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„ Ob mir durch Geistes Kraft und Mund
Nicht manch Geheimnis würde kund;

Dass ich erkenne, was die Welt
Im Innersten zusammenhält. “

Faust — Johann Wolfgang Goethe
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Abstract

Biotechnological innovations have revolutionized the landscape of therapeutics, shifting from
medication based on small, chemical molecules to larger, biological molecules, e.g. protein-
based drugs. Thanks to the enhanced specificity of biological molecules to receptors, effective
treatments could be developed to tackle so far unmet medical needs. Not only the drug
specificity, but the production processes changed since these biopharmaceutical products are
commonly expressed in living host cells and produced in bio-reactors. Along with the product
harvest, these processes are defined as upstream processing (USP). Besides the desired
target molecule, the process liquid contains process- and product related impurities, e.g. cell
metabolites, nucleic acids, host cell proteins (HCPs), or cell culture fluid compounds. This
variety and the amount of impurities need to be depleted in several, consecutive downstream
processing (DSP) steps to purify the product and to ensure the patients’ safety when the
medication is administered. As advances in the USP have led to optimized cell growth
or cell metabolism, and to higher product titers in the cell culture fluids, the production
bottleneck moved from USP to DSP. Today, purification of therapeutics relies mainly on
chromatography as the standard DSP step in the biopharmaceutical industry due to its high
selectivity leading to high purity. Achieving this purity comes with economic challenges
as the resins are expensive, limited in their capacity, and regenerative capability. Still, to
respond to the increased product expression in USP cultivation, new, cost-effective process
alternatives for purification processes need to be considered.

Protein crystallization is an alternative DSP step which has been researched in academia
for protein structure analysis or industry for the production and formulation of insulin. The
self-organization of molecules into a crystal structure is caused by non-covalent interactions
and influenced by solution parameters, e.g. pH or temperature. This process comes with
a high purity and product yield making it suitable for DSP. Recent advances in protein
engineering to improve crystallizability promise a broader application of crystallization
processes in the industry and elevate the potential of protein crystallization as an efficient
purification step. As a second, alternative DSP step, protein precipitation has the potential
to isolate proteins from complex feedstocks in amorphous, unstructured precipitate. Process
design for the mentioned DSP alternatives often includes resource-saving, empirical high-
throughput (HT) screenings, and thus, fast and reliable analytics. These methods can
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PAT for protein crystallization

meet the needs for implementing more process analytical technology (PAT) tools by the
U.S. Food and Drug Administration (FDA). According to the guiding principle quality
by design (QbD), quality should be built into the process design to ensure a high product
quality. PAT supports this superior goal by designing, monitoring and controlling processes
with measurements of critical quality attributes (CQAs), and controlling critical process
parameters (CPPs). For this purpose, academia and industry often employ multi-variate,
non-destructive, spectroscopic sensors since the recorded spectra contain information about
the molecules in the processed fluid on different structural levels, and thus, important CQAs.
To analyze the multi-variate spectra, chemometric analysis applies mathematical or statistical
methods to extract important information and identify patterns in biochemical systems.
Additionally, the development of novel, biological products, e.g. virus-like particles (VLPs),
monoclonal antibodies (mAbs) and their variants, antibody-drug conjugates (ADCs), gene
or cell therapeutics, requires new process workflows, and thus, process design tools tailored
to the new targets. Potential solutions to this issue can involve process design, based on
process knowledge, and the implementation of process monitoring or process control strategies.
As a result, PAT workflows need to be developed bearing the product characteristics in
mind and showing the potential of transferring process knowledge to new modalities. In the
past, PAT development in DSP focused on chromatographic separation while accepting the
disadvantages, e.g. the high costs, the difficult scale-up, or the low volumetric throughput.
However, the implementation of PAT in alternative DSP strategies has received less attention.

Therefore, the objective of this thesis was to develop data-driven PAT for protein crys-
tallization processes which are applicable to various biological products. All analytics were
based on multi-variate, spectroscopic measurements and chemometric analysis. Aiming to
advance PAT for protein crystallization, this thesis presents (I) a HT-compatible, analytical
workflow for screenings of model protein mixtures based on regression modeling with calibra-
tion samples, (II) a calibration-free approach for screenings of various modalities in complex
feedstocks, and (III) a comprehensive PAT set-up to monitor crystallization in complex lysate
on a larger scale. Demonstrated in diverse studies, the developed analytics could quantify the
target molecule in heterogeneous, crystalline slurries across different scales from low-volume,
HT screenings to lab-scaled crystallization vessels.

Chapter 1 describes the theoretical fundamentals relevant for this thesis regarding the
production of biopharmaceutical or biotechnological products, spectroscopy, and data analysis.
A special focus is laid on the phase behavior of proteins, protein crystallization for DSP,
the influencing parameters, and forces leading to protein crystals or precipitate. Phase
diagrams as a tool to visualize phase behavior of proteins are introduced. The spectroscopic
techniques used for this thesis – ultraviolet-visible light (UV/Vis) and Raman spectroscopy
– are elaborated in this chapter emphasizing their application to analyze proteins. The
analysis of multi-variate spectra using multi-variate data analysis (MVDA) and its potential
to interpret highly correlated, biochemical data sets are highlighted. Lastly, the advantages
of PAT implementation in biopharmaceutical or biotechnological processes are explained,
and the idea of QbD and its relation to important key parameters, e.g. CQAs and CPPs,
are pointed out. The presented fundamentals are supported with current research in each
section focusing on their application to DSP and protein crystallization.
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Abstract

When developing protein crystallization processes, multiple factors need to be consid-
ered, e.g. pH, temperature, protein concentration, precipitant concentration, which all
influence the crystallization process, process time, yield, and purity. Since resources are
scarce during process development of pharmaceutical products, low-volume, empirical HT
screenings are popular and can test various different conditions. As a consequence, a large
number of samples need to be analyzed, demanding fast, HT-compatible analytics that
can be easily transferred to other crystallization studies. In general, most crystallization
screening analytics focus on the qualitative assessment of the crystal size distribution, or
the characterization of the crystals themselves. When protein crystallization is used for
DSP, the concentration of the target molecule is crucial to calculate the CQAs crystal purity
and yield, but the presence of impurities in DSP screenings complicates individual protein
quantification. Therefore, Chapter 3 presents a rapid, quantitative, and HT-compatible
analytical workflow for HT crystallization screenings of model protein mixtures (lysozyme,
ribonuclease A, and cytochrome C). Here, lysozyme was treated as the target molecule and
the two other model proteins as contaminants. The new analytical tool was based on UV/Vis
spectroscopy and chemometric model development with partial least squares (PLS) regression
models to quantify the proteins individually in the crystallization supernatant. As a proof
of concept, three model proteins were mixed to calculate one PLS model per protein by
regressing the recorded UV/Vis spectra to the reference concentrations from cation-exchange
chromatography (CEX). The model was then applied to the analysis of supernatants in a
protein crystallization screening to find optimal process conditions. The salt concentration,
protein concentration, and pH were screened to show the broad applicability of the method
to changes in the aqueous environment of the examined proteins. Finally, a kinetic study
of two selected screening conditions was performed where samples were analyzed over time
to show the transferability of the generated models to different, experimental set-ups. The
PLS models showed high accuracy during calibration, the crystallization screening, and the
kinetic study. The saturation concentration could be determined as a function of pH and the
precipitant concentration, and the crystal yield and purity could be calculated. The results
were visualized in a phase diagram to support selecting optimal crystallization conditions. In
summary, the data-driven workflow demonstrated that chemometrics paired with low-volume,
HT-compatible UV/Vis spectroscopy can be applied to different crystallization studies to
specifically quantify proteins in mixtures.

New, biological product classes broaden the therapeutic spectrum and demand fast
adaptation of process development workflows to produce the target molecule in high quality
for the patient. One strategy to address this issue is phase behavior based process development
as these alternative DSP steps can keep up the productivity while maintaining costs at a low
level. Since processes based on phase behavior, e.g. protein crystallization or precipitation,
rely on screening studies, screening methods and analytics transferable and applicable to new
modalities need to be developed. When multi-variate sensors are used to record screening data,
large inter-correlated data sets are generated that can be structured in each measurement
dimension, e.g. time, wavelength, and sample number. The higher dimensionality of the data
imposes new analytical challenges and can be utilized when suitable chemometric methods
are applied. The multi-way, chemometric parallel factor analysis (PARAFAC) method can
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handle such multi-dimensional data sets and highly overlapping spectra, while revealing
the contribution of individual species with regard to each dimension to the overall spectra.
Without the need of an extensive calibration procedure, the models can provide process
knowledge about the solution composition or pure component spectra when quantitative
concentration analytics or purified components are missing. The application of PARAFAC
models as a calibration-free analytical tool for phase behavior-based screenings is described
in Chapter 4 and demonstrated with crystallization or precipitation screenings of various
biological products in chemically defined or complex process fluids. Three screenings were
conducted analyzing the liquid phase during crystallization or precipitation, the wash step,
and the redissolution step. In fact, the first case study used the screening data of the study
described in Chapter 3 to show that PARAFAC models can be used to characterize the solution
composition of protein mixtures. The generated model could estimate the concentration and
the spectra of two components – of the target molecule lysozyme and the contaminants as a
mixture. Only species demonstrating different phase behavior and contributing to the protein
spectrum were distinguishable, treating protein clusters expressing similar phase behavior as
one species. Quantitative CEX analytics and pure component spectra of the target molecule
could validate the estimated model outcomes. The second and third case studies served
as real-case scenarios dealing with complex process fluids in a capture step. In the second
case study, mAbs were precipitated in harvest cell culture fluid (HCCF), and the screening
supernatants were analyzed with UV/Vis spectroscopy during different process steps. The
PARAFAC model for the mAb case study could estimate the concentration changes as well
as the pure component spectra of the target molecule mAb and other contaminants in the
analyzed samples. The model was validated with analytical protein A chromatography and
with the pure component spectra of the target. The third case study covered a precipitation
screening of VLPs in Escherichia coli (E.coli) lysate. The VLP case study was conducted
similarly to the mAb case study, but quantitative reference analytics were not available. The
learnings from the first and second case study could be used to generate a third model that
estimated the VLP concentration transferring the preprocessing and model parameters of the
first two case studies. For qualitative validation, sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) proved the presence or absence of the different protein species
in the supernatants. Additionally, the model-estimated pure component spectrum of VLPs
was compared with a spectrum of purified VLPs. Demonstrating the flexible application to
different biological modalities, a multi-way chemometric model called PARAFAC was used to
analyze multi-dimensional UV/Vis spectra in screening studies and to estimate the protein
concentrations and pure component spectra. The data-driven workflow for calibration-free
screening model development contributes to the overall goal of making protein crystallization
or precipitation studies more feasible and easier to apply to capture processes, especially
when multiple contaminants are present in the analyzed fluids.

On a larger scale than HT screenings, PAT sensors can also be implemented to monitor
production processes in real-time. Regarding DSP with chromatography, PAT has been
widely employed for measuring CQAs even in complex liquids. However, new challenges arise
when PAT should be used to monitor crystallization processes in DSP. Solid crystals and the
broad variety of impurities in liquid or potentially precipitated form may be present in the
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heterogeneous, complex process liquid and can influence the employed sensors. Furthermore,
the crystallization process can induce great concentration changes in the supernatant. These
challenges demand an adapted sensor set-up when PAT shall be implemented in protein
crystallization processes. Chapter 5 describes the development of an adapted PAT set-up to
monitor protein crystallization processes in complex process fluids. The set-up consisted of a
Raman probe placed in situ in a lab-scaled crystallization vessel, UV/Vis on-line measurements
with a variable pathlength (VP) flow cell, installed in a cross-flow filtration (CFF) based bypass
to monitor the particle-free supernatant, and additional samples for off-line analysis. The
off-line samples were analyzed with immobilized metal ion affinity chromatography (IMAC),
enzyme-linked immunosorbent assay (ELISA), SDS-PAGE, and microscopic imaging to
evaluate the target molecule concentration, HCP content, protein purity, and the crystals,
respectively. The image analysis provided information about the crystal count and crystal
geometry. Using this analytical set-up, the crystallization of Lactobacillus kefir alcohol
dehydrogenase (LkADH) in clarified E.coli lysate was monitored and characterized. In total,
five experiments were conducted on a 300mL scale varying the lysis protocol, precipitant
concentration, and whether or not the particle-free bypass was implemented. The Raman
probe enabled in-line measurements of the liquid phase in the vessel despite the presence of
solids in the crystalline slurry. The development of a PLS model, based on the preprocessed
Raman spectra and off-line LkADH concentration measurements, enabled monitoring the
concentration of the target molecule in the heterogeneous lysate supernatant in real-time.
The predicted concentration decline in the supernatant indicated that protein crystals were
formed and this concentration decline coincided with the detection of the first crystals in the
microscopic images of the off-line samples. Concentration mismatches between the model
and the reference data were visible at higher target concentration levels when the model
was directly transferred to new experiments. Possible reasons may involve batch-to-batch
variations and the heterogeneous lysate composition. The particle-free bypass facilitated the
implementation of particle-sensitive analytics, here UV/Vis spectroscopy. As a qualitative
purity indication, the UV/Vis absorption data could be used to determine the nucleic acid
to protein ratio. Thanks to the implemented VP flow cell technology, the sensor could adapt
quickly to changes in the UV/Vis absorption values. In the presented study, the CFF-based
loop did not lead to crystal breakage as shown by the image analysis. Furthermore, the
crystallization and redissolution of selected samples reached a 2-log10 reduction in HCP
content in one experiment. As a whole, the objective of this study was the development of
a comprehensive PAT set-up adapted to the challenges of protein crystallization processes
as a capture step. Regardless of the presence of impurities in soluble or precipitated form,
the combination of Raman spectroscopy and chemometrics monitored the specific target
concentration in the complex process fluids in a multi-phase systems.

Based on multi-variate spectra and chemometrics, this thesis provides promising data-
driven analytics tailored to protein crystallization process development for DSP. Even though
various biologics were investigated in process solutions with a varying degree of complexity,
the presented PAT tools could quantify the target molecule in each study and be used across
different scales. These findings let us rethink conventional process design and move towards
a more flexible implementation of protein phase behavior-based processes in DSP.

ix





Zusammenfassung

Biotechnologische Fortschritte haben die Verwendung von therapeutischen Medikamenten
grundlegend verändert. Zuvor beruhten Medikamente auf kleinen, chemischen Molekülen,
nun sind größere, biologische, proteinbasierte Medikamente in den Vordergrund gerückt.
Biologische Moleküle weisen eine verbesserte Rezeptor-Spezifität auf, sodass wirksame Medi-
kamente gegen zuvor schlecht behandelbare Krankheiten entwickelt werden konnten. Dies
wirkt sich auch auf die Produktionsprozesse aus, da biopharmazeutische Produkte in lebenden
Wirtszellen exprimiert und in Bioreaktoren im größeren Maßstab hergestellt werden. Dieser
Prozess wird als Upstream-Prozessierung (USP) bezeichnet. Während der Produktion enthal-
ten die Prozesslösung neben dem gewünschten Zielmolekül verschiedene Verunreinigungen,
wie z.B. Zellmetabolite, Nukleinsäuren, Wirtszellproteine (host cell proteins, HCPs) und
Bestandteile des Zellkulturmediums. Diese müssen in der Downstream-Prozessierung (DSP)
entfernt werden, um eine hohe Reinheit des Produktes und die Patientensicherheit zu gewähr-
leisten. Fortschritte in der USP erzielten ein optimiertes Zellwachstum oder Zellmetabolismus
sowie höhere Produktausbeuten. Dadurch hat sich der Produktionsengpass von der USP zu
der DSP verschoben. Häufig werden Chromatographieschritte als Standard-DSP-Schritte
in der biopharmazeutischen Industrie gewählt, da diese Schritte höchst selektiv sind und
eine hohe Reinheit erzielen. Diese Schritte haben jedoch wirtschaftliche Nachteile, da die
Chromatographie-Harze teuer sind, die Kapazität und die Fähigkeit die Harze zu regenerieren
begrenzt sind. Um die erhöhte Produktausbeute in der USP zu bewältigen, müssen daher
neue, kostengünstige Alternativen für Aufreinigungsprozesse verwendet werden.

Die Proteinkristallisation ist ein alternativer DSP-Schritt, der sowohl in der akademischen
Forschung zur Analyse von Proteinstrukturen als auch in der Industrie für die Produktion oder
Formulierung von Insulin bereits untersucht wurde. Moleküle ordnen sich wegen der nicht-
kovalenten Wechselwirkungen in einer Kristallstruktur an, wenn geeignete Prozessparameter,
z.B. pH-Wert oder Temperatur in der Prozesslösung eingestellt sind. Gerade die hohe Kris-
tallreinheit und die Produktausbeute machen die Kristallisation zu einem geeigneten Schritt
für die DSP. Zusätzlich bewirken Innovationen im Bereich des Protein-Engineerings eine ver-
besserte Kristallisierbarkeit, wodurch eine breitere Anwendung der Proteinkristallisation als
effizienter Aufreinigungsschritt in der Industrie möglich wäre. Eine weitere DSP-Alternative ist

xi



PAT for protein crystallization

die Proteinfällung, bei der Proteine aus komplexen Prozesslösungen zu amorphem, unstruktu-
riertem Niederschlag aggregieren. Bei der Prozessentwicklung der genannten DSP-Alternativen
werden häufig ressourcenschonende, empirische Hochdurchsatz-Screenings durchgeführt, die
wiederum schnelle und zuverlässige Analytik benötigen. Diese Methoden können genutzt
werden, um Forderungen der US-amerikanischen Behörde Food and Drug Administration
(FDA) nach Prozessanalytischer Technologie (process analytical technology, PAT) in der
pharmazeutischen Produktion zu erfüllen. Laut dem Leitlinie Quality by Design (QbD) muss
Qualität in die Prozessentwicklung integriert werden, um die Produktqualität zu sichern.
Durch die Implementierung von PAT kann ein Prozess mit einer erhöhten Produktqualität
entwickelt, überwacht und kontrolliert werden, indem kritische Qualitätsattribute (critical
quality attributes, CQAs) gemessen und kritische Prozessparameter (critical process parame-
ters, CPPs) gesteuert werden. Hierfür wird in der akademischen oder industriellen Forschung
häufig multivariate, nicht-invasive Spektroskopie verwendet, da die gemessenen Spektren
molekulare und strukturelle Informationen auf unterschiedlichen Ebenen über die Moleküle in
der Prozesslösung enthalten und damit CQAs bestimmen können. In einem weiteren Schritt
werden die multivariaten Spektren mithilfe von chemometrischen Methoden ausgewertet,
um wichtige Informationen zu extrahieren und Muster in den biochemischen Systemen zu
erkennen. Die Entwicklung neuartiger, biologischer Produkte, wie z.B. virusartige Partikel
(virus-like particles, VLPs), monoklonalen Antikörpern (monoclonal antibodies, mAbs) und
seine Varianten, Antikörper-Wirkstoff-Konjugate (antibody-drug conjugates, ADCs), Gen- oder
Zelltherapeutika, erfordert zusätzlich anpassungsfähige, moderne Techniken der Prozessent-
wicklung. Tiefes Prozesswissen und Strategien zur Prozessüberwachung oder Prozessregelung
können sich hier als nützlich erweisen. In Konsequenz müssen PAT-Werkzeuge so entwickelt
werden, dass die Eigenschaften der neuen Medikamentenklasse berücksichtigt werden und im
Idealfall bereits generiertes Prozesswissen auf neue Medikamente übertragen werden kann.
Bisher konzentrierte sich die Entwicklung von PAT trotz der hohen Kosten, der schwierigen
Skalierung oder des geringen, volumetrischen Durchsatzes auf die Chromatographie. PAT für
alternative DSP-Schritte wurde jedoch nicht ausgiebig untersucht.

Daher war es das Ziel dieser Arbeit, neue PAT Analytik für Proteinkristallisationsprozesse
zu entwickeln, die auf verschiedene, biologische Produkte angewendet werden können. Jegliche
Analytik basierte auf multivariater Spektroskopie und Chemometrie. Diese Arbeit beschäftigte
sich mit der Entwicklung von PAT für die Proteinkristallisation in drei Studien: (I) die Ent-
wicklung einer hochdurchsatzfähigen Analytik für Screenings von Modellproteinmischungen
mithilfe von Regressionsmodellierung und Kalibrierungsproben, (II) die Untersuchung eines
kalibrierungsfreien Ansatz für Analytik in Screenings verschiedener, biologischer Produkte in
komplexen Prozesslösungen und (III) der experimentelle PAT-Aufbau zur Überwachung der
Kristallisation in komplexem Lysat im größeren Maßstab. Die verschiedenen Studien zeigten,
dass das Zielmolekül in jeder Studie im Mikro- und Labormaßstab trotz der Komplexität
durch heterogenes, biologisches Material in der Kristallsuspension quantifiziert werden konnte.

In Kapitel 1 werden die für diese Thesis relevanten Grundlagen zur Herstellung von
biopharmazeutischen oder biotechnologischen Produkten, zur Analytik und Sensortechnik
sowie zur Datenauswertung beschrieben. Dabei behandeln die Kapitel detaillierter das Pha-
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senverhalten von Proteinen, die Einflussfaktoren und die Visualisierung in Phasendiagrammen
mit Fokus auf der Proteinkristallisation für DSP. Die im Rahmen dieser Arbeit verwendeten
Spektroskopiearten – die ultraviolett-sichtbares Licht (UV/Vis)- und Raman-Spektroskopie –
werden hinsichtlich ihrer Fähigkeit zur Proteinanalyse erläutert. Techniken der multivaria-
ten Datenanalyse (multi-variate data analysis, MVDA) werden hinsichtlich multivariaten
Spektren in biochemischen Systemen erklärt. Zuletzt werden die Vorteile des Einsatzes von
PAT in biopharmazeutischen oder biotechnologischen Prozessen unter der Verwendung der
beschriebenen Methoden beschrieben. Hierfür wird die Beziehung von PAT zum Konzept QbD,
zu CQAs und CPPs herausgestellt. Aktuelle Forschungsergebnisse sind in jedem Abschnitt
mit Fokus auf ihre Anwendung in DSP und Proteinkristallisation aufgelistet und beschrieben.

Bei der Entwicklung von Proteinkristallisationsprozessen müssen mehrere Faktoren berück-
sichtigt werden, wie z.B. der pH-Wert, Temperatur, Proteinkonzentration, und Konzentration
des Fällungsmittels. Diese einstellbaren Parameter beeinflussen den Kristallisationsprozess
hinsichtlich Prozess- und Produktcharakteristika, z.B. die Kristallisationsdauer, Kristallaus-
beute und -reinheit. Aufgrund der geringen Verfügbarkeit von Produktmaterial während der
Prozessentwicklung werden in der Regel verschiedene Prozessbedingungen in empirischen
Hochdurchsatz-Screenings mit minimalem Produktverbrauch getestet. Infolgedessen fallen
viele, zu analysierende Proben an, die von neuer, schneller und hochdurchsatzfähiger Analytik
profitieren können. Idealerweise lassen sich diese Methoden flexibel auf unterschiedliche
Kristallisationsstudien anwenden. Häufig werden in Kristallisationsstudien die Kristallgrö-
ßenverteilung oder Kristallstrukturcharakteristika qualitativ bestimmt. Wenn die Protein-
kristallisation jedoch als Aufreinigungsschritt verwendet werden soll, ist die Quantifizierung
des Zielmoleküls entscheidend, da damit die CQAs Kristallreinheit und -ausbeute berechnet
werden können. Die Quantifizierung gestaltet sich als schwierig, da die Prozesslösungen im
DSP viele Kontaminanten enthalten. Daher wurde in Kapitel 3 eine schnelle, quantitative
Analytik für Hochdurchsatz-Kristallisationsscreenings von Mischungen von Modellproteinen
(Lysozym, Ribonuklease A und Cytochrom C) entwickelt. Hierbei wurde Lysozym als Ziel-
molekül behandelt und die beiden anderen Modellproteine als Verunreinigungen. Auf Basis
von UV/Vis-Spektroskopie und einem chemometrischen Regressionsmodell der partiellen
kleinsten Quadrate (partial least squares, PLS) sollte die Konzentration jedes Protein in den
untersuchten Kristallisationsüberstand gemessen werden. Pro Protein wurde ein PLS-Modell
erstellt, indem die aufgezeichneten UV/Vis-Spektren und die Referenkonzentrationen aus der
Kationenaustauschchromatographie (cation-exchange chromatography, CEX) von Mischungen
der drei Modellproteine für die Modellkalibrierung verwendet wurden. Im Anschluss wur-
den die Modelle in Screenings mit variierter Salzkonzentration, Proteinkonzentration und
pH-Wert angewendet, um die breite Anwendbarkeit der Methode trotz Unterschieden in der
wässrigen Umgebung der Proteine zu demonstrieren. Schließlich wurden zwei ausgewählte
Screening-Bedingungen in einer kinetischen Studie mit Probenahmen über die Zeit untersucht,
um die Übertragbarkeit der generierten Modell auf weitere Kristallisationsstudien zu zeigen.
Die PLS-Modelle erzielten während der Kalibrierung, des Kristallisationsscreenings und der
kinetischen Studie eine hohe Genauigkeit. In Abhängigkeit des pH-Wertes und der Salzkonzen-
tration konnten die Sättigungskonzentration des Zielproteins und damit die Kristallausbeute
und -reinheit bestimmt werden. Die Visualisierung der Ergebnisse in Phasendiagrammen
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erleichterte die Auswahl optimaler Kristallisationsbedingungen. In diesem Kapitel konnte eine
neu entwickelte, schnelle Hochdurchsatz-Analytik auf Basis von chemometrischen Modellen
und ressourcenschonender UV/Vis-Spektroskopie auf verschiedene Kristallisationsstudien
angewendet werden, um Proteine in Mischungen spezifisch zu quantifizieren.

Die Entwicklung neuer, biologischer Produkte erfordert die schnelle Anpassung von
Abläufen in der Prozessentwicklung, um den Patienten das Zielmolekül in hoher Qualität
bereitzustellen. Prozessentwicklung auf Basis von Phasenverhalten kann eine Lösung darstel-
len, da diese alternativen DSP-Schritte eine hohe Produktivität erzielen können, während
die Kosten niedrig bleiben. Für die Entwicklung solcher Prozessalternativen, wie z.B. die
Proteinkristallisation oder -fällung, werden viele, unterschiedliche Prozessbedingungen ge-
testet. Hochdurchsatz-Screenings und -analytik müssen daher schnell auf neue Molekül-
oder Produktklassen übertragen und angewendet werden. Beim Einsatz von multivariaten
Sensoren werden große, interkorrelierte Datensätze generiert, die in jeder Messdimension,
z.B. Zeit, Wellenlänge und Probennummer, strukturiert werden können. Die erhöhte Di-
mensionalität der Daten erfordert neue Techniken der MVDA. Die parallele Faktoranalyse
(parallel factor analysis, PARAFAC) ist eine solche multi-dimensionale, chemometrische
Methode, die aus stark überlappenden Spektren den Beitrag der einzelnen Spezies zum
Gesamtspektrum hinsichtlich jeder Dimension berechnen kann. Ohne eine umfangreiche
Kalibrierung können die berechneten Modelle Prozesswissen wie die Lösungszusammenset-
zung oder reine Komponentenspektren bereitstellen. Das ist besonders hilfreich, wenn eine
quantitative Konzentrationsanalytik oder Reinlösungen der einzelnen Komponenten nicht
verfügbar sind. Die Anwendung von PARAFAC-Modellen als kalibrierungsfreie Analytik
für Screenings von Phasenverhalten wird in Kapitel 4 beschrieben. In drei Hochdurchsatz-
Screenings wurden verschiedene, biologische Produkte in chemisch definierten oder komplexen
Prozessflüssigkeiten kristallisiert oder gefällt. Hierfür wurden Überstandsproben während
der Kristallisation oder Fällung, den Waschschritten und der Rücklösung spektroskopisch
untersucht. Die erste Studie nutzte die Daten des Kristallisationsscreenings aus Kapitel 3,
um zu zeigen, dass PARAFAC-Modelle die Lösungszusammensetzung von Proteingemischen
bestimmen können. In der ersten Studie konnte das Modell die Überstandskonzentration
und zwei Komponentenspektren - des Zielmoleküls Lysozym und der Verunreinigungen als
Mischung - abschätzen. Es konnten nur Spezies identifiziert werden, die zum Gesamtspek-
trum beitrugen und unterschiedliches Phasenverhalten aufwiesen. Spezies mit ähnlichem
Phasenverhalten wurden als ein Proteincluster, bzw. als eine Spezies im Modell, behandelt.
Quantitative CEX-Analytik und Reinspektren der Ausgangsproteine konnten zur Modellva-
lidierung verwendet werden. Die zweite und dritte Studie stellten realistische Szenarien in
der Prozessentwicklung dar, da Zielmoleküle aus einer komplexen Prozesslösung aufgereinigt
werden sollten. In der zweiten Studie wurden mAbs in Zellkulturüberstand (harvest cell
culture fluid, HCCF) gefällt und Überstände von verschiedenen Prozessschritten während
des Screenings wurden UV/Vis-spektroskopisch analysiert. Das erstellte PARAFAC-Modell
konnte das Reinspektrum des mAb sowie die Konzentrationsänderungen des Zielmoleküls
und anderer Kontaminanten in den Überstandsproben abschätzen. Im Anschluss wurde das
Modell mit analytischer Protein-A-Chromatographie validiert. Die dritte Studie untersuchte
die Fällung von VLPs in Escherichia coli (E.coli) Lysat. Die VLP-Studie wurde experimentell
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analog zur mAb-Studie durchgeführt, aber eine quantitative Referenzanalytik für die Konzen-
trationsbestimmung des Zielmoleküls stand nicht zur Verfügung. Die Erkenntnisse aus der
ersten und zweiten Fallstudie in Bezug auf die Datenvorbereitung und Modellparameter konn-
ten verwendet werden, um ein drittes VLP-Modell zu berechnen, das die VLP-Konzentration
in den analysierten Überstandslösungen abschätzen konnte. Der qualitative Nachweis erfolgte
mit Natriumdodecylsulfat-Polyacrylamidgel-Elektrophorese (SDS-PAGE), um anzuzeigen,
ob Proteinspezies in den Überständen vorlagen. Zusätzlich konnte das VLP-Reinspektrum
des Modells mit dem Spektrum einer aufgereinigten VLP-Probe verglichen werden. Multi-
dimensionale PARAFAC-Modelle konnten flexibel auf multi-dimensionale UV/Vis-Spektren
angewendet werden, um die jeweilige Proteinkonzentration und die Reinspektren abzuschätzen
und um damit das Phasenverhalten von verschiedenen, biologischen Produkten zu untersu-
chen. Die datengetriebene Entwicklung von kalibrierungsfreien Modellen trägt dazu bei, dass
alternative DSP-Schritte in Hochdurchsatz-Screenings von Proteinkristallisation und -fällung
besser entwickelt werden können, insbesondere wenn viele Kontaminanten in komplexen
Lösungen vorhanden sind.

In größeren Maßstäben können PAT-Sensoren in Produktionsprozesse eingebaut werden,
um die Produktion und Produktqualität in Echtzeit zu überwachen. Für Chromatographie
in der DSP ist der Einsatz von PAT weit verbreitet, um CQAs in komplexen Flüssigkeiten
zu messen. Wenn Kristallisationsprozesse überwacht werden sollen, steht PAT aufgrund der
Vielzahl an Störgrößen vor neuen Herausforderungen. Feste Kristalle, Kontaminanten in
flüssiger oder potentiell ausgefällter Form und die heterogene, komplexe Prozesssuspension
können die PAT-Sensoren beeinflussen. Zusätzlich können während der Kristallisation große
Konzentrationsunterschiede in der Flüssigphase auftreten. Daher muss ein PAT-Sensoraufbau
spezifisch auf die Anforderungen in Proteinkristallisationsprozessen in der DSP angepasst
werden. Kapitel 5 beschreibt die Entwicklung eines solchen, angepassten PAT-Sensoraufbaus
zur Überwachung von Proteinkristallisationsprozessen in komplexen Prozessflüssigkeiten
im Labormaßstab. Der Aufbau bestand aus einer in situ Raman-Sonde im Kristallisati-
onsgefäß, UV/Vis-On-line-Messungen mit einer Durchflusszelle mit variabler Pfadlängen-
Technologie (variable pathlength, VP) in einem partikelfreien Bypass – ermöglicht durch
einen Querstromfiltration-Aufbau (cross-flow filtration, CFF) – und zusätzlicher Analyse
von Off-line-Proben. Letzteres wurde mit analytischer, immobilisierter Metallionenaffinitäts-
chromatographie (immobilized metal ion affinity chromatography, IMAC), enzyme-linked
immunosorbent assay (ELISA), SDS-PAGE und Fotomikroskopie untersucht, um jeweils die
Konzentration des Zielmoleküls, den HCP-Gehalt, die Proteinreinheit und die Kristalle zu
bewerten. Die Bildanalyse lieferte Informationen über die Kristallanzahl und Kristallgeo-
metrie. Mit dem beschriebenen Aufbau an Analytik wurde die Proteinkristallisation von
Lactobacillus kefir Alkoholdehydrogenase (LkADH) in geklärtem E.coli-Lysat überwacht und
charakterisiert. Im 300 mL Maßstab wurden fünf Experimente durchgeführt, die sich in der
Lyse-Prozedur, der Präzipitant-Konzentration und der Implementierung des partikelfreien By-
passes unterschieden. Die Raman-Sonde konnte trotz des Feststoffanteils in einer kristallinen
Suspension In-line-Messungen der Flüssigphase durchführen. Auf Basis der vorverarbeite-
ten Raman-Spektren und Off-line-Konzentrationsmessungen des Proteins LkADH konnte
ein PLS-Modell entwickelt werden und die Konzentration des Zielmoleküls im heterogenen
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Lysatüberstand in Echtzeit überwacht werden. Die Abnahme der vorhergesagten Überstands-
konzentration deutete darauf hin, dass sich Proteinkristalle gebildet hatten. Die Auswertung
der mikroskopischen Bilder der Off-line Proben bestätigte die Bildung von Proteinkristallen.
Konzentrationsunterschiede zwischen dem Modell und den Referenzdaten waren bei erhöhter
Zielkonzentration sichtbar, wenn das Modell direkt auf neue Experimente übertragen wurde.
Mögliche Ursachen könnten Batch-to-Batch-Variationen und die durch die Lyse bedingt hete-
rogene Zusammensetzung der Prozessflüssigkeit sein. Dank des partikelfreien Bypasses konnte
auch partikelsensitve Analytik, wie z.B. die UV/Vis-Spektroskopie, angewendet werden. Die
gemessene UV/Vis-Absorption gab qualitativ Aufschluss zum Nukleinsäure-Protein-Verhältnis
und damit zur Reinheit. Die Flusszellentechnologie der VP reagierte schnell auf Veränderun-
gen der Absorptionswerte, die in einem Kristallisationsprozess auftreten können. Zusätzlich
konnte die Bildanalyse zur Kristallgeometrie zeigen, dass der CFF basierte Bypass keinen Kris-
tallbruch verursachte. Darüber hinaus wurde in der Kristallisations- und Rücklösungsanalyse
gezeigt, dass ein Experiment eine 2-log10-Reduktion des HCP-Gehaltes erreichte. Ziel dieser
Studie war die Entwicklung eines umfassenden PAT-Aufbaus mit unterschiedlichen Sensoren,
angepasst an einen Proteinkristallisationsschritt in der DSP. Trotz gelöster oder ausgefällter
Verunreinigungen konnte die Kombination aus Raman-Spektroskopie und Chemometrie die
Konzentration des Zielmoleküls in einer komplexen Prozesssuspension mit mehreren Phasen
bestimmen.

Auf Basis von multivariaten Spektren und Chemometrie bietet die vorgelegte Thesis
daher vielversprechende, datengetriebene Analytik, angepasst an die Prozessentwicklung für
Proteinkristallisation in der DSP. Auch wenn unterschiedliche, biologischen Produkte in Pro-
zesslösungen mit variierendem Komplexitätsgrad untersucht wurden, konnten die entwickelten
PAT-Methoden das Zielmolekül in jeder Studie quantifizieren und über mehrere Maßstäbe
hinweg eingesetzt werden. Die Fortschritte regen dazu an, die etablierte Prozessentwicklung
für biopharmazeutische Produkte neuzugestalten und ermöglichen eine flexiblere Entwicklung
von DSP, basierend auf dem Phasenverhalten von Proteinen.
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1
Introduction

Biotechnological and biopharmaceutical products have caused a substantial hype in the
modern industry and healthcare system as they offer innovative solutions to existing chal-
lenges. Biopharmaceutical therapeutics cover, e.g. cell therapeutics, gen therapeutics, mAbs,
recombinant proteins, and VLPs. Applied in medical therapies, they can pave the way
to personalized medical approaches with higher efficacy and lower toxicity compared to
traditional pharmaceuticals resulting in a better drug compatibility for patients. Beyond
healthcare, biotechnological products, in detail enzymes, find multiple applications in diverse
industries, e.g. food and beverage, agriculture or bioenergy. As an alternative to traditional
chemical production methods, biotechnological processes can save resources, and thus, help
to minimize the industrial, ecological footprint.

Advancements in biotechnological USP, e.g. cell line or media optimization, greater
process understanding and process control, and the usage of single-use reactors, have enhanced
the protein expression in cellular systems. However, this progress intensified the demands
for increased productivity in DSP regarding costs and process output. In this context,
complementary options to conventional chromatography-based purification methods need to
be explored resulting in research focused on alternative techniques, e.g. protein crystallization
or protein precipitation processes, in recent decades (see Figure 1.1).

Simultaneously, regulatory authorities have strongly encouraged to introduce PAT in
production processes to ensure a high product quality and patients’ safety. To meet these
requirements, process analyzers are often coupled with multi-variate data analysis to build
model-supported analytics for real-time monitoring of CQAs. The product concentration in a
heterogeneous, complex solution is a CQA and has often been described for chromatography-
based processes combining spectroscopy and chemometrics whereas PAT for protein crystal-
lization focused mainly on systems of less complexity using pure protein solutions or solely
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Figure 1.1 Number of publications in the PubMed database [1] in the keyword
search with protein crystallization and protein precipitation, or protein chemometrics.
The PubMed database selectively lists publications from the fields of biotechnology,
biomedicine, bioinformatics and related disciplines. The blue and black circles represent
the results of the keyword search with the keywords protein crystallization and protein
precipitation, or protein, spectroscopy, chemometrics, respectively.

model proteins. Furthermore, low-volume, HT screenings and HT analytics as a modern
methodologies for empirical process development have provided an efficient platform to
investigate numerous conditions and identify optimal biotechnological process sweet spots for
protein expression and purification. Therefore, merging HT methodologies, spectroscopy, and
real-time process analyzers with chemometrics has the potential to advance PAT for phase
behavior based process development of proteins at different scales.

The following sections provide a basic, theoretical understanding of protein phase behavior
in Section 1.1, of spectroscopic methods in Section 1.2, of MVDA in Section 1.3, and PAT in
Section 1.4.

1.1 Protein phase behavior and its influencing factors
Knowledge of protein phase behavior is fundamental in biotechnological process development
as the physical states and the phase transitions, that the proteins potentially undergo, directly
affect USP and DSP, formulation, protein solubility and stability, and thus, the product
quality. As dynamic molecules, proteins can exist or co-exist in different phases in solution,
as aggregates or crystalline states [2]. The physical state of the molecule and the interplay of
two phase behavior influencing factors can be visualized in a phase diagram, explained in
more detail in Section 1.1.3 and exemplified in Figure 1.3. Divided by the solubility line [2],
the protein containing solution can either be stable or supersaturated leading to unordered
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aggregation, i.e. amorphous precipitation, or structured protein crystallization. The protein
phase behavior is influenced by multiple parameters, namely the protein properties (size,
shape, hydrophobicity etc.) [3], pH [4, 5], temperature [6–8], ionic strength [9], protein
concentration [5, 9–11], precipitant and additives concentration [5, 11, 12], agitation [13, 14]
and the presence of contaminants [15–17].

The parameters within the scope of this thesis are discussed in more detail in the next
Section 1.1.1 since they are required for the theoretical understanding of the presented thesis.
The differences between the mechanism and structure between protein crystals and protein
precipitates are outlined in Section 1.1.2. In Section 1.1.3 the visualization of phase behavior
in protein phase diagrams is summarized.

1.1.1 Influencing factors on protein phase behavior
To understand the complex interplay of various influences on protein crystallization, the
individual parameters are discussed stressing the attractive, molecular forces leading to
crystal nucleation and growth.

pH: The pH greatly impacts protein phase behavior as this value determines the charge
of each amino acid residue in a protein and the resulting charge distribution on the protein
surface. A protein specific characteristic is the pH, at which the net charge of the protein
is neutral, and it is referred to as the isoelectric point (pI). At this value the inter-protein
repulsion is the lowest caused by equally charged molecules leading to the lowest solubility
[18, 19]. Further away from the pI, long-range electrostatic forces prevent attractive forces
increasing the protein solubility and stabilizing the molecule [20, cit. on p. 7, 140]. At low
salt concentration, the influence of the pH is stronger whereas at elevated salt concentrations
the molecule is completely shielded by ions and specific salt effects become more apparent
[19].

Inorganic salts: The dissociation of inorganic salts into their respective ions affects
the electrostatic interactions between the proteins due to ionic shielding of the protein.
The impact of specific ions, namely the Hofmeister series, was first described by Franz
Hofmeister [21]. At low salt concentrations, a stabilizing ”salting-in” effect is evident. At
higher salt concentration, the protein demonstrates quite different phase behavior as the
protein undergoes exclusion from the solvent and a destabilizing ”salting-out” effect becomes
apparent. The order of the ions was determined empirically [22, 23] and can be related to
their ability to introduce inter-protein attractive forces. Depending on the position of the
ion in the Hofmeister series, specific ions can be classified as kosmotropic ions strengthening
hydrophobic interactions and stabilizing the tertiary protein structure, or as chaotropic ions
preventing protein aggregation by weakening the hydrophobic protein core and potentially
leading to protein unfolding. Even though, the effect of the Hofmeister series has been
researched extensively, the mechanism is not completely understood.

Polymers: As precipitants or additives, polymers, mostly polyethylene glycol (PEG),
are employed to induce certain phase transitions caused by the volume exclusion effect [24, 25].
As the addition of the polymer lowers the available solvent space for the proteins, proteins
are locally isolated from the surrounding media and the increased, attractive protein-protein
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interactions may result in protein aggregation or phase transition. This leads to mild, native
phase transition which means that the protein structure is not harmed.

Concentration of the protein and precipitant: With increasing protein con-
centration, the distance between the protein molecules decreases and short-range protein
interactions, namely van der Waals and hydrophobic interactions become more significant
[20]. When the concentration surpasses the saturation concentration, phase transitions may
take place and precipitate or crystals are formed [2, 26].

Presence of contaminants: Contaminants have shown to influence the protein phase
behavior as they affect the solubility [15, 16, 27], crystal formation or the likelihood for
aggregation. Especially, crystal formation is prone to contaminants as these molecules can
compete with the target protein for available nucleation sites on the crystal impeding or
slowing down nucleation [16] or growth [15]. Furthermore, molecules with a similar molecular
structure may induce protein-protein interactions leading to undesired aggregation or may be
built into a crystal detrimental to the crystal purity.

1.1.2 Protein crystallization and precipitation
Protein crystallization and protein precipitation differ in their morphology, structure and
mechanism. Protein crystals are well-ordered structures which are commonly used for detailed
structure analysis on a molecular level, for formulation, or for DSP purposes more recently.

For the formation of protein crystals, a critical number of molecules need to accumulate
and form a crystal nucleus of a specific, critical size. This process is termed crystal nucleation
and is a prerequisite for the crystal growth phase when more molecules connect to the crystal
surface in a structured order. The crystal nucleation can either happen with only one specific
molecule as homogeneous nucleation or in interplay with external molecules as heterogeneous
nucleation [26, 28, 29]. The thermodynamic basis behind protein crystallization can be
described through Gibbs free energy ∆G for the formation of a spherical nucleus of the radius
r when the surface term ∆Gsurface exceeds the volume term ∆Gvolume in Equation 1.1 [29].

∆G(r) = ∆Gsurface −∆Gvolume = 4π · r2 · γ − 4

3
π · r3kB · T◦C

v
· ln(S) (1.1)

The interfacial free energy between the crystal and the bulk solution is described with
γ, the Boltzmann constant with kB, the temperature with T◦C, the volume occupied by one
molecule with v, and the supersaturation with S. If the critical nucleus size reaches the
radius at the maximum ∆Gnucleation, nucleation is favored and crystals can grow. This process
is schematically illustrated in Figure 1.2. The factors of Equation 1.1 influence the critical
nucleus size, can be manipulated to influence the crystallization process, and are usually
screened to find optimal process parameters. Depending on the level of supersaturation,
either crystals at lower supersaturation or precipitate at higher supersaturation occur [26,
cit. on p. 183]. For the latter, rcrit falls under the size of the smallest structural unit
allowing amorphous precipitation instead of ordered crystallization [26, cit. on p. 182]. The
mechanism of disordered, amorphous precipitation is illustrated in Figure 1.2 as well [26].
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Figure 1.2 Schematic representation of Gibbs free energy for nucleation (adapted from
[26, 28, 29]). The dashed, gray lines represent the contribution of the surface and
volume term to Gibbs free energy ∆G(r) which is visualized with the solid, blue line
(see Equation 1.1). At the critical aggregate size rcrit, the ∆Gnucleation is overcome.
Only then, a stable crystal nucleus is formed and crystal growth can occur. Amorphous
precipitate does not require a critical aggregate size, as illustrated with a dotted, black
line.

Since the mechanism behind protein precipitation is not unraveled completely [24], empirical
screenings with HT methods are popular.

1.1.3 Phase diagrams
To develop efficient phase behavior based processes, phase diagrams can visualize protein
phase behavior, and determine the solubility line. They provide insights into the protein’s
propensity to stay in solution, crystallize, or precipitate, and thus, facilitate finding optimal
experimental conditions for a specific molecule. A schematic representation of a phase diagram
with varied protein and precipitant concentration is depicted in Figure 1.3. Phase transition
can only occur at protein concentrations above the solubility line within the supersaturation
zone which can further be divided into the precipitation zone, labile zone and metastable zone.
In the precipitation zone, the high supersaturation level results in disordered, amorphous
precipitate due to high attractive forces. The labile zone promotes crystal nucleation and
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Figure 1.3 Schematic representation of protein phase behavior in a phase diagram
(adapted from [2, 30]). Protein phase behavior can be visualized in a phase diagram with
the protein concentration cprotein and precipitant concentration cprecipitant as influencing
factors on both axes. The solubility line is represented by the solid line and separates
the phase diagram into a stable, undersaturated zone and a supersaturated zone. The
latter can be further divided with the dotted lines into the precipitation zone, the labile
zone and the metastable zone. The precipitation zone produces amorphous precipitate,
whereas in the labile zone crystal nuclei can form and grow. The metastable zone has a
lower degree of supersaturation and allows crystal growth, but not crystal nucleation.

crystal growth whereas only crystal growth occurs in the metastable zone. The undersaturated
zone represents stable solution where the molecules are well shielded from each other.

In short, phase diagrams of biologics serve as essential tools for efficient phase behavior
based process development by visualizing protein phase behavior, and determining solubility
lines. As a basis for scale-up they can provide insights into process sweet spots and have
already been used to scale-up purification processes of biologics [14, 31–34]. For the generation
of phase diagrams, HT methodologies [9, 35, 36] and HT-compatible analytics [37, 38] are
popular as they can save time and resources while increasing the reproducibility [26, cit. on
p. 196].

1.2 Spectroscopic methods
Spectroscopy is a powerful, analytical technique that can capture various chemical, physical or
biological phenomena. Its sensitivity to these characteristics and non-destructive measurement
technique make it especially valuable for real-time monitoring of complex systems, e.g. DSP
of biotechnological products. Spectroscopic measurements are based on absorption, emission,
or light scattering behavior of molecular systems in response to electromagnetic radiation.
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The structural composition, molecular vibration, or the transition of electrons of the sample
can cause the changes in the measured data offering a versatile analytical technique on a
molecular level.

This chapter delves into the theoretical principles and the applications of spectroscopy in
biotechnological processes with a focus on UV/Vis in Section 1.2.1 and Raman spectroscopy
in Section 1.2.2 as they are the key sensors used in this thesis.

1.2.1 UV/Vis spectroscopy
UV/Vis spectroscopy is a common technique in analytical biochemistry and is based on the
interactions of electromagnetic radiation with the electronic structures of a molecule [39]. The
measurement principle relies on absorption of light in the ranges of ultraviolet light and visible
light over 200 to 380 nm and 380 to 720 nm, respectively [39, 40]. Initially, the energy level of
molecules is at the ground state, but can be elevated to a higher energy level if the incoming
electromagnetic radiation corresponds to the difference between the ground and elevated
excitation state, also known as electronic transition [41, 42]. Depending on the molecule and
its electronic structure, different excitation states can be reached. When exposed to light,
energy-specific spectra are created, visualizing how light of different wavelengths is absorbed,
revealing the electronic transitions caused by the molecule. Chromophores are the reason for
these electronic transitions and are UV/Vis active functional groups on a molecular level [42].
In the case of proteins, the chromophores are generally the amino acids Tryptophan (Try),
Tyrosine (Tyr), and Phenyalanine (Phe) [43], demonstrating strong absorption behavior in
the wavelength range of 255 to 285 nm [44]. However, peptide bonds in the spectral range
over 200 to 230 nm [45, 46], the secondary or tertiary protein structure [46–48], and disulfide
bridges [46] influence the UV/Vis spectrum, but can be neglected if any aromatic residues
are present [46].

The quantitative relation between the measured absorbance Aanalyte and concentration
canalyte of an analyte depends on the path length dpath, wavelength λ specific extinction
coefficient ε, and the initial I0 to measured intensity I and can be described using the law of
Lambert-Beer (see Equation 1.2) [40, 41]. Note that the Lambert-Beer law is valid solely for
solutions with low concentrations of UV/Vis active analytes [41].

Aanalyte(λ) = log(I0
I
) = canalyte · dpath · ε(λ) (1.2)

Throughout various DSP, UV/Vis spectroscopy can offer real-time information about
the concentration and purity of the processed solution containing e.g. different proteins or
nucleic acids. Typically for proteins and nucleic acids, their absorbance maximum lies around
280 nm [44] and 260 nm [49], respectively. Thus, the calculation of the ratio A260 nm/A280 nm
is a measure for the protein-to-nucleic acid ratio and offers the possibility to evaluate samples
regarding their purity. This property has been useful in multiple, biotechnological separation
processes when purity is crucial [34, 50, 51]. When multiple UV/Vis active analytes are
present, e.g. in an intermediate process solution, it is assumed that the absorption of each
analyte can be summed up over the number of analytes and the chromophores do not interact
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strongly. Selective quantification is still possible due to the spectral differences between the
molecules and the application of MVDA (see Section 1.3) [52, 53]. In food, environmental
or pharmaceutical sciences, multiple studies have been conducted combining UV/Vis and
MVDA [54]. For chromatography processes in biopharmaceutical production processes, this
combination has been used successfully to monitor elution profiles of proteins and quantify
the specific elution peaks using Lambert-Beer’s law [55–57], or to determine break-through
curves [58, 59] making it suitable for real-time monitoring and process control. However, the
application of UV/Vis spectroscopy is not only limited to chromatography processes, but has
also been applied in ultrafiltration/diafiltration (UF/DF) processes of e.g. mAbs [60] or VLPs
[61]. Technological advances of UV/Vis spectrophotometers have contributed to a broader
applicability in the field of biotechnology due to VP technology [56, 60, 62] or attenuated
total reflection (ATR) probe technology [63, 64] and promote further PAT development with
UV/Vis sensors. In summary, the listed applications underline that UV/Vis spectroscopy
is a popular, quantitative, and non-destructive sensor flexibly employed in biotechnological
processes of different biological products.

1.2.2 Raman spectroscopy
Raman spectroscopy is a vibrational spectroscopic technique that provides detailed information
about the vibration, rotation, and other low-frequency movements of molecules. Unlike other
spectroscopic methods involving light absorption, e.g. UV/Vis spectroscopy, its measurement
principle is based on light scattering, namely inelastic scattering of monochromatic light of
a laser. This phenomenon can be used to find unique fingerprints of the vibrational and
rotational modes of the molecules in the sample through the analysis of Raman shifts [66]. In
the case of biological samples, C=0 and C–N bonds typical for proteins as well as C–C, C–O
or aromatic side chains, e.g. of tryptophan, tyrosine, and phenylalanine, cause molecular
vibration and contribute to the unique, molecular fingerprint [67, 68].

Most scattered light, i.e. photons, undergo elastic scattering, known as Rayleigh scattering,
maintaining the energy of the incoming photon. Only a small fraction of the photons experience
inelastic scattering (see Figure 1.4) which means that a change in the vibrational mode, and
thus, energy level, occurred. Inelastic scattering can be further divided into Stokes Raman
scattering and Anti-Stokes Raman scattering where a change of the emitted energy of the
photon occurs either to a higher or lower wavenumber, respectively. Due to the Boltzmann
distribution law, the first effect is easier to detect and measure. The described energy shift
can be recorded as the wavenumber shift from the wavenumber of the initial laser. As only
one photon in 1010 photons undergoes inelastic Raman scattering [65], the Raman effect
is difficult to obtain. Advances in the measurement technology [66, 69] have increased the
sensitivity to measure Raman-active molecules, functional groups and secondary structures of
proteins [70] and enabled researchers to use Raman spectroscopy in more complex processes
with multiple overlaying species vibrating in the Raman spectrum.

As Raman spectra are constructed from many, inter-correlated variables and show nonlin-
ear behavior [71], empirical model calibration using MVDA [72] is advised to quantify the
analyte or investigate a sample qualitatively. Real-time in-line monitoring with in-situ Raman
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Figure 1.4 Schematic representation of elastic and inelastic scattering (adapted from
[65]). Different scattering effects of monochromatic light on a sample in a) and their
respective ground and excited energy states in b) are visualized. Variations in the
wavelength λAS, R, S are schematically illustrated in c) and account for the wavenumber
shifts ∆ν. Some light undergoes elastic scattering called Rayleigh scattering (visualized
in black color) and scattered light has the same wavelength as the incident light. The
effect of fluorescence (visualized in purple color) occurs when the energy of the incoming
light matches the molecular, electronic energy level and a photon of a longer wavelength
is emitted during de-excitation. When the incident photons cause molecular vibrations
or oscillations, molecule-specific, inelastic Raman scattering (Visualized in light blue
color) can take place under emission of a photon of a lower wavelength. Photons as
inelastic Anti-Stokes Raman scattering (visualized in dark blue color) can be emitted
with additional energy if the molecule was initially in an excited, vibrational state with
the energy transition Evib prior excitation with the incident light. In reaction to the
monochromatic light, molecules can undergo the different energy transfers caused by
Rayleigh scattering ER, by Stokes Raman scattering ES, or by Anti-Stokes Raman
scattering EAS.

9



PAT for protein crystallization

probes applied in USP has been in the focus in the biotechnological industry [72–76], whereas
fewer, specific case studies have been reported in the last decade using Raman spectroscopy
in later states of the purification process, e.g. during harvest of a continuous mAb cultivation
process [73], chromatography [77, 78], redissolution of an active pharmaceutical ingredi-
ent (API) [64], during freeze-drying [79] or freezing [80] of API or to investigate membrane
fouling [81]. Regarding the crystallization of chemical pharmaceuticals, multiple studies have
been conducted investigating real-time monitoring with in-situ probes [82–86]. In conclusion,
Raman spectroscopy is versatile, valuable and non-destructive sensor in biotechnological
processes and offers molecular fingerprints due to the unique, vibrational movements of the
investigated materials.

1.3 Multi-variate data analysis
MVDA is a statistical approach to design and analyze complex data sets with multiple
variables. It aims to reduce the dimensionality of variables, unravel underlying patterns,
relations, and trends within the data, and visualize the experimental data. By considering and
analyzing multiple variables, MVDA can support the operator to understand the investigated
system thoroughly, design or optimize processes with QbD, and increase reliable process
control of pre-existing production plants. In the field of USP and DSP, MVDA is commonly
applied with in-line or on-line spectroscopic sensors to monitor CQAs in real-time, control
the product quality, or optimize processes [43, 87–89].

MVDA methods can be classified as unsupervised or supervised. Regarding unsupervised
MVDA, no outcome or variable is predefined and the focus is on data exploration, pattern
recognition, and clustering without prior knowledge of the response variable. Contrary,
supervised methods are guided by a response variable during method development, and aim
to predict the outcome or response variable for unknown data.

When biological or chemical data are at hand, MVDA is referred to as chemometrics and
often applied on spectra, chemical data, or experimental designs. In the case of spectroscopic
sensors, data sets can be recorded across different wavelengths, frequencies, or wavenumber,
and capture information on the absorption, emission, or scattering of electromagnetic radiation
by molecules depending on the analyzed sample composition, or structure. As spectra are
strongly correlated, data reduction strategies are advised to extract meaningful insights into
the molecule. One of these strategies is principal component analysis (PCA), which can
condense spectral variance into variables termed principal component (PC). Each of these
PC is built from original variables containing comparable information. When a data set
can be structured in more than two dimensions, new methods are necessary to explore the
data set, e.g. with the multi-way MVDA method named PARAFAC. Specifically in DSP, a
three-dimensional (3D) data set may be generated when spectra are recorded over time and
the data can be structured along the wavelength, absorption, and time. When specific target
variables in DSP need to be predicted on unknown data, PLS regression models are suitable.
These models can monitor processes in real-time when a model was calibrated before.
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The next sections discuss the MVDA techniques with a focus on the application on
spectral data sets. PCA and PARAFAC are both unsupervised and further explained in the
Sections 1.3.1 and 1.3.3. Their core difference lays in the structure of the input data as the
methods PCA and PARAFAC analyze two-dimensional (2D) and 3D data sets, respectively.
The Section 1.3.2 describes the theory behind supervised PLS regression model calculation
regressing 2D data to target variables.

1.3.1 Principal component analysis
PCA is an unsupervised MVDA technique used for exploratory reasons. The dimensionality
of the data is reduced, trends or patterns within the data set can be extracted. Furthermore,
it can be used to represent data in a simpler way, select important variables, or detect outliers
[90, 91]. Originally, it was first used in economics or social sciences, but bears the opportunity
to analyze chemical or biological data. This section focuses on the application of PCA on
spectral data as spectroscopic sensors are often implemented in biotechnological processes.

X = TP> + EX (1.3)

By decomposition of the mean-centered spectra X into linear combinations of the original
data according to Equation 1.3 and minimizing the error matrix EX, the scores matrix T
and the loadings matrix P capture the maximum variance in the spectra [91]. For biological
or chemical applications, the centered spectra X are structured with m wavelength variables
and n measurements. The column number of the scores matrix T denotes the number of
PCs which represent the transformed data into a new coordinate system defined by the PCs.
These PCs are orthogonal to each other meaning that they are uncorrelated to each other and,
in fact, perpendicular in the transformed space. Furthermore, the PCs are ordered by their
corresponding contribution to the variance of the spectral data set. It is advised to focus on the
first few PCs as they are often enough to represent the original spectra and specific PCs can
correlate to biochemical or physical phenomena, e.g. the presence of a new reaction product,
a specific compound, or aggregation [90]. A schematic representation of the decomposition

X EXT

PT

= +
n

m m

n

#PC

#PC

n

m

Figure 1.5 Schematic representation of PCA (adapted from [90]). The centered data
set X is built from n observations and m variables and can be decomposed into the
scores matrix T and loadings matrix P with respect to the error matrix EX. The
number of PC is #PC.
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by PCA is depicted in Figure 1.5. The PCA scores correspond to spectral measurements
projected into the new coordinate system and represent the variance of the measurements
within the data set along the PCs. This means that in a scores plot, measurements located
close to each other are similar within the data set whereas measurements far away from
each other demonstrate opposite effects. The loadings show how each variable, in our case
each wavelength, contributes to the spectral data set variance by representing the correlation
coefficients between the wavelengths and the PCs.

The application of PCA can be limited in biotechnological processes when the data
behaves in a non-linear manner, a large number of outliers distort the results, or important,
biological information are potentially lost due to the dimensionality reduction with too little
PCs. However, PCA found multiple application using mainly optical sensors in USP [87, 92,
93] and DSP [92, 93] for outlier detection, pattern recognition, or classification of observations.
Selected applications of PCA are the evaluation of a microbial fermentation process [94],
mammalian cell cultures [95, 96], spectral similarities in multi-component solutions [97] or
PAT sensor set-ups of crystallization processes [98].

1.3.2 Partial least squares regression
PLS regression (also known as projection to latent structures) is a supervised MVDA technique
designed for the reduction of correlated variables to a few latent variables, for an improved data
interpretation, or for the prediction of one or multiple target variables [99]. In biotechnological
processes, multi-variate spectra are commonly used as input data, and thus, this sections
focuses on the application of PLS regression on spectroscopic data. For PLS model calculation,
a data set with multiple variables X, in our case a spectral data set, is regressed to its
corresponding response variables Y . Analogous to Section 1.3.1, both data sets are structured
with m variables and n observations. PLS models can either be used to classify into groups
or predicting the response variables by reducing the multi-variate spectral data set to a low
number of latent variables which explain the most variation in the spectra. Explaining as much
covariance as possible between the mean-centered spectral data set X and response variable
Y , X is decomposed into T and P , Y is decomposed simultaneously into the scores matrix
U and loadings matrix Q according to Equation 1.3 and 1.4, respectively. Schematically, the
model calculation is illustrated in Figure 1.6.

Y = UQ> + EQ (1.4)

The error matrix EQ describes the residuals from the PLS decomposition of response
variables Y . Different from PCA, scores and loadings are determined to maximize the
covariance between scores matrices T and U . The derived principal components are named
latent variables. Finally, for the response data set Y a regression coefficient matrix Breg with
m rows is determined to fit the Equation 1.5 with respect to the error matrix EY.

Y = XBreg + EY (1.5)
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Figure 1.6 Schematic representation of PLS regression. The centered data set X is
built from n observations and m variables and can be decomposed into the scores
matrix T and loadings matrix P with respect to the error matrix EX. The number
of PC is #PC. The response variable data set Y is built from n observations and
o variables and can be decomposed into the scores matrix U and loadings matrix Q
with respect to the error matrix EY. The number of latent variables is #LV . The
decomposition of X and Y is performed simultaneously and aims to maximize the
covariance between the scores matrices T and U .

Analogous to PCA (see Section 1.3.1), the scores plots visualizes the distribution of
recorded spectra in the space of the new coordinates, and aids clustering or outlier detection
whereas loading plots illustrate the relationship between the variables, i.e. the wavelengths,
and the latent variables. Ideally, the error matrices EX, EY, and EQ contain solely noise
caused by the detector, the experiment itself, or irrelevant, biological or chemical phenomena.

For the implementation of PAT in biotechnological processes, PLS regression models
are commonly used in USP and DSP [92, 93]. In USP, the content of nutrients, APIs, e.g.
mAbs [93, 100], or metabolites could be monitored in fed-batch mammalian cell cultures
[75, 76, 101], or filamentous cultivation systems [102]. In DSP, PLS models found multiple
application in monitoring and potentially controlling mAb conjugation [103] or VLP (dis)-
assembly reactions [61, 104], chromatography [56–59], and UF/DF processes. Furthermore,
crystallization of small, organic compounds or chemical pharmaceuticals in relatively pure
solutions was monitored using PLS and different spectroscopic methods investigating API
content [105, 106] or drug crystallinity [107]. As PLS regression models could be applied in
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multiple steps of a biotechnological production process, they have proven as valuable tools to
predict target variables, and support the goal of monitoring and controlling processes.

1.3.3 Parallel factor analysis
PARAFAC is an unsupervised technique in multi-way MVDA to analyze a multi-dimensional
data set and commonly finds its application in chemometrics or sensory analysis. Thanks to the
decomposition into a sum of rank-one tensors, hidden structures within a multi-dimensional
data set can be unraveled without the necessity of further response variables. Especially with
complex interactions of inter-correlated variables and with noisy data, PARAFAC may be
able to identify underlying patterns when other methods fail. Specifically for the application
in biotechnological processes, spectroscopic sensors are popular as they offer biochemical
information on different, structural levels [43], and thus, are the focus for the following
theoretical description of PARAFAC models within the scope of this thesis.

The multi-way technique PARAFAC can make use of the second-order advantage [108].
This means that a three-way tensor is decomposed into three numerically equally treated
vectors and that, in contrast to PCA, PARAFAC models do not have to be orthogonal. The
PARAFAC model of a three-way tensor X with the three dimensions j, k, l can be described
with Equation 1.6 for each element xj,k,l in X as followed:

xj,k,l =
F∑

f=1

(aj,f · bk,f · cl,f + ej,k,l) (1.6)

For this notation, F is the number of species, ej,k,l is the element of the error tensor E3D.
The variables aj,f , bk,f , cl,f are elements of loading matrices A, B, and C. The PARAFAC
model is found when the sum of squares of the errors ej,k,l is minimized. For an exemplary,
biotechnological application, a spectral tensor could be structured along the dimensions of
the wavelengths, time, and sample number. A three-way PARAFAC model with two species
is visualized in Figure 1.7.

X A=
B

+ =
a1

b1

c1

a2

b2

c2

+ E3D + E3D

Figure 1.7 Schematic representation of a three-way PARAFAC model. The decomposi-
tion of a three-way tensor X along the dimension j, k and l into the loading matrices
A, B, and C with the respective vectors af , bf , and cf for the species f , in this case
two species. The error tensor E3D contains ideally only noise. Each vector product per
species and the matrix product are of the same structure as X.
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The number of components for a PARAFAC model needs to be selected with care as it has
a great affect on the model outcome. To evaluate if the right number of component was chosen
and the model is suitable for the selected data set, the metric core consistency diagnostic
(CORCONDIA) can be used [109]. Compared to residual-based metrics, CORCONDIA
assesses the appropriateness of the multi-way model using the second-order advantage. This
value is less or equal to 100 % with high values indicating a high model appropriateness with
the selected number of components.

Assuming linearity between the variables, PARAFAC models are limited to represent
complex, non-linear biological phenomena. Furthermore, these models are challenging to
interpret requiring additional validation analytics and biological knowledge on the investigated
process. Despite these challenges, PARAFAC models have been employed successfully in the
water industry to characterize e.g. drinking or waste water quality [110, 111], antibodies
for structural protein analysis [112] with fluorescence spectroscopy, or to quantify metal
complex in catalyst research [113], and API in a pharmaceutical formulation [114] with
UV/Vis spectroscopy. In conclusion, PARAFAC as a multi-way MVDA technique offers a
versatile approach to uncover underlying structures in a multi-dimensional data set and has
great potential to be applied in more diverse industries than the mentioned ones.

1.4 Process analytical technology
Since the FDA and European Medicines Agency (EMA) both request the implementation of
PAT in the pharmaceutical industry [43, 115, 116] to monitor, analyze and control CPP and
CQA, a paradigm shift in manufacturing and process control from traditional batch-based
quality control methods towards the usage of real-time PAT has taken place to ensure product
quality and process efficiency. Throughout the entire production from raw material analysis
to the final product quality evaluation [117], more PAT methods are applied. In general,
PAT tools can consist of one or a combination of the following techniques: process analyzers,
data acquisition and MVDA, process control tools and continuous knowledge management
tools [115]. The process analyzers can further be classified as off-line measurements of drawn
samples analyzed further away from the process, at-line measurements of drawn samples
near the process, on-line measurements in a bypass process stream, or in-line measurement
when the process stream is directly measured. Especially the latter is desired as real-time
monitoring allows for immediate process adjustments reducing the likelihood of product
deviations.

With respect to DSP, PAT tools have been developed and discussed, investigating e.g.
harvest steps [73], chromatography of biopharmaceuticals [56, 62, 77, 118, 119], freeze
concentration [80], crystallization processes of small biologics [120, 121] or chemical products
[122], UF/DF processes [60, 104], or formulation [123]. In summary, high product quality and
process efficiency is demanded by the authorities and has increased the research interest in
PAT tools for monitoring or potentially controlling processes throughout the whole production
of biopharmaceuticals. As sensor technologies or MVDA methods continue to develop, PAT
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will be more versatile in the future and crucial to securing productivity and quality in
biopharmaceutical manufacturing.
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2
Thesis outline

2.1 Research proposal
Biopharmaceuticals have revolutionized modern medicine due to their increased specificity
to receptors. As the biopharmaceutical and biotechnological product portfolio is growing
quickly and the high pressure of costs has reached the biopharmaceutical industry, production
processes need to be more flexible and cost-effective while maintaining a high product quality.
In the past, protein crystallization was associated rather with the structural analysis of
protein, but knowledge on the protein phase behavior has proven useful throughout multiple
process steps during recovery, purification, or formulation. Among various techniques for
downstream processing (DSP), phase behavior based processes, namely protein crystallization
or precipitation, have become a cost-effective alternative to traditional, chromatographic
purification resulting in products of high purity and efficacy.

As product quality is crucial for the patient safety, governmental agencies, namely the
U.S. Food and Drug Administration (FDA) or the European Medicines Agency (EMA),
request quality built into the process design by analyzing, monitoring, and controlling the
pharmaceutical production. To comply with these demands, process analytical technology
(PAT) is applied during process design and realized with multi-variate, spectroscopic sensors.
Often the recorded spectra are coupled with data-driven, multi-variate data analysis (MVDA)
methods to monitor the process aiming to adjust the critical process parameters (CPPs),
and thus, control critical quality attributes (CQAs). Information about the molecule or
the process can be derived from supervised and unsupervised MVDA techniques, e.g. the
individual quantification of one species in mixtures of multiple ones. In traditional DSP
development, PAT has been used extensively to design, monitor, and control chromatography.
However, these established tools cannot be directly transferred to protein crystallization
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processes as the presence of crystals and the solid-liquid interfaces impose new challenges
calling for adaptions of sensor set-ups, sampling, and MVDA techniques.

The objective of this thesis is to establish data-driven PAT applicable to various biological
targets to design and monitor protein crystallization processes effectively. MVDA techniques
are applied to interpret the multi-variate spectra and measure CQAs of the target despite the
presence of impurities or solid crystals. This thesis aims to quantify the target specifically in
crystallization processes by developing (I) a quantitative PAT workflow for crystallization
screenings, (II) a calibration-free PAT approach for screenings of various products in complex
feedstocks, and (III) a broad PAT set-up, consisting of multiple in-line, on-line, and off-line
analytics, to monitor protein crystallization in complex lysate on a larger scale. The conducted
studies will involve mixtures of model proteins in chemically defined solutions, recombinant
enzymes, monoclonal antibodies (mAbs), or virus-like particles (VLPs) in complex feedstocks.
Investigations of different phase behavior based processes, in detail protein crystallization or
precipitation, at micro- and lab-scale will further highlight the flexibility of the developed
analytics across different scales.

When processes need to be characterized and optimized, high-throughput (HT) screenings
come in handy as they involve rapid, automatable experiments in small-scale with minimal
material consumption. They can be conducted systematically to test a large number of process
conditions or compounds to increase process understanding, thus, complying with quality by
design (QbD). Often used in biotechnological process development, HT methods help finding
optimal process sweet spots and can be easily transferred to different biological molecules.
Regarding protein crystallization, HT screenings are commonly used to investigate the phase
behavior in pure protein solutions. The established HT analytics in literature primarily
cover qualitative characteristics with automated image analysis or protein structure analysis
focusing on the protein crystal or crystal size distribution. However, these methods cannot
provide the quantitative information about the target molecule when protein crystallization
should serve as a purification process step. Other quantitative methods may determine
the purity or crystal yield as relevant CQAs, but they require a considerable amount of
resources, sample preparation and analysis time, especially for a large number of samples.
Thus, the first study (Chapter 3) aims to develop a rapid, quantitative, and HT-compatible
analytical tool for HT crystallization screenings of a target molecule in a mixture of model
proteins. As a first step prior the crystallization screenings, three model protein solutions
will be mixed according to a selected design of experiments (DoE) approach. The ternary
protein solutions will be analyzed with ultraviolet-visible light (UV/Vis) spectroscopy and
a suitable reference method. The generated data will be used to calibrate and validate a
chemometric model, i.e. a partial least squares (PLS) regression model. The second and
third steps will involve a selective crystallization screening and kinetic study in micro-liter
scale. The crystallization supernatants shall be analyzed using UV/Vis spectroscopy, and
the specific protein concentration should determined using the recorded data and calculated
model to demonstrate the transferability of the chemometric model to the kinetic study. This
study will serve as a proof-of-concept that a PAT tool based on UV/Vis spectroscopy and
PLS regression can selectively quantify species in a mixture in HT crystallization screenings
with a low analysis time and sample consumption.
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When HT screenings for crystallization or precipitation DSP are conducted using spectro-
scopic sensors, large data sets are generated that can be structured in multiple dimensions.
To explore the data set at hand and reveal underlying patterns, specific chemometric methods
can make use of this underlying structure. The unsupervised, multi-way chemometric model
parallel factor analysis (PARAFAC) has found many applications in the analysis of chromato-
graphic or kinetic data sets. It aims to extract quantitative information about the composition
of the sample containing multiple species. In DSP capture steps, process solutions hold
various impurities or potential modifications of the target, and are subject to variations
during the upstream processing (USP) steps or raw material quality. These real-case scenar-
ios are challenging for HT analytics, especially in the early stages of process development
with crystallization or precipitation screenings, where CQAs need to be measured quickly
regardless of the biological target, the impurity composition, or batch-to-batch variations.
Therefore, the second study (Chapter 4) shall investigate a calibration-free, HT-compatible,
analytical workflow that can be applied to crystallization or precipitation HT screenings of
various biopharmaceuticals. Screening supernatants are analyzed with UV/Vis spectroscopy
during the process steps of crystallization or precipitation, wash, and redissolution steps.
Using all UV/Vis spectra of one screening study, a multi-dimensional data set will be gen-
erated spanning across the dimensions time, wavelength, and sample. In a second step,
PARAFAC models will be calculated making use of the underlying higher structure in the
multi-dimensional data set and revealing hidden patterns in the recorded spectra. These
PARAFAC models can provide valuable process information about the impurities present in
the analyzed solutions, the sample composition and the pure component spectra of the target
molecule. Three screening studies will be conducted to demonstrate the applicability of this
analytical workflow to various biopharmaceuticals and to different DSP steps based on protein
phase behavior. In detail, protein crystallization or precipitation screenings of enzymes,
mAbs, or VLPs shall be examined. Additional reference analytics will be used to validate
the sample composition or the pure component spectra of the target molecule. In summary,
this study aims to develop an analytical model-based approach universally applicable to
crystallization or precipitation HT screenings of different biological products without the
need for reference analytics. The model outcome shall quantify the target molecule in the
sample to determine appropriate process conditions in the crystallization or precipitation
screenings with respect to the product purity.

Real-time monitoring is an important key feature of PAT with the aim of QbD and a
thorough process understanding. For these purposes, spectroscopic sensors are applied in
biotechnological processes and coupled with MVDA to provide valuable process information
over time. In DSP, extensive research has been conducted to monitor chromatography
processes using multiple or combinations of the aforementioned techniques. However, quan-
titative monitoring PAT tools for protein crystallization in complex process solutions are
rare and impose special challenges due to the presence of solid crystals when measured in-
line. To overcome these limitations, the third study (Chapter 5) covers the development of
a monitoring PAT set-up tailored to protein crystallization out of complex process solutions.
This PAT set-up will consist of spectroscopic in-line sensors, on-line sensors and additional
off-line analytics for validation. The difficulties of solid and liquid phases during crystalliza-
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tion need to be addressed, e.g. through sophisticated sensor selection or sampling strategies.
As an example process, a crystallization capture step of a recombinant protein in complex
process liquids shall be investigated. Different crystallization experiments with varying
conditions will be conducted and spectroscopic data sets will be recorded. In a next step,
MVDA methods will be applied to analyze the spectroscopic data and will be validated
with reference analytics to facilitate real-time monitoring of specific CQAs. To comply with
QbD for biotechnological crystallization processes, this study will aim to monitor protein
crystallization in heterogeneous, complex, multi-phase solutions using different in-line and
on-line spectroscopic sensors.
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2.2 Manuscript overview
This section presents an overview of the manuscripts prepared in line with this thesis. The
manuscripts in the Chapters 3 and 4 deal with PAT analytics applied to HT screening
studies and were published as outlined below. The manuscript of Chapter 5 describes
PAT for monitoring protein crystallization in lab-scale and is in the submission process.
Chapter 3 describes a HT screening study and a kinetic study of enzyme crystallization in
mixtures of three model proteins. Using UV/Vis spectroscopic measurements as a basis,
chemometric PLS regression models are used to selectively quantify each model protein
in the crystallization supernatant. In Chapter 4, three screening studies are presented
investigating enzyme crystallization in mixtures of three model proteins, mAb precipitation in
Escherichia coli (E.coli) lysate, and VLP precipitation in harvest cell culture fluid (HCCF).
The chosen studies demonstrate the versatility of calibration-free MVDA to different modalities
when UV/Vis spectroscopy and the multi-way chemometric model PARAFAC are coupled.
Chapter 5 covers a PAT set-up to monitor enzyme crystallization out of clarified lysate in
lab-scale using in-line Raman spectroscopy, on-line UV/Vis spectroscopy, various off-line
analytics, and PLS regression modeling.

In the following, the prepared manuscripts are listed with their publication status,
a graphical overview, a short summary, and the author contribution statement for each
publication. The detailed lists of the author contributions were signed by the respective
co-authors and are enclosed with the examination copy of this thesis.
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Protein crystallization is commonly used for protein structure analysis, but has gained
more interest for an application in DSP due to its lower production costs, high product
purity, and better scalability. To develop crystallization processes with the aim of protein
purification, empirical HT screenings are commonly conducted. This calls for fast, quantita-
tive, HT-compatible, and automatable analytics. This study introduces a novel, analytical
workflow based on summed up UV/Vis spectra and supervised PLS regression models. These
models, applied to HT crystallization screening supernatants, can predict the specific protein
concentration of model protein mixtures containing lysozyme, ribonuclease A, and cytochrome
C. Further, the provided information can be used to visualize the phase behavior in phase
diagrams. Compared to established, quantitative analytics, the proposed method could
quantify the model proteins with high precision and a 3min analysis time per sample. Using
cation-exchange chromatography (CEX) and microscopic images, the model-predicted protein
concentrations and hence generated phase diagrams could be validated, respectively. To
demonstrate the flexibility of the calculated models, a kinetic study was investigated on a
10 times larger scale. The described approach is a proof-of-concept proving that UV/Vis
spectroscopy and chemometrics are a powerful combination when applied to phase behavior
based screenings of heterogeneous protein mixtures.
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When HT screenings are conducted and evaluated using multi-variate analytics, e.g.
UV/Vis spectroscopy over multiple wavelengths and time, the generated data can be struc-
tured in a multi-dimensional data set. Multi-way MVDA techniques are adapted to the higher
data structure, can potentially make use of the multi-dimensional structure and support
revealing underlying patterns. This study explores the application of the unsupervised,
multi-way chemometric approach called PARAFAC on UV/Vis data generated in crystal-
lization, or precipitation HT screenings. Three different biopharmaceutical modalities are
either selectively crystallized or precipitated in chemically defined or complex solutions. In
detail, one protein is crystallized in mixtures of three model proteins, and mAbs or VLPs
are precipitated from HCCF or E.coli lysate, respectively. Without the need of prior calibra-
tion, one PARAFAC model per case study was constructed based on the UV/Vis spectra of
supernatant samples during crystallization, precipitation, wash steps, or redissolution. The
PARAFAC models could estimate the specific pure component spectra and specific concentra-
tion, which could identify the solubility line for optimal process conditions regarding yield and
product purity. Finally, the models were validated either with spectra of purified species, with
quantitative analytics, i.e. CEX or Protein A chromatography, or with qualitative analytics,
i.e. sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The approach
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proves effective regardless the modality, the contaminants, sample size, or the number of
different species, and can be valuable in early-stage process development of phase behavior
based processes, especially when robust analytics are missing. In summary, the conducted
study provides a useful, analytical workflow for calibration-free PAT which supports the
process design of selective crystallization, or precipitation processes of biopharmaceuticals.
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Regarding DSP capture steps, new challenges arise when PAT needs to be implemented
in protein crystallization processes as solid particles can interfere with measurements. The
heterogeneity of multiple phases and the impurities in the initial process solution demand
careful considerations for the selection of sensors and sampling techniques. To overcome
these limitations, this research project applies two different spectroscopic methods aiming
to monitor and improve the understanding of the crystallization process of Lactobacillus
kefir alcohol dehydrogenase (LkADH) from clarified E.coli lysate on a 300mL scale. The
study employed a combination of in-line Raman spectroscopy with a probe placed in-situ
in the crystallization vessel, on-line UV/Vis spectroscopy in a bypass, and off-line analytics
(microscopic images, automated enzyme-linked immunosorbent assay (ELISA), SDS-PAGE,
immobilized metal ion affinity chromatography (IMAC)) and should provide a comprehensive
overview of the conducted crystallization experiments. The experimental set-up using a cross-
flow filtration based bypass allowed the liquid phase analysis with particle sensitive analytics,
e.g. UV/Vis spectroscopy which could evaluate the purity of the crystallization supernatant.
Chemometric analysis of the Raman spectra with principal component analysis (PCA) and
PLS regression enabled the quantification of the target molecule concentration in real-time,
even in the presence of solid crystals, and impurities in soluble or precipitated form. Due to
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potential batch-to-batch variations, the favored PAT sensor consisting of a Raman probe and
a calibrated PLS model could only be transferred to new experiments with some reservations.
To sum it up, a PAT set-up, tailored to protein crystallization, was developed with the aim
to quantify the target during crystallization in a complex solution.
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Abstract
Selective protein crystallization is a trending alternative to preparative chromatography in
biotechnological downstream processing. To save time and resources in early-stage process
development, fast and reliable analytics are required. This work aimed to develop and
assess a low-volume, quantitative, analytical tool for faster development of crystallization
processes. The analytical tool was based on ultraviolet-visible spectroscopy and partial least
squares modeling and aimed to selectively quantify protein concentrations in heterogeneous
supernatants during crystallization process development. For this purpose, a ternary model
protein system consisting of hen-egg-white Lysozyme, bovine Ribonuclease A, and equine
Cytochrome C was used for model calibration and subsequent crystallization studies for
application. In a high-throughput screening, Lysozyme was selectively crystallized varying
pH, precipitant concentration, and Lysozyme concentration at 8 ◦C for 13 d. During a kinetic
study, the composition of two selected conditions was monitored over a time range of 7 d. In
both studies, the developed tool quantified the different species in the supernatant with high
precision. Crystal yield, purity, and selectivity were evaluated with a sensitivity of 96.23%
and a short analysis time of 3min per sample. The studies were carried out in 96-well plates.
This said, the methodology could be easily adapted to higher throughput scales, i.e., 384-well
or 1536-well plates.

3.1 Introduction
In the last decades, selective crystallization of biopharmaceutical products has gained increas-
ing attention as a cost-effective, alternative downstream process step to chromatography-based
approaches [14, 124, 125]. High purity [15, 126], preservation of activity [127, 128], ease of
scale-up [14], and high target protein concentration are key advantages. Furthermore, it
complies with the trend towards higher production titers, process intensification and process in-
tegration [125], and crystallized products demonstrate preferable formulation properties [129].
Its relatively low viscosity despite the high concentration [130], high stability [131, 132], and
controlled drug release [133] make biopharmaceutical process crystallization a promising
research field.

Despite previous work on protein crystallization of industrially relevant proteins, e.g.,
antibodies [126, 127, 134], antibody fragments [14], or enzymes [30, 131], most fundamental
research on protein crystallization was carried out with the model protein lysozyme (Lys)
extracted from poultry egg white due to its availability and good economics [2, 4, 9, 15,
135–137]. Many crystallization studies of Lys focused on determining morphologies of
crystals from pure protein solutions at low supersaturation [15, 27, 135–137] accepting long
process time to reproducibly grow large crystals. To overcome these limitations and make
protein crystallization feasible for industrially relevant downstream processes, the saturation
concentration of the target protein was varied, e.g., by varying the temperature [6, 8, 26,
138], pressure [139], or precipitant concentration [26, 27, 31].
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Occurrences during protein crystallization are commonly investigated in empirical phase
diagrams inhigh-throughput (HT) screenings. Applied analytics are image-based analytical
tools [37, 140], single crystal X-ray diffraction [6, 140, 141], or dynamic light scattering (DLS)
measurements [142–144]. These analytics are optimized for pure solutions or crystals, do
not allow fast differentiation between different species, and can only distinguish between salt
and protein crystals to some extent. When protein crystals are grown in protein mixtures
or complex harvest broth, a fast, accurate, and reliable analytical method is essential for
screening purposes. The combination of ultraviolet-visible light (UV/Vis) spectroscopy
and chemometrics serves as a reliable tool to selectively quantify light absorbing species.
In previous work, acuvvis spectroscopy paired with partial least squares (PLS) regression
modeling demonstrated high prediction performance for selective quantification in preparative
chromatography-based processes [53, 55–57].

Various research was performed to monitor and control preparative crystallization applying
focused beam reflectance measurement (FBRM) [86, 138, 145], and in-line spectroscopy,
i.e., attenuated total reflection (ATR) UV/Vis spectroscopy [86, 121, 138, 145, 146], or
Raman [86, 146, 147]. In some of these studies the in-line analytics were paired with
chemometric approaches, e.g., principal component regression (PCR) [147], PLS [147], or
principal component artificial neural networks (PC-ANN) [145]. Chemometric approaches
intend to extract valuable information out of a large data set and can be further studied
here [39, 43].

However, these crystallization studies mostly focused on monitoring and control of
preparative crystallization processes of small, chemical molecules and cannot be directly
transferred to crystallization processes of biopharmaceuticals as biological molecules are
heterogeneous, more complex, and prone to process deviations and lot-to-lot variation of
raw materials [117]. Thus, empirical screenings and robust analytics are still substantial for
biopharmaceutical crystallization process development. To the best of our knowledge, there
have been no attempts to quantify protein species selectively using UV/Vis spectroscopy and
PLS models for HT crystallization screenings.

This study is designed to develop a new and accurate analytical tool to speed up process
development for HT selective protein crystallization screenings. The method aims to selectively
quantify individual species in the supernatant allowing calculation of process performance
indicators in early stage process development. Due to limited resources and the large number
of screening conditions, the method is designed to require minimal product intake and analysis
time. In the chosen ternary protein system, one protein - purely for the purpose of this study -
was specified as the target protein in the crystallization process and the other two as impurities.
To selectively quantify individual species during a HT screening, one PLS model per protein
was calibrated and used for various crystallization conditions. The required analyses were
performed on an ultra high performance liquid chromatography (UHPLC) system equipped
with a diode array detector (DAD) to record the UV/Vis spectra. Exemplarily, the influences
of environmental conditions, i.e., target protein and precipitant concentration, as well as pH,
were screened and evaluated regarding yield, selectivity, and purity. Finally, two screening
conditions were further analyzed over time to demonstrate the suitability of the developed
technology to gather more information on crystallization kinetics. The presented results and
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data visualization aid knowledge-based crystallization process design and stress the broad
applicability of the developed method in early stage process development.

3.2 Materials and methods

3.2.1 Proteins and buffer preparation
All chemicals were purchased from Merck KGaA (Darmstadt, DE), unless stated otherwise.
All buffer solutions were prepared at room temperature with ultrapure water (PURELAB
Ultra, ELGA LabWater, Lane End, High Wycombe, UK). The pH was adjusted with 4M
NaOH or 32%(w/w) HCl using a pH electrode (SenTix® 62, Xylem Analytics Germany
Sales GmbH & Co. KG, Weilheim, DE) at a pH bench meter (HI 3220, Hanna Instruments,
Woonsocket, RI-US). Finally, the buffers were filtered using a 0.2 µm CA membrane filter
(Sartorius Stedim Biotech GmbH, Göttingen, DE).

The lyophilized proteins Lys from chicken egg white (Hampton Research, Aliso Viejo,
CA-US), ribonuclease A (RibA) from bovine pancreas and cytochrome C (CytC) from equine
heart were each dissolved in 2mL multi-component buffer (MCB: 21mM N-1,1-dimethyl-
2-hydroxyethyl-3-amino 2-hydroxypropanesulfonic acid (AMPSO), 17mM 3-N-morpholino
propansulfonic acid (MOPS, Carl Roth GmbH + Co. KG, Karlsruhe, DE), 15mM suc-
cinate acid (AppliChem GmbH, Darmstadt, DE)) at pH 7 or 9. After dialysis (17 kDa
Slide-A-Lyzer™, Thermo Fisher Scientific Inc., Waltham, MA-US) to a MCB at the target
pH according to the manufacturer’s specification, the protein solution concentrations were
adjusted to the required stock solution concentrations to an accuracy of 5%. Hereby, experi-
mentally determined extinction coefficients at a wavelength of 280 nm and a NanoDrop™ 2000
spectrophotometer (Thermo Fisher Scientific Inc) were used. Before preparation of the PLS
calibration solutions and phase diagrams, the protein and buffer stock solutions were filtered
with 0.2 µm (Pall Corporation, Port Washington, NY-US) and 0.02 µm syringe filters (Cytiva,
Marlborough, MA-US), respectively.

3.2.2 PLS modelling and data processing
This subchapter deals with the selection and preparation of the PLS calibration solutions,
spectral preprocessing, PLS model regression, and the calculation of crystallization process
performance indicators. All analytics and data collection of the samples are described in
subchapter 3.2.4. 29 calibration solutions were selected according to a full factorial design with
three factors for the three studied proteins on three concentration levels and twelve validation
solutions according to the protein concentrations of the star points of a central-composite-
circumscribed and a central-composite-inscribed design (distance factor between center of
design space and star point α = +

√
3) [148]. The calibration range (Lys: 0 to 1.5mg/mL

mg/mL, RibA and CytC: 0 to 0.2mg/mL) was adjusted to the assumed concentration
ranges of the diluted phase diagram supernatants. The validation solution concentrations
were partly set outside the calibrated range (Lys: 0.317 to 2.049mg/mL, RibA and CytC:
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0.042 to 0.273mg/mL) to improve the model prediction near the calibration limits [88]. For
this purpose, protein stock solutions (cLys = 4.5mg/mL, cRibA = cCytC = 0.6mg/mL) were
prepared at pH 7 and the calibration and validation solutions were manually mixed.

The recorded UV/Vis spectral data of the samples were background subtracted, summed
up along the time axis to impede diffusion effects in the spectra, cut to the required wavelength
range according to Table 3.1 and treated with a Savitzky Golay (SG) [149] in the case of RibA
(2nd derivative, window of 7 data points). The preprocessed data were correlated to protein
concentrations calculated from the reference analytics cation-exchange chromatography (CEX)
with PLS models and then validated with an external validation data set (see Figure 3.1 a)).
Data analysis, model calibration, validation and application were performed in MATLAB,
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Figure 3.1 PLS models were calibrated with the calibration solutions by regressing
the protein-specific concentration of the reference analytics CEX on the preprocessed
UV/Vis spectra (a). In the second and third step, the models were used to determine
the protein concentration of each species in the diluted supernatant of selective crystal-
lization studies (b-c). The model predicted concentrations were additionally validated
with the reference CEX method.

R2019b (The MathWorks, Inc., Natick, MA-US). For the application of the PLS models (see
subchapter 3.2.3), the spectral data and reference data were preprocessed analogously (see
Figure 3.1 b) and c)).

The relative protein-specific concentrations ĉPLS,i,j in the phase diagrams were calculated
solely from the PLS model predicted concentrations cPLS,i,j in the supernatant for each protein
species i and each well j in 3.1. The stable conditions in the phase diagram, showing no phase
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transition, in each row were used to describe the well-specific decline of protein concentration
in the supernatant and calculate the mean protein concentration of stable conditions per
row cPLS,i,stable (see A3.1). The protein-specific target concentration of each condition (see
Figure 3.2) was not used for normalization as the actual concentration was largely affected
by measurement and pipetting errors during protein stock solution preparation, pipetting of
the crystallization batches, and preparation and analysis of the samples.

ĉPLS,i,j =
cPLS,i,j

cPLS,i,stable
(3.1)

The protein-specific yield Yi,j for each well could be calculated assuming that the missing
protein amount formed crystals. This aided the identification of successful phase transition –
both crystallization and precipitation.

Yi,j = 1− ĉPLS,i,j (3.2)

Additionally, the model derived purity of produced Lys crystals PLys,j was calculated
from the ratio of the missing Lys concentration to the total missing concentration in the
supernatant for each well.

PLys,j =
cPLS,Lys,stable − cPLS,Lys,j∑3
i=1(cPLS,i,stable − cPLS,i,j)

(3.3)

3.2.3 Crystallization experiments
For faster, quantitative assessment of crystallization screening conditions and optimal process
time, the PLS models were applied to diluted supernatants of phase diagrams and of a kinetic
study. The diluted supernatants were analyzed and preprocessed according to subchapter
3.2.4 and 3.2.2, respectively, enabling elaborate crystallization yield and purity estimation.

For the phase diagrams, the protein stock concentrations were 180mg/mL for Lys and
48mg/mL for RibA and CytC at pH 7 or 9. In addition to the MCB, a crystallizing solution
at target pH was required, which was composed of the MCB compounds and 3.5M AMS
(ammonium sulfate, AppliChem GmbH, Darmstadt, DE). In duplicates, 96 conditions were
prepared in 24 µL batches varying the ammonium sulfate (AMS) concentration in column
(1-12) and target protein concentration Lys in row (A-H) in MCR Under Oil Crystallization
Plates (Hampton Research, Aliso Viejo, CA-US). With a liquid handling station (Tecan
Freedom Evo 100, Tecan, Männedorf, CH), the ternary protein mix and the precipitant
dilutions were prepared with three protein stock and two buffer stock solutions, respectively
(see Figure 3.2). Finally, the screening conditions were prepared by mixing 20 µL of the
ternary protein mix dilutions and 4 µL of the precipitant dilutions and the plates were sealed
with a transparent foil (HDclear, ShurTech Brands, Avon, US). During 13 d at 8 ◦C in a
cooled incubation system (RI 54, FORMULATRIX, Bedford, MA-US; T 1000 mytron Bio-
und Solartechnik GmbH, Heiligenstadt, DE), the phase diagrams were automatically imaged.
After incubation, only one of the phase diagrams was further analyzed due to limited time
resources. The supernatants of the screened conditions were 50 times diluted with MCB (pH
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Figure 3.2 Crystallization plates were prepared by mixing eight ternary protein dilutions
with three protein stock solutions and multi-component buffer (MCB) at target pH.
Twelve precipitant dilutions varied in AMS concentration by mixing MCB and AMS
stock solution. The protein and AMS dilutions were combined to 96 conditions in 24µL
micro-batches and stored at 8 ◦C for 13d.

of the plate) and filtered in 0.2 µm filter plates (Pall Corporation). The dilution was required
to impede further crystallization.

For the kinetic study, two conditions of the phase diagram at pH 9 were selected (A5: cLys =
75mg/mL, cRibA = cCytC = 10mg/mL, cAMS = 0.1364M; D6: cLys = 47.14mg/mL, cRibA =
cCytC = 10mg/mL, cAMS = 0.2273M;) and additionally prepared in 300 µL crystallization
batches in duplicates. During incubation for 7 d at 8 ◦C, the crystallization batches were
covered with a semi-transparent film (Parafilm, Bemis company, Inc., Neenah, WI-US). The
supernatant samples were taken manually and processed analogously to the phase diagram
samples.

3.2.4 Analytics
For the PLS model calibration and application, UV/Vis spectra were recorded and CEX was
performed as a reference. In detail, 20 µL samples of defined ternary protein solutions or
diluted supernatant were analyzed for the model calibration or the crystallization studies,
respectively.
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First, the samples were analyzed using a Dionex Ultimate 3000 RS UHPLC system
(Thermo Fisher Scientific Inc.), equipped with a diode array detector. The spectral anal-
ysis was performed with a pre-column filter cartridge (0.5 µm OPTI-SOLV EXP, Supelco,
Bellefonte, PA-US) in the mobile phase (20mM Tris, 100mM NaCl, pH 8.0) but no chro-
matography column installed. The UV/Vis absorbance spectra between 240 to 450 nm were
recorded with 1 nm resolution and 100Hz frequency (see A3.2 b).

Secondly, as a reference, the same samples were CEX analyzed using a ProSwift SCX-1S
4.6x50mm column (Thermo Fisher Scientific Inc.) and the same UHPLC system with a low
salt buffer (20mM Tris, pH 8.0) and a high salt buffer (20mM, 1000mM NaCl, pH 8). The
column was loaded with 20 µL sample and eluted with a gradient method (see A3.2 and A3.2
a). The flow rate was 1.5mL/min and the recorded absorbance at the wavelength 280 nmand
at 100Hz frequency was used for further calculation.

Images taken during incubation served as a validation method for crystallization and
phase behavior detection.

3.3 Results and discussion
HT screenings are crucial for selective crystallization process development and require fast
and reliable analytics. This research project focuses on the application of PLS models in
combination with UV/Vis spectroscopy to quickly quantify individual species in a multi-
component matrix during HT screenings.

The model accuracy must not be affected by temperature or varying aqueous conditions
such as precipitant concentration or pH. This was tested in an extended HT screening and a
kinetic study to show the versatility of the analytical tool.

3.3.1 Data analysis and model accuracy
To selectively quantify the different species in a multi-component mixture during batch
crystallization, spectral data preprocessing and model accuracy were evaluated.

When comparing the absorbance values integrated over time at a wavelength of 280 nm
of the spectral and the reference analysis (CEX analysis), increased absorbance areas were
observed for the latter, especially for the outer boundary wells of the 96 well plate. The
observed difference could be traced back to sample evaporation caused by an extended sample
storage time prior to analysis. Thus, the CEX analysis required concentration correction
with the well-specific correction factor fj for each well j.

fj =

∫ tend
t0

A280,DADdt∑3
i=1

∫ tend,i
t0,i

A280,CEXdt
(3.4)

The absorbance at 280 nm of the spectral (A280,DAD) and the reference measurement (A280,CEX)
was integrated from the analysis start t0 to the end time tend for each species i. Assuming
the same relative concentration change for each species due to evaporation, the time-wise
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integrated absorbance areas were used to calculate the corrected, specific concentrations
cCEX,corr,i from the original specific concentration cCEX,i derived from the CEX analytics.

cCEX,corr,i = fj ∗ cCEX,i (3.5)

This data preprocessing improved model prediction and allowed neglecting differing sample
storage times between spectral DAD and CEX analytics when an increased number of samples
were analyzed for the HT screening. Further information on preprocessing of the spectral
data and the calibrated PLS models are listed in Table 3.1. The model calibration was
evaluated with the parameters root mean squared error of cross-validation (RMSECV ) and
the coefficient of determination (R2); the model validation with the root mean squared error
of prediction (RMSEP ) and predictive relevance (Q2).

The chosen wavelength range differed for each PLS model as the examined proteins
showed individual absorption behavior in the spectra. Larger wavelength ranges increase
the risk of overfitting [150] but demonstrated the highest model accuracy, regarding the
RMSECV and Q2, in the case of RibA (data not shown).

Table 3.1 Parameters for preprocessing of the UV/Vis spectral data and PLS model
calibration.

Lys RibA CytC

wavelength range / nm 240 - 300 250 - 430 385 - 425
latent variables 4 4 1
R2 1.0000 0.9949 0.9972
RMSECV / mg/mL 0.0019 0.0045 0.0038
Q2 0.9999 0.9955 0.9956
RMSEP / mg/mL 0.0048 0.0037 0.0040

Spectral derivation has been widely reported to enhance spectral differences [151–153] and
the SG is a simple and common preprocessing technique for smoothing and derivation [88]
and facilitates PLS model calibration for challenging protein systems, e.g. when the different
species display similar spectra [56]. Using this filter, the calculation of the 2nd spectral
derivative enabled a robust RibA model as the absorption spectra of all investigated proteins
overlay in the wavelength range chosen for the RibA model. Due to this spectral overlay, four
latent variables for the model calibration of Lys and RibA were necessary when compared to
CytC with only one latent variable.

Models with more latent variables include more spectral information which can aid
identifying spectral differences related to protein-specific absorption but bears the risk of
overfitting. Compared to previous studies conducted with the same model protein system,
the number of latent variables could be reduced due to different concentration ranges and
ratios, the implementation of individual preprocessing strategies, and the usage of reduced
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wavelength ranges [53, 55]. However, a direct comparison of these studies is complicated and
not in the focus of the present study.

Similar and high values for the coefficient of determination R2 and predictive relevance Q2

indicated low residuals in the calibration as well as in the validation data set and therefore
good predictive behavior for all three models. In the case of RibA and CytC the RMSECV
and RMSEP showed minor differences. The Lys model showed a twice as high RMSEP
value compared to its RMSECV . This is acceptable as the used validation solutions were
partly out of the calibrated range. An explanation for the higher RMSECV and RMSEP
for the Lys model lies in the chosen protein concentration range for the calibration system.
The upper concentration limit of Lys was chosen more than 7 times higher than for the
contaminant species.

Figure 3.3 The PLS model predicted concentrations cPLS for each species is shown
over cCEX,corr, measured off-line by CEX and corrected according to Eq. 3.5. The
circles and crosses represent the calibration and validation data set, respectively (see
Figure 3.1 a)). The dashed lines represent the ideal relationship between the predicted
and reference measurements.

Figure 3.3 shows the concentration prediction performance of the calibrated PLS models
in relation to the data obtained from the reference analytics CEX, corrected using Eq. 3.5.
The PLS predicted values of the validation data set show a very good agreement with the
reference data. The model of RibA showed the largest discrepancies, probably due to the
overlapping absorption areas of Lys, CytC and RibA.

In Figure 3.4, the prediction performance of the models is displayed when applying it
to the diluted supernatants in the HT screening and the kinetic study. The PLS models
performed well as shown by the good agreement between the predicted values and the
reference. The CytC model application on the HT screening showed RMSEP s comparable
to the validation set. The Lys and RibA models showed 1.8 to 4.9 times higher RMSEP s
and lower accuracy in the case of RibA at pH 7 (see Figure 3.4 b)). These discrepancies
could be caused by minor differences in the protein spectrum due to changes of the protein’s
tertiary structure during the HT screening. Structural changes could be caused by incubation
over 13 d in the presence of the precipitant AMS [36] at lower temperatures [154] as this can
induce changes in the aqueous micro-environment of the protein. As opposed to that, the
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calibration solutions were analyzed directly after preparation. In particular, the RibA model
is expected to be prone to subtle changes in the spectrum due to the 2nd derivative data
preprocessing [155].

Figure 3.4 The calibrated PLS models were applied on two phase diagram studies at
two pH levels ((a-c) pH 7; (d-f) pH 9) and a kinetic study of two conditions at pH 9 (g-i).
The model predicted concentrations cPLS for each species are shown over its corrected
reference concentration cCEX,corr, measured off-line by CEX and corrected according
to Eq. 3.5. The dashed line represents the ideal relationship between predicted and
reference measurements.

The data of the kinetic study displayed 6.4 to 7.3 times larger RMSEP s than during
model validation for all species. Especially the contaminating species indicated low model
accuracy. However, this could be traced back to a declining performance of the CEX column
used as the reference analytics. Despite the dynamic process of crystal nucleation and growth,
the Lys model enabled accurate quantification.
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Regarding the model application, the Lys model stood out with the highest RMSEP s
and concentration data points over the whole concentration range. This could be explained
with the higher average concentration of this species in the phase diagrams. Comparing the
models for the contaminants RibA and CytC, both PLS models displayed similar performance
during the HT screening and kinetic study.

To sum it up, the PLS models could be applied to a HT screening investigating the
pH and AMS concentration in a phase diagram. Additionally, a kinetic study with timed
sampling allowed for observation of the crystallization kinetics. It is assumed that the dilution
of the supernatant shifts the solution composition below the saturation concentration of
each component and thus stops the crystallization process immediately. This ensures timed
snapshots of the supernatant composition.

During the application, the incubation conditions, i.e., varying precipitant concentration,
pH, and temperature, lowered the PLS model performance slightly due to possibly induced
conformational changes of the examined proteins during incubation.

3.3.2 Crystallization process parameters
In the following, the analytical tool is applied to a simple crystallization process screening
using Lys as the product molecule and RibA and CytC as the contaminating species. The
crystallization process and crystal purity can be visualized in phase diagrams offering a deeper
understanding of the phase behavior of multi-component mixtures at various conditions.

Figure 3.5 displays the protein-specific phase diagrams at two pH levels, revealing areas of
phase transition. The circle areas provide information on the crystallization yield calculated
according to Eq. 3.2 (see A3.1 for details on yield calculation). By this, protein-specific
successful phase transition and stable undersaturated conditions could be quickly distinguished.
Throughout the HT screening, images were taken and served as a validation for successful
phase transition out of the supersaturated liquid. This said, due to condensation on the
sealing tape, 4 conditions could not be visually analyzed; furthermore, in 9 wells particle
structures were formed where a discrimination between precipitate and micro-crystals was not
possible due to the resolution of the camera. These conditions were located at the boundary
of the crystallization window. However, as mostly crystallization was observed, it is expected
that nucleation and crystal growth were the driving forces of the phase transition in all wells.

Regarding Lys behavior in Figure 3.5 a) and d), a window of selective crystallization
was visible at lower salt concentration. The crystallization tendency, however, decreased
with decreasing Lys start concentration and increasing salt concentration. Comparing the
investigated pH levels, the higher pH led to a larger crystallization window with Lys crystal
yields up to 64.6% at pH 9 and 36.6% at pH 7.

Note, that the conditions in the Lys crystallization window showed column-wise similar
final concentration, indicated by the colors in Figure 3.5 a) and d). This observation was a
consequence of the precipitant concentration dependent saturation concentration. In super-
saturated liquids, the protein-specific supernatant concentrations decrease to their saturation
concentration undergoing phase transitions, i.e., crystallization, and thus demonstrating the
solubility curve depending on the precipitant concentration [2, 3, 9].
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Figure 3.5 The subfigures show the protein-specific phase behavior, e.g., crystallization
windows, obtained from the examined plates at pH 7 (a-c) and at pH 9 (d-f). The
protein and precipitant concentrations in each well were arranged as illustrated in
Figure 3.2. Each circle represents an examined condition and its position in the phase
diagram. The area of the circle illustrates protein- and well-specific yield Yi,j after
13d of incubation, calculated according to Eq. 3.2. The circle background is colored
according to the protein-specific final supernatant concentration, calculated from the
PLS predicted protein concentration and the dilution factor fdil. The color ranges
represent individual concentration ranges.
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In case of the contaminant species RibA (Figure 3.5 b) and e)) and CytC (Figure 3.5
c) and f)), the phase diagrams showed no structured area of phase transition. Isolated,
smaller circles indicated local protein-specific concentration declines. As the larger circles
were not positioned in the crystallization window of Lys, it is assumed that no systematic
integration of contaminants took place during the crystallization process of the target protein
Lys. Supposably, the scattered circles indicating a relative decline in protein concentration
were artefacts of dilution inaccuracy, analytics or model uncertainty. Regarding CytC, the
highest, relative concentration drop, compared to the initial concentration, was 4.10%.

The more prominent, scattered distribution of larger circles (up to 11.12% concentration
drop) in the RibA phase diagram lay outside the Lys crystallization window and was located
at higher Lys and higher precipitant concentration. They were presumably artefacts of
the lower model accuracy (see Figure 3.4 b) and e)), especially, when large quantities of
Lys were present in the supernatant. The spectral measurement of a biological replicate
and the reference CEX analytics did not show the same decrease in protein concentration
in the supernatant (data not shown). Thus, the exceptional values were either caused by
experimental errors during the measurement or model inaccuracy of single samples. However,
it has to be noted that, compared to Lys, in the case of RibA and CytC measurement
inaccuracies and pipetting errors had a larger impact on the yield calculation due to the
smaller concentration range and may create a false impression of phase transition.

Figure 3.6 The model derived purity of the produced target protein crystals is calculated
with Eq. 3.3 and illustrated with the background color of each condition. The conditions
varied in pH, and protein and precipitant concentration (see Figure 3.2). The crystal
yield Yi,j is calculated with Eq. 3.2 and illustrated as in Figure 3.5. Only the screening
conditions demonstrating crystallization yields above 5.0% are colored.

Figure 3.6 visualizes both, the calculated Lys yield in the screened conditions at both pH
levels, similarly to Figure 3.5, and the model derived purity of produced Lys crystals. At
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pH 7 the calculated purity varied between 99.68% and 109.16%; at pH 9 between 81.62%
and 142.91%. Most screening conditions, demonstrating crystallization yields above 5.0%,
indicated high Lys crystal purity near 100%. Outliers were only visible at the edge of the
crystallization window at pH 9.

Purity values above 100% were identified as artefacts of the model derived purity calcula-
tion according to Eq. 3.3. The predicted protein-specific concentrations of all three species
present in the supernatants were included in this calculation making the purity determination
prone to experimental inaccuracies. However, the model derived purity rather aims to provide
a fast, qualitative estimation of crystal purity, than an exact determination.

pH: In Figure 3.5, the effect of the pH on the crystallization of Lys was clearly visible as
the window of phase transition was larger at elevated pH. As the pI of Lys is above 9.95 [156],
the increased tendency to form crystals can be explained by the minimized repulsive forces
due to decreased inter-protein electrostatic forces near the pI. An additional experiment
at pH 5 showed no decline in protein concentration in the supernatant (data not shown)
supporting this statement. This trend is in good agreement with previous reports on pure
Lys crystallization studies [9] keeping in mind the longer incubation time and higher storage
temperature.

The effect of pH was not visible in the case of CytC or RibA presumably due to the lower
protein concentrations.

Lys and AMS concentration: Especially at low AMS and high Lys start concentrations,
Lys showed the tendency to undergo crystallization. The supersaturation-driven process led
to the highest crystallization yields. This was expected as higher initial Lys concentration
would lead to a higher supersaturation [9] and thus more crystals [27].

Using the sitting drop technique, Forsythe at al. investigated Lys crystal morphologies
with different sulfate ions at high protein concentrations above 100 mg/mL between pH 4.0
and pH 7.8 [136, 137]. Similarly to the present work, they stated that low AMS and high
protein concentrations initiate crystallization.

At lower AMS concentration, Lys could crystallize at lower initial Lys concentration due
to the kosmotropic nature of AMS. Hydrophobic interactions are strengthened favoring the
folded state and self-association. This can support nucleus formation and crystal growth.
With increasing AMS concentration salting-in becomes more visible at both investigated pH
levels. As salting-in effects were already described in previous work [136, 137, 157], this is
not further discussed in detail.

Presence of contaminants: The presence of impurities can have a great effect on the
protein crystallization window as different species prevent the formation of a critical nucleus
or crystal growth [15, 16]. To assess the effects caused by impurities, the crystallization
windows in Figure 3.5 a) and a reference plate with pure Lys solutions at pH 9 were compared
visually using the recorded images. The impeding effect of both contaminants could not
be observed in the case of Lys at high supersaturation but showed minor differences near
the edges of the crystallization window. The pure Lys solution phase diagram generated a
larger crystallization window in the case of 9 conditions (data not shown). This confirms
previous findings of Judge et al. [15] that structurally unrelated impurities only affect Lys
crystallization at low supersaturation levels.

43



PAT for protein crystallization

Selectivity and purity: Comparing the protein-specific windows of phase transition in
Figure 3.5 at each pH, co-crystallization or systematic integration of contaminants into the
formed Lys crystals were not observed. The scattered declines in supernatant concentration
of the contaminants did not overlay with the Lys crystallization window and therefore high
selectivity of the examined crystallization conditions is assumed. This is further supported by
the high model derived purity of the crystallizing conditions, depicted in Figure 3.6. These
findings match previous work of Judge et al. [15] in which structurally unrelated proteins
were not detected in Lys crystals when grown in a protein-contaminated environment and a
high crystal purity was achieved.

Sensitivity and specificity: The reliability to detect Lys crystallization was evaluated
qualitatively by comparing Figure 3.5 a) and d) with the final images of incubation. The
conditions displaying precipitate or condensation at the sealing tape were left out for the
evaluation of the sensitivity and specificity (see A3.4 and A3.5 for the equations and data).
All conditions with yields above 5.0% were scored as successful crystallization conditions
in order to compensate for the impact of measurement errors and model inaccuracies on
the yield calculation. Note, that one drawback of visible light image-based analysis is the
inability to distinguish salt and protein crystals, and this often requires further analysis of
the solid crystal or supernatant [158].

The sensitivity to detect crystallization correctly was 96.23% for all investigated conditions.
Only two conditions at the boundary of the crystallization window at pH 7 produced crystals
but a yield below the chosen threshold (4.3% and 2.3%).

The specificity to detect soluble conditions correctly was 95.24%. 6 conditions were falsely
identified as crystallization conditions. The false-positive detection occurred especially at high
initial Lys concentration (above 56.4mg/mL) or at the boundary of the crystallization window
(see A3.5). As the residuals between the PLS predicted and the measured concentrations were
low for the false-positive conditions (data not shown), it is assumed that either measurement
deviations of the analytical system and dilution errors may be the cause or that subvisible
particle formation was detected.

Considering the above, protein crystallization conditions were detected reliably and fast
with the new method. Crystallization windows could be visualized and the high sensitivity
and specificity enabled elaborate yield calculation.

3.3.3 Crystallization kinetics
Information on crystallization kinetics are valuable for fast process development in order to
determine the optimal process time. Limited time and product resources are available during
process development, thus fast and accurate analytics with minimal product consumption
are desired. Therefore, the applicability of the developed method was examined for a kinetic
study conducted in microliter scale by screening two conditions displaying different kinetic
behavior.

The protein-specific concentration development over time for both examined conditions
(A5 and D6 at pH 9, 8 ◦C) is shown in Figure 3.7. For both conditions, the exponential decline
of Lys concentration over time could be followed within the first day of incubation. The
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concentration dropped from its initial concentration due to saturation-driven crystallization
and converged towards the saturation concentration of the equilibrium state. Over the first
day, the Lys concentration decline in the condition A5 was 3 times steeper than in D6 as
a result of the higher supersaturation due to higher initial Lys concentration and lower
saturation concentration caused by the AMS concentration. The saturation concentration
was derived from the mean concentration (day 2 to day 7) and was 16.9mg/mL for A5 and
26.7mg/mL for D6, which were both lower than the Lys concentrations determined during
the HT screening over 13 d.

Figure 3.7 The subfigures display the protein-specific concentration development of
diluted supernatant samples over time of two screened conditions A5 (a-c) and D6
(d-f). Their starting conditions are described on the left. The mean and standard
deviation are illustrated by the circles and whiskers, respectively. The kinetic study
was conducted with both biological and technical duplicates over 7d. Dashed, linear
trend lines are included to guide the eye.

Hebel et al. [14] successfully performed a scale-up of an antibody fragment crystallization
process from a 10 µL static vapor diffusion screening to stirred 5mL and 100mL vessels of
the same geometry. The same saturation concentration was achieved for stirred vessels of
the same geometry, but a lower saturation concentration was observed during the vapor
diffusion micro-batch screening. The difference in process handling, scale and geometry can
lead to these discrepancies, similar to the present work, as the working volume in this kinetic
study was about 15 times higher compared to the phase diagram experiments. Furthermore,
Asherie [2] observed different saturation concentrations of a crystallizing Lys suspension,
when shortly shaken, and traced this phenomenon back to improperly oriented proteins at the
crystal surface. Agitation then reinitiates crystal growth which could have occurred during
timed sampling for the kinetic study.

In contrast, the concentrations of RibA and CytC scattered in Figure 3.7, but increased
slightly over the observed time span as indicated by the linear trend. Evaporation of the liquid
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over 6 d may be the cause for this increase. The standard deviations of the contaminating
proteins were larger compared to Lys. A reasonable explanation is the stronger impact of
measurement errors on the lower absolute protein concentrations compared to the higher Lys
concentrations.

It is assumed that the contaminating proteins RibA and CytC were not included into
the Lys crystals as their concentration did not decrease during the crystal growth phase.
The protein solutions reached their equilibrium within the first day and the saturation
concentration could be determined.

3.3.4 Potential of PLS-UV/Vis spectroscopy for crystallization
The developed analytical method demonstrates robust quantification of individual species
out of a ternary protein mix requiring only 3 µL out of a 24 µL micro-batch. The workflow
is HT compatible, can be transferred to other protein systems and allows quick assessment
of crystallization conditions regarding performance, purity, and selectivity. The transfer to
other protein systems only requires a calibration data set. When material is scarce, this
could be realized with a subset of the actual screening if the subset conditions show a protein
solid-liquid separation.

Furthermore, crystallization kinetic data can be obtained with this method which would
facilitate the knowledge-based development of crystallization processes, the optimization of
existing processes or the control of crystal properties without the need of time and material
consuming off-line analytics.

The visualization of the more dimensional data in a phase diagram per species can reveal
crystallization windows of one species present in a complex mixture, e.g., harvest broth,
occurring impurity integration or co-crystallization. The high dilution of the supernatant
samples is required to fit the linear absorbance range of the DAD detector, but minimizes the
required sample volume and impedes further nucleus formation and crystal growth. Only by
this, the method adaption to case specific concentration ranges and timed measurements are
possible. The UV/Vis analysis can be conducted with a plate-based spectrophotometer but
bears the difficulty to accurately determine the optical path length of the diluted samples.

Compared to standard image-based analytics, the combination of UV/Vis spectroscopy
and PLS modeling can easily distinguish between salt and protein crystals, and allows yield
calculation. As opposed to X-ray diffraction, the crystal size is not a limiting factor and crystal
harvesting is not required. The developed, quantitative method is fast, widely applicable
and easy to implement in existing workflows as the analytical devices are present in most
laboratories.

3.4 Conclusion
In this study, we have shown that ultraviolet-visible light (UV/Vis) spectroscopy paired
with chemometrics is a fast and versatile analytical tool. It can selectively quantify the
individual species and be applied to high-throughput (HT) crystallization screenings of
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protein mixtures. Three partial least squares (PLS) models were calibrated with ternary
protein mixtures and applied on a HT screening of highly concentrated protein mixtures.
During the screening, the pH, and the concentrations of the precipitant and target protein
were altered. The application of the calibrated PLS models allowed for elaborated yield
and purity calculation, and selectivity evaluation. Crystallization kinetics at two different
conditions could be monitored with minimal sample intake over time.

Compared to well-established, mostly qualitative crystallization analytics, e.g., X-ray
crystallography or image analysis, the newly developed tool stands out in speed, accuracy and
simplicity in handling. In 3min per sample, the spectral analysis offers selective quantification
and yield calculation, and specifically detects protein phase transition. The integration of
contaminants can be examined and this can be used for purity assessment. Timed sampling
and analysis provide knowledge on crystallization kinetics and, by this, crystal properties
control.

In future, the combination of UV/Vis spectroscopy and PLS modelling could be used in
small scale for phase transition HT screenings, i.e., precipitation or crystallization studies
of product in harvest broth. Further research in crystallization kinetics are essential to
accelerate process development and scale-up. At larger scales, the provided method could
serve as a new tool for on-line monitoring of selective crystallization processes. All of this
may encourage alternative process development to well-established chromatography-based
processes.
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Abstract
When developping selective crystallization or precipitation processes, biopharmaceutical
modalities require empirical screenings and analytics tailored to the specific needs of the tar-
get molecule. The multi-way chemometric approach called parallel factor analysis (PARAFAC)
coupled with ultraviolet-visible light (UV/Vis) spectroscopy is able to predict specific concen-
trations and spectra from highly structured data sets without the need for calibration samples
and reference analytics. These calculated models can provide exploratory information on
pure species spectra and concentrations in all analyzed samples by representing one model
component with one species.

In this work, protein mixtures, monoclonal antibodies and virus-like particles in chemically
defined and complex solutions were investigated in three high-throughput crystallization or
precipitation screenings with the aim to construct one PARAFAC model per case. Spectro-
scopic data sets of samples after the selective crystallization or precipitation, washing, and
redissolution were recorded and arranged into a four-dimensional data set per case study.
Different reference analytics and pure species spectra served as validation. Appropriate spec-
tral preprocessing parameters were found for all case studies allowing even the application
of this approach to the third case study in which quantitative concentration analytics are
missing. Regardless of the modality or the number of species present in complex solutions,
all models were able to estimate the specific concentration and find the optimal process
condition regarding yield and product purity. It was shown that in complex solutions, species
demonstrating similar phase behavior can be clustered as one component and described in
the model. PARAFAC as a calibration-free approach coupled with UV/Vis spectroscopy
provides a fast overview of species present in complex solution and of their concentration
during selective crystallization or precipitation, washing, and redissolution.

4.1 Introduction
The variety and number of biopharmaceutical products are constantly increasing. There are
e.g. monoclonal antibodies (mAbs) [159], vaccines [160, 161], and new therapeutics [162].
Each new therapeutic drug is accompanied by new physico-chemical properties, which need
to be assessed with target molecule-specific analytics to ensure drug purity and safety for the
patient. Broadly applicable analytical technologies are preferred as they can characterize
various products and process steps. This may lead to deeper product and process knowledge,
together with cost- and risk-based decisions during process development.

Downstream processes of biopharmaceutical products commonly rely on preparative
chromatographic processes, which are costly or difficult to scale-up. In general, selective
protein crystallization or precipitation can be an alternative to costly chromatography
capture steps [127, 163, 164] and bear their advantages, e.g. high purity, concentration, and
stability during product storage [124, 125] . Given that the process conditions are selected
appropriately, these processes can provide highly concentrated products and can be scaled
at lower costs compared to chromatographic process steps. To speed up the process of
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finding optimal process conditions, empirical high-throughput (HT) studies are common for
early-stage process development and require HT-compatible analytics. In this context, fast,
non-destructive, versatile methods, e.g. spectroscopic methods, are preferred and they can
be used to determine critical process parameters, e.g. target protein concentration, yield,
and purity. When combining HT studies and spectroscopy, though, a situation often arises
where large data sets are recorded which are difficult to interpret and are strongly correlated;
the information sought-after is hidden in a data jungle. To overcome these limitations,
scientists commonly apply chemometric methods to large spectral data sets, e.g. partial
least squares (PLS) regression [43, 145, 147], convolutional neural networks (CNNs) [165],
or Gaussian process regression [166], and generate process analytical technology (PAT)
models to improve the design, analysis, and control during product manufacturing [117].
The mentioned regression models, however, generally require robust reference analytics for
calibration. Specific PAT research on crystallization processes mainly focused on mechanistic
models for crystal nucleation or growth implementing physical or empirical equations and is
discussed elsewhere [167–169].

In the case of spectroscopy measurements recorded over time, three-dimensional (3D)
data sets are generated, which are ordered along three dimensions, e.g. wavelength, time, and
absorbance. When the spectra of several samples are recorded, four-dimensional (4D) data
sets are formed. This multi-dimensionality further complicates the data analysis and calls
for multi-way chemometrics. To process data sets of higher order, multi-way chemometric
approaches, e.g. generalized rank annihilation method (GRAM), unfolded partial least-
squares (U-PLS), and multi-way partial least-squares (N-PLS) regression models, require
external calibration [170, 171]. They cannot be applied when accurate reference analytics
are missing, e.g. in product capture process steps due to the variety of product- and
process-related impurities.

On the contrary, PARAFAC models can analyze data sets of higher order without the
need for calibration samples. Given the number of components in the data set, the PARAFAC
model can decompose a linear, spectral data set of second or higher order into the signal
contribution of each component and regress the model towards a minimal model error
compared to the original data set. In this application, one PARAFAC component represents
one species in the data set. As a result, the initial data set can be described as the sum of
loading vectors of each species in each dimension and the model error [172–174]. PARAFAC
was successfully applied to qualitative and quantitative data analysis on excitation emission
spectra of fluorescence spectroscopy [112, 175, 176] using data sets structured along excitation
wavelength x emission wavelength x samples. Other possible applications are the flow
injection analysis (FIA) [177, 178] and high-performance liquid chromatography (HPLC)
runs equipped with multi-variate detector, e.g. diode array detector (DAD) [114, 179] or
mass spectrometry (MS) [176, 180].

The mentioned work on PARAFAC models focused on the deconvolution of overlapping
peaks in chromatography runs or the quantification of chemical analytes in fluorescence
spectroscopy. With regard to the rising number of new biopharmaceuticals and early
stage process development, HT screenings for crystallization and precipitation processes are
time-consuming and need to be evaluated quickly with versatile analytics. This calls for the
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investigation of the PARAFAC model application to identify sweet spots in the phase behavior
of biopharmaceuticals for crystallization or precipitation processes. This research project thus
investigates how PARAFAC models can predict specific spectra and concentration profiles in
a screening of unknown species from UV/Vis data.

To show the broad applicability of PARAFAC to HT screenings, three case studies on
phase behavior were conducted. The case studies covered one selective protein crystallization
process of a defined ternary protein system and two selective precipitation processes of
mAbs and virus-like particles (VLPs) in complex solutions. Depending on the case study,
UV/Vis spectra were recorded from supernatant samples taken from different process steps,
e.g. crystallization, precipitation, washing, and redissolution. Time-resolved spectroscopic
data were obtained by injecting samples into a HPLC system equipped with a DAD. No
chromatographic column was installed to save analysis time and generate the data with a
universal method unaffected by the investigated molecule. This analytical setup led to a
second-order data set of three dimensions (wavelength x time x samples). The PARAFAC
model calculated the loadings in the mentioned dimensions for each component describing
the spectral, time, and concentration profile of the different species.

The presented results demonstrate how multi-way chemometrics can explore spectroscopic
screening data sets of higher order. Different case studies with varying product characteristics
may be examined with little experimental effort and in a calibration-free way. The PARAFAC
models can help to assess selective crystallization and precipitation conditions with regard to
purity and yield while increasing process knowledge in early stage process development of
new biopharmaceutical products. Reference analytics for calibration are not required for the
model calculation making it suitable for use in early stage process development. Additionally,
qualitative information on spectra and phase behavior increase process knowledge and may
be used for process development according to quality by design (QbD).

4.2 Materials and methods
The preparation and execution of the first case study were described in detail by Wegner
et al. [181] and are described in brief in this work. An overview of the experimental setup,
analytics, and computation is visualized in Figure 4.1.

4.2.1 Experiment buffer and protein preparation
All chemicals were purchased from Merck KGaA (Darmstadt, DE), unless otherwise stated.
The buffer solutions were prepared at room temperature with ultrapure water (PURELAB Ul-
tra, ELGA LabWater, Lane End, High Wycombe, U.K.), pH-adjusted with 32% hydrochloric
acid (HCl) or 4M sodium hydroxide (NaOH).

In the first case study, lyophilized model proteins lysozyme (Lys) from chicken-egg-white
(Hampton Research, Aliso Viejo, CA), ribonuclease A (RibA) from bovine pancreas, and cy-
tochrome C (CytC) from equine heart were dissolved in multi-component buffer (MCB, 21mM
N-1,1- dimethyl-2-hydroxyethyl-3-amino2-hydroxypropanesulfonicacid (AMPSO), 17mM 3-

52



Chapter 4 – UV/Vis & PARAFAC for phase behavior HT screenings

Figure 4.1 The workflow for the PARAFAC model calculation can be divided into the
experimental work of three different case studies, the analytics, and the computational
work. Screening samples are UV/Vis-analyzed and the recorded spectral data set is
restructured in the dimensions time t, wavelength λ, and supernatant sample nBatch.
Subsequent preprocessing allowed the calculation of one PARAFAC model per case
study. The reference analytics validate the generated models and vary depending on
the target molecule, purification process, i.e. selective crystallization or precipitation,
and the composition of the initial material.

N-morpholino propansulfonic acid (MOPS, Carl Roth GmbH + Co. KG, Karlsruhe, DE),
15mM succinate acid AppliChem GmbH, Darmstadt, DE) at pH9. After dialysis to the
target multi-component buffer (MCB), the protein concentrations were adjusted as required
and the protein solutions were filtered (0.2 µm, Pall Corporation, Port Washington, NY).

For the second case study, Byondis B.V. (Nijmegen, NL) kindly provided frozen cell
culture supernatant (CCS) of a mAb harvest of chinese hamster ovary (CHO) cells. The
material was thawed, filtered (0.2 µm, Pall Corporation), aliquoted, and stored at −20◦ until
later usage.

The required amount of CCS was thawed and a buffer exchange was performed to a
phosphate-buffered saline (PBS) buffer (58.4mM sodium chloride (NaCl), 74.6mM potassium
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chloride (KCl), 136.1mM potassium dihydrogenphosphate (KH2PO4), 142.0mM disodium
hydrogen phosphate (Na2HPO4), pH 7.4) using a PD MiniTrap™G-25 column (GE Health-
care, Chicago, IL)). The CCS stock solution was filtered (0.2 µm, Pall Corporation) prior to
screening.

The third case study involved truncated Hepatitis B core antigen (HBcAg) VLPs [182].
The VLPs were produced in-house in E. coli as previously described by Hillebrandt et
al. [34]. After filtering the lysed material with a glass fiber, a 0.45 µm, and a 0.2 µm cellulose
acetate (CA) syringe filter (Sartorius Stedim Biotech GmbH, Göttingen, DE), the material
was 3 times diluted, aliquoted, and stored at −30◦ until further usage. For the screenings,
the material was thawed and filtered (0.2 µm, CA, Pall Corporation).

The used crystallization solution was the MCB at pH9 and contained additional 3.5M
ammonium sulfate (AMS). The precipitation solution of the second and third case studies
contained only 3.6M AMS. The redissolution buffers were PBS buffer, pH 7.4 in the second
(mAb) and 50mM Tris buffer, pH 7.2 in the third case study (VLP).

4.2.2 Crystallization and precipitation experiments

The following subchapter describes the experimental conditions of the three HT screening
case studies. The second and third paragraphs deal with selective crystallization in a ternary
protein mixture and with the selective precipitation of mAbs and VLPs in complex solutions,
respectively.

The prepared protein solutions for the ternary phase diagram were mixed and crystallized
in 24 µL micro-batches as described by Wegner et al. [181]. 3 µL samples for the analysis
were drawn after 13 d of incubation at 8 ◦C and 50 times diluted with MCB, pH9.

The selective precipitation screenings were conducted by mixing 278 µL of 12 differently
diluted precipitation solutions with 222 µL of the initial mAb or VLP protein stock solutions
leading to twelve 500 µL batches. The desired screening range of AMS was between 0 and
2M. The precipitation solutions were shaken using a thermo shaker at 300 rpm for 30 to
60min and then centrifuged (17000 g, 2min). The shaking and centrifugation conditions
were used for all steps. The supernatant (S1) was removed, and a wash step was performed
by adding 500 µL of a buffer containing the same components as the respective screening
condition. Then, the supernatant solutions were centrifuged and the wash step supernatant
(S2) was removed. Adding 500 µL of the respective redissolution buffer (see Subchapter 4.2.1)
and shaking for 2 h redissolved the precipitate. Eventually, the redissolution batches were
centrifuged (S3).

Supernatant samples (S1 - S3) were drawn after each centrifugation step, diluted (mAb:
2 times; VLP: 10 times) with redissolution buffer, and cooled at 8 ◦C until the analysis at
the end of the experiment.
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4.2.3 Analytics

4.2.3.1 Multi-way UV/Vis spectra

First, the samples were UV/Vis-analyzed using a Dionex Ultimate 3000 RS HPLC system
(Thermo Fisher Scientific, Inc., Waltham, MA) equipped with a RS diode array detector.
The UV/Vis spectra were recorded by injecting 20 µL sample volume into the device with no
column installed. The injection volume stayed constant for all HPLC measurements. The
detector data acquisition was performed with 100Hz frequency and in the wavelength range of
240 to 450 nm for the first and 220 to 550 nm for the remaining case studies. A filter cartridge
(pore size 0.5 µm, OPTI/SOLV EXP, Merck KGaA (Darmstadt, DE)) was integrated to
impede aggregates in the detector. The mobile phase was a (50mM Tris, 100mM NaCl,
pH 8.0) buffer for the first case study or the respective redissolution buffer of the case study
and the flow rate was 200 µL/min in the first or 50 µL/min for the remaining case studies.

4.2.3.2 Reference analytics

Different analytics were applied depending on the case study and target protein. The reference
data of the first study were derived from cation-exchange chromatography (CEX) performed
with a ProSwift SCX-1S 4.6 x 50mm column using the aforementioned HPLC system (see
Subchapter 4.2.3.1 with a low salt buffer (50mM Tris, pH 8.0) and high salt buffer (50mM
Tris, 1M NaCl, pH 8.0) with a flow rate of 1.5mL/min [181].

A 2.1 x 30mm POROS™protein A column (Applied Biosystems, Waltham, MA) was
used to separate the mAbs from the contaminants, and it allowed species quantification.
After sample injection, the column was equilibrated with equilibration buffer (PBS buffer,
pH 7.4) for 16 column volumes (CVs) and eluted with elution buffer (PBS buffer, pH 2.6) for
28CVs. The flow rate was set to 2mL/min.

For the third case study, the sample purity was assessed only qualitatively with sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The analysis was performed
with lithium dodecyl sulfate (LDS) sample buffer, 2-(N-morpholino)ethanesulfonic acid (MES)
running buffer, and NuPage 4-12% BisTris Protein Gels (all Thermo Fisher Scientific, Inc.).
The addition of reducing 50mM dithiothreitol (DTT) was the only adaption to the manufac-
turer’s protocol.

The pure species spectra of Lys, RibA, and CytC were recorded by measuring single
protein solutions using the setup described in Subchapter 4.2.3.1. In line with this, the pure
VLP spectrum was derived from a re-dissolved and sterile-filtered VLP solution purified
by diafiltration and multimodal size-exclusion chromatography according to Hillebrandt et
al. [183]. The contaminant and the pure mAb species spectra were calculated from the protein
A analysis flow-through and elution peak.
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4.2.4 Data analyses
All data analyses, preprocessing, and model calibration were performed in MATLAB, R2019b
(The MathWorks, Inc., Natick, MA), including the MATLAB N-way toolbox [184] to construct
the chemometric models.

4.2.4.1 Data structure and preprocessing

Each UV/Vis-analyzed sample measurement led to a 3D spectral data set spanned over the
system retention time, wavelength measuring the absorbance, similar to a 3D chromatographic
data set with strongly overlaying species peaks. When multiple supernatant samples per case
study were analyzed, the generated data were arranged along the sample number leading to
a 4D data set. For each case study, one 4D data set was constructed, preprocessed, and used
for the model calculation.

Preprocessing (see Figure 4.1) consisted of the background subtraction and smoothing
the absorbance data set along the time axis. The preprocessed data were cut to a wavelength
range of 255 to 410 nm for the first and 255 to 310 nm for the remaining case studies to leave
out the non-absorbing wavelength ranges and thus improve the model development. For
each case study, the preprocessing parameters were varied and tested for the spectral and
time-wise smoothing (see Table 4.1) with a Savityky-Golay smoothing filter [149]. The third

Table 4.1 Preprocessing and model development parameters: These parameters
were varied for each case study to find optimal calculation parameters. The final
calculation parameters are listed as well.

Data preprocessing Model parameters

Derivative Time
smoothing

range

Wavelength
smoothing

range

Number of
model com-
ponents

Error limit

Case 1 max 2 10 13 3 0.010000
min 0 1 3 2 0.000001

Case 2 max 0 51 7 4 0.008000
min 0 10 5 3 0.000010

Case 3 max 2 35 7 4 0.008000
min 0 10 5 2 0.000100

Case 1 0 3 7 2 0.000001
Case 2 final 0 10 7 3 0.000100
Case 3 2 10 7 3 0.000100
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data set required the calculation of the second derivative with the Savitzky-Golay filter to
enhance spectral differences as the species present in the examined solutions showed strongly
overlapping spectra.

4.2.4.2 PARAFAC model construction

The calculation of the PARAFAC models (see Figure 4.1) was performed varying the model
parameters, i.e. error limits, and number of PARAFAC components. Especially, the latter
needs to be selected with care as this parameter is essential for a valid model. These
model calculation parameter ranges are listed in Table 4.1. Additionally, the non-negativity
constraint was imposed in time, wavelength, and concentration dimension in all case studies
with one exception. For the third model, this constraint was left out in the wavelength
dimension due to the second-derivative preprocessing data treatment (see Subchapter 4.2.4.1).
Due to instability reasons of the PARAFAC model algorithm, ten different models for each
selected preprocessing and model parameter set were calculated. The model with the highest
core consistency diagnostic (CORCONDIA) value [109] was chosen if the loadings in the
concentration mode were sensible and agreed with the theoretical knowledge of protein
crystallization and precipitation. In detail, this means that the calculated concentration
loadings of all protein species were assumed to decrease to their protein-specific solubility
lines with increasing precipitant concentration. The inverse behavior was expected for the
analyzed redissolution solutions.

The used PARAFAC algorithm kept the data variance only in the first mode - the time
loadings - leading to normalized spectral and concentration loadings.

4.3 Results

4.3.1 Case 1 - Selective crystallization of lysozyme in a ternary
protein solution

As a proof of concept, the PARAFAC model construction was first applied to UV/Vis spectral
data of a phase transition process of a chemically defined system. In a system of three model
proteins, the target molecule (Lys) was selectively crystallized in a HT screening with 96
different conditions. The other two species (CytC and RibA) are arbitrarily treated as
contaminants and were preferred to stay in the supernatant to achieve a high Lys purity in
the crystals.

The supernatants of the screened conditions holding different protein-specific concentra-
tions were UV/Vis-analyzed. The generated data was used for the model construction. The
selected model required two PARAFAC components - one for the target molecule Lys, and
the second one for clustering the contaminants. Figure 4.2 A shows the PARAFAC-predicted
single species time profiles compared to the measured absorbance of the initial material at the
wavelength λ = 280 nm over time. The dashed and solid lines visualize the model-predicted
data (right axis) and the measured data (left axis), respectively. This remains consistent
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Figure 4.2 PARAFAC model results of the selective crystallization screening of Lys
in a ternary model protein system. The measured reference data (left axis) and the
predicted loadings (right axis) are illustrated with solid and dashed lines, respectively.
The colors gray, orange, and blue indicate the initial raw material, the target species
Lys, and the contaminating species, respectively. The time course loadings in (A) show
the PARAFAC model predictions of the species absorption loadings over time t in the
flow cell of the UV/Vis detector. Additionally, the spectral absorption of the initial
solution A280nm is shown at wavelength 280nm over time. The spectral loadings in (B)
demonstrate the similarity between the predicted and the measured Lys absorption
spectra Aλ over the wavelength λ. From the concentration loadings in (C), the predicted
saturation curve can describe the phase behavior of Lys in the investigated ternary
model system and can distinguish the screened conditions into the supersaturation and
stable area. The variables cLys and cAMS represent the concentrations of Lys and AMS,
respectively.
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Figure 4.3 Comparison between predicted and measured data of the spectral and
concentration loadings of the selective crystallization screening of Lys. The measured
reference data (left axis) and the predicted loadings (right axis) are illustrated with
solid and dashed lines, respectively. The colors orange, dark blue, and light blue
indicate the contaminating species, target species Lys, the model proteins CytC and
RibA, respectively. The predicted spectral loadings, and the measured reference data
are used to calculate the mean-normalized predicted and measured absorption (Âλ,i &
Aλ,i) which are plotted over the wavelength λ for each species i in (A). The predicted
absorption Âλ,Lys of Lys is shown over the measured absorption Aλ,Lys of Lys in (B).
Figure 4.2 C is used to calculate the mean-normalized predicted concentration loadings
ĉLys and the measured concentration data cLys of Lys in (C). The gray dashed lines
visualize the ideal fit of the predicted to the measured data (B & C). The calculated,
high coefficient of determination R2 values support the PARAFAC model validity.
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throughout this research work. The predicted spectra of the two components are illustrated
in Figure 4.2 B in different colors for each species. As a reference, the pure Lys spectrum is
included with solid lines for identification of the target molecule component. The predicted
and measured Lys concentration of the supernatants of the screened conditions are depicted in
Figure 4.2 C. This plot illustrates the phase behavior of Lys in a phase diagram depending on
the AMS and initial Lys concentration of the screened condition, and distinguishes between
the supersaturation and stable area. The loading vectors in all three modes are unitless, and
one component represents one species in each mode. The concentration of the contaminant
species did not change (data not shown). The phase behavior of this HT screening is described
and explained in detail by Wegner et al. [181]. The time courses of the predicted two species
match the position of the overall absorbance at λ = 280 nm of the analyzed initial material.
Both predicted species demonstrate a similar flow behavior through the HPLC system during
the no-column runs and resemble the Gaussian shape due to axial diffusion in the analysis
system. The spectral prediction of the Lys component fits the measured spectrum of pure Lys,
only the shoulder at λ = 290 nm is slightly less pronounced than in the measured spectrum.
The predicted concentration loadings and measured concentrations overlay and indicate
the saturation curve of the phase diagram clearly. This curve distinguishes the screened
condition into the stable area showing no Lys concentration decline in the supernatant and
the supersaturation area, in which the Lys concentration drops to the saturation curve,
possibly due to crystallization.

To compare the predicted PARAFAC loadings and the measured reference data, Figure 4.3
depicts the model and measurement data sets in two ways. First, the data sets in Figure 4.3 A
show the predicted spectral loadings and measured species, similarly to Figure 4.2 B, but
with the spectra of all three model proteins (Lys, CytC, and RibA) present in the screening
solutions. Second, the spectral data of the Lys species were mean-normalized to overcome the
difference in axis scale. Finally, the data sets were plotted against each other and used for
the coefficient of determination (R2) and root mean squared error of prediction (RMSEP )
calculation (see Figure 4.3 B for the Lys spectrum and Figure 4.3 C for the concentration
comparison). Figure 4.3 C is derived from the mean-normalized concentration data of
Figure 4.2 C. The RMSEP in this work is given without a unit as the variable is calculated
from normalized values.

The RibA UV/Vis spectrum shows a noisy spectrum above 300 nm, which is a normal-
ization artefact as the overall absorption of the pure RibA spectrum was low due to its low
extinction coefficient and the measured concentration of 0.2mg/mL. It is visible that the
predicted contaminant spectrum is similar to the pure CytC spectrum between 300 - 450 nm.
According to the model, below 300 nm, the two contaminant species (CytC and RibA) do
not contribute to the measured UV/Vis absorbance which differs from the measured pure
species spectra. PARAFAC models with three components did not lead to reasonable models,
so that the species RibA was not modeled as an own species due to its low contribution
to the overall UV/Vis absorbance. However, RibA and CytC together can be clustered as
impurities and can be described by one contaminant component as they demonstrate similar
phase behavior.
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The mean-normalized model prediction and the measured mean-normalized spectrum
of pure Lys overlay as indicated by the high R2 value. The Lys concentration loadings of
the PARAFAC model are slightly underestimated at higher protein concentrations, which is
quantified with a lower R2.

4.3.2 Case 2 - Selective precipitation of monoclonal antibodies in
a complex solution

As the second case study, a mAb was selectively precipitated out of a clarified, complex solution
(CCS) consisting of several different species. In total, 12 different precipitant concentrations
were investigated, and the supernatants of the precipitation (S1), wash (S2), and redissolution
(S3) process steps were UV/Vis-analyzed to finally construct a valid PARAFAC model.

The results of the constructed model with three different components are shown in
Figure 4.4. The three components could be identified as the mAb, contaminants, and AMS.
The predicted time profiles of each component and the measured absorbance at λ = 280 nm
are shown in Figure 4.4 A. The predicted spectral profiles and the measured spectrum of
purified mAb are depicted in Figure 4.4 B. The predicted, specific concentration in the
supernatant of precipitation (Figure 4.4 C), wash (D), and redissolution process step (E)
are colored according to the species. As a reference, the measured peak area of the mAbs
and the contaminant are included in Figures 4.4 C-E and represent the concentration profile
throughout the investigated screening conditions.

The predicted time profiles in Figure 4.4 A show a Gaussian curve for the contaminant
species, two Gaussian curves for the AMS species, and an irregular profile for the mAb
component resembling multiple overlaying species. The predicted AMS time profile overlaps
with the measured time profiles of pure AMS solution measurements (see Figure A4.1).

The predicted spectrum of the target molecule mAb fits the measured spectrum of protein
A purified mAb (see Figure 4.4 B). The predicted concentration profile of the AMS during
the precipitation and wash step agrees with the experimental AMS concentration as the
precipitant concentration was linearly increased over the investigated conditions from 0
to 2M during the precipitation and wash process step (see Figure A4.2). The predicted
and the measured mAb concentrations in the precipitation supernatants decrease strongly
above 1.2M AMS in Figure 4.4 C and match the increase in mAb concentration in the
redissolution solutions above the same AMS concentration in Figure 4.4 E. The predicted and
the measured contaminant concentrations behave likewise with a different threshold at 1.6M
AMS. A slight increase in the mAb concentration at 1.6M AMS during the washing step is
visible in the predicted and the measured data sets. A slight increase in the contaminant
concentration with rising AMS concentration was only seen in the reference analytics and
indicates contaminant removal during the wash step. The predicted mAb concentration in
Figure 4.4 C is overestimated at AMS concentration between 0 and 0.4M AMS whereas the
contaminant concentration is underestimated. Similarly, the behavior of overestimated mAb
and underestimated contaminant concentrations is visible in the redissolution samples at
higher AMS screening conditions in Figure 4.4 E.
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Figure 4.4 PARAFAC model results of the selective mAb precipitation screening from
clarified CHO CCS. The measured reference data (left axis) and the predicted loadings
(right axis) are illustrated with solid and dashed lines, respectively. The colors gray,
orange, dark blue, and light blue indicate the initial raw material, the target mAb,
the contaminating species, and the precipitant AMS. The time course loadings in
(A) show the PARAFAC model predictions of the species absorption loadings over
time t in the flow cell of the UV/Vis detector. Additionally, the spectral absorption
of the initial solution A280nm is shown at wavelength 280nm over time. The spectral
loadings in (B) illustrate the predicted contaminant spectrum over the wavelength
λ and the similarity between the predicted and the measured mAb spectrum. The
predicted concentration loadings ĉi are shown over varying precipitant concentration
cAMS during the precipitation in (C), wash step (D), and redissolution process step (E).
The measured concentration ci is derived from the peak area of the reference analytics.
The peak areas of a reference analytic represent the concentrations of the mAb and
the contaminant. They are shown in (C-E) with solid lines.
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Figure 4.5 Comparison between predicted and measured data of the spectral and
concentration loadings of the selective mAb precipitation screening. The measured
reference data (left axis) and the predicted loadings (right axis) are illustrated with solid
and dashed lines, respectively. The colors orange, dark blue, and light blue represent the
target species mAb, the contaminating species before precipitation, and the remaining
contaminant species after redissolution, respectively. The spectral predictions Âλ,i and
measurements Aλ,i are mean-normalized and depicted over the wavelength λ in (A).
The predicted spectral mAb loadings Âλ,mAb and the measured reference spectrum of
purified mAb Aλ,mAb are used to plot the predicted over measured data in (B). The
predicted mAb concentration loadings ĉmAb and measured concentration reference cmAb
from mAb peak areas (see Figures 4.5 C-E) are mean-normalized and plotted against
each other for the process steps of precipitation (C), washing (D), and redissolution
(E). These data were used to calculate the coefficient of determination R2 values to
quantify the validity of the constructed model. The gray dashed lines visualize the
ideal fit of the predicted to the measured data (B-E).
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To further validate the constructed PARAFAC model, comparisons of the predicted
loadings, and measured data of the mAb spectrum and concentration are illustrated in
Figure 4.5. The predicted spectral loadings of the mAb and the predicted contaminant are
shown in Figure 4.5 A, as well as the spectrum of the initial contaminants, present in the
precipitation supernatant, and of the co-precipitated contaminants, which are still present
after redissolution. The initial contaminants, which are present in large excess and remain
in solution despite the presence of the precipitant AMS, are well described by the blue
contaminant component of the PARAFAC model. The co-precipitated contaminants could
not be described by the model as these contaminants underwent phase transition at similar
precipitant concentration as the target molecule. The mean-normalized, predicted spectral
loadings and the measured spectrum of the mAb species are depicted in Figure 4.5 B and
agreed as indicated by the R2 value of 97.38% and a low RMSEP of 0.009.

To further visualize the model agreement, the predicted, mean-normalized concentration
loadings and measured peak area of the mAb are shown during the different process steps in
Figures 4.5 C, E, and F with their process-specific R2 and RMSEP values. The concentration
loadings show moderate agreement with the measured data for the precipitation and wash step
samples. In the precipitation supernatant analysis, the presence of the different contaminants
at high mAb concentration (especially at lower AMS concentration) might be the cause. The
wash step analysis samples showed very low mAb concentration except for one outlier. The
lowest R2 and the highest RMSEP values among the investigated process steps might be
caused by a mathematical artefact and the outlier. The high R2 and low RMSEP values for
the precipitation and redissolution supernatant indicate that the model could produce valid
mAb concentrations.

4.3.3 Case 3 - Selective precipitation of virus-like particles in a
complex solution

The third case study dealt with the selective precipitation of VLPs in E.coli lysate. In line with
the second case study, a screening was performed over different precipitant concentrations, and
the UV/Vis-analyzed precipitation (S1), wash (S2), and redissolution step (S3) supernatants
were used to construct a PARAFAC model.

The results of the constructed model with three different components are shown in
Figure 4.6. The three components are identified as the VLPs and two contaminant clusters.

The time profiles in Figure 4.6 A show a flat, broad peak for the VLP species. The
calculation of the second derivative of the spectra along the wavelength dimension improved
the model validity (data not shown). The second spectral derivative of a reference spectrum
of purified VLPs validated the spectral PARAFAC loadings (see Figure 4.6 B). The reference
data illustrate how well the peak position is found by the PARAFAC model estimation of the
spectra. The concentration loadings of the different species during the precipitation, wash,
and redissolution process step are depicted in Figures 4.6 C, D, and E, respectively. The VLP
species concentration decreases with rising AMS concentration above 1M concentration and
approaches a limit (see Figure 4.6 C). The VLP concentration loadings of the redissolution step
show the inverse behavior above the same threshold (see Figure 4.6 E). The first contaminant
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Figure 4.6 PARAFAC model results of the selective VLP precipitation screening from
E.coli lysate. The measured reference data (left axis) and the predicted loadings
(right axis) are illustrated with solid and dashed lines, respectively. The colors gray,
orange, dark blue, and light blue indicate the initial raw material, the VLPs, and two
contaminant clusters. The time course loadings in (A) show the PARAFAC model
predictions of the species absorption loadings over time t in the flow cell of the UV/Vis
detector. Additionally, the spectral absorption of the initial solution A280nm is shown
at wavelength 280nm over time. The spectral loadings in (B) illustrate the predicted
contaminant spectra over the wavelength λ and the similarity between the predicted
loadings and the measured second derivative of the VLP spectrum d2Aλ,VLP

dλ2 . The
predicted concentration loadings ĉi are shown over varying precipitant concentration
cAMS during the precipitation in (C), wash step (D), and redissolution process step (E).

cluster shows a similar behavior above 1.5M AMS with a higher limit in the precipitation
solutions and a lower limit during the redissolution step. Presumably, this contaminant cluster
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Figure 4.7 Comparison between predicted and measured data of the spectral loadings
of the selective VLP precipitation screening. The measured reference data (left axis)
and the predicted loadings (right axis) are illustrated with solid and dashed lines,
respectively. The colors orange, dark blue, and light blue indicate the VLPs, and two
contaminant clusters. The predictions of the second derivative spectra d2Âλ,i

dλ2 of the
species i and the spectral second derivative measurements d2Aλ,VLP

dλ2 of purified VLP
solutions are mean-normalized and depicted over the wavelength λ in (A). The predicted
spectral second derivative loadings of VLPs d2Âλ,VLP

dλ2 and the reference d2Aλ,VLP
dλ2 are used

to plot the predicted over the measured data in (B). The gray dashed line visualizes
the ideal fit of the predicted to the measured data. The measured and the predicted
spectra are used to calculate the coefficient of determination R2 values to quantify the
validity of the constructed model.
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precipitates to the solubility line above the threshold. During redissolution, the precipitate
of screened conditions with high AMS concentration is redissolved. The AMS concentration
does not strongly affect the concentration loadings of the second contaminant cluster in the
precipitation solutions, but the concentration loadings of this component increase slightly
to a limit in the redissolution solutions. The second contaminant cluster represents species
that are stable at higher AMS concentration. Similar results were achieved by Hillebrandt
et al. [34] for a chimeric VLP construct. The concentration loadings during the wash step
show no significant increase in the VLPs and the first contaminant cluster. The second
contaminant cluster shows a slight concentration loadings increase and is probably washed
out of the precipitate with the rising AMS concentration.

Scanned SDS-PAGE gels of the precipitation and redissolution step are included in the
Supplementary Material (see Figure A4.3) analyzing the conditions between 0 to 1.27M and
2M AMS concentration. The findings on the concentration profile of the predicted species
match the scanned gel of the reference SDS-PAGE analysis (see Figure A4.3).

The similarity between the predicted and measured second derivative of the VLP spectrum
is visible in Figure 4.7 A. The estimated wavelength position of the peak maxima and minima
fits the measured data in the wavelength range below 265 nm and above 275 nm, but the
absolute values at the peak maxima and minima do not overlay. Between the mentioned
wavelengths, the curve characteristics of the predicted spectral loadings show a flattened
curve and differ from the measured data. The absolute values at the peak maxima and
minima do not overlay. This may be the result of the applied preprocessing techniques as
smoothing can eliminate or broaden peaks, whereas the spectral derivative calculation is
sensitive to subtle differences in spectra.

To visualize the fit of the predicted to the measured data, the mean-normalized predicted
VLP loadings and the second derivative data of a measured VLP spectrum are plotted against
each other in Figure 4.7 B and used for the calculation of R2 and RMSEP values. Closer to
the center, the predicted data overlay strongly with the measured data. At the boundaries of
the spectral loadings, the predicted and the measured data differ more. Still, the spectral
loadings showed a high R2, but the highest RMSEP for the spectral regression among the
three investigated case studies.

4.4 Discussion
To prove the overall applicability of PARAFAC models to HT screenings, the three conducted
case studies are discussed regarding the choice of the valid PARAFAC model, the process
parameters yield and purity, and the differences between the investigated case studies.

4.4.1 PARAFAC model choice
A PARAFAC model can decompose a data set into the signal contribution of each species if
the experimental data set has a truly trilinear structure [171, 172]. In the case of spectral
data sets, this means that an experimental data set can estimate e.g. the spectrum and
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concentration profile of each species present. Considering the physical logic that the spectra
and concentration profiles are positive, the non-negativity constraints can be included in
the calculation of chemometric models. This is a common practice to find stable, correct
multi-way chemometric models during model calculation [112, 113, 172, 185, 186].

Still, valid PARAFAC models can only be constructed if the appropriate number of com-
ponents [109, 175, 176], preprocessing techniques, and suitable model calculation parameters
are used. In the case of biological, complex solutions containing several different species, the
requirement of an appropriate number of PARAFAC components imposes a problem for the
model calculation. As not every single UV/Vis-absorbing species can be described by one
model component, the different species need to be categorized in clusters. These clusters
are formed on the basis of their similar phase behaviors among the species and shall be de-
scribed by one PARAFAC component accepting inaccuracies in the spectral prediction. This
simplification of the variety of species to several clusters introduces an error into the model.
However, if the target molecule undergoes a phase transition and contributes strongly to the
measured spectral data set, the focus of the PARAFAC models is to find the target molecule
in any phase behavior screening study. Further strategies [187] to determine the correct
number of PARAFAC components are e.g. half-splitting and comparing the experiments [172],
evaluating residuals [172, 188], and the CORCONDIA value [109]. More information on
finding suitable preprocessing [189, 190] and model calculation parameters [172, 185] can be
found elsewhere.

In crystallization or precipitation screenings, it can be expected that the protein concen-
tration decreases to the solubility line with increasing precipitant or protein concentration
due to the decreased protein solubility, which results in protein crystallization [2, 36] or
precipitation [7, 191, 192]. In the case of selective crystallization or precipitation processes,
the phase behavior is protein-specific and can be used for protein purification. This theoretical
process knowledge can be included in the choice of the PARAFAC model.

The spectral data set for the first case study was recorded for a HT-selective crystallization
screening of Lys in a ternary protein system. In total, 96 conditions were screened varying
the initial Lys concentration and precipitant concentration. The initial concentrations of the
two other proteins (RibA, CytC) were maintained constant in all screened conditions. As
the calculation of PARAFAC models with three components did not lead to a robust model,
a model with two components was calculated (see Table 4.1). Evaluating Figure 4.3 A, one
component can be identified as the target molecule Lys; the other one as a contaminant
cluster resembling mainly CytC. It is assumed that the absorbance contribution of the third
species RibA is built into a contaminant cluster [110], and that this third species is not
described as a single model component. It contributes to a smaller extent to the UV/Vis
spectra due to the lower extinction coefficient in the investigated wavelength range (3.8 and
2.8 times lower at 280 nm than for Lys and CytC) and lower concentration (up to 7.5 times
lower than the Lys concentration). Furthermore, the protein concentrations of CytC and
RibA do not change during the screening, contrary to the target protein Lys (see Wegner et
al. [181] for further explanation). As a consequence, the model cannot distinguish species
demonstrating similar phase behavior. This shows that low-absorbing species are difficult to
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describe with an own model component, and that species with similar phase behavior can be
clustered justifying species clustering in screenings with complex solutions.

The selective precipitation study of mAbs leads to a spectral data set, which can be de-
scribed by a PARAFAC model with three model components (see Table 4.1). One component
represents the target molecule mAb, the other two the AMS concentration and a contaminant
cluster. The time profile of the mAb component in Figure 4.4 A may be caused by the
changing light refraction when a solution with a high AMS passes the detector (see Subchapter
4.4.2). Another possible source could be different product-related impurities, e.g. aggregates,
fragments, as they would show a mAb resembling spectrum, but different retention times in
the analysis system due to diffusion. Below the AMS concentration of 0.5M the mAb species
is overestimated and the contaminant cluster is underestimated by the PARAFAC model
in Figure 4.4 C. In Figure 4.4 E, the two model components show the same effects above
1.4M AMS. A possible explanation of these contrasting model discrepancies of the measured
to the predicted data is that the predicted mAb UV/Vis spectrum is overestimated below
270 nm leading to inverse effects on the concentration loadings of the mAb and contaminant
component. As a result, the spectral loadings of the contaminants may be incorporated in the
predicted mAb spectrum and distort the concentration loadings of both species - the target
molecule and the contaminant cluster. This effect is more pronounced at higher absorbance
values and thus higher protein concentrations. The protein A chromatography gave further
information on the composition of the contaminants during the precipitation, wash, and
redissolution step. Figure 4.5 A provides information on the main contaminant cluster during
the precipitation and during the redissolution step. This means that the co-precipitated
contaminant cluster during redissolution cannot be distinguished from the target molecule.

The PARAFAC model of the selective VLP precipitation HT screening could be calculated
with three model components (see Table 4.1). One component describes the VLP species
while the other two describe two contaminant clusters. Assessing the concentration loadings
of all three PARAFAC components in Figure 4.6 C, the predicted species show different
phase behaviors with increasing precipitant concentration. This enables the use of a selective
VLP precipitation step for purification. Regarding the screened redissolution samples in
Figure 4.6 E, the predicted concentration loadings of the VLPs and first contaminant cluster
increase above the same precipitation threshold in Figure 4.6 C. The second contaminant
cluster shows a slight concentration increase at higher precipitant concentration meaning that
this cluster was redissolved and thus precipitated at a higher precipitant concentration. This
does not comply with the phase behavior during the precipitation step, and it is expected
that this discrepancy is caused by model inaccuracies. This assumption is supported by
the highest residuals of this model to the measured summed up spectra for the investigated
redissolution samples above the stated threshold (data not shown). Overall, the predicted
VLP spectral loadings match the measured VLP spectrum (see Figure 4.7 A). Discrepancies
are visible in the regression plot (see Figure 4.7 B) only at the higher or lower values of the
spectral loadings. Compared to the first and second case studies, the R2 value of the third
case study for the spectral loadings is lower indicating a greater deviation of the predicted
spectra to the measured spectrum. The highest RMSEP is partially caused by the different
scale and the model mismatch which can be seen in Figure 4.7 B. Additionally, the required
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preprocessing of the VLP screening data included the second derivative to enhance subtle
spectral differences between the screened solutions. The spectral preprocessing may lead to
higher discrepancies in Figure 4.7 A and lower accuracy compared to the first and second
case studies, but led to a robust model.

In summary, the choice of the correct model component and preprocessing techniques is
crucial for the model outcome. These need to be selected with care when the investigated
screening solutions involve complex solutions. Theoretical knowledge of selective precipitation
and crystallization processes helps finding valid PARAFAC models. Nonetheless, the species
in complex solutions demonstrating similar phase behavior can be clustered and described
by one model component. In the case of co-precipitation of contaminants with the target
molecule, the model may merge the spectra of these species in the predicted spectral loadings.

4.4.2 Screening for optimal yield and purity
The developed models provided information on the solubility line, protein phase behavior,
and selectivity of the screened conditions. In the first case study, the solubility line of Lys is
visible in the phase diagram in Figure 4.3 B and can be used for further yield calculations.
As the concentration of the contaminating species stayed constant in the supernatant, it can
be assumed that the produced Lys crystals demonstrate a high purity. The research on mAb
crystallization screenings spiked with model protein contaminants showed that a high mAb
crystal purity is accompanied by contaminants present in the crystallization supernatant [126].
In general, this selective crystallization process depends strongly on the impurity and its
concentration [15, 17, 27]. Regarding yield, optimal process conditions were achieved in a
precipitant range between 0.05 and 0.15M AMS.

Assessing the selective mAb precipitation study in Figure 4.4, a high AMS concentration
above 1.8M leads to the highest precipitate yield. Under the same precipitant conditions,
the concentration loadings of the contaminant species decrease indicating co-precipitation
above 1.5M AMS, but with a lower yield due to the higher specific solubility concentration.
According to the model, the mAb purity of redissolved precipitate is greatly improved when
the predicted concentration loadings of the redissolution and the precipitation solutions are
compared. Comparing the predicted to measured concentrations, the redissolution solutions
show an over- and underestimation of the mAb and contaminant species, respectively. Purity
calculations based solely on the predicted concentration loadings would be overestimated.
This may be caused by the co-precipitated contaminants (see Figure 4.5 A) as they were not
separated during the screening process.

Regarding the selective VLP precipitation process (see Figure 4.6), the model predicts
optimal process parameters when the precipitant concentration lies between 1 to 1.5M to
assure a high purity. The predicted concentration loadings of both contaminant clusters
did not indicate co-precipitation and, as a result, are not present in the redissolution
samples. To increase the product yield, the concentration above 1.2M is desired, as the
VLP concentrations in the precipitation and redissolution samples are near the limit. As
quantitative reference analytics are missing for the third case study, these results are based
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purely on model predictions and the qualitative validation with the VLP spectrum and the
solution composition with the SDS-PAGE analysis (see Figure A4.3).

4.4.3 Experimental and preprocessing differences between the
case studies

The experimental setup and the spectral data preprocessing of each case study required
adjustments to the specific protein system. This subchapter focuses on the preprocessing
differences between the investigated case study, the experimental screening variations between
selective crystallization and selective precipitation studies, and their possible effect on the
calculated PARAFAC models.

The time smoothing range for the final models of the crystallization case study was lower
than for the precipitation case studies (see Table 4.1). The four times higher flow rate of the
UV/Vis spectral analysis in the first case study is the reason, as the sample passed by the
detector in a shorter time (compare Figures 4.2 A, 4.4 A, and 4.6 A) as the time-resolved,
spectral information of the sample is comparable between the case studies after preprocessing.
Longer time-wise smoothing may lead to the removal of important information for the model
calculation. The selected wavelength range for the first case study was broader than for the
other two (see Subchapter 4.2.4.1) since CytC was present in the first case study and has
a second absorption maximum at 410 nm. The third case study required the calculation of
the second derivative (see Table 4.1). Possible reasons could be that the target molecule
VLP did not present distinct spectral differences to the contaminants [193] or contributed
less to the measured spectra compared to target molecules of the first and second case
studies. The target protein absorption shares of the initial material was high with 89.24%
and 42.82% for the first and second case study, respectively. The VLP absorption share
could not be determined as quantitative UV/Vis absorption data as a reference were missing.
The large amount of UV/Vis-absorbing contaminants in the VLP lysate may interfere with
the identification of the component representing VLPs. The differences in the time profile
peak maxima of the target molecules compared to the contaminants support this assumption
(see Figures 4.2 A, 4.4 A, and 4.6 A).

For each case study, the buffer system was adapted to the requirements of the target
molecule. The buffer substances were not UV/Vis-active in the used concentration and did
not affect the model calculation. On the contrary, the precipitant AMS showed UV/Vis-
absorbing behavior in the second case study and had an impact on the constructed models.
A possible reason could be that the light refraction occurs when solutions of different density
(mobile phase and sample solvent) pass the detector [194]. This strongly depends on the
screening AMS concentration and the sample dilution prior to the UV/Vis analysis. In the
first case study dealing with the selective crystallization of Lys, the maximal screening AMS
concentration was four times lower than in the second and third case studies. The dilution
factors for the first, second, and third case studies varied (see Subchapter 4.2.2) and were
adjusted according to the total absorbance of the initial material at wavelength 280 nm.
Taking all these factors into account, the analyzed samples of the second case study (mAb)
contained the highest AMS concentration and thus the AMS concentration contributed to a
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greater extent to the recorded UV/Vis spectra. The constructed model compensated this by
describing the precipitant concentration with its own model component (see Figures 4.4 C
and D). UV/Vis data recorded of buffer solutions containing different amounts of AMS is
shown in Figure A4.1 and support this explanation.

The screening volume, screening size, and the analyzed process step solutions differed.
The first case study (Lys crystallization) investigated 96 different conditions in 24 µL batches
with eight different Lys starting concentrations and twelve precipitant concentrations. Only
the supernatant samples of the crystallization step were analyzed. The spectral data set size
was varied in this case study. Screening conditions that did not show concentration changes of
the target molecule were excluded for model calculation. It was found that a large screening
size with little variety in species composition and concentration ratios does not improve
the model robustness but decreases the CORCONDIA value and increases the model error
(data not shown). Preferably, the model error is low and the CORCONDIA high indicating
an appropriate component number [109] and, hence, a valid model. The second and third
case studies screened twelve different precipitant concentrations in 500 µL batches for the
selective precipitation of mAbs and VLPs. Samples were analyzed during the precipitation,
the wash, and the redissolution step leading to a variety of 36 analyzed samples per screening
differing in species compositions and concentration ratios. This sample variety improved
the model calculation as the CORCONDIA of the final models was higher and the model
error lower for the second and the third case studies. The screening volume did not affect
the spectral data set or the model calculation as long as there is enough supernatant for
sampling. When selective crystallization or precipitation processes are characterized with the
PARAFAC approach, the models cannot detect if the proteins crystallized or precipitated, as
the generated models rely solely on the UV/Vis spectroscopic data set and specific protein
concentration reductions. Regarding the experimental differences between the two processes,
an additional centrifugation step is required to separate precipitate from the supernatant.
Furthermore, the crystallization process requires more time than precipitation processes due
to the time-intensive crystal nucleation and crystal growth of macromolecules [3, 26].

In summary, these three case studies illustrate how the chemometric multi-way approach
of PARAFAC can be applied to different phase behavior screenings with varying process
conditions. The differences in spectral data preprocessing could be explained leading to
a general preprocessing approach for future crystallization and precipitation screenings.
Experimental differences in scale, sample dilution, screening size, and changes of the used
chemicals did not interfere with the model calculation as long as the spectra of the target
molecule and contaminant species contribute to the UV/Vis spectral measurement and differ
in their spectral profiles. A broad variation of the different species concentrations and ratios
in the data set was found to be preferred and can be achieved by analyzing different process
solutions during selective precipitation or crystallization, washing, and redissolution process
steps.
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4.5 Conclusion
In this research project, multi-way chemometrics were successfully applied to three high-
throughput (HT) screenings for the characterization of selective crystallization and precipita-
tion processes. Supernatant samples were taken after crystallization in the first case study,
and after precipitation, washing, and redissolution for the second and third case studies.
Besides model proteins, different modalities, e.g. virus-like particles (VLPs), monoclonal
antibodies (mAbs), were investigated. The recorded ultraviolet-visible light (UV/Vis) spectra
of the samples of each case study were structured as a four-dimensional (4D) data set and
preprocessed to eventually calculate one parallel factor analysis (PARAFAC) model per case
study. The models of the first and second case studies were compared with quantitative
reference data on specific concentrations and spectra of the purified species to test the model
validity and to find general preprocessing and model parameters. This knowledge of the calcu-
lation parameters was used for the third study when only the spectrum of the purified target
molecule could serve as a quantitative reference. The concentration profile was only validated
with the qualitative sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
analysis.

Without prior calibration, these models coupled with UV/Vis spectroscopy could quickly
provide species spectra and concentration estimations for selective crystallization in chemically
defined solutions or precipitation screenings in complex solutions. The calculated PARAFAC
components were supposed to represent the various species present in the solution. Still,
low-absorbing species or species with similar phase behaviors could not be described with
a single model component per species as shown in the first case study. This bears the
advantage of clustering species depending on their phase behavior and to better describe
multiple impurity species in complex solutions with one model component per cluster. This
said, only species which crystallize or precipitate at various precipitant concentrations can be
distinguished.

With quantitative insights calculated from the concentration estimations, the generated
models could visualize the influence of the precipitant on the different species. Thus, they
could be used to evaluate the screened conditions in terms of purity and yield and could
potentially find optimal process conditions in all three case studies.

When a suitable model component number was used, reasonable and valid models could be
calculated regardless of the modality, screening scale, and other experimental parameters. This
supports the assumption that the approach of coupling PARAFAC and UV/Vis spectroscopy
can be transferred to other modalities and purification processes based on phase behavior.
At an exploratory stage of process development, this approach can support process analytical
technology (PAT) and it may be especially valuable as deeper process knowledge can be
generated without refined analytics and with reduced input of resources. Different impurity
clusters and the target molecule can be characterized regarding their differences in spectra
and phase behavior. The PAT models estimated yield and purity and can be a basis for
detailed process engineering. This process knowledge helps designing selective crystallization
and precipitation processes and finding optimal process conditions while complying with the
quality by design (QbD) guidelines and the high standard of biopharmaceutical processes.
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Abstract
Protein crystallization as opposed to well-established chromatography processes has the
benefits to reduce production costs while reaching a comparable high purity. However,
monitoring crystallization processes remains a challenge as the produced crystals may interfere
with analytical measurements. Especially as a method for capturing proteins from complex
feedstock containing various impurities, establishing reliable process analytical technology
(PAT) to monitor protein crystallization processes can be complicated. In heterogeneous
mixtures, important product characteristics can be found using multivariate analysis and
chemometrics which contribute to the development of a thorough process understanding.

In this project, an analytical set-up is established combining off-line analytics, on-line
ultraviolet-visible light (UV/Vis) spectroscopy, and in-line Raman spectroscopy to monitor
a stirred batch crystallization process when there are multiple phases and species present.
As an example process, the enzyme Lactobacillus kefir alcohol dehydrogenase (LkADH) was
crystallized from clarified Escherichia coli (E.coli) lysate on a 300 mL scale in five distinct
experiments, with the experimental conditions changing with regard to the initial lysate
solution preparation method or the precipitant concentration. Since UV/Vis spectroscopy is
sensitive to particles, a cross-flow filtration (CFF)-based bypass enabled the on-line analysis
of the liquid phase providing information on the lysate composition regarding the nucleic acid
to protein ratio. A principal component analysis (PCA) of in situ Raman spectra supported
identifying spectra and wavenumber ranges associated with product-specific information
and revealed that the experiments followed a comparable, spectral trend when crystals were
present. Based on preprocessed Raman spectra, a partial least squares (PLS) regression model
was optimized to monitor the target molecule concentration in real-time. The off-line sample
analysis provided information on the crystal number and crystal geometry by automated
image analysis, as well as the concentration of LkADH and host cell proteins (HCPs).

In spite of a complex suspension containing lysate and scattering crystals, and various
impurities, it was possible to monitor the target molecule concentration in a heterogeneous,
multi-phase process using spectroscopic methods. With the presented analytical set-up of
off-line, particle-sensitive on-line and in-line analyzers, a crystallization capture process can
be better characterized regarding the geometry, yield and purity of the crystals.

5.1 Introduction
Proteins, e.g. biopharmaceuticals, enzymes, and other biologically active molecules offer a
wide range of therapeutic applications and have reinvented the treatment of various diseases
and disorders. Essential to the success of biologics are efficient production, isolation, and
purification using mostly chromatography as an expensive standard technique to ensure a
high purity. Alternatively, other downstream processes, e.g., protein crystallization [127] or
precipitation [163, 164], can be developed which are easier to scale, can achieve high purity
and yield, and decrease production costs while maintaining high productivity. Whereas
protein crystallization is traditionally associated with fundamental knowledge on the protein

76



Chapter 5 – Raman & PLS in complex, multi-phase crystallization systems

structure, the application for formulation and purification reasons has drawn more interests
in the past years reducing the number of process steps saving both time and resources in the
production of biologics. With respect to formulation, crystalline suspensions are beneficial
due to their lower viscosity at high product concentration [130], higher stability [131], and
potentially controlled release properties [133].

Saturation is the primary cause behind crystallization [195] , and it is influenced by
a variety of environmental factors, e.g. protein concentration [136, 195], pH [18, 136],
precipitant concentration [25, 196, 197], or temperature [6, 195]. Compared to crystals of
a chemical substance, the larger size of a biological molecule increases the complexity of
the protein crystal. Therefore, extensive empirical screenings [2, 195], precise, automated
high-throughput (HT) techniques [31, 36] and HT analytics [37, 181, 198, 199] are essential
to find optimal process conditions.

In the past, protein engineering introduced the possibility to produce proteins with
different abilities or processing properties, e.g. increased crystallizability and solubility
behavior [200–202]. Especially increased crystallizability may make protein crystallization
attractive for larger production scales due to its higher productivity and higher probability
to form crystals [10]. For this purpose, research in micro-liter [10, 201, 202] and milli-liter
scale [128, 203] has proven that protein crystal contacts in an enzyme can be improved to
increase crystal occurrence and yield in pure protein solutions or clarified harvest leading to
a high product purity. In practice, harvest broth from biotechnological processes involves
mixtures of proteins, impurities, and only a small quantity of the target molecule. While a
lot of research was reported on scaled-up protein crystallization in solutions containing only
traces of impurities or even none [14, 32, 33, 204–208], the challenges imposed by complex
solutions in capture processes have received relatively little attention [127, 128, 209, 210].

As suggested by the U.S. Food and Drug Administration (FDA) [115], PAT is crucial for
ensuring the products safety to the patient, and the quality of a pharmaceutical manufacturing
process. To accomplish this, the critical process parameters and quality attributes need to be
controlled by selecting real-time analytics, and suitable variables. Possible real-time process
analyzers are spectroscopic measurements which are commonly applied in biotechnological
processes. A lot of PAT research focuses on the particle-sensitive UV/Vis spectroscopy [57,
103], water-sensitive fourier-transform infrared spectroscopy (FTIR) [83, 118] or process
solutions with lower concentration [53, 57]. These restrictions impose challenges when multiple
phases and heterogeneous mixtures need to be monitored in a protein crystallization process in
an aqueous environment. Especially when particles are present possibly caused by aggregation,
precipitation, or crystallization, PAT faces difficulties with the choice of an adequate process
analyzer. Light scattering, the heterogeneity of the suspension, and size distribution may
affect the measurement and need to be considered for the data analysis. Raman spectroscopy
may be a possible solution to this problem as it was shown to monitor crystallization processes
of chemical target molecules [84, 147, 208] or the enzyme lysozyme [211] out of pure component
solutions [82]. When examining heterogeneous, more complex solutions, as e.g. in upstream
processes [72, 76], Raman spectroscopy has demonstrated its suitability for process monitoring
despite possible interferences from sample turbidity [66], stirring, temperature [64], or pH
fluctuation [76]. In this context, the integration of Raman spectroscopy holds promise for
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improving our understanding of protein crystallization processes in heterogeneous mixtures.
As an alternative, UV/Vis spectroscopy is a promising analytical tool as it was implemented
in-line with an attenuated total reflection (ATR) probe in pure solution crystallization
processes [86, 138, 146, 204, 212] and is often used for strongly absorbing solutions. UV/Vis
transmission measurements with variable pathlength (VP) technology are more flexible in
terms of solution absorption and was used when molecule concentration varied during the
process [56, 60, 62] similar to crystallization processes. However, this technique is prone to
particle scattering and solid crystalline particles would interfere with the measurements.

Due to high correlation within the data set, the spectra produced by the above stated
techniques are commonly processed using chemometric techniques, e.g. PCA [147], PLS [147]
regression models, or gaussian process regression (GPR) [213], just to name a few techniques.
Further explanation on chemometric methods can be looked up in published literature [90, 99,
165, 166]. Additional preprocessing of Raman spectra [214] improves the chemometric analysis
and helps to reduce the complexity of the data set, extract essential information from spectral
data, and remove spectral noise or unwanted experimental disturbances, particularly in situa-
tions involving multiple species and interferential effects. Regarding crystallization processes,
crystallization processes of mostly chemical substances were monitored spectroscopically in
the past using PCA [120], principal component artificial neural networks (PC-ANN) [145],
principal component regression (PCR) and PLS [147, 208, 215], or multiple linear regres-
sion (MLR) [211]. For the purpose of PAT, there have been numerous attempts to monitor
crystallization of chemical compounds in pure [85, 212] or relatively pure mixtures [208, 216,
217]. With respect to biologics, PAT studies investigating the crystallization process of the
benchmark crystallization protein lysozyme in model protein solutions [204, 211] or of small,
biological molecules with low levels of impurities [120] have been discussed before. To the
best of the authors’ knowledge, however, no research has been conducted developing PAT
for protein crystallization as a capture step with larger biological targets in heterogeneous,
complex mixtures, i.e. clarified lysate. The implementation of real-time monitoring would
extend our understanding of protein crystallization in complex solutions and facilitate process
control.

To find a suitable PAT set-up for protein crystallization in a heterogeneous mixture, this
research project investigates different spectroscopic methods, their limitations, and possible
implementation for the application to crystalline slurries. The molecule of interest is the
enzyme LkADH and is crystallized from clarified lysate in a stirred vessel on lab-scale. To
increase the variety of the recorded data sets, five batch experiments are conducted with
varying crystallization conditions, namely the precipitant concentration, initial absorption
value of the clarified lysate, and changes in the lysis protocol. An in situ Raman probe
is immersed directly into the crystallization vessel, and records in-line spectra which are
processed with chemometric methods to predict product characteristics, e.g. target molecule
concentration in the liquid phase. An analytical bypass of the crystallization vessel is realized
with a CFF-based set-up to facilitate the use of particle-sensitive analytics, i.e. UV/Vis
spectroscopy with a VP flow cell. Microscopic imaging, LkADH and HCP quantification of
off-line samples - and optionally redissolved crystals - assist in developing a comprehensive
process understanding of the crystallization process in complex lysate. In short, the results
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demonstrate how a protein crystallization PAT can be realized for process and product
characteristics in a heterogeneous, complex solution where multiple phases are present.

5.2 Materials and methods

5.2.1 Experiment buffer and protein preparation
All chemicals were purchased from Merck KGaA (Darmstadt, DE), unless otherwise stated.
The buffer solutions were prepared at room temperature with ultrapure water (PURELAB Ul-
tra, ELGA LabWater, Lane End, High Wycombe, U.K.), pH-adjusted with 32% hydrochloric
acid (HCl) or 4M sodium hydroxide (NaOH) and filtered using a 0.2 µm cellulose acetate (CA)
membrane filter (Sartorius Stedim Biotech GmbH, Göttingen, DE).

The LkADH protein (wild-type (WT); protein data bank (PDB) ID: 7P36) was produced
with E.coli BL21(DE3) in a fed-batch process in 1.5L stirred-tank bioreactors (DASGIP,
Eppendorf GmbH, Hamburg, DE) as described in Schmideder et al. [218]. The process is
divided in three consecutive phases at pH 7.0: batch phase (5.0 g/L glucose, 4 h at 37 ◦C),
exponential feeding phase (growth rate 0.15/h, 18 h at 37 ◦C), and protein production phase
(500 µM isopropyl β-d-1-thiogalactopyranoside (IPTG), 3.0 g/(Lh) glucose, 48 h at 30 ◦C).
The harvested E.coli cells were kindly provided by the research group of Prof. Weuster-Botz.
The cell pellets were further processed as described in Walla et al. [203], with variations listed
in the Supplementary Table A5.1. The cell pellets were sonified in an ice bath by the sonifier
SFX550 (Branson Ultrasonic Corporation, Danbury, US-CT, tapered microtip 101-148-062,
70% amplitude, 40 s twice to three times with 50% pulse and with 3min breaks between each
cycle. Cell debris were removed from the supernatant by centrifugation at 4 ◦C with 17 418 rcf
for 1 h and by filtration with a glass fiber, a 0.45 µm, and a 0.2 µm CA syringe filter (Sartorius
Stedim Biotech GmbH, Göttingen, DE). After dialysis (SnakeSkin™ dialysis tube, ID 34mm,
3.5 kDa molecular weight cut-off (MWCO), Thermo Fisher Scientific, Inc., Waltham, MA) the
filtered supernatant to the protein buffer (20mM 4-2-hydroxyethyl-1-piperazineethanesulfonic
acid (HEPES), 1mM magnesium chloride (MgCl2) at pH 7.0), the initial absorption value
Ainitial at 280 nm of the clarified lysate was adjusted with protein buffer according to Table 5.1
using a NanoDrop™ 2000 spectrometer (Thermo Fisher Scientific, Inc.).

The crystallization buffer was a 100mM tris(hydroxymethyl)aminomethane (Tris), 50mM
MgCl2 buffer with a varying polyethylene glycol monomethyl ether 550 (PEG MME 550)
concentration depending on the experiment (see Table 5.1). The redissolution (RD) buffer
was a 20mM HEPES, 2M MgCl2 buffer at pH 7.0. The required buffers for the immobilized
metal ion affinity chromatography (IMAC) analysis contained 50mM phosphate, 500mM
sodium chloride (NaCl) and 20mM imidazole for the equilibration or 200mM imidazole for
the elution buffer (both pH 7.0).
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5.2.2 Protein crystallization experiment

The batch crystallization process was initiated in a 300mL jacketed glass vessel (CG-1929-
X11) equipped with an overhead stirrer with a stirrer speed of 80 rpm (CG-2024-10, both
provided by Chemglass Life Sciences, Vineland, US-NJ, anchor style stir paddle) by placing
150mL clarified lysate in the vessel and adding 150mL crystallization buffer. The initial
crystallization conditions varied according to Table 5.1 for the five conducted experiments
Exp1 - Exp5. After 30 to 90min the vessel content was centrifuged (15min, 3225 rcf) to
remove initial HCP and nucleic acid precipitate. The supernatant was placed in the glass
vessel, the experiment continued and the target molecule crystallized after the centrifugation
step.

Table 5.1 Crystallization conditions, HCP content and crystal yield: The
variations of the crystallization conditions are the initial absorption at 280nm Ainitial,
cPEG, initial, and the number of lysis cycles. The experiments were performed with
or without the analytical bypass. The HCP content of the first sample is compared
with the content of the washed and redissolved crystals. To account for differences in
dilution, the HCP content was normalized to the target molecule concentration. The
crystal yield is estimated by the ratio of the initial to equilibrium LkADH concentration
in the supernatant and derived from the IMAC analysis (see section 5.2.3.3).

crystallization conditions HCP removal

exp. Ainitial
at

280 nm
in

AU/cm

cPEG, initial
in g/L

number
of lysis
cycles

bypass cHCP, initial
in µg/L

cHCP, RD
in µg/L

HCP
reduc-
tion
factor

crystal
yield in

%

Exp1 20.0 200 3 w/ 53460 n.d. n.d. 46.6
Exp2 20.5 250 2 w/ 27412 358 77 77.9
Exp3 20.8 300 2 w/ 42438 n.d. n.d. 77.9
Exp4 28.5 200 2 w/ 38644 n.d. n.d. 27.9
Exp5 20.5 250 2 w/o 42982 437 98 76.4

abbreviations - HCP: host cell protein;PEG: polyethylene glycol; RD: redissolution;

n.d.: not determined; w/: with; w/o: without
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Figure 5.1 Experimental and analytical set-up of the protein crystallization experiments
as a scheme. The desired product characteristics are listed on the right and paired up
with the respective analytical measurement method and output. The vessel contains the
clarified lysate containing HCPs, nucleic acids, the molecule of target LkADH, and later
during the process LkADH crystals while the installed Raman probe records in-line
spectra. The CFF-based set-up facilitates the solid-liquid separation which makes
the implementation of an on-line VP UV/Vis measurement in the permeate stream
possible. Both, retentate and permeate stream are directed back to the vessel. All
off-line samples are analyzed with IMAC, and microscopic imaging. Selected samples
are further analyzed with automated enzyme-linked immunosorbent assay (ELISA) to
determine the HCP content.

5.2.3 Analytics
The following section describes the PAT set-up to monitor protein crystallization using in-line
Raman spectroscopy, a filtration-based on-line UV/Vis set-up and off-line samples. The
set-up of the different analytics is visualized and listed in Figure 5.1.

5.2.3.1 In-line Raman spectroscopy

To monitor the crystallization process by in-line Raman spectroscopy, a MarqMetrix Bioreactor
Ballprobe (MarqMetrix®, Seattle, US-WA) was immersed in the crystallization suspension
and connected to a HyperFlux™ PRO Plus 785 Raman analyzer with Spectralsoft 3.3.600.1
(Tornado Spectral Systems, Mississauga, CA). The measurement was performed with a laser
power of 495mW at the laser wavelength 785 nm and an exposure time of 8553ms averaging
15 spectra every 12min between the Raman shift range 200 to 3300 cm−1.
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5.2.3.2 Analytical bypass and on-line analytics

As an analytical bypass, CFF-based set-up was installed to separate the solid precipitate and
crystals from the supernatant to facilitate the implementation of particle-sensitive devices
and avoid their possible blockages by solid particles.

A KrosFlo Research KRIIi CFF system was equipped with an automatic backpressure
valve, pressure transductors (all Spectrum Labs, Rancho Dominguez, US-CA) and CFF
membrane (modified polyethersulfone (mPES), 0.2 µm pore size, 13 cm2 surface area, C02-
P20U-10-N, Spectrum Laboratories, Inc., Rancho Dominguez, US-CA). The feed flow rate and
the desired transmembrane pressure (TMP) were set to 20mL/min and 0.05 bar, respectively.
Overnight the bypass was switched off and the bypass suspension was pumped into the
crystallization vessel. Subsequently, the bypass and the membrane were cleaned with water
at 40 ◦C. The liquid flow meter SLS-1500 (Sensirion AG, Stäfa, CH) was installed at the
permeate plug in the analytical bypass and recorded the permeate flow averaged over a time
range of 5 s. As UV/Vis spectroscopy is sensitive to larger particles and light scattering,
the on-line FlowVPE flow cell (C Technologies, Inc., Bridgewater, US-NJ) with a Cary 60
spectrometer (Agilent Technologies, Inc., Santa Clara, US-CA) was implemented in the
analytical bypass and measured the UV/Vis absorption slope spectra in the permeate flow
between 220 to 400 nm.

5.2.3.3 Off-line analytics

Off-line samples were taken during the crystallization process through an injection plug (Fre-
senius Kabi AG, Bad Homburg, DE) in the feed flow. For visual crystal detection, suspension
samples were 10 times diluted to prevent proceeding crystallization. For the supernatant
analysis, the samples were centrifuged (2min, 12 000 rcf) and the diluted supernatants (2
times) for IMAC and ELISA were stored at −20 ◦C until analysis. Grown crystals were
redissolved by removal of the supernatant after centrifugation, washing with protein buffer, a
second centrifugation step, redissolving in RD buffer and a third centrifugation step. The
centrifugation procedure is described above.

For visual inspection of the crystalline suspension, 24 µL-quadruplicates of the undiluted
and 10 times diluted suspension were placed a MCR Under Oil Crystallization Plate (Hampton
Research, Aliso Viejo, CA), sealed with a transparent foil (Shurtape Technologies, LLC,
Hickory, US-NC) and imaged using a tempered microscopic system (RI 54, FORMULATRIX
LLC, Bedford, US-MA, T 1000 mytron Bio- und Solartechnik GmbH, Heiligenstadt, DE) at
20 ◦C. As the sampling time for the microscopic imaging was less than 20min and is short
compared to the protein crystallization time, crystal nucleation or growth in the static micro-
batch samples is not expected. Next to manual, visual inspection, a machine learning (ML)
model based on augmented, synthetic images of crystals [219] counted and measured the
crystal height and width to detect crystals objectively and automatically. Images were treated
as outliers and taken out of the analysis when they were out of focus or showed large bubbles.
Using the model as a basis, the following small adaptions were applied to adjust the detection
method to the setup used in the presented experiments. The border due to the circular well
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geometry was removed from the microscope images by cropping the image to the central
region with a size of 1400x1200 pixels. Furthermore, large-area false positive detections
could be eliminated by applying a threshold for the maximum crystal size of 103 px2. The
confidence threshold for accepted detections was set to 0.2. Finally, inference was performed
on a GTX 1080 GPU.

The IMAC analysis was performed as a reference for the LkADH concentration cLkADH as
the target molecule contained a His-tag. A TSKgel® Chelate-5PW column (Tosoh Corporation,
Shiba, JA) with a pre-column filter (0.2 µm, OPTI-SOLV EXP, Supleco™, Bellefonte, US-
PA) was installed in a Dionex Ultimate 3000 RS high-performance liquid chromatography
(HPLC) system (Thermo Fisher Scientific, Inc.) equipped with a diode array detector. The
supernatant samples were thawed, filtered with a AcroPrep™ Advance filter plate (3.0 µm
glass fiber/0.2 µm Supor® membrane, Pall Corporation, Port Washington, NY). Either 20 µL
supernatant samples or 40 µL of the redissolved crystals (filtered as above) were analyzed
with a two step elution protocol at 100mM and 200mM imidazole eluting loosely bound
impurities and the target molecule, respectively (see Supplementary Material A5.1). The
absorption was used to quantify LkADH. The elution peak absorption and the extinction
coefficient 0.8596AU ∗ L/(g ∗ cm) (derived from the web-tool ProtParam [220]) at 280 nm
and was used to quantify LkADH.

The HCP concentration of selected supernatant and redissolved crystals samples was
determined using the Gyrolab XPlore station with its software Gyrolab Control 7.0.3.133
(Gyros Protein Technologies AB, Uppsala, SE) following the manufacturer’s protocol and
used to evaluate the HCP removal by LkADH crystallization and RD.

5.2.4 Data analysis
Data analysis including spectral preprocessing, model calibration, and data plotting was
performed in MATLAB, R2019b (The MathWorks, Inc., Natick, MA). To contrast different
sampling approaches, the Kennard-Stone (KS) data split algorithm [221, 222] and a manual
data split approach were tested for model validation. Spectral preprocessing for Raman spectra
were implemented to highlight significant spectral features which can then be correlated to
the desired process parameter to enable PAT.

The mdatools toolbox [223] was applied on the Raman spectra using the baseline correction
with asymmetric least squares (smoothness 10000, penalty value 0.01). The spectra were
treated with the Savitzky Golay (SG) filter ( Savitzky and Golay, 1964, KS data split: window
size 29, 2nd derivative, manual data split: window size 17, 1st derivative) and cut to the
Raman wavenumber regions 300 to 490, 750 to 1040, 1210 to 1320, and 1600 to 1640 cm−1.
The optimal parameters for the preprocessing, namely window size and SG filter derivative,
and model calibration, i.e. number of latent variables, were optimized using a genetic
algorithm (GA). For details on the methodology, the authors refer to Andris et al. [103].

The Raman spectra of all experiments were baseline-corrected and analyzed with the
unsupervised learning method PCA to reduce the dimensionality of the data set and visualize
correlation between the spectra and the crystallization process. The PLS regression model,
as a supervised learning method, was employed to predict the concentration of the target
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molecule in the supernatant. As a first step, the Raman spectra closest to the sampling
time were selected and grouped into a calibration and a validation data subset consisting
of 29 and 5 experimental samples, respectively. To assess the impact of two distinct data
splitting methods on the model prediction, the samples were initially divided using the KS
algorithm which selects a representative data subset from a larger data set. As an alternative,
manual data split approach, the samples of Exp5 were selected as the external validation
set to examine the model predictability on new experiments and batch-to-batch variations.
Finally, the LkADH concentrations obtained from the IMAC analysis were regressed against
the preprocessed spectra of the calibration subset via leave-one-out cross-validation. The
model calibration procedure with KS or manual data splitting resulted in 8 or 10 latent
variables, respectively.

5.3 Results

5.3.1 Off-line: Image analysis, LkADH and HCP quantification

In this project, the crystal yield is estimated by the decrease from the initial to the equilibrium
concentration of the target molecule and can be used to evaluate and compare processes.
Furthermore, the HCP concentration of the initial solution and the redissolved crystals was
determined and normalized to the target molecule concentration providing information on
the purity and HCP removal for this process. These values and the experimental conditions
are listed in Table 5.1 and demonstrate a 77-fold, and 98-fold HCP removal in Exp2 and
Exp5 while achieving a yield of 77.9% and 76.4%.

The mean of detected crystals per off-line sample of the five conducted experiments are
depicted over time with their standard deviation in Figure 5.2 in (A-E). The light green and
gray shaded areas indicate off-line samples in which crystals of larger size were visible and
micro-crystals were assumed as the latter are difficult to detect due to the image resolution.
For Exp1 and Exp4, the mean count of detected crystal fluctuates between 200 to 500 whereas
Exp2 and Exp5 start with detected crystal counts less than 100 and increase after 20 h to
values above 1000. The crystal count of Exp3 rises after 6 h to values above 400. A trend
towards lower crystal detection points in time with increasing polyethylene glycol (PEG)
concentration is visible from left to right. The largest number of detected crystals were
achieved in Exp2 and Exp5 which also demonstrated slightly higher crystal heights (see
Supplementary Material Figure A5.3). In two exemplary microscopic images of the same
off-line sample of Exp2 after 19.7 h, the ML-based model detected crystals are highlighted in
(F, G) in Figure 5.2. The microscopic images differed in the dilution factor to account for high
crystal densities and reduce overlapping crystals. As not all visible crystals are highlighted
in Figure 5.2 (F, G), the image analysis tool is used in this project complementary to the
manual inspection as an objective, qualitative tool to narrow down the crystal induction time
and to provide insight into the crystal geometry.
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Figure 5.2 Counted crystals in microscopic images from off-line samples. The mi-
croscopic images of off-line samples are analyzed with a ML-based image analysis
tool [219] counting the crystals and providing information on the crystal geometry
(see Supplementary Material A5.3). The mean crystal count per imaged well, and
its standard deviation of undiluted and diluted off-line samples are visualized over
the experimental time with dark green squares and light green circles with dotted
lines to guide the eye and with their respective error bars. The off-line samples with
micro-crystals present are shaded in gray as they are difficult to detect due to the
image resolution (A, D). The off-line samples showing larger crystals are shaded in a
light green box (B, C, E). Exemplary, the results of the automated image detection are
shown for an undiluted (F), and a diluted (G) off-line sample of Exp2 after 19.7h.
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Figure 5.3 Performance and application of the analytical bypass. The analytical bypass
can be characterized by the measurement of the TMP (A) or permeate flow rate
V̇permeate (C) over time for the five conducted experiments. For clearer visualization,
TMP and the V̇permeate are averaged with a moving mean over each minute and only
one value per minute is shown as the data were recorded with a high frequency. The
missing data are caused by the fact that the bypass was switched off overnight. Spikes
in the recorded flow rate are artefacts from starting or turning off the analytical bypass.
The recorded VP UV/Vis slope A280nm

dpath
(B) and the A260nm

A280nm
(D) ratio are shown over

time. The different experiments are visualized with different markers and four different
shades of blue.

5.3.2 On-line: Analytical bypass and UV/Vis spectroscopy
The analytical bypass was installed to make the implementation of particle-sensitive analytics
feasible in crystallization processes. The bypass characteristics and the results of the VP
UV/Vis spectroscopy are depicted in Figure 5.3 over time for Exp1 to Exp4 as Exp5 did
not have a bypass installed. The different colored markers each represent one experiment
differing in the crystallization conditions (see Table 5.1). The TMP over the CFF membrane
in Figure 5.3 (A), and the flow rate of the permeate stream in Figure 5.3 (C) can help to
evaluate the reliability of the on-line sensor implemented in the analytical bypass as the sensor
can only measure reliably if the solution in the bypass represents the current particle-free
vessel content. The absorption at 280 nm A280nm is derived with respect to the path length
dpath and shown over time t as A280nm

dpath
in Figure 5.3 (B). The ratio between the absorption

values at 260 nm and 280 nm is depicted over time as A260nm
A280nm

in Figure 5.3 (D)).
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The TMP for all experiments was mainly below 0.15 bar and remained constant for several
hours on each day. Outliers are visible in all experiments which occurred when the bypass
was blogged requiring manual blockage removal. Due to potential overnight tube blockage
and damage on the devices, the bypass was switched off overnight which explains the missing
data during nighttime. Exp2, Exp3, and Exp4 do not demonstrate stable TMP values on the
third day and, consequently, the bypass was switched off. The start and stop time varied as
the experiments started at different time points during the day.

The flow rates in the permeate stream in all experiments drop from a value between 3
to 6mL/min to a value of 0.1 to 1.1mL/min within the first four hours of each experiment.
On the second and third day, the flow rate of Exp1 and Exp3 remain on a constant level
between 0.01 to 1.1mL/min. The flow rate values for Exp2 and for Exp4 fluctuate between
−0.5 to 0.5mL/min.

The absorption slope A280nm
dpath

can indicate changes in the concentration of UV/Vis absorbing
material in the supernatant. After switching on the analytical bypass, the absorption slope
data required between 0.5 to 4 h to stabilize to a constant value. On the first day within the
first 7 h the absorption slope decreases during the Exp2 and Exp3 whereas Exp4 does not
show decreasing absorption values. The absorption data of Exp1 were not recorded. The
absorption slopes of Exp1 to Exp3 experiment stabilized after 2 to 4 h on the second day.
The third day shows stable values in Exp1, Exp2 and Exp3 whereas the absorption values of
Exp4 did not stabilize due to tube blockage.

The absorption ratio A260nm
A280nm

, as an indicator for nucleic acid and protein content, stabilized
to values around 1 in the case of Exp2 to Exp4. The highest A260nm

A280nm
ratios of 1.15 were

achieved on the second day. Analogous to the absorption slope at 280 nm in Figure 5.3 (B),
the ratios stabilized on the second and third day after switching on the analytical bypass but
required less time. The ratio in Exp1 was higher around 1.6 and was the only experiment
which included three lysis cycles.

5.3.3 In-line: Raman spectroscopy and exploratory analysis
To monitor the stirred batch crystallization process, a Raman probe was installed in the vessel
and recorded in-line spectra over time. Spectral preprocessing is advised to enhance spectral
differences and remove baseline drifts, background signals, or detector noise. Generally, several
different techniques are tested to find a matching set of preprocessing steps in the most
cases, e.g. baseline correction, background subtraction, normalization, centering. Figure 5.4
shows the effects of the preprocessing steps on the spectra later used for the regression model.
All recorded spectra are preprocessed and are visualized in gray to black color with one
arbitrary spectrum in orange to better visualize the preprocessing effects on one exemplary
spectrum. The raw spectra (see Figure 5.4 (A)) are baseline-corrected (see Figure 5.4 (B)),
and treated with a SG filter, and 2nd derivative for the KS or 1st derivative for the manual
data split (see Figure 5.4 (C, D)). The selected wavenumber ranges for the PLS regression
model development are illustrated with gray shaded boxes in (see Figure 5.4 (C, D)). The
selection of preprocessing steps reduce the baseline drift, which is visible in Figure 5.4 (A, B),
align the spectra and help to increase spectral differences. The calculation of the derivatives
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Figure 5.4 Preprocessing of Raman spectra. The raw Raman spectra, used for the
regression modeling, are shown over the recorded wavenumber range from gray to black
to visualize the time (A). The orange line represents one specific spectrum to better
visualize the effect of the preprocessing effects. Preprocessing techniques, namely the
baseline correction (B), and the application of the SG filter for the KS (C) or manual
data split (D), are applied to enhance spectral differences. The gray boxes in (C, D)
depict the Raman shift ranges that are used for the PLS model development.

emphasizes peak shifts in the examined spectra near 790 cm−1, 1260 cm−1, or 2970 cm−1.
Beforehand, different normalization, derivative and baseline correction methods were tested,
but did not improve the interpretability of the data. To demonstrate the preprocessing effects
on the experimental data, a zoom into the selected wavenumber regions of Exp3 is included
in the Supplementary Material A5.5 as an example.

A PCA analysis of a large data set can aid to visualize trends and cluster observations
in groups, and was performed on the preprocessed Raman data of all 5 experiments in this
study using the whole spectral range (200 to 3300 cm−1). Figure 5.5 depicts PC2 over PC1
of the PCA and each subfigure depicts the spectra of one experiment. The colors blue,
orange, and yellow represent observations before the centrifugation step (see section 5.2.2),
before and after the first crystals were detected in the microscopic images in the off-line
examined samples. The PCA loadings can be found in the Supplementary Material A5.6.
With passing time of the crystallization experiment, PC1 decreases whereas PC2 increases as
indicated by the arrows. The arrows demonstrate a comparable slope when all observations
are visualized in one diagram (figure not shown). The experiments Exp2 and Exp5 show
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Figure 5.5 PCA scores of Raman spectra. The scores of the 1st & 2nd principal
component (PC) are identified as PC1 and PC2 and are shown for the five conducted
experiments (A-E). The observation of each experiment are classified by investigation
of the off-line microscopic images. Observations before the initial centrifugation step,
after the centrifugation step until the first, visual occurrence of crystals and after the
first detected crystals are shown in blue, orange, and yellow, respectively.

two clusters. The left clusters follow the direction of the arrows. The right clusters do not
follow the same direction and could be traced back to the irregular peak appearances which
can be seen in Figure 5.4 near 493 cm−1, 708 cm−1, 1410 cm−1, 2909 cm−1, and 2970 cm−1.
Among the five experiments, the observations of Exp4 stand out as they follow the direction
of the marked arrow, but are more widely scattered. Exp3 observations move quickly from
observations in the lower right to the upper left corner of Figure 5.5 (C). The observations
before crystallization was detected in the off-line samples are located at the end of the
illustrated arrows whereas the observations after crystallization are located near the tip of
the arrows. Further inspection of the preprocessed spectra over time showed that the changes
before and after crystallization are visible in the spectra by gradually reduced peak heights
(data not shown).

5.3.4 PLS model development and application on protein
concentration monitoring

For the development of a PLS model, the preprocessed spectra are regressed on the off-
line measured concentration cLkADH from the IMAC analysis. Then, the developed model
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Figure 5.6 Chemometric regression model on Raman spectra and effects of validation
sampling techniques. The preprocessed Raman spectra are regressed on the IMAC
derived LkADH concentration with PLS models. Two models differing in the choice of
the validation data set are compared. The white circles, gray squares, and dashed line
represent the calibration, validation data, and theoretical values, respectively. First, the
measured over model-predicted concentrations are visualized in (A) for a model with
KS data split. Analogous to that, the measured over model-predicted concentrations
are shown in (B) for a model where Exp5 was chosen manually as the validation data
set. High coefficient of determination (R2) andpredictive relevance (Q2), and low root
mean squared error of cross-validation (RMSECV ) and root mean squared error of
prediction (RMSEP ) values indicate an applicable model.

is applied on all spectra which were recorded during the batch experiments to assess its
potential to monitor real-time concentrations of the target molecule.

Figure 5.6 shows the results of two separately calculated PLS model which differed only
in the choice of the data split for the external validation. The KS algorithm chooses the
external validation samples according to the uniform distribution within the data set. For the
model with KS data split, the measured over predicted concentrations of the target molecule
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Figure 5.7 PLS model application on crystallization processes out of clarified lysate.
The PLS model calculated with the manual data split predicts the LkADH concentration
on the basis of the in-line recorded Raman spectra in orange for the five conducted
experiments (A-E). Off-line LkADH calibration and validation concentrations are
calculated from the IMAC analysis and are depicted with green circles and squares,
respectively. Analogous to Figure 5.2, the light green boxes (B, C, E) indicate the time
range when crystals are expected in the crystallization vessel as crystals are detected in
the microscopic images in the off-line samples. The off-line samples in the time range
illustrated with the gray boxes (A, D) showed only micro-crystals which were difficult
to distinguish from precipitate visually.

are shown in Figure 5.6 (A). The white circles and gray squares represent the calibration
and external validation set, respectively. For the second model, Exp5 was manually selected
as the external validation set to evaluate the PLS model transferability to new experiments.
The measured over predicted concentrations of the second model with the manual data split
are illustrated in Figure 5.6 (B).

In the case of both models, the calibration data fit the dashed line, representing the a
suitable model, well indicating that the preprocessed spectra and cLkADH correlate in the
calibration data set. The external validation data set chosen with a KS data split fits the
ideal line overall very well with maximum discrepancies of 0.07 g/L (see Figure 5.6 (A)). The
external data of the PLS model with the manual data split fits the ideal, dashed line below
concentrations of 0.4 g/L well, but two outliers are visible at higher concentrations around
0.8 g/L with maximum deviations of 0.27 g/L. PLS model metrics, i.e. R2, Q2, RMSECV ,
and RMSEP , are added to the Figure 5.6 (A, B).
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The PLS model with manual data split is discussed in more detail in this section to
emphasize the importance of data splitting whereas the results of the PLS model calibrated
with the KS data division can be found in the Supplementary Material A5.7. The model
predicted and measured LkADH supernatant concentration of the five experiments are
visualized in Figure 5.7 from (A-E). Analogous, the application of the PLS model with KS
data split on the crystallization process can be found in the Supplementary Material A5.7.

The white circles, the gray squares, and the orange lines represent the off-line measured
calibration concentrations, validation concentrations, and the in-line model-predicted concen-
trations derived from the Raman spectra, respectively. The concentrations cLkADH are shown
over the time t with the start time being the moment when the crystallizing solution was
added to the crystallization vessel. The gray shaded box indicates the time slot when crystals
were assumed in the crystallization vessel as the micro-crystals or crystals of a larger size were
visible in the microscopic images of the off-line samples. The predicted data demonstrates
fluctuations and outliers of up to 1.2 g/L deviation in Figure 5.7 (B) after 6 h. The predicted
LkADH supernatant concentration decreases, notably, in Figure 5.7 (B, C, E) after 13 h, 5 h,
and 10 h to 0.23 g/L, 0.18 g/L, and 0.24 g/L, respectively. After that, the concentration stays
on the mentioned level fluctuating by 0.05 g/L. Exp1 and Exp4 do not show a steep decrease
in supernatant concentration, but a gradual decrease by 33% and 28% till the end of the
experiment, respectively.

Comparing the model-predicted concentration values of the Figures 5.7 (B, C, E), a LkADH
concentration drop from the initial to the equilibrium concentration is clearly visible. The
crystallization induction time of the experiments Exp2 and Exp5 with similar absorption value
at 280 nm and PEG concentration required 12 h and 10.5 h until the LkADH concentration
decreased (see Figures 5.7 (B, E)). The concentration decrease of Exp3, conducted with the
highest PEG concentration of 150 g/L, is visible after 4.5 h. The light green shaded area
starts after the aforementioned concentration drop and indicates the area when crystals were
present in the microscopic images of the off-line samples indicating that the concentration
drop is caused by protein crystallization. As the concentration drop in Exp1 and Exp4 are
not pronounced, the time till the micro-crystals are first detected in the off-line samples can
be used to compare the experiments. Micro-crystals were detected 11.7 h earlier in Exp4 than
in Exp1 as the latter started with a lower 280 nm absorption value of the lysate and, thus, a
lower, initial LkADH concentration influencing the supersaturation. Comparing the time till
the first (micro)-crystals were visible, a trend towards lower points in time with increasing
PEG concentration becomes apparent.

5.4 Discussion
In this work, the implementation of an analytical bypass for particle-sensitive analytics,
as well as the implementation of an in-line Raman probe are discussed for batch protein
crystallization process monitoring in real-time with the focus on their applicability and
limitations. Employing the developed PAT and additional off-line analytics, the protein
crystallization process itself can be assessed.
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5.4.1 Analytical bypass and UV/Vis spectroscopy

To implement particle-sensitive analytics in a crystallization process, the analytical bypass
consisted of a CFF-based set-up and enables monitoring the crystallization supernatant free
of crystal particles. Inspecting Figure 5.3 (A, C) the recorded TMP and permeate flow
rate showed irregularities and spikes which could be solved by stopping the CFF pump and
cleaning the tubes manually. It is assumed that crystals or precipitated impurity blocked the
membrane leading to a varying TMP levels in the experiments from day to day. Permeate
flow rates at a constant level indicate that the bypass and the implemented sensor were
filled with material which is representative of the liquid phase in the crystallization vessel.
The comparison of Exp2 and Exp5 provides insight into the effects of the bypass on the
crystallization process as these experiments only varied in the implementation of the bypass.
Crystal breakage due to the CFF-based set-up can be excluded as the number, width, and
height of the crystals were not reduced (see the Figure 5.2, and Supplementary Material A5.2
and A5.3). Other process characteristics, e.g. yield and purity, were not influenced as both
experiments demonstrated comparable yields and a high HCP reduction factor (see Table 5.1).

Different levels of the initial UV/Vis absorption slope at 280 nm are visible in Figure 5.3 (B)
for Exp2, Exp3, and Exp4. A decreasing trend of the absorption slope is noticeable from day
to day, but it does not directly correlate with the decreasing LkADH concentration in the
supernatant derived from the IMAC analysis in the off-line samples (data not shown). Note
that impurities, e.g. nucleic acids or HCPs, were present (see Figure 5.3 (D) and cHCP, initial
in Table 5.1) and absorb at 280 nm [44, 49] which complicates a direct measurement from
the absorption at the selected wavelength. In Figure 5.3 (D) Exp1 demonstrates an increased
A260nm
A280nm

ratio of 1.6, which indicates a higher content of nucleic acids [51], compared to the
other experiments with a A260nm

A280nm
ratio around 1.0. The increased lysis cycle number may

be the reason for this observation as more nucleic acids were released during a longer lysis
duration and higher energy input. The slight increase of the A260nm

A280nm
ratios from the first

to the second day may be caused by crystallized protein which leads to a higher impurity
proportion in the liquid phase. The decreasing A260nm

A280nm
ratio on the third day can be an effect

of the insufficient permeate flow in the bypass.

In the past, Smejkal [224, Chapter 4.2] used a similar CFF-based set-up to take samples
during a crystallization process automatically, but required sample dilution when the UV/Vis
absorption value exceeded the detector saturation. The VP technology circumvents the
additional dilution step and allows automated UV/Vis analysis in real-time when the analytical
bypass is switched on. [204] described a different approach to implement UV/Vis spectroscopy
as monitoring PAT for a pure lysozyme crystallization process using an ATR probe directly
placed in the crystal slurry. This approach bears the difficulty that the ATR technology is
limited to applications with strongly absorbing or highly concentrated solutions [63] and
cannot adjust to concentration changes as the VP technology. Furthermore, the real-time
concentration using the 280 nm absorption from the ATR UV/Vis spectroscopy could not
be determined during the crystallization process because particle scattering obstructed the
measurement [225] as soon as small crystals were formed [204]. These challenges can be
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tackled with our approach separating the liquid phase from the crystals to implement UV/Vis
spectroscopy in a protein crystallization process.

Taking into account the gained information about the supernatant composition by the
A260nm
A280nm

ratio from the implemented VP UV/Vis spectroscopy in the analytical bypass, the
outliers of the bypass-related analytics, and the blockage of the tubing, the new insights
by the implemented UV/Vis spectroscopy did not justify the increased complexity of the
bypass in the set-up for this project. The variation in the UV/Vis spectrum could not be
correlated with process parameters, e.g. target molecule concentration in the supernatant, as
the data usability was lowered by interfering impurities in the UV/Vis spectrum, missing
data overnight, and difficulties during the start of the bypass. However, the implementation
of other particle-sensitive analytics should be possible, e.g. fluorescence or nuclear magnetic
resonance (NMR) spectroscopy, if applicable in the specific crystallization process.

5.4.2 Raman spectroscopy and chemometrics
To characterize and potentially monitor crystallization, a Raman spectroscopy probe was
immersed directly into the stirred crystallization vessel. The probe was in direct contact with
the crystal suspension and may show variation in the spectrum over the process time as the
liquid phase composition changes.

Spectral differences are visible between 450 to 1500 cm−1 and between 2800 to 3000 cm−1.
The latter is contributed by C-H stretching [214]. The former is described as the fingerprint
region of proteins [214]. Comparing the spectra to Raman spectra of air, protein buffer and
crystallization buffer, preprocessed Raman peaks could be traced back to different compounds.
The crystallization buffer spectrum shows distinct peaks near 850, 1065, 1140, 1250, 1286 and
1475 cm−1 (see Supplementary Material A5.4 (B)). As PEG contributes strongly to the Raman
spectrum compared to the protein, the spectral analysis is hampered with respect to the desired
process characteristics, i.e. crystal yield and target molecule concentration in the supernatant.
Differences between the spectra of the crystallization buffer and during the experiment are
visible near 970 to 1030 cm−1, between 1170 to 1230 cm−1. This may be caused by the amino
acid contribution of Phenyalanine (Phe) (1000, 1030 and 1205 cm−1 Tuma, 2005; Huang et
al., 2006) and Tyrosine (Tyr) (1174, 1205 cm−1 Tuma, 2005). The wavenumber 757, 853 cm−1

and 1225 to 1525 cm−1 are associated with Tryptophan (Try), Tyr, and the amide III bands,
respectively [70].

The chemometric analysis of the preprocessed Raman spectra with PCA showed that the
experiments followed a trend (see Figure 5.5) as indicated by the arrows. Note that Exp3
showed a faster transition from the lower right to the upper left corner (see Figure 5.5 (C))
and may be linked to the arising crystallization accompanied with a decreasing LkADH
concentration. The PCA of the UV/Vis spectra could only cluster the experiments according
to different experiment conditions, namely lysis cycle number, and varying initial absorption
of the clarified lysate at 280 nm, but did not show a trend within each experiment (data
not shown). Five peaks at 493 cm−1, 708 cm−1, 1410 cm−1, 2909 cm−1, and 2970 cm−1 oc-
curred during Exp2 and Exp5 (see Figure 5.4 (B)) and could not be traced back to protein
crystals. Looking at the PC1 and PC2 of the PCA over the whole spectral range, the
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supposedly defective observations are captured in clusters which are clearly separated from
the crystallization-associated trends indicated by the arrows (see Figure 5.5 (B, E)). As these
peaks do not correlate with the protein buffer or crystallizing buffer, the LkADH concentra-
tion in the supernatant, or the crystal yield, and appeared or disappeared spontaneously,
it is assumed that precipitated impurities may have aggregated and accumulated near or
detached from the spectroscopy probe, arbitrarily, due to the agitation in the stirred vessel.

Based on these findings, the Raman spectra and the presented preprocessing procedure
were used for the model development for PAT. The aforementioned wavenumber ranges (see
Figure 5.4 (C)) are selected for the PLS model development as it is assumed to correlate
with product characteristics, for instance LkADH concentration.

The KS algorithm-based and manual data split with Exp5 were investigated and compared
to evaluate the extrapolation capability of the calculated PLS models. The metrics for
chemometric models demonstrate a high model validity in both model cases (see Figure 5.6).
The values R2 and Q2 are near 1 implying a good transferability on the external spectral
data set. The RMSECV and RMSEP are desired to be low. In this case, the PLS model
with KS data split demonstrates higher R2, Q2 and lower RMSEP values - both suggesting
that the PLS model with KS data split is superior. The KS data split method is depending
strongly on the specified number of validation samples and selects the validation samples
based on a uniform distribution of the data split using a distance metric. The assumption
that the data was split in data subsets with high similarity may not hold in all situations,
limiting its applicability to certain types of data. The spectra in the second cluster of the
PCA were not included in the validation set by the KS algorithm which improved the model
evaluation metrics. Data points of only Exp1, and each one data point of Exp2 and Exp4
are selected to represent the validation data set (see Supplementary Material A5.7). The
calibration of the model on data of each experiment may potentially incorporate variations of
the experiments and batch-to-batch variations into the model. Batch-to-batch variations are
caused during the LkADH production in E.coli, by variations during lysis and clarification,
and, in our case, the different initial crystallization conditions (see Table 5.1). To challenge
the model applicability to extrapolate on a new experiment, the authors decided to proceed
with the model calibrated with the manual data split using Exp5 for validation. By this, the
PLS model prediction performance could be evaluated on data possibly prone to experimental
variations.

The model calibrated and validated with the manual data split underestimates the LkADH
concentration in Exp5 at higher concentrations above 0.7 g/L (see Figure 5.7 (E)). Within the
first 10 h crystallization was not visible in the microscopic images of the off-line samples, but
the Raman spectrum may be influenced by other processes occurring in the crystallization
vessel which leads to an underestimated concentration prediction in the first discussed time
slot. The spectra of samples with high LkADH concentration in Exp4 were not representative
for spectra in Exp5. As the LkADH concentration was at a comparable level, other species
present in the supernatant may interfere. The crystallization solution contains PEG which is
known to induce aggregation or precipitation. Aggregation processes of impurities, namely
nucleic acids or HCPs, in the examined time slot may affect the Raman spectrum and lead
to the visible discrepancies.
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Regarding lower concentrations, the model performed well, even though the spectra of
Exp5 varied strongly (see the second cluster in Figure 5.5 (E) compared to (A-D)). The selected
preprocessing parameters and wavenumber ranges were able to cope with the disturbance
in lower concentration ranges. However, off-line samples and their analysis cannot be left
out entirely, but the sample number may be reduced combining Raman spectroscopy and
PLS modeling for protein crystallization PAT. More experiments with varied crystallization
conditions, more samples analyzed, and different cultivation batches can increase the variety
of spectra and reduce the effect of outliers which is beneficial for model calibration. This may
lead to a better chemometric model which can predict reliably over the whole concentration
range.

5.4.3 Assessment of the crystallization process using multiple
PAT tools

The presented analytical set-up as a whole provides the possibility to examine the conducted
experiments regarding the type and amount of impurities, target molecule, and different
initial absorption value at 280 nm. The shortened induction time of protein decrease in
the supernatant marking the start of protein crystallization (see Figure 5.7 from left to
right) is expected as the supersaturation and, thus, phase behavior change with varying
PEG concentration [24]. Baumgartner et al. [36] examined the effect of two PEG additives
on different proteins and observed an increasing depletion attraction effect with increasing
polymer concentration [197]. The enzyme Lactobacillus brevis alcohol dehydrogenase (LbADH)
which is a homologous protein to LkADH of this project showed an increased tendency to
form crystals with increasing PEG concentration and was studied in detail in Nowotny et
al. [10]. Furthermore, the PEG concentration influences the crystal geometry as well leading
to larger crystal sizes (see Supplementary Material A5.3) for lower supersaturation level [9,
11] in a crystallization buffer with 12.5% PEG in Exp2 and Exp5. These experiments led
to the highest crystals count per well in Figure 5.2. This contradicts the fact that higher
supersaturation levels result in a larger amount of smaller crystals, but can be explained as
smaller crystals are difficult to detect automatically by the ML-based tool due to the low
ratio of the crystal size to the camera resolution.

The presence of impurities becomes apparent in Figure 5.3 (D), and in Table 5.1 regarding
the nucleic acid content, and HCP, respectively. The HCP reduction was achieved in a
similar magnitude for crystal redissolution of a homologous enzyme [10]. Even though the
A260nm
A280nm

ratio and HCP quantification are based on on-line and off-line analytics, they provide
valuable process knowledge and help to understand crystallization processes in complex,
heterogeneous solutions.

With a higher absorption A280nm of the clarified lysate in Exp4, a high LkADH concen-
tration was achieved in the beginning of the crystallization process (see Figure 5.7 (D)).
Compared to Exp1 with the same PEG concentration, protein crystals could be detected
earlier, but the supernatant concentration of LkADH did not drop to the same value. It
is assumed that the equilibrium and the maximum crystal yield were not reached within
the conducted experimental time. These findings contradict the results of Walla et al. [203]

96



Chapter 5 – Raman & PLS in complex, multi-phase crystallization systems

who observed that LkADH WT reached the equilibrium within 48 h for the screened PEG
concentration. Note that the analytical frame differed in the mentioned project as the total
protein concentration was determined. The crystal yields of the experiments performed
with 125 or 150 g/L PEG were lower than the yields achieved in Walla et al. [203]. In this
work, the crystal yield and crystallization process time were derived from the individual
LkADH concentration with IMAC, which makes a direct comparison difficult. Furthermore,
variations during the cultivation, lysis, lysate clarification procedure, or crystallization vessel
(see Supplementary Table A5.1) may change the product or impurity profiles leading to a
lower, initial LkADH concentration when the A280nm is adjusted to the same value.

5.5 Conclusion
This research project aimed to examine and monitor stirred Lactobacillus kefir alcohol
dehydrogenase (LkADH) enzyme crystallization out of clarified Escherichia coli (E.coli)
lysate on a 300mL scale to increase process understanding of a multiphase process. The
implemented analytics consisted of an in-line Raman spectroscopy probe, on-line cross-
flow filtration (CFF) bypass for the liquid phase analysis in a variable pathlength (VP)
flow cell for ultraviolet-visible light (UV/Vis) spectroscopy, and high-performance liquid
chromatography (HPLC) immobilized metal ion affinity chromatography (IMAC), enzyme-
linked immunosorbent assay (ELISA) and microscopic analysis for off-line samples.

Chemometric analysis of the preprocessed Raman spectra could identify similar process
trends in the spectra of the experiments with principal component analysis (PCA), and
could monitor the LkADH concentration in clarified lysate with a partial least squares
(PLS) regression model built on selected wavenumber regions containing product-relevant
information. The presented, analytical set-up led to a comprehensive overview of the
conducted batch experiments which is in agreement with theoretical considerations of protein
crystallization.

Despite the complexity of the clarified lysate, a suspension containing scattering crystals,
impurities in the supernatant, and precipitate, spectroscopy could be used to monitor
the target molecule concentration in the liquid phase during a multi-phase process. The
analytical bypass facilitated the implementation of particle-sensitive analytics, i.e. VP
UV/Vis spectroscopy which indicated changes in the contaminant profile with the absorption
ratio at two specific wavelengths typical for proteins and nucleic acids. The off-line analysis
of microscopic images allowed objective evaluation of crystal nucleation, or crystal breakage.
In our case, the crystal number, and geometry did not vary when a CFF bypass was installed
meaning that crystal breakage was not observed with the chosen CFF process parameters.
Regarding model limitations, batch-to-batch variations and the heterogeneous components
in the clarified lysate complicated the direct model transfer to new experiments without
additional validation samples.

The suggested process analytical technology (PAT) set-up with in-line Raman spectroscopy
can be applied to other processes based on phase behavior, e.g. precipitation or flocculation,
if the molecule of interest contributes to the recorded spectrum sufficiently. Good calibration

97



PAT for protein crystallization

procedure and carefully considered data splitting for the model development help to unravel
the underlying spectral nuances associated with the desired product characteristics. The
increased process understanding and possibility to monitor phase behavior based processes
can help the operator to optimize the process, e.g. regarding crystal yield. When protein
solutions of high purity need to be crystallized, the installation of an on-line bypass with VP
UV/Vis measurements can be especially useful to determine the supernatant concentration
directly. The ability to monitor protein crystallization processes is essential for process control
and process adaptations as biotechnological processes are often subject to batch-to-batch
variability.
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6
General discussion and conclusion

Recent advances in upstream processing (USP) have shifted the productivity bottleneck
towards downstream processing (DSP) steps in biotechnological or biopharmaceutical pro-
duction processes. Therefore, alternative process steps have gained more interest due to
their higher productivity and lower production costs compared to DSP with standard chro-
matography. As protein crystallization can produce pure crystals with a high yield and
comparably low production costs, it can be an excellent alternative DSP step. However,
protein crystallization processes are rarely developed as the optimal process conditions need
to be screened in extensive high-throughput (HT) screenings resulting in a large number
of samples and long analysis time. Implementing process analytical technology (PAT) into
other DSP processes has shown to improve process development as these methods support
designing, monitoring, and controlling processes ideally in real-time. Thus, the employment
of PAT sensors for protein crystallization in DSP is advised. This initiative complies with
the paradigm of quality by design (QbD) which states that quality should be built into
the process design to ensure a high product quality. Contrary to other DSP steps, solid
particles are present and large concentrations shifts occur during the process which need to
be considered in the PAT sensor choice and set-up. Therefore, the objective of this thesis is
the development of data-driven, analytical solutions to challenges in protein crystallization
processes by implementing PAT for effective process design.

HT screenings are commonly used when phase behavior based DSP steps need to be
developed. Regarding protein crystallization screenings, the samples are commonly analyzed
using qualitative analytics. However, quantitative analytics are crucial when protein crys-
tallization screenings should find the optimal process condition regarding yield or purity.
To quantify the target reliably and deal with the large number of screening samples, fast
and HT-compatible analytics are required. Ideally, these analytics should consume only

99



PAT for protein crystallization

a minimal sample volume. To meet these criteria, the first research project investigated
a novel, analytical workflow based on ultraviolet-visible light (UV/Vis) spectroscopy and
chemometric partial least squares (PLS) regression modeling. As a proof of concept, the
calculated regression model was then applied to mixtures of three model proteins in a crystal-
lization screening. Furthermore, two conditions were selected for a kinetic study to transfer
the generated models to a different experimental set-up and to monitor the crystallization
kinetics over time. For each protein, one PLS model was calculated and further applied to
specifically quantify each protein in the crystallization supernatant using solely the UV/Vis
spectra and the PLS model. Regardless of the experimental conditions and variations (pH,
precipitant concentration, target protein concentration) during the screening or kinetic study,
the models predicted the concentrations accurately. By visualizing the model-predicted,
specific concentrations in a phase diagram, the process sweet spots for crystallization could be
identified with respect to the crystal yield. The crystal purity was overall high and inclusion
of contaminants could be excluded in the center of the crystallization window whereas at its
borders variations in the purity could be traced back to the calculation method. In the kinetic
study, the visible target concentration drop in the supernatant could be tracked back to the
formation of crystals. The concentrations of all proteins increased throughout the kinetic
study which was caused by solvent evaporation over time. Overall, this study describes a
workflow of a rapid, versatile, low-volume analysis based on spectroscopy and chemometrics
for the design of protein crystallization processes. As a proof-of-concept, it investigated model
proteins in chemically defined solutions. With a four times shorter analysis time compared
to the reference method, crystal yield and purity could be quantified and used for finding
optimal crystallization process conditions.

In empirical HT screenings, large, complex data sets are generated and can be organized
along the screened conditions or recorded variables. When these data sets of higher structure
need to be analyzed, chemometric analysis require adaptions. One potential solution is the
analysis with multi-way methods as a subclass of chemometrics which take advantage of
this multi-dimensionality. Multi-way parallel factor analysis (PARAFAC) models explore
data sets and decompose multi-dimensional data into the contribution of each species in each
dimension. Furthermore, this model operates in an unsupervised manner and can potentially
quantify concentrations without calibration. Preparing calibration samples and the analysis
with a reference method for model calibration becomes unnecessary when PARAFAC models
are created. This can prove effective in early stages of process development of capture steps
when accurate, quantitative analytics are not yet available or influenced by a greater number
of impurities. However, multi-way methods have not been tested on phase behavior based
screenings of complex, biological solutions. To demonstrate the transferability to screenings
of new molecules or new capture steps, three screening studies on protein crystallization
and precipitation were conducted in the second research project (Chapter 4) investigating
three different molecule classes in chemically defined and complex solutions. In particular,
the first case study was based on the screening data generated in the first research project
(Chapter 3). Two precipitation studies on monoclonal antibodies (mAbs) in harvest cell
culture fluid (HCCF) and virus-like particles (VLPs) in clarified Escherichia coli (E.coli)
lysate were conducted and supernatant samples from the precipitation, wash step, and
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redissolution step were analyzed. The data set consisted of UV/Vis spectra structured along
the dimensions time, wavelength, and sample number. The first and second PARAFAC models
could be validated with quantitative reference concentrations and provided suitable spectral
preprocessing and model parameters. Consequently, this knowledge could be used for the third
screening where a quantitative concentration reference method was missing. Using only the
higher structured UV/Vis spectral data set, the calculated PARAFAC models could estimate
the pure component spectra and concentrations in the screenings. Furthermore, the first
crystallization screening of three model proteins showed that only species, expressing different
phase behavior and specific spectral differences, can be distinguished by the model. As two
of the model proteins stayed mainly in solutions and did not show any concentration changes
in the investigated screening solutions, they were clustered as one species. Consequently,
PARAFAC models can be applied to biological solutions where a large number of species
and species variants are present. The results of the second and third precipitation screenings
proved that PARAFAC models could be used to quantify concentrations and determine
pure species spectra regardless of the modality, impurities, or examined process steps. The
estimated concentration and spectral profiles corresponded closely to off-line analytics. As
a result, process sweet spots with the screened conditions could be located with respect to
the yield and purity of the target molecule. Despite the absence of reference analytics, the
presented, analytical workflow was universally applicable to crystallization or precipitation
HT screenings and provided valuable process knowledge regardless of the biological target.

Next to efficient process design, additional objectives of PAT are process monitoring
and process control. PAT tools for monitoring are commonly implemented in DSP steps,
especially in chromatography steps. Regarding PAT for protein crystallization, first advances
were achieved investigating the crystals itself or polymorphism in rather pure process liquids,
solely containing the target molecule. However, applications of protein crystallization PAT
in the presence of numerous species and contaminants is rare. Established PAT tools
have to be tailored to the increased complexity of multi-phase crystallization processes as
particles and precipitated contaminants are present. In addition, crystallization processes
can cause high concentration shifts, potentially trespassing the sensor detection limits.
Therefore, the third part of this thesis (Chapter 5) aimed to develop a broad monitoring
PAT set-up for the crystallization of Lactobacillus kefir alcohol dehydrogenase (LkADH)
from clarified E.coli lysate in 300mL scale using in-line probes, on-line sensors, and off-
line analytics. Similar to the second and third case study of Chapter 4, complex process
solution were investigated, though this time for a crystallization process. For real-time
monitoring, a Raman probe was placed in situ in the crystalline process liquid. To analyze
liquid phase and deploy particle sensitive analytics, a cross-flow filtration (CFF) based
bypass was developed and a variable pathlength (VP) flow cell connected to a UV/Vis
spectrophotometer was installed. The off-line analysis complemented the PAT set-up providing
information on the protein purity, the host cell protein (HCP) content, the target molecule
concentration, and the crystal formation utilizing sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE), enzyme-linked immunosorbent assay (ELISA), immobilized
metal ion affinity chromatography (IMAC), and automated image analysis of the drawn
samples, respectively. Based on the off-line concentration measurements and in-line measured
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Raman spectra, a PLS model predicted the target protein concentration in the supernatant.
The combination of Raman spectroscopy and chemometrics proved effective despite the
crystalline particles in a multi-phase process, the biological complexity of clarified lysate,
and the broad variety of soluble or precipitated impurities. The calculated model achieved
adequate concentration predictions when the data-splitting procedure selected calibration
samples of all model runs for the model calculation. However, when one experiment was used
as an independent test set, the predictive model performance was lower, especially for the high
target concentrations. This leads to the assumption, that with in-line Raman spectroscopy,
the number of validation samples for new experiments can be reduced but their analysis
is still crucial to monitor the whole crystallization process accurately as crystallization
processes from lysate are prone to batch-to-batch variations. The implemented UV/Vis
sensor in the particulate-free bypass supported the purity assessment of the initial process
liquids and demonstrated that particle sensitive sensors can be implemented in crystallization
process using the described set-up. The HCP reduction from the initial process liquid to the
redissolved crystals showed that the experimental set-up generated pure crystals and might
be a good alternative to chromatography based processes. Consistent crystal geometry was
shown by the image analysis for both crystallization processes, with and without the CFF-
based bypass, underlining that no crystal breakage occurred. Considering the aforementioned
limitations of the increased complexity of multi-phase crystallization processes in clarified
lysate, this PAT framework was able to monitor the crystallization process by coupling
Raman spectra and chemometric regression modeling. Additionally, the analytical set-up
presented in Chapter 5 provides a comprehensive overview of the crystallization process by
characterizing critical quality attributes (CQAs) of the generated protein crystals.

In conclusion, this thesis presents new data-driven strategies to design or monitor protein
crystallization processes combining spectroscopic sensors and chemometric models. As a
reaction to advances in novel, personalized biotherapeutics, the submitted studies dealt with
a broad variety of biological proteins in chemically defined or complex process liquids. HT-
compatible, analytical sensors were developed for screenings applying chemometric models,
e.g. PLS regression, or modern multi-way techniques, e.g. PARAFAC models, for the
rapid quantification of different species in mixtures. Additionally, a broad PAT set-up
could selectively quantify the target molecule in a multi-phase process. The developed
workflows increase knowledge-based process development which is in accordance with QbD
for the biopharmaceutical or biotechnological industry. The analytical screening approaches,
described in this thesis, have proven their transferability to other biologics or other process
steps that depend on protein solubility and phase behavior. Next to precipitation processes,
potential, new applications could be flocculation, the redissolution of inclusion bodies, crystal
redissolution, or protein aggregation. Analogously, the workflow for in-process monitoring may
find similar employments in the aforementioned processes or crystallization of proteins that
were protein engineered for crystallization. The presented monitoring tools can be a first step
towards process optimization or process control of CQAs for QbD. Since multi-way methods
have shown to explore multi-variate data sets about chemical reactions, it may be interesting to
analyze data sets dealing with biological reactions. Spectral data sets of enzymatic reactions,
dis- and reassembly processes, un- and refolding processes of proteins, or chemically linking
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reactions, e.g. reduction and conjugation reactions of antibody-drug conjugates (ADCs), can
be potential applications for multi-way chemometrics when various samples are examined
with multi-variate spectroscopy. In analytical chromatography of the mentioned, biological
reactions, multi-way methods may be a feasible solution to quantify species in overlapping
peaks individually if the samples cannot be resolved sufficiently. However, the successful
application depends on a good signal-to-noise ratio and further is restricted to reactions or
analytical measurements demonstrating significant spectral differences between the analytes.

Considering these conclusions, this thesis presents a broader toolbox of data-driven analyt-
ics tailored to crystallization processes using spectroscopy and chemometrics with or without
calibration samples and reference analytics. Demonstrated in studies on different scales, the
described approaches cover numerous process design stages from phase behavior screenings,
development, and monitoring for manufacturing. The developed analytics encourage PAT for
alternative DSP steps and lay the first steps towards knowledge-based process design and
control.
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A3.1 Explanation of cPLS,i,stable and Yi,j calculation in
the phase diagrams

Figure A3.1 The relation between the data displayed in the phase diagram and the
calculation of the yield Yi,j of each protein i and well j is displayed. The stable
conditions are used to calculate the mean concentration of stable conditions per row
cPLS,i,stable. The final protein-specific concentration of each protein in row A is displayed
over varying ammonium sulfate concentration cAMS. Exemplarily, the calculated crystal
yield of Lysozyme (Lys) is illustrated with an arrow for one condition.
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A3.2 Analytical cation exchange chromatography
gradient method

The cation exchange chromatography (CEX) column ProSwift SCX-1S 4.6x50mm column
(Thermo Fisher Scientific Inc.) was used in a Dionex Ultimate 3000 RS ultra high performance
chromatography system (UHPLC, Thermo Fisher Scientific Inc.). The column was loaded
with 20 �L sample in a low salt buffer (20 mM Tris, pH 8.0) for 0.5 min. The elution was
performed using a high salt buffer (20 mM Tris, 1000 mM NaCl, pH 8) with a gradient to
70 mM NaCl for 2 min, a steeper gradient to 1000 mM NaCl for 3.1 min, a hold step for
0.5 min, a hold step at 500 mM NaCl for 0.5 min, a gradient to 1000 mM NaCl for 1 min, a
second hold step for 0.5 min and re-equilibration for 2.5 min.

135



PAT for protein crystallization

A3.3 Recorded UV/Vis spectral data

Figure A3.2 Exemplarily for the sample A8 in a phase diagram at pH 9, the chro-
matogram at wavelength of 280nm of the CEX reference analytic is shown over time
t in a). The colored areas illustrate the integration area for each species. In b), the
time-wise summed up spectra of the corresponding DAD analysis is depicted. The
starting and end of the analysis time are t0 and tend, respectively, and are used for the
integration.
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A3.4 Sensitivity and specificity equation
In this work, the sensitivity provides information on the probability that the developed method
detects crystallizing conditions in the screening correctly. The variable n is the quantity of
true-positives, true-negatives, false-positives, and false-negatives during the screening (see
subchapter 3.2.3 for screening experiment and image scoring). Visible light images, taken at
the end of the incubation of the phase diagrams, served as the validation method.

sensitivity =
ntrue−positives

ntrue−positives + nfalse−negatives
(A3.1)

The specificity provides information on the probability that the developed method detects
stable conditions in the screening correctly.

specificity =
ntrue−negatives

ntrue−negatives + nfalse−positives
(A3.2)
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A3.5 Image scoring analysis of the phase diagram

Figure A3.3 The image analysis of the phase diagrams provided scoring data which
could be used to provide information on the specificity and sensitivity of the developed
method to detect crystallizing conditions in a high throughput screening. The colors
indicate the results of the visual analysis.
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(a) stable condition (b) crystallizing condition

(c) unidentifiable condition (d) outlier

Figure A3.4 Representative images of the visual scoring analysis of the phase diagram
at pH 9 are depicted in a) for stable, b) for crystallizing, c) for unidentifiable conditions
due to blur and d) for outliers.
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Table A3.1 This table displays the manually counted scoring data used for the sensitivity
and specificity calculation. The developed method was used to score yields above 5.0%
as successful crystallization conditions, the image scoring serves as the validation
method. Outliers were defined when the validation method only offered images out of
focus or unclear images due to condensation at the covering foil. In conditions assigned
as unidentifiable, it was not possible to distinguish visually between micro-crystals and
precipitate. Outliers and unidentifiable conditions were not included in the calculation
of the sensitivity and specificity.

pH 7 pH 9

True-Positives / - 14 37
False-Positives / - 1 5
True-Negatives / - 75 45
False-Negatives / - 2 0
Unidentifiable / - 4 5
Outliers / - 0 4
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A4.1 Case 2 - Selective precipitation of mAbs in a
complex solution

Figure A4.1 The measured UV/Vis background absorption of the solutions with 0
to 2mol AMS is shown over time with solid lines from blue to green. The predicted
time profile of the AMS component for the second case study (mAb) is illustrated with
black dashed lines.

Figure A4.1 illustrates the absorption time profile of AMS solution injections which were
diluted as the analyzed samples of the selective mAb precipitation screening. The position
of the measured and the predicted time profiles overlay. The peak maximum rises with the
AMS concentration of the analyzed sample.
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Figure A4.2 The predicted and the experimental AMS concentration in the precipita-
tion (S1) and wash step supernatant (S2) are shown with blue dashed and gray, solid
lines, respectively.

Figure A4.2 illustrates the AMS concentration during the experiment and from the
PARAFAC model. The AMS concentration from the analyzed samples (S1, S2) increases in
a linear manner and overlays with the experimental AMS concentration. The authors assume
that the discrepancies from the ideal concentration are caused by pipetting or model errors.
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A4.2 Case 3 - Selective precipitation of VLPs in a
complex solution

Figure A4.3 The SDS-PAGE scan of precipitation and redissolution supernatant of
selected conditions are depicted in A and B, respectively. A sample of purified VLP
was used as a reference to identify the VLP in the gel. The VLP is marked in orange.

Figure A4.3 shows the scanned SDS-PAGE of precipitation (A) and redissolution super-
natant (B) for the selective VLP precipitation screening. The reference data of purified VLPs
indicates the position of the target molecule - the VLPs. The solutions with 0 to 1.09mol
AMS still contain VLPs, but above 0.73mol AMS, the band fades. Above 1.27mol AMS,
VLPs are not present in the precipitation supernatant. Species with larger molecular weight
remain in the supernatant solution between 0 to 1.27mol AMS which are assumed to be
impurities.

The redissolution supernatant solutions indicate that VLPs are present above precipitation
conditions above 1.09mol AMS. Species with larger molecular weight are visible and were
redissolved at precipitation conditions above 1.27mol AMS. The species profile of the
precipitation condition with 2mol AMS indicates a high impurity level as many different
species are present. The conditions indicating selective VLP precipitation in the precipitation
supernatant agree with the conditions indicating VLP redissolution in the redissolution
samples.
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A5.1 Variations of LkADH production and
preparation compared to Walla et al. (2021)

Table A5.1 Differences between the protein production, preparation, and
crystallization experiment: The experimental and equipment variations between
the crystallization experiments of this research work and in Walla et al. [203] are listed.

process step variations material & methods Walla et al. (2021)
sections 2.1 and 2.2

cultivation mode fed-batch batch
vessel 1.5L parallel fermenter 0.5L shake flasks

cell lysis device Sonifier SFX550 Sonoplus HD 2070
microtip tapered Microtip

101-148-062
Microtip MS 72

(Branson Ultrasonic
Corporation)

(BANDELIN electronic,
GmbH & Co. KG)

amplitude 70% 90%
pulse 10 s 0.5 s

pulse time 40 s 90 s
cycle number 2 or 3 3

dialysis membrane SnakeSkin™ Membra-Cel(TM) Cellu.
(Thermo Fisher Scientific,

Inc.)
(Carl Roth GmbH + Co.

KG)
MWCO 3.5 kDa 14 kDa

ID 22mm 34mm
crystalliza-

tion
scale 300mL 5mL

stirrer speed 80 rpm 150 rpm
stirrer

geometry
anchor style paddles pitched-blade impellers
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A5.2 IMAC analysis

Figure A5.1 Exemplary separation with HPLC IMAC. The absorption at 280nm of
the IMAC analysis is shown over time. The blue shaded area indicates the impurities
in the flow-through whereas the red shaded area is the LkADH peak which elutes with
increased imidazole concentration. Exemplarily, two off-line samples at the beginning
and end of the experiment are depicted in blue and orange.

147



PAT for protein crystallization

A5.3 Machine-learning-based image analysis
Information about the crystal geometry need to be interpreted carefully bearing in mind
the actual number of counted crystals (see Figure 2). The determined crystal widths and
heights when low numbers or no crystals were visually detected can be caused by the high
noise level in the images when the model falsely detects crystals. Especially the results of
the automated image analysis of the experiments conducted with polyethylene glycol (PEG)
concentration of 10% may be prone to false-positive crystal detections as microcrystals can
be expected, but larger crystals were not visible by human eye. The authors interpreted the
provided information about the geometry in the Figures A5.2 and A5.3 as an indication that
the crystal geometry does not change over time when larger crystal counts were reached.

Figure A5.2 The automated ML-based image analysis [219] detected crystals, and
determined the crystal height and width. These information can be used to characterize
the crystal geometry throughout the experiments, i.e. crystal height and width. The
mean crystal height, and the standard deviation in the undiluted and diluted off-line
samples are depicted over time for five experiments in dark green squares and light
green circles, respectively.
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Figure A5.3 The automated ML-based image analysis [219] detected crystals, and
determined the crystal height and width. These information can be used to characterize
the crystal geometry throughout the experiments, i.e. crystal height and width. The
mean crystal width, and the standard deviation in the undiluted and diluted off-line
samples are depicted over time for five experiments in dark green squares and light
green circles, respectively.

149



PAT for protein crystallization

A5.4 Background Raman spectrum of protein and
crystallization buffer

Figure A5.4 The Raman intensity of protein buffer, crystallization buffer with PEG at
different concentrations, and one spectrum derived from an experiment are shown over
the wavenumber shift in blue, orange, yellow and purple line color, respectively. The
raw and preprocessed spectra after baseline-correction are visible in (A, B).
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A5.5 Zoom into the preprocessed spectra of Exp3

Figure A5.5 The preprocessed Raman spectra of Exp3 are illustrated over the selected
wavenumber regions for the PLS model with the manual data split. The time course of
the experimental spectra is visualized from yellow to blue.
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A5.6 PCA loadings

Figure A5.6 The principal components PC1, PC2, and PC3 of baseline-corrected
Raman spectra of all experiments are illustrated over the recorded wavenumber range
in blue, red and yellow, respectively.
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A5.7 PLS model with KS algorithm applied on
crystallization process spectra

Figure A5.7 Application of PLS model on crystallization processes out of clarified
lysate. The calculated PLS model with the Kennard-Stone (KS) validation data split
predicts the LkADH concentration on the basis of the in-line recorded Raman spectra
in orange for the five conducted experiments (A-E). Off-line LkADH calibration and
validation concentrations are calculated from the IMAC analysis and are depicted with
green circles and squares, respectively. The light green boxes indicate the time range
when crystals were expected in the crystallization vessel as crystals were detected in
the microscopic images in the off-line samples. The light gray boxes indicate time
ranges in the Exp1 and Exp4 experiment when only micro-crystals were visible in the
microscopic images which are difficult to distinguish from precipitate.
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