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Abstract: We present the calculation of the contribtuions from the chromomagnetic

and four-top-quark-operators within Standard Model Effective Field Theory (SMEFT)

to Higgs boson pair production in gluon fusion, combined with full NLO QCD correc-

tions. We study the effects of these operators on the total cross section and the in-

variant mass distribution of the Higgs-boson pair, at
√
s = 13.6TeV. These subleading

operators are implemented in the generator ggHH SMEFT, in the same Powheg-Box-V2

framework as the leading operators, such that their effects can be easily studied in a

unified setup.

Keywords: LHC, Higgs-boson couplings, NLO, EFTar
X

iv
:2

31
1.

15
00

4v
1 

 [
he

p-
ph

] 
 2

5 
N

ov
 2

02
3

mailto:gudrun.heinrich@kit.edu
mailto:jannis.lang@kit.edu


Contents

1 Introduction 1

2 Contributions of the chromomagnetic and four-top operators 2

2.1 Amplitude structure of chromomagnetic operator insertions 8

2.2 Amplitude structure involving four-top operators 9

3 Implementation and usage of the code within the Powheg-Box 13

4 Results 15

4.1 Total cross sections and heat maps 15

4.2 Higgs boson pair invariant mass distributions 21

5 Conclusions 26

1 Introduction

Where is New Physics? If it resides at energy scales well separated from the electroweak

scale, our ignorance about its exact nature can be parametrised within an Effective Field

Theory (EFT) framework [1–3].

Predictions for key LHC processes within Standard Model Effective Field Theory

(SMEFT) [4, 5] up to the level of dimension-6 operators, in combination with NLO

QCD corrections, have become available in the last few years, see e.g. Refs. [6–14].

In addition, the importance of renormalisation group running effects of the Wilson

coefficients, calculated up to one loop in Refs. [15–17], has gained increasing atten-

tion [10, 18–20] and is implemented in dedicated tools [21–28]. The effect of double

insertions of dimension-6 operators at the level of squared amplitudes also has been

studied in the literature [29–34].

Here we will focus on Higgs boson pair production in gluon fusion, combining the

NLO QCD corrections with full top quark mass dependence with anomalous couplings

within SMEFT. The full NLO QCD corrections have been calculated in Refs. [35–38],

based on numerical evaluations of the two-loop integrals entering the virtual correc-

tions. The results of [35] have been implemented into the Powheg-Box-V2 event gen-

erator [39–41], first for the SM only [42], then also for κλ variations [43] as well as for
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the leading operators contributing to this process in non-linear EFT (HEFT) [44, 45]

and SMEFT [13]. Recently, the NLO QCD corrections obtained from the combination

of a pT -expansion and an expansion in the high-energy regime have been calculated

analytically and implemented in the Powheg-Box-V2 [46], allowing to study top mass

scheme uncertainties in an event generator framework.

In Ref. [47] the combination of NNLO corrections in an mt-improved heavy top

limit (HTL) has been performed including anomalous couplings, extending earlier work

at NLO in the mt-improved HTL [48, 49]. The work of [47] has been combined with

the full NLO corrections within non-linear EFT of Ref. [44] to provide approximate

NNLO predictions in Ref. [50], dubbed NNLO′, which include the full top-quark mass

dependence up to NLO and higher order corrections up to NNLO in the mt-improved

HTL, combined with operators related to the five most relevant anomalous couplings

for the process gg → hh. Partial electroweak corrections also have emerged recently,

i.e. the full NLO electroweak corrections in the large-mt limit [51], the NLO Yukawa

corrections in the high-energy limit [52] and Yukawa corrections in the (partial) large-mt

limit [53].

In this paper, we investigate the effect of two classes of operators which contribute

at dimension-6 level to the process gg → hh, which however are suppressed by loop

factors compared to the leading operators considered in Ref. [13]. These are the chro-

momagnetic operator and 4-top-operators. As has been shown in Ref. [54] for the case

of single Higgs production, the latter are intricately related since they are individually

γ5-scheme dependent, the scheme dependence only dropping out when they are consis-

tently combined in a renormalised amplitude. Apart from the γ5 continuation scheme,

other sources of scheme differences in bottom-up SMEFT calculations also have been

studied recently [26, 55, 56].

The subsequent sections are organised as follows: in Section 2, we describe these

contributions and their scheme dependence in detail. Their implementation into the

POWHEG ggHH SMEFT generator is described in Section 3, together with instructions for

the user how to turn them on or off. Section 4 contains our phenomenological results,

focusing on the effects of these newly included operators on the total cross section and

on the Higgs boson pair invariant mass distribution, before we summarise and conclude.

2 Contributions of the chromomagnetic and four-top opera-

tors

In this section we describe our selection of contributing operators. Subsequently we

recapitulate the power counting scheme for SMEFT and discuss the new contributions

– 2 –



in detail, which will be identified as subleading.

Any bottom-up EFT is defined by its degrees of freedom, the imposed symmetries

and a power counting scheme. Since SMEFT builds upon the SM, the above specifica-

tions are given by the field content and gauge symmetries of the SM and the main power

counting, which relies on the counting of the canonical (mass) dimension. Due to strong

experimental constraints it is common to exclude baryon and lepton number violating

operators, hence only operators of even dimension are considered. Therefore, the dom-

inant contributions are expected to be described by dimension-6 operators, on which

we focus our attention in this paper. To further cut down the number of operators,1

we impose an exact flavour symmetry U(2)q × U(2)u × U(3)d in the quark sector for

a first investigation, which forbids chirality flipping bilinears involving light quarks (b-

quarks included) and right-handed charged currents [8, 57, 58]. This effectively makes

the CKM matrix diagonal and sets all fermion masses and Yukawa couplings to zero,

with the top quark as the only exception, thus being well compatible with a 5-flavour

scheme in QCD which we employ. In addition, this flavour choice reflects the expected

prominent role of the top quark in many BSM scenarios and could be a starting point

for a spurion expansion as in minimal flavour violation [57, 59].

We also neglect operators whose contributions involve only diagrams with elec-

troweak particles propagating in the loop. In principle, electroweak corrections and

such electroweak-like operator contributions can be of the same order in the power

counting as the subleading contributions studied in this paper. In addition, the close

connection between operators of class ψ2ϕ2D of Ref. [4] and CtG, observed by the struc-

ture of the γ5-scheme dependence in Ref. [54], demonstrates that our subset does not

fully comprise a consistent subleading order in a systematic power counting. Neverthe-

less, we expect it to be useful to investigate the sensitivity of the process gg → hh to the

chromomagnetic operator and 4-top operators in the presented form, especially since

even in the simpler case of the SM, electroweak effects to gg → hh are not yet under

control. With these restrictions, all dimension-6 CP even operators that contribute to

1A complete basis for the dimension-6 operators in full generality of the flavour sector includes

2499 real parameters [4], with a large subset potentially contributing to the considered process. Thus,

for a first study as presented here, making a further selection based on phenomenologically motivated

flavour assumptions appears to be necessary.
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gg → hh are given by

LSMEFT ⊃ CH□

Λ2
(ϕ†ϕ)□(ϕ†ϕ) +

CHD

Λ2
(ϕ†Dµϕ)

∗(ϕ†Dµϕ) +
CH

Λ2
(ϕ†ϕ)3

+
CtH

Λ2

(
ϕ†ϕQ̄Lϕ̃tR + h.c.

)
+
CHG

Λ2
ϕ†ϕGa

µνG
µν,a

+
CtG

Λ2

(
Q̄Lσ

µνT aGa
µνϕ̃tR + h.c.

)
+
C

(1)
Qt

Λ2
Q̄Lγ

µQLt̄RγµtR +
C

(8)
Qt

Λ2
Q̄Lγ

µT aQLt̄RγµT
atR

+
C

(1)
QQ

Λ2
Q̄Lγ

µQLQ̄LγµQL +
C

(8)
QQ

Λ2
Q̄Lγ

µT aQLQ̄LγµT
aQL

+
Ctt

Λ2
t̄Rγ

µtRt̄RγµtR ,

(2.1)

where σµν = i
2
[γµ, γν ] and ϕ̃ = iσ2ϕ is the charge conjugate of the Higgs doublet. For

the covariant derivative, we use the sign convention2

Dµ = ∂µ − igsT
aGa

µ , (2.2)

in order to be compatible with FeynRules [60, 61] conventions and tools relying on

UFO [62, 63] models. The first two lines in Eq. (2.1) comprise the leading EFT con-

tribution which has been studied in Ref. [13]. For convenience of the reader and later

reference, we show the Born-level diagrams related to those operators in Fig. 1. The

third line in Eq. (2.1) contains the chromomagnetic operator and lines 4-6 show the

relevant 4-top operators. The operator O(3) 3333
qq,Warsaw of the Warsaw basis [4] has been re-

placed by O(8)
QQ where the relation in terms of the Wilson coefficients has the form [64]

C
(1)
QQ = 2C

(1) 3333
qq,Warsaw − 2

3
C

(3) 3333
qq,Warsaw

C
(8)
QQ = 8C

(3) 3333
qq,Warsaw ,

(2.3)

the other 4-top operators are already present in the 3rd generation 4-fermion operators

of the Warsaw basis.

The chromomagnetic operator and the 4-top operators of Eq. (2.1) together form

the subleading contribution that will be the focus of this work. Below the scale of elec-

troweak symmetry breaking, and after performing a field redefinition for the physical

2Note that the sign of CtG is sensitive to the convention of the covariant derivative. This is more

apparent when a factor of gs is extracted, i.e. CtG = gsC̃tG, which is for example the case in the basis

definition of Ref. [58].
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Figure 1: Feynman diagrams of the leading SMEFT contributions to gg → hh (Born

level). Black dots denote insertions of SM couplings, gray dots (potentially) tree-

induced EFT operators, gray squares denote insertions of loop-induced couplings (here

CHG).

Higgs field in unitary gauge [13], the relevant interaction terms of the Lagrangian have

the form

LSMEFT ⊃ −
(
mt

v

(
1 + v2

CH,kin

Λ2

)
− v2√

2

CtH

Λ2

)
h t̄ t−

(
mt
CH,kin

Λ2
− 3v

2
√
2

CtH

Λ2

)
h2 t̄ t+

−
(
m2

h

2v

(
1 + 3v2

CH,kin

Λ2

)
− v3

CH

Λ2

)
h3 +

CHG

Λ2

(
v h+

1

2
h2
)
Ga

µνG
a,µν

+ gst̄ γ
µT a tGa

µ +
CtG

Λ2

√
2 (h+ v)

(
t̄ σµνT a tGa

µν

)
+
C

(1)
Qt

Λ2
t̄Lγ

µtLt̄RγµtR +
C

(8)
Qt

Λ2
t̄Lγ

µT atLt̄RγµT
atR

+
C

(1)
QQ

Λ2
t̄Lγ

µtLt̄LγµtL +
C

(8)
QQ

Λ2
t̄Lγ

µT atLt̄LγµT
atL

+
Ctt

Λ2
t̄Rγ

µtRt̄RγµtR ,

(2.4)

which is valid up to O(Λ−4) differences. Here v denotes the full vacuum expectation
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value including a higher dimensional contribution of CH

Λ2 and3

mt =
v√
2

(
yt −

v2

2

CtH

Λ2

)
, (2.5)

where yt is the top-Yukawa parameter of the dimension-4 Lagrangian.

In the following, we will briefly comment on the notions of ‘leading’ and ‘subleading’

we have used above. In SMEFT, the operators are ordered by their canonical dimension,

i.e. the expansion is based on powers in E/Λ. However, in a perturbative expansion,

in particular in the combination of EFT expansions with expansions in a SM coupling,

loop suppression factors also play a role. Therefore, a classification of operators into

potentially tree-level induced and necessarily loop-generated operators [65], the latter

thus carrying an implicit loop factor L = (16π2)
−1
, leads to a more refined counting

scheme, which also seems more consistent with regards to renormalisation and the

cancellation of scheme-dependent terms [54]. The same loop factors can be derived

by supplementing the SMEFT expansion by a chiral counting of operators [66], see

also [67, 68]. Such a classification can only be made when making some minimal

UV assumptions, which are however quite generic, assuming the renormalisability of

the underlying UV theory4. Therefore, if the Wilson coefficients Ci in the SMEFT

expansion are considered to be of similar magnitude, it makes sense to expand in

Ci × 1/Λa × 1/(16π2)b. Fixing a = 2 (dimension-6 operators) we call the operator

contributions with b = 0 ‘leading’ and those with b > 0 ‘subleading’. The above factors

are to be combined with explicit loop factors 1/(16π2)c from the SM perturbative

expansion.

Applying those rules to the Born contributions of Fig. 1 and collecting loop factors

of QCD origin together with associated powers of gs leads to MBorn ∼ O ((g2sL)Λ
−2).

Here we identify both types of contributions: explicit diagrammatic loop factors com-

bined with tree-generated operator insertions (first line, grey dots, b = 0, c = 1 in

the above classification), and tree diagrams combined with implicitly loop-generated

operators (second line, grey squares, b = 1, c = 0 in the above classification). The

power counting of the subleading contributions is addressed in Sections 2.1 and 2.2.

3For more details on the definition of physical quantities in SMEFT we refer to Chapter 5 of

Ref. [17].
4Non-renormalisable contributions, for example due to an intermediate new physics sector that is

not the UV complete theory, would introduce a stronger suppression due to factors of an even higher

NP scale Λ′, that is likely to overcompensate the loop factor. The RGE flow of the Wilson coefficients

can mix potentially tree-level induced and loop suppressed coefficients. However, coefficients of the

RGE flow also carry a loop factor and therefore such mixings are suppressed. Furthermore, in our

selection CtG is the only loop suppressed coefficient that could be affected by a mixing of C
(1/8)
QtQb, see

(A.21) of Ref. [16], thus the mixing is suppressed by yb/yt, i.e. not allowed by our flavour assumption.
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At cross section level, we therefore have

σEFT ∼ σBorn
EFT + σNLO

EFT , (2.6)

where5

σBorn
EFT ∼ σSM

[
(g2sL)

2
]
+ σlead

dim6

[
(g2sL)

2Λ−2
]
+ σCtG,4-top

dim6

[
(g2sL)

2LΛ−2
]

{
+σlead

dim62

[
(g2sL)

2Λ−4
]
+ σCtG,4-top

dim62

[
(g2sL)

2LΛ−4
]}

,
(2.7)

and

σNLO
EFT ∼ σSM

[
(g2sL)

3
]
+ σlead

dim6

[
(g2sL)

3Λ−2
] {

+σlead
dim62

[
(g2sL)

3Λ−4
]}

, (2.8)

with L = 1
16π2 originating from subleading operator contributions. Here σ

(... )
dim6

denotes the interference of the dimension-6 amplitude with the SM amplitude and the

terms inside {. . . } are the |Mdim6|2 parts of the cross section, which can be switched on

or off in the ggHH SMEFT code. The EFT contribution only based on leading operators

is denoted by σlead
(... ), while σ

CtG,4-top
(... ) contains the contributions with a single insertion of

CtG and/or 4-top operators. Values inside the square brackets in Eqs. (2.7) and (2.8)

denote the order in power counting of the respective contribution at cross section level.

In the subsequent parts of this section, we discuss the structure of the contributions

to the amplitude which involve single insertions of the chromomagnetic operator and the

4-top operators of eq. (2.1). All relevant diagrams were generated with QGraf [69] and

the calculation was performed analytically using FeynCalc [70–72]. UV divergences are

absorbed in a mixed on-shell-MS renormalisation scheme, where the mass of the top-

quark is renormalised on-shell and the dimension-6 Wilson coefficients are renormalised

in the MS scheme. The contribution of the chromomagnetic operator has been checked

against a private version of GoSam [73, 74]; the amplitude involving 4-top operators has

been checked in D dimensions against alibrary [75] in combination with Kira [76,

77]. The renormalised 4-top amplitudes were tested numerically in four dimensions by

comparing the analytic implementation in the Powheg-Box-V2 [39–41] against the result

obtained with alibrary and evaluated with pySecDec [78–80] for several phase-space

points. The chiral structure of the 4-top couplings is treated in the Naive Dimensional

Regularisation (NDR) scheme [81] assuming the cyclicity of traces of strings of gamma

matrices. This is possible since (after reduction of loop integrals onto the integral

basis of ’t Hooft-Passarino-Veltman scalar integrals [82, 83]) all appearing traces with

5We associate a factor of gs with each Wilson coefficient where a field-strength tensor is contained

in the corresponding operator.
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an odd number of γ5 matrices can be explicitly brought into the form
∑
γµ1 . . . γµnγ5

with n < 4 through anti-commutation and therefore vanish. In addition, the analytic

calculation of the 4-top contributions in FeynCalc is repeated in the Breitenlohner-

Maison-t’Hooft-Veltman (BMHV) scheme [84, 85], with the symmetric definition for

chiral vertices

γµPL/R → PR/Lγ
µPL/R , (2.9)

and the translation between the Lagrangian parameters obtained in Ref. [54] is verified.

For convenience, the explicit form of the translation is also presented in Eq. (2.22).

2.1 Amplitude structure of chromomagnetic operator insertions

The contribution of the chromomagnetic operator to the amplitude leads to the diagram

types shown in Fig. 2. At first sight, the diagrams are at one-loop order, such that,

g
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g

g

h

h
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g

g

h

h
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g

g

h

h

(d)

Figure 2: Feynman diagrams involving insertions of the chromomagnetic operator.

The gray squares denote insertions of the (loop-suppressed) chromomagnetic operator.

together with the explicit dimensional factor, the prefactor of the Wilson coefficient

appears at O ((g2sL)Λ
−2). However, the chromomagnetic operator belongs to the class

of operators that, in generic UV completions, can only be generated at loop level [65, 66].

Hence, the implicit loop factor of its Wilson coefficient promotes the order in power

counting to MtG ∼ O ((g2sL)LΛ−2), which is in that sense subleading with regards to

the leading Born diagrams of Fig. 1.

The diagrams of type (a), (b) and (d) are UV divergent even though they consti-

tute the leading order contribution of CtG to the gluon fusion process. However, this

behaviour is well known [86] and leads to a renormalisation of C0
HG = µ2ϵ

(
CHG + δCi

CHG

)
(µ being the renormalisation scale) which in the MS scheme takes the form [17, 86]

δCtG
CHG

=
(4πe−γE)

ϵ

16π2ϵ

4
√
2gsmt

v
TF CtG . (2.10)

With this renormalisation term the finiteness of the amplitude is restored, and it can

be numerically evaluated using standard integral libraries.
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2.2 Amplitude structure involving four-top operators

Four-top operators appear first at two-loop order in gluon-fusion Higgs- or di-Higgs

production. Thus, their contribution is of the same order in the power counting as

the one of the chromomagnetic operator, i.e. M4-top ∼ O ((g2sL)LΛ−2). Following

the reasoning of Ref. [87] in single Higgs production, we separate the contribution

into different diagram classes, which are shown in Fig. 3. The ordering in columns is

g
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h

h

(a)

g

g

h

h

(b)

g

g

h

h

(c)

g

g

h

h

(d)

g

g

h

h

(e)

g

g

h

h

(f)

g

g

h

h

(g)

g

g

h

h

(h)

Figure 3: Feynman diagrams involving insertions of 4-top operators. The gray dots

denote insertions of 4-top operators.

chosen in order to group in underlying Born topologies (i.e. triangles and boxes), the

rows combine the type of one-loop correction (if applicable). The first column is thus

analogous to single Higgs production as in Ref. [87], with one Higgs splitting into two,

however we do not include bottom quark loops (and loops of other light quarks), since

we apply a more restrictive flavour assumption in which the bottom quark remains

massless and diagrams with bottom loops vanish in an explicit calculation, either due

to the bottom-Yukawa coupling being zero or due to vanishing scaleless integrals.

The categories of diagrams in Fig. 3 can be structured in the following way: (a) and

(b): loop corrections to top propagators, (c) and (d): loop corrections to the Yukawa

interaction, (e): loop correction to the tthh vertex, (f) and (g): loop corrections to
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the gauge interaction (more precisely, a contraction of a one-loop subdiagram of (f)

leads to the topologies of Fig. 2 (a) or (b)), and (h) without clear correspondence to a

vertex correction of a Born structure (but related to type (d) diagrams of Fig. 2 after

contraction of a one-loop subdiagram).

In the following we sketch the calculation of the contribution of those classes and

then refer to the γ5-scheme dependence of the calculation, which first has been inves-

tigated in Ref. [54]. We represent the results in terms of master integrals that are

given by Passarino-Veltman scalar functions N0, N ∈ {A,B,C, . . .} in the convention

of FeynCalc [70–72] (which is equivalent to the LoopTools [88] convention), such that

loop factors are kept manifest in the formulas.

We begin with propagator corrections which have no momentum dependence and

therefore contribute only proportional to a mass insertion

t t

t

=
C

(1)
Qt + cFC

(8)
Qt

8π2Λ2

(
2A0

(
m2

t

)
−m2

t

)
× t t . (2.11)

Hence, after applying an on-shell renormalisation of the top quark mass m0
t =

mt + δmt with

δm4-top
t = −mt

C
(1)
Qt + cFC

(8)
Qt

8π2Λ2

(
2A0

(
m2

t

)
−m2

t

)
, (2.12)

the diagrams of class (a) and (b) are completely removed.

Next, we consider loop corrections to Yukawa-type interactions. The explicit ex-

pression for h→ t̄t for an off-shell Higgs is proportional to the SM Yukawa coupling

h

t

t

=

(
C

(1)
Qt + cFC

(8)
Qt

Λ2

4m2
t − q2

16π2

(
2B0

(
q2,m2

t ,m
2
t

)
− 1
)
− δm4-top

t

mt

)

× h

t

t

,

(2.13)

where q denotes the momentum of the Higgs. The part involving the 1-loop tadpole

integral in Eq. (2.13) is expressed in terms of the on-shell mass counter term δm4-top
t such

that the effect of on-shellmt renormalisation on the correction of the Yukawa interaction

is made obvious. In order to derive the necessary counter term for CtH , it is sufficient

to consider the case of the Higgs being on-shell. Renormalising C
(0)
tH = µ3ϵ

(
CtH + δCi

CtH

)
in the MS scheme then leads to

δ4-topCtH
=

(4πe−γE)
ϵ

16π2ϵ

2
√
2mt (4m

2
t −m2

h)

v3

(
C

(1)
Qt + cFC

(8)
Qt

)
, (2.14)
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which coincides with δ
Cj

Ci
=

(4πe−γE)
ϵ

16π2ϵ

γCi,Cj

2
Cj using the respective part of the anomalous

dimension matrix γCi,Cj
of Refs. [15, 16].6 With the additional counter term diagrams

of δm4-top
t and δ4-topCtH

the diagram classes (a), (b) and (c) of Fig. 3 are made finite, and

we write schematically

g

g

h

h

+

g

g

h

h

+

g

g

h

h

+

g

g

h

h

=
C

(1)
Qt + cFC

(8)
Qt

Λ2
F4-top

t̄t→hhM
gg→h
SM

g

g

h

h

+

g

g

h

h

= 2
C

(1)
Qt + cFC

(8)
Qt

Λ2
F4-top

t̄t→hM
gg→hh
□,SM ,

(2.15)

where

F4-top
t̄t→h =

4m2
t −m2

h

16π2

(
2Bfin

0

(
m2

h,m
2
t ,m

2
t

)
− 1
)
,

F4-top
t̄t→hh =

1

16π2v
×(

2
4m2

t s+ 8m2
hm

2
t − 3m2

hs

s−m2
h

Bfin
0

(
s,m2

t ,m
2
t

)
+ 16m2

tB
fin
0

(
m2

h,m
2
t ,m

2
t

)
+4m2

t

(
8m2

t − 2m2
h − s

)
C0

(
m2

h,m
2
h, s,m

2
t ,m

2
t ,m

2
t

)
+ 3s

m2
h − 4m2

t

s−m2
h

)
,

(2.16)

and Mgg→h
SM and Mgg→hh

□,SM denote the SM gg → h amplitude and the SM box-type

contribution to the gg → hh amplitude, respectively.

Subsequently, we investigate contributions to the gauge interaction, as they appear

in diagram classes (d) and (e) of Fig. 3. It is sufficient to consider the case of an on-shell

external gluon. Thus, the vertex correction evaluates to

g

t

t

=
C

(1)
Qt +

(
cF − cA

2

)
C

(8)
Qt

CtG

KtG × g

t

t

, (2.17)

6Cf. Appendix B of Ref. [54] for the derivation of the factor 1
2 in the relation between anomalous

dimension and counter term.
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where we defined

KtG = −
√
2mtgs
16π2v

. (2.18)

Since the Lorentz structure of the correction to the gauge vertex is similar to the

insertion of a chromomagnetic operator, diagrams in class (d) of Fig. 3 acquire a UV

divergence (class (e) remains finite) which, analogous to the case of the chromomagnetic

operator, can be absorbed by a (now 2-loop) counter term of CHG. In MS the explicit

form is

δ4-topCHG
=

(4πe−γE)
2ϵ

(16π2)2 ϵ

−4g2sm
2
t

v2
TF

(
C

(1)
Qt +

(
cF − cA

2

)
C

(8)
Qt

)
. (2.19)

Schematically, we now have

g

g

h

h

+

g

g

h

h

=
C

(1)
Qt +

(
cF − cA

2

)
C

(8)
Qt

CtG

KtG

(
M(a)

tG +M(b)
tG

)
g

g

h

h

=
C

(1)
Qt +

(
cF − cA

2

)
C

(8)
Qt

CtG

KtGM(c)
tG ,

(2.20)

where M(a/b/c/d)
tG denote the amplitude of diagram types (a), (b), (c) and (d) of Fig. 2,

respectively. The remaining diagrams of class (h) of Fig. 3 are made UV finite by the

gghh counter term vertex using precisely the same value of δ4-topCHG
which is an indication

that eq. (2.19) is indeed the correct 2-loop counter term. Finally, we obtain

g

g

h

h

+

g

g

h

h

=
C

(1)
Qt +

(
cF − cA

2

)
C

(8)
Qt

CtG

KtGM(d)
tG

+

[
C

(1)
QQ + Ctt +

(
cF − cA

2

)
C

(8)
QQ

Λ2
+ TF

C
(8)
QQ + C

(8)
Qt

Λ2

]
M4-top

∆QQ,tt,(8) ,

(2.21)

where M4-top
∆QQ,tt,(8) is a remaining amplitude piece for which we could not identify an

expression in terms of a 1-loop subamplitude.

A few comments about the difference between the NDR and BMHV schemes are

in order. In our calculation, the treatment of γ5 in the two schemes differs only by

the 2ϵ-dimensional part of the Dirac algebra in D-dimensions. In the limit D → 4

the renormalised fixed order result between the two schemes therefore differs by terms
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stemming from the 2ϵ-dimensional parts of the Dirac algebra multiplying a pole of the

loop integrals. In the 4-top calculation of this work, the BMHV results are obtained by

removing the finite pieces in Eqs. (2.11), (2.12), (2.13) and (2.16) that do not multiply

a Passarino-Veltman scalar function, i.e. the rational parts, and setting KtG = 0 in

Eqs. (2.17), (2.20) and (2.21). These differences only affect the terms dependent on

C
(1)
Qt and C

(8)
Qt . This scheme dependence has the same structure as the one in the

process gg → h which was observed in Ref. [54],7 thus verifying the possibility to

translate between results in the two schemes by means of finite shifts of the Lagrangian

parameters. The explicit form of the translation relation to the BMHV scheme in terms

of parameter shifts is as follows

δm4-top; BMHV
t = δm4-top

t +
m3

t

8π2Λ2

(
C

(1)
Qt + cFC

(8)
Qt

)
CBMHV

tH = CtH +

√
2mt (4m

2
t −m2

h)

16π2v3

(
C

(1)
Qt + cFC

(8)
Qt

)
CBMHV

tG = CtG −
√
2mtgs
16π2v

(
C

(1)
Qt +

(
cF − cA

2

)
C

(8)
Qt

)
,

(2.22)

which is equivalent to the relations presented in Eqs. (45)-(47) of Ref. [54].

3 Implementation and usage of the code within the Powheg-Box

The analytic formulas of the previous section are implemented as an extension to

ggHH SMEFT [13] that already includes the combination of NLO QCD corrections with

the leading operators and is publicly available in the framework of the POWHEG-BOX-V2 [39–

41]. Therefore, the calculation of the cross section at fixed order is extended by the

subleading contributions in the form of Eqs. (2.6)-(2.8).

The subleading contributions enter the calculation as part of the Born contribution.

Since the loop functions are expressed in terms of one-loop integrals, the evaluation time

per phase-space point of the subleading contributions is of the order of the existing Born

contribution, thus does not significantly change the run-time of the code.

The usage of the program ggHH SMEFT follows the existing version with the exten-

sion by a few parameters in the input card. An example is given in the folder testrun

in the input card powheg.input-save. The new Wilson coefficients of the subleading

operators in Eq. (2.1) can be set with:

CtG : Wilson coefficient of chromomagnetic operator CtG,

7Note the different sign for KtG in Eq. (2.18) as a consequence of different convention for the

covariant derivative.
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CQt : Wilson coefficient of 4-top operator C
(1)
Qt ,

CQt8 : Wilson coefficient of 4-top operator C
(8)
Qt ,

CQQtt : sum of Wilson coefficients of 4-top operators C
(1)
QQ + Ctt,

CQQ8 : Wilson coefficient of 4-top operator C
(8)
QQ.

The available options for the selection of cross section contributions from EFT

operators are visualized in Table 1. The structure of the code still allows the user

truncation (a) (b)

σBorn
EFT

includesubleading

0 σlead
dim6 [(g

2
sL)

2Λ−2] σlead
dim62

[(g2sL)
2Λ−4]

1 σCtG,4-top
dim6 [(g2sL)

2LΛ−2] σCtG,4-top

dim62
[(g2sL)

2LΛ−2]

2 σ
C2

tG

dim62
[(g2sL)

2L2 Λ−4]

σNLO
EFT

σlead
dim6 [(g

2
sL)

3Λ−2] σlead
dim62

[(g2sL)
3Λ−4]

Table 1: Options to select EFT contributions for the calculation of the cross sec-

tion. Columns denote the truncation options for the 1/Λ–expansion, rows show the

selection of subleading operator contributions for the Born cross section in the upper

part and the NLO cross section in the lower part which is untouched by the setting

of includesubleading. The partial cross section contributions are understood to be

added to the SM, higher setting for the selection always include the previous contribu-

tions as well. Note that includesubleading=2 requires bornonly mode.

to choose all truncation options described in Ref. [13]. However, including the sub-

leading contributions, only options (a) (SM+linear dimension-6) and (b) (SM+linear

dimension-6+quadratic dimension-6) are available, as the other options are not mean-

ingful in combination with the subleading operators. The subleading contributions are

activated through the keyword includesubleading which can be set to 0, 1 or 2. When

includesubleading=0 the subleading contributions are not included and the program

behaves as the previous ggHH SMEFT version, i.e. the values for CtG, CQt, CQt8, CQQtt

and CQQ8 are ignored. With includesubleading=1 the subleading contributions enter
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– according to the power counting – only in the interference with the leading LO ma-

trix elements. The setting includesubleading=2 is only available in bornonly mode.

This allows the user to remain completely agnostic about possible UV extensions such

that CtG is treated as if it was part of the leading operator contribution, i.e. allowing

squared CtG-contributions to |Mdim-6|2 in truncation option (b). However, no NLO

QCD corrections to the squared CtG-part are available.

In addition, there is an option for 4-top contributions to choose between the NDR

scheme (GAMMA5BMHV=0) and the BMHV scheme (GAMMA5BMHV=1) with the definition of

chiral vertices according to Eq. (2.9). As described at the end of Section 2.2, this will

only affect the dependence on CQt and CQt8.

4 Results

The results presented in the following were obtained for a centre-of-mass energy of√
s = 13.6TeV using the PDF4LHC15 nlo 30 pdfas [89] parton distribution functions,

interfaced to our code via LHAPDF [90], along with the corresponding value for αs.

We used mh = 125GeV for the mass of the Higgs boson; the top quark mass has been

fixed to mt = 173GeV to be coherent with the virtual two-loop amplitude calculated

numerically, and the top quark and Higgs widths have been set to zero. Jets are

clustered with the anti-kT algorithm [91] as implemented in the FastJet package [92, 93],

with jet radius R = 0.4 and a minimum transverse momentum pjetT,min = 20GeV. We

set the central renormalisation and factorisation scales to µR = µF = mhh/2. We use

3-point scale variations unless specified otherwise.

4.1 Total cross sections and heat maps

In this subsection we investigate the dependence of the total cross section on the con-

tribution of subleading operators. The first part demonstrates the effect of variations

of pairs of Wilson coefficients with respect to the SM configuration, where all contri-

butions are included at LO QCD. In the second part, we present values for the total

cross section of the SM and benchmark point 6 of Refs. [13, 94] at NLO QCD and their

dependence on variations of a single subleading Wilson coefficient. The definition of

benchmark point 6 in terms of SMEFT Wilson coefficients is given in Table 2. The

ranges for the variation of CH are oriented at a translation of the limits on κλ from

Ref. [96], the ranges for the other Wilson coefficients are taken from Ref. [58] based

on O(Λ−2) individual bounds or O(Λ−2) marginalised fits over the other Wilson coeffi-

cients. Note that, besides a flavour assumption, no a priori assumptions on the Wilson

coefficients were made for the derivation of those limits, such that their ranges include

values where the truncation at O(Λ−2) and/or our power counting may not be valid,
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benchmark CH,kin CH CtH CHG

SM 0 0 0 0

6 0.561 3.80 2.20 0.0387

Table 2: Definition of benchmark scenarios considered here in terms of SMEFTWilson

coefficients. Benchmark point 6 refers to the set in Refs. [13, 94], which is an updated

version of Ref. [95]. The benchmarks were originally derived in a non-linear theory

(HEFT), where benchmark point 6 corresponds to chhh = −0.684, ctth = 0.9, ctthh = −1
6
,

cggh = 0.5, cgghh = 0.25. A value of Λ = 1TeV is assumed for the translation between

HEFT and SMEFT coefficients and CHG is determined using αs(mZ) = 0.118.

i.e. the value of CtG is not suppressed by a factor of (16π2)−1 and the ranges for the

4-top Wilson coefficients, with values O(100), may be too large.8

Nonetheless, the ranges of the Wilson coefficients for the following heat maps use

the marginalised O(Λ−2) bounds of Ref. [58] in order to cover a conservative parameter

range. In Fig. 4 we show heat maps illustrating the dependence of the LO QCD cross

section on the variation of CtG at the level of linear dimension-6 truncation (option (a)),

compared to the leading couplings CtH and CH , which corresponds to a comparison on

equal footing. The allowed ranges of Wilson coefficients are still quite large, such that

a sizeable fraction of the 2-dimensional parameter space leads to unphysical negative

cross section values. As to be expected, the effect of a variation of CtG within the given

range is less pronounced than the one from variations of the leading couplings CtH

and CH within their range. From a power counting point of view, the allowed range

for CtG should be much smaller, such that the difference of the impact on the cross

section would be even more obvious. Nevertheless, it is reasonable to derive bounds

while being agnostic about the size of Wilson coefficients as well as considering power

counting arguments on the expected impact. The latter is the approach we follow.

In Fig. 5, heat maps for the dependence of the cross section on a variation of

(independent) 4-top operator pairs C
(1)
Qt , C

(8)
Qt and C

(1)
QQ+Ctt, C

(8)
QQ are shown. Looking at

the right plot it is apparent that the (LL)(LL) and (RR)(RR) operators of Ref. [4] with

coefficients C
(1)
QQ, Ctt and C

(8)
QQ hardly affect the cross section. This can be understood

by the very limited contribution to the amplitude, given only by the residual structure

M4-top
∆QQ,tt,(8) in Eq. (2.21). On the other hand, the (LL)(RR) operators, with coefficients

8Interestingly, the conservative limits from the marginalised fits have values below 1 for CtG and

values of O(100) for C
(1)
Qt , such that the contribution of the scheme translation in Eq. (2.22) can be by

accident of the same order or even larger than the original coefficient, inserting the numbers naively.
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Figure 4: Heat maps showing the dependence of the LO cross section on the pair of

Wilson coefficients CtG, CtH (left) and CtG, CH (right), respectively, with Λ = 1TeV for

the linear dimension-6 truncation. The ranges for CH are oriented at a translation of

the limits on κλ from Ref. [96], the ranges for the other Wilson coefficients are obtained

at O (Λ−2) constraints from Ref. [58] (marginalised over the other coefficients). The

white areas denote regions in parameter space where the corresponding cross section

would be negative.
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Figure 5: Heat maps showing the dependence of the cross section on the couplings

C
(1)
Qt and C

(8)
Qt (left) and C

(1)
QQ+Ctt and C

(8)
QQ (right) with Λ = 1TeV. The ranges are taken

from Ref. [58] based on an O(Λ−2) fit marginalised over the other Wilson coefficients.

C
(1)
Qt and C

(8)
Qt , (left plot of Fig. 5) have a large impact on the cross section in the

considered range of values, leading to modifications of more than 100% of the LO cross

section. The effect on the total cross section of C
(8)
Qt is stronger than the effect of C

(1)
Qt (in
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NDR), which is due to a large impact following from a sign change of the interference

with the SM, visible in the upper left diagram of Fig. 9.

Fig. 6 shows the dependence of the LO cross section on the variation of CtG and

C
(1)
Qt , comparing the NDR and BMHV scheme choices for the chiral structure of the

4-top operator. We introduce C
(1/8)
Qt;BMHV as a short-hand notation to specify that the

corresponding amplitude is calculated in the BMHV scheme. Hence, this does not

mean that the value of C
(1/8)
Qt itself is changed by the scheme choice. This selection is
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Figure 6: Heat maps demonstrating the effect of the γ5-scheme choice on the depen-

dence of the cross section on the couplings CtG and C
(1)
Qt with Λ = 1TeV. Left plot

NDR, right plot BMHV. The ranges are taken from Ref. [58] based on an O(Λ−2) fit

marginalised over the other Wilson coefficients.

an interesting showcase, since in Ref. [54] it has been demonstrated that the two Wilson

coefficients are closely related, because part of the translation between the schemes is

achieved by shifting CtG by contributions that are of equal order in the power counting

as the original value of CtG, see Eq. (2.22). The gradient of the cross section in NDR

(left) points in a completely different direction than the one in BMHV (right) and also

the magnitude of the gradient changes significantly. This demonstrates that bounds

set on these operators individually, without considering cancellations of the scheme

dependence between different operator contributions, may not be very meaningful.

In Table 3 we present values for the total cross section for the SM and benchmark

point 6, using truncation options (a) and (b) at NLO QCD. We also demonstrate their

dependence on the variation of a single subleading Wilson coefficient. In general, the

relative difference due to the variation of these Wilson coefficients is more pronounced

for the SM cross section than for benchmark point 6.
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Due to the asymmetric range of CtG, its variation tends to a damping of the cross

section, with up to −36% relative to the SM. For benchmark point 6, truncation (a)

leads to a larger relative effect of CtG on the cross section than truncation (b).

The variation of single 4-top Wilson coefficients, on the other hand, is fairly sym-

metric for the marginalised limits and has larger relative impact for truncation option

(b) than for truncation option (a). The cross section difference for a variation of C
(1)
Qt

or C
(8)
Qt is larger when working in the BMHV scheme than in NDR, and the scheme

difference is much more visible for C
(1)
Qt . The C

(1)
Qt variation leads to up to ∼ 35% ef-

fects on the cross section in the NDR scheme and up to ∼ 100% in BMHV, whereas

for C
(8)
Qt the maximum difference is in both schemes ≳ 100%. As already indicated

by the heat map on the right of Fig. 5, the effect of C
(1)
QQ, Ctt and C

(8)
QQ variation is

very small, with a relative difference of less than 4% and being only a fraction of the

uncertainty due to 3-point scale variations. The effects of C
(1)
Qt or C

(8)
Qt on the difference

∆CtG := CBMHV
tG −CtG and ∆CtH := CBMHV

tH −CtH are illustrated later at distribution

level in Fig. 11.
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BM SM 6 (a) 6 (b)

σNLO[fb] 30.9+14%
−13% 56.5+22%

−19% 78.7+18%
−15%

CtG

[0.0085 , 0.14]

[−0.15 , 0.49]

[−0.63% −10%]

[+11% −36%]

[−0.34% −5.6%]

[+6.0% −20%]

[−0.26% −4.3%]

[+4.6% −15%]

C
(1)
Qt

[−200 , 160]

[−190 , 190]

[−35% +28%]

[−34% +34%]

[−19% +15%]

[−18% +18%]

[+31% −25%]

[+30% −30%]

C
(1)
Qt;BMHV

[−200 , 160]

[−190 , 190]

[+101% −81%]

[+96% −96%]

[+55% −44%]

[+53% −53%]

[+88% −71%]

[+84% −84%]

C
(8)
Qt

[−5.6 , 20]

[−190 , 160]

[+3.2% −11%]

[+106% −89%]

[+1.7% −6.1%]

[+58% −49%]

[+3.1% −11%]

[+105% −88%]

C
(8)
Qt;BMHV

[−5.6 , 20]

[−190 , 160]

[+3.8% −13%]

[+127% −107%]

[+2.1% −7.3%]

[+69% −58%]

[+3.4% −12%]

[+114% −96%]

C
(1)
QQ + Ctt

[−6.1 , 23]

[−190 , 190]

[−0.11% +0.42%]

[−3.5% +3.5%]

[−0.061% +0.23%]

[−1.9% +1.9%]

[+0.094% −0.36%]

[+2.9% −2.9%]

C
(8)
QQ

[−26 , 58]

[−190 , 170]

[−0.16% +0.35%]

[−1.2% +1.0%]

[−0.087% +0.19%]

[−0.63% +0.57%]

[+0.13% −0.30%]

[+0.98% −0.87%]

Table 3: Total cross sections for Higgs-boson pair production at NLO QCD for the SM

and benchmark point 6 using truncation option (a) or (b) at 13.6 TeV. The modification

of the cross section due to a variation of the subleading Wilson coefficients is given as

relative change to the base value in the second row. The uncertainties in the second row

are scale uncertainties based on 3-point scale variations. The ranges of the subleading

Wilson coefficients are oriented at O (Λ−2) constraints from Ref. [58] (Upper values:

individual bounds, lower values: marginalised over the other coefficients). The effect

of the Wilson coefficients C
(1)
Qt and C

(8)
Qt is also shown for the BMHV scheme, which is

denoted by C
(1)
Qt;BMHV and C

(8)
Qt;BMHV.
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4.2 Higgs boson pair invariant mass distributions

In this section we present differential distributions depending on the invariant mass

of the Higgs boson pair, mhh, combining NLO QCD results and subleading operator

contributions at LO QCD. Each plot demonstrates the variation of a single subleading

Wilson coefficient w.r.t. either the SM or benchmark point 6 for truncations (a) (linear

dimension-6 only) and (b) (linear+quadratic dimension-6).

In Fig. 7 the variation of the chromomagnetic operator coefficient CtG in the ranges

specified in Table 3 is shown. In the low mhh-region, the effects can noticeably exceed
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Figure 7: Effects of CtG-variations in the corresponding ranges. Left: variation

w.r.t. the SM mhh-distribution, right: variation w.r.t. benchmark point 6 (BP6) for

truncation options (a) and (b).

the scale uncertainty band. Note that the CtG-variation range is asymmetric around

zero and that the interference of the CtG-term with the SM contribution tends to

decrease the cross section.

In Fig. 8 we present the variation of the 4-top operator coefficient C
(8)
QQ and the

combination C
(8)
QQ + Ctt. As observed at the level of total cross sections in Section 4.1,

the contribution of these operators remains within the scale uncertainties, except for

small deviations in the tails for the case of C
(1)
QQ + Ctt. Thus the process gg → hh is

not sensitive to those operators even if the coefficients are varied in ranges as large as

[−190, 190]. The situation is different for the operators C
(1)
Qt and C

(8)
Qt , as we will show

below. However, the contribution of these Wilson coefficients depends on the chosen

γ5-scheme in dimensional regularisation, as explained in Section 2.2.

We begin with Fig. 9 which demonstrates the effect of varying C
(1)
Qt . We observe
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Figure 8: left: C
(1)
QQ + Ctt, right: C

(8)
QQ; upper: SM, lower: benchmark point 6.

sizeable effects, differing from the baseline prediction (SM or benchmark 6) by more

than 100% for some regions, which also leads to negative cross section values. In NDR,

the low- and high mhh-regions exhibit large differences beyond the scale uncertainty,

with unphysical cross sections at low mhh values and a sign change around mhh ∼
460TeV. This behaviour changes significantly in BMHV: there are visible, but weaker

effects in the low mhh-region, the sign change occurs around mhh ∼ 360TeV and the

deviation in the high mhh-region begins for lower invariant masses and is also more

pronounced.

The scheme dependent behaviour of C
(8)
Qt is shown in Fig. 10. For both schemes we

observe small effects in the low mhh-region, a sign change of the contribution around

mhh ∼ 360TeV and a pronounced effect in the high mhh-region. Overall, the difference

between the schemes is not as significant as in the case of C
(1)
Qt . The contribution to the

mhh distribution in the BMHV scheme (right column of Fig. 10) is qualitatively very
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Figure 9: Effects of C
(1)
Qt -variations. Left: NDR, right: BMHV; upper: SM, lower:

benchmark point 6.

similar to the case of C
(1)
Qt shown in Fig. 9.

In order to better understand the qualitative difference between the C
(1)
Qt and C

(8)
Qt

variations in NDR, we investigate the effect of those rational terms contributing in

NDR which are responsible for the scheme difference and eventually the translation

relation Eq. (2.22). We distinguish in the following between the scheme dependent parts

∆CtG := CBMHV
tG −CtG, leading to the shift of CtG, and ∆CtH := CBMHV

tH −CtH , leading

to the shift of CtH . In Fig. 11 we present the difference to the SM mhh distribution

originating from those scheme dependent terms, where we individually vary C
(1)
Qt or C

(8)
Qt ,

respectively. Considering all scheme dependent terms, there is a prominent contribution

from C
(1)
Qt , which is much larger than the scale uncertainty of the SM result for the whole

mhh-range, especially apparent in the low to intermediatemhh-regime. Investigating the
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Figure 10: Effects of C
(8)
Qt -variations. Left: NDR, right: BMHV; upper: SM, lower:

benchmark point 6.

constituents, we notice that ∆CtG is much more relevant than ∆CtH when considering

the contributions from C
(1)
Qt to the shift. Comparing the change on the distribution

related to ∆CtG and ∆CtH separately (middle and bottom left panels in Fig. 11) to

the effect of the sum of both contributions (top left panel in Fig. 11), we observe that

the range of the band in the top left panel is given by the sum of the ranges observed

for ∆CtG and ∆CtH individually. For C
(8)
Qt , the structure of the contributions from the

scheme dependent terms is different. Here the effect is larger for the case of ∆CtH

than for ∆CtG, see middle and bottom right panels of Fig. 11. In addition, there is

a clear cancellation between individual contributions from ∆CtG and ∆CtH , as can

be seen from the effect on the sum of all rational terms (top right panel of Fig. 11),

thus leading to an almost vanishing contribution in the low-mhh region. Comparing

the left and right columns of Fig. 11, we observe that the individual shifts due to
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Figure 11: Demonstration of the difference ∆σ = dσ
dmhh

− dσSM

dmhh
to the SM invariant

mass distribution only including contributions of the scheme dependent terms, ∆CtG :=

CBMHV
tG − CtG and ∆CtH := CBMHV

tH − CtH , for individual variations of C
(1)
Qt and C

(8)
Qt ,

respectively. Left: contribution from a C
(1)
Qt variation, right: contribution from a C

(8)
Qt

variation. Upper: sum of scheme dependent terms (∆CtG and ∆CtH), middle: only

∆CtG, lower: only ∆CtH . The gray bands denote the SM 3-point scale uncertainty for

reference.
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C
(8)
Qt versus C

(1)
Qt behave quite differently. This difference is related to the different

colour structures of the relevant scheme dependent terms. On the one hand, the terms

contributing to the shift ∆CtH include a factor of ∆CtH ∼
(
C

(1)
Qt +

4
3
C

(8)
Qt

)
(inserting

explicit SU(3)QCD colour factors), such that the contribution from C
(8)
Qt is slightly

enhanced. The terms contributing to the shift ∆CtG, on the other hand, include a

factor of ∆CtG ∼
(
C

(1)
Qt − 1

6
C

(8)
Qt

)
, thus this effect is larger for C

(1)
Qt and the sign of the

contribution from C
(8)
Qt is opposite to the one from C

(1)
Qt .

We should emphasise again that the observed γ5-scheme dependence of individual

Wilson coefficients does not lead to a scheme dependence of the full amplitude. Both

schemes represent equivalent parametrisations of the amplitude and of the renormali-

sation group flow, the translation has been worked out in Ref. [54]. However, fits to

constrain these Wilson coefficients should take into account that they are not individ-

ually scheme-independent. For example, constraints on CtG either come with a scheme

uncertainty or should be derived in combination with C
(1)
Qt and C

(8)
Qt , calculated in the

same scheme.

5 Conclusions

We have calculated the matrix elements including the chromomagnetic operator and

4-top operators contributing to Higgs boson pair production in gluon fusion and demon-

strated that these operators both appear at the same subleading order in a power count-

ing scheme that takes into account a tree-loop classification of dimension-6 SMEFT

operators. These subleading contributions, entering the cross section at LO QCD, have

been combined with the NLO QCD corrections and the dominant SMEFT operators

as described in Ref. [13], in the form of Eqs. (2.6)-(2.8). This combination will be

provided as an extension to the public ggHH SMEFT code as part of the POWHEG-Box-V2.

We have also described the usage of the new features.

The matrix elements of the 4-top contributions have been decomposed analogous

to the case of gg → h described in Refs. [54, 87]. In particular, the parts depending on

the γ5-scheme in dimensional regularisation have been identified, such that we found a

similar scheme dependence as in the gg → h case, which can be understood as a finite

shift of Wilson coefficients, see Eq. (2.22) and Ref. [54].

The effect of the subleading operators on the total cross section and on the Higgs

boson pair invariant mass distribution has been studied in detail, both with respect to

the SM and for benchmark point 6. We observed that the operators O(1)
QQ, Ott and O(8)

QQ

only marginally contribute, therefore gg → hh is not an adequate process to probe

those coefficients. The cross section is noticeably affected by a variation of the Wilson
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coefficient CtG within current conservative bounds, which can lead to a damping of

the invariant mass distribution in the low to intermediate mhh–region. However, the

highest sensitivity is observed by a variation of C
(1)
Qt and C

(8)
Qt within current bounds.

As has been investigated for single Higgs production in Ref. [54] and confirmed in

this work, those Wilson coefficients are precisely the ones which, when considered indi-

vidually, depend on the chosen γ5-scheme. Therefore, bounds for individual coefficients

can turn out to be significantly different due to a (more or less arbitrary) calculational

scheme choice, which makes their interpretation difficult. This does not only hold for

the above-mentioned 4-top operators, but also for the Wilson coefficient CtG, which, at

the same order in the power counting, can contain a contribution from C
(1)
Qt and C

(8)
Qt ,

depending on the scheme choice. Inserting numerical values for current bounds on these

Wilson coefficients [58] into Eq. (2.22) illustrates that the shift induced by a scheme

change can even be larger than the interval given by the original bounds. To obtain

more meaningful results, it is therefore recommended to study those Wilson coefficients

which are connected through the scheme translation relations together, such that their

combination is a scheme independent parametrisation of BSM physics at the studied

order in the power counting.

In the future it would be desirable to have QCD corrections to those subleading

operators as well, in order to compare on equal footing with the leading operators, at

NLO QCD. However, including NLO corrections to the 4-top operators would require a

3-loop calculation involving Higgs and top-quark masses and therefore would be clearly

beyond the scope of this paper. Furthermore, operators of the class ψ2ϕ2D have not

been considered in this work, even though they would enter at the same power counting

order, because they are considered as electroweak-type. However, this indicates that

the strict separation between QCD and electroweak contributions becomes ambiguous

once SMEFT operators beyond the leading contributions are included and combined

with higher order corrections.

Finally, we note that renormalisation group running effects have not been included

in the present study, even though they may lead to sizeable effects. This is left to

upcoming work.
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[87] L. Alasfar, J. de Blas and R. Gröber, Higgs probes of top quark contact interactions

and their interplay with the Higgs self-coupling, JHEP 05 (2022) 111 [2202.02333].

[88] T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions

and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565].

[89] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G43

(2016) 023001 [1510.03865].

– 33 –

https://doi.org/10.1140/epjc/s10052-012-1889-1
https://arxiv.org/abs/1111.2034
https://doi.org/10.1016/j.cpc.2021.108024
https://arxiv.org/abs/2008.06494
https://doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1705.05610
https://doi.org/10.1016/j.cpc.2021.108267
https://arxiv.org/abs/2108.10807
https://doi.org/10.1016/j.cpc.2019.02.015
https://doi.org/10.1016/j.cpc.2019.02.015
https://arxiv.org/abs/1811.11720
https://doi.org/10.1016/j.cpc.2017.09.015
https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://doi.org/10.1016/0550-3213(79)90333-X
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0550-3213(79)90605-9
https://doi.org/10.1016/0550-3213(79)90605-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1007/BF01609069
https://doi.org/10.1007/JHEP12(2017)063
https://arxiv.org/abs/1708.00460
https://doi.org/10.1007/JHEP05(2022)111
https://arxiv.org/abs/2202.02333
https://doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
https://doi.org/10.1088/0954-3899/43/2/023001
https://doi.org/10.1088/0954-3899/43/2/023001
https://arxiv.org/abs/1510.03865


[90] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht et al.,
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