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ABSTRACT
The accuracy in reduced-order building models affects prediction of

energy consumption and indoor air temperature through the qual-

ity of control strategies in buildings. The parameter identification

in grey-box thermal building models can be influenced by different

disturbances such as ambient temperature, solar radiation and activ-

ities related to occupant behavior. To tackle these challenges, in this

paper, we propose a novel ensemble model that distinguishes the

parameter estimation on two different periods: working days and

weekend, to advance the integration of different occupant behavior

patterns. The ensemble model is developed based on a decentralized

multi-zone building model and measurement data to investigate

the robustness of the proposed model. We compare and discuss the

results obtained from the proposed model with the classic model

identification approach to quantify the performance of the ensem-

ble model. In contrast to the classic model, in which the difference

in transmission heat energy through external walls and roof to

the measurement data over five experimental weeks is 278 kWh,

the proposed novel ensemble forecast method outperforms it with

only 132 kWh. With the proposed model we obtain a more precise

forecasting of indoor air temperature in all considered zones, which

has the potential to enhance energy reduction in buildings using

model predictive control strategies.
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1 INTRODUCTION
Building energy consumption has increased rapidly in recent years,

and its share accounts for 30 % of global energy consumption and

26 % of energy-related emissions [21]. Thus, great potential for

energy reduction lies in the advancement of heating, ventilation,

and cooling (HVAC) systems as they account for a large share of

energy consumption. To achieve energy-efficient coordination of

HVAC systems in buildings, accurate control strategies are nec-

essary, where model predictive control (MPC) gains popularity

[7, 24, 30]. Besides optimization of HVAC systems, MPC can also

consider demand response (DR) and occupants thermal satisfaction

(OTS), along with grid flexibility services [13]. However, the main

difficulty of practical implementation of MPC is an accurate model

development [9], where the accuracy of models has a significant

impact on the control performance.

Typically, thermal building models used in MPC are divided

into three main categories: white-, black- and grey-box models [5].

White-box modeling is a physics-based modeling approach that

requires a knowledge of building properties such as the geometry

of the building, heat conduction, and material types [5]. White-box

models can provide an understanding of the relationship between

different energy components in buildings. However, these mod-

els are usually difficult to develop and calibrate [2]. Since these

models involve many equations and nonlinear characteristics, their

implementation in model-based control strategies is difficult [13].

In contrast, the black-box modeling approach is purely based on
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data-driven methods, and the prediction is obtained by mapping

input and output data. The physical structure is not considered and

the forecasting highly depends on training data [28]. The third ap-

proach is grey-box modeling, which was developed to overcome the

disadvantages of white- and black-box approaches [1]. Grey-box

models have a physical structure, for which parameter identification

can be done by using a forward or inverse approach. The forward

approach is based directly on physical models for parameter identi-

fication, and the inverse approach uses data-driven methods, e.g.

curve-fitting [28]. Grey-box thermal building models can achieve

high accuracy with additional benefits as simplicity and low compu-

tational costs. However, the development of data-driven grey-box

models requires involving knowledge of both, the equation-based

structure and data-driven methods for parameter identification.

Nevertheless, their prediction highly depends on the accuracy and

quality of the underlying measurement data and the accuracy of

parameter estimation [5]. Besides model-based control strategies,

grey-box thermal building models have a wide range of usage in

different areas such as prediction of energy consumption and eval-

uation of energy performance of the buildings and districts [4].

When it comes to MPC, by increasing the complexity of the ther-

mal building model structure, e.g. multi-zone models, the accuracy

of the model increases and OTS can be considered in more detail.

Conversely, the overall computational demand of MPC increases.

Hence, a suitable trade-off between the precision and simplicity of

the grey-box models has to be found.

The performance of grey-box thermal building models plays a

crucial role in the prediction of effective building energy control. To

advance the robustness of the grey-boxmodels to occupant patterns,

which affect significantly indoor air temperature forecast, this pa-

per introduces a novel grey-box thermal building model structure

consisting of two identified models: the working day model and

the weekend model. The investigated model prediction spans five

weeks and is compared with the prediction of the classically identi-

fied thermal building model, such as in [14, 18], where the whole

week is used for identification. The parameters are identified based

on measured data of a real office building, where occupants have

a stochastic influence on indoor air temperature. For analysis and

testing of the introduced models, the Living Lab Energy Campus

(LLEC) facility as part of the Real Laboratory Energy Lab 2.0 [17],

located at Karlsruhe Institute of Technology (KIT) is utilized.

The rest of this paper is organized as follows: Section 2 presents

related work in the grey-box thermal building modeling research

area. Section 3 introduces the model structure and a proposed

methodology for parameter identification in grey-box models. Sec-

tions 4 and 5 show the obtained experimental results and the eval-

uation of the proposed methodology. Sections 6 and 7 discuss the

proposed methodology and conclude this paper.

2 RELATEDWORK
Several studies point out challenges in the grey-box thermal build-

ing modeling approach: [6, 8, 28]. Li et al. [28] identify the grey-box

model structure itself and its creation process as being vague. They

point out that suitable applications of grey-box models are obscure,

althoughmost studies use grey-boxmodels for control and optimiza-

tion of energy consumption in buildings, heat dynamics estimation,

evaluation of energy consumption on the building, district, or city

level, and building-grid integration. The correct labeling is also

unclear since grey-box models can represent one component, such

as a window or wall, one zone, or multiple zones. Broholt et al.

[8] point out the challenge of grey-box models prediction robust-

ness when models are identified on certain months and used for

the forecast of the thermal behavior for the rest of the year. The

robustness of grey- and black-box models are compared, whereas

results show a slightly better prediction quality of grey-box mod-

els. Belazi et al. [6] also address the challenge of grey-box model

robustness on weather data. They investigate the effect of input

uncertainties: occupancy behavior, and parameters related to the

building envelope on the energy performance. The main finding is

the greater impact of occupancy behavior in hot climates, while in

cold climates, parameters related to the building envelope come to

the fore.

Table 1 lists several studies that investigated improvements of

grey-box thermal building models. Gray et al. [16] and Cui et al.

[11] examine simplified grey-box thermal building models in com-

bination with black-box models for an improved forecasting. In

the former study, the combination of simplified grey-box models

with gaussian process (GP) modeling is compared with pure grey-

box and black-box models. The second study compares grey-box

models with integration of different machine learning algorithms,

where it is stated that the combination of grey-box models and ex-

treme gradient boosting (XBG) gives a most favorable performance.

On the other hand, Michalak et al. [29] use a time-variant state-

space system to achieve improvement of grey-box thermal building

models. They use simulation data to update the parameters of the

grey-box model hourly. Several studies compare different structures

of the grey-box thermal building models, aiming to find the most

performable model [3, 4, 18, 19, 26]. Bacher et al. analyze a method,

called forward model selection strategy, for the identification and

selection of an appropriate grey-box model structure. The complex-

ity of the model structure is increased iteratively based on physical

knowledge, whereas the method enables the selection of a suitable

model structure with an appropriate complexity level. Baasch et

al. [3] investigate the robustness of different grey- and black-box

model structures towards foreign building properties (FBP), where

deep learning methods give the most accurate and robust results.

Harb et al. [18] compare 1R1C, 3R2C, 4R2C and 8R3C models for

the prediction of indoor air temperature in the building with real

occupants, where the 4R2C model has shown the most favorable

performance. Klanatsky et al. [26] propose the integration of the

large heat accumulating medium (LHAM) and large glass façades

with external shading into the grey-box thermal building model

structures. They compare various grey-box model structures, where

the best model structure (3R3C) achieves a mean absolute error of

0.25
◦
C over the year (OTY) simulation. Besides the identification

period, they introduce a startup period, which leads the model to a

realistic state with plausible variables. The subsequent identifica-

tion period assists in finding the best fit across the identification

data set. With these, the prediction is examined for a time span of

24 hours by investigating the simulation time step, startup phase

duration and training phase duration. Hedegaard et al. [19] com-

pare parameters of thermal characteristics of the buildings obtained

by calculation methods from standards and parameters estimated
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Table 1: Studies related to improvements of grey-box modeling approach

Research Method Type of data Id. Period Val. period

Error of the best

forecast

Gray et al. [16]

Simplified Grey-Box Model with

GP

Simulation 1-4 weeks

weekly

updated

RMSE = 0.2 OTY

Cui et al. [11] Grey-Box + XGB Real ∼ 25 days ∼ 17 days RMSE = 0.641

Michalak et al. [29] Time-Variant State-Space System Simulation N/A hourly RMSE = 0.5-0.8 OTY

Harb et al. [18] Comparison (best 4R2C) Real 26 days 8 weeks RMSE = 0.2

Frahm et al. [14] Minimalistic 4R3C Real 13 days 13 days RMSE = 0.705

Klanatsky et al. [26]

LHAM and Large Glass Façades

with External Shading

Real 2-4 weeks

daily/weekly

updated

MAE = 0.25 OTY

Frahm et al. [15]

Multi-Zone with OB: Weekend and

Working Day Prediction

Real 2 days 2 days RMSE = 0.36

Real 5 days 5 days RMSE = 0.85

Baasch et al. [3]

Robustness of the Grey- and Black-Box

Models against FBP

Simulation 7 days 7 days MAE = 0.34

Zhang et al. [32]

Improving Solar Heat Gain Dynamics

in Grey-Box Models

Real 7 and 8 days 7 and 8 days N/A

Bacher et al. [4] Forward Model Selection Strategy Real 28 days N/A N/A

using an inverse approach. Frahm et al. [14] propose a minimalistic

4R3C grey-box model for the prediction of the thermal response

of an occupied building. It is stated that the error increases for the

weekend forecasts due to the change of occupancy patterns. Coff-

man et al. [10] consider heat gains from occupants as an additional

state to the 2R2C thermal building network, with the hypothesis

that the occupant behavior patterns are constant throughout time.

On the other hand, Zhang et al. [32] pointed out that in literature

solar heat gains in grey-box models are simplified, which can lead

to poor forecasting. They investigated and discussed advancements

in dynamic solar gains, to fill this gap.

One difficulty of grey-box thermal building models is the inte-

gration of Occupants’ behavior (OB) into the models, to achieve

better forecasts. OB determines not only the interaction of the occu-

pants with energy control systems and building components such

as windows and lighting, but also the heat emitted by the occupants.

Due to its complexity and since it is not well understood, OB is

often simplified in energy building models [20]. Several studies

already investigated the integration of OB into grey-box models

[10, 14, 18, 29]. In a comparative study, Frahm et al. [15] investigate

the impact of identification periods (occupied vs. unoccupied build-

ing) and conclude that these have a greater impact on the forecast

than the structure of the model and algorithms. The change in

patterns, i.e. impact of occupants, such as presence during working

hours and absence during the weekends in commercial buildings,

influences the grey-box thermal building model forecast by increas-

ing the forecast error. Time-invariant state-space systems can not

predict well such time-variant influences of OB. In order to achieve

more precise grey-box thermal building models, there is a need

to investigate different OB patterns and to separate their impact

in different time-invariant state-space models. To address these

research gaps, we propose a new method for the identification

of grey-box models in order to improve time-invariant grey-box

models of real-world buildings with occupants.

3 METHODOLOGY
The inverse grey-box building modeling approach is a combination

of the physical structure and a data-driven approach for parameter

identification [28], which we define as predefined model structure

(PMS). Usually, it is called RC building modeling, where similar to

an electrical circuit, electrical resistance (R element) in the grey-box

thermal building model represents thermal resistance between cor-

responding thermal nodes, and capacitance (C element) is the heat

capacity of the thermal node [13]. The number of heat capacitors

defines the number of states that a grey-box model has. Besides

ambient temperature and solar radiation, activities related to the

occupants also have a great impact on the building energy perfor-

mance [20]. Integrating the impact of occupant behavior patterns

into reduced-order building models is not a straightforward task.

Since occupant behavior greatly impacts indoor air temperature, it

needs to be well investigated to be integrated into the model, thus

preserving the data privacy of the occupants.

3.1 Model structure
To face the issue of the thermal building model’s robustness to

occupant-related heat load, the model structure is defined as fol-

lows:

𝐶𝑤,𝑗

d𝑇𝑤,𝑗

d𝑡
=

2(𝑇𝑖, 𝑗 −𝑇𝑤,𝑗 )
𝑅𝑤,𝑗

+
2(𝑇𝑎 −𝑇𝑤,𝑗 )

𝑅𝑤,𝑗
(1)
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𝐶𝑖
d𝑇𝑖, 𝑗

d𝑡
=

2(𝑇𝑤,𝑗 −𝑇𝑖, 𝑗 )
𝑅𝑤,𝑗

+
(𝑇𝑎 −𝑇𝑖, 𝑗 )
𝑅𝑖𝑛𝑓 , 𝑗

+

𝑇𝑚,𝑗 −𝑇𝑖, 𝑗

𝑅𝑚,𝑗
+ 𝑞𝑐𝑜𝑛𝑣,𝑗 +𝐴𝑠,𝑗𝐺𝑠 + 𝑞𝑖𝑔,𝑗

(2)

𝐶𝑚,𝑗

d𝑇𝑚,𝑗

d𝑡
=

(𝑇𝑖, 𝑗 −𝑇𝑚,𝑗 )
𝑅𝑚,𝑗

+ 𝑞𝑟𝑎𝑑,𝑗 (3)

d𝑞𝑖𝑔,𝑗

d𝑡
= 0 (4)

where index 𝑗 = (1, 2, ..., 𝑛) denotes the corresponding room and

𝑛 denotes the number of rooms. 𝑇𝑤,𝑗 represents the temperature

of the wall and 𝑇𝑖, 𝑗 is the indoor air temperature. Moreover, 𝑇𝑚,𝑗 is

the temperature of the large heat accumulating medium (LHAM).

All three of them are presented in
◦
C, whereas 𝑞𝑖𝑔,𝑗 [W] denotes

occupant-related heat load that impacts indoor air temperature. The

𝐶𝑤,𝑗 , 𝐶𝑖, 𝑗 and 𝐶𝑚,𝑗 with corresponding unit [J/
◦
C] are the thermal

capacitance of the wall, the inner part of the wall and the large heat

accumulating medium, respectively. The large heat-accumulating

medium represents building components with slow thermal dynam-

ics, e.g. roof, floors, inner concrete cores, etc. The thermal resistance

𝑅𝑤,𝑗 is the thermal resistance against heat transfer between am-

bient air and indoor air, 𝑅𝑚,𝑗 between large heat accumulating

medium and indoor air, whereas 𝑅𝑖𝑛𝑓 , 𝑗 is infiltration resistance.

All resistances are presented in [
◦
C/W]. The input vector has the

following form:

u𝑗 = [𝑇𝑎 𝑞ℎ,𝑗 𝐺𝑠 ]𝑇 (5)

where the first element represents ambient temperature in
◦
C, the

second heat flow from the heat pump in [W] and the latter solar

radiation in [W/m
−2
], whereas 𝐴𝑠,𝑗 [m

2
] in Equation (2) is solar

heat gain factor. The heat flow is produced by the ground source

heat pump, and the measured values are for the whole experimental

building. Therefore, the heat flow per room is estimated based on

ratio 𝜂 of the room volume𝑉𝑗 to the sum of all room volumes

∑𝑛
𝑗 𝑉𝑗 :

𝑞ℎ,𝑗 = 𝜂𝑞ℎ → 𝜂 =
𝑉𝑗∑𝑛
𝑗 𝑉𝑗

(6)

We assume the share of heat flow as 80 % of convective heat 𝑞𝑐𝑜𝑛𝑣,𝑗
and 20 % of radiant heat 𝑞𝑟𝑎𝑑,𝑗 as discussed in [22].

Figure 1: Predefined model structure of proposed grey-box
thermal building model.

Figure 2: Methodology of the identification and validation
process in ensemble model.

The RC representation of the thermal building model is shown

in Figure 1. Originally, the model has three states 𝑇𝑤,𝑗 , 𝑇𝑖, 𝑗 and

𝑇𝑚,𝑗 [12]. By adding the fourth state, which is heat load related to

occupants, we approximate the change of this state over time as

constant [10]. The motivation for this arises from an assumption

that occupant patterns, to some extent, are similar throughout the

days. In this way, 𝑞𝑖𝑔,𝑗 is not an unmeasured input to the system

anymore, but rather modeled as an additional state. To consider

the multi-zone thermal building model, we evaluate the decentral

approach, where no coupling between rooms or over the floor exists.

Thus, each room is evaluated separately.

3.2 Parameter identification approach
To tackle the issue of thermal building models’ robustness to occu-

pant patterns, we propose the distinct consideration of two identifi-

cation periods: the working days’ identification period (5 days) and

the weekend identification period (2 days). The incentive for this

arises from the different occupant behavior patternswithin commer-

cial buildings during working days and weekends [15]. Separating

the identification period can bring more accuracy and robustness

to the model prediction, since the working-days-identified model

learns occupants’ patterns only during the working-days. In con-

trast, the weekend-identified model does not have the same occu-

pant patterns, since weekends are non-working days and occupants

dwell less in the building. Hence, they have a lower impact on indoor

air temperature during these days. Considering a switch between

the working-days-identified model and the weekend-identified

model, fitting at the point of the switch is necessary. To make

this transition smooth, the points between the prediction in the

last two hours of the first model and the prediction of the first two
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hours of the second model are linearly interpolated. To distinguish

between the new approach proposed in the present paper which

switches between two identified RC building models and the classi-

cally identified RC building model, the former will be named the

ensemble model. Through the classical modeling approach, we iden-

tify the RC building model across the entire week period in a single

instance, whereas the novelty of the new approach distinguishes

the identification period of the forecasting models based on differ-

ent patterns. In this case, we address the pattern of OB throughout

the week and weekend separately. Thus, we define the ensemble

model as a composition of two differently identified RC building

models. Furthermore, it is possible to determine different patterns

(e.g. seasons) and to use more than two differently identified RC

building models in an ensemble model.

The proposed method and the workflow is depicted in Figure

2, whereas the subscripts 𝑤𝑑 and 𝑤𝑒 refer to working days and

weekend as identified parameters that are utilized in PMS (see

Figure 1). Furthermore, the same structure of an RC building model

depicted in Figure 1 is used for the classic and for the ensemble

model approach to be able to compare the results qualitatively.

Figure 3: The plan of the Living Laboratory at Karlsruhe
Institute of Technology [27].

4 EXPERIMENTAL RESULTS
The proposed methodology has been applied to the Living Labora-

tory on Campus North of the Karlsruhe Institute of Technology [17].

This building is used as a working space, where no information

about occupant behavior is known. The building consists of five

offices, a kitchen and a bathroom as shown in Figure 3. Hallways

and service room are not considered in this study, since there is

no heating available for these. Hence, the heat flow is measured

for the whole building, we use Equation (6) to evaluate heating

for each room. Besides heat flow, the ambient temperature, solar

radiation, and indoor air temperature for each room are measured,

too. The dataset covers the period from 23.09.2023 to 04.11.2023.

The identification period for the week model is from 25.09.2023

midnight to 30.09.2023 midnight and for the weekend model from

23.09.2023 midnight to 25.09.2023 midnight. The rest of the data are

used for validation of the model. We use a long-range validation

period to prove the model structure’s applicability over a longer pe-

riod than one week. Due to the lack of measurement data in winter,

the autumn period is chosen for this study, whereas the winter sce-

nario needs further exploration. The identification and validation

are undertaken using matlab System Identification Toolbox [31].

The previously described model is created as a state-space system,

where the parameters inside the state matrix and input matrix are

identified based on real data inputs. To show the convenience of

the proposed model, we evaluate the methodology on a multi-zone

model structure, where each room is presented as a single zone.

This assumption is justified by Frahm et al. [15]. They showed that

there is no significant difference between a multi-zone model with

coupling over the floor and between rooms (centralized approach)

and a multi-zone model without any coupling (decentralized ap-

proach). Thus, we use a multi-zone model with a decentralized

approach.

Figure 4 shows indoor air temperature variation for room 4 dur-

ing the validation period. The blue line presents measured indoor

air temperature. The red and yellow lines present the forecasting

results from the ensemble model and the classic model, respectively.

To distinguish between weekends and working days, weekends are

marked as grey-boxes. Measured data that are used as the input

data are presented in the appendix of the present paper Figure 8.

5 EVALUATION
Each room is presented as a set of differential equations proposed

in this paper, Equations (1)-(4). By dividing the model identification

into working days and weekends, due to varying occupant behav-

ior patterns, we achieve better indoor air temperature forecast as

shown in Figure 4. In the first four days of the validation period,

the introduced ensemble model overestimates indoor air tempera-

ture, whereas, for the rest of the validation period, it follows the

dynamics of the system with better accuracy than the classic model.

Considering the time-invariance of the state-space system, the clas-

sic model can not overcome unmeasured time-variant disturbances

during the weekends 07.10.-08.10., 14.10.-15.10., 21.10.-22.10., 28.10.-

29.10. and working days 16.10-20.10. and 30.10-03.11. On the other

hand, the proposed ensemble structure, with its two identification

models, demonstrates a higher capability to distinguish between

weekends and working days forecasts.

5.1 Statistical indicators
To quantify the indoor air temperature prediction of the proposed

ensemble model, we use the following statistical indicators: root-

mean-square error (RMSE), [23], which is sensitive to outliers, the

mean absolute error (MAE) [23], which denotes the average error

between forecast and actual value and the mean absolute percent-

age error (MAPE) [25] which examines error as a percentage of

the actual values. In Table 2 (see appendix), we present the error

analysis of all three quantification methods, both for the identifica-

tion period and validation period. Error indicators are shown for all

rooms. It can be noted that during the validation period, according
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Figure 4: Comparison of the indoor air temperature prediction for room 4. Grey areas present weekend periods and white areas
the working days.

to all three indicators, the ensemble model produces better pre-

dictions. MAPE of the ensemble model predictions is in the range

of 1.4-2.8 %, while MAPE for the classic model is in the range of

2.9-5.3 %. MAE of both models are in the range of 0.32-0.53
◦
C and

0.65-1.13
◦
C, respectively, while RMSE is slightly higher for both

models since it penalizes outliers, 0.43-0.89
◦
C and 0.84-1.41

◦
C,

respectively. The least favorable performance of both algorithms is

for the bathroom, due to the significant impact of unmeasured dis-

turbances which affect a fast decrease of the indoor air temperature

(see appendix, Figure 9). Both model algorithms can not capture

these fast system dynamics. During the identification period, the

performance of the classic model forecast is superior only for room

5, while for all other zones the ensemble model achieves a better

forecast. During the validation period, the ensemble model has a

lower error forecast for all zones. Interestingly, when observing

room 5, the indoor air temperature forecast of the ensemble has

the lowest error when compared with other zones during the val-

idation period, even though during the identification period the

classic model forecast of room 5 is more convenient.

5.2 Distribution of prediction residuals
In addition to statistical indicators, the distribution of prediction

residuals is analyzed. For all rooms and both models histograms

are created, and the distributions are compared with the Euclidean

norm, for all rooms within each model class and between the mod-

els. Histograms in Figure 5 show the error distribution for the

classic and ensemble models for all zones, respectively. The error

distributions are not systematic errors, but stochastic errors that

depend on the weather and occupancy. It can be noted that the

proposed ensemble model prediction leads to a better fit to a normal

distribution than the classic model in all seven cases. When com-

paring the histograms for room 4, the spectrum where 95 % of the

residuals for the classic model lies, is from -1.77 to 1.77, whereas for

the ensemble model is narrower from -0.89 to 0.89, denoting that

95 % of errors between prediction and real indoor air temperature is

less than or equal to 0.89
◦
C. Standard deviations of the classic and

ensemble forecast are 0.91
◦
C and 0.46

◦
C, respectively. Whereas

mean values are for both near to zero. A smaller standard deviation

denotes that the error is closer to the mean value, indicating higher

precision of forecast.

To compare the histograms, we define a similarity index based on

the Euclidean norm. Figure 10, presented in the appendix, depicts

Figure 5: Comparison of the residual histograms of classic
and ensemble model for all zones.

the similarity of the distributions using the Euclidean norm when

comparing histograms of all rooms and models against each other.

For this purpose, 𝐸𝑀𝑖 denotes the histogram of the ensemble mod-

els and 𝐶𝑀𝑖 histogram of the classic model structures. It is obvious

that the distance matrix in Figure 10 is symmetrical and excludes

self-similarity. In general, there is a high similarity of the distribu-

tion of the histograms within each ensemble model (𝐸𝑀𝑖 , 𝐸𝑀𝑗 ) and
the classic model (𝐶𝑀𝑖 ,𝐶𝑀𝑗 ). Furthermore, it can be observed that

the distributions between the models show the highest discrepancy

(𝐸𝑀𝑖 ,𝐶𝑀𝑗 ). In detail, the smallest distances between histograms

are in the first quarter of the plot where histograms of the ensemble

method are compared (𝐸𝑀𝑖 , 𝐸𝑀𝑗 ), with a minimum of 363, maxi-

mum of 1303, average of 785 and median of 884. As expected, the

largest distances are in the second (𝐸𝑀𝑖 ,𝐶𝑀𝑗 ) and third quarters

(𝐶𝑀𝑖 , 𝐸𝑀𝑗 ), where the two different models are compared, with a

minimum of 1395, maximum of 3510, average of 2284 and median

of 2237. The fourth quarter (𝐶𝑀𝑖 ,𝐶𝑀𝑗 ) presents a comparison of

histograms for classic model structures denoting the similarity of
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Figure 6: Difference between conductive heat transfer ofmea-
surement data and both forecasts through the external walls
and the roof summed for all zones.

the error for each zone with a minimum of 685, maximum of 1972,

average of 1148 and median of 1290. When comparing the first and

fourth quarters, it can be concluded that the first has an overall

smaller Euclidean norm.

5.3 Evaluation of transmission heat energy gain
and loss through walls and roof

Based on the analysis of the indoor air temperature forecasts, we

quantitatively assess the transmission energy gain and loss through

external walls and the roof for all zones. Transmission heat gain

and loss through a building envelope consists of three components

i.e. conduction, convection and radiation. Since the transmission

heat gain and loss are calculated in each time step, the effects of

convection and radiation are negligible. Therefore, we use Fourier’s

Law directly in Equation (7) to calculate the conductive heat gain

and loss through all zones for each time interval, where k [W/(mK)]

is the thermal conductivity, A [m
2
] is the surface area of walls

and roofs, and d [m] is the thickness. The temperature difference

between indoor air and ambient is represented by Δ𝑇 .

𝑄𝑐𝑜𝑛𝑑 =
𝑘 · 𝐴 · Δ𝑇

𝑑
(7)

Figure 6 visualizes the difference between conductive heat power

obtained with measurement data and classic model forecast (left)

and measurement data and ensemble model forecast (right) in each

time step. The box charts depict upper and lower quartiles with

median, minimum and maximum values excluding outliers that

are shown separately as red circles and are calculated using the

interquartile range (IQR). The IQR of the difference between conduc-

tive heat power obtained with the forecast of the ensemble model

and measurement data is in the range of -43 W to 40 W, whereas

that of the classic model is in the range of -95W to 76W. Heat losses

are presented with a positive sign and heat gains with a negative

sign. Furthermore, the accumulated prediction error over the whole

period in heat energy gain and loss between models and measure-

ment are presented in Figure 7. In this, the difference between heat

energy calculated with the classic model and measurement data

Figure 7: Difference of conductive energy between measure-
ment data and both forecasts through the external walls and
the roof summed for all zones. The introduced novel method
reduces building energy consumption for 146 kWh during
the five experimental weeks.

over five weeks is 278 kWh, whereas the difference between en-

ergy calculated with the ensemble model and measurement data is

132 kWh. The results confirm that the ensemble model has greatly

improved the accuracy of the prediction and thus minimized the

accumulated error of heat energy gain and loss transmitted through

external walls and roof.

6 DISCUSSION
Low deviation between error indicators MAE and RMSE show con-

sistent performance of both model approaches, without individual

outliers with high prediction error. However, all three statistical

indicators in Table 2 show that the forecast error of the ensemble

model is lower than that of the classic model for all rooms during

the validation period. Nevertheless, comparing residual histograms

in Figure 5, results show that the range of residuals of the ensemble

model is narrower than for the classic model, clarifying that the

ensemble model performs better. By comparing the ensemble model

and classic model in the heatmap-matrix in Figure 10 (see appen-

dix), it can be concluded that the ensemble model structure is more

robust to the change of zones i.e. different datasets and different

unmeasured disturbances, e.g. occupant-related heat load which

directly affects the indoor air temperature of the corresponding

zone. In addition, conductive heat transfer of measurement data

and both models are also indicators of model accuracy. Figure 6

shows the difference between measurement and both forecasts in

conductive energy through external walls and roof. The IQR of the

difference between heat power obtained with the forecast of the

ensemble model and measurement data is in a much smaller range

than that of the classic model. Therefore, it can be concluded that

the conductive heat power calculation with the ensemble model is

much more accurate than that with the classic model. Conductive

heat energy is presented in Figure 7, where it can be concluded that

the ensemble model reduces the error of conductive heat energy

for 146 kWh over five experimental weeks.
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We can not directly compare the performance of the proposed

grey-box model with already existing models in the literature in Ta-

ble 1, since each method uses different data and other time horizons

for identification and validation periods. Harb et al. [18] developed

a 4R3C model with an RMSE of 0.2, whereas they use an identifi-

cation period of 26 days. Frahm et al. [15] showed that, to some

extent, the two-day identified model can achieve a good forecast.

In contrast, Gray et al. [16] and Klanatsky et al. [26] update the

parameter on a daily/weekly basis and use 1-4 weeks for identi-

fication, thus they achieved an RMSE of 0.2 and an MAE of 0.25

over the year, respectively. We decompose the identification period

into weekend and weekdays to achieve a more robust model for

different occupation patterns. We demonstrate that one week of

parameter identification is sufficient for accurate forecasting of

indoor air temperature for the subsequent five weeks. To enable a

direct comparison, we develop a classic model for identification on

a whole week period (23.09.2023-30.09.2023). With the proposed

model, we achieve a relative mean MAPE reduction of 2.32 % over

the validation period compared to the forecast of the classic model.

Thus, we demonstrate the superiority of the proposed ensemble

model for high-accuracy forecasting.

However, the ensemble model overestimates the indoor air tem-

perature in room 4 during the first four days, see Figure 4, which

happens due to significant changes in ambient temperature and

heat pump operation, which is mostly turned off. Therefore, the val-

idation is not optimal for this period. Additionally, in the bathroom

fast temperature drops exist Figure 9, which represent unmeasured

disturbances. The ensemblemodel can not capture these fast dynam-

ics of the system and predict temperature minimums throughout

the days. Interestingly, during the identification period the classic

model of room 5 achieves a better forecast and during the validation

period ensemble model of room 5 has favorable performances (see

Table 2 in appendix). During the identification period, fast tempera-

ture drops in room 5 appear, which can lead to higher inaccuracies

in the forecasting, similar to the indoor air temperature forecast

in the bathroom. Additionally, room 5 faces northwest, where the

solar radiation has the smallest impact and where occupant patterns

could be more complex since it is the largest room in the building.

7 CONCLUSION
This paper presents a new approach for grey-box building models

that are more robust to occupant-related heat load. The perfor-

mance of grey-box thermal building models plays an important

role in model-based control systems, where better prediction can

lead to more effective building energy control. Due to different

occupant behavior patterns and their impact on indoor air temper-

ature (i.e. occupant-related heat load) in commercial buildings, we

introduce an ensemble model that distinguishes between weekend

and working days models to get more precise and more robust

predictions. Therefore, two identification periods are used, working

days (five-day identification period) and weekend identification

period (two-day identification period). In this way, we develop two

models with the same structure but different estimated parameters.

Furthermore, we obtain more accurate forecasts throughout five

validation weeks, with minimal additional effort but deliver signifi-

cantly better results. The new approach is extended and verified

on a decentralized multi-zone building, where ambient air temper-

ature, solar radiation, heat flow of the heat pump and indoor air

temperature of each room are real data, that are used for parameter

identification. The proposed model is compared with the classic

model, where the parameters are identified on the range of the

whole week. Findings reveal that the proposed ensemble model has

more accurate prediction over the validation period than the classic

model. The ensemble model still can not predict fast dynamics of

the system such as temperature drop in the bathroom. The overesti-

mation of indoor air temperature in room 4, at the beginning of the

validation period, and additional impacts on forecast of the room 5

during the identification period need to be further investigated and

should be reduced.

Several avenues for future work exist. Since the introduced study

is undertaken within the autumn period, due to the lack of other

measurement data, further evaluations considering heating and

cooling seasons are necessary. The ensemble model for the whole

year period should be investigated, where the minimal number

of models (i.e. winter and summer models, models for vacation

periods) inside an ensemble should be explored. This work uses the

same grey-box model structure for the weekend and week mod-

els, whereas research on second and third-order systems needs to

be done. Simplified models could accurately represent weekends

where occupants don’t have a great impact on indoor air temper-

ature. Reduction of order in the state-space system can have a

significant impact since the multi-zone model is utilized. Further-

more, occupancy behavior for non-commercial buildings should

be investigated, where ensemble structure might differ and have a

smaller or bigger impact.
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APPENDIX
Evaluation data
Figure 8 shows weather data consisting of ambient temperature and solar radiation (top) and the heat flow from the heat pump for the

corresponding room (bottom).
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Figure 8: Input data for room 4: ambient temperature and solar radiation (top) and heat flow (bottom).

Indoor air temperature forecast
Figure 9 shows the indoor air temperature in the bathroom over the validation period. The blue, red and yellow lines show the measured

indoor air temperature, the prediction results of the ensemble model and the prediction results of the classic model, respectively. The

weekends are shown as grey boxes.

Figure 9: Comparison of the indoor air temperature prediction for the bathroom. Grey areas present weekend periods and
white areas working days.
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Error analysis for all seven zones
Table 2 shows the MAE, RMSE and MAPE for classic and ensemble models over the identification and validation period for all zones.

Table 2: Indoor air temperature error analysis for all zones

MAE [
◦
C] RMSE [

◦
C] MAPE [%] MAE [

◦
C] RMSE [

◦
C] MAPE [%]

Zone Algorithm Identification period Validation period

Room 1

Classic 0.3549 0.4145 1.3840 1.1311 1.3774 5.0135

Ensemble 0.2550 0.3098 0.9995 0.4247 0.5842 1.9082

Room 2

Classic 0.4469 0.5606 1.7427 0.8928 1.1046 3.7803

Ensemble 0.4196 0.5431 1.6526 0.3912 0.5026 1.6710

Room 3

Classic 0.6363 0.8305 2.5114 0.8065 1.0126 3.6309

Ensemble 0.4658 0.5915 1.8482 0.4684 0.6421 2.0650

Room 4

Classic 0.4747 0.5514 1.8675 0.7139 0.9051 3.1753

Ensemble 0.3482 0.4150 1.3769 0.3463 0.4576 1.5125

Room 5

Classic 0.3864 0.5028 1.5842 0.6529 0.8446 2.9213

Ensemble 0.4121 0.5200 1.6906 0.3219 0.4282 1.4230

Kitchen

Classic 0.5604 0.7593 2.2440 0.8727 1.1015 3.7413

Ensemble 0.5277 0.7445 2.1086 0.4349 0.6315 1.8676

Bathroom

Classic 0.7293 1.1242 3.5351 0.9972 1.4081 5.3254

Ensemble 0.6939 1.0876 3.3665 0.5307 0.8856 2.8292

Comparison of the ensemble and classic model in the heatmap-matrix
Figure 10 shows the similarity of the distributions of the prediction residuals established on the Euclidean norm. The distributions of all

zones and models are compared with each other. The 𝐸𝑀𝑖 represents the histogram of the ensemble models and the 𝐶𝑀𝑖 histogram of the

classical model structures.

6

Figure 10: Similarity indices of the histograms of two models across all zones. EM denotes the histogram of the ensemble
models and CM the histograms of the classic model structures.
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