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A B S T R A C T

The request of material savings in bridge constructions leads to the development towards slender and
lightweight structures, which are more sensitive to human-induced vibrations caused by walking pedestrians.
The resulting accelerations do not endanger the structural safety, but can be perceived as unpleasant for the
user and must therefore be restricted within the limit state of serviceability. For this purpose, the guidelines
define acceleration intervals, called as ‘‘comfort levels" (CL), which evaluate the comfort of the pedestrians,
given the maximum acceleration of the bridge. The model for human-induced loads in the design guideline
is based on conservative and deterministic simplifications. In particular, the uncertainties in the human gait
parameters are neglected. The main objective of this paper is to develop an uncertain load model for walking
pedestrians based on Fourier series. The aleatory and epistemic uncertainties in the human gait parameters
are quantified with appropriate uncertainty models relying on available data. In a dynamical finite element
analysis, the model is used to simulate groups of pedestrians randomly walking over a bridge to calculate
the resulting acceleration amplitudes. The approach is applied to a single span beam and to a real world
footbridge using a 3D finite element model. The results are then evaluated within the CLs, enabling new
assessment methods.
. Introduction

The trend towards lightweight structures in bridge constructions
auses modern footbridges to be more sensitive to human-induced vi-
rations caused by walking pedestrians. An inappropriate consideration
f human-induced vibrations can lead to unacceptable accelerations
nd thus to significant financial loss, such as in the case of the London
illennium Bridge in 2000 [1]. The design guideline DIN EN 1991-
[2] defines acceleration intervals called as ‘‘comfort levels’’ (CL)

o restrict the vibrations in the limit state of serviceability. The load
odel from the design guideline uses deterministic values based on

onservative assumptions. The step frequency of the pedestrians is as-
umed to be equivalent to the structural eigenfrequency, which causes
esonance effects representing the worst case scenario. The load model
s a distributed load over the bridge surface defined as cosine function.
n this way the pedestrians are not considered as single independent
oads, but as a homogeneous group. During the last decades new load
odels for pedestrian-induced vibrations based on experimental data
ave been developed. It has been shown, that the load function of a
ingle pedestrian can be described with a Fourier series containing four
o five harmonics [3–8]. For the Fourier coefficients, which are called as

∗ Corresponding author.
E-mail address: maximilian.schweizer@kit.edu (M. Schweizer).

‘‘dynamic load factors’’ (𝐷𝐿𝐹𝑖) in the context of human-induced loads,
and the phase shifts 𝜑𝑖, different authors present different values. Thus,
it is not clear, which Fourier series is the most appropriate to describe
human-induced loads realistically. Some of the dynamic load factors
show a correlation with the step frequency 𝑓𝑠. Therefore, the step fre-
quency is used as the main parameter to describe the human gait. The
step frequency of pedestrians entail a special variability, which cannot
be uniformly defined, but is dependent on individual physiological and
psychological characteristics, such as body dimensions, body weight,
gender, age, state of mind and purpose of travel. In [9,10] it is shown,
that even the economic and social status of an individual has an influ-
ence on his walking speed. In addition, it turns out that high population
and the strong economic development of a country also has a positive
correlation with the mean walking speed of the population [11–13].
Aside from the individual characteristics just mentioned, environmental
factors can also influence the gait. This includes, e.g., the weather,
the brightness, the attractiveness of the surroundings, the slope, the
flooring, the density of people and oncoming traffic.

In order to account for the aleatory uncertainty in the pedestrians
parameters, most authors use normal distributed random variables
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whose probability distributions come from laboratory experiments or
field observations on real bridges. It is implicitly assumed that the
parameters generated in this way are universally applicable. In real-
ity, there can be significant differences in the parameters depending
on the situation, hence the transfer of observed gait parameters to
other situations can be unrealistic. The realistic modeling of pedestrian
groups consisting of people with randomly distributed characteristics
is a particularly complex task. Since different authors assume different
probability distributions, it is not possible to define one universal dis-
tribution. The lack of knowledge about the ‘‘true’’ parameters, is called
as epistemic uncertainty and can be quantified as fuzzy or interval
variable [14,15].

Taking both the aleatory and the epistemic uncertainty into account
leads to the concept of polymorphic uncertainty, according to [16], also
known as imprecise probability. Some examples for the application of
polymorphic uncertainties in structural engineering problems are: crack
propagation and optimization of a reinforced concrete bridge [17], scat-
tering material properties of wood [18], shell buckling [19–22], seismic
performance of buildings [23], analysis of dynamical processes [16,24],
a concept for data-driven computational mechanics [25] and earth
structure assessment [26] among many others. In [27] different poly-
morphic uncertainty quantification approaches are compared within a
benchmark example for the reliability assessment and optimization-
based design of a steel frame structure. The aleatory uncertainty in
human-induced vibrations of footbridges has been considered in many
research projects, see, for example, [4,6,28–34]. The main objective
in this paper is the development of a new load model considering
polymorphic uncertainty and the implementation into a finite element
model in order to calculate human-induced vibrations on footbridges
caused by walking pedestrians. The uncertainty in the pedestrian pa-
rameters is quantified with an uncertainty model based on experimental
data from the literature. The pedestrians step frequency is modeled
as a normal distributed random variable with a fuzzy mean value
and a fuzzy standard deviation which leads to the fuzzy probability
based random (fp-r) variable. The Fourier parameters are modeled as
fuzzy variables. In this paper, the fuzzy-stochastic analysis is a three-
loop computational model consisting of the deterministic FE-model,
the Monte-Carlo simulation (MCS) and the 𝛼-Level optimization (ALO).
Because of the high computational effort, the MCS is replaced with a
surrogate model based on least square polynomials. In conclusion, the
comfort level of the bridge is evaluated with recommendations from
the design guideline. The highlights of this paper can be summarized
as follows:

(1) Uncertainty quantifications for human-induced loads
(2) Introduction of a fuzzy Fourier load model for walking pedestri-

ans
(3) Simulation of human-induced vibrations of a real world foot-

bridge with polymorphic uncertain data
(4) New assessment methods for the footbridges comfort level

2. Uncertainty modeling

In this section, the basic concepts of the used uncertainty models are
summarized. Uncertainty can be divided into aleatory and epistemic
uncertainty [14,15]. Aleatory uncertainty describes the randomness of
an experiment and is modeled in general as random variable. Epistemic
uncertainty describes the lack of information about a parameter and
can be modeled as interval variable or as fuzzy variable. In the fol-
lowing, the three basic uncertainty models: random variable, interval
variable and fuzzy variable are explained, see Fig. 1. Finally, the com-
bination of aleatory and epistemic uncertainties, i.e., the polymorphic
uncertainty is introduced and the corresponding uncertainty model is
2

presented.
Fig. 1. Three basic uncertainty models: cumulative distribution function of a random
variable (left), interval variable (center), membership function of a fuzzy variable
(right).

2.1. Random variable

A random variable is defined in the probability space (𝛺,𝛴, 𝑃 ),
hich is composed of a set of elementary events 𝛺, a 𝜎-algebra 𝛴 and a
robability measure 𝑃 . The random variable 𝑋 is a mapping operator,
hich assigns every result 𝜔 ∈ 𝛺 to a real number 𝑋(𝜔)

∶ 𝛺 → R, 𝜔 ↦ 𝑋(𝜔) . (1)

he probability measure 𝑃 ∈ [0, 1] is defined with the probability
ensity function (PDF) 𝑓 (𝑥) and the cumulative distribution function
CDF) 𝐹 (𝑥). The CDF is the integral of the PDF

(𝑥) = 𝑃 (𝑋 ≤ 𝑥) = ∫

𝑥

−∞
𝑓 (𝑡)𝑑𝑡 . (2)

here 𝑃 (𝑋 ≤ 𝑥) is the probability, that the random variable 𝑋 takes on
value less or equal to 𝑥 and is called ‘‘non-exceedance probability’’.
he specification of a non-exceedance probability 𝑝 or exceedance
robability 1 − 𝑝 is referred to as quantile value. The number 𝑥𝑝 is a
-quantile of 𝑃 , if

(𝑋 ≤ 𝑥𝑝) ≥ 𝑝 and 𝑃 (𝑋 ≥ 𝑥𝑝) ≥ 1 − 𝑝 . (3)

𝑝-quantile divides a probability distribution in a left part with prob-
bility 𝑝 and a right part with probability 1 − 𝑝. The 50%-quantile
s the median and, in the case of a symmetric distribution, it coin-
ides with the mean value. The random variables used in this paper
re, e.g., the pedestrians step frequency and body weight, time delay
etween pedestrians, material stiffness and density.

.2. Interval and fuzzy variables

An interval  ∈ R is a set that contains all real numbers lying
etween two interval limits 𝑥𝑙 < 𝑥𝑟 ∈ R. The membership of an element
to an Interval  is whether true or false, which can be expressed with

he characteristic function

 =
{

1, 𝑥 ∈ 
0, 𝑥 ∉  . (4)

fuzzy variable is an extension of an interval variable. The interval
ariable is referred to as ‘‘crisp’’ set, in order to distinguish it from
he fuzzy set. In the fuzzy-set-theory, the membership of an element

to a set A is rated gradually with the membership function 𝜇𝐴(𝑥).
he normalized fuzzy variable 𝐴̃ is defined as

̃ =
{

(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ R
}

𝐴(𝑥) ∶ R → [0, 1] . (5)
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Fig. 2. Fuzzy triangular number (left) and fuzzy trapezoidal interval (right).

Fig. 3. Fuzzy CDF of a fuzzy probability based random variable.

f the membership function 𝜇𝐴(𝑥) of a fuzzy variable is monotonically
decreasing on both sides from the maximum value 𝜇𝐴(𝑥) = 1, the fuzzy
variable is convex and defined as

𝜇𝐴(𝑥2) ≥ 𝑚𝑖𝑛[𝜇𝐴(𝑥1);𝜇𝐴(𝑥3)] ,

∀𝑥1, 𝑥2, 𝑥3 ∈ 𝐴̃ with 𝑥1 ≤ 𝑥2 ≤ 𝑥3 .
(6)

The fuzzy variables used in this paper are the Fourier parameters as
fuzzy triangular numbers and the stochastic distribution parameters of
the step frequency as fuzzy trapezoidal intervals, which are convex and
linear, as shown in Fig. 2. Both fuzzy variables are described by the
following notation:

• fuzzy triangular number: 𝐴̃ = ⟨𝑥1 𝑥2 𝑥3⟩
• fuzzy trapezoidal interval: 𝐴̃ = ⟨𝑥1 𝑥2 𝑥3 𝑥4⟩

2.3. Fuzzy probability based random variable

Polymorphic uncertainty emerges from the combination of aleatory
and epistemic uncertainties and is quantified in this paper as fuzzy
probability based random (fp-r) variable, which is defined in the fuzzy
probability space (𝛺,𝛴, 𝑃 ). The fuzzy probability 𝑃 = (𝑃𝛼)𝛼∈(0,1] assigns
every 𝐴 ∈ 𝛴 on every alpha-level to a probability measure in form of
an interval 𝑃𝛼 = [𝑃𝛼,𝑙 , 𝑃𝛼,𝑟]

0 ≤ 𝑃𝛼,𝑙(𝐴) ≤ 𝑃𝛼,𝑟(𝐴) ≤ 1 . (7)

For every alpha-level, an interval of CDFs is defined as

𝐹𝑋 = ((𝐹𝑋 )𝛼)𝛼∈(0,1] . (8)

Polymorphic uncertainty can be used, if the expected value 𝐸[𝑥] or
the standard deviation 𝜎𝑥 of a random variable is uncertain. This is
the case, for example, if the stochastic distribution parameters from
several independent measurement studies are given but the samples
are not available. Each measurement study enables the description of a
random variable, but with different expected values 𝐸[𝑥] and standard
deviations 𝜎𝑥 for each measurement. Defining a crisp random distri-
bution from these measurements is only possible if enough samples
are available. In most cases, however, they differ from campaign to
campaign due to the small sample size or the boundary conditions of
the measurements. The lack of knowledge about the entirety of the sam-
ples is the epistemic uncertainty, which can be modeled with interval
3

o

or fuzzy variables. The combination of random and interval variables
leads to the p-box representation, while the combination of random
and fuzzy variables leads to the fp-r variable, which is an extension of
the parametric p-box representation, as it assigns a parametric p-box
to each value of the membership function 𝜇(𝑥). With a few data the
uncertainty quantification can be improved and is particularly useful
for highly sensitive parameters. If only the bounds are of interest, a
p-box approach is sufficient. The representation of the fp-r variable
is referred to as fuzzy CDF and is shown in Fig. 3. In this paper, the
pedestrians step frequency is modeled with an fp-r variable, which is
introduced in Section 4.1.

3. Numerical structural analysis with uncertain data

In this section, the implementation of fuzzy, random and fp-r vari-
ables in a numerical structural analysis program is explained based
on [14,19,35]. The dynamic structural analysis consists of solving the
equation of motion

𝐌𝐯̈(𝑡) + 𝐃𝐯̇(𝑡) +𝐊𝐯(𝑡) = 𝐏(𝑡) (9)

ith mass matrix 𝐌, damping matrix 𝐃, stiffness matrix 𝐊 and load
ector 𝐏(𝑡). The damping matrix is modeled with a Rayleigh-damping:
= 𝛼𝐌 + 𝛽𝐊. The structure is modeled in a Finite Element Analysis

rogram (FEAP [36]) and Eq. (29) is solved with the implicit Newmark
ethod [37], which is a common time integration method used in
ynamic structural analysis. With that, the structural acceleration of
ach FE-node is calculated in each time step 𝑡𝑛. The dynamic structural
nalysis with fuzzy and random input variables leads to a fuzzy stochas-
ic process, where a fp-r output variable is defined for every timestep
𝑛. A fuzzy stochastic process is illustrated in Fig. 4, where 𝑥 and 𝑧
re the input and the output variable respectively. For each sample
oint 𝑥 of the fuzzy input space a stochastic process 𝑧(𝑡) takes place. At
ach timestep 𝑡𝑛 of the stochastic processes, a probability distribution
f the output 𝑧 is defined. The probability distribution yields a specific
uantile value as input for the 𝛼-Level optimization (ALO), which
esults in the fuzzy quantile value of the fp-r output variable. Repeating
he ALO for a discretization of quantile values, yields the fuzzy CDF
epresentation. In Fig. 4, the principle is shown exemplary for the 95%-
uantile value. The concept of 𝛼-Level optimization is explained later
n this section.

The numerical structural analysis with fuzzy and random variables
s realized with a three-loop computational model consisting of the
eterministic FE-model, the Monte-Carlo-Simulation (MCS) and the 𝛼-
evel optimization (ALO). The computational model is shown in Fig. 5
left). The fuzzy input variables 𝑥̃ are mapped to the fuzzy output
ariables 𝑧̃ with the ALO and the mapping operator (𝑥)

∈ 𝐷 ⊂ R𝑀 ↦ 𝑧 = (𝒙) ∈ R1 . (10)

n this paper, the mapping operator (𝑥) represents the Monte Carlo
imulation (MCS) to obtain a stochastic quantity of interest as the
utput 𝑧, e.g., the mean value, standard deviation or a specific quantile
alue. Because of the high computational effort, the MCS is replaced
ith a surrogate model, see for example [21,38–41]. Alternatively,
surrogate modeling for the deterministic FE-model and the ALO

ould also be taken into consideration, see, for example, the multilevel
urrogate modeling approach according to [42]. In the presented appli-
ation, the uncertain input variables for the MCS are, for example, the
ean value and standard deviation of the pedestrians step frequency

nd the Fourier parameters of the pedestrians load function. The output
f the deterministic FE-model is the maximum acceleration 𝑎max of the
ootbridge. The output of the MCS is defined as the 95%-quantile value
f 𝑎max, see Fig. 5 (right), but can be in general any stochastic quantity

f 𝑎max, e.g., mean or standard deviation.
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For the numerical implementation of fuzzy variables in a compu-
ational model, the membership function is divided in alpha-levels:

𝐴𝛼𝑘 = {𝑥 ∈ R | 𝜇𝐴(𝑥) ≥ 𝛼𝑘} ,

∈ (0, 1] , 𝑘 = 1, 2,… , 𝑁alev .
(11)

his procedure is referred to as alpha-level discretization, see [35].
ach alpha-level is an interval 𝐴𝛼𝑘 = [𝑥𝛼,𝑙 , 𝑥𝛼,𝑟] with the membership
= 𝛼𝑘. The support 𝑆(𝐴̃) is the interval on the bottom alpha-level and

ontains all elements of 𝐴

(𝐴̃) = {𝑥 ∈ R | 𝜇𝐴(𝑥) > 0} . (12)

n order to obtain the fuzzy output variable 𝑧̃, the minimum and the
aximum output values of (𝑥) are searched on each alpha-level. The
inimum output results in the left bound 𝑧𝛼𝑘,𝓁 and the maximum output

esults in the right bound 𝑧𝛼𝑘,𝑟 of the fuzzy output variable 𝑧̃

𝑧𝛼𝑘,𝑙 = min[(𝑥)] and 𝑧𝛼𝑘,𝑟 = max[(𝑥)] ∀𝒙 ∈ 𝐴𝛼𝑘 (13)

with 𝑘 = 1, 2,… , 𝑁alev .

This extreme value problem is referred to as 𝛼-level optimization (ALO).
The MCS takes place on the sample points on the support 𝑆(𝐴̃). In
every MCS the FE-model solution is computed 𝑁 times and the specific
stochastic parameter 𝑧 is estimated based on the samples. After the MCS
has been realized at each sample point, the ALO takes place searching
4

for the extremal output values on every alpha-level. The numerical s
treatment of the fuzzy-stochastic analysis is a combination of the ALO
as outer loop and the MCS as inner loop. For a sufficient precise estima-
tion of the considered stochastic parameter, it is important to execute
enough realizations of the MCS which is computationally expensive.

In order to reduce the computational effort, a surrogate model ̂(𝑥)
is used to replace the MCS. Therefore, the MCS is realized on a few
sample points sim = {𝒙1,… ,𝒙𝑁sim

} ⊂ 𝐷, to obtain the output variables
sim = {𝒛1,… , 𝒛𝑁sim

} ∈ R. With the output data, the surrogate model
is generated as approximated function ̂ on the support. The ALO is
then applied on the surrogate model:

𝛼̂𝑘,𝑙 = min[̂(𝑥)] and 𝑧𝛼𝑘,𝑟 = max[̂(𝑥)] ∀𝒙 ∈ 𝐴𝛼𝑘 (14)

ith 𝑘 = 1, 2,… , 𝑁alev .

n every alpha-level, the domain 𝐷 = {𝒙 | 𝒙 ∈ 𝐴𝛼𝑘} is adjusted, so that
he surrogate model has to be generated only once. The ALO using a
urrogate model on the support is represented in Fig. 6. The ALO and
he surrogate modeling can be repeated for a discretization of different
uantile values, in order to obtain the fp-r output variable, which can
e represented as fuzzy CDF.

For problems with high stochastic scattering, the least square (LSQ)
ethod [43] is recommended to approximate the surrogate model. The

SQ method builds a polynomial function based on the least square
rror of a few sample points, where the MCS has to take place. In the
ase of a fullfactorial design of experiments (DoE), the total number of
ample points 𝑁 , is calculated as exponential function 𝑁 = 𝑛𝑀 .
sim sim sim
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Fig. 6. Representation of the ALO on the 𝛼-level 𝛼𝑘 using a surrogate model ̂(𝑥) on
he support of a fuzzy input triangle number.

Fig. 7. Representation of the number of sample points according to [19].

Whereby 𝑀 is the number of input variables and 𝑛sim is the number
of sample points per dimension. In order to reduce the computational
effort when modeling with more than two input variables, the high
dimensional model representation (HDMR) is used according to [44,
45]. In this way, the reciprocal influence of the input variables is taken
into account up to a degree 𝐿. In most cases, the degree of 𝐿 = 2 is
sufficient [46,47]. The total number of sample points 𝑁sim is calculated
with respect to the number of sample points per dimension 𝑛sim and the
number of input variables 𝑀 according to [46]

𝑁sim(𝑀,𝑛sim) =
𝐿
∑

𝑖=0

𝑀!
𝑖!(𝑀 − 𝑖)!

(𝑛sim − 1)𝑖 (15)

The computational effort for a number of sample points per dimension
of 𝑛sim = 7 with respect to the number of inputs 𝑀 is represented
in Fig. 7. With the cut-HDMR-method, cutting lines and cut surfaces
are generated through a reference point in the center of the input
space. The generated cut functions are LSQ-polynomials. The ALO is
then applied on the polynomial functions to find the extremal solutions
on every 𝛼-level. The optimization strategy used in this paper is the
particle swarm optimization, from Kennedy and Eberhart [48].

4. Human-induced loads

The human form of movement is divided in walking and running.
Running is generally less common than walking. In addition, peo-
5

ple who run are less sensitive to noticeable vibrations because they 𝑣
Fig. 8. Representation of human-induced loads in the vertical direction.

are consciously concentrated on their movement. For these reasons,
running is usually less important from a structural dynamic point
of view and is comparatively rarely found in scientific studies [32].
Therefore, this paper concentrates on investigating the walking form
of movement. During walking, a pedestrian produces a dynamic time
varying force, which has components in all three directions: vertical,
lateral and longitudinal [3]. The vertical component is regarded as
the most significant due to its higher amplitude, resulting in extensive
investigations. A walking pedestrian has constant contact with the
ground with alternating single and double stance phases (ssp and dsp).
In the dsp, the vertical load of a single step is overlapped with the load
of the next step. The vertical load-time histories of three consecutive
steps and their superposition is represented exemplary in Fig. 8. The
distance and the time delay between two consecutive steps are the
step length 𝓁𝑠 and the step period 𝑇𝑠. The step frequency 𝑓𝑠, as the
eciprocal value of the step period, is the number of steps per second
nd is measured in Hertz [Hz]. Many studies confirm that the total
ynamic load of a walking pedestrian is nearly periodic [3–8,49,50].
he load function is therefore described in many publications with the
ourier series

𝑣𝑒𝑟𝑡(𝑡) = 𝐺 ⋅

(

1 +
𝑛
∑

𝑖
𝐷𝐿𝐹𝑖,vert sin

(

2𝜋 ⋅ 𝑖 ⋅ 𝑓𝑠 ⋅ 𝑡 − 𝜑𝑖,vert
)

)

. (16)

ere, 𝐺 is the pedestrians weight [N], 𝐷𝐿𝐹𝑖 is the dynamic load factor
Fourier coefficient) of the 𝑖th harmonic, 𝑓𝑠 is the step frequency [Hz],
𝑖 is the phase shift of the 𝑖th harmonic, 𝑖 is the order number of the
armonic and 𝑛 is the total number of contributing harmonics. As the
LFs become smaller with increasing harmonic 𝑖, they are practically
egligible above a certain harmonic 𝑛. The number 𝑛 of considered
armonic components varies in the literature. One of the first authors
sing a Fourier series for human-induced loads is Bachmann [49,50],
onsidering three harmonics. Various authors investigated the walking
attern of pedestrians in order to find an appropriate way to de-
cribe the parameters. Thus, a large amount of different information
s available. In the following two subsections, the information from
he literature about gait and load parameters is presented, in order to
evelop an uncertainty model for human-induced loads on footbridges.

.1. Gait parameters

The gait parameters are the step frequency 𝑓𝑠 [Hz], the velocity
𝑠 [m∕s2], the period 𝑇𝑠 [s] and the step length 𝓁𝑠 [m]. The relationship
etween walking speed 𝑣𝑠 and step frequency 𝑓𝑠 is recommended in
YNPEX [5] to
𝑠 = 1.271 ⋅ 𝑓𝑠 − 1 [m∕s] . (17)
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Table 1
Normal distribution of step frequencies 𝑓𝑠 [Hz] according to [54].

Gender Footbridge 𝐸[𝑓𝑠] 𝜎𝑓𝑠

Women Merchant 1.89 0.11
Lowry 1.84 0.10

Men Merchant 1.84 0.11
Lowry 1.76 0.086

Table 2
Normal distribution for the step frequency according to [56].

Age/gender Mean value 𝐸[𝑓𝑠] std. deviation 𝜎𝑓𝑠
slow norm. fast slow norm. fast

𝑎 < 40
Men 1.48 1.80 2.03 0.19 0.18 0.14
Women 1.49 1.88 2.13 0.11 0.11 0.08

40 < 𝑎 < 60
Men 1.52 1.81 2.02 0.19 0.14 0.14
Women 1.52 1.87 2.12 0.15 0.12 0.17

𝑎 > 60
Men 1.51 1.78 1.95 0.11 0.10 0.11
Women 1.53 1.94 2.16 0.18 0.12 0.14

Here, the step frequency is used as main gait parameter, while the
remaining parameters are determined with respect to 𝑓𝑠. Numerous
authors [31,32,49,51–56] carry out measurements and determine the
step frequency 𝑓𝑠 as normal distributed, giving indications for the
mean value 𝐸[𝑓𝑠] and the standard deviation 𝜎𝑓𝑠 . Some of the au-
thors measured on real bridges while others used a constructed setup.
An example for a measurement on a real footbridge is described in
Pachi and Ji [54], who observed 100 women and 100 men on the
Merchant footbridge in London and the Lowry bridge in Manchester.
The pedestrians did not know, that they were observed. In this way
psychological influence is excluded. The parameters determined in [54]
are given in Table 1. An example for a constructed setup is found
in Butz [56], who used a constructed 12 m long platform, which is
able to vibrate horizontally. The testgroup of 100 people crossed the
platform in three different walking intentions: ‘‘slow’’, ‘‘normal’’ and
‘‘fast’’. The results from [56], divided in the categories: gender, age
and walking intention, are shown in Table 2. In Petersen [55] two
separate measurement campaigns on a real footbridge are given, one
with 55 pedestrians and one with 50 pedestrians. The results from
both measurements are presented separately in Table 3. Sahnaci [32]
used a platform construction in a university workshop with a group
of 38 women and 189 men. The test subjects are mainly engineering
students which explains the small proportion of female participants in
2008. The walking speed is freely chosen to simulate the natural gait.
A measurement campaign with a notably large number of pedestrians
is described in Zivanovic [31], where video records of 1976 people
crossing over the Podgorica footbridge in Montenegro are analyzed.
The results from Zivanovic [31], Sahnaci [32] and many others [49,51–
53,55], are presented in Table 3. For modeling a random time delay
𝛥𝑡 between two pedestrians when entering the bridge, the Poisson
distribution is given in Sahnaci [32]

𝛥𝑡 = −1
𝜆
⋅ ln(1 − 𝑟) , (18)

with the mean arrival rate 𝜆 [pers.∕s] and the uniformly distributed
random number 𝑟 ∈ [0, 1]. The mean arrival rate 𝜆 is

𝜆 = 𝑁pers ⋅
𝑣𝑠,mean

𝐿
, (19)

with the number of pedestrians 𝑁pers, the mean pedestrians velocity in
the current simulation 𝑣𝑠,mean [m/s] and the span length 𝐿 [m].

The large amount of different information from literature shows
that different measurement campaigns lead to different results for the
stochastic parameters of the step frequency. Possible reasons for these
differences are a small sample size and different boundary conditions,
6

Table 3
Normal distribution of step frequencies 𝑓𝑠 [Hz] from [31,32,49,51–53,55].

Literature Category/situation 𝐸[𝑓𝑠] 𝜎𝑓𝑠
Matsumoto [51] Outside 1.99 0.177
Kramer [52] – 2.20 0.299
ECSC [53] Inside 2.00 0.17
Zivanovic [31] Podgorica bridge 1.87 0.185

Sahnaci [32] 38 women 1.99 0.121
189 men 1.90 0.122

Bachmann [49]
Slow 1.7 –
Normal 2.0 –
Fast 2.3 –

Petersen [55]

Normal, 55 pers. 1.77 0.175
Normal, 50 pers. 1.75 0.19
Fast, 55 pers. 2.17 0.205
Fast, 50 pers. 2.10 0.266

Fig. 9. Correlation plot between the mean value 𝐸[𝑓𝑠] and the standard deviation 𝜎𝑓𝑠
of the step frequency.

which are often unknown. Also dividing the measurements into cate-
gories (e.g., gender, age, velocity, situation) shows that each category
has its own random distribution. The precise definition of one universal
random distribution for the step frequency is not possible. In order
to consider both the aleatory and the epistemic uncertainty, in this
paper, the step frequency is modeled with a fp-r variable. In order
to investigate the correlation between the mean value 𝐸[𝑓𝑠] and the
tandard deviation 𝜎𝑓𝑠 , all value-pairs are plotted in Fig. 9. As there
s clearly no correlation, the two stochastic parameters of the step
requency are modeled as independent fuzzy variables: the fuzzy mean
alue 𝐸̃[𝑓𝑠] and the fuzzy standard deviation 𝜎̃𝑓𝑠 . The fp-r variable can
e expressed with the following notation for the normal distribution:
𝑠 ∼  (𝐸̃[𝑓𝑠], 𝜎̃𝑓𝑠 ). In order to choose an appropriate fuzzy variable, a
isualization in a histogram can be helpful. The values for 𝐸[𝑓𝑠] and
𝑓𝑠 from literature [31,32,49,51–56] are shown as histogram together
ith the membership function 𝜇(𝐸[𝑓𝑠]) and 𝜇(𝜎𝑓𝑠 ) in Fig. 10. The

upport bounds (𝜇 = 0) are determined at the minimum and maximum
f the histogram values. The trend values (𝜇 = 1) are the values, that
ccur most frequently. In general, the choice of the shape of the fuzzy
ariable depends on the available data. Based on Fig. 10, there appears
o be a range of most possible values, which are given the membership
= 1, leading to a trapezoidal shape.

̃ [𝑓𝑠] = ⟨1.45 1.7 2.05 2.35⟩ ,

𝜎̃𝑓𝑠 = ⟨0.08 0.11 0.19 0.3⟩ .
(20)

For the realistic modeling of human induced loads of walking pedes-
rians, the values for the step frequency 𝑓𝑠 should be restricted within
imit values in order to ensure the physical plausibility. Therefore, all
tep frequencies are limited within the bounds 𝑓𝑠,𝑚𝑖𝑛 ≤ 𝑓𝑠 ≤ 𝑓𝑠,𝑚𝑎𝑥 [Hz].
ere, the bounds are chosen as 𝑓𝑠,𝑚𝑖𝑛 = 1.0Hz and 𝑓𝑠,𝑚𝑎𝑥 = 2.8Hz. The

tep frequency is therefore modeled with a truncated fp-r variable.
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.2. Load parameters

The dynamic load induced by pedestrians is described with the
ourier series according to Eq. (16), whereby the load parameters
onsist of the pedestrians body weight 𝐺 [𝑁], the dynamic load factors

(Fourier coefficients) 𝐷𝐿𝐹𝑖 and the phase shifts 𝜑𝑖. The dynamic load
factors are dimensionless dynamical scaling factors of the pedestrians
body weight 𝐺. The body weight is modeled with two normal dis-
tributed random variables, one for men and one for women. The mean
values and standard deviations are 𝐸[𝐺𝑤] = 71.4 [kg], 𝜎𝐺𝑤

= 15.1 [kg]
for women and 𝐸[𝐺𝑚] = 87.0 [kg], 𝜎𝐺𝑚

= 15.0 [kg] for men, see [57].
The gender of the pedestrians has a 50% chance to be either male or
female and is computed with a uniform distributed random variable.

The Fourier parameters are determined experimentally by measur-
ing the load-time histories of walking pedestrians with force measuring
plates placed on the ground and subsequent Fourier transformation.
The measurement results from [4–8,31,49] are presented in Tables 4–
6 and in Eqs. (21) and (22). The dynamic load factors decrease with
higher harmonics, which means that only the first few DLF’s need
to be considered, while the remaining can be neglected. The number
of considered harmonics depends on the considered literature. Most
of the authors consider four harmonics and determine the Fourier
coefficients in dependency of the step frequency 𝑓𝑠. In particular,
the first coefficient 𝐷𝐿𝐹1 has a strong positive correlation with the
step frequency 𝑓𝑠. This means that walking faster induces forces with
higher amplitudes. According to Bachmann [49,50] the first DLF is
piecewise linear, while the remaining load parameters are constants.
Seiler&Hüttner [7] determined constant load parameters using special
pressure measuring soles used in the orthopedic technology, which are
placed in the pedestrians shoes and allowed free movement. In the
design guideline from ISO 10137 [8] five harmonics are considered.
The first DLF is linear, while the remaining DLFs are constants and the
phase shifts are all zero. The parameters according to Bachmann [49],
Seiler&Hüttner [7] and ISO 10137 [8] are given in Table 4. An example
7

for the use of random variables for the Fourier parameters is given in
Table 4
Vertical load parameters for walking according to Seiler&Hüttner [7].

Bachmann Seiler&Hüttner ISO 10137

𝐷𝐿𝐹1
0.4, 𝑓𝑠 ≤ 2.0Hz 0.4 0.37 ⋅ (𝑓𝑠 − 1)0.5, 𝑓𝑠 ≥ 2.4Hza

𝐷𝐿𝐹2 0.1 0.15 0.1
𝐷𝐿𝐹3 0.1 0.10 0.06
𝐷𝐿𝐹4 0 0.05 0.06
𝐷𝐿𝐹5 0 0 0.06
𝜑1 0 𝜋∕2 0
𝜑2 𝜋∕2 −𝜋 ⋅ 5∕6 0
𝜑3 𝜋∕2 𝜋∕2 0
𝜑4 0 −𝜋 ⋅ 5∕6 0
𝜑5 0 0 0

a Linear interpolation is used for 2.0 < 𝑓𝑠 < 2.4.

Fig. 11. Fourier series for the vertical load 𝐹vert(𝑡) [kN] according to [4–8,49] with an
xemplary step frequency of 𝑓𝑠 = 2.0Hz and body weight of 80 kg, plotted regarding
o the time period 𝑇 = 0.5 [s].

Table 5
Normal distribution of the vertical DLFs for walking according to [6].
𝑖 Mean value 𝐸[𝐷𝐿𝐹𝑖] Standard

deviation 𝜎𝐷𝐿𝐹𝑖

1 ... see Eq. (21) ...
2 0.07 0.03
3 0.05 0.02
4 0.05 0.02
5 0.03 0.015

Kerr [6], where 1000 force records from 40 test persons are collected
to determine the mean value and the standard deviation for the DLFs
considering five harmonics. For the first DLF, the mean value 𝐸[𝐷𝐿𝐹1]
is a third degree polynomial function of 𝑓𝑠 and the standard deviation
𝜎𝐷𝐿𝐹1 is dependent from the mean value

𝐸[𝐷𝐿𝐹1] = −0.2649 ⋅ 𝑓 3
𝑠 + 1.3206 ⋅ 𝑓 2

𝑠 − 1.7597 ⋅ 𝑓𝑠 + 0.7613

𝜎𝐷𝐿𝐹1 = 0.16 ⋅ 𝐸[𝐷𝐿𝐹1] . (21)

The remaining parameters, according to [6], are given in Table 5.
Young [4] presented a comparison of the DLFs from Kerr and many
others and derived 50%- and 25% exceedance probabilities for the
DLFs, see Table 6. In SYNPEX [5] all four DLFs and phase shifts are
second and third degree polynomial functions of the step frequency 𝑓
𝑠
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Table 6
Vertical DLFs for walking according to Young [4].

Exceedance probability
50% 25%

𝐷𝐿𝐹1 0,37⋅(𝑓𝑠 − 0.95) ≤0,5 0,41⋅(𝑓𝑠 − 0.95) ≤0,56
𝐷𝐿𝐹2 0.054 + 0.0088 ⋅ 𝑓𝑠 0.069 + 0.0112 ⋅ 𝑓𝑠
𝐷𝐿𝐹3 0.026 + 0.015 ⋅ 𝑓𝑠 0.033 + 0.0192 ⋅ 𝑓𝑠
𝐷𝐿𝐹4 0.010 + 0.0204 ⋅ 𝑓𝑠 0.013 + 0.026 ⋅ 𝑓𝑠

𝐷𝐿𝐹1 = 0.0115𝑓 2
𝑠 + 0.2803𝑓𝑠 − 0.2902

𝐿𝐹2 = 0.0669𝑓 2
𝑠 + 0.1067𝑓𝑠 − 0.0417

𝐿𝐹3 = 0.0247𝑓 2
𝑠 + 0.1149𝑓𝑠 − 0.1518

𝐿𝐹4 = −0.0039𝑓 2
𝑠 + 0.0285𝑓𝑠 − 0.0082

1 = 0

2 =
𝜋
180

⋅ (−99.76𝑓 2
𝑠 + 478.92𝑓𝑠 − 387.8)

𝜑3 =
𝜋
180

⋅ ( − 150.88𝑓 3
𝑠 + 819.65𝑓 2

𝑠 − 1431.35𝑓𝑠

+ 811.93), for 𝑓𝑠 < 2Hz

𝜑3 =
𝜋
180

⋅ (813.12𝑓 3
𝑠 − 5357.6𝑓 2

𝑠 + 11726𝑓𝑠 − 8505.9),

or 𝑓𝑠 ≥ 2Hz

= 𝜋
⋅ (34.19 ⋅ 𝑓 − 65.14) .

(22)
8

4 180 𝑠
The Fourier series resulting by using the presented load parameters
from [4–8,49], are shown in Fig. 11 exemplary with the step frequency
of 𝑓𝑠 = 2.0Hz. As for the gait parameters, the literature offer a large
variety of different information for the load parameters. This can be
explained by the different human walking patterns, which means that
even two pedestrians with the same weight and the same step frequency
can still walk differently and thus, induce different load amplitudes in
the structure. In order to account for the uncertainty in the Fourier
series, the Fourier parameters are modeled with fuzzy variables. For
every Fourier parameter, a minimum value 𝐷𝐿𝐹1,min, 𝜑1,min, a max-
imum value 𝐷𝐿𝐹1,max, 𝜑1,max and a mean value 𝐷𝐿𝐹1,mean, 𝜑1,mean is
chosen based on the parameters from the six presented Fourier series in
Fig. 11. The limit values are assigned to the membership 𝜇 = 0 and the
mean value is assigned to the membership 𝜇 = 1. Therefore, triangular

embership functions are defined for the Fourier parameters

𝐿̃𝐹 𝑖 = ⟨𝐷𝐿𝐹𝑖,min 𝐷𝐿𝐹𝑖,mean 𝐷𝐿𝐹𝑖,max⟩

𝜑̃𝑖 = ⟨𝜑𝑖,min 𝜑𝑖,mean 𝜑𝑖,max⟩ .
(23)

In this paper, the modeled Fourier series using fuzzy variables is
referred to as fuzzy Fourier series (FFS). The fuzzy Fourier coefficients
and fuzzy phase shifts are referred to as fuzzy Fourier parameters
(FFP). In order to choose appropriate fuzzy variables, the five dynamic
load factors 𝐷𝐿𝐹𝑖 and four phase shifts 𝜑𝑖 taken from literature are
represented in Fig. 12. The fifth phase shift is given as 𝜑 = 0 for all
5
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f the six mentioned authors and therefore is not considered for the
ncertainty quantification.

The results from Young [4] are presented as 50%-exceedance prob-
bility, also called median. The results from Kerr [6] are represented
s continuous lines for 𝐸[𝐷𝐿𝐹𝑖] and dashed lines for 𝐸[𝐷𝐿𝐹𝑖] ± 𝜎𝐷𝐿𝐹𝑖 .

As the Fourier series is a sum of 2𝜋-periodical functions, there is no
difference between the phase shift 𝜑𝑖 and 𝜑𝑖 + 2𝑛𝜋 if 𝑛 is an integer.

herefore, the value for 𝜑2 according to Seiler&Hüttner [7], which is
iven as 𝜑2 = −5𝜋∕6, is visualized in Fig. 12 as 𝜑2 = −5𝜋∕6+2𝜋 = 7𝜋∕6.
he reason of this representation is to better find an appropriate fuzzy
ariable, because the value 7𝜋∕6 is closer to the values of the other
uthors. The first three dynamic load factors 𝐷𝐿𝐹1, 𝐷𝐿𝐹2 and 𝐷𝐿𝐹3
ave functional dependencies from the step frequency 𝑓𝑠 and therefore
re defined as fuzzy functions according to Eqs. (23), (24), (25) and
26).

𝐿𝐹1,min =
{

0.324 ⋅ 𝑓𝑠 − 0.3224 , 𝑓𝑠 < 2.22Hz
0.4 , 𝑓𝑠 ≥ 2.22Hz

𝐿𝐹1,mean =
{

0.37 ⋅ (𝑓𝑠 − 0.95) , 𝑓𝑠 < 2.3Hz
0.5 , 𝑓𝑠 ≥ 2.3Hz

𝐿𝐹1,max =
{

0.4 , 𝑓𝑠 < 2.0Hz
0.37 ⋅ 𝑓𝑠 − 0.34 , 𝑓𝑠 ≥ 2.0Hz

(24)

𝐿𝐹2,min = 0.05

𝐿𝐹2,mean = 0.1 (25)
9

𝐿𝐹2,max = 0.36 ⋅ 𝑓𝑠 − 0.23
𝐿𝐹3,min = 0.025

𝐿𝐹3,mean = 0.06

𝐿𝐹3,max =
{

0.1 , 𝑓𝑠 < 1.6Hz
0.22 ⋅ 𝑓𝑠 − 0.26 , 𝑓𝑠 ≥ 2.0Hz

(26)

or the second and third DLF, the minimum and the mean value are
onstant, while the maximum value is a function of 𝑓𝑠. The fuzzy
unctions assign every pedestrian with his own step frequency 𝑓𝑠, to
corresponding fuzzy triangular number. In this way, every pedestrian
as an individual fuzzy number for the first three dynamic load factors.
he fourth and the fifth dynamic load factors 𝐷𝐿𝐹4 and 𝐷𝐿𝐹5 as well
s the phase shifts 𝜑𝑖 have constant limits and are therefore modeled
ith fuzzy numbers

𝐿̃𝐹 4 = ⟨0 0.05 0.07⟩ , 𝐷𝐿𝐹 5 = ⟨0 0.03 0.06⟩ ,

̃1 = 𝜑3 = ⟨0 0 𝜋∕2⟩ , 𝜑2 = ⟨0 0 7𝜋∕6⟩ ,

̃4 = ⟨−5𝜋∕6 0 0⟩ .

(27)

he first and third phase shift 𝜑1, 𝜑3 is modeled with the same fuzzy
ariable 𝜑̃1 = 𝜑̃3. The fuzzy functions for the first three dynamic
oad factors are represented two-dimensionally in Fig. 13 (top) and
hreedimensionally in Fig. 13 (middle). The triangular fuzzy numbers
re visualized in Fig. 13 (bottom).

The fuzzy Fourier series (FFS) has the objective to account for the
ourier series from six different authors in one model. Together with
he fp-r-variable for the step frequency 𝑓𝑠 presented in Section 4.1
nd the nine fuzzy Fourier variables, every pedestrian is modeled with
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Fig. 14. Fuzzy process of the Fourier series with 𝑓𝑠 = 2.0Hz: with all nine FFPs (left) and with only the first two fuzzy DLFs and fuzzy phase shifts (right).
s

leven fuzzy variables. This amount of input variables results in an
mmense computational cost. Moreover, possible dependencies (corre-
ations) between the fuzzy input variables can lead to an overestimated
uzzy load process 𝐹vert(𝑡). At this point, the question arises whether
ll fuzzy variables are necessary to obtain a realistic result. If some
f the fuzzy variables do not provide any sensitivity on the output,
hey can be replaced with deterministic variables in order to reduce
he computational effort. The aim is to find the lowest number of fuzzy
ariables to best account for the six different Fourier series. Therefore,
he FFS with all nine FFPs is compared with the FFS with only the
irst two fuzzy DLFs and fuzzy phase shifts (four FFPs), see Fig. 14.
bviously, the FFS with all nine FFPs has clearly larger support bounds
𝜇 = 0) compared with 4 FFPs. However, the six Fourier series are
lmost completely contained in the support bounds of the FFS with four
FPs. This shows, that four FFPs are sufficient, in order to consider the
ncertainty of the Fourier series for walking pedestrians. The remaining
arameters, up to the fifth harmonic, are modeled as deterministic
ariables.

. Numerical examples

In this section, the results of the fuzzy-stochastic analysis are pre-
ented in two examples. The first example is a simply supported single-
pan beam as simplified static system of a footbridge. The second
xample is a 3D-model of a real world footbridge. Random groups of
edestrians walking over the bridge are modeled with the uncertainty
odels introduced in Section 4. The resulting structural accelerations

re calculated with the three-loop computational model explained in
ection 3. The surrogate models used in this paper are calculated with
he HDMR method with LSQ polynomials. The 𝛼-level optimization
ALO) is realized with the particle swarm optimization algorithm. The
tructural accelerations should not exceed a specific limit value, to
nsure the pedestrians comfort. Therefore, the stochastic parameter of
nterest is chosen as the 95%-quantile value. The output of the fuzzy-
tochastic-analysis is the fuzzy 0.95-quantile value of the maximum
tructural acceleration. In the second example, the comfort level of
he footbridge is assessed by recommendations from the guideline DIN
N 1990 [58] and uncertainty models are defined for the material
arameters (stiffness, density, damping ratio).

.1. Single span beam

The first example is a single span reinforced concrete beam with
span length of 𝐿 = 25 m, one simple and one pinned support. The

ross-section is a T-beam with the geometrical parameters presented in
ig. 16. The web heights ℎ𝑤 used in this example is a design parameter
10

ith ℎ𝑤 = 0.4 m, ℎ𝑤 = 0.5 m, ℎ𝑤 = 0.6 m and ℎ𝑤 = 0.7 m. The
Table 7
First two structural eigenfrequencies and Rayleigh-damping parameters with respect to
the different web heights.
ℎ𝑤 [m] 𝑓1 [Hz] 𝑓2 [Hz] 𝛼 [𝑠−1] 𝛽 [s]

0.4 1.74 6.96 0.2273 4.7587 ⋅ 10−4

0.5 2.03 8.12 0.2655 4.0744 ⋅ 10−4

0.6 2.34 9.36 0.3053 3.5427 ⋅ 10−4

0.7 2.65 10.6 0.3462 3.1246 ⋅ 10−4

material parameters are: Young’s modulus 𝐸 = 34000MN∕m2, mass
density 𝜌 = 2500 kg∕m3 and damping ratio 𝜉 = 0.013 [−]. The FE-model
consists of 10 Bernoulli beam elements and the load is a group of 15
pedestrians walking over the bridge. The time delay 𝛥𝑡 between two
consecutive pedestrians is calculated as random variable according to
Eqs. (18) and (19). The time integration is computed with the implicit
Newmark method [37] with the time increment 𝑑𝑡 = 0.01 s and the
standard Newmark-parameters 𝛾 = 0.5 and 𝛽 = 0.25. The simulation
time 𝑇 [s] is the time needed by the entire pedestrian group to cross
the bridge and depends on the pedestrians walking speeds, which are
variable. Therefore, the simulation time is recalculated as variable
in every simulation. The structural eigenfrequencies 𝑓𝑖 and angular
eigenfrequencies 𝜔𝑖 can be calculated with the analytical solution for
simply supported single span beams

𝑓𝑖 =
𝑖2𝜋
2

√

𝐸𝐼
𝜌𝐴𝐿4

, 𝜔𝑖 = 2𝜋𝑓𝑖 . (28)

The Rayleigh-damping parameters 𝛼 and 𝛽 are calculated with the
damping ratio 𝜉 and the first two angular eigenfrequencies 𝜔1 and 𝜔2

𝛼 = 2𝜉
𝜔1𝜔2

𝜔1 + 𝜔2
, 𝛽 = 2𝜉 1

𝜔1 + 𝜔2
. (29)

The first structural eigenfrequencies and the Rayleigh-damping param-
eters with respect to the different web heights ℎ𝑤 are presented in
Table 7.

Every modeled pedestrian crosses the bridge with the coordinate
𝑥(𝑡) and the load vector 𝐅(𝑡) and has uncertain characteristics like
tep frequency 𝑓𝑠, velocity 𝑣 = 𝑥̇(𝑡) and body weight 𝐺. Two random

pedestrians walking over the beam with the load 𝐹𝑖(𝑡) at the position
𝑥𝑖(𝑡) are represented in Fig. 15. The step frequency of the pedestrians is
modeled with the fp-r variable presented in Section 4.1 and the Fourier
series for the load is calculated with the load parameters presented in
Section 4.2. The surrogate model is generated with the HDMR method
of 2nd order based on the LSQ polynomial approximation of the 5th
degree and a number of 𝑛sim = 7 sample points per dimension with
equidistant sampling. At first, the surrogate models are calculated using
the six Fourier series from Section 4.2 and the fp-r variable for the step
frequency 𝑓 , see Fig. 17. For the first three web heights of ℎ = 0.4m,
𝑠 𝑤
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Fig. 15. Two pedestrians walking with the vertical loads 𝐹𝑖(𝑡) at the coordinate 𝑥𝑖(𝑡)
n a footbridge with the span length 𝐿, which is simplified as a simply supported
ingle-span beam.

Fig. 16. T-beam with flange width 𝑏𝑓 , flange height ℎ𝑓 , web width 𝑏𝑤 and web heights
ℎ𝑤 from ℎ𝑤 = 0.4 m to ℎ𝑤 = 0.7 m.

𝑤 = 0.5m and ℎ𝑤 = 0.6m, the first structural eigenfrequencies 𝑓1
re in the range of the fuzzy mean value of the step frequency 𝐸̃[𝑓𝑠],
hich leads to strong resonance effects. This is visible in the surrogate
odels, where the global maximum is located at 𝐸[𝑓𝑠] = 𝑓1 and the

smallest standard deviation 𝜎𝑓𝑠 = 0.08Hz. For the fourth web height
of ℎ𝑤 = 0.7m, the structural eigenfrequency is out of the range of
𝐸̃[𝑓𝑠]. This means that the strongest resonance is achieved with the
highest mean value and standard deviation, which is also visible in the
global maximum of the surrogate model of ℎ𝑤 = 0.7m. This confirms
he importance of resonance effects and shows, that the choice of an
ppropriate variable for the step frequency has a relevant influence on
he structural accelerations.

The 𝛼-Level optimization yields the fuzzy CDF of the maximum ac-
eleration. As an example, the fuzzy CDF for the maximum acceleration
or a web height of ℎ = 0.7m is represented in Fig. 18. In this figure it

is shown, how the output variable, which is the fuzzy 95%-quantile,
is extracted from the fuzzy CDF at the coordinate 𝐹 (𝑎max) = 0.95.
This output variable is compared with the output from the FFS with
four FFPs and with nine FFPs in Fig. 19. The output obtained by the
six Fourier series, represented in different colors in Fig. 19 (left), are
considered as reference solution for the FFS. This means, that the fuzzy
output obtained by the FFS, should approximate the union of the fuzzy
outputs obtained by the six Fourier series. With two inputs for the fp-
r variable of the step frequency 𝑓𝑠 and nine fuzzy variables for the
fuzzy-Fourier series (FFS), the total number of fuzzy input variables
is 𝑀 = 11. With that, the total number of sample points 𝑁sim is
calculated to 𝑁sim = 2047 with Eq. (15). The MCS is realized with
5000 samples on every of the 2047 sample points, leading to a total of
2047 ⋅ 5000 = 10235000 realizations of the deterministic solution. With
four FFPs and a total of 𝑀 = 6 fuzzy input variables, the total number
of sample points reduces to 𝑁sim = 577, which is a reduction factor
of approximately 3.55. In this example, both the fuzzy outputs and the
surrogate models obtained by the six Fourier series are very similar in
size and shape. Only for ℎ𝑤 = 0.4m, the six results are quite different.
In particular, the result obtained by the Fourier series according to
11

h

Table 8
Comfort levels for vertical acceleration according to [58].
Comfort levels 𝑎lim,vertical Perceived vibrations

[m/s2]

CL3 ≤ 0.5 Not noticeable
CL2 ≤ 1.0 Slightly noticeable
CL1 ≤ 2.5 Strongly noticeable
CL0 > 2.5 Not acceptable

SYNPEX is the only one with a distinctive form, that sets it apart from
the others. This shows, that the uncertainty in the Fourier series can
be revealed more or less noticeable in the results, depending on the
analyzed structure.

The results show, that the two FFS versions (4 FFPs and 9 FFPs)
are about the same on the highest 𝛼-level (𝜇 = 1). However, the right
bound of the outputs with nine FFPs, especially in the examples with
ℎ𝑤 = 0.5m and ℎ𝑤 = 0.6m, clearly exceed the reference solutions on
he bottom alpha-level, while the outputs with four FFPs are closer to
he reference solutions. Considering both the left and right bounds, the
utputs with nine FFPs are much wider than the reference solution
n comparison to those with four FFPs. It is clear, that more fuzzy
nput variables lead to a wider output. The results show that the FFS
ith nine FFPs is not appropriate to realistically replace the six Fourier

eries. In summary, the version with four FFPs, not only reduces the
omputational effort significantly, but also leads to a better approxi-
ation of the six Fourier series, compared to the version with all nine

FPs. Therefore, the usage of the version with all nine FFPs is not
ecommended.

For the assessment of vibrations in the limit state of serviceability,
he standard DIN EN 1990 [58] suggests comfort levels (CL) defined by
imit values for the structural accelerations, given in Table 8. Because
he output variable is fuzzy, it can belong to more than one CL. In order
o assess the structure within CLs, the output membership function can
e divided in partial areas using the comfort limits.

The partial areas in the CLs are colored green (CL3), yellow (CL2)
nd red (CL1). The output with four FFPs and the web heights of
𝑤 = 0.4m and ℎ𝑤 = 0.7m are divided in CLs in Fig. 20. Another
ossible assessment method is the centroid of the membership function,
lso shown in Fig. 20. This is referred to as ‘‘defuzzyfication’’ because
t reduces the fuzzy output to a deterministic value. This can be useful
hen comparing the quantity of interest with other deterministic values

uch as, e.g., the comfort limits. It is also possible to combine both
ssessment methods, considering the centroid and the partial areas. A
ossible request in footbridge design could be the elimination of the
ed area (CL1) and the centroid to be in the green area (CL3). In this
ase, the web height of ℎ𝑤 = 0.4m is not satisfying, as the centroid
s in the yellow area (CL2) and there is a notable red area (CL1). A
atisfying solution would be the web height of ℎ𝑤 = 0.7m as there is
o red area and the centroid is in the green area (CL3). In the described
cenario, the bridge with the web height of ℎ𝑤 = 0.7m represents the
ptimal solution out of the four presented examples. In general, massive
tructures are more resistant to vibrations, but at the same time are
ore expensive in material. Therefore, the optimization of a specific
esign parameter (e.g. web height ℎ𝑤) while considering the objective
f material savings, is an optimization-problem with contrary goals. In
rder to systematically find the optimal structure, the presented model
ould be improved in future works, through the implementation of an
ptimization algorithm with polymorphic uncertainty.

.2. 3D-model of a real footbridge

The second example is a 3D FE-model of a real-world bridge, located
n Wurmberg (Germany), see Fig. 21. The bridge has a total span length
f 𝐿 = 50m and a cross-section width of 𝑏 = 2.5m. The cross-section

eight ℎ is variable over the longitudinal axis because the bridge is
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Fig. 17. Surrogate models obtained by the six Fourier series with four different web heights ℎ𝑤 = 0.4 − 0.7m.
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Fig. 18. Fuzzy CDF with cutting surface at 𝐹 = 0.95 for the maximal acceleration of
the beam with a web height of ℎ = 0.7m with the Fourier series according to ISO
10137 [8].

curved with the radius of curvature of 𝑅 = 250m and the opening
angle of 𝜃 = 5.74◦. The maximum height is located in the middle of
the bridge with ℎmax = 2.20m and the minimum height is located at
the edges with ℎmin = 0.667m. The bridge is made of a slightly curved
concrete shell with a thickness of 𝑡 = 0.20m and a width of 𝑏 = 2.5m.
The underlying steel structure is made of round and hollow beams,
divided into longitudinal and diagonal beams. The three longitudinal
beams, one larger main beam and two upper beams, extend across the
entire span length. The diagonal beams are connected with the upper
longitudinal beams at the distance of 0.71m from the axis of symmetry
12

l

and with the underlying main beam in a ‘‘V-shape’’. The connections
are designed as rigid in bending with welded joints. The main beam has
a diameter of 𝐷1 = 0.367m and a thickness of 𝑡1 = 0.039m. The two
upper beams have the same cross-sectional dimensions as the diagonal
beams: 𝐷2 = 0.2m and 𝑡2 = 0.02m. The typical material parameters
for the Young’s modulus 𝐸 and the density 𝜌 of concrete and steel and
the damping ratio 𝜉 for composites are: 𝐸𝑐 = 34000 [MN∕m2], 𝜌𝑐 =
2.5 [t∕m3], 𝐸𝑠 = 210000 [MN∕m2], 𝜌𝑠 = 7.85 [t∕m3] and 𝜉 = 0.006 [−].

The bridge is modeled in FEAP [36], using shell elements for the
superstructure and Bernoulli beam elements for the beams. The FE-
model is represented in Fig. 22 and consists of 1119 nodes and 914
elements. The geometrical information is shown in Fig. 23. The cross
section in the middle of the bridge is represented in Fig. 24. For the
numerical implementation of the pedestrian-induced loads, the bridge
surface is discretized into three lanes along which the pedestrians can
walk: the centerline and two sidelines 0.71m away from the center-
line. The lane can be chosen randomly for each pedestrian, which is
accomplished with a uniformly distributed random variable that can
take on natural numbers from one to three: 𝑛lane ∈ {1, 2, 3}. The
iscretization of the bridge surface is shown in Fig. 25 in top view.
n order to produce significant structural accelerations, the pedestrian
roup consists of 40 persons. The time integration is computed with
he implicit Newmark method [37] analogous to the previous example.
he time step is 𝑑𝑡 = 0.1 s, the simulation time of one bridge crossing

s 𝑇 = 120 s and the time delay 𝛥𝑡 between two consecutive pedestrians
s calculated with Eqs. (18) and (19). The numerical implementation
ith FEAP requires the specification of the node, of which the vertical
cceleration amplitude is observed. The highest acceleration is often

ocated in the middle of the bridge, but not necessarily. In order to
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Fig. 19. Fuzzy outputs obtained by the six Fourier series with four different web heights ℎ𝑤 = 0.4 − 0.7m. Comparison with 4 FFPs and 9 FFPs.

Fig. 20. Comfort assessment of the fuzzy outputs with four FFPs for the web height ℎ𝑤 = 0.4m (left) and ℎ𝑤 = 0.7m (right). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 21. Footbridge across the Autobahn A8 at Wurmberg (BW, Germany).
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Fig. 22. FE-model of the footbridge, perspective view.

Fig. 23. Geometric parameters, side view.

Fig. 24. Representation and dimensions of the average cross-section.

Fig. 25. Walking lanes discretization on the bridge surface, top view.

ake a reasonable assumption about the location of the node with
he highest acceleration amplitude, the first three eigenmodes of the
ridge are taken into consideration. They are shown together with the
espective eigenfrequencies in Fig. 26. The first eigenmode is vertical
ith 𝑓1 = 2.98Hz, the second eigenmode is lateral with 𝑓2 = 3.17Hz

and the third eigenmode is torsional with 𝑓3 = 5.84. Considering
the torsional mode, the highest vertical acceleration amplitude of the
bridge is supposed to be located in the middle of the bridge at the outer
edge.
14
Fig. 26. Perspective view of the first three eigenmodes.

The uncertainty model for human-induced vibrations presented so
ar, considers the uncertainties in the parameters of walking pedestri-
ns. The step frequency 𝑓𝑠 is modeled with the same fp-r variable as

in the previous examples. Because of the high computational effort, the
FFS is modeled with only the first DLF as fuzzy function, while the re-
maining FFPs are deterministic variables. For the real-world footbridge,
uncertainty models for material parameters are added to the previous
model. Therefore, the Young’s modulus 𝐸 and the mass-density 𝜌 of
concrete and steel are modeled as a normal distributed random vari-
ables, with the following mean values: 𝐸[𝐸c] = 34000 MN/m2, 𝐸[𝐸s] =
210000 MN/m2, 𝐸[𝜌𝑐 ] = 2.5 t/m3, 𝐸[𝜌𝑠] = 7.85 t/m3. The standard
deviations are 10% of the mean values in the case of the stiffness and
5% in the case of the mass-density, according to [59]. For comfort
assessments of vibrating footbridges in the limit state of serviceability,
the guideline SYNPEX [5] recommends minimum and average val-
ues for damping ratios 𝜉 according to construction materials. In the
case of a steel–concrete composite structure, the recommendations are
𝜉min = 0.3% and 𝜉average = 0.6%. Based on this information, here, the
damping ratio 𝜉 is modeled with the following right triangle as fuzzy
variable: 𝜉 = ⟨0.003 0.006 0.006⟩. The uncertain variables used in this
example are summarized in Table 9. The Rayleigh-damping parameters
𝛼 and 𝛽 are calculated in each simulation with respect to the material
parameters.

The surrogate model is generated with the LSQ method of the 3rd
degree and 𝑛sim = 5 sample points per dimension with equidistant
ampling. With two inputs for the fp-r variable and one input for the
irst DLF of the FFS, the total number of sample points is 𝑁sim = 127.

With 200 MCS samples on every of the 127 sample points, this leads to a
total of 127⋅200 = 25400 realizations of the dynamic structural analysis.
The HDMR method of second order is used to view the cut function
for 𝑎max,0,95(𝐸[𝑓𝑠], 𝜎𝑓𝑠 ) [m/s2], which is represented in Fig. 27 with a
discretization grid of 30 evaluation points per dimension. The global
maximum is at the edge 𝑎max,0,95(𝐸[𝑓𝑠] = 2.35, 𝜎𝑓𝑠 = 0.08) = 1.24 m/s2,
because it has the highest probability to hit the first eigenfrequency
𝑓 = 2.98Hz. The comparison between the two fuzzy outputs, by using
1
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Table 9
Polymorphic uncertainty quantification of the variables used for the pedestrians and the footbridge.
Parameter Uncertainty model Variable

Step frequency 𝑓𝑠 fp-r variable 𝐸̃[𝑓𝑠] = ⟨1.45 1.70 2.05 2.35⟩ 𝜎̃𝑓𝑠 = ⟨0.08 0.11 0.19 0.3⟩

𝐷𝐿𝐹1 Fuzzy function 𝐷𝐿𝐹 1(𝑓𝑠) = ⟨𝐷𝐿𝐹1,min 𝐷𝐿𝐹1,mean 𝐷𝐿𝐹1,max⟩

Damping ratio Fuzzy variable 𝜉 = ⟨0.003 0.006 0.006⟩

Material stiffness 𝐸[𝐸c] = 34000MN∕m2 𝜎𝐸c
= 3400MN∕m2

Normal distributed 𝐸[𝐸s] = 210000MN∕m2 𝜎𝐸s
= 21000MN∕m2

Material density Random variables 𝐸[𝜌𝑐 ] = 2.5 t∕m3 𝜎𝜌c
= 0.25 t∕m3

𝐸[𝜌𝑠] = 7.85 t∕m3 𝜎𝜌s
= 0.785 t∕m3

Female body weight Normal distributed 𝐸[𝐺𝑤] = 67 kg 𝜎𝐺𝑤
= 10 kg

Male body weight Random variables 𝐸[𝐺𝑚] = 80 kg 𝜎𝐺𝑚
= 10 kg

Time delay Poisson distributed 𝛥𝑡 = −(1∕𝜆) ⋅ ln(1 − 𝑟) [s],
between pedestrians Random variable 𝑟 ∈ [0, 1] is a uniformly distributed random variable

Walking lane Random variable 𝑛lane ∈ {1, 2, 3} uniformly distributed
o
e
b
𝑓

Fig. 27. HDMR 2nd order cut function for 𝑎max,0.95(𝐸[𝑓𝑠], 𝜎𝑓𝑠 ) with the fuzzy Fourier
eries (FFS). (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

deterministic damping ratio 𝜉 = 0.006 and the fuzzy damping ratio
̃ = ⟨0.003 0.006 0.006⟩, is shown in Fig. 28. The membership function
btained by fuzzy damping is much wider on the right bound, resulting
n a larger area in CL1. This example shows, that the consideration of
he uncertainty of the damping ratio can have a significant influence
n the structural accelerations. The damping behavior of a structure
s a very complex physical phenomenon and thus cannot be reliably
redicted in the structural design process. Therefore, the damping
atio is a good example whereby the usage of a fuzzy variable is an
ppropriate way to deal with the uncertainty in a structural parameter.
n the context of a real footbridge design process, the desired CL has
o be specified by the stakeholders. If, for example CL2 is desired,
he red area in Fig. 28 has to be minimized. This can be achieved
ith structural measures, e.g. increasing the diameter of the steel-
eams to increase the eigenfrequency to be out of the range for the
tep frequencies of walking pedestrians. The output obtained with a
amping ratio of 𝜉 = 0.006 has a relatively small membership area
n CL1 (red), which can be considered as acceptable. Therefore, an
ncrease in damping, such as the use of a tuned mass damper, is also an
ption to achieve the desired CL for the footbridge. The benefit of using
uzzy variables is, that the CLs can be assessed gradually instead of
eterministically. The membership function states, that the footbridge
an belong to different CLs with different grades of possibility, which
s represented by the size of the area under the membership function.
his opens up new and flexible possibilities for assessment methods in
ridge design. An associated footbridge design process is illustrated in
ig. 29.

. Conclusions

In this paper, the concept of polymorphic uncertainty modeling is
resented on the simulation of human-induced vibrations for the design
15
Fig. 28. Two fuzzy output variables: comparison between deterministic damping ratio
𝜉 and fuzzy damping ratio 𝜉.

f footbridges. The approach focuses on the consideration of both the
pistemic and aleatory uncertainties in the human load parameters,
ased on experimental data from literature sources. The step frequency
𝑠 is modeled with two fuzzy variables: the fuzzy mean value 𝐸̃[𝑓𝑠]

and the fuzzy standard deviation 𝜎̃𝑓𝑠 , leading to an fp-r variable. The
dynamic load amplitude is described with the fuzzy Fourier series (FFS)
with five harmonics. The results show that the uncertainty modeling of
human load and structural parameters, has a significant influence on
the output and thus, on the bridge assessment. The output variable,
which is the fuzzy 95%-quantile value of the maximum structural
acceleration, is classified within comfort levels (CL) from the design
guideline. The bridge can belong to more than one CL with different
grades of possibilities, which is defined by the membership function.

The comfort level is an indicator of how much the vibration is
perceived by humans and at which acceleration they feel uncomfort-
able, which is very dependent of the individual. As every individual
can have a different sensitivity to perceived vibrations, the comfort
level could also be modeled as a fuzzy variable in future works.
The desired CL of the footbridge and the aim of material savings
are contrary objectives, because higher CL needs more material for a
more vibration resistant structure. Thus, the structural design of the
bridge while achieving both objectives, is an optimization problem.
The presented model can be further improved by implementing an
optimization algorithm in future works. In order to achieve higher
efficiency, the presented method could be extended with the probability

density evolution method (PDEM), according to [29].



Engineering Structures 311 (2024) 118070M. Schweizer et al.

C

a
t
c
R
i
K
W

D

c
i

D

Fig. 29. Concept of the footbridge design process.
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