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Abstract

Transmembrane helix (TMH) topology prediction is becoming a focal problem in bioinformatics because the structure of TM
proteins is difficult to determine using experimental methods. Therefore, methods that can computationally predict the
topology of helical membrane proteins are highly desirable. In this paper we introduce TMHindex, a method for detecting
TMH segments using only the amino acid sequence information. Each amino acid in a protein sequence is represented by a
Compositional Index, which is deduced from a combination of the difference in amino acid occurrences in TMH and non-
TMH segments in training protein sequences and the amino acid composition information. Furthermore, a genetic
algorithm was employed to find the optimal threshold value for the separation of TMH segments from non-TMH segments.
The method successfully predicted 376 out of the 378 TMH segments in a dataset consisting of 70 test protein sequences.
The sensitivity and specificity for classifying each amino acid in every protein sequence in the dataset was 0.901 and 0.865,
respectively. To assess the generality of TMHindex, we also tested the approach on another standard 73-protein 3D helix
dataset. TMHindex correctly predicted 91.8% of proteins based on TM segments. The level of the accuracy achieved using
TMHindex in comparison to other recent approaches for predicting the topology of TM proteins is a strong argument in
favor of our proposed method. Availability: The datasets, software together with supplementary materials are available at:
http://faculty.uaeu.ac.ae/nzaki/TMHindex.htm.
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Introduction

A biological membrane or biomembrane is an enclosing or

separating membrane that acts as selective barricade within or

around a cell in which cells may maintain specific chemical or

biochemical environments. Membrane proteins play key roles in

biological systems as pores, ion channels and receptors. Being

important in intracellular communication and coordination,

membrane proteins may serve as good drug targets. A biological

membrane is usually spanned by a TM protein which makes it an

important target of both basic science and pharmaceutical

research [1]. The major category of TM proteins is the a-helical

proteins. This protein category constitutes roughly 30% of a

typical genome and is usually present in the inner membranes of

bacterial cells, the plasma membrane of eukaryotes, the outer

membrane of Gram negative bacteria or mitochondrial mem-

branes. a-helical transmembrane proteins are involved in a wide

range of important biological processes such as cell signaling,

transport of membrane-impermeable molecules, cell-cell commu-

nication, cell recognition and adhesion. Since many TMHs are

also prime drug targets, it has been estimated that more than half

of currently commercialized drugs target membrane proteins [2].

Therefore, the prediction of TMHs could play an important role

in the study of membrane proteins. The importance of this role is

emphasized by the lack of high-resolution structures for such

proteins. Thus, the total number of transmembrane proteins in the

Protein Data Bank (PDB) [3] is limited, comprising 1% of

available structures [4,5]. Knowledge of the TMH topology can

help in identifying binding sites and infer functions for membrane

proteins. However, because membrane proteins are hard to

solubilize and purify, only a very small amount of membrane

proteins have experimentally determined structure and topology.

This has motivated various computational methods for predicting

the topology of membrane proteins [6]. These methods are

important applications in genome analysis, and can be used to

understand the global trend in membrane protein evolution.

A computational method is usually considered successful if it

does not only predict individual TMHs, but rather attempt to

predict the full topology of the protein [7]. To this end, in the last

two decades, researchers have developed a battery of successively

more powerful methods for predicting TMH. This development

can be broken into three main categories. In the first category,

early TMH prediction methods were based on experimentally

determined hydropathy indices of hydrophobic properties for each

residue in the protein sequence. Examples of this category include

TOP-Pred [8], DAS-TMfilter [1] and SOSUI [9] which are

among the most reliable methods in providing descriptive

information about TMHs. These methods use hydrophobicity
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analysis alone and therefore, they can not predict TMHs with

length greater than 25 residues [10]. The recent high-resolution

structures production of helical membrane proteins revealed that

TMH could have a wide length distribution of more than 25

residues.

In the second category, further accuracy was achieved by

employing probabilistic approaches such as Hidden Markov

Models (HMMs). In this case the actual biological structural

knowledge was incorporated into the model’s architecture in order

to increase its prediction power. Methods such as HMM-TOP

[11], TMHMM [12], THUMBU [13] and Phobius [14], allowed

researchers to predict reliable integral membrane proteins in a

large collection of genome. However, HMM based methods are

considered computationally expensive since they involve multiple

sequences alignments, calculation of the profile HMM topology

and parameterization, and training via expectation maximization.

Moreover, the HMM based methods are unable to correctly

predict TMHs shorter than 16 residues or longer than 35 residues

[10]. As for distantly related protein sequences, a profile alignment

may not be possible if, for example, the sequences contain shuffled

domains.

In the third category, additional accuracy was gleaned by

leveraging machine learning techniques such as neural networks,

support vector machines and k-nearest neighbor. Examples of this

category include PHD [15], MemBrain [10] and MEMSAT-SVM

[2]. Despite their success, the feature extraction step in the

machine learning based techniques is often computationally

expensive since they also involve multiple sequences alignments.

Therefore, a simple and general feature extraction algorithm that

do not require sequence alignments is desirable.

Numerous methods have also been developed to study

secondary structure assignment [16–18]. Pylouster et al. [19] have

recently studied the influence of the assignment on the prediction

of transmembrane helices in protein structures. His study of the

sequence structure relationship shows very limited differences with

regards to the structural disagreement. This is very encouraging

finding which shows that accurate prediction of TMH could lead

to identifying the secondary structure in a protein sequence.

In this paper, we focus on the determination of TMH spanning

segments and the amino-terminal orientations. We introduce

TMHindex which predicts TMH segments solely from the amino

acid sequence information. The prediction is done by using a

TMH compositional index which is deduced from the dataset of

TMH segments and the amino acid composition. A TMH

preference profile is then generated by calculating the average

TMH index values along the amino acid sequence using a sliding

window of different sizes. Finally, a genetic algorithm was

employed to refine the prediction by detecting the optimal set of

threshold values that separate the TMH segments from non-TMH

segments.

Materials and Methods

In this section we introduce our method of predicting TMH

proteins topology referred to as TMHindex. An overview of

TMHindex method is shown in Figure 1. TMHindex consists of

the two following major steps which are further detailed in

subsequent sections:

1. Calculation of the TMH compositional index: In this step we

extract the TMH segments and non-TMH segments from the

training dataset, compute the difference in amino acid

appearances in TMH segments and non-TMH segments,

compute the amino acid composition of the test protein

sequence and finally calculate the TMH compositional index.

2. Employing a Genetic Algorithm (GA) to find the optimal set of

threshold values: In this step we tailor a GA to find an optimal

set of threshold values that will accurately segregate TMH and

non-TMH segments.

TMH compositional index
We start by analyzing the amino acid composition in TMH

segments and non-TMH segments. We denote by S� the

enumerated set of sequences in the database of membrane protein

sequences. From each protein sequence si in S�, we extract known

TMH and non-TMH segments and store them in datasets S1 and

S2, respectively. To represent the preference for amino acid

residues in TMH segments, we define an index t. The index ti for

the amino acid i[ {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S,

T,W, Y, V}, is calculated as follows:

ti~{ln
f non{helix
i

f helix
i

� �
ð1Þ

where f non{helix
i and f helix

i are respectively the frequencies of

amino acid i in the datasets S1 and S2. The negative value of ti

(threshold value of 0) indicates that the amino acid i preferably

exists in a TMH segment. This is rather analogous to the DomCut

method [20] which was developed to predict the inter-domain

linker regions in amino acid sequences. However, the information

contained in the index values ti alone is insufficient to accurately

predict the TMH segments, thus we incorporated the amino acid

composition knowledge to ti index. The conventional amino acid

composition (AAC) values contain 20 components, each of which

reflects the normalized occurrence frequency for one of the 20

native amino acids in a sequence. Owing to its simplicity, the AAC

model was widely used in many earlier statistical methods for

predicting protein attributes. It has also been used in many

Figure 1. TMHindex overview.
doi:10.1371/journal.pone.0021821.g001
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bioinformatics applications such as inferring the lifestyle of an

organism from the characteristic properties of its genome [21] and

compensating for the lack of domain information in predicting

protein-protein interaction [22].

To this end, we recalculate the compositional index ri as follows:

ri~{ln
f non{helix
i

f helix
i

� �
|ai ð2Þ

where ai is the AAC of amino acid i. We then represent each

residue in all the testing protein sequences by its corresponding

compositional index ri. Subsequently, the index values are

averaged over a window that slides along the length of each

protein sequence. To calculate the averaged compositional index

values mw
j for a protein sequence s, given a single window size w,

we apply the following formula:

mw
j ~

Pjz((w{1)=2)
i~1 rsi

jz((w{1)=2)
, 1ƒjƒ(w{1)=2,

Pjz((w{1)=2)

i~j{((w{1)=2)
rsi

w
, (w{1)=2vjƒL{((w{1)=2),

PL
i~j{((w{1)=2) rsi

L{jz1z((w{1)=2)
, L{((w{1)=2)vjƒL:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ

where L is the length of the protein and sj is the amino acid at

position j in protein sequence s.

To illustrate the calculation of the averaged compositional index

values mw
j , we use the 1LGH:B protein sequence (AER-

SLSGLTEEEAIAVHDQFKTTFSAFIILAAVAHVLVWVWK-

PWF). In Table 1, we show the calculation of mw
j for the first 5

amino acids with a window size w equal to 5.

As revealed in the MemBrain method [10], the fusion of various

window sizes provides more flexibility in accounting for the length

variation of TMHs. This reduces the bias towards a fixed TMH

length, introduced by using only one window size (as treated in

most of the previous TMH topology predictors). Therefore,

averaging is carried across a sequence of odd window sizes ranging

from b to e (5ƒbve), generating a series of features for each

protein sequence. This yields the set of values mj for each

sequence:

mj~

P(e{b)=2
l~0 mbz2l

j

((e{b)=2)z1
, j~1,:::,L ð4Þ

where l is the summation index that ranges across the
e{b

2
z1

odd window sizes. The values mj are further used in conjunction

with Genetic Algorithm (GA) to refine the prediction by detecting

short loops and turns that separate the TMH segments.

Dynamic threshold using GA
Finding an optimal threshold value which separates TMH

segments from non-TMH segments is crucial to the accuracy of

the topology prediction. It is a challenging matter that remains

unsolved by many existing predictors, most of which use fixed

threshold values to separate TMH segments from non-TMH

segments (e.g. residues with scores higher than a defined threshold

value, are assigned to a helical segment). Indeed, this is a weakness

because an optimal threshold for defining two TMH segments

separated by long loops is different from a threshold required for

identifying TMH segments separated by short loops or tight turns.

High-resolution structures show that two consecutive TMH

segments are often connected by very short loops or turns and

that is why in MemBrain [10] for instance, the authors have

utilized a dynamic threshold value in which a base threshold

propensity of 0.4 was used to initially define TMH fragments.

Then, the threshold was raised according to the shape of the local

propensity profile for identifying short loops or helical breaks in

fragments. Despite the success shown by utilizing a dynamic

threshold, it is noted that raising the threshold could improve the

predictions of the TMH segments in part of the sequence and

could reduce the prediction accuracy in another part of the

sequence.

The prediction problem turns into a search a set of dynamic

threshold values that will better reflect the structure of the amino acid

sequence and predict accurately the TMH and non-TMH segments.

Such a search problem can be viewed as a partition problem [23]

which is unsolvable in a polynomial time algorithm. The application

of metaheuristic search techniques to this class of problems is a

promising solution [23–25]. Metaheuristics are high-level frame-

works that employ heuristics to find solutions for combinatorial

problems at a reasonable computational cost, with strategies ready

for adaptation to specific problems. In particular, GA is one of the

most commonly used techniques and has proven its effectiveness in

combinatorial optimization [23]. Besides, GA is easily customizable

for our problem. In the following section we focus on the adaptation

of GA to our TMH segment prediction method.

Customized Genetic Algorithm. The basic idea of GA is to

typically start from a set of initial solutions, and use biologically

inspired evolutionary mechanisms to derive new and possibly

better solutions [24]. The derivation starts by an initial solution set

P0 (called the initial population), and generates a sequence of

populations P1,:::,PT , of new solutions applying the genetic

Table 1. Illustration of the calculation of the averaged compositional index values mw
j .

j Amino Acid sj AAC asj
tsj

m5
j

1 A 15.556 20.30841 (15.556*(20.30841)+8.889*(1.472438)+2.222*(1.473881))/3 = 4.160103797

2 E 8.889 1.472438 (15.556*(20.30841)+8.889*(1.472438)+2.222*(1.473881)+6.667*(0.137164))/4 = 3.120077848

3 R 2.222 1.473881 (15.556*(20.30841)+8.889*(1.472438)+2.222*(1.473881)+6.667*(0.137164)+8.889*(20.53791))/5 = 1.53976588

4 S 6.667 0.137164 (8.889*(1.472438)+2.222*(1.473881)+6.667*(0.137164)+8.889*(20.53791)+6.667*(0.137164))/5 = 2.68218555

5 L 8.889 20.53791 (2.222*(1.473881)+6.667*(0.137164)+8.889*(20.53791)+6.667*(0.137164)+2.222*(20.07568))/5 = 0.030853082

: : : : :

doi:10.1371/journal.pone.0021821.t001
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operators, crossover and mutation, with probability values pc and

pm, respectively. The Ne fittest chromosomes of each population

are automatically added to the next generation. The algorithm

stops if a convergence criterion is satisfied or if a fixed number of

generations is reached.

To apply GA to a specific problem, all elements of the generic

algorithm must be customized and adapted to the problem. In

particular, the solutions must be encoded into chromosomes and

the two operators (crossover and mutation) and the fitness function

must be defined.

Encoding a protein sequence as a chromosome. To

properly apply GA to our problem, we define a chromosome

encoding for the protein sequence represented by a vector of mk,j

values, calculated using Equation 4. As each chromosome is a set of

genes of size N, we encode a gene as a pair (l,m), where l is a

threshold value and m is the upper rank in the protein sequence

before which l is used as threshold. To illustrate this, let (li{1,mi{1),

(li,mi) and (liz1,miz1) be three consecutive genes in the

chromosome representing the sequence of a given protein. The

value li is the threshold applied from the position mi{1 to the

position mi in the protein sequence and liz1 is the threshold applied

from the position mi to the position miz1 in the sequence. In

particular, the threshold l1 would be applied from the beginning of

the sequence to the position m1 as illustrated in Figure 2.

Customized Crossover and Mutation. Based on the

chromosome representation and the arithmetic nature of our

solution, we define one-cut point crossover. This is a standard way

to perform crossover between the chromosomes. It consists of

cutting at a position i one of the two parent chromosomes into two

subsets of genes (vector of pairs l and m). Then the second

chromosome is cut at the position j into two other subsets. The

cutting point j is determined as the rank of the pair (li, mi) where

the position mj is the smallest position in the second parent

chromosome greater than mi. Two new chromosomes are then

created by interleaving the subsets.

Mutation is the second reproduction operator that occurs with a

small probability pm. When a chromosome is selected for mutation,

a small number of its genes are randomly chosen to be modified.

With our chromosome encoding, two ways of modifying a gene (li,

mi) are used. In the first, the threshold l is modified by making a

positive or negative variation of its value, while in the second way,

the upper bound mi is moved either towards mi{1 or miz1.

Evaluation measures
To test the TMHindex method and compare its performance to

the existing state-of-the-art predictors, we used the following

evaluation measures:

1. TMH segment prediction success rate (rpsr),

rpsr~rc=rt,(rt~thr) ð5Þ

where rc, rt and thr are the number of TMH segments

correctly predicted, the total number of TMH segments in the

test dataset and the total number of TMH segments,

respectively. A prediction is considered correct if there is an

overlap of at least nine amino acids between the predicted and

the experimentally known TMH segment. This threshold

length is quite reasonable compared to the typical TMH which

are on average 21 residues long. In the past, various length of

residues overlap was used such as 3 [12], 5 [26] and 9 [10].

2. Protein prediction success rate (ppsr),

ppsr~pc=pt,(pt~tsn) ð6Þ

where pc, pt and tsn are the number of correctly predicted

proteins, the total number of proteins in the test dataset and the

total number of testing protein sequences, respectively. A

protein is considered correctly predicted if all of its TMH

segments are correctly predicted.

3. Amino acid prediction success rate (spsr),

spsr~sc=st,(st~Lk) ð7Þ

Where sc and st are the number of correctly predicted amino

acids and the total number of amino acids in a protein

sequence, respectively. This evaluation measure is also used as

a fitness function in the proposed GA.

4. The N-score and C-score,

These two scores (illustrated in Figure 3) evaluate the

accuracy of predicting the in and out ends of TMHs [27]. N-

and C-scores are the number of N- and C-terminal residues

that do not match when comparing the predicted TMH

segment and the known TMH segment. A lower score in this

case means a more accurate prediction. If the prediction of this

TMH segment is an exact match, then the N- and C-scores

should be equal to 0.

5. Sensitivity (Sn) and specificity (Sp),

Sn~tp=(tpzfn) ð8Þ

Sp~tn=(tnzfp) ð9Þ

Figure 2. Encoding protein sequence as a chromosome.
doi:10.1371/journal.pone.0021821.g002

Figure 3. The N and C scores.
doi:10.1371/journal.pone.0021821.g003

TMHindex
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where tp is the number of amino acids within the known TMH

segment predicted as ‘TMH’, tn is the number of amino acid

out of the known TMH segment predicted as ‘non-TMH’, fp is

the number of amino acid out of the known TMH segment

predicted as ‘TMH’ and fn is the number of amino acid within

the known TMH segment predicted as ‘non-TMH’.

Results and Discussion

Illustration
To illustrate the experimental work, in Figure 4 and Figure 5 we

show the way the TMH segment is detected in a sample protein

1OCC using the index ti with a threshold value of 0. We used odd

window sizes, from b~5 to e~19, to calculate mj values which

represent each amino acid in the sequence. The maximum

window size was chosen to be 19 because a 19-residue segment is

close to the thickness of the hydrocarbon core of a lipid bilayer

[28]. In the sample sequence, the known TMH segment (in bold)

starts in residue 12 and ends in residue 35. The length of the

protein sequence L~46 and therefore spsr~0:78, C-score = 6 and

N-score = 4.

To improve the prediction accuracy we incorporated the

compositional index ri and the results are shown in Figure 6,

where we can easily spot the improved accuracy, i.e., spsr~0:89,

C-score = 1 and N-score = 4.

As a second enhancement of our approach, GA was applied to

find the optimal threshold set separating TMH segments from

the non-TMH segments, as illustrated in Figure 7. Prior to the

application of GA, several runs were performed to tune the

different parameters. As a result of parameter tuning, the

number of generations T was set to 80 and the population size to

80. During the reproduction process, crossover and mutation

occur with probabilities pc equal to 0:6 and pm equal to 0:2,

respectively. The elitism strategy was used by which the N fittest

chromosomes of one generation are cloned and copied to the

next generation. After applying GA to the sequence of the

protein 1OCC, the latter is divided into 2 equal parts. Each part

consists of 23 residues and the two upper boundary positions, m1

and m2, are respectively found by GA to be 23 and 46. The

threshold values l1 and l2 are computed to be 1 and 0:25,

respectively. The obtained structure of the protein 1OCC, as

computed by GA, achieved high accuracy, i.e., spsr~1, C-

score = 0 and N-score = 0.

Comparison with existing methods
The aim of the TMH segment prediction method is to obtain

high accuracy when applied to unknown proteins. For predicting

the TMH segment within a protein, we first computed the index ti.

We collected the TMH and non-TMH segments from a training

dataset. The training dataset contains 50 protein sequences which

consist of 327 known TMH segments. The testing dataset contains

70 protein sequences which consist of 378 known TMH segments.

The training and testing datasets have experimentally determined

TMH topology and were used by most of the available TMH

predictors such as MemBrain [10], Phobius [14], THUMBU [13]

and TMHMM [12]. The datasets are available at http://faculty.

uaeu.ac.ae/nzaki/TMHindex.htm.

The performance of TMHindex was measured by rpsr, ppsr, N-

score, C-score and the number of TMH segments which were

correctly predicted. The comparison of the performance of

TMHindex against those of THUMBU, SOSUI, DAS-TMfilter,

TOP-PRED, TMHMM, Phobious and MemBrain, are reported

in Table 2. The results show that TMHindex is successful in

Figure 4. Sample protein 1OCC.
doi:10.1371/journal.pone.0021821.g004

Figure 5. TMH segment detection in protein 1OCC using the index ti .
doi:10.1371/journal.pone.0021821.g005

TMHindex
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making fewer mis-classifications of TM helices. It outperforms the

compared methods according to all of the measures used for

performance evaluations. To analyze the performance of

TMHindex based on approximately one helical turn, we

calculated rpsr based on an overlap of five amino acids between

the predicted and the experimentally known TMH segment. The

accuracy of rpsr in this case was found to be 100%.

TMHindex was able to predict 376 of the total 378 TMH

segments in the testing dataset. The unpredicted TMH were from

proteins 2IUB:A and 2B5F:A. Furthermore, the amino acid

prediction success rate in terms of spsr, Sn and Sp were 0:905,

0.901 and 0.865, respectively.

The distributions of helix lengths in the testing datasets were

also examined (Figure 8). This is an essential feature because there

Figure 6. TMH segment detection in protein 1OCC using the compositional index ri.
doi:10.1371/journal.pone.0021821.g006

Figure 7. TMH segment detection in protein 1OCC using GA.
doi:10.1371/journal.pone.0021821.g007

TMHindex
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is a wide distribution of TMH length amongst the 70 helical

polytopic membrane proteins in the testing dataset. Our method

in this case demonstrated significant ability in correctly identifying

the ends of TMHs. The investigation shows that the prediction

methods typically search for TM helices with length ranging

between 17 and 25 residues. In fact, out of the 378 TM helices in

the dataset, only 204 (54%) of the helices fall within this range, 29
(7:7%) have length less than 17 and 145 (38:3%) of the helices have

over 25 residues. Several membrane proteins contain TM helices

that do not span the bilayer. For example, the pore (P) helix of the

potassium channel KcsA (1K4C) and the nitropropionic acid

(NPA) contain loops of the aquaporins. These ‘half-TMs’ are

shorter in length than conventional TM helices and are expected

to be more difficult to predict [27]. The distributions of TM

helices given in Figure 8 reveal a small but significant population

of half-TMs to be present in the testing dataset. Similarly, there

are many TMH segments which are longer than 25 residues in

length that often ended unpredicted or partially predicted by most

of the available methods. Figure 8 clearly shows that Phobius is

unable to detect TMH segments shorter than 16 and longer than

30 residues. DAS-TMfilter and THUMBU are unable to detect

many TMH segments longer than 25 residues. MemBrain is

unable to detect many TMH segments longer than 30 residues.

The only remark that needs more inversigation of the TMHindex

method is related to the prediction of some TMH segments of

length 25. Their predictions show more errors than any other

segments.

For further validation, TMHindex was also tested on 73-protein

3D helix database created by Zhou et al. [13]. The dataset was

used to assess the predictions of THUMBU method [13].

Pylouster et al. [19] have also used 56 proteins with correct

resolutions out of the 73 proteins to study the influence of

assignment on the prediction of TMH in protein structure. The

percentage of proteins with correct TMH segments (spsr) predicted

using TMHindex was 91.8%. The prediction accuracy in this case

is superior to the accuracy acheived by other methods such as

THUBMU (87.7%), TOP-PRED II (68.5%), TMHMM 2.0

(68.5%) and MEMSAT 1.8-3D (84.9%) reported by Zhou et al.

[13]. Furthermore, rpsr, ppsr, N-score, C-score, Sn and Sp were

0.987, 0.922, 2.007, 1.517, 0.905 and 0.901, respectively.

The accuracy achieved using TMHindex in comparison to the

known methods for predicting the topology of TM proteins is a

strong indication of its capability. The performance of the

proposed method is due to two main reasons. The first one is

the employment of the TMH compositional index, which was

deduced from a dataset of prior known TMH segments and the

incorporation of the amino acid composition knowledge. The

second one is tailoring GA, which offered a flexible way to model

an intelligent predictor of TM proteins topology based on more

dynamic thresholds.

 

 

 

 

 

 

 

 

 

 

Figure 8. Length distribution of the 378 known TMHs in the testing dataset compared to predicted TMHs using (a) TMHindex, (b)
MemBrain, (C) THUMBU, (d) DAS-TMfilter and (e)Phobius methods.
doi:10.1371/journal.pone.0021821.g008
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The current version of TMHindex needs appriximately

20 minutes for predicting and converging towards accurate

structures of the available 70 protein sequences using a computer

equipped with Intel Core 2 Duo CPU T7250 @ 2.00 GHz and

2.99 GB of RAM.

In the future, we will extend the TMHindex method to predict

signal peptides. Predicting TMH and signal peptides is challenging

because of the high similarity between the hydrophobic regions of

a TMH and that of a signal peptide [14]. Although, the GA

customization has significantly improved the prediction, further

tuning and other strategy choices within the metaheuristic

framework could achieve more capable and flexible prediction.
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Table 2. Performance comparison of various TMH predictors.

Predictor rpsr (%) ppsr (%) N-Score C-Score Correct TMHs

THUMBU 85.5 47.1 6:9+4:9 058+0:19 316

SOSUI 89.1 57.1 5:0+4:2 0:44+0:21 334

DAS-TMfilter 90.7 64.3 5:5+5:3 0:58+0:16 341

TOP-PRED 92.6 60 4:6+3:9 0:45+0:15 352

TMHMM 91 65.7 4:5+3:9 0:44+0:15 343

Phobious 91.8 71.4 4:4+4:1 0:44+0:19 345

MemBrain 97.9 87.1 3:1+2:8 0:35+0:14 371

TMHindex 99.46 91.1 2:19+0:04 2:04+0:03 376

doi:10.1371/journal.pone.0021821.t002
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