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We compute all helicity amplitudes for the scattering of five partons in two-loop QCD in all the relevant
flavor configurations, retaining all contributing color structures. We employ tensor projection to obtain
helicity amplitudes in the ’t Hooft-Veltman scheme starting from a set of primitive amplitudes. Our analytic
results are expressed in terms of massless pentagon functions, and are easy to evaluate numerically. These
amplitudes provide important input to investigations of soft-collinear factorization and to studies of the
high-energy limit.
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I. INTRODUCTION

The calculation of scattering amplitudes for n partons in
perturbative quantum chromodynamics (QCD) has
attracted much attention since the discovery of the ubiqui-
tous role of Yang-Mills theories in the description of
particle interactions. These amplitudes constitute the build-
ing blocks for the calculation of cross sections for processes
involving jets at hadron colliders, which have played a
crucial role in providing direct experimental access to
fundamental parameters of QCD such as the number of
colors and the strong coupling constant. At the LHC, the
measurement of multijet cross sections at large transverse
momenta constitutes a unique opportunity to explore QCD
dynamics in extreme regimes [1–4]. Such high-precision
analyses need to be matched by accurate theoretical
predictions which as of today have been carried out to
second order in perturbative QCD [5–9]. In addition,

analytic calculations of n-parton scattering amplitudes
provide important insights into the fundamental properties
of Yang-Mills theories, such as their high-energy (Regge)
limit (see, e.g., [10]) or the universal structure of infrared
divergences and factorization in soft and collinear limits
(see, e.g., [11]).
Feynman diagram based calculations for multiparton

scattering amplitudes become challenging at higher orders
in perturbation theory, and the relative simplicity of their
results is often obscured by the complexity of the inter-
mediate expressions. More recently, new methods have
been developed to exploit this simplicity and render higher
order calculations manageable. Standard techniques based
on integration-by-parts identities (IBPs) [12–14] and differ-
ential equations [15–17] have been augmented by finite-
field methods [18,19] and the use of canonical bases [20] to
partly bypass heavy use of computer algebra and enable
new ways to calculate loop integrals and amplitudes.
Moreover, a better understanding of the mathematical
properties of special functions [21–24] defined as iterated
integrals [25] has made it possible to devise efficient
techniques for analytic and numerical evaluation of the
ensuing integrals.
Thanks to these developments, a large number of

previously unthinkable calculations have become possible,
opening the way to entire new opportunities to test
perturbative QCD. In particular, QCD form factors have
now been computed to an astonishing four loops [26,27],
scattering amplitudes for four strongly interacting partons
to three loops [28–30], and five-parton scattering up to two
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loops, largely in the leading-color approximation [31–37].
For the latter, while all the ingredients have been available
for some time, the corresponding sub-leading-color con-
tributions have remained elusive given the algebraic
complexity introduced by the nonplanar diagrams. More
recently, full-color calculations have been completed for
five-particle scattering processes involving fewer colored
particles [38–41].
In this paper, we remove the last remaining roadblock

and address the calculation of complete two-loop correc-
tions for the scattering of five partons in QCD. We consider
all relevant partonic channels, i.e., the scattering of five
gluons, of two quarks and three gluons, and of four quarks
and one gluon, both for identical and different quark
flavors. Employing a combination of sophisticated com-
putational methods, we derive analytic results expressed in
terms of relatively simple rational functions and so-called
pentagon functions for massless particles [42].

II. KINEMATICS AND COLOR DECOMPOSITION

We consider the processes

0 → gðp1Þ þ gðp2Þ þ gðp3Þ þ gðp4Þ þ gðp5Þ;
0 → q̄ðp1Þ þ qðp2Þ þ gðp3Þ þ gðp4Þ þ gðp5Þ;
0 → q̄ðp1Þ þ qðp2Þ þ q̄0ðp3Þ þ q0ðp4Þ þ gðp5Þ; ð1Þ

where all momenta are outgoing and massless,

pμ
1 þ pμ

2 þ pμ
3 þ pμ

4 þ pμ
5 ¼ 0; p2

i ¼ 0; ð2Þ

and q and q0 correspond to strictly different flavors of quarks.
All other channels, including those involving four identical
quarks, can be reconstructed from these by suitable permu-
tations of the external momenta, as described below.
The five-point kinematics can be parametrized by five

independent Mandelstam invariants sij ≡ ðpi þ pjÞ2. We
choose the cyclic set

s12; s23; s34; s45; s51; ð3Þ

and identify the physical region with

s12; s34; s45 > 0; s23; s51 < 0; ð4Þ

which corresponds to the 12 → 345 scattering process.
In order to describe all relevant helicity configurations

we also employ the quantity

tr5 ¼ 4iϵμνρσp
μ
1p

ν
2p

ρ
3p

σ
4; ð5Þ

which has nontrivial transformation properties under parity,
inherited from its definition through the Levi-Civita tensor
as given in (5).

We employ dimensional regularization to regulate both
ultraviolet (UV) and infrared (IR) divergences. Specifically,
we employ the ’t Hooft-Veltman scheme (tHV) [43], which
treats loop momenta in d ¼ 4 − 2ϵ dimensions, while
retaining momenta and polarizations for external particles
in four dimensions.
The bare amplitudes for each process in (1) can be

decomposed onto a set of color tensors Cc as

A ¼ ð4παs;bÞ32A · C ¼ ð4παs;bÞ32AcCc; ð6Þ

where αs;b is the bare strong coupling. In (6) Ac are color-
ordered partial amplitudes, Cc the corresponding elements
of the color tensor basis, and a summation over the index c
is implied. Let us introduce the shorthand notation

tmn ¼ Tr½TamTan �; tmnl
i1i2

¼ ðTamTanTalÞi1i2 ;
tmn…k ¼ Tr½TamTan…Tak � − Tr½Tak…TanTam �; ð7Þ

where the SUðNcÞ adjoint index an is associated with the
n-th external gluon, and the (anti)fundamental index in with
the corresponding (anti)quark state. The matrices Ta

ij are
generators of SUðNcÞ in the fundamental representation, and
they obey the normalization condition Tr½TaTb� ¼ δab=2.
With these definitions, the color basis for ggggg reads as

fCcgc¼1;…;12¼ft12345;t12354;t12435;t12453;t12534;
t12543;t13245;t13254;t13425;t13524;t14235;t14325g;

fCcgc¼13;…;22¼ft12t345;t45t123;t35t124;t34t125;
t13t245;t25t134;t24t135;t14t235;t23t145;t15t234g;

ð8Þ

for q̄qggg

fCcgc¼1;…;6 ¼ ft345i1i2
; t453i1i2

; t534i1i2
; t354i1i2

; t543i1i2
; t435i1i2

g;
fCcgc¼7;8;9 ¼ fTa3

i1i2
t45; Ta4

i1i2
t53; Ta5

i1i2
t34g;

C10;11 ¼ δi1i2ðTr½Ta3Ta4Ta5 � ∓ Tr½Ta5Ta4Ta3 �Þ; ð9Þ

and finally for q̄qq̄0q0g

C1 ¼ δi2i3T
a5
i1i4

; C2 ¼ δi1i2T
a5
i3i4

;

C3 ¼ δi3i4T
a5
i1i2

; C4 ¼ δi1i4T
a5
i3i2

: ð10Þ

III. HELICITY AMPLITUDES

We consider the scattering amplitudes for fixed helicity
configurations of the external particles. We work in the
spinor-helicity formalism and define the polarization vec-
tors for gluons as
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ϵμi;− ¼ ½iþ 1jγμjiiffiffiffi
2

p ½ijiþ 1� ; ϵμi;þ ¼ ½ijγμjiþ 1iffiffiffi
2

p hiþ 1jii ; ð11Þ

and the spinors for (anti)quarks as

ūi;− ¼ hij; ūi;þ ¼ ½ij; ui;− ¼ jii; ui;þ ¼ ji�: ð12Þ

Helicities are given in the all-outgoing convention.
We define spinor-stripped helicity amplitudes HcðλÞ as

AcðλÞ ¼
ffiffiffi
2

p
ΦcðλÞHcðλÞ; ð13Þ

where ΦcðλÞ is a color and helicity dependent spinor
factor that fully accounts for the little-group scaling of
the corresponding amplitude. The scalar quantities HcðλÞ
can be further split into their parity even and odd parts,

HcðλÞ ¼ HE
c ðλÞ þ tr5HO

c ðλÞ ð14Þ

that are individually gauge invariant and can be computed
independently. We will only consider a minimal set of
helicity and color configurations needed to reconstruct the
whole amplitude via crossings of the external states. These
are listed in Table I along with the corresponding spinor
factors.
The spinor-stripped helicity amplitudes contain both

ultraviolet (UV) and infrared (IR) divergences, which
manifest as poles in the dimensional regulator ϵ. UV
divergences can be removed by expressing the amplitudes
in terms of the MS renormalized strong coupling αsðμÞ

αs;bμ
2ϵ
0 Sϵ ¼ αsðμÞ μ2ϵ Z½αsðμÞ�; ð15Þ

where μ0 and μ are the regularization and renormalization
scales respectively, and Sϵ ¼ ð4πÞϵe−ϵγE , with γE ≈ 0.5772
the Euler constant. Up to two loops, the renormalization
factor Z reads as

Z½αs� ¼ 1 −
αs
4π

β0
ϵ
þ
�
αs
4π

�
2
�
β20
ϵ2

−
β1
2ϵ

�
; ð16Þ

with the β-function coefficients

β0 ¼
11

3
Nc −

2

3
Nf;

β1 ¼
34

3
N2

c −
10

3
NcNf −

N2
c − 1

Nc
Nf; ð17Þ

where Nc is the number of colors and Nf the number of
light fermions. The renormalized helicity amplitudes can be
expanded as a perturbative series in the renormalized strong
coupling

AðλÞ ¼
X2
l¼0

�
αs
4π

�
l
AðlÞ

λ;ren þOðα3sÞ; ð18Þ

where AðlÞ
λ;ren is the renormalized l-loop contribution.

These still contain IR singularities, which can be subtracted
by defining their finite remainders at each loop order as

Að0Þ
λ;fin ¼ Að0Þ

λ ; Að1Þ
λ;fin ¼ Að1Þ

λ;ren − I 1ðϵÞAð0Þ
λ;ren;

Að2Þ
λ;fin ¼ Að2Þ

λ;ren − I 2ðϵÞAð0Þ
λ;ren − I 1ðϵÞAð1Þ

λ;ren: ð19Þ

The color operators I 1 and I 2 were first defined in
Ref. [44] and then in [45,46]. A precise definition of the
operators I 1;2 is provided in the Appendix.

TABLE I. Definition of the minimal set of helicity and color
configurations for the different processes. The list of helicity
configuration is given in the left-most column of each table. The
middle columns contain our definition of the spinor factorsΦcðλÞ
for the different color factors. The right columns give the list of
partial amplitudes we computed analytically for the correspond-
ing helicity configuration. Spinor factors are chosen to set the
relative tree level (when nonvanishing) to 1. Because of this, two
spinor factor choices are needed for the q̄qq̄0q0g channel.

ggggg ΦðλÞ Ac

þþþþþ 2s2
12
=3

h12ih23ih34ih45ih51i
1, 13

−þþþþ ½21�h12i4h13i3
h15i2h23i5h14i2

1, 13

− −þþþ 4h12i4
h12ih23ih34ih45ih51i

1, 13

−þ −þþ 4h13i4
h12ih23ih34ih45ih51i

1, 13

þþþþ − ½51�h15i4h25i3
h54i2h12i5h53i2

13

þþþ − − 4h45i4
h12ih23ih34ih45ih51i

13

q̄qggg ΦðλÞ Ac

þ −þþ − 2h15ih52i3
h12ih23ih34ih45ih51i

1, 7, 10, 11

þ −þ −þ 2h14ih42i3
h12ih23ih34ih45ih51i

1

þ − −þþ 2h13ih32i3
h12ih23ih34ih45ih51i

1

þ − − − − 2h23i½31�
½34�½45�½53� 1, 7, 10, 11

þ −þ − − 2½23�½31�3
½12�½23�½34�½45�½51�

7, 10, 11

q̄qq̄0q0g ΦðλÞ Ac ΦðλÞ Ac

−þ −þ − ½14�½42�2
½12�½43�½51�½54�

1 ½42�2
½12�½53�½54�

2

−þ −þþ h41ih13i2
h15ih21ih34ih45i

1 h13i2
h21ih35ih45i

2

−þþ − − ½32�2½41�
½12�½43�½51�½54�

1 ½32�2
½21�½53�½54�

2

−þþ −þ h14i3
h15ih21ih34ih45i

1 h14i2
h12ih35ih45i

2
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IV. DETAILS OF THE CALCULATION

To compute the helicity amplitudes up to two loops, we
proceed as follows. We generate all Feynman diagrams for
(1) using QGRAF [47]. At two loops there are a total of
28020, 9136, and 2129 diagrams for the three channels
respectively. However, not all of them contribute to the
independent color structures described in Eqs. (8)–(10).
The relevant diagrams can be selected by repeated appli-
cation of the color identities

TrTa ¼ 0; Ta
ijT

a
kh ¼

1

2

�
δihδkj −

1

Nc
δijδkh

�
;

fabc ¼ −2iTrðTa½Tb; Tc�Þ; ð20Þ

which reduce their color structure to a linear combination of
the basis elements. From here, one can easily read off the
contribution of the corresponding diagram to each element
of the vector A. We then compute the contribution of each
diagram to the helicity amplitudes using projectors in the
tHV scheme as in Refs. [48,49]. For each process we define
helicity projectors Pλ;c as

Pλ;c ∘ Ac ¼ HcðλÞ; ð21Þ

where the operation “∘” stands for summation over polar-
izations. The Pλ;c can be identified as follows. Each partial
amplitude can be decomposed as

AcðλÞ ¼
XN
i¼1

F i;cTiðλÞ; ð22Þ

where the Ti are a set of tensor structures containing all
polarization vectors, and the Fi;c are scalar form factors for
the different color structures. While the form of the decom-
position is loop independent, the form factors themselves
have a perturbative expansion and, at a given perturbative
order, are linear combinations of scalar Feynman integrals.
In our scheme, the number of tensor structures N always
equals the number of helicity amplitudes [48,49]. These are
32, 16, and 8 for the processes listed in (1), respectively. In
practice this means that after numbering the helicity con-
figurations λ1; λ2;… for each process, we can change to a
new basis of tensors T̄i;cðλÞ, which satisfy

T̄i;cðλ ¼ λjÞ ¼ δijΦcðλjÞ: ð23Þ

This allows us to define the helicity projectors Pλ;c by
requiring

Pλ;c ∘ T̄i;cðλ0Þ ¼ δλ;λ0 : ð24Þ

The Lorentz and color algebra required to isolate the partial
amplitudes and to apply the projectors are performed with
FORM [50,51].

As a result, the spinor-stripped helicity amplitudes HðλÞ
in (13) are expressed as linear combination of scalar
Feynman integrals. All L-loop integrals required for the
evaluation of these amplitudes are of the usual form,

I fam
n1;…;nN ¼ μ2Lϵ0 eLϵγE

Z YL
i¼1

�
ddki
iπ

d
2

�
1

Dn1
1 …DnN

N
; ð25Þ

where the loop momenta are labeled by ki. The label “fam”
represents one of the two integral families fA;Bg as well as
their crossed versions, which differ by a permutation of the
external particles. Every integral family specifies the list of
inverse propagators De ¼ q2e þ iε in Eq. (25), where ε
implements the Feynman prescription. The definitions of
these integral families is immaterial to the discussion, but
we report them in the Appendix for completeness.
Collectively, across the various primitive amplitudes, we
are left with ∼Oð106Þ different scalar integrals.
It iswell known that Feynman integrals satisfymany linear

relations which can be obtained via symmetry relations and
IBPs. These can be used to express all Feynman integrals for
a given family in terms of a set of basis integrals, referred to as
master integrals. For the processes considered in this paper,
the set of master integrals was computed in Refs. [52–57] via
the method of differential equations, and expressed as a
Laurent series in the dimensional regulator ϵ. We use the
uniform representation from Ref. [42] in terms of massless
pentagon functions.
In practice, we first derive shift relations and sector

symmetries using Reduze 2 [58,59]. This allows us to reduce
the number of integrals appearing in the unreduced ampli-
tudes by 2 orders of magnitude. We then perform IBP
reduction using the public code Kira [60,61] and, specifi-
cally for the nonplanar topologies, the code Finred. The latter
is an in-house implementation of Laporta’s algorithm
which employs finite field techniques [18,19,62,63]
enhanced with denominator guessing from a rational
sample [64] (see [31] for an alternative approach) for an
efficient reconstruction of multivariate rational functions
and syzygy algorithms [65–70].
Although the number of integrals to reduce is substantially

smaller compared to other challenging multiloop QCD
calculations with fewer scales, see, e.g., [27,29,30,71–73],
the multiscale kinematics of five-point amplitudes is respon-
sible for a large swell in intermediate expressions, in
particular in the nonplanar sectors. In fact in the course of
this calculation one encounters individual IBP identities with
disk sizes of up to 3 GB [38,74,75]. A possible way around
this consists in avoiding the reconstruction of IBP identities
from finite-field samples for individual integrals and attempt-
ing, instead, to directly obtain the analytic expressions for the
IR subtracted finite remainders of the various helicity
amplitudes. As the finite remainders are expected to be
simpler, this strategy has been very successful in many state-
of-the-art five-point calculations.
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In this work, we follow a different approach [38,75],
based on the observation that partial fraction decomposition
can reduce expression size for single IBPs of various
orders of magnitude. We perform IBP reduction for a
minimal subset of integrals and decompose the resulting
integral coefficients into multivariate partial fractions.
Reduction identities for all integrals contributing to the
amplitudes are then obtained using crossings of external
invariants. To perform the partial-fraction decomposition,
we utilize MULTIVARIATEAPART [64] augmented by
SINGULAR [76]. This step requires first defining an appro-
priate ordering among the denominator factors that appear in
the individual color factors of each helicity amplitudes. As
expected, the complexity of the final expressions depends
greatly on this choice of monomial ordering. We find it
beneficial, in particular, to choose an ordering that avoids as
much as possible the appearance of spurious singularities in
the denominators; for more details see Refs. [38,75]. Once
the simplified reduction identities are inserted into the
amplitude, we perform an additional partial-fraction decom-
position to simplify the resulting expressions further; in
addition to the IBP reduction, this proves to be the step with
the highest computational cost in our framework. Once the
bare amplitudes have been computed with a consistent
choice of monomial ordering, UV renormalization and IR
subtraction can be performed to yield relatively compact
expressions for the finite remainders.
A further level of simplification can be achieved by

expressing the finite remainders in terms of a minimal set
of independent rational functions. Following Refs. [38,75],
we start from a partial-fractioned form of the rational
functions based on a fixed monomial ordering. We exploit
the uniqueness of this representation in order to search for
linear relations among the rational functions, which we solve
using row reductions. As ameasure of complexity we use the
byte size of the rational functions, and we reduce the system
of linear relations to expressmore “complicated” functions in
terms of simpler ones; see Ref. [38] for more details. This
final step allows us to obtain an improvement of around 1
order of magnitude in the disk size of independent color-
ordered primitive helicity amplitudes.

V. FINAL RESULTS AND CONCLUSIONS

The color andhelicity configurations listed inEqs. (8)–(10),
and Table I for the processes in Eq. (1) are sufficient to
reconstruct all possible partonic channels. In particular, using
parity and charge conjugation, as well as permutations of the
external particles, one can obtain all amplitudes for the
processes

gg→ggg; qq̄→ggg; qg→qgg; gg→qq̄g;

qq̄→ q̄0q0g; qq̄0→ q̄0qg; q̄0q̄→ q̄0q̄g; gq̄→ q̄0q0q̄: ð26Þ

The same-flavor quark amplitudes

qq̄ → q̄qg; qq → qqg; qg → qqq̄ ð27Þ

can then be obtained as linear combinations of appropriate
components of the different-flavor quark amplitudes. More
specifically, in the notation of Eq. (13) we can write

Aqq̄→qq̄gðλÞ ¼ Aqq̄0→qq̄0gðλÞ −Aqq̄→q0q̄0gðλÞ;
Aqq→qqgðλÞ ¼ Aqq0→qq0gðλÞ −Aqq0→q0qgðλÞ;
Aqg→qqq̄ðλÞ ¼ Aqg→qq0q̄0 ðλÞ −Aqg→q0qq̄0 ðλÞ; ð28Þ

where all channels on the rhs of these identities are either in
Eq. (26) or can be obtained from them by crossings which do
not require analytic continuation.
Crossings of rational functions and spinor factors

amount to a simple renumbering of momenta and their
helicities (including flipping of helicities from incoming to
outgoing states). Crossing of the transcendental functions,
on the other hand, may require a dedicated analytic
continuation.
We note that the analytic continuation of each pentagon

function individually is nontrivial but also not necessary. In
fact, the information needed to perform the required
continuation is available implicitly in the results provided
by Ref. [42], where all master integrals are evaluated for all
120 permutations of the external invariants in terms of a
minimal set of pentagon functions. In practice, we took
every uncrossed master integral and applied the required
crossing on its analytic expression by formally crossing all
appearing pentagon functions. We then equated these
formal expressions to the crossed master integrals available
in Ref. [42], which are written in terms of uncrossed
pentagon functions. Repeating this for all master integrals
for a given crossing, we obtained a linear system of
equations, which we solved using FINITEFLOW [19] to
express the crossed pentagon functions in terms of the
uncrossed ones. Typically, the system is underdetermined,
and some crossed pentagon functions remain unsolved for.
Nevertheless, since the results in Ref. [42] are, by con-
struction, sufficient to represent any crossing of the
amplitudes, all remaining crossed pentagon functions must
cancel upon inserting these relations in the amplitude. We
verified this cancellation explicitly for each crossing
required to obtain the helicity and color-ordered amplitudes
for all partonic subchannels. This provided a strong check
of the consistency of our procedure.
We performed numerous checks on our results. First, we

observed full cancellation of UV and IR poles of the bare
amplitudes after UV renormalization and IR subtraction.
For the five-gluon channel, we also verified the one- and
two-loop Uð1Þ decoupling identities as well as the gener-
alized color-trace identities described in [77]. For the same
channel, we also computed a redundant set of single-trace
partial amplitudes; the crossing relations among them
allowed us to verify the consistency of our calculation at
the level of finite remainders. We also compared our
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tree-level and one-loop results against existing analytic
calculations [78,79] as well as OpenLoops 2 [80], by numeri-
cally evaluating all helicity configurations of the channels
listed in (26) and (27). Finally, we found perfect agreement
with the analytic two-loop full-color all-plus gluon ampli-
tude of Ref. [36] and with the numerical benchmarks in the
leading-color approximation provided in Ref. [37] for all
channels in (26).
In Table II we present benchmark results for all the

relevant partonic channels. We provide the finite remainder
of the squared matrix elements summed over color and
helicities, normalized by the corresponding leading order
term. We choose the kinematic configuration

s12¼ 106; s23¼−761244.13; s34¼ 865719.14;

s45¼ 126204.05; s51¼−29885.560; μ2¼ 104; ð29Þ
and fix Nc ¼ 3 and Nf ¼ 5. To evaluate the pentagon
functions we use the PentagonMI package [42].
To conclude, in this Letter we have presented the

calculation of the two-loop corrections to five-parton
scattering in massless QCD, retaining full color depend-
ence. Our calculation leveraged many state-of-the-art
techniques in the evaluation of multiloop scattering ampli-
tudes, including the helicity projector technique in the
’t Hooft-Veltman scheme, finite field and syzygy based
reduction algorithms, and multivariate partial-fraction
decomposition. We considered all relevant partonic chan-
nels and derived compact analytic results, that can be easily
evaluated numerically for physical scattering kinematics.
The amplitudes presented here constitute the last missing
building block to obtain full-color Next-to-next-to Leading-
Order (NNLO) predictions for three-jet observables at the
LHC. Moreover, they can furnish important information to
study multi-Regge kinematics in QCD and to investigate
collinear factorization breaking [81,82].

Note added. During the final stages of completion of this
project, we have become aware of another concurrent calcu-
lation of the gluonic [83] and quark processes [84]. While the
two calculations have been performed in two different infrared
subtraction schemes, we have verified that, after scheme
change, the results agree numerically to high precision.

The supporting data for this paper are openly available
from [85].
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APPENDIX

1. Integral families

We provide here the definition our two integral families.
We recall that for each family fam ¼ fA;Bg we define the
integrals as

I fam
n1;…;n11 ¼ e2ϵγE

Z Y2
i¼1

�
ddki
iπd=2

�
1

Dn1
1 …Dn11

11

; ðA1Þ

where d ¼ 4 − 2ϵ is the space-time dimension, γE ∼
0.5772 is the Euler-Mascheroni constant, and the Di are
the propagators. For the two families, the propagators read
(see, e.g., Refs. [38,53,75]) as

Family A Family B

D1 k21 k21
D2 ðk1 þ p1Þ2 ðk1 − p1Þ2
D3 ðk1 þ p1 þ p2Þ2 ðk1 − p1 − p2Þ2
D4 ðk1 þ p1 þ p2 þ p3Þ2 ðk1 − p1 − p2 − p3Þ2
D5 k22 k22
D6 ðk2 þ p1 þ p2 þ p3Þ2 ðk2−p1−p2−p3−p4Þ2
D7 ðk2þp1þp2þp3þp4Þ2 ðk1 − k2Þ2
D8 ðk1 − k2Þ2 ðk1 − k2 þ p4Þ2
D9 ðk1þp1þp2þp3þp4Þ2 ðk2 − p1Þ2
D10 ðk2 þ p1Þ2 ðk2 − p1 − p2Þ2
D11 ðk2 þ p1 þ p2Þ2 ðk2 − p1 − p2 − p3Þ2

TABLE II. Benchmark results for the interference of the tree
level with the one- and two-loop finite remainders (first and third
columns) and for the squared one-loop finite remainder (second
column).

P
refers to summation over color and helicity states,

and normalization over the corresponding leading order term.

P
2Re½A0†A1

fin� jA1
finj2

P
2Re½A0†A2

fin�
gg → ggg −90.64321 3348.355 2856.837

qq̄ → ggg −115.3289 3939.841 3833.951
qg → qgg −74.31499 1917.467 1195.185
gg → qq̄g −72.79952 3093.624 1503.403

qq̄ → q̄0q0g −101.6531 3271.088 2511.430
qq̄0 → q̄0qg −82.09317 4338.144 −768.0230
q̄0q̄ → q̄0q̄g −47.41403 769.2739 82.75641
gq̄ → q̄0q0q̄ −57.86782 1181.730 1341.638
qq̄ → q̄qg −88.39101 3926.462 379.8467
qq → qqg −45.63443 767.2815 94.00947
qg → qqq̄ −71.33829 1686.104 1626.085
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where we suppressed the þiε from Feynman’s prescription
everywhere. All required crossed families are obtained
from the two reference families above by permutations of
the external momenta.

2. Infrared subtraction operators

In this section, we define the operators I 1 and I 2,
which were used in Eq. (19) to construct the finite
remainders of the amplitudes. We employ the expres-
sions given in Ref. [46], that we report here for the
completeness:

I 1ðϵÞ ¼
eϵγE

Γð1 − ϵÞ
X
i

�
1

ϵ2
−
γi0
2ϵ

1

T2
i

�X
i≠j

Ti · Tj

2

�
μ2

−sij

�
ϵ

;

I 2ðϵÞ ¼
e−ϵγEΓð1 − 2ϵÞ

Γð1 − ϵÞ
�
γcusp1

8
þ β0
2ϵ

�
I 1ð2ϵÞ

−
1

2
I 1ðϵÞ

�
I 1ðϵÞ þ

β0
ϵ

�
þ 1

ϵ
H2: ðA2Þ

In the above equation, the quantities Ti are color operators
related to the SUðNcÞ generators associated with particle i.
More specifically

ðTiÞabici ¼ −ifabici if i is a gluon;

ðTiÞaiiji ¼ þTa
iiji

if i is a final ðinitialÞ state quark ðantiquarkÞ;
ðTiÞaiiji ¼ −Ta

jiii
if i is an initial ðfinalÞ state quark ðantiquarkÞ: ðA3Þ

The square of the color charge operator yields the Casimir operator, i.e., T2
i ¼ Ci, where Cg ¼ CA and Cq ¼ CF, with

CA ¼ Nc and CF ¼ ðN2
c − 1Þ=ð2NcÞ. The operator H2 is given by

H2 ¼
1

16

X
i

�
γi1 −

1

4
γcusp1 γi0 þ

π2

16
β0γ

cusp
0 Ci

�
þ ifabc

24

X
ði;j;kÞ

Ta
i T

b
jT

c
k log

−sij
−sjk

log
−sjk
−ski

log
−ski
−sij

−
ifabc

128
γcusp0

X
ði;j;kÞ

Ta
i T

b
jT

c
k

�
γi0
Ci

−
γj0
Cj

�
log

−sij
−sjk

log
−ski
−sij

; ðA4Þ

where the cusp anomalous dimensions read as

γcusp0 ¼ 4;

γcusp1 ¼
�
268

9
−
4π2

3

�
CA −

40

9
Nf; ðA5Þ

the quark and gluon collinear anomalous dimensions are given by

γq0 ¼ −3CF;

γq1 ¼ C2
F

�
−
3

2
þ 2π2 − 24ζ3

�
þ CACF

�
−
961

54
−
11

6
π2 þ 26ζ3

�
þ CFNf

�
65

27
þ π2

3

�
;

γg0 ¼ −β0;

γg1 ¼ C2
A

�
−
692

27
þ 11

18
π2 þ 2ζ3

�
þ CANf

�
128

27
−
π2

9

�
þ 2CFNf; ðA6Þ

and β0 is defined in Eq. (17).
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