KIT | KIT-Bibliothek | Impressum | Datenschutz

Generate Explanations for Time-series classification by ChatGPT

Xue, Zhechang 1,2; Huang, Yiran ORCID iD icon 1,2; Ma, Hongnan; Beigl, Michael ORCID iD icon 1,2
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

With the development of machine learning, the concept of explainability has gained increasing significance. It plays a crucial role in instilling trust among clients regarding the results generated by AI systems. Traditionally, researchers have relied on feature importance to explain why AI produces certain outcomes. However, this method has limitations. Despite the existence of documents that introduce various samples and describe formulas, comprehending the implicit meaning of these features remains challenging. As a result, establishing a clear and understandable connection between features and data can be a daunting task. In this paper, we aim to introduce a novel method for explaining time-series classification, leveraging the capabilities of ChatGPT to enhance the interpretability of results and foster a deeper understanding of feature contributions within time-series data.


Preprint §
DOI: 10.5445/IR/1000171153
Veröffentlicht am 20.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 19.07.2024
Sprache Englisch
Identifikator KITopen-ID: 1000171153
Erschienen in Explainable Artificial Intelligence, Malta, 17th–19th June 2024
Veranstaltung 2nd World Conference on Explanable Artificial Intelligence (XAI 2024), Valletta, Malta, 17.07.2024 – 19.07.2024
Verlag Springer
Schlagwörter Time-series classification, ChatGPT, Explainability
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page