and choose the data from their over-
all data sets accordingly [34]. Surgery type can be used as
a grouper based on the actual surgical procedure(s) [80] or
own classifications [36, 44, 49, 54, 67, 76]. Other potential
groupers are patient age or diagnosis [54]. Finally, data clas-
sification can also be done based on resources involved in the
surgery process, i.e., staff members [49, 54, 62], operating
rooms or medical equipment [69]. We do not give a compre-
hensive list here. The research on surgery duration prediction
can be consulted for further possible grouping parameters.

The level of detail in surgical process data and the corre-
sponding modeled surgical process differ among studies. We
propose that this could be another interesting aspect for future
systematic reviews. Many studies view a surgery as a whole
and focus on the intraoperative phase [36, 89]. Although it
is not always clear in this case what particular process mile-
stones define the “case time,” most of the time, the wheels-in
to wheels-out duration can be assumed [77]. Many studies
additionally consider pre- and postoperative surgery phases
[4, 33, 69] and the corresponding spatial resources such as the
preoperative holding unit, post-anesthesia care unit (PACU),
or intensive care unit [38]. Some studies model turnover (or
cleaning or OR-setup) time separately [4, 5, 12, 30, 32, 49,
61, 67, 76]. Studies such as Batun et al. [5], Brown et al.
[12], Holmgren and Persson [40], Kougias et al. [49], Messer
et al. [61], Ozen et al. [67] model the actual process of a
surgery with three main process steps: Pre-incision (takes
place either in the OR, i.e., OR entry to incision [12, 49,
67], or in a separate preparation room [40, 61]), incision-to-
closure and post-incision (i.e., closure to OR exit [12, 49,
67]). Batun et al. [5] and Ozen et al. [67] additionally model
“surgeon turnover.”This process step starts immediately after
closure and occurs parallel to post-incision and OR cleaning.
As Messer et al. [61] are concerned with finding the optimal
number of OR transfer rooms, they additionally model the
inward transfer of the patient into the OR area before pre-
incision and the outward transfer after post-incision. Latorre
Núñez et al. [51] model the pre-incision phase in more detail
and distinguish between four different preparation or setup
steps: Patient, OR, surgeon, and further resources. Riise et al.
[74] focus evenmore on the surgical resources by considering
process steps such as “removal of any superfluous equipment
from the operating room” or “removal of used equipment.”
Note that especially for the intraoperative phase, i.e., the
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actual surgical intervention, an extremely high level of detail
in process modeling can theoretically be achieved by identi-
fying individual surgical manipulations [59, 64, 100]. Such
a high level of detail can help estimate the (remaining) dura-
tion of a particular surgery [3, 100]. However, for the type
of OR resource-planning problems we focus on here, such a
high level of process detail is unnecessary.

From our literature review, we find that highly detailed
surgical process data has been used for simulation studies
- either to generate input for surgery schedule optimization
models [4, 67] or to investigate the relationships between
system parameters and their impact on the OR performance
[61]. The effect of different statistical methods for pro-
cess duration prediction on the OR performance has been
analyzed as well [49]. The data is also used for detailed
modeling of perioperative resources and their process step-
specific allocation with project-scheduling-related [74] or
flow-shop-related approaches [51]. With detailed process
data, overlapping processes can be modeled, which is, for
example, directly being used by the research on OR process
design [5, 12, 40]. A high level of process detail is generally
not necessary for other typical OR planning problems on the
strategic or tactical level, such as dimensioning and allocating
OR resources [37]. Detailed process data could, however, be
used for the strategic problem of layout planning [63], where
the focus lies on the pathways of the different stakeholders
in the OR. On the operational level of planning, detailed pro-
cessmodeling enablesmore realisticmodeling in general [5],
and individual duration modeling for each process step, e.g.,
distribution fitting [67].

As mentioned, in less detailed surgical process data, surg-
eries are usually considered as a whole, i.e., with only one
process step. Then benchmarking sets with realized surgery
durations per surgery type [36] or fitted theoretical dis-
tributions per type together with fixed capacity allocation
decisions and case mixes can be used for surgery scheduling.
Here, surgery scheduling on the operational level is usu-
ally divided into advance scheduling, i.e., surgical cases are
assigned to an operating room on a specific day, and alloca-
tion, i.e., sequencing of the surgeries, potentially assigning
start times. In addition, that data may be used for reschedul-
ing, e.g., if elective surgeries have to be postponed due to
arriving emergencies. For example, Jung et al. [44] present
optimization models for advance and allocation scheduling
as well as a rescheduling procedure. Dexter and Traub [18]
investigates surgery scheduling heuristics via simulation, and
Landa et al. [50] consider advance and allocation schedul-
ing with stochastic surgery durations, also using waiting list
data.

When going to higher levels of planning, less detailed
data is usually used. On the tactical level, operating room
capacity is allocated to different patient groups, e.g., through

block scheduling and fixing a master surgical schedule. This
is often done on the level of specialties. Further, staffing and
rostering decisions for operating room staff are usually based
on the master surgical schedule [8, 23]. Vanberkel et al. [92]
relate the master surgical schedule to the resulting capacity
usage of downstream resources such as ward beds. Here, for
every specialty, they assume a distribution over the number
of surgeries that can be performed in a surgery session. Jung
et al. [44] allocate capacity for elective surgeries such that
emergency patients can also be treated. To this end, they
classify surgeries into short, medium, and long surgeries.

Finally, on the strategic level of planning, surgical process
data can support service design, case mix, and capac-
ity dimensioning decisions. On this level, models usually
assume deterministic values, such as demand volume or
required capacity per patient type [39]. In addition, informa-
tion is needed on costs and profits for serving certain patient
types. For example, Blake andCarter [10] propose a goal pro-
gramming approach to decide on the case mix and volume
for physicians using deterministic values for needed surgery
and ward capacity per patient type.

2.3 Benchmark sets

Aswepresent a newdata collection in Section 3.2 and discuss
its usagepotential forORplanning research,we are interested
in how surgical process data like ours can be made ready
for use by fellow researchers. We use the work by Leeftink
and Hans [53] as guidance for preparing the data so that
benchmark sets can be derived from it. Benchmark sets are
crucial for performance comparison of solution approaches
on different problem scenarios since not all methods per-
form equally well in all situations [53]. Some studies provide
benchmark sets for general flow or job shop problems [17] or
present generic problem instance generators [87]. Most stud-
ies on OR planning, such as [50], define their own instance
sets. Some make them publicly available, like Riise et al.
[74], [81].

Leeftink and Hans [53] focus specifically on generating
benchmark sets for surgery scheduling problems. They pro-
pose that a surgery scheduling instance should be defined
by a surgical case mix and distribution parameters for each
type of surgery in the case mix, including expected surgery
duration and variation. Note that a surgery in a problem
instance, as described by Leeftink and Hans [53], is seen in
its entirety, without being divided into separate process steps.
The authors suggest an approach for characterizing the case
mix of a problem instance and generating several surgery
scheduling instances, theoretical and based on real-life data
fromfive differentDutch hospitals. LikeRiise et al. [74], they
make their benchmark sets publicly available [88]. Several
studies have already used these benchmark sets since [38].
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Leeftink and Hans [53] conclude their work by suggesting a
method for determining the proximity of problem instances
in a particular benchmark set and subsequent selection of the
least similar instances to ensure the required diversity of the
benchmark set.

2.4 Surgical process data benchmarking initiatives

We previously mentioned that surgical process data could be
used for benchmarking purposes. Since we present a bench-
marking program established by professional associations
from Germany, Austria, and Switzerland in Section 3, we
shortly list similar initiatives from other countries.

Surprisingly, we did not find many examples of national
OR benchmarking initiatives.We start by naming two further
German initiatives similar to the onewe focus on in this study.
One is the benchmarking initiative by Krankenhauszweck-
verband Rheinland with 87 participating hospitals in 2020
[46]. The other is administrated by BInovis GmbH and JR
Consulting oHG and claims its unique approach by evaluat-
ing organizational aspects of an OR, additionally to typical
process KPIs [43]. For English-speaking countries, we find
evidence that in 2011, 471 hospitals and ambulatory surgery
centers from the USA, Canada, Saudi Arabia, Australia, and
New Zealand participated in the so-called “OR Benchmarks
Collaborative,” run by McKesson Enterprise Intelligence,
USA [25]. Boggs et al. [11] update the Procedural Times
Glossary (PTG) of the US Association of Anesthesia Clin-
ical Directors and note that the PTG has already facilitated
benchmarking initiatives. Unfortunately, the authors do not
name any examples. Similarly to the PTG, operating the-
atre efficiency guidelines exist in Australia [1, 82]. We found
evidence that the National Health Service (NHS) England,
specifically the NHSBenchmarkingNetwork, reports annual
benchmarking results in its “Operating Theatres Project”
[66], with 69 hospitals participating in 2018 [65]. The results
include insights on OR performance indicators such as uti-
lization or turnaround time [65, 66].

We found only one national benchmarking initiative from
a non-German-speaking country that we consider similar to
the onewe focus on in this paper: The benchmarking program
of the university hospitals in the Netherlands, established in
2005. The surgical process data of the seven participating
clinics are processed and analyzed centrally. The hospitals
regularly receive insights on the efficiency and profitability
of their ORs compared to fellow benchmarking participants.
The participating clinics are encouraged to exchange best
practices with each other. The collected data can be provided
in anonymized form for scientific studies. The level of detail
in the data is high, with several time stamps corresponding to
the surgical and anesthetic procedures collected per surgery
[90, 91].

3 The OR benchmarking program surgical
process data and its potential for OR
planning research

3.1 The OR benchmarking program
of German-speaking countries

3.1.1 The German Perioperative Procedural Time Glossary

In 2008, the first version of the “The German Perioperative
Procedural Time Glossary” (GPPTG) was published, fol-
lowing the emerging demand for a standardized, KPI-based
ORmanagement and external benchmarking amongGerman
hospitals [9]. TheGlossarywas the product of a joint effort by
the German professional associations of anesthetists (BDA),
surgeons (BDC), and OR managers (VOPM). The GPPTG
has been revised and updated twice since - in 2016 and 2020.
In the 2020 version, the Austrian and Swiss associations of
OR managers (VOPMÖ and SFOPM, respectively) became
involved as well, extending the validity of the GPPTG to all
three German-speaking countries. In its most recent version,
the Glossary contains 41 defined perioperative process time
points, categorized into subcategories patient logistics, OR
logistics, anesthesia, and operation. Surgical process steps
based on these time points and typical KPIs concerning the
ORperformance are also defined.However, the timepoints or
the process steps do not suggest a “standard” surgery process
but rather encompass typical milestones of a generic surgical
process. The entire perioperative process is covered, from the
patient being called to the patient being discharged from the
PACU. However, the GPPTG focuses on the patient’s path
through the OR, so other OR-related tasks, such as documen-
tation or planning, are not included [7].

3.1.2 Benchmarking program

In connection with the initial publication of the GPPTG, the
aforementioned benchmarking program for surgical process
data was established in 2009. From the outset, its central
purpose has been to provide participating hospitals with an
opportunity to compare OR performance among each other
and, with this, to evaluate one’s potential for improvement.
The technical implementation is carried out by a neutral party
company (digmed GmbH, Hamburg, Germany). A partici-
pating hospital typically submits all its routinely recordedOR
process data monthly. The data collection itself must follow
the GPPTG. Participation in the benchmarking is possible
by submitting at least two time stamps per surgery: Inci-
sion and closure. Additional required information for each
surgery involves the date, the surgical department, the oper-
ating room, and the unique (anonymized) identification of the
operated patient [9]. In principle, participation in the bench-
marking program is open to any German, Swiss, or Austrian
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hospital. However, the benchmarking results are provided
to the benchmarking participants only, except for scientific
studies. Anonymized data can be provided for the latter [9],
and there are already studies that use the benchmarking data
for research on OR performance [21].

The number of hospitals participating in the program has
grown from 20 hospitals in 2009 [9] to over 320 German,
Austrian, and Swiss clinics today [20]. Among the hospitals,
all levels of care (LOC) are represented [9, 20].2

3.2 Surgical process data from the OR
benchmarking initiative

3.2.1 The 2019 data set

A data set from the previously described benchmarking pro-
gram was kindly provided to us by digmed GmbH. We use
this data to derive process durations and case mix distribu-
tions. The data set includes all surgical data for 2019 and all
participatingGerman hospitals (Austrian and Swiss hospitals
were not included). The effect of theCOVID-19 pandemic on
the OR operations in German hospitals and thus on the corre-
spondingdata in years starting2020 is non-neglectable, so the
2019 benchmarking data represents the latest non-COVID-
affected situation of German ORs. In the data set, which
we call the 2019 data set, 212 hospitals are represented in
total, which accounts for around 11% of all German hospi-
tals [83]. The 2019 data set consists of 2,035,126 data points,
i.e., recorded surgeries.3 For each surgery, the unique hos-
pital ID, the hospital’s federal state, the hospital LOC, the
surgical specialty,4 the surgery date, the OR, and the unique
IDof the patient’s hospital stay are recorded. Further surgery-
specific parameters are optional and not always recorded for
all data points or by all hospitals. Those parameters include
the main OPS5 code of the operation, the anesthesia type

2 Hospital LOC is, in this case, the German classification of acute care
clinics based on clinic size (measured in beds) and specialization of
the medical offering. Note that the hospital LOC classification in the
benchmarking program is partly provisional since there is no standard-
ized classification across all German federal states so far [95]. The terms
used in the benchmarking program also correspond only approximately
to the according classifications in Austria [29], and Switzerland [13].
3 We use the term surgery synonymously to what in the GPPTG is
defined as operation. The latter can consist of one or more procedures.
One or more surgeries make up a session [7].
4 Here we use the codes published by the German Hospital Federation
(“Deutsche Krankenhausgesellschaft”) and the National Association of
StatutoryHealth InsuranceFunds (“GKVSpitzenverband”). The coding
approach can differ across federal states [71].
5 The main procedure of the surgery with respect to the “Operationen-
und Prozedurenschlüssel,” i.e., Operation and Procedure Code [72],
which is the German modification of the International Classification of
Procedures in Medicine [24].

Table 1 GPPTG times stamps included in the 2019 data set

Time stamp code Time stampa

P2 Patient Arrival at OR suite

P5 Patient In OR

P7 Patient Out of OR

P8c Start PACU

P10 End OR Cleaning

A6 Start Anesthesia

A7 Anesthesia Ready

A9 End Anesthesia

O8 Incision

O10 Closure

O11 End Follow-up Surgical Measures

aThe English terms are taken from GPPTG 2020, although in 2019 the
previous 2016 version was still valid. The latter, however, had not been
translated into English

(local or not local, i.e., general anesthesia), the type of surgi-
cal patient (inpatient or outpatient), the urgency (elective or
corresponding to a particular level of emergency, following
the GPPTG classification [7]), the main operating hours of
the corresponding surgical specialty (K18a [7]) and the size
of the OR block capacity assigned to the surgical specialty
in the particular OR and on the particular date (K18 [7]).
In Table 1, all GPPTG times stamps included in the 2019
data set are listed.6 Table 2 includes all process times, which
can be calculated using these time stamps as defined by the
GPPTG.

digmedGmbH conducts data plausibility checks to ensure
high data quality [9]. The latter is required for benchmark-
ing analyses and scientific studies [45, 78, 79]. It should be
noted that hospitals that join the benchmarking program tend
to improve the quality of the recorded surgical process data
(sometimes remarkably) over time [9]. In our 2019 data set,
data points are marked if they have passed the plausibil-
ity checks by digmed GmbH. These plausible data points
account for more than 98% of the data set. We addition-
ally check how well the optional surgery parameters and
the procedural time stamps are documented. In Table 3 for
each surgery parameter, the percentage of data points with a
definite entry, i.e., a recorded value excluding the unknown
values, in the total data set are listed. In Table 4, for every
time stamp, we list the percentage of the entire 2019 data
set that has the time stamp recorded and is at the same time
marked plausible by digmed GmbH.

6 digmed GmbH had data on other time stamps available; however,
those were submitted by only a few hospitals and resulted in too few
data points for our purpose.
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Table 2 Process times based on the available GPPTG time stamps in
the 2019 data set

Process stamp code Process stampb

K2 Anesthesia Induction Time (A6 to A7)

K3 Anesthesia Emergence Time (O11 to A9)

K7 Surgical Lead-in (A7 to O8, or P5 to O8, if
P5 after A7)

K8 Incision-to-Closure Time (O8 to O10)

K9 Surgical Lead-out (O10 to O11)

K10 Perioperative Time (A7 to O11, or P5 to
O11 if no anesthesia used)

K13 Net Anesthesia Time (A6 to A9)

K15b Turnover Time Anesthesia (O11 to A7 of
the following case)

K16 Closure-to-Incision Time (O10 toO8 of the
following session)

K17 Column Time (P5 to P7)

K17a Room Occupied Time (P5 to P10)

bThe English terms are taken from GPPTG 2020, although in 2019 the
previous 2016 version was still valid. The latter, however, had not been
translated into English

3.2.2 Data processing

Following Leeftink and Hans [53], one goal is to deter-
mine surgical case mixes from the data for different OR
settings. We define the latter using specific parameters and
group the raw data accordingly during data processing. We
use the hospital LOC and the surgical specialty as setting
or grouping parameters following the approach described in
Section 2. This differentiation is reasonable since hospitals of
different LOCs and surgical specialties typically have differ-
ing surgery portfolios regarding the procedures performed.
The organization, including the processes and the resources,
might also differ. We use the (main) OPS code to represent
the surgery type. Based on an additional analysis during data

Table 3 Percentage of data points in the 2019 data set with a definite
entry per surgery parameter

Surgery parameterc Percentage of data points with a
definite value in the 2019 data set

(Main) OPS code 89%

Anesthesia type 60%

Type of surgical patient 90%

Urgency 83%

Main operating hours of
the surgical specialty

92%

cWe do not consider the block capacity here since a missing value, in
this case, does not necessarily indicate missing data but could mean that
the surgical specialty didn’t have any capacity allocated in this OR on
this date

Table 4 Percentage of data points from the 2019 data set with recorded
and plausible time stamps

Time stamp Percentage of data points with time stamp
recorded and plausibility check passed in
the 2019 data set

P2 73%

P5 30%

P7 27%

P8c 6%

P10 3%

A6 82%

A7 85%

A9 80%

O8 98% (all plausible data points)

O10 98% (all plausible data points)

O11 91%

processing, we decided to use the type of surgical patient
as another setting parameter. Table 5 shows the values we
choose from the data for each parameter. The urgency does
not seem to have a significant additional effect on the process
durations.

Regarding the parameter anesthesia type, we only con-
sider surgeries not explicitly marked as carried out in local
anesthesia since the group represents less than 1% of our
final data selection. See Appendix A for more details on our
data selection procedure. To determine the case mix for each
combination of hospital LOC, surgical specialty, and type of
surgical patient, we determine the OPS codes represented in
the corresponding data selection and their relative frequency
in the considered class.

For each surgery type in a particular case mix, we fit theo-
retical distributions (two-parameter lognormal, gamma, and
Weibull) for process durations based on the historical data,
similar to Leeftink and Hans [53]. Other than Leeftink and
Hans [53], we aim for a more detailed modeling of the sur-
gical process than considering a surgery in its entirety. We
choose the process-oriented perspective based on available
time stamps, focusing on the main perioperative activities,
i.e., anesthesia and surgical procedures. We determine the

Table 5 Chosen values per parameter to process the 2019 data set

Hospital LOC Surgical specialty Type of sur-
gical patient

Basic and Regular Care General Surgery Inpatient

Specialized Care Trauma Surgery Outpatient

University Clinics Otolaryngology

Maximum Care, excl.
University Clinics

Gynecology
and Obstetrics
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Fig. 1 Process steps of a generic surgery according to the process stamps defined in Table 2

most detailed and consecutive process modeling possible
and choose K2, K3, K7, K8, and K9 as our main process
steps or times. We assume the process steps to represent a
generic surgery as shown in Fig. 1. We note here that this
assumed sequence of process steps and time stamps is just
one of many possibilities for how the surgical process in a
German hospital could be modeled or implemented in real-
ity. As indicated in Table 2, mentioned in 3.1.1 and depicted
in detail in Bauer et al. [7] there are different possibilities
for the process design of OR logistics, concerning for exam-
ple the anesthesia procedure or the patient logistics, which
can result in different process times definitions in terms of
surgical time stamps. We additionally fit distributions for the
OR cleaning time (which we define as A9 to P10), so this
process step could be modeled separately if desired. Finally,
we fit distributions for the closure-to-incision time (K16),
although not recommended but still used by some German
hospitals proxy for the turnover time [77]. See Appendix B
for more details on our distribution fitting method. For our
final collection of the process duration distributions, we cal-
culate the expected value and variance besides the estimated
distribution parameters for each distribution.

3.2.3 Our collection of process time distributions
and surgical case mixes

The main output of our previously described analysis and
processing of the 2019 data set is our collection of process
time distributions and surgical case mixes. The collection of

surgical case mixes is represented by a spreadsheet with four
parameter columns: Hospital LOC, surgical specialty, type
of surgical patient, and (main) OPS code. The represented
values for the first three parameters are listed in Table 5.
Moreover, 633 unique OPS codes are represented in our case
mix collection. There are 1,685 unique combinations for the
four parameters in our final case mix collection. The case
mix spreadsheet includes the corresponding class size for
each unique combination. It is expressed by the number of
observations, i.e., data points or unique surgeries, from our
main data set (see Appendix A). See Fig. 2 for an excerpt of
the case mix spreadsheet.

Table 6 shows for each unique combination of hospital
LOC, surgical specialty, and type of patient that is repre-
sented in our case mix collection, the number of included
OPS codes that correspond with that particular parameter
combination, the total number of observations summed up
over all these OPS codes, the average class size for the indi-
vidual OPS codes as well as the standard deviation of the
class size. It can be observed that all combinations except
for the combination of University Clinics, General Surgery,
and Outpatient are represented in our case mix collection.
The inpatient combinations typically include a much larger
total number of observations and OPS codes than their out-
patient counterparts. The number of included OPS codes per
combination ranges between 4 (University Clinics, Trauma
Surgery, Outpatient) and 182 (Specialized Care, General
Surgery, Inpatient). Table 7 shows the five largest OPS
codes represented in the case mix collection as measured

Fig. 2 An excerpt from our final case mix collection
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Table 6 Description of the casemix collection: Number of uniqueOPS codes, total number of observations, and average class size for all represented
combinations of hospital LOC, surgical specialty, and type of patient

Hospital LOC/Surgical specialty/Type of patient Nr. of included OPS codes Total nr. of observations Avg. class size (SD)

Basic and Regular Care

General Surgery inpatient 116 16,254 140.12 (344.86)

outpatient 13 1,382 106.31 (117.94)

Trauma Surgery inpatient 100 11,660 116.60 (161.18)

outpatient 25 1,797 71.88 (79.95)

Otolaryngology inpatient 20 2,546 127.30 (117.23)

outpatient 12 1,326 110.50 (175.37)

Gyn and Obstetrics inpatient 55 6,502 118.22 (114.85)

outpatient 19 3,582 188.53 (254.07)

Specialized Care

General Surgery inpatient 182 26,974 148.21 (372.57)

outpatient 22 2,442 111.00 (140.90)

Trauma Surgery inpatient 127 11,868 93.45 (125.38)

outpatient 27 2,275 84.26 (64.82)

Otolaryngology inpatient 75 9,247 123.29 (191.72)

outpatient 8 1,272 159.00 (218.95)

Gyn and Obstetrics inpatient 80 13,464 168.30 (201.02)

outpatient 25 6,315 252.60 (363.58)

University Clinics

General Surgery inpatient 113 10,617 93.96 (101.10)

Trauma Surgery inpatient 78 5,634 72.23 (59.19)

outpatient 4 139 34.75 (3.11)

Otolaryngology inpatient 118 15,044 127.49 (155.07)

outpatient 4 609 152.25 (125.58)

Gyn and Obstetrics inpatient 42 4,269 101.64 (80.26)

outpatient 9 799 88.78 (51.34)

Maximum Care excluding University Clinics

General Surgery inpatient 130 16,094 123.80 (240.15)

outpatient 9 858 95.33 (44.83)

Trauma Surgery inpatient 81 7,960 98.27 (103.41)

outpatient 10 599 59.90 (29.35)

Otolaryngology inpatient 100 14,158 141.58 (213.16)

outpatient 13 2,180 167.69 (240.56)

Gyn and Obstetrics inpatient 53 7,598 143.36 (135.94)

outpatient 15 2,171 144.73 (169.73)

by the total number of observations. The OPS code 5-511.11
(“Operations on gallbladder and bile ducts: Cholecystec-
tomy: Simple, laparoscopic:Without laparoscopic inspection
of the bile ducts”) is by far the most prominent with 10,778
observations.

The distribution parameters for our five primary process
times (see Fig. 1) are listed in another spreadsheet. Here,
we again have the four columns corresponding to the previ-
ously mentioned parameters. For each of the 1,685 unique
parameter combinations, five distributions are included - one

for each of the process times. Each distribution includes the
distribution type (lognormal, gamma or Weibull), two fitted
distribution parameters, and the expected value and variance
of the distribution, calculated using the fitted parameters. See
Fig. 3 for an excerpt of the main process times distributions
spreadsheet.

For the OR cleaning duration and the closure-to-incision
duration, we include one individual spreadsheet per process
time for the fitted distributions since for OR cleaning, we
only use the parameters hospital LOC, surgical specialty,
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Table 7 The 5 largest OPS codes represented in the final case mix
collection, measured in number of observations

OPS-Code Nr. of observations

5-511.11 10,778

1-672 5,192

5-285.0 4,801

5-530.31 4,676

5-399.5 3,798

and type of surgical patient (see Table 8) and for closure-to-
incision, only hospital LOC and surgical specialty are used,
as described in Appendix A. Both spreadsheets are otherwise
structured similarly to the spreadsheet with the fivemain pro-
cess times distributions.

For all seven considered process times, Table 9 shows
the range of the expected values of the fitted distributions
expressed by the minimum and the maximum values. The
spread is the largest for the incision-to-closure time.

We include Fig. 9 in Appendix B to demonstrate how
often each of the three distribution types (lognormal, gamma,
Weibull) is represented in our distribution collection for each
of the process times.

With the case mixes, i.e., the empirical distributions of
surgery types, and the corresponding distributions of process
durations, benchmark sets can be generated as inLeeftink and
Hans [53] by choosing a particular value for each of the three
setting parameters. Choosing several values simultaneously,
e.g., for surgical specialty or type of surgical patient, is also
conceivable. In the next section, we plot different exemplary
case mixes similarly to Leeftink and Hans [53].

3.3 Discussion

3.3.1 Benefits and potential

The surgical process database from the benchmarking initia-
tive described above is a rare example of highly standardized
and high-quantity real-world data systematically collected
from a large number of data providers. Besides the bench-
marking purpose, such a large data set has enormous potential

Table 8 Represented parameter combinations for OR cleaning in the
collection of process time distributions

Hospital LOC Surgical Specialty Type of patient

Basic & Regular Care General Surgery inpatient

outpatient

Trauma Surgery inpatient

outpatient

Gyn and Obstetrics inpatient

outpatient

Specialized Care General Surgery inpatient

outpatient

Trauma Surgery inpatient

outpatient

Otolaryngology inpatient

outpatient

Gyn and Obstetrics inpatient

outpatient

University Clinics General Surgery inpatient

Otolaryngology inpatient

Gyn and Obstetrics inpatient

for scientific research. Not only are the recorded process
time stamps standardized, following official guidelines of
the professional unions involved, but the data also shows an
overall high level of quality. Moreover, it has a relatively
high level of detail regarding the number of recorded time
stamps and other surgery parameters collected per surgery.
An obvious advantage of this data source is that it is growing
continuously, receiving new data not only from participating
hospitals every year but also from new hospitals that join the
benchmarking initiative. And since several hundred German
hospitals are already participating in this largest national OR
benchmarking initiative, we can assume that the data has
a reasonably high level of representativeness. However, as
we elaborate further below, there is still room for improve-
ment. A continuing expansion of the program in Austria and
Switzerland in the coming years is to be expected. Further,
the contents and methods of the benchmarking are contin-
uously being improved and extended, as is the underlying
process of collecting and processing the data.

Fig. 3 An excerpt from our final main process times distributions collection
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Table 9 The min-max range of the expected values of the fitted distri-
butions for each considered process time (in min)

Process time Minimum
expected value

Maximum
expected value

Anesthesia induction 1.88 62.72

Surgical lead-in 1.83 52.81

Incision-to-closure 6.36 395.78

Surgical lead-out 1.11 20.63

Anesthesia emergence 1.66 26.02

OR cleaning 6.89 15.38

Closure-to-incision 36.52 77.16

In the context of research on OR planning, a high num-
ber of different OR settings can be modeled - using the
data collection that we provide - by choosing either unique
combinations of hospital LOC, surgical specialty, and type
of surgical patient or by considering, for example, several
specialties or both types of surgical patient (inpatient and
outpatient) simultaneously. The differentiation by the chosen
setting parameters enables more realistic and precise model-
ing since the surgical portfolios corresponding to the settings
differ significantly in practice, as mentioned in Section 3.2.
In Figs. 4, 5, 6, and 7, similarly to Leeftink and Hans [53], we
plot surgery type profiles for a few exemplary case mixes to
demonstrate this issue in terms of procedure duration and its
variation. The depicted process step is the incision-to-closure
time. The x-axis represents the expected process duration (m)
in relation to a typical operating room block duration (c) of 8
hours (480min). The y-axis represents the coefficient of vari-
ation, i.e., the standard deviation (s) divided by the expected
duration (m) for the same process time. In the visualization,
we have included the case mix distribution of the individ-
ual surgery types, i.e., OPS codes: The square dots depict the

Fig. 4 Incision-to-closure time profiles for the case mix corresponding
to general surgery inpatients in a hospital offering basic and regular care

Fig. 5 Incision-to-closure time profiles for the case mix corresponding
to general surgery inpatients in a university clinic

largest OPS classes cumulatively representing at least 60%of
the corresponding case mix. The diamond dots represent the
following 20% of the case mix, while the round dots depict
the smallest OPS classes in the respective case mix, which
make up the last 20%.

We observe, for example, in Figs. 4 and 6 that the out-
liers regarding the procedure length and variability represent
relatively rare surgery types in the respective case mixes.
Considering the hospital LOC, we notice when comparing
Figs. 4 and 5 that in the case of General Surgery and inpa-
tients, the university clinics show a much more diversified
surgical portfolio than hospitals of basic and regular care:
Both case mixes include a similar number of OPS codes
(116 for basic and regular care, 113 for university clinics),
however, with basic and regular care the 60% of the case
mix’ volume is represented by the 15 largest procedure types,

Fig. 6 Incision-to-closure time profiles for the case mix corresponding
to trauma surgery inpatients in a hospital offering basic and regular care
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Fig. 7 Incision-to-closure time profiles for the case mix corresponding
to trauma surgery outpatients in a hospital offering basic and regular
care

whereas for university clinics it takes 31 OPS codes to con-
stitute the 60%. We also observe that the incision-to-closure
time at university clinics tends to be longer andmore variable.
Regarding the surgical specialty, we observe by comparing
Fig. 4 with the plot in Fig. 6 that the incision-to-closure time
of general surgeries tends to be longer and more variable
than that of trauma surgery interventions. Finally, the char-
acteristic difference in procedure length between outpatient
and inpatient surgeries [14] can be observed when compar-
ing Figs. 6 and 7. We hypothesize that surgery planning
approaches will perform significantly differently depending
on the hospital LOC, surgical specialty, or type of surgical
patient due to the differences in the case mixes.

By choosing a particular combination of parameter val-
ues, diverse problem instances, and benchmark sets can
be generated from our data collection using the procedure
described by Leeftink and Hans [53]. Alternatively, the
case mixes and duration distributions of particular OR set-
tings can be used directly, e.g., as input for a simulation
model, without generating a finite problem instance. How-
ever, when creating benchmark sets, these could be extended
by further problem-specific parameters, e.g., urgency or
resource-related aspects, as suggested by Leeftink and Hans
[53]. According to Leeftink and Hans [53], who refer to
Vanhoucke andMaenhout [93], benchmark sets based on our
data collectionwould thus satisfy the condition of extendibil-
ity. Theywould also satisfy the condition of realism since our
data collection is entirely derived from real-world data. We
argue that these benchmark sets would thus be suitable for
the analysis of real-world problems, and the results of such
analysis should have higher explanatory power for the cor-
responding real-world contexts than benchmark sets derived
from artificially generated data. (The other two required con-
ditions for a benchmark set, as mentioned by Leeftink and

Hans [53], size and diversity, are to be controlled for when
a particular benchmark set based on our data collection is
actually being generated.)

Compared to the benchmark sets by Leeftink and Hans
[53], who consider a surgery in its entirety, the potential
benchmark sets based on our collection of surgical case
mixes, and process duration distributionswould have a higher
level of process detail, as we divide a surgery into five pro-
cess steps and consider the respective durations individually.
We argue that only by dividing the surgery process into sev-
eral process steps can we achieve a more realistic depiction
of the OR operations in OR planning models as described in
Section 2. Process-specific resource allocation, overlapping
processesmodeling, andmore precise duration prediction are
themain advantages of a detailedprocessmodeling approach.
As depicted in Section 2, this is particularly interesting for
operational planning approaches, e.g., in the context of Job
Shop models [69, 74].

A high level of detail is generally desirable for simulative
approaches. Moreover, with simulation, it is manageable in
terms of computational effort. The benchmark sets based on
our collection of surgical case mixes and process duration
distributions could thus be used, for example, for simulation
studies such as Messer et al. [61] or simulation-optimization
approaches as described by Ozen et al. [67] or Kougias et al.
[49]. As mentioned in Section 2, highly detailed data can
also be useful for research on the strategic level, e.g., for
investigating different organizational approaches, including
the organization of perioperative processes or the design of
spatial resources. Further, our provided high-detailed data
can be aggregated and extended to produce suitable input
for OR planning models on all planning levels. By summing
up sampled process durations, we can consider a surgery as
a whole. For advance scheduling and allocation scheduling,
we would need additional information on waiting lists and
the master surgery schedule. For capacity allocation, e.g., to
create a master surgery schedule, we would need extra data
on the arrival of demand per patient type including emergen-
cies. Further, the data could be connected with data on staff
requirements and the length of stay to take the capacity and
scheduling of (downstream) resources and staff into account.
On the strategic level, again, information on the demand vol-
ume would need to be added, as well as information on costs
and profits per patient type. Finally, note that even though
many models use aggregated data, they are usually evaluated
using simulation which requires a more detailed level of data
to approximate the performance in reality as well as possible.

The final advantage of our collection of surgical case
mixes and process duration distributions is the mentioned
high quantity of the underlying benchmarking data, which,
combined with our data processing methods, has enabled a
high statistical quality of our calculated case mix and pro-
cess duration distributions. There is a more practice-oriented
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potential here as well - the high quantity of benchmarking
data can be leveraged by OR management practitioners who
only have limited data from their ownORs. Especially for the
duration prediction of rare surgical procedures, the data of
other hospitals could be used as a planning proxy in practice.

3.3.2 Limitations

To finish the discussion section, we want to comment on the
limitations of the benchmarking data and the collection of
surgical case mixes and process duration distributions we
provide. To derive the latter, we focused exclusively on the
specific OR context of German hospitals. Our provided data
collection could nevertheless be used for research on country-
specific differences. Focusing onGermany, however, we face
a representativeness issue in the original benchmarking data:
As mentioned in Section 2.2, only 11% of German hospitals
have participated in the program so far. Moreover, the dis-
tribution of the participants concerning the hospital size, the
federal state, or the LOC, for example, does not accurately
represent the actual proportions. Large hospitals and univer-
sity clinics, in particular, represent a disproportionately large
fraction. This can be attributed to the generally higher inter-
est of these hospitals in process efficiency and progressive
OR management methods [68], but also the availability of
necessary resources [9].

Another limitation of the benchmarking data is missing
data. As we show in Section 3.2.1, the optional surgery
parameters such as anesthesia type or urgency and process
time stamps other than incision and closure are documented
to a varying degree. Amore elaborate and consistent hospital
data recording practice would be desirable. However, a more
significant issue is the information on certain parameters
that are not yet recorded. This makes investigating partic-
ular research questions using the data alone impossible and
requires additional assumptions about the missing contexts.

This is particularly the case with the performed proce-
dures during a surgery. Since only one OPS code is available
per surgery record, it is unclear whether there were other
procedures carried out during the same operation and, if so,
which procedures these were in particular. In such a case, it
is also unclear based on what criteria the chosen OPS code
was determined to be the main procedure by the submitting
hospital. It is moreover unclear whether the procedure was
carried out during a session that includedmultiple operations
and, if so, whether the respective operations were carried out
simultaneously, sequentially, or in parallel [7]. Such infor-
mation would be desirable for analyses like ours. However,
the corresponding data recording practice might be rather
challenging to implement. In our case, we must implicitly
assume that the recorded OPS code corresponds to the actual

main procedure carried out during the surgery and represents
the entire surgery.

Pre-surgical planning

Another issue we have to deal with considering the OPS
code is that in German hospital practice, the OPS codes are
identified and assigned post-surgery. They are used mainly
for reimbursement purposes [73]. The pre-surgical planning
of a surgery in German hospitals is usually done by using
general, sometimes hospital-specific procedure terminology,
which only in some cases could be unambiguously matched
with OPS codes. Since there is no information on planned
procedures in the benchmarking data, for the purposes of
research on OR planning, it must be assumed that the per-
formed procedure (main OPS code) represents the planned
one. In reality, there can be a bias between the two [19] since
the exact procedure cannot always be determined in advance
[73].

Following the idea of Riekert et al. [73], we investigate
how well a more general OPS classification could serve as
a proxy for a planned procedure. A complete OPS code, as
represented in the benchmarking data set and our resulting
collection of case mixes and process duration distributions,
contains at most six characters (excluding a hyphen that fol-
lows the first character). We use what Riekert et al. [73] call
the third level of OPS taxonomy, namely the first four char-
acters of an OPS code to represent an OPS category. An
OPS category contains less information than a complete OPS
code. Thus, it could be assumed to represent the information
available at the planning stage before the surgery takes place.

Wedemonstrate this idea for one exemplaryOPScategory.
We choose category 5-870 (“Excision and resection of the
mamma: Partial (breast-conserving) excision of the mamma
and destruction of mamma tissue” [27]). The complete OPS
codes in this category are shown in Table 10 for the setting of
specialized care, gynecology and obstetrics, and inpatients.
As mentioned, a complete OPS code contains more details
on the specific procedure than the corresponding general cat-
egory, e.g., OPS code 5-870.61 stands for “Excision and
resection of the mamma: Partial (breast-conserving) exci-
sion of the mamma and destruction of mamma tissue: Local
destruction: Defect coverage by mobilization and adaptation
of up to 25% of the breast tissue (up to 1 quadrant)” [28].

The incision-to-closure time of the OPS category 5-870
is a mixture distribution of mixture components, here the
OPS code distributions. For such distributions, the mean
can be calculated as the sum of the means of their mix-
ture components weighted by the mixture weights, i.e., the
probability or frequency of seeing the specific mixture com-
ponent. The variance of the mixture distribution can also be
calculated analytically [26]. It is given as the mixture of the
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Table 10 Mean and variance of the incision-to-closure time and the
frequency per OPS category and the corresponding OPS codes (gyne-
cology and obstetrics inpatients in a hospital offering specialized care)

OPS Mean Variance OPS relative frequency
in the case mix

5-870 55.0 953.5 100%

5-870.20 37.3 338.9 1.5%

5-870.21 41.3 479.3 1.6%

5-870.60 34.7 368.4 1.4%

5-870.61 57.0 933.0 2.4%

5-870.90 40.2 679.2 11.1%

5-870.91 38.2 459.8 5.0%

5-870.a0 43.9 729.1 10.5%

5-870.a1 55.1 721.0 38.5%

5-870.a2 60.2 743.9 20.6%

5-870.a3 89.4 1607.1 4.4%

5-870.a5 97.3 1899.3 3.0%

component variances plus a non-negative term accounting
for the weighted dispersion of the means. In our example, the
analytically determined variance for the incision-to-closure
time of OPS category 5-870 is 951.2, i.e., the sum of 774.5
(mixture of the variances) and 176.7 (the term that accounts
for the dispersion of the mixture means), which is very close
to the empirical variance that can be seen in Table 10. The
slight deviation is due to rounding. As expected, we observe
that the dispersion of the mixture means results in additional
variability to account for when planning. Even though we
can easily determine the moments of mixture distributions,
in general, the distribution will not be lognormal, gamma,
or Weibull given that the mixture components were of those
types. It can even be multi-model.

If one wanted to take on our suggested approach of using
OPS categories instead of completeOPS codes for a planning
model, then one could use Monte Carlo simulation to gener-
ate realized process durations on the OPS category level.

Missing context

Besides the planned procedures, theORplanningmethods
deployed by the hospitals are unknown. We also have no
information on the actual process design, including opening
hours, of each corresponding OR included in the original
benchmarking data set or how it might have changed over
time. Further, since we do not have data on cancelations or
reschedulings,we cannot accurately depict the actual surgical
demand. We derive the case mix of the demand for different
surgery types based on the realized surgeries. This realized
demand most likely does not represent the actual external
demand and is furthermore determined by theOR capacity of
the respective hospital. Since process delays, waiting times,
and transportation times are not explicitly submitted, there is
no possibility ofmodeling these aspects based on the data.On

the other hand, we must assume these artifacts are implicitly
included in the process times we have derived from the data.

The process steps forwhichwe provide the duration distri-
butions do not enclose the entire perioperative process. This
is, on the one hand, due to the current state of the data collec-
tion practice in the hospitals since, as mentioned above, only
a few of the available GPPTG time stamps are collected by
a significant number of clinics. Also, not all processes, such
as OR planning or documentation, are explicitly depicted in
GPPTG, as mentioned in Section 3.1. Finally, in the context
of the data available to us and this study, we focused only
on the main perioperative activities, starting with anesthesia
induction and ending with anesthesia emergence.

Our data has no information on OR resources associated
with each process step, such as OR personnel, equipment,
rooms, or need for downstream resources such as a bed in
the ICU or the ward. Considering the OR personnel, it can
be assumed that there will not be any detailed information
collected as part of the benchmarking program any time soon
since individuals-related data has generally not been col-
lected or evaluated in German hospitals so far [6].

Regarding the spatial resources, we have investigated,
using the data, whether all the process steps we considered
can be assumed to be carried out in the OR itself. For the
anesthesia induction, we observe in 41% of the cases that
it is finished after the patient enters the operating room (A7
after P5, for all data points in the main data set with both
time stamps recorded). In the remaining 59% of the cases,
the induction is finished before orwith the patient’s OR entry,
corresponding with the common practice of German hospi-
tals when an anesthesia induction room is used. It is spatially
separated from but typically directly connected with the OR.
For the anesthesia emergence, in 73% of the cases, the pro-
cess step is finished inside the OR (P7 after A9).

We investigated the OR cleaning process step similarly.
We have found that the cleaning between two consecutive
surgeries in the same OR is finished before the anesthesia
induction of the latter surgery is completed (P10 of surgery 1
is before A7 of surgery 2) in 92% of the identified turnovers.
The average cleaning duration in our final data selection was
12.5 minutes, while the average anesthesia induction was 13
minutes. These findings suggest that the cleaning typically
occurs parallel to the anesthesia induction of the following
patient. Moreover, it does not necessarily have to be modeled
as a separate process step since it typically lasts shorter than
anesthesia induction.

Data selection process

Since we did not differentiate the data based on additional
parameters other than those we chose, our final data selection
based on the original 2019 data set has an implicit issue of
heterogeneity. For each combination of hospital LOC, sur-
gical specialty, type of surgical patient, and OPS code, we

123



A ready-to-use surgical process data set

aggregate across multiple hospitals, anesthesia procedures,
urgency levels, surgeons, and other resources and do this for
a year. This limits the representativeness of our derived case
mixes and distributions. To calculate the latter, we aggregate
the benchmarking data across hospitals. Hence, our resulting
collection is less suitable for a detailed analysis of one partic-
ular hospital and its individual OR operations. Its potential
lies thus primarily with a more generic scope of research,
although the process duration distributions could be used as
a proxy if a hospital’s data is scarce, asmentioned previously.

During our data selection process, we had to meet sev-
eral more or less arbitrary assumptions, e.g., which process
durations we consider implausible. As a result of the data
selection, we excluded as much as 90% of the original 2019
data set to obtain the final main data set that we used to
derive case mixes and duration distributions. This naturally
contributes further to the representativeness issue. The large
percentage is mainly due to three major goals of our data
selection process: (1) High data plausibility (valid parameter
values); (2) exclusion of irregular surgery settings (operat-
ing outside regular opening hours, overlapping process steps,
local anesthesia procedures); and (3) high level of detail
(number of time stamps and grouping parameters). With the
latter, we also wanted to ensure a sufficient class size for each
unique combination of grouping parameters in themain data
set. Thus, we only considered the four largest hospital LOCs
and the four largest surgical specialties from the 2019 data
set as listed in Table 5 and removed all combinations with
class sizes of less than 30 data points in the final data selec-
tion. Researchers who wish to use our data collection for
their studies should be aware of the fact that it represents
these particular OR settings only. See Appendix A for more
details on our data selection process.

When deriving process duration distributions, we encoun-
tered goodness-of-fit issues that we had to deal with in every
fourth case (see Appendix B). We conclude that the duration
distributions we have fitted cannot depict every aspect of the
actual surgical process data precisely each time. It is possible
that, in some cases, theoretical distributions other than those
weconsidered (gamma, lognormal,Weibull)might havebeen
the better choice. It is also possible that in some cases,
an unimodal distribution was not the right approach in the
first place, where, for example, a bimodal distribution would
represent the empirical data more accurately [56]. Figure 8
shows this in the context of university clinics, otolaryngol-
ogy, inpatients, OPS code 5-059.c7, and incision-to-closure
time.

4 Conclusion

To conclude, we summarize the results of our work: We
have presented the OR benchmarking initiative of German-

Fig. 8 Empirical bimodal and approximated unimodal distribution for
the incision-to-closure time of the OPS code 5-059.c7 (otolaryngology
inpatients in a university clinic)

speaking countries in the context of research on OR planning
for the first time. We elaborated in detail on the properties
of the surgical process data collected in the benchmark-
ing program and its potential for OR planning research.
Further, we made the processed data freely available, so fel-
low researchers could use it to test modeling and solution
approaches for differentORplanning problems. Correspond-
ing to our data selection process, different OR settings
determined by the hospital LOC, the surgical specialty, and
the type of surgical patient can be investigated using the data
collection of surgical case mixes and process duration distri-
butions we provide. Since we break down the perioperative
surgical process in several separate steps in our data, it is of
particular relevance for highly detailed approaches such as
simulation or Job-Shop-like models, especially on the oper-
ational level of planning. However, when aggregating and
extending our provided data with additional information, it
can be used for OR planning problems on all planning lev-
els. Finally, we have discussed the benefits and limitations
of the benchmarking program, the collected surgical process
data, and our data processing approach and its results. With
its vast data collection, we argue that the benchmarking ini-
tiative poses a unique opportunity for scientific research on
OR operations.

We suggest several directions for further studies and for
applying our results in the following. For the researchers
who want to use the data collection of surgical case mixes
and process duration distributions we provide to generate
benchmark sets or problem instances, we recommend using
the methods described in Leeftink and Hans [53].
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Following our suggestion to use the data of the OR bench-
marking initiative of German-speaking countries for the
research on OR planning, we encourage fellow researchers
to continue to work on and develop planning models and
methods that are highly detailed in terms of using high-
dimensional input data andmodeling the perioperative surgi-
cal process with several separate process steps in particular.
There are still few such approaches today, which might be
because there was not much detailed real-world data avail-
able previously.

We further believe that a systematic review article on
using real-world surgical process data and the corresponding
modeled surgical processes would significantly contribute to
Operations Research in OR planning.

We want to suggest several further possibilities for pro-
cessing surgical process data from the OR benchmarking
initiative that we have presented here. First, the original 2019
data set that we used could be processed and prepared differ-
ently, as we did here, in a more suitable way for a particular
research purpose. This could, for example, be done by imple-
menting a different data selection approach. Alternatively to
our procedure of fitting the duration distributions for sepa-
rate surgical process steps, the surgical case time, i.e., the
duration of a surgery as a whole, could be in the focus. Since
distribution fitting might be difficult for potentially multi-
modal distributions, we recommend directly working with
benchmark sets.

Another research path would be to use data more recent
than 2019, for example, to investigate the effect of the
COVID-19 pandemic on OR operations. This would also be
a possibility to include more data parameters in the analysis.
A deeper dive into the data analysis might also be of interest:
An approach different from ours could be employed for the
distribution fitting of process durations. In some cases, one
could test whether theoretical distributions other than log-
normal, gamma, or Weibull might fit better. In other cases,
multimodal distributions might be a promising approach, as
Section 3.3.2 mentions. An ensuing research question would
be whether multimodal duration distributions require new,
specific planning approaches since existing planning models
and methods typically deal with unimodular distributions.
Finally, an extensive analysis of different data patterns in
the benchmarking data, e.g., dependencies and correlations
between individual process times, using elaborate data anal-
ysis methods ismost likely to generate new valuable insights.

The benchmarking data could become evenmore valuable
for OR decision-making if additional attributes were col-
lected, e.g., information on the setup, such as the underlying
master surgical schedule and applied scheduling procedures,
the usage of (downstream) resources and staff, and the actual
demand for surgery, including waiting lists.

As for the OR benchmarking initiative that we have pre-
sented in this paper, we hope to increase awareness of the
particular research field of OR planning and the inherent
potential of the benchmarking data in this regard. Any initia-
tive facilitating future scientific endeavors in this field, such
as automated data processing (e.g., duration distribution fit-
ting) as part of the regular benchmarking operations, would
be very welcome.

At the very end, we want to use the final opportunity to
address professional associations of surgeons and anesthesi-
ologists, ORmanagers, andOperationsResearch scientists in
the field of OR planning from other countries and encourage
them to pursue OR benchmarking initiatives and leverage the
potential of existing projects in a similar way that we did in
this study. Specifically, we mean processing surgical process
data and providing the results with free access as we did.
We think that an international database of surgical process
data benchmark sets from different countries could be a very
promising endeavor for the entire research field and, thus, for
OR operations around the globe.

Appendix A Data selection

We have to exclude the data of one particular hospital from
the original benchmarking data set due to incorrect format-
ting of the processing times. We also exclude all surgeries
with incisions taking place outside of 2019.Wecall the result-
ing data set the 2019 data set as described in Section 3.2.
We focus only on the regular OR operations. Therefore, we
exclude all records of surgeries that took place on weekends
or public holidays, as well as surgeries, carried out outside
the main operating hours of the respective surgical depart-
ment or on days for which the department did not have any
surgical capacity in the respective OR assigned.

Moreover, we only keep the surgical records that are
marked plausible by digmedGmbH, have themainOPS code
recorded, the main time stamps we are interested in (A6, A7,
A9, O8, O10, O11) recorded, and the corresponding pro-
cess time (K2, K3, K7, K8, K9) strictly greater zero. Other
than Messer [60], we do not allow any process time to be
zero. We keep elective as well as urgent surgeries. However,
we simplify the classification by grouping all surgeries with
an emergency level assigned into one emergency group. We
additionally identify consecutive surgeries in the data set,
i.e., surgeries that took place in the same hospital, OR, and
date. We determine the closure-to-incision time (K16) for
each pair of consecutive surgeries, as well as whether the
anesthesia start (A6) of the latter surgery took place before
the anesthesia end (A9) of the previous surgery. We mark
such overlapping surgeries and exclude them from further
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consideration since process durations of overlapping surg-
eries correspond to a different process organization and differ
significantly compared to the strictly consecutive surgeries,
according to Schuster et al. [79]. We assume that all other
surgeries in our data set were non-overlapping.

We choose the four largest hospital LOCs in our data set
and the four largest surgical specialties as listed in Table 5.
We continue by rounding all process times to the near-
est minute and carry out our secondary plausibility checks:
We filter out all surgery records if either process times
anesthesia induction, anesthesia emergence, surgical lead-
in, or surgical lead-out lasting longer than 180 minutes. We
defined this plausibility check together with digmed GmbH.
More detailed plausibility checks would require significantly
greater effort and medical expertise, especially for process
times that are too short. Note that we allow for all strictly
positive incision-to-closure durations. However, we exclude
all surgeries with a closure-to-incision time less than or equal
to zero, using this secondary process time for an additional
plausibility check.We also removed all surgeries with invalid
OPS codes and all hospitals with less than 100 data points
in the remaining data set. As mentioned in Section 3.2, we
exclude all surgerieswith local anesthesia explicitly recorded
and assume the anesthesia of all remaining surgeries to be not
local.

We use one-wayANOVA to determine whether we should
use urgency (“elective” vs. “emergency”) or type of surgical
patient (“inpatient” vs. “outpatient”) as additional grouping
parameters for case mix definition besides hospital LOC and
surgical specialty. For this, we randomly choose five different
combinations of hospital LOC, surgical specialty, and OPS
code (aiming for a sufficiently high amount of data points for
each parameter combination) for each of the two parameters
and run ANOVA for the anesthesia induction duration and
the incision-to-closure time for each of the combinations. 8
out of 10 ANOVAs for the type of surgical patient show a
significant impact of the grouping parameter on the consid-
ered process duration (alpha=0.05). For urgency, 4 out of 10
ANOVAs show significant results. Based on this, we decided
to use the type of surgical patient as a further grouping param-
eter. Consequently, we removed all surgeries with no type of
surgical patient recorded from our data set. We do not further
differentiate based on the surgery urgency.

To ensure a sufficient statistical power of the distributions
that we later fit individually for every unique combination
of hospital LOC, surgical specialty, type of surgical patient,
OPS code, and process time, we eventually removed all com-
binations with class sizes of less than 30 data points.

Our final data selection which we name the main data
set includes surgical process data from 411 surgical depart-
ments of 139 hospitals with a total of 207,635 data points,

with 1494 observations per hospital or 505 observations per
department on average. Based on ourmain data set, we derive
two separate data sets to determine the duration distribution
for OR cleaning (calculated as P10 - A9) and closure-to-
incision time, respectively. In each of the two additional data
sets, we remove all data points with values of less than or
equal to zero and greater than 120 min for the correspond-
ing process time, following Schuster et al. [79]. We group
the data using hospital LOC and surgical specialty for the
closure-to-incision time.7 For OR cleaning, we additionally
differentiate based on the type of surgical patient after car-
rying out a corresponding ANOVA, similar to the procedure
described above. We again remove classes with less than 30
observations in each data set. Due to our data selection pro-
cedure, not all parameter combinations of the three grouping
parameters are represented in the final OR cleaning data set
(see Table 8). The resulting OR cleaning data set includes
7,442 data points, and the closure-to-incision data set has
120,197 observations.

Appendix B Distribution fitting for process
durations

For each unique combination of selected parameters and
for each process time, we fit a (two-parameter) lognormal,
a gamma, and a Weibull distribution using maximum-
likelihood estimation (MLE) [52] in R [15]. The lognormal
distribution is among themost popular distributions for fitting
the incision-to-closure time and the entire surgery duration,
i.e., case time [84, 86, 98]. We choose these three theoretical
distributions since they all are suitable to depict the typical
properties of surgical process durations: Continuity, positive
skewness, left-side boundedness (by the zero), and right-side
unboundedness [60]. We determine the distribution param-
eters and the corresponding standard errors for each fitted
distribution. We calculate the Akaike Information Criterion
(AIC) [2] for each of the three corresponding MLE estima-
tions for each parameter combination and process time. We
then chose the theoretical distribution with the lowest AIC
value as the best fitting [22]. Out of the 8,425 distributions
we have fitted, the lognormal distribution was the best fit
in 56% of the cases, the gamma distribution in 30% of the
cases, and the Weibull distribution in the remaining 14%.
Figure 9 shows in how many cases percentage-wise each of
the three distribution types was the best fit for each of the
process times. We observe that the lognormal distribution
was the best fit in most cases for anesthesia induction, anes-
thesia emergence, incision-to-closure, surgical lead-out and

7 Using the (main) OPS code does not make sense in this case since
closure-to-incision time always corresponds to two different surgeries.
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Fig. 9 Relative frequency of
best fit distribution type for each
process time

Fig. 10 Probability density,
cumulative distribution, Q-Q
and P-P plots of anesthesia
induction for OPS code
5-793.k6 (Trauma surgery
inpatients in a hospital offering
specialized care)
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Fig. 11 Probability density,
cumulative distribution, Q-Q
and P-P plots of surgical
lead-out for OPS code 5-712.0
(Gynecology and obstetrics
inpatients in a university clinic)

OR cleaning. The gamma distribution was the most common
best fit for surgical lead-in and closure-to-incision duration.

In each case, we additionally performgoodness-of-fit tests
for the selected best-fit distribution: Kolmogorov-Smirnov
(K-S) [52] for either lognormal, gamma, orWeibull and addi-
tionally Shapiro-Wilk (S-W) on the logarithmized data if the
chosen distributionwas lognormal [85].We additionally ana-
lyze some randomly chosen distributions graphically if the
p-value of a calculated test statistic is below α = 0, 01.
Figure 10a to d show the analyzed plots for the density,
the cumulative distribution, the Q-Q, and the P-P plot [52]
respectively, for the randomly chosen case of specialized
care, trauma surgery, inpatients, OPS code 5-793.k6, and
anesthesia induction. The estimated lognormal distribution
was rejected in this case due to the S-W test. The deviation
between the empirical and the fitted distribution is observ-
able in the Q-Q plot in Fig. 10c and the P-P plot in Fig. 10d.
Moreover, in 10a, the aforementioned typical properties of
a surgical process duration distribution with the empirical
density function can be observed.

Out of 8,425 performed estimations with our main data
set, the selected fitted distribution was rejected in 24% of the
cases by the goodness-of-fit testing. Strum et al. [85] name
several potential explanations for the rejection of a fit by
a goodness-of-fit test, which hold especially in the case of
the lognormal distribution. The latter is over-proportionally
often rejected compared to the gamma and the Weibull dis-
tributions in our case (38% versus 8% and 3%, respectively).
One issue can be large sample sizes [85]: In our case, they
range from 30 to 4395 observations per class, with 87% of
all classes having a sample size equal to or less than 200. Out
of these, 83% have passed the goodness-of-fit test(s). For
the remaining 13% of all classes with a sample size greater
than 200, 33% of the classes have passed the goodness-of-fit
test(s). Another explanation can be the so-called ties [22],
i.e., local accumulations of particular discrete values despite
the fitted distribution being continuous. In our case, this is
especially relevant for typically short process times such as
surgical lead-out since the one-minute rounding precision
has a substantial effect, in this case, similarly to Strum et
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Fig. 12 Probability density,
cumulative distribution, Q-Q
and P-P plots of
incision-to-closure time for OPS
code 5-465.1 (General surgery
inpatients in a hospital offering
basic and regular care)

al. [85]. Figure 11 displays this issue for the case of univer-
sity clinics, gynecology and obstetrics, inpatients, OPS code
5-712.0, and surgical lead-out.

Further explanations for rejection by a goodness-of-fit
test, as discussed by Strum et al. [85] are data outliers, which
can be a possible explanation in our case for the incision-to-
closure time, for which we explicitly did not set any upper
limit when processing the original data (see Appendix A).
This can be, for example, observed for basic and regular care,
general surgery, inpatients, and OPS code 5-465.1 in Fig. 12.
Since we do not account for every possible grouping param-
eter, such as anesthesia type or surgeon, when clustering data
into classes, our fitting samples are implicitly heterogeneous,
which can be another reason for imprecise distribution fitting
[85]. Finally,we observe in our analyses of the lognormal dis-
tribution that the K-S test acts more conservatively than the
S-W test: 41%of all rejected lognormal estimates are rejected
by both tests. However, in the remaining 59%, the rejection
is only made by the S-W test, while in only 2 cases out of
1,796, the K-S test alone was responsible for the rejection of
the fit.

We decide to stick to all of the fitted distributions, even
those rejected by the goodness-of-fit test(s), because follow-
ing Strum et al. [85], we do not rely on the tests alone but use
them in combination with graphical analysis, where we find
the fits to be sufficiently good, given the discussed peculiari-
ties of the sample data.We carry out the distribution fitting of
the OR cleaning time and closure-to-incision time separately
but similarly as described above.
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