KIT | KIT-Bibliothek | Impressum | Datenschutz

Challenges of COVID-19 Case Forecasting in the US, 2020–2021

Lopez, Velma K.; Cramer, Estee Y.; Pagano, Robert; Drake, John M.; O’Dea, Eamon B.; Adee, Madeline; Ayer, Turgay; Chhatwal, Jagpreet; Dalgic, Ozden O.; Ladd, Mary A.; Linas, Benjamin P.; Mueller, Peter P.; Xiao, Jade; Bracher, Johannes 1; Castro Rivadeneira, Alvaro J.; Gerding, Aaron; Gneiting, Tilmann ORCID iD icon; Huang, Yuxin; Jayawardena, Dasuni; ... mehr

Abstract:

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1–4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000171090
Veröffentlicht am 04.06.2024
Originalveröffentlichung
DOI: 10.1371/journal.pcbi.1011200
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Statistik (STAT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 06.05.2024
Sprache Englisch
Identifikator ISSN: 1553-734X, 1553-7358
KITopen-ID: 1000171090
Erschienen in PLOS Computational Biology
Verlag Public Library of Science (PLoS)
Band 20
Heft 5
Seiten Art.-Nr.: e1011200
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page