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Abstract

Rogue waves are sudden and extreme occurrences, with heights that exceed twice the

significant wave height of their neighboring waves. The formation of rogue waves has

been attributed to several possible mechanisms such as linear superposition of random

waves, dispersive focusing, and modulational instability. Recently, nonlinear Fourier

transforms (NFTs), which generalize the usual Fourier transform, have been leveraged to

analyze oceanic rogue waves. Next to the usual linear Fourier modes, NFTs can addition-

ally uncover nonlinear Fourier modes in time series that are usually hidden. However, so

far only individual oceanic rogue waves have been analyzed using NFTs in the literature.

Moreover, the completely different types of nonlinear Fourier modes have been observed

in these studies. Exploiting twelve years of field measurement data from an ocean buoy,

we apply the nonlinear Fourier transform (NFT) for the nonlinear Schrödinger equation

(NLSE) (referred to NLSE-NFT) to a large dataset of measured rogue waves. While the

NLSE-NFT has been used to analyze rogue waves before, this is the first time that it is

systematically applied to a large real-world dataset of deep-water rogue waves. We cate-

gorize the measured rogue waves into four types based on the characteristics of the larg-

est nonlinear mode: stable, small breather, large breather and (envelope) soliton. We find

that all types can occur at a single site, and investigate which conditions are dominated

by a single type at the measurement site. The one and two-dimensional Benjamin-Feir

indices (BFIs) are employed to examine the four types of nonlinear spectra. Furthermore,

we verify on a part of the data set that for the localized types, the largest nonlinear Fourier

mode can be attributed directly to the rogue wave, and investigate the relation between

the height of the rogue waves and that of the dominant nonlinear Fourier mode. While the

dominant nonlinear Fourier mode in general only contributes a small fraction of the rogue

wave, we find that soliton modes can contribute up to half of the rogue wave. Since the

NLSE does not account for directional spreading, the classification is repeated for the

first quartile with the lowest directional spreading for each type. Similar results are

obtained.
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Introduction

Rogue waves are rare, suddenly emerging extreme waves with heights of at least twice the sig-

nificant wave height. They are a danger for ships and offshore structures [1]. There are many

different possible mechanisms that can potentially lead to the formation of oceanic rogue

waves, such as the random superposition of Stokes waves [2], nonlinear four-wave interactions

[3] and modulational instability (MI) [4–6], currents [7], crossing sea states [6, 8] and inhomo-

geneous sea floors [9–12]. The practical relevance of these individual mechanisms for rogue

waves in the actual ocean is still under discussion [13–16].

Rogue waves are usually investigated from a statistical point of view, which makes it possi-

ble to estimate how likely rogue waves occur in random seas. Probability distributions for the

significant and maximum wave heights have been derived for linear [17–19] and nonlinear

cases [20, 21], assuming uni-directionality and narrow-bandedness. The effect of directional

spreading and/or larger bandwidths has been investigated as well [22, 23]. There are also

empirical distributions that are directly fit to data [24]. See the following papers for a discus-

sion of further literature [25–29].

The statistical approach to rogue waves is widely applied for tasks like the design of ships

and offshore structures [30, 31], but it is less useful for forecasting if a rogue wave is actually

about to occur soon. This question is essential for the safe operation of ships and offshore

structures after they have been deployed [1]. Many different indicators for the forthcoming

occurrence of rogue waves, with varying predictive value and computational cost, have been

proposed in the literature. Simple standard wave parameters such as the significant wave

height or peak period only have value if they are employed in a region-specific manner [32].

The Benjamin-Feir index (BFI), which is obtained by dividing steepness by bandwidth and is

related to the onset of the modulational instability, has been found to correlate with

enhanced rogue wave occurrence [3, 4, 33], at least for long-crested waves [34]. The BFI has

been integrated into the ECMWF freak wave warning system [35], but was found to perform

badly on observational data in other works, so that crest-trough correlation has been pro-

posed an alternative [2, 16]. Another indicator for specific analytic unidirectional rogue

waves known as Peregrine breathers comes in the form a triangular spectrum that is present

during all times of their evolution [36]. Next to simulations [37, 38], the triangular spectrum

could also be observed in wave tank experiments [39]. As an alternative to the usual Fourier

transform, wavelets have been considered as well [40, 41]. Yet another approach is to propa-

gate measured time series numerically using either physical models or data-driven

approaches to predict upcoming rogue waves [42, 43]. Finally, nonlinear Fourier transforms

(NFTs; a.k.a. scattering transforms) have been used to investigate and predict rogue waves as

well [44–46].

NFTs were invented in the context of the inverse scattering method for solving integrable

partial differential equations [47], but they can also be used as signal processing tools [48, 49].

Their unique capabilities include the detection of possibly hidden solitons [50–53], breather

components [54, 55] and nonlinear instabilities [44, 56]. This makes them very interesting can-

didates for the analysis of rogue waves. Different types of NFTs exist for different types of non-

linear dynamics. Recently, the NFT for the Korteweg-de Vries (KdV) equation with vanishing

boundary conditions has been applied to a large data set of measurements from a shallow

water site in the southern North Sea [57], at which rogue waves occurred more often than

expected [58]. Strongly outstanding solitons in the nonlinear spectrum were found to indicate

a rogue wave with high probability (Note that the detected solitons were too small to explain

the rogue waves on their own. The solitons instead made other, already large waves even

larger, turning them into rogue waves). In this paper, we use the NFT for the periodic
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nonlinear Schrödinger equation (NLSE) to analyze ocean wave data from a deep water site.

Consequently, we denote this method the (periodic) NLSE-NFT.

The NLSE is a classical model for the propagation of weakly nonlinear narrow-banded

wave envelopes in deep water in one dimension. The MI of the NLSE manifests itself in that

even very small perturbations of simple initial conditions such as sufficiently large plane waves

initially grow exponentially [59]. After the initial stage of exponential growth, the nonlinear

dynamics damp the growth and lead to the generation of localized structures which can be

described by breather solutions of the NLSE [60, 61]. As the name indicates, a breather is a

wave packet which “breathes” up and down in space-time domain and propagates with a par-

ticular group velocity within a cycle. Some breathe only once. Breathers describe the growth-

decay cycle of the MI and are sometimes considered prototypical rogue waves [62–65].

The periodic NLSE-NFT was first developed to construct explicit formulas for periodic

solutions of NLSE [66, 67]. To compute it, the linear spectrum of the so-called Zakharov-Sha-

bat operator has to be determined. The periodic NLSE-NFT is then obtained by considering

different types of eigenvalues (e.g., with periodic or anti-periodic eigenfunctions). For data

that is actually governed by the NLSE, the NLSE-NFT has the interesting property that the evo-

lution of the nonlinear spectrum can be performed analytically. The nonlinear Fourier modes

provide information about the spectral signatures in nonlinear spectrum and behavior of the

nonlinear system. The most important part of the nonlinear spectrum (i.e., the main spectrum

that consists of periodic and anti-periodic eigenvalues) is even a constant of motion, i.e., it

does not change at all during propagation with respect to the NLSE. In practice, the nonlinear

spectrum will change, at least to some degree, as real ocean waves are often broad-banded and

directional. This violates the narrow-band spectrum and uni-directionality assumptions

behind the NLSE. However, these assumptions are not uncommon. Many classic wave height

distributions are e.g. derived under the same assumptions, yet they are widely applied to real-

world data [25]. Similarly, the conventional linear Fourier transform, which only solves linear

systems exactly, is widely used to analyze nonlinear processes. We therefore argue that the

NLSE-NFT can also be used to analyze processes that are not governed by the NLSE, if the

results are interpreted with care. Indeed, the NLSE-NFT has successfully been used in this way

both in optics [68–71] and in ocean engineering [54, 72, 73]. The evolution of the nonlinear

spectrum is no longer trivial in such cases, but one may expect that it is still a better representa-

tion than the conventional linear Fourier spectrum, because it accounts for certain nonlinear

effects. It is worth mentioning that recent findings from a physical experiment demonstrate

that breathers and solitons based on NLSE can propagate under short-crested and directional

conditions [74]. A similar nonlinear directional wave group has been found based on a numer-

ical wave model constrained by stereo images [75]. The propagation of rogue waves within

envelope solitons through broad-banded water waves has been observed [72]. One experimen-

tal result also shows that the breather solution of NLSE can survive in an oppositely propagat-

ing regular wave train [76]. These further increase the feasibility of applying this method, and

may not be limited by the aforementioned conditions.

In the literature, the periodic NLSE-NFT has been applied to simulated and wave tank data

in many studies, e.g. [44, 45, 77]. However, only a very few studies have applied the periodic

NLSE-NFT to experimental and measured oceanic rogue waves so far. In Ref. [54], a storm

event in the Currituck Sound that included rogue waves was analyzed and found to be domi-

nated by breather components in the nonlinear spectrum. On the other hand, a giant rogue

wave measured in the Bay of Biscay during a storm was dominated by stable “Stokes” modes

[73], which will be introduced in Sec. Interpretation of the nonlinear Fourier spectrum. In

light of these contrasting results, the question arises if rogue waves in the ocean have typical

nonlinear spectral signatures. (We also mention that using the vanishing instead of the
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periodic NLSE-NFT, several measured rogue waves were found on top of large soliton groups

[72, 78]. Breathers can be interpreted as solitons that interact with a specific background, but

solitons that interact with a background do not have to be breathers. Therefore, it is not clear

what the periodic NLSE-NFT of these rogue waves would look like).

In this paper, we therefore apply the periodic NLSE-NFT to 663 10-minutes samples con-

taining rogue waves from in-situ measurements in the Philippine Sea, which is a section of the

western North Pacific Ocean. Our goal is to investigate if the rogue waves at this site exhibit

typical nonlinear spectral signatures. We first categorize the nonlinear spectra based on the

characteristics of the largest nonlinear Fourier mode. We then investigate if particular charac-

teristics are more common for rogue waves than others, and compare the occurrence of differ-

ent types of nonlinear spectra for rogue-wave and non-rogue samples. We investigate the

relationship between rogue waves in time series and the largest nonlinear Fourier mode using

a new approach. Finally, the results are discussed.

Materials and methods

Operation of periodic NLSE-NFT

The most popular boundary conditions for the NLSE that allow a solution using the NFT are

vanishing and periodic boundary conditions. There are also NFTs for other evolution equa-

tions such as the Korteweg–de Vries equation (KdVE). Many studies have been published on

the applications of vanishing-boundary NFT for the NLSE in different nonlinear systems such

as optical fibres [69, 79], laser radiation [68], and simulated NLSE system [61]. The periodic

NFT is more complicated than its vanishing counterpart [80]. More recent studies have exten-

sively applied periodic NFTs for optical systems [49], shallow water waves [51, 53], deep water

waves [48, 81] and simulated NLSE system [82].

In hydrodynamics, the focusing NLSE describes the propagation of the complex envelope

of unidirectional progressive free-surface waves in deep water (k0h� 1.363), where k0 is the

wave number and h is the water depth. We consider the normalized temporal NLSE with peri-

odic boundary conditions of a segment [0, l],

iuX þ uTT þ 2juj2u ¼ 0; uðX;T þ lÞ ¼ uðX;TÞ; ð1Þ

where u(X, T) represents the complex envelope of the wave field, X and T are the normalized

forms for space and time, and l is the period of the time series. The equation does not cover

loss of energy or wave dissipation. The details of the normalization process will be discussed

later.

The NLSE is called (Lax-)integrable because it can be represented by two linear eigenvalue

equations. The corresponding linear operators are said to form a Lax pair [83]. The integrable

nature of the NLSE enables one to construct a number of exact solutions known as finite-gap

solutions [66]. The complex potential can be reconstructed by the main spectrum Ek and the

auxiliary spectrum μk(0, 0) as follows,

½log uðX;TÞ�T ¼ 2i
Xg

k¼1

mkðX;TÞ þ 2iK; K ¼ �
1

2

X2gþ2

k¼1

Ek: ð2Þ

Here the μk are auxiliary functions known as hyperelliptic modes and Ek are certain complex

constants that are independent of time and space. The number g of hyperelliptic modes, which

is also known as the number of “gaps” or the “genus” in the literature, is assumed to be finite

for mathematical reasons. The dynamics of the complex envelope u(X, T) are originally gov-

erned by the auxiliary functions μk, which evolve on the Riemann surface. A Riemann surface
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is a connected one-dimensional complex analytic manifold, which is vital to the studies on the

behavior of complex-valued functions [84]. The auxiliary functions satisfy the following equa-

tions on the hyperelliptic Riemann surface of the function
ffiffiffiffiffiffiffiffiffi
PðzÞ

p
:

½mk�T ¼ � 2i
Wk

ffiffiffiffiffiffiffiffiffiffiffi
PðmkÞ

p

Q
j6¼kðmk � mjÞ

; PðzÞ≔
Y2gþ2

j¼1

z � Ej
� �

ð3Þ

½mk�X ¼ 4i
Xg

j¼1

mj þ K � mk

 !
Wk

ffiffiffiffiffiffiffiffiffiffiffi
PðmkÞ

p

Q
j6¼kðmk � mjÞ

ð4Þ

This Riemann surface is a double covering of the complex plane with the pairs of branch points

Ek. In order to distinguish two different points, the Riemann sheet indices ϑk = ϑk(X, T) 2 {±1}

are used to change the signs corresponding to P(μk) crossing the chosen branch cut of the

square root function. Given the constants Ek, initial values for auxiliary functions μk(X0, T0),

the Riemann sheet indices ϑk = ϑk(X0, T0) and u(X0, T0), we can recover u(X, T) for any desired

value of X by solving these specific equations. These values can be obtained from a single time

signal u(X0, T) through spectral analysis of the Zakharov-Shabat operator. See, e.g., [66]. For

our study, we used the software library FNFT [85] to compute them. The results presented in

this paper were obtained using version 0.4.1 of the library [86]. More details on FNFT are

available online at https://github.com/FastNFT/FNFT.

Alternately, it is possible to solve Eqs (3) and (4) analytically using Riemann theta functions

in order to implement the inverse periodic NFT. The inverse periodic NFT is a mapping from

the main spectrum Ek and initial conditions for the auxiliary spectrum μk(X0, T0) and sheet

indices ϑ(X0, T0) to a solution of the complex envelope u(X, T). The exact solutions are of the

form

uðX;TÞ ¼ u0

yðkX � ωT þ ϕ� j τÞ
yðkX � ωT þ ϕþ j τÞ

eiðk0X� o0TÞ ð5Þ

where u0 is a scalar constant, τ is a so-called Riemann matrix, k is a vector of wave numbers, ω
is a vector of frequencies, ϕ− and ϕ+ are two different phase vectors, and k0 and ω0 are the phys-

ical Stokes wave corrections to the dispersion relation. The Riemann theta function is defined

by

yðz j τÞ ¼
X

n2Zg
yne

in�z
ð6Þ

where θn = exp[iπ n � τ n] and n is an integer vector of length N. More details on Riemann

theta functions and the solution of periodic NLSE can be found in Ref. [48].

The main spectrum consists of the Ek, which are connected by curves known as spines. Just

like the main spectrum, the spines remain constant during propagation with respect to the

NLSE. In principle, spines are redundant because the signal is already uniquely specified by

the main and auxiliary spectrum together with the sheet indices. However, they play an impor-

tant role when the Riemann theta form of the solution in (6) is computed. Spines provide valu-

able information about the general characteristics of the solution u(X, T), as they impose

topological constraints on the trajectories of the auxiliary spectra μk(X, T) [87, p. 49]. Like the

main and auxiliary spectrum, the spines can be found by spectral analysis of the Zakharov-Sha-

bat operator.
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Data acquisition and preprocessing

Surface wave data was derived from a buoy operated by the Coastal Ocean Monitoring Center

(COMC), National Cheng Kung University (NCKU), Taiwan [88, 89]. The in-situ measure-

ment device is shown in Fig 1a. It is a discus buoy equipped with an accelerometer-tilt-com-

pass (ATC) sensor that was moored at 21.75˚N, 124.12˚E in a water depth of around 5000 m

in the Philippine Sea, in the margin of the western North Pacific Ocean. Compared to the rela-

tive position of Taiwan, it is located in the southeast of Taitung county. The buoy is called the

Taitung Open Ocean buoy. The buoy is 2.5 meters in diameter and 1310 kg in weight, and its

power is supplied by batteries and solar panels. Two anemometers are installed on the top of

the buoy about 3 meters above the sea level to measure the wind information including wind

speed and wind direction. Navigation assistance is provided by radar reflector. Barometers

and temperature sensors measure the atmospheric pressure and air temperature, respectively.

Acoustic Doppler current profilers (ADCP) are widely used for measuring ocean currents.

The ATC sensor measures buoy accelerations, inclinations, and the azimuth at a frequency of

2 Hz. The measurements of accelerations of buoys are well consistent with the surface wave

motions.

As shown in Fig 1b, the buoy motions include six degrees of freedom, which are the transla-

tional motions (heave, sway and surge) and rotational motions (roll, pitch, and yaw). Each

hour, a time series with a length of 10 min (600 s) and a sampling rate of 2 Hz is recorded.

Exemplary time series of the buoy accelerations and corresponding motions of pitch, roll, and

azimuth are shown in Fig 2a. The vertical acceleration is used to calculate one-dimensional

spectra, where the power spectral density (Fig 2b) is calculated by Fourier transform of the

Fig 1. Measurements of surface waves by wave buoys operated by Coastal Ocean Monitoring Center (COMC), National Cheng Kung University

(NCKU), Taiwan. (a) The discus buoy is equipped with an GPS receiver, anemometers, radar reflector, temperature sensors, accelerometer-tilt-

compass (ATC) sensor and acoustic Doppler current profiler (ADCP). (b) The buoy motions by six degrees of freedom are heave, sway and surge, roll,

pitch, and yaw.

https://doi.org/10.1371/journal.pone.0301709.g001
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time series of buoy accelerations. Finally, the surface wave elevation (Fig 2c) is obtained by fil-

tering the low-frequency noise generated during the transformation between acceleration and

spectrum [90, 91]. Note that the influence of wave transformation over bathymetry and the

effects of refraction can be neglected in our data due to the deep water depth of 5000 m.

To give an idea of what the surface waves in our measurements look like, we provide histo-

grams of basic wave parameters for both rogue and non-rogue waves samples in Fig 3. The

wave parameters include significant wave heightH1/3, maximum wave height Hmax, peak

period Tp and directional spreading σθ. The samples have a wide range of significant wave

heightH1/3 from 0.04 m to 15.28 m, maximum wave height Hmax from 0.1 m to 28.83 m and

peak period Tp from 4.62 s to 21.43 s. This data set covers most of the local environmental con-

ditions and contains most types of waves. The directional spreading is calculated based on the

Ref. [92]. Our buoy is located in the open sea, where the waves can come from any direction.

The directional spreading of both rogue and non-rogue samples consequently ranges from 52˚

to 83˚ and is therefore quite large.

Fig 2. Signals from measurements. (a) The time series of buoy accelerations and corresponding motions of pitch, roll, and yaw. (b) The power-

density spectrum determined by heave acceleration. (c) The time series of surface-wave elevation determined by wave spectrum.

https://doi.org/10.1371/journal.pone.0301709.g002
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Data normalization of deep water waves for the nonlinear Fourier

transform

The field-measurement data has to be processed before it can be analyzed by the NLSE-NFT

[81]. The selected samples have to meet the deep-water conditions for validity of the (focusing)

NLSE, k0h� 1.363. The NLSE governs the propagation of the complex wave envelope. Conse-

quently, the Hilbert transform is used to calculate the complex wave envelope from the wave-

surface elevation after removal of the carrier wave [93]. The Hilbert transform method is accu-

rate to the same order as the NLSE for narrowband wave-trains [94 Eq. 38], and thus com-

monly used for NLFT-NSE analyses [48, 73, 95]. However, we remark that improved methods

for the computation of the envelope, in particular for rogue waves, have been proposed [96,

97].

The unnormalized NLSE describes the evolution of the envelope,

i½C� 1
g At þ Ax� þ mC

� 3
g Att þ nC

� 1
g jAj

2A ¼ 0; ð7Þ

where A is the complex envelope and Cg is the group velocity of a wave packet. With the dis-

persion relation o2
0
¼ gk0s, σ = tanh k0h, the values of the coefficients for gravity waves in

finite water depth h are given by [98]

Cg ¼
c
2

1þ
ð1 � s2Þk0h

s

� �

; where c ¼
o0

k0

; ð8Þ

Fig 3. Histograms of basic wave parameters of measured surface waves. (a-d) Histograms of rogue wave samples of the significant wave

heightH1/3, maximum wave heightHmax, peak period Tp and directional spreading σθ, respectively. (e-h) Histograms of non-rogue wave

samples of significant wave heightH1/3, maximum wave heightHmax, peak period Tp and directional spreading σθ, respectively. There are

663 samples for rogue waves and 600 samples for non-rogue waves, respectively.

https://doi.org/10.1371/journal.pone.0301709.g003
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m ¼
� g

8k0so0

f s � k0h 1 � s2ð Þ�
2
þ 4k2

0
h2s2 1 � s2ð Þg; ð9Þ

�

n ¼
� k4

0

2o0

c
2o0

� �
ð9 � 10s2 þ 9s4Þ

2s2
þ

4c2 þ 4ð1 � s2ÞcCg þ ghð1 � s2Þ
2

C2
g � gh

( )

: ð10Þ

The product of the depth-dependent coefficients should be greater than 0, μν> 0 (or

k0h� 1.363), in order to arrive at (1). To proceed from (7) to (1), we apply the following

change of coordinates:

X ¼
m

C3
g

x; T ¼ t �
x
Cg
; uðX;TÞ ¼ rAðX;TÞ; r ¼

ffiffiffiffiffiffiffi
C2
gn

2m

s

: ð11Þ

The parameter ρ is called the nonlinear parameter by Osborne [48]. By substituting A =

ρ−1u in the temporal NLSE, one obtains the normalized temporal NLSE (1). See, e.g.,

Ref. [81]. Please note that the parameter ρ is not dimensionless. The NLSE (1) is normalized

in the sense that its coefficients are independent of physical parameters such as the water

depth.

Rogue waves and sea state parameters

In this study, each 10 min time series has been analysed in time domain by the downward

zero-crossing method [99]. This method can extract individual wave heights and wave periods

by identification of the water surface crossing the mean water level in an downward direction.

Subsequently, each individual wave was ranked and the mean wave height of the one-third

largest waves is defined as the significant wave heightH1/3. The wave are classified as rogue

waves if

AI ¼
H
H1=3

� 2; ð12Þ

where the ratio AI is called the abnormality index [100].

To characterize the sea states in which rogue waves occur, we now introduce several param-

eters. Following [92, 101], the directional spreading is calculated as

sy ¼ 2 1 �
p2 þ q2

m2
0

� �1
2

( )" # 1
2

; ð13Þ

where p ¼
R 2p

0

R1
0
cosðyÞSðo; yÞdody, q ¼

R 2p

0

R1
0
sinðyÞSðo; yÞdody, andm0 ¼

R 2p

0

R1
0
Sðo; yÞdsdy is the zeroth spectral moment. S(ω, θ) is the directional spectrum.

The Benjamin–Feir index (BFI) is a parameter used to describe kurtosis in water waves that

can be related to the modulational instability [3]. It is given by the ratio of the spectral steep-

ness � and the spectral width δω for one-dimensional wave spectra,

BFI1D ¼

ffiffiffi
2
p

�

do
: ð14Þ

The spectral width δω can be calculated from Goda’s peakedness parameter Qp [102], which is
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related to half-width at half-maximum of the spectrum:

do ¼
1

Qp
ffiffiffi
p
p ; ð15Þ

Qp ¼
2

m2
0

Z

oS2ðoÞdo: ð16Þ

The one-dimensional BFI does not account for directionality. Mori et al. (2011) investigated

the relationship between wave height distribution and kurtosis in directional seas and intro-

duced a two-dimensional BFI to assess kurtosis behavior within directional sea states [103].

The proposed two-dimensional BFI is given by

BFI2

2D ¼
BFI2

1D

1þ a2R
; ð17Þ

where α2 is an empirical constant equal to 7.1, and

R ¼
1

2

d
2

y

d
2

o

ð18Þ

is the ratio of the directional bandwidth δθ and the frequency width δω. Here, the directional

bandwidth δθ is calculated as [35]

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � M1Þ

p
; ð19Þ

M1 ¼
1

m0

Z Z

cos y � ypðoÞ
� �

Sðo; yÞdody; ð20Þ

ypðoÞ ¼ arctan
R
sinðyÞSðo; yÞdy

R
cosðyÞSðo; yÞdy

� �

ð21Þ

with θp denoting the peak direction.

Results

Interpretation of the nonlinear Fourier spectrum

Before we introduce the four classes of nonlinear spectra mentioned in the abstract, we start

with a more fundamental study of different characteristic solutions of the NLSE using numeri-

cal simulations. The main spectrum and spines in the nonlinear spectrum stay invariant dur-

ing the evolution with respect to the NLSE. This distinctive feature enables the detection of

hidden characteristics such as e.g. envelope solitons (when the NLSE holds). This is the key

advantage of the NFT: it describes solutions of NLSE in terms of analytically evolving nonlin-

ear spectral components.

The well-known breather solutions of the NLSE include Akhmediev breathers, Peregrine

breathers and Kuznetsov-Ma breathers. These solutions stand as exemplary prototypes for the

modeling of rogue waves in various nonlinear media. Recently, large families of breathers that

contain these solutions as special cases were investigated in the Refs. [104, 105]. There are two

kinds of doubly periodic solutions, A-type and B-type, which differ by the phase shift of their

consecutive maxima. The local maxima of A-type breathers occur periodically with a shift of

half the temporal period after propagating half the spatial period. B-type breathers exhibit local
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maxima that occur periodically without a shift in the temporal period. A- and B-type breathers

are specified by parameters known as α3, ρ, and η, and α1, α2, and α3, respectively.

Fig 4 shows four characteristic wave structures in the spatial-temporal domain and in the

nonlinear Fourier domain: a constant envelope (first row), a soliton (second row), an A-type

breather with parameters α3 = 1, ρ = 3, η = 0.4 (third row) and a B-type breather with parame-

ters α1 = 0.1, α2 = 0.5, α3 = 1 (fourth row). Note that u(X, T) refers to the complex envelope of

the surface elevation with X and T denoting normalized space and moving time variables. We

compute the nonlinear spectra of these general wave structures using the periodic NLSE-NFT.

The corresponding nonlinear spectra of the four characteristic waveforms are shown in the Fig

4b, 4e, 4h and 4k. Note that the nonlinear spectra are symmetric with respect to the real axis.

The complex points marked with blue circles in the plots indicate the main spectrum. The red

curves connecting pairs of main spectrum points are the spines.

We now discuss the connection between spines and linear stability. It can happen that one

spine ends exactly where another begins, so that two points in the main spectrum share the

same position. Such points are then called double points. For the constant envelope in Fig 4b, a

double point occurs at λ = ±0.81i because two spines touch. For the soliton in Fig 4e, λ = ±0.5i
appears to be a double point, but we know from theoretical results that the spine is just very

short. If a double point traps a point in the auxiliary spectrum, it is called degenerate [106].

The point λ = 0.86i in Fig 4b is an example for a degenerate point. This can be seen in Fig 4c,

where the values of the hyperelliptic modes μk(0, T) have been marked with small black dots

for 0� T� l. We see that a single black point is stuck at the double main spectrum point at λ
= 0.86i. This shows that the corresponding auxiliary spectrum cannot move away and is thus

trapped: μk(0, 0) = μk(0, T) for 0� T� l. Therefore, we conclude that λ = 0.86i is degenerate.

We can also see that the point λ = 0.5i in Fig 4e is not a degenerate double point, because the

corresponding hyperelliptic mode in Fig 4f is moving around. It is therefore not degenerate.

The A-type breather has double points at the centers of the horizontal spines in Fig 4h. From

Fig 4i, we see that they are not degenerate either. The B-type breather also has no degenerate

points in Fig 4k. We know this because degenerate points can only occur on spines or on the

real axis [56, p. 825].

Degenerate double points in the main spectrum are known to play a fundamental role for

the modulational instability [56, 107]. Any double point in the main spectrum will, except in

very special cases, split into two single points when the solution is perturbed. If a hyperelliptic

mode is trapped by a degenerate double point, it can thus be freed by arbitrarily small pertur-

bations. The freed hyperelliptic mode will sometimes grow rapidly as the waveform evolves

and then significantly change the solution via Eq (2). In such cases, the solution turns out to be

linearly unstable [56]. The plane wave in Fig 4a is for example known to be linearly unstable

[59], which is caused by the degenerate points on the spine [56, 107]. Degenerate points are

thus indicators for potential linear instabilities. However, not all degenerate points give rise to

instabilities. For example, there are infinitely many degenerate points on the real axis (not

shown in Fig 4) that are known not to cause instability [56]. The most useful consequence of

this discussion probably is that finite genus solutions of the NLSE without non-real main

points in the main spectrum that are located on spines are linearly stable [56].

Following the terminology in [48], spines in the nonlinear spectrum are also called nonlin-

ear Fourier modes. A spine that crosses the real axis (such as the central spines in the Fig 4b,

4h and 4k) is called a stable mode. Stable modes correspond to sine or Stokes waves [48]. (The

Stokes waves turn into sine waves for small amplitudes. The spines become vertical lines in

that case. See e.g. [54, Fig. 13] or compare Figs 3 and 4 in [86].) A spine that does not cross the

real axis (such as the nearly overlapping double points with invisible spines in Fig 4d, the two

horizontal spines in Fig 4f and the two vertical spines in Fig 4h that do not cross the real axis)
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Fig 4. Characteristic wave structures in the spatial-temporal domain and their analytical results from the nonlinear Fourier transform. (a)

Spatial-temporal evolution of the constant envelope. (b) Main spectrum and spines of the constant envelope. The small gap in the spine at zero is a

numerical artifact. (c) Hyperelliptic modes of the constant envelope. (d) Spatial-temporal evolution of the fundamental soliton. (e) Main spectrum and

spines of the fundamental soliton. (f) Hyperelliptic modes of the fundamental soliton. (g) Spatial-temporal evolution of the A-type doubly periodic

solutions of the NLSE with the parameters α3 = 1, ρ = 3, η = 0.4. (h) Main spectrum and spines of the A-type doubly periodic solutions of the NLSE. (i)

Hyperelliptic modes of the A-type doubly periodic solutions. The two individual black points in the upper left and right are numerical artifacts. (j)

Evolution of the B-type doubly periodic solutions of the NLSE with the parameters α1 = 0.1, α2 = 0.5, α3 = 1. (k) Main spectrum and spines of the B-type

doubly periodic solutions of the NLSE. (l) Hyperelliptic modes of the B-type doubly periodic solutions.

https://doi.org/10.1371/journal.pone.0301709.g004
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is called an unstable mode [48, 54]. When an unstable mode interacts with a stable mode as in

the Fig 4h and 4k, it corresponds to a breather [48]. An unstable mode is considered to be a

soliton when, as in Fig 4e, it visually appears to be a double point with a spine of length zero.

In that case, no interacting stable mode is needed. Unstable modes are called unstable because

they describe the nonlinear stage of the modulational instability, which is known to be domi-

nated by breathers [48, p. 276], [106]. Solitons are also counted in this class as they can be

obtained by taking the appropriate limits for breather solutions. Technically, the solitons in

the periodic NLSE-NFT spectrum are just breathers whose parameters are very close to this

limit.

Four types of nonlinear spectra of rogue wave samples in the ocean

We are now ready to introduce the four different types of nonlinear spectra used in our classi-

fication. To illustrate them, we selected four rogue wave records with similar significant wave

heightH1/3ffi 3.5 m. They were measured during storm events with extreme environmental

conditions. The four time series with rogue waves have similar significant wave heightsH1/3

equal to 3.24 m, 3.44 m, 3.62 m and 3.56 m, but different maximum wave heightsHmax equal

to 6.67 m, 6.96 m, 7.53 m, and 8.05 m, respectively. They are shown in Fig 5a to 5d (black

lines). The abnormality index (AI) is calculated as the ratio of maximum wave height Hmax to

significant wave heightH1/3 and equals 2.06, 2.02, 2.08 and 2.26, respectively. This qualifies

them as rogue waves. We have labelled plus/minus the significant wave height H1/3 on the

right y-axis, and indeed found the wave elevation range larger than twice of the significant

wave heightH1/3. The red lines in Fig 5 represent the magnitudes of the complex envelopes

obtained from the Hilbert transform.

Subsequently, we show the nonlinear spectra of the four rogue wave time series data

obtained by using the NLSE-NFT. The nonlinear spectra are presented in Fig 6, where the hor-

izontal axis is the wave frequency in Hz and the vertical axis is the spectral amplitude. Note

that the units of the nonlinear spectra in Fig 6 have been chosen such that the NFT reduces to

the usual Fourier transform for low amplitude signals. Nonlinear modes however have no

interpretation in terms of frequency. In the following, we classify the nonlinear spectra with

rogue waves into four types according to their spectral portraits.

All spectral modes of the spectrum in Fig 6a are connected to the real axis. This means we

consider them stable modes, which correspond to be either sine or Stokes waves [48]. The dif-

ference between the spectral components of sine waves and Stokes waves is that the main spec-

trum points of sine waves are connected by vertical spines, and the main spectrum points of

Stokes waves are connected by distorted spines. In this case, the rogue wave is generated by

nonlinear interactions of sine-wave or Stokes-wave components [48]. We categorize this spec-

trum as type 1, i.e. a stable-mode spectrum.

In Fig 6b, the two points at the coordinates (0.102 Hz, 0.329 m) and (0.103 Hz, 0.383 m) are

connected by a spine that does not cross the real axis. Together with the closest stable mode, it

represents a breather, which is a combination of a stable and an unstable mode (see Fig 4h and

4k). It indicates some nonlinear effects in the sea state. Here, the unstable mode has an ampli-

tude similar to the stable modes. Since the maximum amplitude of the unstable mode does not

exceed 120% of the maximum amplitude of the stable modes, we categorize this spectrum as

type 2, i.e. a small-breather spectrum. This threshold is determined through empirical evalua-

tion, which relies on comparing the amplitudes of stable modes and small breathers.

The nonlinear spectrum in Fig 6c has one large breather in the peak center of the spectrum

and three small breathers. The largest unstable mode consists of two main spectral points at

(0.096 Hz, 0.610 m) and (0.096 Hz, 0.625 m) at the peak of the spectrum. Since the maximum
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amplitude of the unstable mode is larger than 120% of the maximum amplitude of the stable

modes, we categorize this spectrum as type 3, i.e. a large-breather spectrum. The nonlinear

spectrum in Fig 6c indicates that the time series of Fig 5c is generated by the nonlinear interac-

tions of one larger breather, three small breathers and other small-amplitude stable modes.

In the nonlinear spectrum in Fig 6d, there is one large breather with two points of main

spectrum very close to each other such that the spine reduces to a single red dot in the figure.

This constellation corresponds to a periodicized soliton (see Fig 4e). An unstable mode was

considered a soliton if, based on visual inspection, the spine reduced to a single point in the

nonlinear spectrum. The spectrum thus contains one soliton with two main spectral points

around the coordinates (0.091 Hz, 0.778 m), and two small breathers to the right of the soliton.

Fig 5. Time series of rogue wave records from Taitung Open Ocean buoy. The surface-wave elevation is shown as the black line and the

magnitude of the complex envelope calculated by Hilbert transform is shown as red line. The blue dashed lines refer to ±H1/3. (a) The

rogue-wave data measured from 20:00h on 18 January 2013 withHmax = 6.67 m,H1/3 = 3.24 m, and AI = 2.06. (b) The rogue-wave data

measured from 22:00h on 4 October 2014 withHmax = 6.96 m,H1/3 = 3.44 m, and AI = 2.02. (c) The rogue-wave data measured from 08:00h

on 4 December 2015 withHmax = 7.53 m,H1/3 = 3.62 m, and AI = 2.08. (d) The rogue-wave data measured from 20:00h on 25 September

2012 withHmax = 8.05 m,H1/3 = 3.56 m, and AI = 2.26.

https://doi.org/10.1371/journal.pone.0301709.g005
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Since the nonlinear mode with the highest amplitude is a soliton, we categorize the nonlinear

spectrum as type 4, i.e. a soliton spectrum.

Data analysis of wave samples with four types of nonlinear spectra: Stable,

small and large breather, soliton

The surface wave data discussed in this paper were measured by the Taitung Open Ocean

buoy. There are in total 43018 samples (i.e. time series) in the period from 2006 to 2017.

Among these, 663 samples contained rogue waves. In Fig 7a, we plot the peak period Tp
obtained via conventional frequency-domain analysis over the maximum wave height Hmax

for all 663 samples with rogue-wave events. The peak period Tp is defined as the dominant

wave period in the wave-energy spectrum. The rogue-wave events in the plot have thereby

been classified based on the four types of nonlinear spectra as discussed in the previous subsec-

tion. The four types of nonlinear spectra from stable-modes type to soliton type account for

75.1%, 6.3%, 12.2% and 6.3% of the rogue-wave samples, respectively.

Our results show that most of the rogue-wave samples are of the stable-mode type. Under

the assumption that the NLSE describes the evolution of the time series at least approximately,

this implies that the nonlinear superposition of sine waves or Stokes waves is the main genera-

tion mechanism in the real ocean, in accordance with the findings from Ref. [108]. In any case,

it does not suggest that breather solutions of the NLSE are prototypical rogue waves in our

samples. However, 24.9% of the nonlinear spectra of rogue waves contain unstable modes such

as breathers or solitons. This is especially for rogue-wave samples with maximum wave heights

larger than 15 m. The results show that the nonlinear spectra of samples with larger maximum

wave height almost certainly contain unstable modes. A large portion (90.9%) of the samples

with maximum wave height higher than 15 meters is strongly linked to type 3 (large breather

spectra) and type 4 (soliton spectra).

Another feature of the four types of rogue-wave spectra can be observed from their peak

periods. In general, the larger amplitudes of extreme waves require a large enough wave period

Fig 6. Nonlinear spectra with envelope amplitudes on the vertical axis and carrier wave frequencies on the

horizontal axis. (a) Spectrum of the time series of complex envelope from Fig 5a is classified as type 1: stable mode. (b)

Spectrum of the time series of complex envelope from Fig 5b is classified as type 2: small breather. (c) Spectrum of the

time series of complex envelope from Fig 5c is classified as type 3: large breather. (d) Spectrum of the time series of

complex envelope from Fig 5d is classified as type 4: soliton.

https://doi.org/10.1371/journal.pone.0301709.g006
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to evolve in the ocean. Otherwise, the waves will break when the ratio of wave height to wave-

length exceeds H/L� 1/7 [109]. However, it is noteworthy that for any given maximum wave

height below 15 m, the nonlinear spectra with breathers or solitons show relatively low peak

periods compared with those spectra with stable modes.

To investigate how specific these results are for rogue waves, a second data set of 600

selected non-rogue samples is analyzed as well. For the non-rogue data set, we first selected all

samples from 2012 and then removed all rogue waves samples. In 2012, there were 4672 non-

rogue samples. From those, we keep all non-rogue samples with a maximum wave heightHmax

� 5 m. There were 130 such samples. Additionally, 470 non-rogue samples were selected ran-

domly among the remaining samples with a maximum wave height smaller than 5 m. In total,

there are thus 600 non-rogue wave samples to be analysed with NLSE-NFT. The nonlinear

spectra of the non-rogue samples are also classified using the four types of spectra (stable

modes, small breathers, larger breathers and solitons). The results of the classification are

shown in Fig 7b. The distribution of the four types has similar features for the non-rogue

Fig 7. Classification results of rogue and non-rogue waves based on the four types of nonlinear spectra. (a) Scatter plot of rogue-wave samples of

peak period Tp over maximum wave heightHmax based on the four types of spectra. (b) Scatter plot of non-rogue wave samples of peak period Tp over

maximum wave heightHmax based on the four types of spectra. (c) Scatter plot of rogue-wave samples of abnormality index AI over maximum wave

heightHmax based on the four types of spectra. (d) Scatter plot of non-rogue wave samples of abnormality index AI over maximum wave heightHmax

based on the four types of spectra. The four types of spectra are stable-mode type, small-breather type, large-breather type and soliton type shown as

blue circles, green squares, purple triangles and red crosses, respectively.

https://doi.org/10.1371/journal.pone.0301709.g007
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samples than for the rogue wave samples. The four types of spectra from the stable mode type

to the soliton type account for 79.7%, 7.8%, 9.2% and 3.3% of the samples, respectively. The

sample proportion is likely not completely representative because it is not completely ran-

domly selected. But it is noteworthy that all non-rogue spectra with maximum wave heights

larger than 14 m are type 2, type 3 or type 4 spectra with unstable modes. This suggests that the

existence of unstable modes in nonlinear spectra is related to large waves in real ocean no mat-

ter if they are rogue or non-rogue waves.

In Fig 7c, we show a scatter plot of the abnormality index (AI) over the maximum wave

heightHmax with respect to the four types of nonlinear spectra for the rogue-wave data. We

expected that the nonlinear spectra with breathers or solitons may cluster at higher values of

the AI. However, we found that there are no clear differences for the four types of spectra in

this representation. Fig 7d shows a similar scatter plot for the non-rogue wave data. Also here

there is no clear evidence for the four types of spectra. The non-rogue samples with maximum

wave height larger then 15 m ranging between an AI of 1.32 and 1.88 are identified as breathers

and solitons. This suggests that the existence of unstable modes in nonlinear spectra contrib-

utes to the formation of large waves in general, instead of only rogue waves.

The relationship betweenHmax and Tp in Fig 7a and 7b appears to be similar to a square

root for large breathers and solitons. Motivated by that wave steepness is proportional to the

ratio of wave height and squared period, we plot the square of the peak period over the maxi-

mum wave height in Fig 8. There is no apparent correlation for stable mode types. For spectra

of unstable types, the squared peak period however does increase approximately linearly with

the maximum wave height, where the slope of the linear fit depends on the exact type (small

breather, large breather or soliton). Similar findings are made in the non-rogue wave case.

However, the slopes of the linear fits are slightly different. Since most stable type samples are

located far above the unstable type samples, the presence of a unstable dominant mode in the

nonlinear spectrum is found to indicate increased wave steepness.

It was already mentioned in the introduction that the nonlinear spectrum will likely not

stay constant during propagation at the site due to unaccounted factors such as directional

spreading, which is present in our data (see Fig 3d and 3h). To see if directional spreading

influences the classification, we have repeated the classification using only the first quartile

Fig 8. Squared peak period vs maximum wave height for nonlinear spectra of the four types. (a) Time series with rogue waves (b) Time series

without rogue waves

https://doi.org/10.1371/journal.pone.0301709.g008
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with the lowest directional spreading for each class. The results are shown in Fig 9. When com-

paring Figs 7 and 9, we find that the overall distributions appear to be quite similar.

We furthermore investigated the correlation of the one- and two-dimensional Benjamin-

Feir indices with the maximum wave height for the four types of nonlinear spectra. The results

are shown in Fig 10. In Fig 10a, we plot BFI1D over the maximum wave height for the rogue

wave samples of each type. All stable mode spectra have BFI1D values below 0.3. The small

breather and large breather rogue wave samples exhibit higher BFI1D values in the range from

0.1 to 0.4. The soliton spectra can reach the highest BFI1D, with values up to 0.55. The four

types of nonlinear spectra are somewhat separated on the scatter plot. Similar findings are

however also observed for the non-rogue wave samples in Fig 10b. Since the BFI1D values of

non-rogue wave samples appear to be even slightly larger, high values of BFI1D do not indicate

rogue waves at the measurement site. It is also consistent with the findings in [16], where for

another data set of real-world it was found that BFI1D is only a weak predictor for rogue waves.

The mean BFI1D values presented in Table 1 confirm the visual impression that BFI1D is

slightly larger for non-rogue samples with unstable types (small or larger breather, soliton).

For stable mode spectra, BFI1D is almost identical for rogue and non-rogue samples. We fur-

thermore observe that the mean BFI1D is increasing with the type of nonlinear spectrum for

Fig 9. Classification results of rogue and non-rogue waves with low directional spreading. This figure presents the same information as Fig 7, but

only the first quartile of the rogue waves with the lowest directional spreading have been kept for each class.

https://doi.org/10.1371/journal.pone.0301709.g009
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both rogue and non-rogue waves. That is, the mean BFI1D value is increasing as we proceed

from stable modes to small breathers, larger breathers and finally solitons.

We repeated the analysis with the two-dimensional BFI2D. The results are shown in Fig 10c

and 10d. While the absolute BFI2D values are lower than the corresponding BFI1D values

because of the denominator in Eq (17), we still observe that the BFI2D values of stable modes

are on average smaller than those of unstable modes (small and large breathers, solitons) in the

Fig 10. Four types of nonlinear spectra and their Benjamin-Feir index. (a) Scatter plot of rogue-wave samples of one-dimensional Benjamin-Feir

index BFI1D over maximum wave heightHmax based on the four types of spectra. (b) Scatter plot of non-rogue wave samples of two-dimensional

Benjamin-Feir index BFI2D over maximum wave heightHmax based on the four types of spectra. (c) Scatter plot of rogue-wave samples of one-

dimensional Benjamin-Feir index BFI1D over maximum wave heightHmax based on the four types of spectra. (d) Scatter plot of non-rogue wave

samples of two-dimensional Benjamin-Feir index BFI2D over maximum wave heightHmax based on the four types of spectra.

https://doi.org/10.1371/journal.pone.0301709.g010

Table 1. Comparison of the mean one- and two-dimensional BFI between time series of rogue waves and non-rogue waves for the four types of nonlinear spectra.

Time series of rogue waves Time series of non-rogue waves

Types Mean of BFI1D Mean of BFI2D Types Mean of BFI1D Mean of BFI2D

Stable mode 0.1175 0.0143 Stable mode 0.1161 0.0145

Small breather 0.2053 0.0235 Small breather 0.2431 0.0285

Large breather 0.2448 0.0266 Large breather 0.3077 0.0323

Soliton 0.2997 0.0306 Soliton 0.3559 0.0360

https://doi.org/10.1371/journal.pone.0301709.t001
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rogue wave case. The stable mode spectra exhibit lower BFI2D’s in the range of 0 to 0.036,

while the BFI2D values for small breathers, large breathers, and soliton spectra fall within the

range of 0.01 to 0.05. Within the group of unstable modes, small breathers, large breathers,

and soliton spectra can no longer be clearly distinguished. The mean values of BFI2D in

Table 1 however reveal that the mean values of BFI2D are still increasing as we progress from

stable modes to small breathers, large breathers and solitons. Similar findings are observed for

the non-rogue wave samples, as depicted in Fig 10d. Large BFI2D values therefore again do not

indicate the existence of rogue waves.

To see if directional spreading influences the relation between the BFI’s for the four types of

nonlinear spectra, we finally repeated the analysis using only the first quartile with the lowest

directional spreading for each class, as shown in Fig 11. When comparing Figs 10 and 11, we

observe that the two figures exhibit a considerable degree of similarity. The directional spread-

ing does not alter the distribution of the four types of spectra significantly.

Relationship of unstable modes in nonlinear spectra to rogue waves

In this section, we investigate whether the unstable mode (i.e., small breather, large breather,

or soliton) with the largest amplitude in the nonlinear spectrum can be attributed to rogue

Fig 11. Four types of nonlinear spectra and their Benjamin-Feir index with low directional spread. This figure presents the same information as Fig

10, but only the first quartile of the rogue waves with the lowest directional spreading have been kept for each class.

https://doi.org/10.1371/journal.pone.0301709.g011
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waves in time series. We select the time series with a rogue wave shown in Fig 12a as an exam-

ple. The time series was measured from 06:00h to 06:10h on 29 July 2017 during an extreme

sea state. The maximum wave height isHmax = 20.34 m, the significant wave height isH1/3 =

8.76 m, the peak wave period is Tp = 13.64 s, and the abnormality index is AI = 2.32. In order

to determine which nonlinear modes contribute to the rogue wave, we propose a new window-

ing approach. We cut the localized structures of rogue wave with 450 s, 300 s, 150 s and 75 s

(see Fig 12a). Outside these time frames, the elevation of the time series is set to zero. The

entire duration of the sample keeps 600 s. The window is initially positioned at the center of

the rogue wave. If the window extends beyond the bounds of the time series, it is subsequently

adjusted by moving it left and right within the time series. Similar to zero-padding for the con-

ventional FFT, this approach ensures that the nonlinear frequency resolution stays the same

when the NLSE-NFT is computed. We remark that the popular approach of cutting out short

Fig 12. Relationship of unstable modes to rogue waves. (a) The rogue-wave data is measured from 06:00h to 06:10h on 29 July

2017 with the maximum wave heightHmax = 20.34 m, the significant wave heightHs = 8.76 m, the peak wave period Tp = 13.64

s, and the abnormality index AI = 2.32. The surface-wave elevation is shown as the black line and the magnitude of the complex

envelope calculated by Hilbert transform is shown as red line. The original signal is cut into different time lengths of 600 s, 450

s, 300 s, 150 s, and 75 s, which are labelled from b to f. (b-f) Nonlinear spectra corresponding to the time series from b to f.

https://doi.org/10.1371/journal.pone.0301709.g012
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parts of the time series and analyzing them with a shorter signal period [83] did not allow us to

localize nonlinear modes. Note that in our approach, the period of the signal is not reduced.

Fig 12a shows the localized structures b to f outside which the time series in Fig 12a was set

to zero before computing the nonlinear spectra, which are presented in Fig 12b–12f. These

plots only show the center part of the spectra with frequencies from 0.02 Hz to 0.2 Hz, includ-

ing the dominant frequencies. The nonlinear spectrum of the original time series is shown in

Fig 12b. There are five unstable modes: one soliton with coordinates (0.079 Hz, 2.05 m) and

four breathers. Two unstable modes have larger amplitudes with coordinates (0.068 Hz,

1.27m), (0.069 Hz, 1.37 m) and (0.086 Hz, 1.4 m), (0.087 Hz, 1.4 m) that satisfied the criterion

of being larger than 120% than the maximum amplitude of the stable modes. The other two

smaller breathers are at the coordinates (0.061 Hz, 0.92 m), (0.062 Hz, 0.7 m) and (0.096 Hz,

0.66 m), (0.097 Hz, 0.72m).

The nonlinear spectra of the partially zeroed time-series in the Figs. Fig 12c–12f show that

most of the spectral amplitudes reduce. The number of unstable modes in the nonlinear spec-

trum in Fig 12c is already reduced. While the soliton and the large breather with the higher fre-

quencies still exist, the large breather with the smaller frequency changed into a small breather.

Two smaller breathers from the original spectrum of Fig 12b turn into small stable modes. A

remarkable finding here is that the soliton in Fig 12c keeps nearly the same frequency and

amplitude as in Fig 12b, indicating that the cut-off fragment from 450 s to 600 s in the original

time series does not contain wave components that correspond to this soliton. In other words,

this soliton exists in both time series.

Similarly, this soliton is still retained in the spectra of Fig 12d and 12e, whereas the other

spectral components change owing to the reduced window length of 300 s and 150 s, respec-

tively, outside which the time series is set to zero. When the window length is 75 s, it only con-

tains a part of the rogue wave. The corresponding nonlinear spectrum in Fig 12f is dominated

by the soliton with nearly the same amplitude as in the previous spectra, but with a slightly

shifted frequency. This shows that the largest soliton amplitude in the nonlinear spectrum is

related to the rogue wave at 218 s in the time series of Fig 12a.

The other three types was tested and discussed further in the S1 File. There we found that

the maximum unstable modes in a type 3 spectrum (large-breather) can be attributed to the

rogue wave as well, even though this has only been possible up to the second strongest trunca-

tion. In contrast, we were not able to attribute type 1 spectrum (stable-mode). This finding is

expected for stable modes since sine waves and Stokes waves are not localized. We were also

not able to attribute type 2 spectrum (small-breather) unstable modes to rogue waves for the

smaller window sizes.

In the S1 File, these findings have been tested further for additional 20 rogue waves samples

(five for each type). The finding that for soliton type spectra, the soliton is found in the rogue

wave has been confirmed in all but in one case. Only in the exceptional case, the soliton disap-

peared at maximum truncation. The attribution of large breather type spectra in contrast turns

out to be more difficult as there are often several large breathers in the nonlinear spectrum.

The largest one cannot always be attributed to the rogue wave.

Now that we know that the dominant nonlinear modes of the breather and soliton types are

located at the rogue waves, the question of how much they contribute to the rogue waves

arises. We therefore relate the amplitude of the largest nonlinear mode to the maximum wave

height and maximum crest height of the time series with rogue waves in a scatter plot in Fig

13. The comparison does not contain stable modes, as those were not found to be localized.

We observe that for both small and large breather modes, the relation between their ampli-

tudes and the rogue wave height and crest height is approximately linear. The amplitudes of

the dominant mode are in the range of roughly 2.5% to 10% of the maximum wave height, and
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roughly 5% to 20% of the maximum crest height in these cases. The picture is different when

the dominant mode is of the soliton type, with the amplitudes of maximum soliton ranging

from approximately 7% to 27% of the maximum wave height, and approximately 14% to 51%

of the maximum crest height in these cases. Notably, for maximum wave heights larger than

15 m, the amplitude of dominant modes of the soliton type can arrive up to one quarter of the

maximum wave height. For crest heights larger than 8 m, the amplitude dominant modes of

the soliton type can account for half of the maximum crest height. The two figures illustrate

similar results. It is worth noting that the amplitudes of the maximum unstable modes are rep-

resented by the envelope, which is entirely above the sea surface. This characteristic facilitates

a more straightforward comparison with crest height.

Summary and discussion

In the results section, we have classified the nonlinear spectral portraits of 663 rogue wave

samples that were measured by the Taitung Open Ocean buoy in the Philippine Sea from 2006

to 2017, using the periodic NLSE-NFT. For comparison, we also analyzed 600 selected non-

rogue wave samples from 2012. The four different types of spectra were stable modes (i.e., sine

or Stokes waves), small breathers, large breathers and solitons. We found that the majority of

the rogue wave samples (75.1%) were stable mode spectra.

This finding is in line with with other studies such as [16, 108], where the majority of rogue

waves were found to be generated from linear mechanisms. Furthermore, it complements the

different observations in [54, 73], where dominant modes of the stable and breather type,

respectively, were attributed to rogue waves.

Another interesting finding is that a large portion (90.9%) of the rogue wave samples with

maximum wave heights larger than 15 m are of the breather or soliton type. When analyzing

the non-rogue samples a similar picture was found. All non-rogue wave samples with maxi-

mum wave heights larger than 14 m were again of breather and soliton types. This suggests

that dominant breather and soliton components in the nonlinear spectrum are in general rep-

resentative for (the complex envelopes of) time series with large maximum wave heights. Fur-

thermore, we found that they can also be associated with increased wave steepness.

Fig 13. Relationship of the largest nonlinear mode to wave parameters. (a) Scatter plot of the largest nonlinear mode over maximum wave height. (b)

Scatter plot of the largest nonlinear mode over maximum crest height.

https://doi.org/10.1371/journal.pone.0301709.g013
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By studying the relations between the one- and two-dimensional BFIs and the maximum

wave height, we found that unstable modes have higher BFI’s than stable modes in all cases

(1D and 2D, rogue and non-rogue). This seems plausible because both BFIs can be linked to

kurtosis under certain assumptions (i.a. narrowbandedness), which in turn is linked to nonlin-

ear interactions [3, 103]. Therefore, our results seem to confirm that sea states with an unstable

dominant mode are more nonlinear than sea states with a stable dominant mode. Moreover,

we found that the distributions of the BFIs are similar for rogue and non-rogue waves. If the

BFIs were correlated with the rogue wave probability, one would expect higher BFIs for the

rogue wave data. Since that does not appear to be the case here, our results do not suggest a

connection between the BFIs and the rogue wave probability. This is contrast to the unidirec-

tional case, where BFI1D is known to correlate with the rogue wave probability [3, 5, 33]. The

finding is however in line with other field measurements [16].

The one-dimensional BFI can also be related to the modulational instability, both from a

stochastic and a deterministic point of view. For random waves, Alber [110] has shown that

narrowband Gaussian random deep-water wavetrains can be modulationally unstable if BFI1D

> 1. Numerical simulations indicate that modulational instability can also occur for BFI1D <

1, where the effect is gradually decreasing [3, p. 866]. The largest BFI1D’s in our data set are

smaller than 0.6, while the large majority of rogue wave events occurred in the regime BFI1D <

0.4. It is also known that the modulational instability is weakened in directional wave fields

[103]. Since the directional spreading is strong in our data (see Fig 3d and 3h), it seems

unlikely that the modulational instability played a significant role for the formation of rogue

waves. From a deterministic point of view, we know that modulational instability is only possi-

ble if the nonlinear spectrum has a degenerate double point in the main spectrum [56]. Due to

the large water depth, all our rogue waves occurred in the focusing regime of the NLSE, in

which the modulational instability can occur. However, since any small random perturbation

will split up the double points, the probability of actually measuring a modulationally unstable

wave train (in the deterministic sense) is zero. Consequently, no degenerate points were

observed in our data. As an alternative, the so-called splitting distance has been proposed in

order to instead estimate how close a generic nonlinear spectrum is to one with a degenerate

point [44, 45]. To the best of our knowledge, the splitting distance has not yet been evaluated

on real-world measured rogue waves. However, in simulations of the NLSE it was found that it

does not correlate with maximum wave height, while the amplitude of the dominant nonlinear

mode considered in this work does [46].

Using a new procedure to localize nonlinear modes, the largest nonlinear mode of exem-

plary rogue wave samples of the soliton type were shown to be localized in the rogue wave.

This is an interesting difference to conventional Fourier analysis, where individual modes (i.e.

sinusoidal waves) in themselves are never localized and thus always have an impact on the

complete time series. We were not able to localize the largest modes of exemplary rogue wave

samples of the small breather and stable mode types in the corresponding rogue waves. The

results for large breather modes were mixed. We suspect that smaller breathers are less local-

ized. Stable modes (i.e. sine or Stokes waves) are furthermore not localized at all. Hence, this

finding seems plausible.

By relating the amplitude of the dominant modes to the height of the corresponding rogue

waves, we found that the dominant nonlinear modes of the localized breather and soliton

types in general only contribute a small fraction of the rogue waves total wave height. This

overall picture is consistent with other studies such as [54, 57], where the dominant nonlinear

mode had to interact with other wave components to form the rogue wave. It often seems to

push already large waves over the rogue wave threshold. Our data however includes a notewor-

thy exception to this general pattern, for rogue waves of the soliton type with large wave
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heights. In those cases, the dominant soliton component could contribute more than half of

the total height of the rogue wave in extreme cases. Here, it is important to keep in mind that

the soliton components are envelope solitons (because the NLSE is a envelope equation, see

the Section Data normalization of deep water waves for the nonlinear Fourier transform).

Through the lens of surface elevations, they actually correspond to travelling wave groups. The

strong contribution of solitons (in the complex envelope) to rogue waves has also been

observed in the literature [78, Figs. 1C and 2C], where an (vanishing) NLSE-NFT-based analy-

sis showed the same pattern for two measured rogue waves.

Finally, we also observed that rogue wave samples with unstable modes have low peak peri-

ods when compared to stable mode samples with the same maximum wave heights. Further-

more, there is no clear relation between the abnormality index (AI) and four types of

nonlinear spectra. The relation between the squared peak period and the maximum wave

height has however been found to be approximately linear for nonlinear spectra of the breather

and soliton types.

In conclusion, this study applied the NLSE-NFT to classify rogue waves that were measured

in the Philipine sea under deep water conditions. It is the first time that the NLSE-NFT has

been systematically applied to study a large number of real-world rogue waves in deep water.

Prior NLSE-NFT-based studies of individual rogue wave events had resulted in very different

nonlinear spectra, ranging from dominating stable modes over breather to soliton modes. Our

study shows that all three cases can occur at a single measurement site. We found stable modes

are most typical for rogue waves in general, but that rogue waves with large wave heights are

mostly of the large breather or soliton type. We furthermore found that while the contribution

of the dominant nonlinear mode to the rogue wave is in general small, it can contribute up to

50% for large rogue waves of the soliton type.

While the classification results for non-rogue waves show no significant differences to the

rogue wave samples, we point out that the difference between nonlinear rogue and non-rogue

spectra might be qualitative instead of quantitative. We only classified the type of spectrum,

but the difference could also be in the arrangement of the components. The sizes of certain

gaps have been found to relate to the probability of seeing a rogue wave under certain circum-

stances in simulations of the NLSE in Ref. [44, 45]. A similar observation has been made

recently in the analysis of rogue waves that were measured under shallow water conditions in

the north sea [57].

We finally remark again that in particular due to the presence of directional spreading the

nonlinear spectra most likely would change under propagation at the measurement site. While

our classification results did not change noticeably when only the lowest quartile with the least

directional spreading was considered for each type of rogue waves, the impact of directionality

on nonlinear spectra remains not well understood.

Supporting information

S1 File. Localization of nonlinear modes for periodic nonlinear Fourier analysis of rogue

waves. This file contains additional information for identifying rogue waves from the solutions

of the NLSE-NFT.

(PDF)

Acknowledgments

We want to thank the editor, referees, and everyone in our discussion group for their helpful

comments. Your input has made this journal publication much better.

PLOS ONE Nonlinear Fourier classification of deep water rogue waves

PLOS ONE | https://doi.org/10.1371/journal.pone.0301709 May 14, 2024 25 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0301709.s001
https://doi.org/10.1371/journal.pone.0301709


Author Contributions

Conceptualization: Yu-Chen Lee.

Data curation: Yu-Chen Lee, Dong-Jiing Doong.

Formal analysis: Yu-Chen Lee, Sander Wahls.

Funding acquisition: Yu-Chen Lee, Sander Wahls.

Investigation: Yu-Chen Lee, Sander Wahls.

Methodology: Yu-Chen Lee, Sander Wahls.

Project administration: Dong-Jiing Doong, Sander Wahls.

Software: Yu-Chen Lee, Sander Wahls.

Supervision: Markus Brühl, Sander Wahls.
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