KIT | KIT-Bibliothek | Impressum | Datenschutz

Generate Explanations for Time-series classification by ChatGPT

Xue, Zhechang 1,2; Huang, Yiran ORCID iD icon 1,2; Ma, Hongnan; Beigl, Michael ORCID iD icon 1,2
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

With the development of machine learning, the concept of explainability has gained increasing significance. It plays a crucial role in instilling trust among clients regarding the results generated by AI systems. Traditionally, researchers have relied on feature importance to explain why AI produces certain outcomes. However, this method has limitations. Despite the existence of documents that introduce various samples and describe formulas, comprehending the implicit meaning of these features remains challenging. As a result, establishing a clear and understandable connection between features and data can be a daunting task. In this paper, we aim to introduce a novel method for explaining time-series classification, leveraging the capabilities of ChatGPT to enhance the interpretability of results and foster a deeper understanding of feature contributions within time-series data.


Verlagsausgabe §
DOI: 10.5445/IR/1000171153/pub
Veröffentlicht am 01.12.2025
Preprint §
DOI: 10.5445/IR/1000171153
Veröffentlicht am 29.05.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 19.07.2024
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000171153
Erschienen in xAI-2024:LB/D/DC : xAI-2024 Late-breaking Work, Demos and Doctoral Consortium Joint Proceedings ; Joint Proceedings of the xAI 2024 Late-breaking Work, Demos and Doctoral Consortium co-located with the 2nd World Conference on eXplainable Artificial Intelligence (xAI 2024), Valletta, Malta, July 17-19, 2024. Ed.: L. Longo
Veranstaltung 2nd World Conference on Explanable Artificial Intelligence (XAI 2024), Valletta, Malta, 17.07.2024 – 19.07.2024
Verlag CEUR-WS
Seiten 49-56
Serie CEUR Workshop Proceedings ; 3793
Schlagwörter Time-series classification, ChatGPT, Explainability
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page