
The Influence of High-Frequency Effects due to
Inverter Excitation on Permanent Magnet

Synchronous Machines

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)
von der KIT-Fakultät für Elektrotechnik und Informationstechnik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION
von

M.Sc. Narciso Genovese Marmolejo
geb. in San Diego, Kalifornien

Tag der mündlichen Prüfung: 17.05.2024
Hauptreferent: Prof. Dr.-Ing. Martin Doppelbauer
Korreferent: Prof. Dr.-Ing. Dieter Gerling



2



Erklärung der Selbständigkeit

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde
Hilfe verfasste und keine anderen Hilfsmittel als die angegebenen verwendete.

Insbesondere versichere ich, dass ich alle wörtlichen und sinngemäßigen Über-
nahmen aus anderen Werken als solche kenntlich machte.

3



Kurzfassung

Die Reduzierung der Emissionen ist entscheidend, besonders jetzt, während dem
globalen Klima seinen ersten Wendepunkten nähert. Daher ist es nicht nur dringlich,
jahrzehntelanges Wissen über elektrische Antriebe in Straßen- und Schienenfahrzeuge
zu integrieren, sondern auch Maschinen zu entwickeln, die Energie aus erneuer-
baren Quellen gewinnen. Ein Teil der erneuerbaren Energiequellen, wie Wind-
und Wasserkraft nutzen auch elektrische Antriebe. Die Steigerung ihrer Effizienz
würde daher dazu beitragen, dass Elektrofahrzeuge mit der derzeitigen Infrastruktur
schneller die Gewinnschwelle bei ihren Produktionsemissionen erreichen und weniger
elektrische Maschinen pro produzierter Energieeinheit benötigen, sobald diese Infras-
truktur entkarbonisiert ist. Im Großen und Ganzen gibt es zwei Hauptdimensionen,
um die Effizienz von E-Antrieben zu steigern: Hardware- und Softwaredesign. Die
Software-Entwurfsphase beinhaltet die Maschinensteuerung, die binäre Vektoren für
den Wechselrichter berechnet. Diese widerum hängen von Arbeitspunkten ab, deren
Eigenschaften die Hardware Entwurf definiert. In dieser Arbeit geht es darum, diese
Symbiose zu klären und für elektrische Antriebe im Allgemeinen und für duale
Drehstromantriebe im Besonderen zu optimieren. Grundlegende Frequenzeigen-
schaften des Antriebs, DC-Spannungspegel, Spitzen- und Dauerleistung und an-
dere Designüberlegungen werden typischerweise in der Hardware-Designphase ohne
Berücksichtigung der Kommutierungsfrequenzeigenschaften definiert. Diese Arbeit
erweitert daher das Wissen über hochfrequenz Maschinenverlustmodelle auf arbi-
trärphasige und arbiträre Maschinen mit Hilfe des Kopplungskoeffizienten ς und der
Erkenntnis, dass die Floquet-Theorie auch für Hochfrequenzmodelle gilt. Letzteres
ermöglicht die Modellierung nichtperiodischer Nichtlinearitäten in einem synchronen
Rahmen. Steuerungsfunktionen, von denen angenommen wird, dass sie keinen Ein-
fluss auf die Maschinenverluste haben, um die Stromwelligkeit des Zwischenkreiskon-
densators zu reduzieren, nämlich Verschachtelung für duale Dreiphasenmaschinen,
verringern den Wirkungsgrad in der Maschine nachweislich um bis zu 4% je nach
Spannungsniveau. Die Kopplung zwischen Teilmaschinen und das Permeabilität-
sprofil über das Drehmoment-Drehzahl-Feld erweisen sich als entscheidend für die
Bestimmung der Erhöhung der Maschinenverluste durch Verschachtelung. Dabei
werden verschiedene PWM-Verfahren, Kommutierungsfrequenzen und Stromabtas-
traten untersucht und der Stand der Technik auf duale Drehstrommaschinen er-
weitert. Optimale Steuervektoren mit den vorherigen Elementen werden für jeden
Betriebspunkt gefunden, was ein detailliertes Wechselrichterverlustmodell und ein
Gleichgewichtsmaschinenverlustmodell erfordert. Es zeigt sich, dass eine Abtas-
trate von fsa = 2fsw , Stromwelligkeitsprofile nahezu bei fsw → ∞ aufrechterhält
und dies bei sehr niedrigen Verhältnissen der Grundfrequenz zur Schaltfrequenz
(f0/fsw). Alle anderen Abtastraten zwischen synchron (fsa = fsw) und fsa = 2fsw
erhöhen die Welligkeit vom Fall Synchronabtasten. Obwohl die Stromwelligkeit
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wenig Einfluss auf die Verluste im Kupfer hat, dominiert sie in Kombination mit
dem hochfrequenten magnetischen Permeabilitätsprofil die hochfrequenten Eisen-
und Magnetverluste. Große Schaltfrequenzen sind notwendig, um Eisenverluste
nahe der maximalen Leistungsgrenze und möglicherweise nahe dem Modulation-
sindexwert von 2/π abhängig von ς und µ zu kontrollieren. Bei niedrigen Grund-
drehzahlen dominieren Umrichterverluste und wesentlich niedrigere Schaltfrequen-
zen sind optimal und erhöhen dort den Antriebswirkungsgrad um 1%. Die Bedeu-
tung der Magnetsegmentierung zur Reduzierung von Hochfrequenzverlusten wird
bestätigt und ein Rahmen für die Eisenabschirmung der Magnete für IPMSMs wird
unter Verwendung der Poynting-Gleichung entwickelt. Magnetverluste sind wichtig,
um eine Entmagnetisierung zu vermeiden und die Anforderungen an die Rotorküh-
lung besser zu verstehen. Es zeigt sich, dass sich Maschinenkonstruktionsfrequen-
zen mit Wechselrichter-induzierter Feldwelligkeit überlappen, um Magnetverluste je
nach PWM-Methode zu erhöhen oder zu verringern. Insbesondere überlappt die
vom Rotor aus gesehene Zahn-pro-Pol-Harmonische mit der verschmolzenen 2nd-
und 4th-Subharmonischen der ersten Trägergruppe. Simulationen zeigen, dass für
hochgekoppelte zweimal dreiphasige Drehstrommaschinen wie die asymmetrische
Maschine das D6φ SVM-B2 12-Sektoren-Verfahren den elektrischen Antrieb für alle
Betriebspunkte außer dem Feldschwächbereich und niedrigen Drehmomenten op-
timiert. Für leicht gekoppelte duale Dreiphasenmaschinen teilen sich alle unter-
suchten DPWM-Verfahren den optimalen Betriebsraum. SVM ist unabhängig vom
Kopplungskoeffizienten fast nirgendwo optimal für den elektrischen Antriebsverlust.
Simultane Schaltfrequenzen und Optimierung der PWM-Methode zeigen in Simula-
tionen eine Effizienzsteigerung von etwa 1% für eine Isokurve, die sich vom Eckpunkt
bis zum Ursprung erstreckt, und bietet dadurch signifikante Verbesserungen.
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Abstract

Reducing emissions is critical as global climate approaches its first tipping points. As
a result, not only does assimilating decades of electric drives knowledge into road and
rail vehicles require urgency, but so does developing machines that harvest energy
from renewable sources. Of the plethora renewables, wind and hydraulic energy also
use electric drives. Increasing their efficiency would therefore help electric vehicles
break even with their production emissions faster using the current infrastructure
and require less energy harvesting machines per unit power once that infrastructure
de-carbonizes. Broadly, there exist two principal dimensions to increase e-drive ef-
ficiency: hardware and software design. The software design stage entails machine
control by means of designing sequences of binary vectors for the inverter, which
in turn depend on operating points whose characteristics the hardware design stage
defines. This work involves clarifying that symbiosis and optimizing it for electric
drives in general and for dual three-phase drives specifically. Drive fundamental
frequency characteristics, DC voltage level, peak and continuous power, and other
design considerations are typically defined at the hardware design stage without
consideration for the commutation frequency characteristics. This work therefore
expands knowledge regarding high frequency machine loss models to arbitrary-phase
and arbitrary-type machines by means of the coupling coefficient ς and the realiza-
tion that Floquet theory also applies to high frequency models. The latter allows
the modeling of non-periodic nonlinearities in a synchronous frame. Control features
thought to have no influence on machine losses to reduce DC-link capacitor current
ripple, namely interleaving for dual three-phase machines, are shown to decrease
efficiency in the machine by up to 4% depending on the voltage level. Coupling be-
tween duals and the permeability profile over the torque-speed field prove decisive
in determining the increase in machine losses due to interleaving. Different PWM
methods, commutation frequencies, and current sampling rates are investigated and
the state-of-the art is extended to dual three-phase machines. Optimal control vec-
tors with the previous elements are found for each operating point, something that
requires a detailed inverter loss model and an equilibrium machine loss model. It
is found that fsa = 2fsw rate sampling maintains fsw → ∞ current ripple profiles
over very low fundamental to switching frequency ratios, or f0/fsw, but anything
in between increases ripple from fsa = fsw. Although current ripple has little in-
fluence regarding losses in copper, it combined with the high frequency magnetic
permeability profile dominate high frequency iron and magnet losses. Large switch-
ing frequencies are necessary to reduce iron and magnet losses near the modulation
index value of 2/π depending on ς and µ there. At low fundamental speeds, inverter
losses dominate and much lower switching frequencies are optimal and increase drive
efficiency by 1% there. The importance of magnet segmentation to reduce high fre-
quency losses is confirmed and a framework for iron shielding of the magnets for
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IPMSMs is developed using the Poynting equation. Magnet losses are important
to avoid demagnetization and better understand the needs for rotor cooling. Ma-
chine design frequencies are shown to overlap with inverter-induced field ripple to
increase or decrease magnet losses depending on PWM method. Specifically, the
tooth-per-pole harmonic as seen from the rotor overlaps with the coalesced 2nd and
4th subharmonic of the first carrier group. Simulations show that for highly cou-
pled dual three phase machines like the asymmetric machine, the D6φ SVM-B2
12-sector method optimizes the electric drive for all operating points except for the
field-weakening region and low torques. For lightly coupled dual three phase ma-
chines, all investigated DPWM methods share the optimal operating space. SVM
is almost nowhere drive-loss optimal irrespective of the coupling coefficient. Simul-
taneous switching frequency and PWM method optimization in simulations results
in about a 1% efficiency increase for an iso-curve spanning from the corner point to
the origin, offering significant and broad improvements.
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Chapter 1

Introduction and Motivation

Although this dissertation concerns a niche topic in electric drives, its motivation
is anchored to broader concerns. Before the pandemic in 2019, road vehicles con-
tributed to 69% of global green-house gas (GHG) emissions, with Europe and North
America leading the world in road vehicle emissions [1]. To limit the increase in
mean global temperature to below 1.5◦C, global emissions from road vehicles must
decrease by 69% according to some models [1], meaning that they must make 21% of
global 2019 GHG levels before 2040. Battery electric vehicles, although an improve-
ment to internal combustion vehicles in almost every sense, do not offer a panacea
to anthropogenic climate change. Battery electric vehicles (BEV) mostly acquire
energy from the grid, which in turn generates electricity mostly by combusting fuel,
whether gas, coal, biofuels, oil, or anything else that burns. Fuel-cell electric and
hydrogen internal combustion vehicles might offer a solution to problem-offsetting of
battery electric vehicles, as well as improved energy storage from renewables. Storing
the very volatile energy from renewables [2] would require expensive electro-chemical
batteries with a very limited lifespan of about 10 years, polluting manufacturing and
disposal processes, and questionable element procurement practices. Gravity bat-
teries offer a better solution, but like wind and solar contraptions, take up much
volume. Solar panel production is also comparably polluting to electro-chemical
batteries. Hydrogen batteries also potentiate improvement, but might involve more
risk than gravity batteries. The problems therefore involve scaling energy volume-
density and controllability, both of which nuclear power already addresses. Due to
the urgency of addressing climate change [3], more discussion is needed around nu-
clear power as a non GHG-emitting power source, at least until other technologies
scale. Its waste pollutes over centuries, but its quantity is less and its containment
mature. The most GHG-emissive countries already have nuclear weapons. However,
to eliminate the risk of nuclear weapon proliferation to developing continents fully
or partially in the southern hemisphere, more could be invested in fission’s more
benign cousin, nuclear fusion energy, aside from the aforementioned energy sources.

Aside from power sources for electric vehicles, in general it is best to reduce
power consumption per capita as well, preferably without reducing or even increasing
quality of life. Combined with the fact that electric vehicles require an electric drive
irrespective of the power source, reducing the power consumption of the electric drive
in any application contributes to reducing emissions and perhaps even pollution. The
goal of this dissertation is to contribute to that goal while maintaining electric drive
performance, i.e. increase the efficiency of the electric drive.
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Road vehicle electrification has seen a boom in the last decade of companies
manufacturing electric vehicles (EV) and traditional automakers increasingly elec-
trifying their fleets. Europe and China lead the world in the number of electric
vehicles with about 7.8 million and 13.8 million respectively, as of the end of 2022
[4]. Unfortunately they only make 2.6% and 4.3% of all vehicles on their roads.
Public transportation is mostly electrified in both Europe and China, making the
source of grid energy the main concern. Despite the meager fraction of total road
EVs in the leading territories, EV sales seem to be increasing exponentially, as seen
in Figure 1.1. Assuming that the total number of road vehicles does not change over
20 years and the grid has been completely de-emissified in the world, EVs excluding
hybrids on the road must increase at least by about 47.3 million per year on average
over the next 18 years. The required average yearly increase of BEVs would be
27.7%.

Figure 1.1: EV sales trends taken from [4]

Necessary giant leaps notwithstanding, these recent trends bode well for us, the
planet, and electric drives, making their study all the more imperative. Besides their
energy storage source, which are typically batteries, electric drives consist of the in-
verter and the electric machine. The inverter converts direct-current (DC) power
from the energy source to an alternating current (AC) power; the electric machine
converts that AC electrical power into mechanical power. The basic components
of the inverter are the power transistor and the diode. No less important compo-
nents include the housing and base cooling plate, which dissipate heat produced by
the inverter. A large capacitor connected in parallel to the DC voltage source is
also necessary to reduce the voltage ripple caused by switching in the inverter. To
make a traveling flux from a DC voltage source like a battery, the converter must
conduct current to and from the machine over at least two spatially distributed elec-
tromagnets, called phases. These AC machines typically have three phases because
it increases the DC bus voltage usage by 22%, which is the largest increase for con-
secutive increments of the number of phases. For that reason among others, most
traction electric drives are three-phase drives, and the converter has consequently
three legs, or three half-bridges. Inverters may have six insulated bipolar transistors
(IGBT) with six freewheeling diodes connected to each of the IGBT’s collector and
emitter terminals for a three-leg converter. For lower current applications, inverters
typically employ six metal-oxide-semiconductor field-effect transistors (MOSFET),
but due to their limited current conducting capacity, are often connected in par-
allel in three-phase topologies. To generate torque, the electric machine usually
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has two spatially-offset field sources, which is why the converter may also involve a
mechanical commutator.

Such is the case with externally excited synchronous machines (EESM), in which
static brushes connected to the battery or stepped-down rails contact a segmented
ring where each segment connects to each of the rotor inductors, creating a field in
the rotor. Wireless power transfer to the rotor is also possible. In permanent magnet
synchronous machines (PMSM), permanent magnets serve as the second field source.
An example of a machine class that does not have a second field source is the class
switched reluctance machines (SRM) and synchronous reluctance machines (SyRM).
In SRMs and SyRMs, magnetic shear is created not by superimposing two magnetic
fields, but by spatially varying the distribution of iron and air such that the magnetic
shear occurs upon commutating the exciting field. This happens because magnetic
fields permeate the iron much more than air, and therefore flux lines prefer to
stay in the iron. Interior permanent magnet synchronous machines (IPMSM) use
the iron’s geometrical salience in addition to the permanent magnet to generate
torque. As a result, IPMSMs are typically the most torque and power-dense electric
machines per unit currency, since the permanent magnet provides a magnetic field
a priori and the iron salience provides additional torque at a lower price than the
magnet; lastly, only one exciting field that switches is required. Induction machines
(IM) also have only one exciting field. Unlike IPMSMs, IMs have no permanent
magnet and little to no salience. Instead, they have a shorted conductor array in
the rotor. As the exciting field rotates, it induces a magnetic field in the rotor
array, creating magnetic shear at a distance from the rotation axis over an area and
therefore torque. Because the rotor array must see a time-varying field to produce
torque, the exciting field induced by the stator coils must rotate faster than the
rotor speed. Due to the difference between the exciting field and rotor speeds, the
machine is also referred to as the asynchronous machine (AM). More copper in the
exciting coil and in the rotor, in conjunct with faster exciting frequencies creates
more losses during operation than the IPMSM. Up to now we assumed that the
torque-producing magnetic shear occurs along the radial component of the magnetic
flux density in the circumferential direction, which need not be the case to create
rotational motion. Axial flux machines eponymously produce torque by shearing the
axial flux in the circumferential direction. Transverse flux machines (TFM) generate
torque by shearing the radial flux in the circumferential direction, as usual, except
that the exciting coil is not wound in loops, but into one loop on the circumference
of the stator inset in a two-pronged iron fork whose flux connects to a rotor with
axially-separated permanent magnets of opposite polarity.

This dissertation focuses on the dual three-phase IPMSM, i.e. the permanent
magnet synchronous machine with two three-phase windings connected in a star
configuration with disconnected neutrals sharing a stator. This machine allows
for interleaving, unlike with six-phase machines with connected neutrals and IG-
BTs/MOSFETs connected in parallel. Interleaving also reduces the DC capacitor
current ripple, allowing a reduction in its size. It is shown how interleaving induces
additional losses in the stator iron depending on the coupling between the windings
of the duals. A measure of this coupling is proposed. In addition, different com-
mutation strategies, or pulse-width modulation (PWM) methods, and switching
frequencies are investigated to arrive at a program that optimizes the dual elec-
tric drive efficiency. Other effects, like constructive interference between converter
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frequencies and tooth harmonics in the magnet are also investigated.
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Chapter 2

Literature Review

This chapter begins with an overview of three-phase and dual three-phase voltage-
sourced pulse-width modulation (PWM) methods. PWM is the main strategy to
program the sequence of on-off times of the legs of the three-phase inverter to convert
DC voltage into AC voltage. PWM generates harmonic content in addition to the
desired fundamental frequency and amplitude of the voltage waveform, and a review
of the literature on the resulting current ripple in the windings and the capacitor
is made. Multi-phase converters have more degrees of freedom due to the increased
number of switching half-bridges compared to three-phase converters, and the liter-
ature regarding those PWM methods is reviewed. Multi-phase converters need not
connect to multi-phase machines, which is why different topologies on the machine
side are also reviewed. Also on the machine side, we review the literature concerning
copper losses, iron losses, and magnet losses in electric machines. Finally, we review
the state-of-the-art regarding steady-state and high-frequency optimizations of the
electric drive.

2.1 Voltage-Sourced Drives and Pulse-Width Mod-
ulation Methods

The first systematic approach to analyzing losses due to different pulse-width mod-
ulation (PWM) methods was [5] and [6], in which several PWM methods and their
effects on current ripple were investigated for three-phase converters with large
commutation-to-fundamental ratios. Several analytical relations were derived, which
highlighted the dependency of current ripple ∆i on switching frequency fsw, DC volt-
age VDC, and modulation index M . For example, the normalized squared current
ripple for space-vector modulation (SVM) with a three-phase equivalent inductance
L is shown in equation (2.1.1).(

8fswL

VDC

)2

∆i2 = 1
6M

2
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1− 8M
π
√

3
+ 9M2

8
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3

4π
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(2.1.1)
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2.1. VOLTAGE-SOURCED DRIVES AND PULSE-WIDTH MODULATION METHODS

Figure 2.1: Phase current ripple squared with equivalent switching frequencies for
(1): sinusoidal PWM, (2): SVM, (3): third harmonic with 1/4 magnitude, (4):
DPWM3, (5): DPWM1, and (6): DPWM2 according to [6]

Figure 2.2: Switching frequency factor for equivalent commutations over various
current phase delay ϕ for (1): sinusoidal PWM, (2): SVM, (3): third harmonic with
1/4 magnitude, (4): DPWM3, and (5): DPWM1 according to [5][6]
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2.1. VOLTAGE-SOURCED DRIVES AND PULSE-WIDTH MODULATION METHODS

(a) Switching frequency factor for optimal
phase current ripple (b) Optimal current ripple squared

Figure 2.3: Minimal phase current ripple with equivalent mean switching losses over
various current phase delay angles ϕ for (2): SVM according to [6]

Discontinuous PWM methods were found to commute less frequently due to
their clamping, and therefore increasing the switching frequency by a current vec-
tor phase-dependent gain is necessary. The average of that gain over all phases is
about 3/2. Also, since the ripple varies as a function of the voltage vector rotation
angle, current phase delay, and modulation index, an optimal switching frequency
variation factor was found for space-vector modulation (SVM), which usually varies
between 1.1 and 0.9 with the maximum occurring between two switching states. It
also keeps the converter losses the same. The ripple amplitude variation within a
fundamental period applies to all PWM methods [7], but [5] decided to use SVM
as an optimization example. Later studies on the frequency variation within the
fundamental period showed that it disperses and flattens spectral peaks [8] which
is also beneficial for acoustic reasons [9]. One of the first to recognize the spec-
tral spread of local variable switching frequencies and their acoustic benefits was
[10]. Another optimization involved minimizing the converter losses while keeping
a constant current ripple root-mean squared (RMS) value [11], reducing switching
losses by as much as 19%. With the optimization in [5] for a modulation index of
M = 2/

√
3, the maximum modulation index, the squared ripple is reduced by about

18%, as shown in Figure 2.3.
The book [12] expanded the work of [6] by deriving complicated expressions

for the Fourier coefficients of the converter voltage, allowing for any switching-to-
fundamental frequency ratio. Due to the double-Fourier series nature of the coef-
ficients, it is almost as complicated to compute the expressions as it is to simply
simulate the waveforms and extract current ripple information. The work in [12]
also qualitatively explained why the spectral peaks appear and that they appear as
groupings about multiples of the switching frequency. The distance of the peaks
from the carrier groups is determined by even multiples of the fundamental fre-
quency. The approach in [12] also allows for different sampling and carrier signals.
For example, spectra of PWM voltages generated by comparison with sawtooth car-
riers and triangle carriers are compared. Spectra of PWM voltages generated with
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2.1. VOLTAGE-SOURCED DRIVES AND PULSE-WIDTH MODULATION METHODS

natural, symmetric, and asymmetric regular sampling are also considered. However,
the analysis mostly involves the spectral peaks themselves. The advantage, for ex-
ample, of asymmetrical sampling for low switching-to-fundamental frequency ratios
is plotted as voltage line-to-line harmonic distortion for third harmonic injection
methods with various third harmonic amplitudes, as replicated in Figure 2.4, but
it is not explored for other, more commonly used PWM methods. The measure of
WTHD0 means weighted total harmonic distortion with respect to the fundamental
at M = 1/2, so that the amplitudes of the Fourier coefficients are normalized to the
DC bus voltage.

Figure 2.4: WTHD0 of line-to-line output voltage with fsw/f0 = 11 with various
third-harmonic amplitudes and sampling techniques [12]

SVM and DPWM methods depend on the voltage angle, which then requires
vector projections on each of the switching states to calculate the duration of the
pulses over each switching period. That proves complicated and there are three
publications which converted the problem of vector projections into reference-carrier
signal comparison, which is much simpler and computationally efficient. Calling it
hybrid PWM, [13] derived an algorithm to generate the reference waveforms for SVM
and any DPWM method by varying a factor k0 in time, or setting it to k0 = 0.5 for
SVM. The variation of k0 to generate DPWM waveforms was not explicitly derived.
The paper [14] first called the method generalized PWM and characterized the
current ripple and voltage gains as presented in [13] and already analyzed in [6][5]. In
[15] the factor k0 of [13] was written explicitly in terms of a third-harmonic sinusoid
with a phase delay δ, allowing for continuous interpolation between the canonical
and max/min DPWM methods. The method in [15] is used in this dissertation.

Three-phase converters usually have a DC link capacitor when connected to a
DC voltage source, such as a battery, to reduce or eliminate the AC load on the
source. The capacitor has an equivalent series resistance, or RESR, which dissipates
the AC load across it from the switching action as losses. The ripple in the DC
link capacitor also heavily depends on modulation index, switching frequency, and
current phase delay. Knowing the capacitor RMS current is important for capacitor
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2.1. VOLTAGE-SOURCED DRIVES AND PULSE-WIDTH MODULATION METHODS

dimensioning, as larger current loads mean more heat generation that needs to be
dissipated, tying the problem to converter cooling and size requirements. Simple
analytical calculations and the dependencies of capacitor ripple are delineated in
[16]. The main contribution is the expression in equation (2.1.2), where M is the
modulation index, ϕ is the current phase offset angle, and IRMS = Idq/

√
2 is the

root-mean-squared of the phase current, which also depends on modulation index;
its dependence on PWM methods was not investigated.

IC,RMS = Idq

√√√√M (√
3

4π + cos2 ϕ

(√
3
π
− 9

16M
))

(2.1.2)

2.1.1 Multi-phase Machines
The main motivation behind the implementation of multi-phase machines is their
added redundancy in the case of a short or open phase and increase in the degrees of
freedom allotted to their control. The added redundancy allows the drive to main-
tain better performance when compared to a similar fault in three-phase machines.
Added efficiency is usually not a factor for magnetically-equivalent dual three-phase
and three-phase machines [17]. On the inverter side, one may simply double the
amount of switches per phase on a three-phase machine and connect them in par-
allel to achieve similar, if not identical, inverter losses. One of the first papers to
analyze the problem of multi-phase induction machine control with reduced phases
after a presumed fault was [18]. A thorough overview of multi-phase machines is
presented in [19] and later a review of their control methods is presented in [20].
Redundancy algorithms also depend on whether or not the neutral points are con-
nected and what the spatial angular displacement between the neutral-separated
machine phases is. In the paper [21], engineers investigated the effect of the spatial
distribution of the faulty phases on rated torque and current magnitude, with each
spatial distribution having advantages either during open circuit or short circuit
faults of one of the two duals. Various winding distributions are also investigated in
[22] for a concentrated winding.

Regarding the inverter excitation of multi-phase machines, there are various pub-
lications extending the calculations of current ripple from three-phase to multi-phase
machines. The literature on PWM-fed multi-phase drives can be divided into three
subcategories: current ripple of uncoupled loads, current ripple with coupled loads,
and DC link capacitor ripple. Most of the literature for current ripple involves un-
coupled loads, with coupled load literature mainly encompassing DC-DC converters.

Multi-phase machines increase the degrees of freedom involved in PWM. The
number of states, or space vectors, available are 2n, where n is the number of phases.
A three-phase converter has 8 space vectors, whereas a six-phase converter has 64
space vectors. One of the first papers seeking to explain and optimize PWM in
a multi-phase setting −specifically, for dual three-phase machines −was [23] and
[24]. At the time, 12-sector space-vector modulation (SVM) was being explored,
and [23] showed that choosing just two adjacent vectors in 12-sector SVM sourced
odd harmonics not a multiple of 3 like the 5th, 7th, and so forth. Although the
exact generating mechanism of those harmonics was not explained, a modulation
method proposed in [24] by choosing four adjacent vectors instead of two with very
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specific dwell times ameliorated the problem. However, the method still induces
11th and 13th harmonics which worsen with decoupling between machines. Further-
more, a complicated machine model −in this case, an induction machine −needed
to be derived for the harmonic basis vector set Sk, which is not necessary if a model
is available in the dual αβ space. Lastly, the vector sequence of the method was
not specified; the vector sequence often distinguishes PWM methods in three-phase
converters. Choosing four vectors instead of two approaches independent SVM, as
it chooses five non-zero space vectors [25]. Independent SVM is the independent
control of each dual, which is possible due to their disconnected neutral points. The
question of dual coupling is not addressed because the control is done in a fundamen-
tal space, which simulates a three-phase machine. Furthermore, harmonic mapping
to the subspaces in [24] is not guaranteed, as each harmonic must have a specific
phase. In [26], multi-phase machines of arbitrary number in convex connections −for
three-phase machines, the connection would be the delta connection, for example
−are considered and the current ripple for sinusoidal modulation and n-harmonic
injection are derived. Like in [24], [26] does not consider coupled phases.

As opposed to harmonics created by the PWM technique, magneto-motive force
(MMF) harmonics, nascent from the winding distribution, could be isolated in a
harmonic space, but must be controlled to zero as opposed to using the open-loop
approach in [24]. The reason for that is that the transformation used in [24] is always
aligned to the voltage vector, whereas harmonics from the winding distribution
necessitate realignment for every operating point. Note that compensating for the
harmonics using a current regulator will control the harmonics in the current to
zero irrespective of its source. Such filters are known as active power filters (APF)
[27], which have many applications, including noise cancellation (source 11 in [28]).
One popular method of harmonic suppression involves transforming the signal to
a harmonic-synchronous frame and controlling the harmonics in this new frame to
zero, usually by using the simplest implementation: an integrator. It seems to
have first emerged as a patent [29] in 1994, and has appeared several times in the
literature for dual three-phase machines, most notably in [30]. There is a plethora
of other APF methods summarized in [31], like notch-filters in the stator frame xy,
or z1, z2 subspace for six phase machines [32] and high-bandwidth PI controllers in
the same subspace also for six phase machines [33].

Coupling was introduced as a significant source of changes in current ripple due
to different PWM methods for dual three-phase machines in [34], [35], and [36] for
induction machines. It was introduced as a factor containing inductance in the
harmonic-synchronous space xy as kσxy = σLs/Llsxy in [35]. Increasing coupling
increases the current ripple at large M when using SVM [36] and decreases six-
step current harmonics if the differential modes are coupled [34]. This acts like
an external filter, which is why it has the opposite effect observed in [36]. The
coupling must be in the machine, as mutual inductances between filters which then
feed a three-phase machine decrease current ripple, according to [37]. In [38] and
[39], different angular displacement between duals and their effects on current ripple
are investigated. The same author later clarified and simplified the PWM method
specified in [24] and proposed the category of 12 sector-based PWM methods, the 12
sectors shown in Figure 2.5, that differ by the placement of the zero vector. In [36],
a category of 24-sector PWM as shown in Figure 2.6 was proposed. Both emphasize
the inseparability between coupling and PWM method evaluation based on current
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ripple in dual three-phase machines. As with three-phase PWM, each of the 12- and
24-sector PWM methods has a different number of commutations, which will affect
the inverter losses.

Figure 2.5: 12-Sector SVM with four space-vector selection, [35]

The mutual inductance between coils in a multi-phase machine defines the cou-
pling in the machine and has effects on the torque ripple, with windings 30◦ elec-
trically offset minimizing the torque ripple at the expense of large 5th harmonics
during six-step operation [40]. Moreover, for dual three-phase machines, the spa-
tial angular displacement and winding pattern determines that coupling, as first
suggested by [40] and then by [41][42]. There are two main space-electrical angu-
lar displacements for dual three-phase machines: 30◦ and 60◦. Each describes the
asymmetrical and symmetrical machine, respectively. Any multiple of 60◦ yields the
symmetrical machine from a control perspective due to the electrical distribution of
three-phase machines, but in this dissertation the 180◦ machine is referred to as the
polar machine, since it refers explicitly to the spatial distribution of the windings
in the stator, which results in very small coupling between the duals. The spatial
distribution was proposed in [43] and the fractional pitch reducing coupling between
duals specifically for interleaving at θI = 180◦ −but not the spatial distribution of
the duals−was patented in [44] and described in [45].

Independent control enables interleaving, which is a phase delay in the carrier
signal. Its effects on the DC capacitor current ripple are documented in [46] for a
three-phase, star-connected load, which considers the angle between the fundamen-
tal voltage and current, modulation index, and interleaving angle. No coupling is
analyzed in the load. The interleaving angle that minimizes the linking capacitor’s
ripple depends mostly on modulation index and current-voltage displacement angle,
ϕ. For M = 0.85 and ϕ = 0, the optimal interleaving angle is θI = 90◦, whereas
if ϕ = 90◦, the optimal interleaving angle is θI = 180◦. Computation of the DC
link capacitor current ripple without interleaving and coupling was approached by
[47] for dual three-phase machines. A 60% reduction in DC current ripple was ob-
served for a dual three-phase induction machine in [48], highlighting an advantage
of interleaved converters. In [49], the capacitor current ripple and phase ripple for
various operating points for a polar dual three-phase machine was investigated. As
with [47], [49] demonstrated a strong dependence on power factor, or the cosine of
the current angle from the voltage angle. The effect of interleaving on phase cur-
rent ripple with strong coupling in dual three-phase electric machines has not been
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Figure 2.6: 24-Sector SVM with four space-vector selection, [36]

investigated.
An approach of dual three-phase converters, but not machines, with intercell

transformers, or filters, considers the coupling of the filters [50]. However, because
the coupling does not take place inside of the machine windings, it does not consider
machine losses or even the losses in the intercell transformers. Coupling effects
between duals in a machine can be considered independent of the load harmonics,
or harmonics generated because of the winding distribution MMF.

Usually coupling is built-in with passive filters before connecting the multiple
phases in parallel to a three-phase load, usually for filtering purposes [51], but also
for three-phase load operation [46] [52] [53]. Combined with interleaving, the idea
is to offset switching by θI = 180◦ whereupon parallel connection of the phases,
the phase ripple cancels or is reduced significantly [53] [51]. Having coupling in-
ductors between 180◦ interleaved converters and their loads to reduce load current
harmonic content seems to have emerged in [54]. Having inductors connected in
specific topologies and their harmonic cancellation effects with θI = 90◦ and dual
two-phase converters was shown early on in [55] with Jacobi-Anger double Fourier
decomposition used in [53] and [12] to analyze other topologies. Common mode coils
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were added to parallel-connected converter legs to reduce the circulating currents
resulting from interleaving by θI = 180◦ and a reduction in the DC capacitor cur-
rent ripple was observed compared to a single converter, two parallel and interleaved
converters with separated DC link, and two parallel and interleaved converters with
the same DC link [51]. In fact, interleaving reduces the size of the filters needed, as
shown by [52], and of the DC link due to the reduced harmonic content. The idea
was applied to three-phase machines with an external coupling inductor [56] and for
both a copuling inductor and common-mode inductors in [57]. In [57], a modified
DPWM method was developed to reduce the differential and common-mode circu-
lating currents with fixed interleaving at θI = 180◦, allegedly reducing the losses in
the coupled inductor’s core. The method however, increased the overall line cur-
rent ripple compared to other PWM methods. In [58], the impact of sinusoidal,
8-sector space vector modulation and DPWM methods on the common mode ripple
was investigated. It was found that of those, DPWM is the least effective in reduc-
ing the common mode ripple. They also found that with sinusoidal and 8-sector
space vector PWM, it is best to use an even number of interleaved converters. An
earlier paper also observed the effectiveness of interleaving with SVM compared to
DPWM1 with the same topology [59]. As opposed to using symmetrically delayed
interleaving, [60] proposes asymmetric interleaving between three parallel converters
powering a three-phase machine, which reduces the ripple in the machine and the
inductance requirement on the common mode filter. What the papers share involv-
ing harmonic cancellation is that the phase legs of each converter are connected to
their counterpart in parallel. That differs from the case of dual three-phase ma-
chines, where each phase leg of each converter is only connected to the other legs of
the same converter. That changes the optimum angle for DC link capacitor current
reduction, and couples the problem of harmonic cancellation with winding patterns
and therefore coupling between the duals in the dual three-phase machine. In [61],
coupled inductors were connected in series to the dual three-phase machine, enabling
the previous harmonic cancellation after the coupled inductors, reducing the current
ripple in the machine. It also reduced acoustic noise by about 15%. The same idea
was implemented for dual three-phase machines with connected neutrals in [62].
The main drawback involves the coupled and common mode inductors, which are
additional components that take up space and drive up cost. The paper [63] inves-
tigated interleaved DPWMMIN with disconnected neutrals on a PM synchronous
motor with concentrated windings and without filters and showed a 19% decrease in
ripple with θI = 180◦ and a 0◦ winding offset. The fractional pitch winding patented
in [44] and described in [45] also seeks to remove the need of the additional coupled
inductors by incorporating said filters into the machine design. That same machine
with the spatial distribution of [43] is investigated in this dissertation to contrast
with conventional full-pitch and 30◦-offset dual three-phase machines.
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Figure 2.7: Dual three-phase converters powering a three-phase load via a coupled
inductor or common-mode filter interface [57]

2.2 Conduction Losses in Copper
Conduction losses, joule losses, and ohmic losses refer to losses caused by the same
mechanism: resistance to the flow of charge carriers in a material or medium. This
section will focus on conduction losses in the copper windings, which typically create
the rotating magnetic field in an electric machine. One may categorize conduction
losses into DC and AC losses, of which the latter may be further categorized into
proximity and skin effect losses. All conduction losses considered here can be calcu-
lated by equation (2.2.1), where the distribution of the bounded current density in
space differentiates between conduction loss categories.

Pcond = 1
σ

∫
|J|2dV (2.2.1)

The variables σ, V , and J represent the conductivity of the medium, the volume
of the medium, and the current density in that volume respectively. If the current
density flows in one direction and is uniform within its bounding volume, then the
conduction loss in that volume is the elementary i2Re, where i is the current and
Re is the conductor resistance. This also applies to time-varying current densities,
where the power loss is i2RMSRe. AC losses account for the case when J is not
uniformly distributed. Proximity losses encompass the AC losses caused by external
magnetic fields. Skin effect losses refer to AC losses caused by the conductor’s own
changing magnetic field. Notice that two conductors near one another will have both
effects. AC losses may also appear as eddy current losses in the literature, as the
eddy currents induced in the conductors due to changing magnetic fields cause the
redistribution of the current density in the conductor. In typical electric machines,
the stator windings generate leakage and linking flux to the rotor that change in time,
generating large proximity losses within them. Because a voltage source generates
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voltage operating points using PWM, the current flow also contains high frequency
components that mostly cause skin effect losses. Reducing the size of the conductors
in a direction perpendicular to the external field and reducing the dimensions of the
conductors in general reduces the losses due to proximity and skin effects respectively
[64]. With already small conductors, the proximity effect dominates [65], and the
reduction in the dimension perpendicular to the magnetic field can be simulated by
specific winding configurations that change what magnetic field the same conductor
sees in different places about the stator, which may be called flux sharing. These
are elementary concepts in machine design delineated in [66]. In [67], hot-spots
in the windings were traced to ×8 more equivalent DC resistance at high speeds,
increases ultimately caused by proximity and skin effects in a switched reluctance
machine (SRM). Peak efficiency was reduced by 3% when considering those effects
[67]. It is not clear from [67] whether increases in iron losses also contributed to
efficiency reduction, but in peak efficiency regions iron losses typically contribute less
than half of the total losses. Reducing the conductor diameter reduces the AC/DC
power ratio, roughly a DC resistance factor, hyperbolically, as shown in [68] for a
flux-switching permanent magnet machine (FSPM) with a concentrated winding.
FSPM have an SRM rotor and circumferentially magnetized permanent magnets
in the center of each stator tooth. For a concentrated winding where flux sharing
in a series-connected bundle is not possible, [69] investigated different wire shapes
and wire distributions about a stator tooth, finding that conductors further away
from the airgap, where tangential fields are less prominent, significantly reduced
the AC/DC loss factor. Needless to say, proximity losses contribute the most to
conduction losses in copper, as the skin effect components are small due to the
already small current ripple. Furthermore, because the power loss at high frequencies
for relatively large conductors is proportional to

√
f and J2 [70] [71], and J is in

turn proportional to 1/f , the losses due to the skin effect actually decrease. In
inverter-fed electric machines with f as a switching frequency, skin effect losses are
therefore roughly proportional to 1/f 3/2. For smaller conductors, loss is proportional
to f 2 at high frequencies [71], which results in roughly no change in skin effect
losses in inverter-fed electric machines. That means that if proximity losses are
addressed with the winding and conductor distribution, skin effect losses either
decrease or stay the same with increasing converter frequency. Because converter
losses increase linearly with f , they limit the converter frequency. All of the previous
is not to say that losses due to current ripple are negligible: they still create parasitic
losses elsewhere in the machine although their loss contribution in copper is indeed
effectively negligible.

This led to mislead switching frequency optimization attempts, with [72] using a
weighted cost function between converter losses and torque ripple −as in [73]− and
a dynamic lower constraint based on rotor speed. However, thinking copper losses
are the only consequence of losses due to current ripple overall, and therefore using
torque ripple instead, the optimization almost always favored lowering the voltage-
source inverter (VSI) frequency in the interior permanent magnet machine (IPMSM)
drive. The first step in estimating the losses involves estimating the current ripple,
as [74] did by, rather trivially, using inductance tables from 2D FEA for an IPMSM
with significant saturation and calculating the ripple in the synchronous frame, like
[75] did earlier in a model predictive control setting, [76] to reduce torque ripple, and
[77] to reduce losses. The following steps involve quantifying losses in the iron and
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the magnets. Since losses ultimately lead to temperature increases, [78] focused on
limiting converter temperature to dynamically control current limits, i.e. derate the
torque based on converter and winding temperature. Switch and diode temperatures
were reduced by reducing the switching frequency in steps of 2 kHz. The paper [78]
also constitutes an attempt at global optimization on the converter side, unlike local
optimization within a fundamental period seen in [11][5][8][9], which does not mean
that the local methods did not increase global system efficiency as shown in [11]
and [77] mainly through gains on the converter side. Variable switching may also
reduce the cooling requirements for the heat sink and the base plate cooling [79].
The papers [75] and [76] used an objective function to control the machine and
to dynamically limit current, and therefore torque ripple like in [72] in an FPGA
setting. These papers mainly reduce losses in the converter by either targeting a
single peak or RMS current ripple over a fundamental period for every operating
point or focusing on converter losses/temperature, ignoring machine losses induced
by switching. Other papers did realize the need to characterize the iron losses due
to switching in the machine, but that topic is left for the end of this chapter.

Returning to conduction losses in copper, temperature has a considerable effect
on the conductivity of a material, with ν = 1/σ ∝ T , where the proportionality
constant is the thermal coefficient of the material. It affects DC resistance adversely,
but attenuates AC losses by increasing the skin depth of the material, allowing for
larger conductors operating at the same frequency for the same losses or lowering
the AC losses for the same conductors at the same frequency. The skin depth δ is
shown in equation (2.2.2), where ω = 2πf is the angular frequency and µ is the
magnetic permeability of the material. It is the inverse of the eigenvalue of the
partial differential equation for the current distribution in a wire with a circular
cross-section.

δ =
√

2ν
ωµ

(2.2.2)

Since iron and neodymium-iron-boron permanent magnets also conduct and have
mostly eddy currents flowing in them due to variations in the flux linkage coming
from inverter switching and stator tooth reluctance, increasing the temperature
tends to decrease iron and magnet losses up to the materials’ respective Curie tem-
perature. This presents a design challenge, since it is best to keep the copper winding
cool while warming the iron for optimal spatial temperature control. Furthermore,
coercivity reduction and therefore demagnetization are usually the main concerns
for magnets at high temperatures, not losses.

2.3 Losses in the Iron Core
There are two main contributions to iron losses: hysteresis losses and eddy current
losses. Eddy current losses were discussed in the previous section on conduction
losses in copper. Hysteresis losses involve the resistance to realignment of the small
magnetic domains in magnetic materials. This means that for a magnetic field
vector H in a material, that resistance to realignment will self-evidently happen in
any circumstance that realignment must occur: when the magnitude of H changes,
when the direction of H changes but its magnitude stays the same, or both. As
with eddy current losses but for different reasons, hysteresis losses also decrease
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with temperature [80], mainly due to decreased resistance to domain realignment
with increasing temperature. Losses do not change much in the range of 25◦C
to 100◦C [80] [81], with maximum differences between models with and without
temperature considerations at large frequencies falling to within about 10% [81].
The temperature ranges however, may change for larger machines, as decreases in
iron eddy losses between 100◦C and 200◦C become significant for electrical steel
laminations [80].

Instead of using a solid iron core, designers typically use laminations to reduce
eddy current losses. Laminating the iron core is physically equivalent to reducing
the diameter in a conductor to reduce AC losses. Unlike wire sizing where the
diameter is less than the skin depth at the desired switching frequency, designers
typically choose lamination thickness based on the skin depth at some fundamental
electrical frequency, like the maximum electrical speed of the machine. This makes
iron laminations susceptible to high frequency losses due to inverter switching. In
[82], tests of different soft magnetic materials with different thicknesses showed an
increase in mass-specific losses in all materials of about 15% at and above 10 kHz
switching frequency and 1.4 T compared to sinusoidal excitation. The paper [82]
also showed that for B > 0.8 T, iron losses do not change much with the switching
frequency for a toroidal specimen with no airgaps, although an appreciable decrease
in iron losses can be seen up to 100 kHz, after which changes in the electric field
become significant and iron losses increase again [83]. The author in [84] studied
the effects of a variable DC bus voltage and found that AC losses decrease with
decreasing voltage. The same was observed in [85] for an induction machine. The
analysis was extended once more in [86] via induction machine measurements show-
ing the increasing iron loss increment from sinusoidal excitation with decreasing
fundamental line-to-line voltage with a constant DC bus, i.e. with decreasing mod-
ulation index. Iron losses may increase up to 120% for low modulation indexes [86].
In [87], the FEA-simulated losses indicate that most of the iron loss changes due
to modulation index and switching frequency affect eddy current losses: both total
measured iron loss and eddy current loss increase by 20% at M = 0.9 and by about
60% at M = 0.45 for 0.65 mm sheets. The paper [87] states that a three-phase,
three-level inverter was used, but no details on the specimen were given. That is
important, because current ripple profiles −and by extension magnetic field ripple
profiles −over modulation indexes differ for a single leg half-bridge and a three-phase
inverter [12]. Unfortunately, current ripple models for single-leg half bridges have
been used to estimate iron losses due to inverter excitation on three phase-excited
machines in [88] and [89], therefore overestimating the ripple contribution to iron
losses or deriving inverse trends, or both. In [90], a single half-bridge is used and
the expected trend with modulation index and switching frequency was successfully
predicted; no PWM method was specified. Iron specimen details are also important
because cores with airgaps have a larger sensitivity to changes in switching frequency
for large switching frequencies [91] than those without airgaps due to leakage flux.
That is likely why iron losses did not decrease much after 10 kHz in Epstein frames
[82]. Typical electric machines have airgaps and slots which increase the likelihood
of the stator flux closing on itself.

There are two main categories of iron loss estimation: first principles-based and
experimentally-based curve fitting. One of the first, if not the first, loss formulas for
iron loss is the Steinmetz equation (2.3.1) [92], which is a bi-exponential empirical
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curve fit to loss measurement data. Most other methods based on the Steinmetz
equation perform a similar fit over different time-integrals which provide some ad-
vantages when modeling DC-field bias sensitivity, low-order harmonics, and minor
loops [92] [93]. Minor loops, including low-order harmonics, were also successfully
fit to losses by separating the major and minor loops recursively [94].

PFe = CSEf
αB̂β (2.3.1)

Other, first principles-based iron loss calculations, require finite element analysis
(FEA) and some parameter fitting based on experiments, especially for the hysteresis
loss model. A few more assumptions leads to the Bertotti loss separation model,
which uses experimentally-based coefficient fitting [95] and it has the form shown in
equation (2.3.2), where f is the cycle frequency of the major loop and C0, C1, and
C2 are fitting constants. The separation is a result of a dynamic Preisach model of
hysteresis, grounding physical phenomena in mathematical rigor [95].

PFe = C0f + C1f
2 + C2f

3/2 (2.3.2)

The model in equation (2.3.2) is based on a dynamic and scalar Preisach hys-
teresis model. The C0 term is attributed to static hysteresis −as described by [95],
as the scale of Barkhausen jumps between domains sketching the DC hysteresis
curve −, the C1 term involves the macro scale where the iron geometry dominates,
or the classical eddy current loss, and the C2 term is associated with the scale of
magnetic domains where excess losses due to domain wall movement induce more
eddy current losses [90]. However, it does not consider mechanical stress [96] [97],
temperature [80] [98], field direction [99], lamination cutting methods [100], minor
loops [90] [101] [98], or low-order harmonics and their phases [90] on iron losses. In-
deed, [90] showed that narrow waveforms, like a triangle wave, induce less hysteresis
losses than flatter waveforms like sinusoids. Because different harmonic amplitudes
and their phases affect the final waveform shape for low harmonic orders, both affect
hysteresis losses significantly [90]. An example of that for interior permanent mag-
net machines with different q-winding numbers shows that, because the q−number
determines low-order harmonics −i.e. waveform shape −, iron losses change accord-
ing to q−number [102]. Figure 2.8 summarizes some of the effects of electrical steel
sheet properties on their losses.
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Figure 2.8: Influence of different factors on SiFe steel sheet losses and properties
(first eight rows from [92])

To take into account these effects, the coefficients are made as functions of the
magnetic field and fitted to Epstein frame loss measurements, say, to model i [81].
Then, the losses are calculated, or rather looked-up from model i, everywhere in
the FEM-simulated machine and summed. Due to the heavy dependence of the
total iron loss on geometry and operating point, those losses are fitted to another
Bertotti-like equation (2.3.2) with coefficients changing with operating point, i.e.
model k. Due to the geometry dependence, those loss coefficients are separated into
rotor and stator coefficients. A summary of this procedure is shown in Figure 2.9.
Model i does not have to be a loss model; for example, if loss model j is to be
a Preisach [103], Jiles-Atherton, or Prandtl-Ishlinskii type [99], then model i only
needs to contain information about the hysteretic properties of the iron specimen,
like its anhysteretic curve and its conductivity, to then calculate losses for every
element and every time in the FEM using model j.

Figure 2.9: Example workflow for iron loss determination

The paper [92] also provides an overview of the different iron loss models, shown
in Figure 2.10(a), where the eddy current separation into classical and excess losses
should credit Bertotti. Figure 2.10(b) contains an overview of the advantages and
disadvantages of each iron loss method overviewed in [92]. Since iron loss modeling
is a curve-fitting problem, there is some literature on using neural networks as
an iron loss model [104] [96], except that the models might have unpredictable
errors if extrapolation is needed. Other methods, like the equivalent iron resistance
[105] are very limited in their applicability range for electric machines, but may
be useful when approximating machine parameters [106]. All of the methods in
Figure 2.10 can be calculated by decomposing the magnetic field density, B, into
its harmonic components, or replacing it with a time-integral. It was shown that
Fourier transform (FT) methods may overestimate the iron losses, especially when
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excited by PWM [98]. That is because at the inverter switching frequencies, the
skin effect begins to dominate the additional losses, which, as stated before, are
proportional to

√
f instead of f 2. Also, since Epstein frame measurements usually do

not have information on losses in the kHz regime, the model kind becomes important.
For example, using loss separation but using FT for each direction of B seems to
have given reasonable results for a permanent magnet machine in [107]. In [108],
differences were larger between FT and time-domain calculations with a statistical
loss model and machine PWM excitation considering excess loss instead of one that
neglects it as in [107]. For frequencies below 5 kHz for sufficiently thin laminations
and sinusoidal excitation, the difference between FT and time-domain methods do
not differ [109], as expected.

(a) Models (b) Comparison

Figure 2.10: Iron loss models and comparisons [92]

2.4 Conduction Losses in Permanent Magnets
Conduction losses in the permanent magnets are like the conduction losses in copper
except they only have the AC loss component excited by a time-varying magnetic
field. Two main components constitute the time-varying field seen by magnets in
the rotor: the tooth harmonics and the converter harmonics. Tooth harmonics
appear because of the varying reluctance of the main flux path linking to the rotor.
The reluctance of the main flux path varies because it must cross iron tooth areas
and slot areas filled with the copper winding, each having a magnetic permeability
of µFe � µ0. The spatial reluctance variation is seen by the rotor as a localized
time-varying magnetic field. The tooth harmonic is therefore proportional to the
number of slots per pole. With converter frequencies, many even sidebands about
integers of the carrier frequency coalesce to odd sidebands in the rotor frame. It is
also not clear whether in an interior permanent magnet, the iron laminations shield
the magnet from the time-varying magnetic fields and to what extent. Most of the
literature either merges all rotor losses or the analysis assumes no shielding at all
from the rotor iron laminations. A brief and rough analysis may use the RMS of
the Poynting equation with a time-varying magnetic field in the airgap as

ωB2 +∇ · (E×B) =
√

3
(
µFe

σFe
J2

Fe + µ0

σmag
J2

mag

)
. (2.4.1)

Let W := ωB2 + ∇ · (E×B) be the dynamic electromagnetic pressure. Then
the dynamic electromagnetic pressure as seen from the magnet is Wmag = W −√

3µFeJ
2
Fe/σFe. In this sense, the more iron losses there are, the less magnet losses
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will be induced because the dynamic pressure as seen by the magnet was shielded
by the rotor iron.

Unlike AC losses in copper, one may not assume that the magnet is infinitely
long because of the relative largess of the other dimensions and the direction of the
exciting B is not axial. Such two dimensional analysis is known to overestimate
magnet losses [110], which requires the introduction of a finite-length factor, a finite
axial direction analytical solution, or a 3D FEM simulation. In a rotating electric
machine, there are non-negligible tangential fluxes, and even if not, the relative po-
sition of a magnet with respect to the radial field introduces a tangential flux-like
component to the eddy currents, requiring full 3D FEM simulations. Combined with
small time steps required for PWM harmonic modeling, iron lamination shielding
effects, finite machine length effects −or end effects −, and the requirement to simu-
late typical IPMSM rotor geometries in 3D FEM make the problem of eddy currents
in magnets a difficult one to study. One of the first to do this and recognize the
importance of magnet segmentation for eddy current loss reduction −like reducing
the size of the conductor or laminating the iron core −was [111]. This reduction is
shown in Figure 2.11.

(a) (b)

Figure 2.11: Effects of segmentation on magnet losses with concentrated winding
[111]

Many analytical solutions have been derived, usually taking into account flux
from a single direction. One of the earliest if not the earliest attempt was [89] for
2D surface-mounted permanent magnet machines (SPMSM). Others include several
for a rectangular plate in quasi-3D [112] [71], an unclear attempt at 2D SPMSM in
[113], a theoretically misguided attempt considering the airgap in quasi-3D [114],
and an apparent repetition of [114] in [115]. It is not clear whether summation
indexes in [115] refer to the segmentation numbers, as stated, or to the pulsating
field in the axial direction, the last of which functions only as a useful model since the
field does not pulse in the axial direction. In [114], the same theoretical assumption
is made. However, when treating the problem in full with boundary conditions as in
[71] and [112], even with the influence of insulation between segments in [116], we see
that the definition of the stator current sheet in [114] and the equivalently pulsating
magnetic field density in [115] model the geometric harmonics of the rectangular
magnet segments. As a result, geometric harmonics are confounded with MMF
harmonics in both [115] and [114]. Results concur with FEM analyses because
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the geometric harmonics are single-dimensioned and odd in the case of modeling
the geometry of the rectangular magnet as rectangular current pulses. The reason
why a quasi-3D problem can reduce to single-dimensioned geometric harmonics is
interesting and may be seen in [71]. One insight from [115] that [114] also applies
and [112] does not consider is the airgap and magnet thickness in an integral Ampère
loop, which, if µ → ∞ in iron is assumed, modifies the eigenvalue 1/δ by a factor
of d/(g + d) for buried magnets, where g is the airgap distance and d is the magnet
thickness. Luckily, since g � d, the factor is near one, both its neglect in [112]
and its approximation in [114] of the factor as d/g for surface-mounted permanent
magnets −where d/g is close to unity since d ≈ g for SPMSM but is one in actuality
because µair ≈ µmag ≈ 1 −have little influence on the results. Thus the three
papers converge to nearly identical trends regarding magnet eddy current losses and
segmentation, namely, the trend with a maximum for non-unitary segmentations,
as shown in Figure 2.12. Ignoring this trend may lead to incorrect segmentation
numbers in applications where magnet losses are of paramount importance, as with
axial flux machines [117]. The trend is counter-intuitive based on other geometries
that have AC loss and arises due to the consideration of the third dimension, PWM
harmonics, and consideration of the reaction field. It can be explained by imagining
the eddy currents as flowing inside a torus of minor radius δ/2 inscribed in the
rectangular prism-magnet. If the dimensions of the magnet are much larger than
δ, then segmentation will only increase the total length of the tori, increasing the
resistance, and therefore the losses. Only after one of the dimensions is significantly
less than δ will the eddy currents begin to overlap and cancel to reduce overall
losses. If δ is already large, as in the case of relatively low slot harmonics, then less
segmentation is needed and the intermediary peak is not observed, as in Figure 2.11,
which is why it is only observed when considering high PWM carrier harmonics. The
paper [118] explains these facts well. It also explains why it is often preferable to
segment magnets in the circumferential direction instead of the axial direction when
only considering carrier harmonics.

(a) (b)

Figure 2.12: Effects of segmentation on magnet losses with distributed winding [112]

Whether the windings are concentrated or distributed and the magnets are
buried, inset, or at the surface of the rotor iron also affects magnet eddy current
content [119]. According to [119], inset magnets produce the most harmonics over-
all, and concentrated windings increase magnet losses due to slot harmonics to an
overwhelming degree [119] [120]. As mentioned before, although increasing the con-
verter commutation frequency increases losses with constant current ripple, because
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the current ripple amplitude decreases faster than the power increases with switching
frequency with constant ripple, the eddy current losses decrease overall with increas-
ing switching frequency, including in the rotor with permanent magnets [121]. As
also noted by [121] and [122], increasing the temperature of the magnets reduces its
magnetic flux, and therefore rotor cooling, as with winding cooling, is the limiting
factor for sustained power density.

2.5 Loss Measurement
Power losses translate into temperature increases, and therefore the accurate mea-
surement of losses and their respective origins is important.

Copper loss measurements seem the simplest to compute when not considering
AC losses. One may simply calculate the resistance from the winding specifications,
verify the calculations with resistance measurements, account for temperature ef-
fects with a linear equation for resistance, and multiply it by the squared of the
phase currents. Proximity effect losses are almost impossible to isolate from stator
iron losses with just measurements, which motivates the necessity of FEM analysis,
especially for machines with massive conductors.

Iron losses depend heavily on the Epstein frame measurements and on the model
used, and are usually obtained by subtracting the DC copper losses from the total
losses. Before that, however, one must also subtract mechanical losses, like viscous
drag and bearing friction. The latter measurement proves uncomplicated for in-
duction machines [85], but permanent magnet machines require that the operator
replace the magnets with demagnetized versions or fillers, preferably of a similar
density to avoid measuring no-load iron losses concurrently. No-load iron losses,
or measured losses during an open-circuit test with magnets, are often assumed to
encompass iron losses over all other operating points, also heavily loaded points
[123]. FEM simulations show that because currents change the magnetic flux paths
and the magnetic flux density intensity, the iron has different saturation levels in
different places, and therefore loading also affects iron losses as opposed to merely
rotor speed, especially at maximum torque and power. Magnet losses and rotor iron
losses are typically clumped together in the iron losses, making separation possible
only in 3D-FEM [65], unless the operator constructs a special contraption. Even
then, losses in the rotor may not be separable from the rotor iron and the magnet.

2.6 Optimization
Many have investigated the optimization of the electric machine, the electric machine
and inverter system, and the electric machine-inverter-battery system, i.e. the elec-
tric drive. The most well-known optimization for permanent magnet synchronous
machines is the maximum torque per ampere, or MTPA. It is usually implemented
in steady-state operation since a full dynamic treatment requires solving a partial
differential equation in real-time, resulting in the voltage and voltage angle relative
to the PM flux for every time step. When the rotor spins to its rated speed, the
generated BEMF approaches that of the constant voltage supply before the inverter.
In [124], flux-weakening was introduced as a current regulator saturation handler,
which resulted in the current trajectory following the voltage ellipse and extending
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the operating range of the machine. Inverter current limits were not considered,
as well as optimal operation along the maximum power curve, or maximum torque
per volt (MTPV). All optimal trajectories with current and voltage constraints with
MTPA and MTPV were considered in [125], as shown in Figure 2.13.

Figure 2.13: Optimal trajectories for an IPMSM [125]

The same author formulated one of the first attempts at maximum torque per loss
(MTPL), including the iron loss resistance [126]. As mentioned before, modeling iron
loss as a constant resistance is not sufficient. Also, the region where MTPL differs
the most from its predecessor, MTPA, is limited to mid-speeds and low torques,
since MTPV takes over in the field-weakening torque-speed plane. This means that
MTPL suits drives with large DC bus voltages, since its region of significance is
extended by delaying field-weakening to faster speeds.

The optimal trajectories heretofore discussed are equilibrium trajectories assum-
ing sinusoidal phase currents. Because electric machines are usually powered by
converters, specifically, inverters, they provide another dimension to the optimiza-
tion. For ultra-high speed machines in the hundreds of thousands of rotations per
minute for example, pulse amplitude modulation (PAM) is best to control the ma-
chine compared to PWM to minimize losses [127]. PAM varies the DC bus voltage
using a buck converter and a three-phase inverter in six-step operation. The two
main optimization levers available after hardware design in the machine-inverter sys-
tem with constant voltage are therefore PWM methods and the switching frequency.
In the electric drive, one must also include the DC bus voltage; in traction applica-
tions however, the DC bus voltage may vary significantly anyway depending on load
due to the battery equivalent resistance and large load currents. Furthermore, the
maximum DC bus voltage is usually fixed during design, as incorporating a power
DC/DC converter involves another component. Commutation frequency and PWM
methods remain as optimization levers, both of which were discussed earlier in this
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chapter. In [128] like in many other methods, the objective, or cost function, in-
volves penalizing the torque ripple. The paper [128] also penalized total power loss
in the objective function for a 2.35 kW surface-mounted synchronous motor, return-
ing an optimal switching frequency of about 9 kHz. Unfortunately, only sinusoidal
PWM was considered. Another attempt in [129] on a 70 kW IPMSM comparing
SVM and DPWM1 and 8 kHz, 15 kHz, and 24 kHz switching frequencies optimized
the WLTP3 cycle. Although the converter kind was not reported, inspecting the
power gains as a result of optimization reveals that the switching frequency was
reduced and DPWM1 was likely used most of the time, as most of the gains were
in the converter with slightly increasing motor losses. Unfortunately, the optimal
program was not reported. The motor loss measurements show asymmetry between
generating and motoring, with less losses during generating, which probably inflated
the energy gain on WLTP3 of about 70 Wh, as expected [129].
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Chapter 3

Analysis and Control of
Permanent Magnet Machines

This chapter overviews the analysis of permanent magnet machines with saliency
−or interior permanent magnet machines (IPMSM) −from first physical principles
and the control methods used for three-phase and dual-three phase machines. The
torque equation for permanent magnet machines is derived from Maxwell’s equations
and the Lorentz force assuming a squared sinusoidally-varying permeability. From
there, a motor model in the synchronous frame is justified due to the periodic matrix
coefficients of the multi-dimensional motor model in the stator frame. The applied
current control method used in this dissertation is then explained, followed by a
derivation of typical optimal current trajectories incorporating the nonlinearities in
the machine due to saturation. The methods are compared to show in later chapters
that changing inverter parameters can have a larger effect on losses in the machine
than even changing those aforementioned current commissions.

3.1 Theory of Torque Generation from Electro-
magnetics

In order to relate electromagnetic quantities to mechanical quantities, we will start
with Faraday’s law of induction and the definition of the force exerted by an electric
field on a charge. We will then modify the the equation for force on a charge
to a charge density. Then, we will use the definition of torque that relates the
proper component of the Lorentz force to the radius at which that force is located.
Proceeding with the first step, Faraday’s law is

∮
∂A

E · dl = − d

dt

∫
A
B · dA (3.1.1)

and the force on a charge is F = qE. According to [130], if we assume that the
magnetic field is constant but that the path traced by a closed area from equation
(3.1.1) changes in time, then E = v × B is the electric field seen by a point on
the path changing with velocity v in a magnetic field B. The force on a charge
along said path is then the Lorentz force, or F = qv × B. If we then consider the
volumetric force density, f = ∂F/∂V , and realize that for a continuum of charges
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∂q/∂V = ρ and that ρv = J, then

f = J×B (3.1.2)

Assuming that the current density, J, is bounded to the rotor magnetic domains,
we can modify Ampere’s law to read

Jr = ∇×
(
Bs

µ
+ Hm

)
(3.1.3)

where the electric field outside of the winding is neglected. Note that this ap-
proach is equivalent to one using Maxwell’s stress tensor, as it is also derived from
equation (3.1.2) for magnetoquasistatic (MQS) problems. What follows nevertheless
constitutes a simplified model of torque generation in electric machines. Substitut-
ing equation (3.1.3) into (3.1.2) and noticing that B = Bs, equation (3.1.2) then
becomes

f =
(
∇×Hm + 1

µ
∇×Bs −

1
µ2∇µ×Bs

)
×Bs (3.1.4)

where the permeability µ represents a bulk permeability along the tangential
direction of the rotor. Since we are interested in torque generation, it makes sense
to only analyze the tangential component of equation (3.1.4). To generate said
component, the cross product must be between the axial, or z-component, of the
current density term in the rotor, and the radial, or r-component, of the total
magnetic flux density. The volume-specific tangential force then becomes

fθ = 1
r

(
1
µ2
∂µ

∂θ
Bs −

1
µ

∂Bs

∂θ
− ∂Hm

∂θ

)
Bs (3.1.5)

We dropped the subscript specifying the magnetic flux density component be-
cause we assume that only radial fields permeate the rotor, both those originating
from the stator Bs and those from the permanent magnet Bm = µHm. In reality, a
tangential flux is necessary because of Gauss’s law of magnetism.

We included the variation of the permeability in the tangential direction in order
to represent the salience in an electric machine. In fact, machine salience is synony-
mous with prominent variations in the permeability along the path of a magnetic
flux line. The tangential component of the magnetic flux density is neglected. We
will show that the tangential variation of the permeability in equation (3.1.5) indeed
provides additional torque characteristic of salient synchronous machines.

Proceeding with the derivation, we impose a sinusoidal variation on the field.
Since permeability is never less than zero and real in our construction, we impose
equation (3.1.8) and also assume that γ = µr,min/µr,max approximates the average
maximally saturated state µr,minµ0, where µ0 = 4π× 10−7 Tm/A and µ̂ = µr,maxµ0.
This assumption holds for materials with large permeabilities, like electrical steel.
Furthermore, we assumed that µ does not vary in the radial direction. Variables
with carats indicate amplitudes and θ represents the tangential coordinate. Lastly,
the magnetic field from the winding is placed φ radians apart from the permanent
magnet field. Explicitly,

Bs = B̂s cos (θ − φ) (3.1.6)
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Hm = Ĥm cos θ (3.1.7)

µ = µ̂
(
γ + cos2 θ

)
(3.1.8)

Substituting equations (3.1.6)−(3.1.8) into (3.1.5) and integrating over the active
volume of the rotor yields

∫ l

0

∫ R

0

∫ 2π

0
fθ rdθdrdl = πRl

B̂sĤm sinφ− B̂2
s

µ̂
sin 2φ

 2γ + 1√
γ(γ + 1)

− 2
 (3.1.9)

where l is the length of the rotor. When the tangential force in equation (3.1.9)
is multiplied by the lever radius rl = R to acquire torque per unit length, it results
in the torque produced by the machine, which reads

Te = πR2l

B̂sĤm sinφ− B̂2
s

µ̂
sin 2φ

 2γ + 1√
γ(γ + 1)

− 2
 . (3.1.10)

Equation (3.1.10) shows several known relations. Namely, that the torque scales
with the square of the radius of the machine and with its length. Moreover, if we
neglect the B̂2

s term, the angle between the magnetic flux density induced by the
stator winding must have an offset of φ = π/2 to the radial permanent magnet
magnetic field strength for maximum torque. This corresponds to the angle that
gives the maximum cross-product between two vectors. It can be also shown that the
B̂2
s term comes exclusively from the variation of the permeability in the tangential

direction, and therefore neglecting it results in the torque equation for a surface
permanent magnet machine.

Including the B̂2
s term therefore models an interior permanent magnet machine.

To see this, we first proceed to find the angle that maximizes the torque. The angle
that maximizes the torque is

φ = arccos

 µ0Ĥm

8(
√

2− 1)2B̂s

±

√√√√√( µ0Ĥm

8(
√

2− 1)2B̂s

)2

+ 1
2

 (3.1.11)

If we then assume that B̂s = 2µ0Ĥm/5γ, then we take the subtracted solution
to yield −1 < cosφ < 0, indicating that the angle for maximum torque lies in the
second quadrant. In this case, φ ≈ 115◦. Any angle in the second quadrant will
give a positive value for sinφ and a negative value for sin 2φ, making the reluctance
contribution additive. To prove that saliency offers more torque than when there
is no saliency, the ratio of both torque contributions should be greater than one.
Simplifying said ratio results in

0 > cosφ (3.1.12)
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Since B̂s, Ĥm, and µ̂ are all positive. The relation in (3.1.12) indicates that the
salient machine delivers more torque when the current angle lies in the second and
third quadrants.

The previous formulation draws a simplified sketch of the physical principles
involved in electromagnetic torque production for synchronous machines, not just
permanent magnet synchronous machines (PMSM), as Hm may readily represent
the field strength from a wound rotor. Besides the requirement of orthogonality
between the radial magnetic rotor flux and the stator flux, we have established how
additional torque production is possible if the permeability varies in the tangential
direction. Furthermore, it is important to note that although we did not employ any
transformations to rotate the quantities into the rotor reference frame, the equation
for torque is independent of the rotor angle, θ. Equation (3.1.11) nevertheless ne-
cessitates controlling the different radial magnetic flux density components in two
axes synchronous with rotor rotation in order to control the angle φ. This implies
that, although torque production depends on the magnitude of the radial compo-
nents of the stator and rotor fields and the angle between them, achieving the angle
that maximizes torque may require controlling the magnetic flux densities in the
rotor frame. Indeed, that is the approach of the standard field-oriented control, or
FOC. In the following section we will review the typical transformations and detailed
models used to control interior permanent magnet synchronous machines (IPMSM)
using FOC, assuming, for now, that the system is controllable and stable.

3.2 Circuit Representation of Permanent Magnet
Synchronous Machines

This section will expand on the previous section by introducing the circuit repre-
sentation of three-phase and dual three-phase interior permanent magnet machines
(IPMSM). We analyze IPMSMs because its equations simplify to surface perma-
nent magnet machines (SPMSM). In accordance to circuit representations, IPMSM’s
models use inductances, resistances, and back-electromotive force (BEMF) sources.
We will first focus on three phase machines, then on dual three-phase machines.

Three phase circuit quantities, like voltage and current, will be defined as

xUVW =

 XU cos θe
XV cos (θe − 2π/3)
XW cos (θe + 2π/3)

 (3.2.1)

If the quantities are balanced, then XU = XV = XW = X. Because the system
is dynamic, we have that X = X(t). The variable θe represents the electrical angle
of the circuit quantity. This is done to distinguish it from the mechanically rotating
angle for machines with more poles. Generally θe = pθm, where the subscript m
indicates a mechanical quantity. The machine circuit for an IPMSMmay be modeled
by a time-varying RL circuit, with an additional voltage source from the rotating
magnets. Explicitly, the circuit equation is

uUVW = RsiUVW + d

dt

(
LiUVW +ψpm

)
(3.2.2)
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where Rs is the phase resistance, L is the time-varying inductance matrix, ωe is
the rotor electrical speed, and ψpm is the permanent magnet flux linkage linked to
the stator windings. As is typical, u and i represent the input phase voltage and the
phase current respectively. Arguably, the most complicated component in equation
(3.2.2) is the inductance matrix, as shown in equations (3.2.3) and (3.2.4).

L = 1
3

L11 L12 L13
L12 L22 L23
L13 L23 L33

 (3.2.3)

L11 = Ld + Lq +(Ld − Lq) cos (2θe)
L12 = (Ld + Lq)/2 +(Ld − Lq) cos (2θe − 2π/3)
L13 = (Ld + Lq)/2 +(Ld − Lq) cos (2θe + 2π/3)
L22 = Ld + Lq +(Ld − Lq) cos (2θe + 2π/3)
L23 = −(Ld + Lq)/2 +(Ld − Lq) cos (2θe)
L33 = Ld + Lq +(Ld − Lq) cos (2θe − 2π/3)

(3.2.4)

The inductance matrix is symmetrical, which corresponds to the fact that mutual
inductances between the phases are the same, or Lab = Lba. We also see that the
inductance matrix varies as a function of twice the electrical rotor angle with various
phase offsets. By equation (3.2.1), so does the permanent magnet flux linkage. This
introduces the complication that we must take the time derivative of the already
complicated inductance matrix. Specifically, the machine is a linear time-varying
(LTV) system. If we allow for saturation, which is typical of traction machines, then
a strong nonlinearity is introduced in addition to the time-variance complexity. At
this point it would help if we could eliminate one of the sources of complexity. The
next section explains how that is typically done.

3.3 Floquet Analysis and the Clarke-Park Trans-
formation

3.3.1 Floquet Analysis
As the torque equation (3.1.12) suggested that the electromagnetic torque in the
machine is independent of the rotor angle, typical approaches to the analysis of the
circuit equation (3.2.2) involve transforming it to the rotor reference frame and to
thus eliminate the LTV complexity. If saturation is neglected, the system becomes
a linear time-invariant (LTI) system, which is much simpler to analyze and control.

Floquet theory provides the tools to ensure that the analyzed and controlled
machine in the rotor frame will have the same desired properties in the stator,
or stationary frame. The most important property is stability. Indeed, Floquet
theory guarantees the stability of the system in the stationary frame if it is stable
in the rotating frame provided that the system matrix, A is time-periodic. It also
guarantees the existence of a transformation, T, that rotates the system to the
appropriate reference frame. In this section, we will also see that this transformation
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is the Clarke-Park transformation matrix. We will now proceed to modify equation
(3.2.2) to conform to the LTV form shown in equation (3.3.1).

ẋ = A(t)x+ B(t)u (3.3.1)

x = iUVW

u = uUVW −
dψpm

dt

A(t) = −L−1
(
RsI + dL

dt

)
B(t) = L−1

(3.3.2)

where I is the identity matrix. Equation (3.3.2) shows the circuit equation
parameters arranged to conform to the LTV form. Now we need to show that
the inverse of the inductance matrix, its time derivative, and the multiplication of
both are time-periodic. If we prove that the inverse of the inductance matrix and its
derivative are time-periodic independently, then we are ensured that their product
is also time-periodic. It is important to note that constants are also time-periodic,
so if a matrix is in the form A(t) = C + D(t) and D(t) is time-periodic, then so is
A(t).

When taking the time derivative of equation (3.2.4), it is clear that, like L, it is
also time-periodic with the same period. Proving that the inverse of the inductance
matrix is also periodic is a little more involved. We will begin by assuming that the
transformation T exists. Transforming equation (3.2.2) such that TxUVW = xdq
yields

TuUVW = RsTiUVW + T
d

dt

(
LiUVW +ψpm

)
udq = Rsidq + T

d

dt

(
LT−1idq +ψpm

)
udq = Rsidq + TLT−1didq

dt
+ T

d

dt

(
LT−1

)
idq + T

dψpm

dt

(3.3.3)

The term Ldq = TLT−1 suggests that we may require that T also diagonalize
the inductance matrix. If Ldq is diagonal and time-independent, then its inverse is
time-independent and non-singular. Taking the inverse of said matrix in terms of of
T and Ldq yields

L−1 = T−1L−1
dq T (3.3.4)

Because the transformation is periodic, then so is the inverse of the inductance
matrix in the stator frame. This shows that the circuit equation can be analyzed
according to Floquet theory. Now, because the above results depend on the transfor-
mation and diagonalization assumptions on T, we proceed to introduce the Clarke-
Park transformation, which fulfills the assumptions made.
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3.3.2 Clarke-Park Transformation for Three-Phase Machines
The Clarke-Park transformation consists of two parts: rather obviously, the Clarke
and the Park transformation. The Clarke transformation uses the phase offset be-
tween the three machine phases to compress the system from three to two phases.
The Park transformation is a simple matrix rotation to the rotor frame. Specifically,
the Clarke-Park transformation reads

T = 2
3

 cos θe cos (θe − 2π/3) cos (θe + 2π/3)
− sin θe − sin (θe − 2π/3) − sin (θe + 2π/3)

1 1 1

 (3.3.5)

and the Clarke transformation can be readily recovered by setting θe = 0. This
transformation diagonalizes and transforms the induction matrix. The overall equa-
tion in the rotor reference frame is shown in equation (3.3.6)

udq =
[
Rs −ωeLq
ωeLd Rs

]
idq +

[
Ld 0
0 Lq

]
didq
dt

+
[
0
1

]
ωeψpm (3.3.6)

where the quantities in the rotor frame are defined in equation (3.3.7).

xdq =
[
xd
xq

]
(3.3.7)

The circuit equation (3.3.6) is simpler than the circuit equation defined by
(3.2.1)−(3.2.4) because of two main reasons. First, the three-phase system was
compressed into a two-phase system; second, the LTV system was transformed to a
LTI system, assuming constant parameters. We may now proceed with conventional
stability analyses for systems of differential equations. The state transition matrix
of system (3.3.6) is

A = −


Rs
Ld

−ωe LqLd

ωe
Ld
Lq

Rs
Lq

 (3.3.8)

and its eigenvalues are

λ = −Rs

2

(
1
Ld

+ 1
Lq

)
±

√√√√(Rs

2

(
1
Ld
− 1
Lq

))2

− ω2
e (3.3.9)

which are always stable for ω2
e > 0. For ωe = 0 the eigenvalues are λ1,2 =

−Rs/Lq, −Rs/Ld. In addition, if ω2
e is larger than the square of the difference of

the machine time constants, Rs/Ld and Rs/Lq, then the currents will have oscillating
components; this is the case for most traction machines. Ensuring no oscillations
in the dq-currents is a topic of motor control and will be considered later in the
chapter. Lastly, because the electrical system (3.3.6) in the rotating frame is stable,
so is system (3.2.2) in the stationary frame.

Having analyzed the electrical portion of the three-phase IPMSM and proven its
stability, we now proceed to analyze the dual-three phase electrical system.
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3.3.3 Clarke-Park Transformation for Dual-Three Phase Ma-
chines

Equation (3.2.1) defined the three-phase state vector. Here we define the six-phase,
or dual three-phase state vector, as follows:

x =



XU1 cos θe
XV 1 cos (θe − 2π/3)
XW1 cos (θe + 2π/3)
XU2 cos (θe + α)

XV 2 cos (θe − 2π/3 + α)
XW2 cos (θe + 2π/3 + α)


(3.3.10)

Here we have added an additional angle, α, which indicates that the two duals can
be controlled with a phase delay between them. This poses two options for modeling
the machine. One involves one large transformation matrix which maps all six phases
to a single dq-space. The other involves using two separate transformations for each
dual. In the latter case, the transformation for the first machine remains unchanged
from equation (3.3.5); for the second machine one may simply add α to θe. This
dual control scheme yields the synchronous frame model shown in (3.3.11) with state
vectors shown in (3.3.12).

udq =


Rs −ωeLq1 0 −ωeMq21

ωeLd1 Rs ωeMd21 0
0 −ωeMq12 Rs −ωeLq2

ωMd12 0 ωeLd2 Rs

 idq

+


Ld1 0 Md21 0
0 Lq1 0 Mq21

Md12 0 Ld2 0
0 Mq12 0 Lq2

 didqdt

+


0
1
0
1

ωeψpm

(3.3.11)

xdq =


xd1
xq1
xd2
xq2

 (3.3.12)

Where Md,q is the mutual inductance between duals. Equation (3.3.11) can be
further simplified because Md12 = Md21, Mq12 = Mq21, Ld1 = Ld2, and Lq1 = Lq2.

For the other, six-phase option, the Clarke-Park transformation from the first
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machine is concatenated with the one from the second and divided by two to yield

T = 1
3



cos θe cos (θe − 2π/3) cos (θe + 2π/3)
− sin θe − sin (θe − 2π/3) − sin (θe + 2π/3)

1 1 1
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
cos (θe + α) cos (θe − 2π/3 + α) cos (θe + 2π/3 + α)
− sin (θe + α) − sin (θe − 2π/3 + α) − sin (θe + 2π/3 + α)

1 1 1
1 1 1
1 1 1
1 1 1



(3.3.13)

and the state vector reads like equation (3.3.7). The four bottom rows add all
of the phases, the sum which, if each set of three phases is balanced and each dual
is connected to its own neutral point isolated from the other, will equal to zero. In
the case where the sets of three phases are not balanced, then one may replace the
ones with other transformations to isolate the desired frequency components of, for
example, the current. Said components would then be concatenated to the state
vector and may be independently controlled to equal zero. Because there are only
four rows left, only two frequency components can be isolated. In dual three phase
machines with α = 30◦ usually the 5th and 7th harmonics are controlled.

To construct the circuit equations, first notice that the first three entries of
the first row, when multiplied by the first dual circuit quantity equal to xd1 from
equation (3.3.12). The second three entries of the row correspondingly yield the
product xd2. In effect, xd = (xd1 + xd2) /2 and xq = (xq1 + xq2) /2. Combined
with the equivalencies between the inductances, we recover the original three-phase
system of equation (3.3.6) except with

Ld =Ld1 +Md12 = Ld2 +Md21

Lq =Lq1 +Mq12 = Lq2 +Mq21
(3.3.14)

Because system (3.3.11) can be transformed into the two-phase system (3.3.6)
and because we already proved the stability of the latter, then the dual-three phase
system is stable in both the rotating and stationary frames. The stability of the two-
transformation system however, has not been proven. One may imagine the case in
which xd1 and xd2 have equal but opposite instabilities such that their average is
stable. We will assume, for now, that those internal states are indeed stable. Having
established the stability of the IPMSM’s circuit states, namely the phase currents,
we now proceed to describe the torque that the machine generates.

3.3.4 Electromagnetic Torque
One may now write the electromagnetic torque equation in terms of the synchronous
variables and parameters as the cross product of the flux linkage and the stator
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current vectors in the dq-frame. The cross product of the flux linkage and the stator
current as torque follows from the Lorentz tangential force. Specifically,

Te =
(
r ×

∫
V
J×B dV

)
· ẑ

=
(
r × θ̂

∫
V
JzBr dV

)
· ẑ

= r
∫
V
JzBr dV

= rJzBrπlR
2

(3.3.15)

where R is the outer rotor radius and ẑ is the unit vector in the axial direction.
Equation (3.3.15) is a simplification, but one may nevertheless replace J = ∇×H to
specify that the torque-producing interaction of the magnetic fields takes place in the
rotor volume acting on the bounded currents in the iron and magnets. Resuming
the simplification, if the lever length r = R, ψr = 2πRlBr, and the current is
iz = Jzπ(R + `/3)`/p, then

Te = pR2

π`(R + `/3)izψr

= pR2

πR216/75izψr

=c (i×ψ) · ẑ

(3.3.16)

where ` is the length of the stator slot and the effective width where the current
is active is taken to be the pole arc at R + `/3. Also, ` = R/5 is typical. From
equation (3.3.16) it is clear that the Faraday torque reduces to the cross-product
between the current and the flux linkage up to a unitless constant. Now we can
justify equating the cross product between the stator current and the flux linkage
in the dq-frame to the electromagnetic torque.

Te =c
(
idq ×ψdq

)
· ẑ

=c (ψdiq − ψqid)
=c (iqψpm + (Ld − Lq) idiq)

(3.3.17)

It turns out that the constant c = 3p/2, where p is the number of pole pairs in
the machine. One must multiply the equation by the number of pole pairs because
the torque from equation (3.3.17) is just for one pole pair. Furthermore, an addi-
tional factor of 3/2 is necessary to compensate for the Clarke-Park transformation,
which transformed three phases into two using the amplitude model. In that model,
amplitudes are the same across coordinate frames, but power and torque require the
correction. Finally, the equation for electromagnetic torque reads as follows:

Te = 3p
2 iq (ψpm + (Ld − Lq) id) (3.3.18)

which we can readily relate to the torque equation (3.1.12) if we set iq = Îdq sinφ
and id = Îdq cosφ to acquire

Te = 3p
2

(
ψpmÎdq sinφ+ 1

2 (Ld − Lq) Î2
dq sin 2φ

)
(3.3.19)
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The salience contribution encapsulated in the Ld − Lq term provides additional
torque if the current angle, which corresponds to the angle of the magnetic flux said
current creates, lies in the second quadrant or third quadrant, as equation (3.1.12)
showed. For example, if φ ≈ 115◦ as in the previous section, then the machine
will deliver additional torque because it lies in the second quadrant. The equation
(3.1.10) from the previous section corresponds, and, most importantly, is analogous
to equation (3.3.19) since Ld < Lq. If we instead seek to optimize the current angle
as a function of the parameters and the current magnitude, then the optimal angle
delivering maximum torque is described in equation (3.3.20). That equation is also
analogous to equation (3.1.11).

φ = arccos
 −ψpm

4Îdq (Ld − Lq)
−

√√√√( ψpm

4Îdq (Ld − Lq)

)2

+ 1
2

 (3.3.20)

The torque equation is also derivable from the states in the circuit, namely the
voltage and the current. The power in the circuit is then

Pe = 3
2udq · idq

= 3
2
(
Rs

(
i2d + i2q

)
+ d

dt

(1
2Ldi

2
d + 1

2Lqi
2
q

)
+ωeiq (ψpm + (Ld − Lq) id)

)
(3.3.21)

The electrical power can be separated into three main components. The first
is the resistive power dissipation due to current conduction in the windings. The
second is the time rate-of-change of magnetic energy stored in the phases, which
is zero in steady-state and therefore does not represent the iron losses. The third
term must therefore represent some sort of scaled mechanical power. Indeed, be-
cause ωe = pωm, and because the mechanical power for a rotating rigid body is
the product of its angular speed and torque, we derive equation (3.3.18) exactly.
Because circuit variables and their power are derivable from Maxwell’s equations,
the equivalence between the two approaches to derive the electromagnetic torque
justify the derivation of the volume-specific Lorentz force from Faraday’s law at the
beginning of the chapter.

All of the previous formulations assume constant parameters. The torque for-
mulations nevertheless also conveniently apply for high-power and high-torque ma-
chines throughout their operating area, over which parameters change significantly.
For large currents the inductances decrease due to iron saturation and resistance in-
creases due to increasing temperature. These parameter changes render the machine
a highly nonlinear machine. This means that the state transition matrix (3.3.8) and
its eigenvalues (3.3.9) do not even prove the stability of the electrical portion of
the machine equations. To control and analyze such a nonlinear machine, local lin-
earization is used by storing the values of the inductances for all possible current
combinations. The next section elaborates this idea and justifies its use.
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3.4 Local Linearization of the Transformed Non-
linear Machine

Due to the nonlinearity of the inductance terms due to saturation, stability based
on eigenvalues of the state transition matrix is not sufficient to ensure the stability
of the nonlinear machine for all operating points. We therefore begin this section
with a discussion on the stability of the nonlinear machine.

Firstly, it is important to realize that because the inductance saturation is a
function of the exciting currents, then our state transition matrix becomes a function
of the states to create an autonomous nonlinear system. We can prove or disprove the
stability of points in said systems by linearizing the nonlinear vector f(x) = A(x)x
in the system ẋ = f(x) about some equilibrium point x = x0. We must now expand
our system to incorporate the mechanical dynamics of the system. For that we need
an additional state and corresponding state equation. The new state will be defined
as the synchronous electrical speed, ωe and the state equation concatenated to the
system is

dωe
dt

= p

ι
(Te − TL) (3.4.1)

where ι is the rotational inertia, TL represents the load on the machine, and Te is
the current-dependent electromagnetic torque from equation (3.3.18). We first need
to find the Jacobian of f to find that the real part of its eigenvalues are less than
zero for a given equilibrium point. The Jacobian is the matrix of partial derivatives
of f with respect to the states x. We define f as

f =



−Rs
Ld
id + ωe

Lq
Ld
iq

−ωe LdLq id −
Rs
Lq
iq − ωe ψpmLq

p
ι

(Te − TL)

 (3.4.2)

Equation (3.4.2) shows that one equilibrium is the origin, and setting TL = 0.
This simplifies the analysis, since the partial derivatives in the Jacobian reduce to

J0 =


−Rs
Ld

0 0
0 −Rs

Lq
−ψpm

Lq

0 3p2

2ι ψpm −p
ι
∂TL
∂ωe

 (3.4.3)

The eigenvalues are

λd =− Rs

Ld

λq,m =− 1
2

(
Rs

Lq
+ p

ι
b

)
±

√√√√(1
2

(
Rs

Lq
− p

ι
b

))2

− 3p2

2ι
ψ2
pm

Lq

(3.4.4)

which are always stable. In the analysis we assumed that TL = bωe and b > 0,
which is valid when the load is due to viscous fluids. In this case, the equilibrium
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speed remains ωe = 0. If there is no load, the parameter b can be set to b = 0. In
addition, it is notable that the q−axis and mechanical eigenvalues are coupled. This
is because the BEMF voltage, which is due to the mechanical rotation of the rotor,
appears only in the q−axis.

Another equilibrium point emerges if Te = TL. For this equilibrium the currents
must not necessarily equal zero. It turns out that the equilibrium point corresponds
to the short-circuit condition, but only because this entire analysis assumes that the
control, or the voltages, are zero. If we do not impose a formula on TL, then the
equilibrium point implies that

id =− ψpm

Ld + R2
s

ω2
eLq

iq =− ψpmRs

ωeLq
(
Ld + R2

s

ω2
eLq

)
Te =− 3p

2
ψ2
pmRs

ωeLq
(
Ld + R2

s

ω2
eLq

)
1− Ld − Lq

Ld + R2
s

ω2
eLq


(3.4.5)

Physically this means that because both currents are less than zero, the condition
appears to be a generating condition. This is because of the sign of the short-circuit
torque equation and the fact that Ld < Lq. However, because the terminals have
zero voltage, this condition does not pump energy back into a battery, but simply
dissipates that energy as heat. Notice that the power losses in the copper due to
the current flow is proportional to ψ2

pm, meaning that the stronger the flux from
the magnet, the more heat will dissipate in the winding during this equilibrium. It
is also important to note that this equilibrium may occur at any speed so long as
Te = TL. If the load should be TL = bωe, then there are four equilibrium speeds,
from which only a subset might be physically plausible. Proving whether these
equilibria are locally stable or not is much more involved as the Jacobian is fully
populated and is a function of the partial derivatives of the parameters with respect
to the currents and speed. Finally, because of the arbitrary speed direction and
its arbitrary assignment, the signs merely indicate a brake torque as opposed to
suggesting asymmetrical motoring and generating characteristics.

We have proven the local stability of the IPMSM at zero currents and zero speed,
but we are mostly interested in the stability of the controlled IPMSM where a desired
operating point is the new equilibrium. For this task we assume that we already
reached the operating point to perform our linearization analysis. After that, we
will define controllers that guarantee that the machine reaches the desired operating
point, but only when it is near the first operating point.

Assuming that we reached our operating point, we will require that we can per-
fectly cancel the ωeψpm term, or the BEMF. We will assume that we can also per-
fectly cancel the terms in the resistance matrix and add a proportional-integral (PI)
controller. That is equivalent to feeding forward the BEMF term, the cross-coupling,
and resistance terms to the system. We refer it to as feed-forward because Equation
(3.4.6) takes the three-phase system and shows the resulting controlled system with
the control u∗dq and PI controller νdq, meaning that the resulting controller occurs
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when udq = u∗dq.

udq =
[
Rs −ωeLq
ωeLd Rs

]
idq +

[
Ld 0
0 Lq

]
didq
dt

+
[
0
1

]
ωeψpm

u∗dq =
[
Rs −ωeLq
ωeLd Rs

]
idq +

[
0
1

]
ωeψpm + νdq

νdq =
[
Ld 0
0 Lq

]
didq
dt

(3.4.6)

The feed-forward scheme greatly simplifies the control problem to a decoupled,
two-state control problem. The feed-forward portion of the controller νdq in (3.4.6)
utilizes the measured currents to cancel the resistance and reactance terms. To
cancel as best as possible, we need the exact parameter values, requiring that we
procure previous information about the effect of saturation on the inductances and
other variabilities. However, because cancellation is never perfect, other controllers
use the commanded current to cancel the reactances. We will first prove stability
with the controller in (3.4.6) and then explore the dynamics of the linearized system
with several other controllers.

At this point, the problem is diagonalized and we may now begin with the
description of the PI controller for stability analysis. Once we have the new system,
we will linearize it about the operating point to study its stability. For simplicity,
due to the decoupled nature of the problem, we will designate variables associated
with the d or q axis with ξ, meaning that ξ = {d, q}. In other words, what we
perform on one equation in one axis also applies to the other. We define the PI
controller as

νξ = cpξ
(
i∗ξ − iξ

)
+ ciξ

∫
i∗ξ − iξ dt (3.4.7)

Where, as expected, cpξ represents the proportional gain and ciξ represents the
integral gain. Due to integration of the error i∗ξ − iξ, we introduce an additional
state and the state equation becomes

d2iξ
dt2

+ cpξ
Lξ

diξ
dt

+ ciξ
Lξ
iξ = ciξ

Lξ
i∗ξ (3.4.8)

for constant i∗ξ . Typical LTI systems are analyzed with dynamic i∗ξ , but here
we are interested in the nonlinear stability first, which implies a constant current
command. The integration error term seems to add an unnecessary complexity to
the system, but the trade-off between the additional state and the benefits of zero
steady-state error is worth the penalty. Due to the second order of the controlled
system, we introduce the variables y1 = iξ and y2 = diξ

dt
. In total we now have a

four-state system, but if we add the mechanical states in (3.4.1), the system is now
a five-state system. The Jacobian of said system at the operating point i∗d, i∗q, and
ωe is

J∗ =



0 1 0 0 0
− cid
Ld
− cpd

Ld
0 0 0

0 0 0 1 0
0 0 − ciq

Lq
− cpq

Lq
0

∂fm
∂id

0 ∂fm
∂iq

0 −p
ι
∂TL
∂ωe

 (3.4.9)
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The variable fm is the mechanical state equation (3.4.1) and its partial derivatives
are not calculated because they have no bearing on the eigenvalues of J∗ and there-
fore on the stability of the linearized system about i∗ξ . The mechanical eigenvalue
and the q−axis eigenvalues are now unrelated due to the feed-forward cancellation
of the BEMF voltage. In this case it is λm = −p

ι
∂TL
∂ωe

. The other four eigenvalues are

λd1,d2,q1,q2 = − cpξ
2Lξ
±

√√√√( cpξ
2Lξ

)2

− ciξ
Lξ

(3.4.10)

which are always stable. Besides proving the local stability of the controlled
machine at any operating point, equation (3.4.10) lends interpreting the control gains
physically. We know that the eigenvalues must have units of rad/s, and therefore
cpξ must have units of rad ·H/s, where H represents Henries. The integral gain must
have units of rad2 · H/s2 or, equivalently rad · Ω/s. That each gain is multiplied by
a frequency and a circuit parameter unit directs us to set cpξ = 2aLξ and ciξ = aRξ

or rather ciξ = a2Lξ, where a = 2πfc and fc is our desired controlled system critical
frequency in Hz. With that dimensional analysis in mind and having proved the
stability of the system about a commanded vector current, we can now proceed
to design controllers without assuming that i∗ξ remain constant, provided that any
given i∗ξ stay in the neighborhood of a previous i∗ξ .

The first controller to consider involves pole placement. Specifically, the con-
troller in equation (3.4.11) cancels the machine pole and replaces it with one at a
to create a first order system for both the d− and q−axes. The controller in that
case would be

u∗dq =
(
a

s

[
Rs −ωeLq
ωeLd Rs

]
+ a

[
Ld 0
0 Lq

]) (
i∗dq − idq

)
+
[
0
1

]
ωeψpm (3.4.11)

where s is the complex frequency of the Laplace transform. Although the con-
troller has desirable properties, one can notice that the q−axis error is integrated
along the d−axis command and vice-versa. This may pose problems at high speeds
and near voltage actuation limits. As mentioned before, the controller for which
we proved the stability of the linearized system is not the one in equation (3.4.11)
because we chose to cancel the cross-coupling terms and the resistance terms with
measured current-based feed-forward and not with pole cancellation. Furthermore,
i∗dq was assumed constant. The proof that controller (3.4.11) has the same first-order
properties on each axis is left in the appendix.

A controller that does not involve integrating the error from the other axis and
that uses the commanded currents instead of the measured currents for the cancel-
lation of the reactances is

u∗dq =
[

0 −ωeLq
ωeLd 0

]
i∗dq +

[
0
1

]
ωeψpm + νdq (3.4.12)

For approximate pole cancellation, the integral gains must be

cpξ =aLξ
ciξ =aRs .

(3.4.13)
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It can be proven that the resulting system is always Hurwitz, including at dif-
ferent speeds.

It is clear that the machine will exhibit different dynamics depending on the
operating point and speed if the gains do not account not only for the changing
parameter values, but the synchronous speed of the rotor. We also see that the
gains are actually what we deduced from the dimensional analysis. However, even if
the controller gains are parameter-scheduled, then first-order behavior with critical
frequency a = 2πfc is not guaranteed. The controller also causes damped oscillations
at higher speeds, whose current overshoots might trigger over-current errors in a
voltage and current-constrained region. This is another reason to rate-limit current
commands.

It is important to emphasize that such gains also guarantee approximate first
order system behavior with cut-off frequency fc near the operating point, and there-
fore commanding another point far away is not guaranteed to be stable, have order
one behavior, and therefore have the designed cut-off frequency. This is why during
operation of said machines current set-points are often rate-limited to ensure all of
the three aforementioned behaviors. Once the system reaches the desired operat-
ing point, the system operates as designed provided the appropriate changes to the
parameters are made.

We have proven the local stability of the IPMSM machine in both uncontrolled
and controlled situations and have designed a control scheme based on the local
linearization of the rotating-frame nonlinear system. The analysis, however, required
that we schedule both the feed-forward scheme and the control gains based on the
inductance values, which change depending on the current magnitude because of
saturation. This requires characterizing and storing the machine parameters as
functions of the currents before operating the machine. Furthermore, the stability
analysis did not have to incorporate the torque equation, which itself is highly
nonlinear. The torque has both the saturation nonlinearity and a multiplicative
nonlinearity between the states, namely the reluctance torque. The exclusion of
the torque from the analysis of uncontrolled and controlled local stability was only
possible because we controlled the currents with feedback and not the torque. Unless
the system has a torque transducer, the control of IPMSM’s requires a parameter-
based torque model. For load machines in test benches, the speed is also feedback-
controlled. Drivers in cars also function as speed controllers with the tachometer
feeding back the speed of the car. In those systems, torque functions as the control
input and therefore is the result of the speed feedback controller. If the dynamics
of the speed controller are much slower compared to the circuit dynamics, which
we have rendered possible based on the arbitrary speed of the current controller
and sufficient based on a high enough switching frequency, then we can translate
the torque command into current commands and assume that the dynamics of the
current controller do not affect the dynamics of the speed controller. This nested
design is shown in figure 3.1, where CP represents the Clarke-Park transformation.
The torque model with saturation effects as a function of currents therefore needs to
be inverted to translate the torque control input from the speed controller and the
speed itself into current commands. Due to the nonlinearity of the torque, several
id and iq current combinations yield the same torque and therefore we have an
additional degree of freedom to choose the current combinations. Furthermore, the
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Figure 3.1: Speed control diagram with nested current controller

same currents can control the flux in the machine, especially at high speeds where
the permanent magnet flux is large and the voltage actuation limited. Different
strategies exist to choose the current combinations depending on the operating point
of the machine and the limits on the control input, or voltage. The next section
presents the typical methods used to generate said current combinations, represented
in Figure 3.1 as F .

3.5 Maximum Torque per Ampere, Volt, and Loss

The problem of inverting the flux and torque commands into direct-current and
quadrature-current commands is inherently a multidimensional constrained opti-
mization problem. One constraint was already mentioned in the previous section,
namely the actuation, or voltage. Such a strategy is called maximum torque per
volt (MTPV). When the operating condition does not reach the actuation limits,
we are free to choose another constraint. Usually the constraint is machine loss, and
according to the circuit power equation, the only source of loss is the conduction, or
resistive loss. Said loss is proportional to the square of the current magnitude, and
therefore it is usually chosen as the optimization constraint. Choosing the current
magnitude as the constraint yields the maximum torque per ampere (MTPA) strat-
egy. In real machines, iron losses make a significant portion of the losses, especially
at low loads and high speeds. If an iron loss model is available, then the maximum
torque per loss (MTPL) strategy may be employed. Laplace optimization was used
in this thesis to find the optimal current commands in each case. However, in order
to incorporate the saturation effects, the typical formulas for the optimal currents
in each case were not utilized. Instead, a numerical Laplace optimization procedure
was used with the varying parameters as a basis. There are software packages that
optimize multidimensional and nonlinear problems with constraints which also have
Laplace optimization as a back-end algorithm.
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3.5.1 Lagrange Constrained Optimization
The typical Lagrange multiplier method defines a Lagrangian L : Rn+1 → R as

L (x, λ) = T (x)− λg (x) (3.5.1)

where T : Rn → R is the function to be optimized and g : Rn → R is the
constraint function. The critical points of the Lagrangian are located where its
gradient is zero, and therefore

∇x,λL = ∇T − λ∇g − gλ̂ = 0 (3.5.2)

Because g is the only non-zero component in the λ̂ direction, we require that
g (x) = 0. To solve the problem, we seek a state x that satisfies

λ = ∂T

∂xi

(
∂g

∂xi

)−1

= ∂T

∂xj

(
∂g

∂xj

)−1

i 6=j
(3.5.3)

As an illustration, we will find the states that maximize the torque for a given
current magnitude for constant parameters. In such a case, n = 2, g = i2d+i2q−I2

dq = 0
from the definition of the current magnitude, and T = Te. The Lagrange multiplier
is then

λ =
(3p

2 (Ld − Lq) iq
)

(2id)−1 =
(3p

2 (ψpm + (Ld − Lq) id)
)

(2iq)−1 (3.5.4)

and solving for id yields

id = ψpm
4 (Ld − Lq)

−

√√√√( ψpm
4 (Ld − Lq)

)2

+
I2
dq

2 (3.5.5)

and iq can be retrieved from the definition of the current magnitude.
The situation for which saturation is considered becomes analytically intractable

because the partial derivatives of the inductances also depend on the current. Nu-
merically, one may solve for the MTPA currents using a loop to minimize an error
cost function. That however is not necessary if we assume a continuous dependence
of the torque on the currents. The continuity assumption permits interpolation be-
tween the points, after which a numerical gradient can be taken over a sufficiently
small grid. Because the gradient fields are large and we have to take the quotient
between each component of the torque and constraint fields, it is advantageous to
perform such a task in software that automatically parallelizes the same operation
−division −over the array elements. Thereafter, a subtraction operation is neces-
sary. Then, a search for the indexes that give the minimum absolute value difference
is the last step to acquire the optimizing currents. The minimum search needs to
be along one of the two dimensions. For example, for each index j corresponding
to an element of iq, find the index i corresponding to an element of id that has the
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minimum and store both indexes. The steps are summarized in equation (3.5.6) for
each iq.

id = arg min

∣∣∣∣∣∣∂Te∂id

(
∂g

∂id

)−1

− ∂Te
∂iq

(
∂g

∂iq

)−1
∣∣∣∣∣∣ (3.5.6)

Arguably the minimum of the absolute value of the difference will not result in
exactly zero as prescribed by the method of Lagrange multipliers to find the critical
points. It is assumed that the minimum will give an index near the critical points
with an error in the order of the grid discretization.

3.5.2 MTPA
Figure 3.2 shows the MTPA angles and trajectories calculated with constant pa-
rameters and calculated numerically. From the figure we may conclude that using
constant parameters to calculate the MTPA trajectories is not satisfactory, espe-
cially at high currents where conduction losses dominate. We can confirm that
the numerical calculation gives the maximum torque per Ampere by inspecting the
torque and current magnitude contours. If we imagine a vector field with vectors
perpendicular to each contour, then, when the vectors from the torque contours
align with those from the current magnitude, we can ensure that that point is the
optimal torque given the constraint. For example, again in Figure 3.2, for Te = 1.4
and Idq = 1.8, we see that the two perpendicular vectors for the MTPA trajectory
with constant parameters do not align. For the same torque, the vectors do align
for the numerical MTPA trajectory but at a smaller current. The MTPA angles
also show a difference between the calculation methods. They also show that our
analysis at the beginning of the chapter regarding the torque angle is near the op-
timal angle, namely 135◦ or 3π/4 rad. From the figure we may conclude that our
optimization must be based on the numerical prescription in equation (3.5.6), and
preferably not just for MTPA.
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(a) Current angle (b) Current trajectories

Figure 3.2: Constant vs. Numerical MTPA currents

3.5.3 MTPV
We previously mentioned that due to voltage actuation limits at high speeds, the
machine can no longer remain on the MTPA trajectory. Usually, the machine reaches
a current limit first. The machine follows the maximum current limit trajectory as
the speed increases first because, as will be shown, the MTPV trajectory runs almost
parallel to the MTPA trajectory with a id offset. The machine follows the MTPV
trajectory until reaching the voltage limit. To understand how the voltage limit may
be represented in the dq−current plane, the equation for the steady-state voltage
magnitude as a function of the currents proves necessary. For the analysis, it suffices
to analyze the square of the voltage magnitude and to ignore the phase resistance,
because the reactances ωeLξ are much larger that the resistance in the high-speed,
voltage-limited region.

V 2
dq =ω2

e

(
(Lqiq)2 + (ψpm + Ldid)2

)
V 2
dq

ω2
e

=ψ2
q + ψ2

d

(3.5.7)

The equations in (3.5.7) indicate that if we search for the optimal current combi-
nation with the flux linkage magnitude as a constraint, then we can find the MTPV
trajectory. Up to a constant and sufficiently fast speed, MTPV is then equivalent
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to MTPF, or maximum torque per flux. Figure 3.3 shows the MTPF and MTPA
trajectories, along with the level curves for the torque and the flux magnitude.

(a) Current angle (b) Current trajectories

Figure 3.3: Numerical MTPF and MPTA currents

3.5.4 MTPL
The set of maximum torque per loss trajectories can also be found using the same
numerical method with the added requirement that we have an iron loss model.
Ideally, the iron loss model should take into account the currents and the speed of
the machine to make a model PFe : R3 → R. This model can be found with an FEM
simulation that calculates the magnetic field density throughout the laminations in
the machine and then looks-up the losses according to Epstein loss tables specific
to the simulated soft magnetic material. The losses can be extracted over different
current grids for different speeds and fitted to a model. The model used here is the
Bertotti model with coefficients taking a point on the dq−current plane to a scalar.
The model is

PFe,s =CH,s (id, iq)ωe + CE,s (id, iq)ω2
e + CX,s (id, iq)ω3/2

e

PFe,r =CH,r (id, iq)ωe + CE,r (id, iq, ωe)ω2
e + CX,r (id, iq)ω3/2

e

(3.5.8)

The capitalized subscripts H, E, X indicate that the coefficient models the hys-
teresis, eddy, and excess losses in the iron. The subscripts s and r indicate stator
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and rotor quantities, respectively. The rotor eddy current coefficient is expanded to
read

CE,r = CE,Fe,r (id, iq) + kE,pm (ωe)CE,pm,r (id, iq) (3.5.9)

where the speed-dependent term scales the eddy current coefficient if the latter
was calculated in two spatial dimensions. With this additional iron loss model, we
need only add the conduction losses in the windings and repeat those losses over
all speeds to form a total loss array PLoss ∈ R3. Although the new constraint array
PLoss is three-dimensional, because we seek only the optimal currents for each speed
and torque, the optimization itself remains over just the currents at one particular
speed and torque. The optimization is repeated over all desired speeds and torques.
Therefore the approach in (3.5.6) remains valid, but it must re-calculated over every
speed. Again, instead of calculating one speed after another in series, it is faster to
create three dimensional arrays for the torque and the loss, but optimize over just
two dimensions, if the software automatically parallelizes array element operations.

Figure 3.4 shows the MTPL and MTPA trajectories for two speeds. At zero rotor
speed, MTPL and MTPA are indistinguishable because the conduction losses in the
windings dominate. At faster speeds the two methods differ. The MTPL trajectory
commands more d−axis current for a given torque, especially at low torques. This is
because iron losses make the largest share of the losses at high speeds and lower loads.
At higher torques the MTPL trajectory approaches the MTPA trajectory because
the conduction losses once again dominate, even for high speeds. One may also see
the change in the overall magnitude of the losses for different speeds from the level
curves of the power loss in the machine. Figure 3.5 shows the current angle φ for the
same conditions. At lower speeds, MTPA and MTPL losses are nearly equivalent.
At higher speeds the commanded angle for MTPL is closer to the negative d−axis,
which corresponds with slightly more d−current to weaken the field and therefore
induce less iron losses at high speeds by weakening the permanent magnet field flux.
It is also important to mention that MTPL is equivalent to maximum torque per
efficiency (MTPE) and maximum power per loss (MPPL).

Having described different methods to generate current combinations with dif-
ferent criteria and for different operating regimes of the machine, we now introduce
the strategy used to command the currents from a torque-speed pair given voltage
and current limits.
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(a) Zero speed (b) Maximum speed

Figure 3.4: Numerical MTPL and MPTA current trajectories

(a) Zero speed (b) Maximum speed

Figure 3.5: Numerical MTPL and MPTA current angles

66



3.5. MAXIMUM TORQUE PER AMPERE, VOLT, AND LOSS

3.5.5 Current Set-Point Determination from Torque and
Speed Commands

Up to now, the current set-point generation of MTPA and MTPF were speed-
independent; even with MTPF, if we choose a particular flux and wish to have
the maximum torque there, the machine need not be limited by voltage or current
constraints. MTPL depends on speed, but it also does not prescribe certain dq
current combinations in the presence of voltage and current limits. It makes sense
that a maximum current amplitude Imax will limit all trajectories since Te →∞ as
Idq →∞. This limit exists even at zero speed. If the speed of the rotor is zero or near
zero, then this limit will be reached before the voltage limit is reached because the
inverter need only feed the machine with voltage if changes in the current set-point
are commanded. In this case of no set point changes and slow speed, the voltage
would limit the current based on the machine phase resistance Imax = Vmax/Rs, but
this current limit would induce losses in the order of tens of MW, or 107 W, because
PCu = V 2

max/Rs and because Rs ≈ 10−3 Ω and Vmax ≈ 102 Ω for typical traction
machines. Before the machine reaches that limit, the system will reach other limits,
usually thermal limits in the machine windings or inverter junctions. These limits
usually occur at or less than the order of kA, which places the losses in the order
of kW for the same phase resistance order. The voltage, then, only becomes the
limiting factor at high speeds because the total voltage is proportional to the flux
linkage and the speed. We may therefore state that the maximum current limits the
maximum torque and that, in combination with that torque limit, the maximum
voltage limits the maximum mechanical power of the machine, since Pm = ωmTe.
This also applies for the speed-dependent MTPL trajectories, since for large loads
they approach the MTPA trajectories.

We have established the need to limit current and voltage independently from
one another, but we still need to establish a common quantity to account for the two
different limits. The common quantity should simplify the set-point generation in a
nonlinear context where the optimization formulas are not applicable. We will first
consider the case for which we use MTPA and MPTF. If we choose current as the
common quantity, the transition from the current limits to the voltage limits would
complicate the set-point generation since the current limits are speed-independent
and the voltage limits are not. If the machine did not have saturation, the strategy
may simply switch from the closed-form current limit equation to the MTPV equa-
tion. Since this is not the case, we find that the common quantity over all strategies
in all regions is flux. Considering equation (3.5.7), the flux changes as a function
of the current, but its level curves depend on the voltage and speed. We can then
map the current trajectories from either MTPA or MTPL, the current limit, and
MTPF onto the flux and crop them according to the voltage and speed limits. In
addition, because MTPF is equivalent to MTPV, the current trajectories will follow
the MPTF trajectories at the voltage limit automatically. Simply formulated,

Vmax

ωe
≥ Ψdq,opt (3.5.10)

If the voltage limit is reached before the current limit, the same torque can be
achieved but the current combinations that produce that torque will not lie on the
MTPA, MTPL, or MTPF trajectories until the speed increases to the extent that
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the MTPF trajectory is reached. The trajectory along the current limit is also
not an MTPA, MTPL, or MTPF trajectory. These interstitial trajectories connect
the MTPA or MTPL trajectories to the MTPF trajectories at high speeds due to
the limited voltage. For example, if the voltage limit is reached before the current
limit, the same torque is achievable up to the MTPF trajectory, but the current
combinations for that torque do not belong to any of the optimized trajectories.
Said situation occurs at high speeds and low loads. We therefore have the same
torque but for different flux. This requires associating the flux and torque to a
current combination not on any of the trajectories we calculated previously, and
therefore they are not readily available. It is therefore important to invert the
vector map with some procedure h : 〈ψ, Te〉 → 〈id, iq〉. Figure 3.6 summarizes the
current commissioning procedure.

f (T )
Vmax

ω∗e

g (ψ)
h (ψ, T )

T ∗ ψopt

Tlim

ψ

T

i∗d

i∗q

Figure 3.6: Current commissioning diagram [131]

The function f(T ∗e ) = ψopt contains the MTPA current trajectories mapped onto
the flux as a function of torque. If using MTPL, f = f (T ∗e , ω∗e). The function f
is then limited by the saturation block also described by equation (3.5.10). The
function g (ψ) = Tlim maps any given flux to the maximum torque achievable for
that flux. The function g therefore contains the MTPF trajectories along the voltage
limit. However, if T ∗e < Tlim, then the flux-torque pair is not along the MPTF
or current limit trajectory but along another interstitial trajectory. The function
h : R2 → R2 maps the flux-torque pair to a current combination on this interstitial
trajectory. It is a general inverse of the nonlinear equations for the torque and the
flux as functions of the currents as described from equations (3.3.18) and (3.5.11),
respectively.

ψ =
√

(Lqiq)2 + (ψpm + Ldid)2 (3.5.11)

Our next task involves inverting the vector function 〈ψ, Te〉 to find h. Since
ψ = ψ (id, iq) and Te = Te (id, iq), we can visualize the vector function to invert
as two sets of level curves on the same id, iq−plane. Since the level curves are by
definition the set iTdq = {(id, iq) : Te = cT} and iψdq = {(id, iq) : ψ = cψ} for constant
cT and cψ, then, for every cT ∈ T ⊂ R and cψ ∈ Ψ ⊂ R, we need to find iTdq = iψdq. In
other words, we need to find for what (id, iq) the level curves of Te (id, iq) intersect
with those of ψ (id, iq).

We adopt the method of level curves to invert the vector function instead of a
formulaic approach for different reasons from before. Before, the nonlinear charac-
teristics of the induction served as the reason for numerical optimization since the
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formulaic optimization assumed constant parameters. In that case calculating the
target quantity analytically gave the wrong result. We can pursue the analytical
approach here because no partial derivatives are involved. The reason we do not is
rather banal: fourth-order roots as a function of parameters are notoriously long.
First we would have to solve for id in equation (3.5.12). Then, we would have to
insert each of the four id currents into equation (3.5.13), yielding eight iq currents
per flux-torque pair. From there we can employ several filters to ensure that the
current combinations are real numbers and lie in the operating area.

(ψpm + (Ld − Lq) id)2
(
ψ2 − (Ldid)2

)
= 4

9p2L
2
qT

2
e (3.5.12)

iq = ± 1
Lq

√
ψ2 − (ψpm + Ldid)2 (3.5.13)

(a) id normalized (b) iq normalized

Figure 3.7: Current commissioning functions on current contours with MTPA

Figures 3.7 and 3.8 show the current commissioning functions f and g on the
current contours for MTPA and MTPL, respectively. The subscripts I and V des-
ignate where the function g(ψ) = Te,lim limits the torque based on the current limit
or on the MTPF trajectory, or voltage limit. The allowable current combinations
lie within the boundaries traced by the current commissioning functions. Figure
3.8 shows that the MTPL strategy changes those boundaries for different speeds.
Figure 3.9a shows the overlaid contours of ψ and Te and figure 3.9b shows their in-
verse h. Because the flux traces ellipses, the inverse is not single-valued everywhere.
Comparing the g function and the upper torque boundary on 3.9b, we see that the
MTPF branch of the function g traces where the currents are single-valued. The
allowable currents are the portion of the inverse that result in the minimal currents
that achieve a given torque and flux.
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(a) id normalized (b) iq normalized

Figure 3.8: Current commissioning functions on current contours with MTPL

Figures 3.10 and 3.11 show the MTPA and MTPL current commissions for
VDC = 325 V. In the base-speed region one may notice that MTPA currents re-
main constant over different speeds. Due to the addition of the iron loss model and
its dependence on speed, the MTPL currents do not remain constant over different
speeds, especially at low loads and for the d−current. Paradoxically, more current
needs to be commanded to achieve maximum torque per loss: in order to reduce the
permanent magnet flux more d−current is required and to achieve the same torque
with the weakened flux more q−current is required. However, the additional current
reduces the iron losses by weakening the permanent magnet flux in the base-speed
region, reducing overall losses. Figures 3.12 and 3.13 show the MTPA and MTPL
current commissions for VDC = 400 V. Here we see that the larger DC-bus voltage
broadens the base-speed region, making a loss-minimizing current commissioning
strategy all the more important there.
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(a) 〈ψ, Te〉 (b) 〈id, iq〉

Figure 3.9: Vector inversion of torque-flux pairs

(a) id in A (b) iq in A

Figure 3.10: MTPA current commissions as functions of torque-speed pairs with
VDC = 325 V
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(a) id in A (b) iq in A

Figure 3.11: MTPL current commissions as functions of torque-speed pairs with
VDC = 325 V

(a) id in A (b) iq in A

Figure 3.12: MTPA current commissions as functions of torque-speed pairs with
VDC = 400 V
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(a) id in A (b) iq in A

Figure 3.13: MTPL current commissions as functions of torque-speed pairs with
VDC = 400 V

(a) VDC = 325 V (b) VDC = 400 V

Figure 3.14: Efficiency difference ∆η = ηMTPL − ηMTPA for VDC = 325 V and VDC =
400 V
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(a) VDC = 325 V (b) VDC = 400 V

Figure 3.15: Power loss difference PLoss = PLoss,MTPA − PLoss,MTPL for VDC = 325 V
and VDC = 400 V

For completeness, figures 3.14 and 3.15 show the difference in machine efficiency
and in power losses between MTPA and MTPL strategies for the two voltages. As is
evident, a maximum difference of about 0.2% in efficiency and a maximum difference
of about 100 W power loss is not much, but significant. In the next chapter we will
explain the inverter’s operating principles to later show that its influence on losses
in the machine is much more pronounced compared to changing even the current
commissions.
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Chapter 4

Inverter Excitation of Permanent
Magnet Machines

The inverter is a hardware component that changes direct-current (DC) voltage
into alternating-current (AC) voltage. In an electric drive the inverter converts
the DC battery voltage into an amplitude and frequency-controlled AC voltage
source. The ability to control the amplitude and frequency of the fundamental
AC voltage enables the control of the full range of degrees of freedom in the electric
machine, which involves controlling torque at any speed. The DC to AC conversion
is performed by means of strategically switching between the full DC voltage source
(high) and zero (low) at a frequency much larger than the desired AC fundamental
frequency. The relative amount of time that a load is connected to high −the
duty cycle −over a given period of time −the switching period −is proportional
to the desired amplitude of the AC voltage signal. The time spent connected to
low is bound by the time connected to high and the switching period, meaning
that tsw = tH + tL. The computation converting the desired AC voltage amplitude
for every switching period to the time ’width’ spent connected to high is pulse
width modulation (PWM), because the pulses of high and low DC voltages are
commutated for a given ’width’ of time at a higher frequency than the fundamental,
thus modulating the fundamental signal. This chapter explains the principles of
inverter-sourced three-phase and dual three-phase machines, PWM methods, and
their effects on drive performance.

4.1 Three-Phase Voltage-Sourced Drives
An electrical drive consits of a DC voltage source −typically a battery for mobile
drives −, a large DC link capacitor, a three-phase inverter, and a three-phase ma-
chine. Figure 4.1 shows all components and their connections. Electric motors are
usually depicted as inductive loads, but the resistance of the coils, as well as a
secondary voltage source, namely the back-electromotive force (BEMF), is implied.
From this inverter topology one may notice that each phase, depicted in Figure 4.1
as one inductor, is either connected to DC high (+), or DC low (−). For simplicity
and to highlight the binary switching action, DC high and low are represented as
1 and 0 respectively. Since there are three phases, there are 23 possible switching
states, shown in Table I. Since S0 and S7 involve all phases being connected to 1 or
0, the potential difference across the load is zero.
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Figure 4.1: A three-phase drive

TABLE I: Inverter Switching States

Phase U Phase V Phase W
S0 0 0 0
S1 1 0 0
S2 1 1 0
S3 0 1 0
S4 0 1 1
S5 0 0 1
S6 1 0 1
S7 1 1 1

(a) S0 (b) S1,3,5

(c) S2,4,6 (d) S7

Figure 4.2: Switching states and their connections

The states in Table I corresponding to the connections in Figure 4.2 map to a
vector space in R3. Indeed, one may visualize the different states as the vertices of
the cube, with each phase connection to either 1 or 0 acting as their coordinates in
R3. Because there are two zero states, one can rotate the state cube so that both
zero states align along the z−axis. Because both zero states now lie on the origin
of the xy−plane, the transformation results in the mapping of all states onto the
xy−plane, which now also represent the potential difference states across the load.
This means that the switching states in R3 can be mapped to voltage states whose
vertices trace a hexagon in R2. The rotation to align the zero voltage states involves
one rotation about the z−axis first, with a roll angle of ζ = −π/4, then a rotation
about the y−axis (yaw) of β = −atan

√
2. The angle |β| is the body diagonal angle

of the cube as measured from the z−axis. A last rotation about the z−axis over an

76



4.1. THREE-PHASE VOLTAGE-SOURCED DRIVES

angle τ = π/3 is necessary to align the phases. Specifically,U
′

V ′

W ′

 =

cos τ − sin τ 0
sin τ cos τ 0

0 0 1


 cos β 0 sin β

0 1 0
− sin β 0 cos β


cos ζ − sin ζ 0

sin ζ cos ζ 0
0 0 1


UV
W

 , (4.1.1)

where U, V,W ∈ {0, 1} as in Table I. Notice that if equation 4.1.1 is multiplied
by

√
2/3, which is separable to 2/3

√
3/2, one acquires the transformation

UαUβ
Uz

 = 2
3


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2

0
√

3
2 −

√
3

2
1√
2

1√
2

1√
2


UV
W

 , (4.1.2)

which is the Clarke transformation. Figure 4.3 is a visualization of the transfor-
mation in equation 4.1.1.

(a) State cube rotation (b) Projection onto the xy-plane

Figure 4.3: From the state cube (yellow) to the voltage hexagon (purple)

Up to now the only correspondence assigned between the states and the potential
difference across the load were the zero states. To assign the non-zero states a
voltage, we need only notice that the equivalent circuit equation is

VDC = 3
2ZI, (4.1.3)

Z is the per-phase impedance and I is the equivalent current flowing through
the load. With the goal of acquiring an equivalent per-phase voltage, 4.1.4 becomes
2VDC/3 = ZI. Because the hexagon spans negative numbers, we wish to be able
to represent them on the voltage hexagon. Notice that vS1 = −vS4 relative to the
phases, as an example. We therefore construct a virtual neutral point and require
that the hexagon-transformed battery provide voltage between VDC/2 and −VDC/2,
which is equivalent to the usual range. Equation 4.1.4 then becomes

v := 4
3

(
VDC

2

)
= ZI. (4.1.4)
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From here, the definition of the modulation index, M , follows, as v is the per-
phase voltage, and

M := |v|
VDC/2

. (4.1.5)

The modulation index hexagon is shown in Figure 4.4. The inscribed circle has
a radius of M = 2/

√
3 and each state has an amplitude of M = 4/3 corresponding

to v = VDC/
√

3 and v = 2VDC/3, respectively.

Figure 4.4: Voltage hexagon in terms of M

The fact that the phase-to-neutral voltage magnitude, v is 2VDC/3 and that U
is aligned along S1, V along S3, and W along S5 indicates that the projection of
any other states onto those three fundamental state vectors on the voltage hexagon
describes the phase-to-neutral voltage of their respective phases. This means that
each phase has five possible voltage levels: 2/3, 1/3, 0, -1/3, and -2/3 times VDC.
That is a direct consequence of the circuit topology and arises despite the fact that
each phase is commuted only between VDC and zero. Mathematically, the phase-to-
neutral voltage is calculated for each phase by dotting the first row of the Clarke
transformation with the voltage vector in equation 4.1.2. The phase switching state
in Figure 4.5(a) then is equivalent to the normalized phase-to-neutral voltage shown
in Figure 4.5(b).

Lastly, any switching period-averaged voltage vector with |v| ≤ VDC/
√

3 and
fe ≤ fsw/6 is achievable as a superposition of states. For example, one may command
an average voltage vector with the desired magnitude and phase between S1 and S2
by commuting between S1, S2, and S0 or S7. The next section delineates how PWM
translates the desired waveform into switching states.
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(a) (b)

Figure 4.5: Phase switching state and phase-to-neutral normalized voltage

4.2 Pulse-Width Modulation Methods
A goal of PWM is to convert desired voltage AC signals into a series of switching-
period equivalent pulses of the states mentioned in Chapter 4.1. Another goal is to
maximize the available per-phase AC voltage amplitude for a given DC bus. The
latter implies maximizing the modulation index and the former implies an additional
degree of freedom for zero state sequences. A specific zero sequence determines the
PWM method.

The modulated signal is typically produced by comparing the reference signal
against a carrier signal. The reference signal is the desired waveform and the carrier
signal ’carries’ the modulation frequency, which is much higher than the fundamental
reference signal. If the reference is larger than the carrier, the driver circuit instructs
the switches to connect the phase to VDC and to zero otherwise.

The carrier signal is usually a triangle wave. Depending on what kind of sampling
strategy is used, the reference waveform changes. For example in a closed-loop with
current control, the current is sampled at the beginning of the switching period, the
control voltage is calculated, and the duty cycles are executed by the converter at
the beginning of the next switching period. That introduces a delay into the control,
albeit one as small as the switching period. In the previous example, the switching
and sampling periods are also synchronized. Because the calculated voltage is held
throughout the switching period, the sampling in the example is called sample and
hold, or zero-order hold (ZOH). That is the method used throughout this disserta-
tion for experiments, though sampling and switching are not always synchronized.
Double and non-integer sampling is explored in simulations. Because it results in
different duty cycles for each half-sampling period, double sampling is often called
asymmetric sampling.
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Figure 4.6: SVM phase current ripple squared with different fsw/f0 and asymmetric
sampling (AS)

As a result of the connections discussed in Chapter 4.1, one may also inject
the reference signal for all phases, with an arbitrary, yet identical zero sequence
signal, u0. Notice that as a result of the phase-to-neutral transformation, each
phase voltage will not see the injected zero sequence signal. Injecting specific zero
sequence signals changes the switching patterns that each phase sees, but maintains
the desired fundamental waveform. A zero sequence of zero is the rudimentary sinus
PWM, or SPWM. A zero sequence of a specific triangle wave is space-vector PWM
(SVPWM or SVM); its reference-carrier implementation is also referred to as super
sinus PWM.

Discontinuous PWM, or DPWM, acquires its name from the discontinuous ref-
erence signals its zero sequences have. The main advantage of DPWM methods
involves their phase clamping for a certain duration of the fundamental voltage pe-
riod, which reduces the number of switching instants by a nominal 2/3. Although it
reduces the number of switching instants and the fundamental voltage is replicated
on average, the switching patterns create large current ripple for inductive loads.
Increasing the switching frequency so that the effective switching frequency remains
the same as other PWM methods reduces the current ripple for some modulation
indexes but increases it for others.

The zero sequences of both SVM and DPWM contain a third harmonic compo-
nent that reduces the peak value of the reference signal. This is important since
that third harmonic component will ideally vanish in the phase-to-neutral voltages,
but allows for a larger fundamental voltage to be commanded due to the reduced
peak value during carrier-reference comparison, ultimately increasing the maximum
modulation index. The maximum modulation index achievable for the linear modu-
lation range is M = 2/

√
3, as shown in Figure 4.4. Both SVM and DPWM achieve

that modulation index. SPWM only achieves a maximum of M = 1 and is therefore
rarely used in practice. Figure 4.7 shows the reference waveforms for some PWM
methods with M = 0.9. Figure 4.8 shows the different phase current ripple magni-
tudes due to different PWM methods for nominally equivalent switching periods.
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(a) SVPWM (b) DPWM1

(c) DPWM2+ (d) DPWM3

Figure 4.7: PWM ZOH reference (blue) and zero sequence (red) signals, M = 0.9

Figure 4.8: PWM method phase current ripple squared with equivalent switching
frequency
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From Figure 4.8 it is clear that for a fsw/f0 = 100, or switching frequency to
fundamental reference ratio, one can halve the squared ripple in the machine at
M = 2/

√
3 for the same losses in the inverter −pending the current-voltage angle

as specified in [6] −by using DPWM3 instead of SVM.

4.2.1 Switching Frequency and Converter Losses
The switching frequency is the average number of commutations of all of the switches
per second. As equation (2.1.1) in Chapter 2.1 shows, the current ripple amplitude
for large fsw/f0 is inversely proportional to the switching frequency and proportional
to a function of the modulation index g(M) depending on the PWM method for
three-phase machines, as shown in equation (4.2.1). That means that, in general,
increasing the switching frequency reduces the current ripple, and therefore the
machine losses due to switching.

∆i2 = V 2
DC

64f 2
swL

2 g(M) (4.2.1)

A more detailed picture of the dependence of current ripple on switching fre-
quency requires taking into account the switching to fundamental frequency ratio,
sampling strategy, current-voltage angle, and magnetic coupling. The sampling
strategy was addressed in the previous section, current-voltage angle and magnetic
coupling will be addressed in the following section, and the fundamental frequency
ratio effects are as follows: as said ratio decreases, the current ripple increases ev-
erywhere, almost as if the switching frequency were being reduced. As Figure 4.6
shows, a low ratio can be compensated by asymmetric sampling. The ratio of equiv-
alent commutations between DPWM and continuous methods, however, decreases
from 3/2 to about 6/5 with decreasing fsw/f0, necessitating compensation. This
changing ratio of equivalent commutations was not found in the literature.

Figure 4.9: Commutation ratio between discontinuous and continuous PWM for
different fundamental frequencies

The effect of switching frequency on converter losses is more straight-forward for
continuous PWMmethods, as it involves voltage rising slopes overlapping with drain
current drop slopes in time. Since the slopes differ between rising edges and falling
edges, their overlap time, and therefore the energy loss due to switching, also differs.
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Every on-off cycle has a loss of Esw = Eon +Eoff , and therefore the power loss due to
switching Psw ∝ Eswfsw. The energy losses depend linearly on DC bus voltage and
the current flowing through the transistor, and therefore Esw ∝ |i(t)|VDC. They also
depend slightly on temperature and more so on gate resistance. Also, every time
the diode ceases to conduct current, the current undershoots zero and therefore the
current flow across the diode reverses for a small amount of time. During that same
time, the blocking voltage increases, inducing losses every time the diode ceases to
conduct, or once every switching period. This reverse recovery loss usually depends
on voltage and current as Err ∝ VDC

√
|i(t)|. Depending on the module, it may be

bulked into the transistor switching losses.
For DPWM methods, switching losses depend heavily on the current phase offset

relative to the voltage reference signal. That dependence emerges from DPWM’s
state clamping relative to the current peak [6]. Consider for example DPWM1 in
Figure 4.7(b). If the current waveform is in-phase with the DPWM1 reference, then
at peak current the module does not switch states on one leg; the leg starts to switch
for times away from the current peak, reducing overall switching losses. This fact
allows for a further increase in the switching frequency from the nominal factor of
3/2 at specific phase offsets to achieve equivalent switching losses. Figure 4.10 shows
the current phase relative to the voltage angle, and equivalent switching loss maps
for various DPWM methods; the maps include the fsw/f0 ratio compensation shown
in Figure 4.9.
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(a) ϕ = θidq − θvdq (b) fsw in kHz for DPWM1

(c) fsw in kHz for DPWM2− (d) fsw in kHz for DPWM3

Figure 4.10: Simulated equivalent switching frequency in kHz for converter switching
losses equal to continuous PWM methods at 10 kHz

The transistor-diode pair also has conduction losses that depend on current and
current direction relative to the transistor or the diode. The transistor and diode
can only conduct in opposite directions, which translates into a loss dependency
on current direction which in turn implies a dependency on the phase offset of the
current relative to the voltage reference signal: at the peak of the reference signal
with zero current phase offset, the current is positive −meaning that charge flows,
say, into the machine −and mostly the high-state transistor conducts compared to
the low-state diode. As the phase offset increases, the conduction load is shared more
by the low-state diode, changing the loss profile if the conducting resistances and
the forward voltages of the transistor and diode differ. Conduction losses depend
on the previous quantities as shown in equation (4.2.2), where vf,j is the forward
voltage and Rj is the conducting resistance. The index j chooses between transistor
and diode subscripts.

Pcond,j = vf,jij(t) + ij(t)2Rj (4.2.2)

The conduction losses therefore qualify the benefits DPWM methods have in
reducing switching losses if transistor and diode forward characteristics differ. For
in-phase current and voltage and transistor forward characteristics larger than diode
forward characteristics for example, the benefits of DPWM1’s switching loss reduc-
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tion decrease. That is typical. However, in the converse case for forward charac-
teristics with in-phase current and voltage waveforms, the benefits of DPWM1’s
switching losses are amplified. Since current phase changes with machine operat-
ing point, this complicates the situation of finding an optimal switching frequency
and PWM method depending on module parameters, even for minimizing converter
losses only.

4.3 Dual Three-Phase Machines
Dual three-phase machines are usually connected as shown in Figure 4.11 with a
spacial electrical angle offset α between the duals in a common stator.

α

Figure 4.11: A dual three-phase drive

There are two fundamental approaches for commissioning duty cycles with dual-
three phase machines: independent control and 12-sector space-vector decomposi-
tion. In independent control, one replicates the PWM methods shown in Chapter
4.2 and commands duty cycles to one dual machine independently. 12-Sector space-
vector decomposition expands the idea of the Clarke transformation to all available
states in a dual-three phase machine to command duty cycles as if it were a three-
phase machine. In that case, the states would be transformed onto the orthographic
projection of the hexeract, or 6-cube, with the four zero states at the origin. The
circuit topology of separate neutrals actually limits the amount of states, which
means that 12-sector SVM will always have one dual machine with a zero state for
an extended period of time. This creates a rectangle-like pulse with the fundamental
frequency, thus inducing odd harmonics in the system. As usual with three-phase
machines, including dual three phase machines, the harmonics with multiples of
three cancel and the system contains large 5th, 7th, 11th, 13th, ... harmonics. Figure
4.12(a) shows the clamping of one dual during a half-cycle, inducing odd harmonics.

If the neutrals of the two dual machines are disconnected, each of the states from
one machine is independent of the one in the other machine from a phase-to-neutral
voltage perspective. This means that there are 24− 4 = 12 unique non-zero voltage
states. Distributed over two dual machines, one acquires six non-zero voltage states
per dual and the zero voltage, making the machine controllable as two three-phase
machines. That is the idea behind a dual three-phase machine. A six-phase machine
has connected neutrals, which recovers the full richness of voltage states from the
hexeract, with only two zero states.

Because the machine under investigation in this dissertation is a dual three-
phase machine −two disconnected neutral points −and because independent control
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(a) (b)

Figure 4.12: 12-sector SVM phase switching state and phase-to-neutral normalized
voltage

does not induce additional harmonics −unlike 12-sector SVM −, the duals in this
dissertation are controlled using independent, or dual, control. 12-sector methods
with compensation are investigated with simulations.

4.3.1 PWM Methods with Coupling
Firstly we define the coupling coefficient ς as in equation 4.3.1:

ς2 =
∑
k

Γk , (4.3.1)

where Γ := {(λi − λj)2/(λiλj)} is the set of all unique combinations with the
specified elements, Γk is an element of Γ, λi = λ(L−1), λ(·) signifies the eigenvalue
operator, and L−1 is the inverse inductance matrix in the synchronous frame. Notice
how a value of ς = 0 means no coupling and corresponds to the case when Ld = Lq
and Md = Mq = 0. Large coupling coefficients imply a large difference between
the self inductances Ldq and large mutual inductances Mdq. Taking the inductance
matrix as

L =


Ld 0 Md 0
0 Lq 0 Mq

Md 0 Ld 0
0 Mq 0 Lq

 (4.3.2)

results in the following eigenvalues for its inverse:

λ1,2 = (Ld ±Md)−1

λ3,4 = (Lq ±Mq)−1 .
(4.3.3)

The resulting coupling coefficient is therefore

ς2 = 4
(

1
L2
d/M

2
d − 1 + 1

L2
q/M

2
q − 1

)
+

∑
sd=[−1,1]

∑
sq=[−1,1]

(Lq − Ld + sqMq − sdMd)2

(Ld + sdMd) (Lq + sqMq)
.

(4.3.4)
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The coupling measure ς can therefore measure high frequency magnetic coupling
for arbitrary inductance matrices L. This coefficient differs from that in [34], [35],
and [36] as it is more general. It should be taken as a measure of how much one may
expect a system’s current ripple to deviate from the canonical function in equation
(2.1.1). To compute a system’s current ripple with anisotropy or coupling exactly,
the one must compute it directly, as other factors such as the relative current angle
ϕ = ∆θi,v also play an important role.

(a) Asymmetric dual three-phase machine (b) Polar dual three-phase machine

Figure 4.13: ς2

The coupling coefficient ς is also a measure of inductance anisotropy, as Figure
4.13(a) shows for a machine with largeMdq (asymmetric machine) and 4.13(b) shows
for a machine with Mdq ∼ 0 (polar machine, effectively a three-phase machine with
Ld 6= Lq).

(a) ς = 6.96, fsw/f0 = 54 (b) ς = 4.51, fsw/f0 = 54

Figure 4.14: PWM method phase current ripple squared with equivalent switching
frequency for two different coupling coefficients ς

Larger ς signify larger differences in current ripple between different PWM meth-
ods for M ≤ 0.9, which in turn implies larger high frequency losses. Due to iron
saturation, a single machine may span the range of ς shown in Figure 4.14. Notice
also that for large M , it is always more convenient to use any of the DPWM meth-
ods, particularly DPWM3, as in the decoupled case. The largest difference between
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SVM and DPWM3 is about 60% at M ≈ 1.05, making it imperative to commute
with DPWM3 for M ≥ 1, which covers a broad range in the torqe-speed plane. In
fact, it might cover the entire field-weakening region.

(a) ς = 6.96, fsw/f0 = 54 (b) ς = 4.51, fsw/f0 = 54

Figure 4.15: PWM method phase current ripple squared with equivalent switching
frequency for two different coupling coefficients ς

Other PWM methods exploiting the additional degrees of freedom include D6φ
SVM-B2, which as Figure 4.15 shows, has about 66% less squared current ripple as
dual SVM for a broader range than dual DPWM3 for large coupling coefficients. For
smaller coupling coefficients, dual SVM has a modest 8% less squared current ripple
as D6φ SVM-B2, for which DPWM3 boasts the smallest squared current ripple.
D6φ SVM-B2 uses the degrees of freedom offered by dual three-phase converters to
eliminate the large 5th and 7th harmonics inherent in 12-sector PWM, which limits
its maximum modulation index to M =

√
2/3 + 1/

√
3 ≈ 1.115. Because current

ripple varies widely according to modulation index, coupling coefficient, and current-
voltage angle, there are multiple optima over those parameters. An optimization
of the current ripple by means of PWM method selection for a machine will have
different optimal PWM methods at different operating points.

Bulges for all PWM methods except for dual SVM methods having troughs in
the phase current ripple occur near the modulation index M = 0.6. In fact, they
occur near M = 2/π or M = π/3

√
3, since the largest relative ripple should occur

when the so-to-speak local duty cycle in the phase-to-neutral voltage approaches half
of the maximum local duty cycle. The maximum local duty cycle happens during
six-step operation, which has a modulation index of 4/π, creating bulges or troughs
near half that index.

4.3.2 Interleaving
Dual control allows for offsetting the pulses in each dual by a certain phase offset
called the interleaving angle. The main advantage of interleaving involves reducing
the DC capacitor current and is mostly thought to have little effect on the dual
machine losses, mainly because of the assumption that most losses would be copper
losses. Figure 4.16 shows the typical DC-linking capacitor current ripple for different
interleaving angles using SVM, DPWM1, DPWM2±, and DPWM3.
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(a) SVM (b) DPWM1

(c) DPWM2+ (d) DPWM2−

(e) DPWM3

Figure 4.16: Normalized DC-link capacitor RMS current ripple, ϕ = −36.9◦
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Notice that SVM creates the largest capacitor RMS current ripple difference
between the interleaving angles θI = 0◦ and θI = 90◦. Knowing that the capacitor
current ripple depends heavily on the relative current phase angle ϕ, few reasons
remain to justify the invariance of the trends in Figure 4.16 over different relative
current phase angles. Indeed, as Figures 4.17−4.20 show, the minimum capacitor
ripple changes with relative current phase angle.

The trough in Figure 4.16(a) can be explained in terms of local duty cycles, like
the bulges for phase current ripple. Also notice that for all of the PWMmethods, the
maximum phase current ripple occurs near or at θI = 90◦ for all M and ∆θi,v = ϕ.
The θI corresponding to the minimum capacitor current ripple, in contrast, changes
depending on PWM method, M , and ϕ. That makes the problem of optimizing the
interleaving angle interesting and nontrivial for the coupled machines considered.

(a) Phase ripple for ϕ = −36.3◦ (b) Phase ripple for ϕ = −5.7◦

(c) Capacitor ripple for ϕ = −36.3◦ (d) Capacitor ripple for ϕ = −5.7◦

Figure 4.17: SVM phase and capacitor current ripple squared for two different rel-
ative current angles ϕ and fsw/f0 = 54. (a) and (b) also show the maximum phase
ripple and (c) and (d) the minimum capacitor ripple per M with connected circles
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(a) Phase ripple for ϕ = −36.3◦ (b) Phase ripple for ϕ = −5.7◦

(c) Capacitor ripple for ϕ = −36.3◦ (d) Capacitor ripple for ϕ = −5.7◦

Figure 4.18: DPWM1 phase and capacitor current ripple squared for two different
relative current angles ϕ and fsw/f0 = 54. (a) and (b) also show the maximum
phase ripple and (c) and (d) the minimum capacitor ripple per M with connected
circles
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(a) Phase ripple for ϕ = −36.3◦ (b) Phase ripple for ϕ = −5.7◦

(c) Capacitor ripple for ϕ = −36.3◦ (d) Capacitor ripple for ϕ = −5.7◦

Figure 4.19: DPWM2 phase and capacitor current ripple squared for two different
relative current angles ϕ and fsw/f0 = 54. (a) and (b) also show the maximum
phase ripple and (c) and (d) the minimum capacitor ripple per M with connected
circles
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(a) Phase ripple for ϕ = −36.3◦ (b) Phase ripple for ϕ = −5.7◦

(c) Capacitor ripple for ϕ = −36.3◦ (d) Capacitor ripple for ϕ = −5.7◦

Figure 4.20: DPWM3 phase and capacitor current ripple squared for two different
relative current angles ϕ and fsw/f0 = 54. (a) and (b) also show the maximum
phase ripple and (c) and (d) the minimum capacitor ripple per M with connected
circles
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Chapter 5

Simulation Results

This chapter shows the results of the finite element analysis (FEA/FEM) simulations
to study the effects of inverter excitation on machine losses, especially interleaving.
Two machines with different windings are simulated: the asymmetric and polar ma-
chines. It is shown by means of iron loss distributions that include FEM-calculated
eddy currents with reaction fields that most of the losses due to interleaving occur
in the asymmetric machine in the stator teeth; most of those losses are eddy-current
losses. Losses do not increase as markedly in the polar machine due to spatially sep-
arated duals, i.e. less coupling between the duals. Interleaving reduces the simulated
efficiency of the machine by about 3% in the asymmetric machine and by about 1%
in the polar machine. The effect of switching frequency changes and pulse-width
modulation (PWM) methods on magnet losses are also investigated. It is found
that for certain PWM methods, switching frequencies, and speeds, magnet losses
increase due to tooth-reluctance harmonics and inverter-induced harmonic overlap.
Lastly, current differences in the DC-link capacitor are reviewed. It is found that the
loss savings in the DC-link capacitor due to interleaving are much less than the loss
savings in the asymmetric machine when not interleaving. Due to computational
constraints of simulating FEM-calculated eddy currents with reaction fields with
smaller-than converter commutation time scales, only 16 of the points most visited
from a WLTC cycle during motoring were simulated.

5.1 Asymmetrical and Polar Dual Three Phase
Machines

The machines being investigated are the asymmetrical and polar dual three phase
machines. The asymmetrical machine has an electrical 30◦ offset between the two
dual machines and the polar machine has the two duals wound on two different
halves of the cylinder, i.e. it has a mechanical 180◦ offset with a control electrical
angle offset of 0◦. Figures 5.1 and 5.2 show the phases as they are wound on the
stator with a marker indicating the separation between the duals.
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Figure 5.1: Winding of the asymmetrical machine.

Figure 5.2: Winding of the polar machine.

Figure 5.3: Cross-section of the asymmetric machine.
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5.1.1 Conduction Losses in the Windings
Since the machine is wound with small diameter cables, the skin effect in the cables
due to high frequency switching in the inverter is negligible, as is the related prox-
imity effect from the rotating field. As such, the current density distribution is not
taken into account in the FEM conduction loss in the copper windings. This section
summarizes the differences in conduction losses in the windings due to interleaving.

Figure 5.4 shows an overview of the losses by displaying the mean copper loss
over each simulated operating point. Two features come to the fore: the difference
in losses in the copper due to interleaving are negligible in both machines, and the
asymmetrical machine has slightly more losses in the copper than the polar machine.

Figure 5.4: Copper loss averaged over all simulated operating points.

(a) Interleaving on, θI = 90◦ (b) Interleaving off, θI = 0◦

Figure 5.5: Copper losses for the asymmetric machine in W
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(a) Interleaving on, θI = 90◦ (b) Interleaving off, θI = 0◦

Figure 5.6: Copper losses for the polar machine in W

(a) Asymmetric machine (b) Symmetric machine

Figure 5.7: Copper loss difference, PCu(90◦)− PCu(0◦) in W

Figures 5.5 and 5.6 show the copper loss over the torque-speed plane and their
scattered interpolation. Iso-loss curves droop at lower speeds rather than at the cor-
ner point due to the lack of simulated points there. The number of simulations had
to be kept at a minimum, since to simulate high-frequency effects with interleaving,
the time step must be at least one order of magnitude smaller as the interleaving
delay, about 1 µs. As Figure 5.7 shows, the differences in copper losses due to inter-
leaving remain small, i.e. below 1% for the asymmetric machine and below 1.7% for
the polar machine. One may conclude that the copper losses do not change much
due to interleaving, even accounting that, in some regions, interleaving increases
losses and decreases them in others. Larger regional deviations in opposite direc-
tions might have explained the unchanging copper losses seen in Figure 5.4, but
Figure 5.7 dispels that possibility.

Sampling ratios fsa/fsw contribute significantly to the current ripple amplitude as
already shown in Figure 4.6, where asymmetric sampling corresponds to fsa/ffw =
2. Figure 5.8 shows the simulated current ripple magnitude for fsa = 10 kHz at
one operating point for the asymmetric (strongly coupled duals) and an uncoupled
machine. Figure 5.8 shows that the current ripple is at a minimum for fsa/ffw = 1
and that coupling increases the current ripple.
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(a) Coupled duals (b) Not coupled duals

Figure 5.8: Simulated normalized current ripple magnitude with 10 kHz sampling
frequency for 0.1 norm. moment

To emphasize the point, Figure 5.9 displays the current ripple for various speeds
at 0.1 normalized moment for the coupled machine and the fictitious uncoupled
machine at various sampling and switching frequencies. The diagonal is marked
with a cyan line to indicate the minimum current ripple and the gold circles rimmed
in blue are the simulated points.
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(a) 0.5625 norm. speed, coupled (b) 0.5625 norm. speed, not coupled

(c) 0.625 norm. speed, coupled (d) 0.625 norm. speed, not coupled

(e) 0.6875 norm. speed, coupled (f) 0.6875 norm. speed, not coupled

Figure 5.9: Simulated normalized current ripple for various switching and sampling
frequencies at 0.1 norm. moment; θI = 0◦

.
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Although the current ripple causes negligible losses in the copper, the same rip-
ple causes ripples in the flux, causing iron losses. The next section further renders
changes in copper losses due to interleaving, sampling ratios, and switching fre-
quency as negligible, as the regional changes in iron loss reach 40% as opposed to
the changes below 2% simulated in copper.

5.1.2 Iron Losses

The losses in the iron can be separated into eddy current losses and hysteresis losses.
A third category of iron losses, anomalous losses, typically describe the additional
losses not accounted for when modeling the previous two categories upon comparing
theoretical or simulated iron losses to experimental results. Consequently, this sec-
tion on simulated iron loss considers only the iron loss separation into eddy current
losses and hysteresis losses. Furthermore, the terms eddy current losses, joule losses,
and conduction losses are all used interchangeably. Because a loss model based on
Fourier transforms of the magnetic field density is known to overestimate joule losses
in iron and effectively approximates the eddy currents with a formula containing the
magnetic field, the FEM simulation instead calculates the eddy currents in the iron
directly, from which the joule losses can be calculated in a straight-forward fash-
ion. The eddy currents are calculated considering the lamination thickness, which
amounts to 0.35mm.

The step time for the FEM simulations is 1µs to investigate the effects of inter-
leaving on iron losses. Due to the need to calculate the current density distribution
in the iron and the small step size, only half a fundamental period was simulated
in [132]. The results shown for the asymmetric machine are for one fundamental
period and those for the polar machine are for one-half period, since the entire ma-
chine −as opposed to just one-eighth of the machine in the case of the asymmetric
machine −must be simulated as a result of the winding distribution. As a result of
the longer simulation time for the asymmetric machine, results differ slightly from
those in [132], but nevertheless reinforce the conclusions therein.

Figure 5.10: Iron loss separation averaged over all simulated operating points.
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Figure 5.10 shows the averaged iron losses over the 16 FEM-simulated points
separated into their respective iron loss type and generation place. In both the
asymmetric and polar machines, the iron losses are concentrated in the stator, as
expected from the larger volume of iron in the stator. Most of the increases in
losses due to interleaving are also in the stator. Lastly, most loss increases due to
interleaving comprise of eddy current loss increases. The reason for the additional
eddy loss increase in iron is left for later in this section.

The specific loss distributions over the torque-speed range with interleaving on
and off and their difference are shown for hysteresis and eddy losses for the asymmet-
ric machine in Figures 5.11 and 5.12 and for the polar machine in Figures 5.13 and
5.14. Figure 5.11(a) and (c) show that hysteretic loss in the rotor mostly depends
on the speed of the rotor. One can expect this speed dependence to furthermore
depend on the number of teeth per pole-pair and coalesced MMF harmonics from
the dual three-phase machine, namely the 12th and 6th harmonics respectively. The
linear dependence on speed in the base speed region also validates the linear depen-
dence on frequency of the Bertotti hysteresis model. Hysteretic losses in the rotor
nevertheless remain small, and the changes due to interleaving in the rotor are even
smaller, as Figure 5.11(e) shows. The order of single Watts is negligible for this
class of machines. Hysteresis loss changes in the stator on the other hand, are in
the order tens of Watts, as Figure 5.11(f) makes clear. However, as Figures 5.11(b)
and (d) show, the hysteretic losses in the stator are about 300 W, which makes the
change in maximum hysteresis loss due to interleaving about 20% of that number.
Although not insignificant, the reader must consider that the total losses add up to
about 700 W, making the change in hysteresis losses less than 10% of the total iron
losses. The hysteretic losses in the stator also have a strong dependence on speed
like those in the rotor, except with a slight dependence on torque as well. Higher
torque implies larger magnetic fields, which for sufficiently large frequency, encloses
an non-negligible area of the hysteresis curve. This justifies the use of operating
point-dependent Bertotti hysteresis coefficients.

The hysteretic losses were calculated as a part of a software package that takes
the magnetic field waveform at every finite element and identifies periodic loops in
the waveform to map them to hysteresis curves based on the material’s anhysteretic
curve. That way the software captures the losses in the minor loops of the hysteresis
curve per finite element with the so-called DC offset. In this case the DC offset entails
the magnitude of the fundamental waveform, since the higher frequency components
ride atop that fundamental and are of much higher frequency. This waveform-based
hysteresis model is therefore independent of the Bertotti hysteresis model. This
independence validates the comparisons and modifications to the Bertotti model as
shown in equation (3.5.9).

Figure 5.12 reinforces the dominance of eddy losses in the iron over all operat-
ing points. The rotor eddy current losses are in the order of the stator hysteresis
losses, as is the stator eddy loss difference due to interleaving. This means that
interleaving mostly induces additional eddy current losses in the stator iron. In the
rotor where the interleaving eddy loss difference makes about 20% of the losses (see
Figure 5.12(e)), one can roughly neglect converter effects in Figure 5.12(c) to infer a
stronger dependency on torque than hysteresis loss. This is due to eddy loss’ square
proportionality not only to frequency, but to magnetic field amplitude.
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(a) Rotor, θI = 90◦ (b) Stator, θI = 90◦

(c) Rotor, θI = 0◦ (d) Stator, θI = 0◦

(e) Rotor, PH(90◦)− PH(0◦) (f) Stator, PH(90◦)− PH(0◦)

Figure 5.11: Hysteretic losses in W in the asymmetric machine for various operating
points
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Like hysteretic losses, the torque dependence implies a dependence on the mag-
netic field, which in turn implies a dependence on the current vector; that again
justifies the use of the model in equation (3.5.9). Since the eddy losses in the stator
nearly double upon interleaving, such a trend is not derivable from Figure 5.12(b)
but is replicated slightly in Figure 5.12(d). More importantly, the near doubling of
the eddy current losses in the stator for middle operating points upon interleaving
renders the model in equation (3.5.9) moot when modeling high frequency eddy
losses.

As already stated, the eddy current losses in iron are calculated based on a finite
element treatment of the eddy currents considering the thickness of the lamina with-
out the reaction field. The inclusion of the reaction field simply means that instead of
just using Faraday’s law of induction, the calculation includes Ampère’s law, which
couples the magnetic field back to the electric field via Ohm’s law. This coupling
models the proximity and skin effects and automatically includes the changing eddy
loss dependency on frequency from a squared proportionality to one to the power of
3/2. The calculation also takes into account the spatially and time-varying magnetic
permeability in the iron, which is necessary because of its inclusion in Ampère’s law.
This level of detail is unfortunately absent from the FEM post-processing package.
Temperature dependencies of the iron conductivity are also not accounted. The soft-
ware computes the eddy losses after computing the exciting field over all elements
at all simulated times, precluding an exact power balance calculation. However,
because the FEM simulation already calculates the quasi-magnetostatic magnetic
potential, Faraday’s law’s inclusion at the end only couples to the high frequency
components of the field, which do not interact with its torque-producing funda-
mental frequencies. That means that the energy injected by the converter at those
frequencies are all converted to losses or spatially canceled. Since the power balance
with electromagnetic fields involves volume-specific power, it is also important to
account where the converter injects its high frequency energy. With interleaving,
the converter injects the same energy into the machine as when not interleaving,
except that by virtue of the time delay involved and the coupled winding distribu-
tion in the asymmetrical machine (α = 30◦ spatial dual separation, or one tooth
separation), that energy produces a high-frequency magnetic field, which in turn
induces additional losses in the machine. This discussion depends on the spatial
distribution of the high frequency components, which necessitates the analysis of
the power distribution in the machine. Figures 5.15 to 5.21 show the power loss
density difference between interleaving on and off.

It suffices to say that the hysteretic and eddy losses in the polar machine shown
in Figures 5.13 and 5.14 follow the same trends as with the asymmetric machine,
except that the polar machine has more iron losses with θI = 0◦, but less losses
with θI = 90◦ compared to the asymmetric machine. The polar machine has more
hysteresis losses, but less eddy current losses than the asymmetric machine with
both interleaving angles. Like for the asymmetric machine, iron losses in the stator
dominate. Lastly, the hysteresis loss difference between engaged and disengaged
interleaving stays under 10 W in the stator, a hardly remarkable amount; the eddy
current loss difference in the stator for the polar machine is as much as the hysteresis
loss difference in the stator for the asymmetric machine. Combined, one arrives again
at the dominance of the eddy loss in the asymmetric machine’s stator, suggesting
again that the dual coupling in the asymmetric machine plays the key role.
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(a) Rotor, θI = 90◦ (b) Stator, θI = 90◦

(c) Rotor, θI = 0◦ (d) Stator, θI = 0◦

(e) Rotor, PE(90◦)− PE(0◦) (f) Stator, PE(90◦)− PE(0◦)

Figure 5.12: Eddy losses in W in the asymmetric machine for various operating
points
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(a) Rotor, θI = 90◦ (b) Stator, θI = 90◦

(c) Rotor, θI = 0◦ (d) Stator, θI = 0◦

(e) Rotor, PH(90◦)− PH(0◦) (f) Stator, PH(90◦)− PH(0◦)

Figure 5.13: Hysteretic losses in W in the polar machine for various operating points
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(a) Rotor, θI = 90◦ (b) Stator, θI = 90◦

(c) Rotor, θI = 0◦ (d) Stator, θI = 0◦

(e) Rotor, PE(90◦)− PE(0◦) (f) Stator, PE(90◦)− PE(0◦)

Figure 5.14: Eddy losses in W in the polar machine for various operating points
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(a) 0.26 norm. moment, 0.0625 norm. me-
chanical speed

(b) 0.4 norm. moment, 0.0625 norm. me-
chanical speed

(c) 0.56 norm. moment, 0.0625 norm. me-
chanical speed

(d) 0.26 norm. moment, 0.1875 norm. me-
chanical speed

(e) 0.02 norm. moment, 0.25 norm. me-
chanical speed

(f) 0.04 norm. moment, 0.25 norm. mechan-
ical speed

Figure 5.15: Asymmetric machine iron loss density difference, pFe(90◦)−pFe(0◦), for
various operating points
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(a) 0.38 norm. moment, 0.25 norm. me-
chanical speed

(b) 0.18 norm. moment, 0.375 norm. me-
chanical speed

(c) 0.6 norm. moment, 0.375 norm. me-
chanical speed

(d) 0.04 norm. moment, 0.46875 norm. me-
chanical speed

(e) 0.1 norm. moment, 0.5 norm. mechani-
cal speed

(f) 0.4 norm. moment, 0.5 norm. mechani-
cal speed

Figure 5.16: Asymmetric machine iron loss density difference, pFe(90◦)−pFe(0◦), for
various operating points
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(a) 0.04 norm. moment, 0.625 norm. me-
chanical speed

(b) 0.2 norm. moment, 0.625 norm. me-
chanical speed

(c) 0.04 norm. moment, 0.6875 norm. me-
chanical speed

(d) 0.2 norm. moment, 0.6875 norm. me-
chanical speed

Figure 5.17: Asymmetric machine iron loss density difference, pFe(90◦)−pFe(0◦), for
various operating points

Figures 5.15 to 5.17 show the asymmetric machine’s volume-specific iron loss
distribution in both the stator and rotor. From them and Figure 5.21(a), the reader
may infer that most of the loss difference concentrates in the stator teeth between
engaged and disengaged interleaving. In order to understand why, it is important
to juxtapose the asymmetric machine’s iron loss distributions for different operating
points with those of the polar machine in Figures 5.18 to 5.20 and Figure 5.21(b).
The polar machine continues to have the most loss difference in the stator teeth,
but over fewer teeth than the asymmetric machine. The teeth with the most loss
difference seem to be concentrated in the first and third quadrants over all operating
points. It turns out that those quadrants have teeth separating the two duals. Going
back to the asymmetric machine, all teeth separate the duals. We can therefore infer
that the inductive coupling between the duals concentrates in the iron tooth between
them, thus inducing more losses there.
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(a) 0.26 norm. moment, 0.0625 norm. me-
chanical speed

(b) 0.4 norm. moment, 0.0625 norm. me-
chanical speed

(c) 0.56 norm. moment, 0.0625 norm. me-
chanical speed

(d) 0.26 norm. moment, 0.1875 norm. me-
chanical speed

(e) 0.02 norm. moment, 0.25 norm. me-
chanical speed

(f) 0.04 norm. moment, 0.25 norm. mechan-
ical speed

Figure 5.18: Polar machine iron loss density difference, pFe(90◦)−pFe(0◦), for various
operating points
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(a) 0.38 norm. moment, 0.25 norm. me-
chanical speed

(b) 0.18 norm. moment, 0.375 norm. me-
chanical speed

(c) 0.6 norm. moment, 0.375 norm. me-
chanical speed

(d) 0.04 norm. moment, 0.46875 norm. me-
chanical speed

(e) 0.1 norm. moment, 0.5 norm. mechani-
cal speed

(f) 0.4 norm. moment, 0.5 norm. mechani-
cal speed

Figure 5.19: Polar machine iron loss density difference, pFe(90◦)−pFe(0◦), for various
operating points
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(a) 0.04 norm. moment, 0.625 norm. me-
chanical speed

(b) 0.2 norm. moment, 0.625 norm. me-
chanical speed

(c) 0.04 norm. moment, 0.6875 norm. me-
chanical speed

(d) 0.2 norm. moment, 0.6875 norm. me-
chanical speed

Figure 5.20: Polar machine iron loss density difference, pFe(90◦)−pFe(0◦), for various
operating points

The total iron losses are shown for both the asymmetric and polar machines
in Figures 5.22 and 5.23 respectively. The contrast between Figure 5.22(a) and
(b) is remarkable: the typical iron loss trend that follows slightly curved contours
increasing with speed breaks upon interleaving. In contrast, Figure 5.23 does not
noticeably change. Figure 5.24(b) shows the iron loss difference between interleaving
on and off, which is about an order of magnitude less than the difference for the
asymmetric machine shown in Figure 5.24(a). As stated before, eddy losses increase
the most upon interleaving in both machines. However, due to the higher degree of
localized inductive coupling in the asymmetric machine, eddy losses increase much
more there than in the polar machine. From a torque-speed map perspective, the
losses seem to localize near fm = 0.25 and Te = 0.3 for both machines. Indeed,
the distribution of losses across the torque-speed map cannot be explained by the
localized loss model alone.
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(a) Asymmetric machine (b) Polar machine

Figure 5.21: Mean iron loss distribution difference, pFe(90◦)− pFe(0◦), over all oper-
ating points

(a) Interleaving on, θI = 90◦ (b) Interleaving off, θI = 0◦

Figure 5.22: Iron losses for the asymmetric machine in W

(a) Interleaving on, θI = 90◦ (b) Interleaving off, θI = 0◦

Figure 5.23: Iron losses for the polar machine in W
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(a) Asymmetric machine (b) Polar machine

Figure 5.24: Iron loss difference, PFe(90◦)− PFe(0◦) in W

(a) Interleaving on, θI = 90◦ (b) Interleaving off, θI = 0◦

Figure 5.25: Efficiency for the asymmetric machine in %

(a) Interleaving on, θI = 90◦ (b) Interleaving off, θI = 0◦

Figure 5.26: Efficiency for the polar machine in %
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The loss distribution in Figures 5.22 and 5.23 are incorporated into the typical
efficiency contours for an IPMSM in Figures 5.25 and 5.26. The efficiency difference
is more noticeable on both machines over both contours, but how the differences
are distributed across the torque-speed map become much clearer in Figure 5.27.
The efficiency decrease in the polar machine remains below about 1% in lower load
areas; in larger load areas, it does not exceed 0.1%. That number increases for the
asymmetric machine for larger loads to 1%, and to 3% for smaller loads.

(a) Asymmetric machine (b) Polar machine

Figure 5.27: Efficiency difference, η(90◦)− η(0◦) in %

Since interleaving causes significant additional iron losses in the asymmetric ma-
chine, and because simulating the µs time steps requires lots of computation time
and capability, a simplified model incorporating the source of interleaving, i.e. the
inverter, would accelerate the analysis over the entire torque-speed map. As delin-
eated in [132], the high-frequency components of the current function as the bound-
ary conditions to the magnetic field in the iron lamina, which in turn induce the
lossy eddy currents in the stator teeth. An approximation of the losses in laminated
rectangular cores appears in [116], which is modified here to consider the phases
from the duals functioning as boundary conditions. Equation (5.1.1) describes the
eddy current power for the Fourier-transformed high-frequency current density dif-
ference between phases surrounding a stator tooth lamina, where ` is the thickness
of the lamina, w is the lamina width, h is the length of the tooth, nl is the number
of laminae, ωj is the jth angular frequency, µ is the permeability of the iron, σ is the
iron conductivity, and J0,i,j is the jth Fourier coefficient of the ith phase pair current
density enclosing a stator tooth.

PE ≈
nlw`

2h

2

∞∑
j

∑
i∈I

J0,i,jJ̄0,i,j

√
µωj
2σ (5.1.1)

The set of boundary phase pairs I is determined by Figure 5.1 for the asymmetric
machine and Figure 5.2 for the polar machine. The unique boundary conditions on
the stator teeth are shown in Table I and II, where the operator ∆ indicates taking
the high frequency components greater than the switching frequency, fsw, of the
quantity. For example, ∆i signifies the current ripple, whereas ∆∆iI signifies the
difference between two current ripples in the set of boundary phase pair indexes.
The current density J0,i,j = (∆∆i)i,j/A, where A is the active area of the phase.
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TABLE I: Asymmetric Machine Unique Boundary Conditions on Stator Teeth

I, Diff. Duals ∆∆iI
U+

2 , U
+
1 ∆iU2 −∆iU1

U+
1 , W

−
2 ∆iU1 + ∆iW2

W−
2 , W

−
1 −∆iW2 + ∆iW1

W−
1 , V

+
2 −∆iW1 −∆iV2

V +
2 , V

−
1 ∆iV2 + ∆iV1

V −1 , U
−
2 −∆iV1 + ∆iU2

TABLE II: Polar Machine Unique Boundary Conditions on Stator Teeth

I, Diff. Duals ∆∆iI I, Diff. Phases Only ∆∆iI
V −2 , U

+
1 −∆iV2 −∆iU1 U+

2 , W
−
2 ∆iU2 + ∆iW2

U+
1 , W

−
2 ∆iU1 + ∆iW2 W−

2 , V
+

2 −∆iW2 −∆iV2

W−
2 , V

+
1 −∆iW2 −∆iV1 V +

1 , U
−
1 ∆iV1 + ∆iU1

V −1 , U
+
2 −∆iV1 −∆iU2 U−1 , W

+
1 −∆iU1 −∆iW1

U+
2 , W

−
1 ∆iU2 + ∆iW1 W+

1 , V
−

1 ∆iW1 + ∆iV1

W−
1 , V

−
2 −∆iW1 + ∆iV2 V +

2 , U
−
2 ∆iV2 + ∆iU2

Figure 5.28: Asymmetric machine current ripple difference, ∆∆iI(90◦)−∆∆iI(0◦),
for f > fsw in Ampères

(a) Different duals one tooth apart (b) Different phases one tooth apart

Figure 5.29: Polar machine current ripple difference, ∆∆iI(90◦) − ∆∆iI(0◦), for
f > fsw in Ampères
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Figures 5.28 and 5.29 show correspondence with the eddy current loss differences
in Figures 5.12 and 5.14. Furthermore, the current difference magnitude between
different duals separated by one tooth (Figure 5.29(a)) is greater than the current
difference magnitude between different phases belonging to the same dual separated
by one tooth (Figure 5.29(b)). This confirms that the additional coupling between
duals contributes the most to the iron loss increase upon interleaving, as the cur-
rents of the asymmetric machine in Figure 5.28 initially suggest. Only the polar
machine’s current coupling shown in Figure 5.29, however, could confirm that, since
the machine contains different teeth separating duals and different phases, whereas
the asymmetric machine only contains teeth separating both duals and different
phases simultaneously. Dividing the current differences by the active area and per-
forming a Fourier transform yields the J0,i,j boundaries in equation (5.1.1), resulting
in Figure 5.30. After inspecting Figure 5.30, which just considers the eddy current
loss in the stator teeth, it is evident that most of the losses are generated there in the
form of eddy currents. Faraday’s law with Ohm’s law inspired this construction, as
∇×J = −σ∂B/∂t in cylindrical coordinates for the radial magnetic field component
results in

1
r

∂Jz
∂θ

= −σ∂Br

∂t
. (5.1.2)

(a) Asymmetric machine (b) Polar machine

Figure 5.30: Eddy current iron loss approximate difference in the stator teeth,
PE(90◦)− PE(0◦), for f > fsw in Watts

Equation (5.1.3) describes another high frequency iron loss model that does not
need FEM simulations to approximate the eddy current losses based on equation
(25) in [71].

PE = V

σ`2

∞∑
j=1

H0,jH̄0,jϑj
sinhϑj − sinϑj
coshϑj + cosϑj

(5.1.3)

where
ϑj = `

√
ωjµσ

2 , (5.1.4)

H0 = î/(2πR/p+ 2l), and V represents the volume of a section of the electrical
steel core. R is the inner stator radius and l is the length of the machine. Since the
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permeability of the iron changes with the operating point but the conductivity does
not change much with temperature, knowing the permeability at each operating
point is important. The model takes a bulk permeability for the stator based on
material data and the flux magnitude ψ at every operating point. That method is
used to generate the eddy current iron loss difference in Figure 5.31. For Figure 5.32,
the flux is interpolated with the current magnitude as query points only along the
q−axis at every operating point because the stator iron saturates largely irrespective
of the current angle. There, the magnet losses are also extracted by using the same
current magnitude-based permeability to build a magnetic circuit. Equation (17)
in [71] is used to estimate the magnet losses using the postulated high-frequency
flux path due only to interleaving starting at one stator tooth, bending to the yoke
to the next tooth, crossing the airgap, going through some iron before crossing the
magnet, flowing through iron again to lastly cross the airgap and end at the tooth
at which the flux path started.

(a) ∆i(90◦)−∆i(0◦) (b) PE(90◦)− PE(0◦)

Figure 5.31: Current ripple difference and current ripple, coupling, and permeability-
based eddy current loss model difference
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(a) PE,stator(90◦)− PE,stator(0◦) (b) Pmag(90◦)− Pmag(0◦)

(c) Pmag(90◦) + PE,stator(90◦) − Pmag(0◦) −
PE,stator(0◦)

Figure 5.32: Current ripple, coupling, and current magnitude-interpolated
permeability-based eddy current loss model difference and magnet losses based on
magnetic circuit

5.1.3 Conduction Losses in the Permanent Magnets

The magnets in both the asymmetrical and polar machines were segmented insofar to
allow skewing, but no additional segmentation was present. To clarify, the simulation
did not simulate rotor skewing, as the computation time with the given resources
would have been impractical. Instead, the model exploits the tangential and axial
symmetries of the machine by simulating one pole and half of an axial segment
[133]. Segmenting just for skewing might not sufficiently decrease the eddy current
losses in the magnets due to switching in the inverter, as it sources the largest losses
there for distributed windings and additional segmenting indeed reduces losses after
a critical number of segments [112] [134]. This section shows the magnet losses for
the asymmetrical machine at 325 V.

Due to the absence of the 5th and 7th harmonics in the polar machine, it is
expected that the magnet losses due to the winding configuration are less than
those in the asymmetrical machine. Slotting losses should stay relatively the same.
Also, magnet losses are expected to increase with increasing DC-bus for the same
machine, as the current ripple, and by extension the linkage flux ripple, increase with
increasing DC-bus voltage. Lastly, hysteresis losses in the magnet, even with minor
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loops, are negligible compared to its conduction losses. The tested points are shown
in Figure 5.33. For each point, a 3D FEM simulation was done in JMAG for different

0 0.1875 0.375 0.5625 0.75
0

0.3

0.6

0.9

1.2
Peak Torque

Cont. Torque

Field W. Bound

Op. Points

Figure 5.33: Simulated operating points

power sources. The power sources include a current source (CS), an analogue voltage
source (VS), and inverter voltage-sourced with different PWM methods, as shown
in Figure 5.34. The simulation using current sources does not model the magnet
losses well; the analog voltage source captures some of the losses at higher speeds,
but at all speeds, an inverter model is needed to ascertain the losses in the magnet,
especially at low speeds when the losses in the magnet are almost exclusively due
to inverter excitation.
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Figure 5.34: Magnet losses at different operating points for different power sources.
Inverter voltage is switched at 10kHz.
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Figure 5.35: Magnet losses at different operating points for different power sources.
Inverter voltage is switched at 15kHz when operated with DPWM.

The flux ripple as seen in the rotor frame due to inverter switching increases the
losses significantly because of the magnet’s large conducting mass and large voltage
excitation and switching frequency. However, because the current ripple ∆i ∝ 1/ω,
where ω stands for the switching frequency, and the current density ripple in the
magnet is roughly J ∝ ∆i, according to the thick plate, volume-specific power loss
[71],

pe ≈
JJ̄

`

√
ωµ

2σ

∝ V 2
DC
`

√
µ

2σω3

(5.1.5)

where ` is the thickness of the plate, µ is the permeability of the magnet, σ is the
conductivity of the magnet, and J̄ indicates the complex conjugate of J . Ironically
then, what generates the eddy currents in the magnets in the first place is the time-
varying magnetic field linked across the air-gap, or Faraday’s law applied on Ohm’s
law as ∇× J = −σ∂B/∂t, also dampens the power losses as the time-variation, or
angular frequency ω, increases.
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Figure 5.36: Magnet losses for various switching frequencies and PWM methods.

These trends can be seen in Figure 5.36 where the different operating points are
ordered by increasing torque from left to right and increasing speed from top to
bottom. Overall, losses increase with increasing speed and decrease with increasing
switching frequency, with a peak or a trough where the machine harmonics and
inverter subharmonics interact. One may verify the speed and switching frequency
trends by inspecting the increasing mean loss with speed and ∂Pe/∂fsw < 0, or
negative linear best fit slope, shown in Table III. It might appear as if the approx-

TABLE III: PM Loss Trends

OP Torque, norm. Speed, norm. Mean Loss in W ∂Pe/∂fsw in W/kHz
10 0.1 0.5 342 -19.4
11 0.1 0.625 451 -22.3
12 0.1 0.6875 509 -12.5
7 0.2 0.5 341 -25.5
8 0.2 0.625 422 -24.9
9 0.2 0.6875 468 -23.8

imation from equation (5.1.5) supports ∂Pe/∂fsw < 0 but the increasing loss with
speed contradicts both. It is however, a simple manner that the losses trend dif-
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ferently for the lower frequencies associated with speed than the higher frequencies
associated with switching and that the losses come from two different sources: lower
frequency losses trend quadratically and come from the reluctance variation due to
slotting as seen by the rotor magnets; higher frequency losses trend with the square
root of the frequency and come from the inverter whose excitation is proportional
to 1/fsw. The power density loss trends for a constant exciting current density J at
the edges of the magnet are shown in Figure 5.37

Figure 5.37: Analytical power density and its approximation at different frequencies
[71].

The relationships between the machine and inverter harmonics can be traced by
inspecting the spectra of the phase voltage, phase currents, currents in the rotor
frame, magnetic field as seen from the rotor, the current density in the magnet, and
finally the loss density in the magnet. The process is summarized in Figure 5.38

Figure 5.38: Simplified process chain of magnet eddy current creation due to inverter
feeding.
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(b) fsw = 13.5 kHz
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(d) fsw = 13.5 kHz
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(f) fsw = 13.5 kHz
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(h) fsw = 13.5 kHz

Figure 5.39: Spectra of vU1, iU1, id1, and iq1 for various PWM methods at operating
point 9.
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As expected from Figure 5.39, the voltage excitation harmonics translate to the
phase current harmonics. In addition, several other harmonics appear in the phase
current labelled as ’Flux’. Due to the opposite wavenumber sign of the sideband har-
monics, many harmonic pairs coalesce to their harmonic center. The most relevant
harmonic in the rotor frame is the 12th harmonic, as it represents the harmonic due
to slotting and is large enough to interact with subharmonics from the first carrier
group, notwithstanding interactions with the 24th harmonic and second carrier group
subharmonics, which have smaller amplitudes. As their namesake suggests, slotting
harmonics engender from the number of stator teeth per pole-pair, as the gaps be-
tween the stator teeth constitute a tangential reluctance variation, and therefore a
magnetic field time-change, in the rotor frame. Both the asymmetric machine and
the polar machine have 12 teeth per pole-pair.

Figure 5.40: FEM magnet eddy currents for SVPWM, 11 kHz excitation at OP 9
for the 1st stator tooth harmonic. A half segment of one machine pole is shown.

(a) Top (b) Front

Figure 5.41: Joule loss density contours for SVPWM, 11 kHz excitation at OP 9 for
the 1st stator tooth harmonic.
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(b) fsw = 13.5 kHz
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(c) fsw = 11 kHz
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(d) fsw = 13.5 kHz
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Figure 5.42: Spectra of B, Jz, and pe at the maximum point from Figure 5.41.

Contrary to the implication that the gradient of the scalar potential reaches the
magnet in [133], the correlation between the d−axis current 12th harmonic trends
over different PWM methods does not correlate with the magnetic field amplitude
in Figures (5.42)(a) and (b) although it does for Figures (5.42)(c) and (d) −and
consequently also for Figures (5.42)(e) and (f) −because the magnetic field is a
superposition of the loss-exciting field in the magnets and the flux reaction as a
result of those eddy currents. Overall, the slotting harmonics interact with the first
subharmonic in the first carrier group of each PWM method to increase magnet
losses for low torques, and interact in different ways for larger torques, or load
power factors, as shown in Figure 5.36. Although the hierarchy of loss magnitudes in
Figures (5.34) and (5.35) can be explained by the current ripple [6] for a modulation
index of 0.9 corresponding to the 12% voltage reserve, the harmonic interaction, or
resonance, cannot. Similarly, due to the absence of loss hierarchies in the base-speed
region, magnet losses may not simply be correlated to current ripple variations due
to different PWMmethods. Rather, current ripple seems to excite a baseline amount
of eddy currents in the magnets, after which harmonic interactions dominate at high
speeds.

The spectra in Figures (5.39) and (5.42) suffer from broad frequency resolution
due to the short simulation time. To address this and to definitively show that
harmonic interaction causes the additional magnet losses, we trace the spectra from
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the maximal point current density to the sum of the d−axis currents in Figures
(5.43)-(5.46) over ten fundamental periods for OP11. The latter influence the mag-
net losses the most, as they are directly aligned with the magnet rotor flux and can
be used to observe the harmonic interaction experimentally, after which one may
infer additional magnet losses.

(a)

(b) Zoomed (a)

Figure 5.43: Maximal axial current density at OP11 with DPWM2 for various
switching frequencies and simulated for 10 electrical periods.
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(a)

(b) Zoomed (a)

Figure 5.44: Maximal magnetic field amplitude at OP11 with DPWM2 for various
switching frequencies and simulated for 10 electrical periods.
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(a)

(b) Zoomed (a)

Figure 5.45: Sum of d−axis currents at OP11 with DPWM2 for various switching
frequencies and simulated for 10 electrical periods.
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(a)

(b) Zoomed (a)

Figure 5.46: U1 phase-to-neutral voltage at OP11 with DPWM2 for various switch-
ing frequencies and simulated for 10 electrical periods.
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5.2 Losses in the Direct-Current Linking Capaci-
tor

Losses in the DC link capacitor are usually small, especially in automotive appli-
cations where polypropylene film and metallized polypropylene film capacitors offer
lower equivalent series resistance (ESR) values compared to aluminium electrolytic
capacitors. Their values are typically in the tenths of mΩ. As a result, one might
think that the quantity to evaluate the capacitor’s influence on the system should
rely on life expectancy. Using the Arrhenius law model due to temperature changes
[135] [136],

t` = t0e
Ea
kb

(
1
T
− 1
T0

)
, (5.2.1)

where kb is the Boltzmann constant, Ea is the activation energy of the system
fittable from datasheet curves, and t` is the expected lifetime of the capacitor. Using
a simple conduction model with thermal resistance Rth and some ambient tempera-
ture Ta, then the capacitor temperature during operation is T = I2

C,rmsRC/Rth +Ta.
Taking another operating temperature-current pair and subtracting them results in
T1 − T2 = (I2

C,rms,1 − I2
C,rms,2)RC/Rth. Dividing by T1 − Ta and realising that the

current corresponding to the ambient temperature is zero, one obtains

T2 = T1 − (T1 − Ta)
(

1−
I2
C,rms,2

I2
C,rms,1

)
. (5.2.2)

Since the correspondence between the subscripts in equation (5.2.1) are arbitrary,
we can pick any two temperature-lifetime pairs so that t0 → t1 as T0 → T1 for
T1 > Ta. Also, the subscript 2 was arbitrary, so that we can pick any T2 → T and
corresponding current with respect to the temperature-current pair with subscript
1. This results in the lifetime equation as a function of capacitor rms current as

t` = t1 exp
(
Ea
kb

(
1

T1 − (1− γ2)(T1 − Ta)
− 1
T1

))
, (5.2.3)

where γ := IC,rms/IC,rms,1. Since t` is a decreasing function of γ, a candidate cost
function must increase with γ, indicating that the DC-link capacitor rms current
must be minimized, as expected. However, as will be shown in the beginning of
Chapter 8.1, capacitor cost per ampere is orders of magnitude lower than the cost
per unit power over the capacitor lifetime for the asymmetric machine. As a result,
the interleaving angle for highly coupled machines should be set to zero. However,
because the losses due to interleaving in the polar machine are much lower, an
optimization for overall minimal losses is possible. Figure 5.47 and Figure 5.48
show the RMS capacitor current ripple for the asymmetric and polar machines from
the FEM respectively, each showing the results with two interleaving angles. Figure
5.49 shows the RMS capacitor current ripple difference between the interleaving
angle for the asymmetric and polar machines. As expected, interleaving reduces the
capacitor current ripple overall.
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(a) Interleaving on, θI = 90◦ (b) Interleaving off, θI = 0◦

Figure 5.47: RMS capacitor current ripple for the asymmetric machine in A

(a) Interleaving on, θI = 90◦ (b) Interleaving off, θI = 0◦

Figure 5.48: RMS capacitor current for the polar machine in A

(a) Asymmetric machine (b) Polar machine

Figure 5.49: RMS capacitor current ripple difference, IDC(90◦)− IDC(0◦) in A
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Chapter 6

Optimization of the Simulation
Results

Broadly speaking, high frequency conduction losses in copper are less than high
frequency conduction losses in iron due to the often small skin depth of the eddy
currents in the iron compared to the lamination thicknesses. The high frequency
iron loss model in equation (5.1.3) along with the bulk permeability profile over the
operating space is decisive in finding optimal switching frequency and PWM method
programs over the operating space in simulations. Whereas the switching frequency
program varies more for the asymmetric machine than the one for the polar machine,
the situation is reversed for the PWM program. The switching frequency range
simulated spans 4 kHz to 20 kHz; SVM, DPWM1, DPWM2, DPWM3, VDPWM,
and D6φ SVM-B2 are the investigated PWM methods. Six-step switching is not
investigated due to the large currents and losses it incurs, along with a relative loss
of control robustness. A median efficiency improvement for both machines of 1%
from the corner point to the origin, a significant figure, results from the optimization.

6.1 Numerical Optimization of the Interleaving
Angle

As stated in the previous chapter, iron losses due to interleaving are too large for the
small series equivalent resistance RC of the capacitor for the asymmetric machine.
Due to reduced coupling in the polar machine, however, a nontrivial interleaving
map comes to the fore, as shown in Figure 6.1. In regions where iron loss dominates,
namely below the continuous operation boundary, it is best to set the interleaving
angle to θI = 0◦; for larger torque and power, θI = 90◦ is best for the polar machine.
The objective function minimized is the sum of the DC link capacitor loss with
RC = 0.5 mΩ and iron losses as calculated by the FEM software package.
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(a) Asymmetric machine (b) Polar machine

Figure 6.1: Optimal interleaving map from FEM with blue θI = 0◦ and yellow
θI = 90◦ setting RC = 0.5 mΩ

Expanding the simulation area by using a high frequency coupling model and
the iron loss model specified in equation (5.1.3) results in Figure 6.2 for two dif-
ferent capacitor series-equivalent resistances RC . Similarly, Figure 6.3 shows the
optimal interleaving map when choosing between two interleaving angles for the
polar machine. Only RC = 0.5 mΩ is realistic for metallized polypropylene film
capacitors. As before, because the asymmetric machine induces more iron losses
due to interleaving than the polar machine, only at large torque where copper losses
dominate does interleaving lend itself for overall power loss reduction; due to the
weaker coupling in the polar machine, interleaving lends itself in more areas. How-
ever, Figure 6.1(b) and Figure 6.3(a) do not match, especially at low torques and
low speeds. That is simply due to the different iron loss models used in the FEM
and the high frequency coupling model. However, there is better agreement between
Figure 6.1(a) and Figure 6.2(a) for the asymmetric machine. Moreover, one may ex-
pect better agreement between the high frequency coupling model and experiments,
as a comparison between Figure 5.31 and Figure 7.4 shows.

(a) RC = 0.5 mΩ (b) RC = 10 mΩ

Figure 6.2: Optimal interleaving map from the high frequency coupling model with
blue θI = 0◦ and yellow θI = 90◦ for the asymmetric machine
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(a) RC = 0.5 mΩ (b) RC = 10 mΩ

Figure 6.3: Optimal interleaving map from the high frequency coupling model with
blue θI = 0◦ and yellow θI = 90◦ for the polar machine

Figures 6.4 and 6.5 show the efficiency gains and power savings for the asymmet-
ric and polar machines respectively. Notice how setting θI = 0◦ is more important
in the asymmetric machine compared to the polar machine due to the unexpectedly
large iron losses due to interleaving and that said increase in losses occurs in the
continuous operation regime of the torque-speed plane.

(a) ∆η in % (b) Power savings in %

Figure 6.4: Efficiency gains and power savings when θI = 0◦ compared to θI = 90◦
for the asymmetric machine and RC = 0.5 mΩ

135



6.2. SWITCHING FREQUENCY OPTIMIZATION

(a) ∆η in % (b) Power savings in %

Figure 6.5: Efficiency gains and power savings when θI = 0◦ compared to θI = 90◦
for the polar machine and RC = 0.5 mΩ

6.2 Switching Frequency Optimization

The entire torque-speed plane was simulated using the same high-frequency model
for different switching frequencies between 4 kHz and 20 kHz and θI = [0◦, 90◦]. The
sampling frequencies were synchronous with the switching frequencies for all simula-
tions unless otherwise noted. Figure 6.8 shows the optimal switching frequency for
minimal drive losses over various PWM methods for the asymmetric machine and
Figure 6.15 shows them for the polar machine. The variable discontinuous PWM
method (VDPWM) is a method using the clamping angle in generalized PWM and
having it track the current vector phase offset from the voltage vector. The rationale
behind that strategy involves minimizing inverter switching losses since the num-
ber of commutations are minimized at peak current. More details are explained in
the following section. Notice how the optimal switching frequency increases with
increasing speed and decreasing torque for all PWM methods and both machines.
The reason for that requires the observation that high frequency losses in iron in-
crease with decreasing switching frequency, but since at low torques switching losses
are low, those losses in iron may be decreased by increasing the switching frequency.
The low-torque, mid-speed region is critical for continuous machine operation and
it happens to have the most variability as to the optimal switching frequency, ac-
cording to simulations. Comparing Figures 6.8 and 6.15 show that the asymmetric
machine requires more changes in the switching frequency irrespective of the PWM
method. The large torque and low speed region, meaning the short-time operat-
ing regions, require 4 kHz switching frequencies or lower for both machines, since
inverter losses dominate. The inverter model was fitted to the asymmetrical dual
three-phase IGBT inverter’s power loss measurements; due to the additional 5th

and 7th harmonics in the measurements but absent in the model, the inverter model
embeds the additionally measured harmonics into forward voltage and conduction
resistance parameters, possibly biasing the inverter losses especially for large cur-
rents. This partly explains the lack of variability in the optimal switching frequency
for the polar machine, as shown by Figure 6.15. Therefore it is likely that measured
results will have larger switching frequencies at mid-speeds and large torque for both
machines. It is also likely that the optimal switching frequency will increase in the
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large torque, low speed region with inverters having more efficient SiC components
and more effective cooling. Furthermore, if θI = 90◦, losses increase for all torques
near fm = 0.25 normalized speed: a larger switching frequency can compensate for
those additional interleaving losses in the asymmetric machine as shown in Figure
6.6. One may expect little change in the optimal switching frequency profile for the
polar machine upon setting θI = 90◦, as Figure 6.7 shows, due to the weak coupling
between duals.

(a) θI = 0◦ (b) θI = 90◦

Figure 6.6: Optimal switching frequency for various interleaving angles for the asym-
metric machine

(a) θI = 0◦ (b) θI = 90◦

Figure 6.7: Optimal switching frequency for various interleaving angles for the polar
machine
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(a) SVM (b) DPWM1

(c) DPWM2 (d) DPWM3

(e) VDPWM (f) D6φ SVM-B2

Figure 6.8: Optimal switching frequency for various PWM methods for the asym-
metric machine with θI = 0◦
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Alluding to Figures 6.9-6.14, notice how for highly coupled machines and DPWM
methods, the efficiency and power gains shift to the low torque and mid speed regions
compared to SVM methods and lightly coupled machines. That is likely because
clamping excites larger harmonics in regions with large coupling at large torques,
reducing the benefits of variable switching frequency operation for a given DPWM
method. Whereas SVM shows efficiency improvements of 1% for an approximately
constant-speed over many torques, DPWM methods only show an improvement of
0.5% in similar regions and for a more limited operating space.

(a) ∆η in % (b) Power savings in %

Figure 6.9: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, SVM, and RC = 0.5 mΩ for the asymmetric machine

(a) ∆η in % (b) Power savings in %

Figure 6.10: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, DPWM1, and RC = 0.5 mΩ for the asymmetric machine
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(a) ∆η in % (b) Power savings in %

Figure 6.11: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, DPWM2, and RC = 0.5 mΩ for the asymmetric machine

(a) ∆η in % (b) Power savings in %

Figure 6.12: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, DPWM3, and RC = 0.5 mΩ for the asymmetric machine
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(a) ∆η in % (b) Power savings in %

Figure 6.13: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, VDPWM, and RC = 0.5 mΩ for the asymmetric machine

(a) ∆η in % (b) Power savings in %

Figure 6.14: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, D6φ SVM-B2, and RC = 0.5 mΩ for the asymmetric machine
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(a) SVM (b) DPWM1

(c) DPWM2 (d) DPWM3

(e) VDPWM (f) D6φ SVM-B2

Figure 6.15: Optimal switching frequency for various PWM methods for the polar
machine with θI = 0◦
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As mentioned before, the inverter loss model has asymmetric machine winding
harmonics embedded into its parameters, skewing the optimal switching frequency
per PWMmethod to the lower end, explaining the dominance of 4 kHz as the optimal
switching frequency, as shown in Figure 6.15. Despite that, a similar improvement
in efficiency and power gains as shown in Figures 6.16-6.21 is expected, especially
because coupling is near a minimum in the large torque and mid speed regions for
the polar machine whereas coupling was near its maximum in the same region for the
asymmetric machine. Notice that, unlike with the asymmetric machine, the small
coupling in the polar machine in the aforementioned region changes the efficiency
and power improvement contours to resemble those of SVM with the asymmetric
machine, similarly increasing the efficiency to at least values greater than 0.5%.

(a) ∆η in % (b) Power savings in %

Figure 6.16: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, SVM, and RC = 0.5 mΩ for the polar machine

(a) ∆η in % (b) Power savings in %

Figure 6.17: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, DPWM1, and RC = 0.5 mΩ for the polar machine

143



6.2. SWITCHING FREQUENCY OPTIMIZATION

(a) ∆η in % (b) Power savings in %

Figure 6.18: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, DPWM2, and RC = 0.5 mΩ for the polar machine

(a) ∆η in % (b) Power savings in %

Figure 6.19: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, DPWM3, and RC = 0.5 mΩ for the polar machine
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(a) ∆η in % (b) Power savings in %

Figure 6.20: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, VDPWM, and RC = 0.5 mΩ for the polar machine

(a) ∆η in % (b) Power savings in %

Figure 6.21: Efficiency gains and power savings between fsw,opt and 10 kHz when
θI = 0◦, D6φ SVM-B2, and RC = 0.5 mΩ for the polar machine

6.3 PWM Method Optimization
Out of the investigated PWM methods in the asymmetric machine, D6φ SVM-B2,
a 12-sector PWM method, and VDPWM are optimal for most of the operating
space except the lower torque region where DPWM2 dominates, as Figures 6.22(a)-
6.25(a) show. For the polar machine shown in Figures 6.22(b)-6.25(b), no single
method dominates the operating space: it is shared between D6φ SVM-B2 in the
high power region, VDPWM in the base speed region, and DPWM1 in the low
torque field weakening region.

A clear trend between methods is that DPWM methods are optimal for leading
current angles and VDPWM is optimal for lagging current angles. For highly cou-
pled machines like the asymmetric machine, the D6φ SVM-B2 dominates near the
zero current angle and low torques, if not everywhere for low switching frequencies.
For lightly coupled machines like the polar machine, D6φ SVM-B2 is optimal at
operating points with large power. D6φ SVM-B2 introduces additional 11th and
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13th harmonics, which may worsen existing winding harmonics to increase machine
losses during experiments. Its main advantage, however, remains that it commutes
an by a factor of 5/12 with little increase in ripple, thus significantly reducing in-
verter losses with little machine loss penalties. Regarding the optimality of DPWM2
over VDPWM for low torques in the field-weakening region in the asymmetrical ma-
chine, one may posit the possibility that DPWM2 balances conducting and switching
losses better than VDPWM. This unexpected result, however, actually motivates
seeking an optimal clamping angle for minimal e-drive losses for a given switching
frequency. Lastly, notice that SVM is nowhere optimal except for low switching
frequencies in a small region near very low torques and mid speeds in the polar
machine. DPWM3’s optimality is similarly limited to low switching frequencies but
spreads over a broader field-weakening region as shown in Figure 6.22(b).

(a) Asymmetric machine (b) Polar machine

Figure 6.22: Optimal PWM method for fsw = 6 kHz methods with θI = 0◦

(a) Asymmetric machine (b) Polar machine

Figure 6.23: Optimal PWM method for fsw = 10 kHz methods with θI = 0◦
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(a) Asymmetric machine (b) Polar machine

Figure 6.24: Optimal PWM method for fsw = 16 kHz methods with θI = 0◦

(a) Asymmetric machine (b) Polar machine

Figure 6.25: Optimal PWM method for fsw = 20 kHz methods with θI = 0◦

As Figures 6.26-6.29 convey for the asymmetric machine, optimizing the PWM
method delivers at least a maximum efficiency improvement of 1 % in large torque
regions, with the benefits of PWM optimization increasing to about 2% and in-
creasing to 1% in large power regions with increasing switching frequency. Like
with switching frequency optimization, the power savings are most significant in the
continuous operating region near mid speeds and low-mid torques. As we will see,
that trend continues for the polar machine, which is more representative of typical
three phase machines.
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(a) ∆η in % (b) Power savings in %

Figure 6.26: Efficiency gains and power savings between the optimal PWM program
and SVM for fsw = 6 kHz with θI = 0◦ andRC = 0.5 mΩ for the asymmetric machine

(a) ∆η in % (b) Power savings in %

Figure 6.27: Efficiency gains and power savings between the optimal PWM program
and SVM for fsw = 10 kHz with θI = 0◦ and RC = 0.5 mΩ for the asymmetric
machine
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(a) ∆η in % (b) Power savings in %

Figure 6.28: Efficiency gains and power savings between the optimal PWM program
and SVM for fsw = 16 kHz with θI = 0◦ and RC = 0.5 mΩ for the asymmetric
machine

(a) ∆η in % (b) Power savings in %

Figure 6.29: Efficiency gains and power savings between the optimal PWM program
and SVM for fsw = 20 kHz with θI = 0◦ and RC = 0.5 mΩ for the asymmetric
machine

Inspecting Figures 6.30-6.33 reveals that in the polar machine, there is at least
about 0.5% efficiency improvement, with improvements due to PWM optimization
increasing as the switching frequency increases. The 1% iso-curve drifts to faster
speeds as the switching frequency increases. In light of the fact that the polar
machine resembles a typical three phase machine and the broader availability of
more efficient inverters, optimizing for the PWMmethod is paramount from a power-
savings perspective.
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(a) ∆η in % (b) Power savings in %

Figure 6.30: Efficiency gains and power savings between the optimal PWM program
and SVM for fsw = 6 kHz with θI = 0◦ and RC = 0.5 mΩ for the polar machine

(a) ∆η in % (b) Power savings in %

Figure 6.31: Efficiency gains and power savings between the optimal PWM program
and SVM for fsw = 10 kHz with θI = 0◦ and RC = 0.5 mΩ for the polar machine
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(a) ∆η in % (b) Power savings in %

Figure 6.32: Efficiency gains and power savings between the optimal PWM program
and SVM for fsw = 16 kHz with θI = 0◦ and RC = 0.5 mΩ for the polar machine

(a) ∆η in % (b) Power savings in %

Figure 6.33: Efficiency gains and power savings between the optimal PWM program
and SVM for fsw = 20 kHz with θI = 0◦ and RC = 0.5 mΩ for the polar machine

6.4 Switching Frequency and PWMOptimization
For a machine with overall large coupling coefficient ς like the asymmetric machine,
D6φ SVM-B2 dominates the operating space with moderate switching frequencies
in the field-weakening region. DPWM1 is optimal only for low torques in the field-
weakening region, as Figure 6.34(b) shows. As mentioned before, the very low
switching frequencies for large torques and low speeds may be due to the fitted in-
verter model, and SiC inverters will increase the optimal switching frequency in that
region as well. The efficiency increase is significant, as the 1% iso-curve stretches for
nearly all torques from the corner speed to zero torque, as Figure 6.35(a) conveys.
The contribution to the efficiency increase from the switching and PWM optimiza-
tions are nearly equal but vary with operating point, as expected. SVM is almost
nowhere optimal.
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(a) Optimal fsw program (b) Optimal PWM method program

Figure 6.34: Optimal programs for the asymmetric machine

(a) ∆η in % (b) Power savings in %

Figure 6.35: Efficiency gains and power savings between the optimal program and
10 kHz SVM with θI = 0◦ and RC = 0.5 mΩ for the asymmetric machine

Figure 6.36(b) describing the polar machine shows a much more interesting vari-
ation in the optimal PWM method program compared to the asymmetric machine.
As expected, D6φ SVM-B2 is suboptimal for lightly coupled machines, which allows
all of the DPWM methods to share the operating space. Again, SVM is almost
nowhere optimal. Figure 6.36(c) shows a much broader region of lower switching
frequency, but as the polar machine has no additional 5th and 7th winding harmon-
ics, the inverter model is less appropriate. It is therefore expected that even with
IGBT’s that the optimal switching frequency for large torques and low to mid speeds
will increase in experiments.
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(a) Optimal fsw program (b) Optimal PWM method program

Figure 6.36: Optimal programs for the polar machine

Figure 6.37 show a similar increase in efficiency of 1% and power savings of about
15% as with the asymmetric machine. Given that the DPWM methods commute
about 2/3 of the base switching frequency, the dominant loss mechanism is attributed
to the switching loss. A current controller capable of controlling the machine with
2.5 kHz in that region is therefore necessary to implement the optimal programs for
both the asymmetric and polar machines. Aside NVH concerns, optimizations in
both machines show much promise.

(a) ∆η in % (b) Power savings in %

Figure 6.37: Efficiency gains and power savings between the optimal program and
10 kHz SVM with θI = 0◦ and RC = 0.5 mΩ for the polar machine
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Chapter 7

Experimental Results for an
Asymmetrical Dual Three-Phase
Machine and a Three-Phase
Machine

The experimental results investigating two interleaving angles, various switching fre-
quencies, and various PWM methods show that interleaving increases mostly the
power losses along the isocurve modulation index M = 2/π and low torques and
that increasing the switching frequency broadly decreases machine losses. PWM
data is only sufficient to confirm current angle and effective switching frequency loss
dependencies. The frequency interactions in the magnet are confirmed by observing
the spectrum of the sum of d−axis currents, which stand in for the d−axis linked
flux. Figure 7.1 shows the layout of the components used for the measurements. The
colored machine represents the dual three-phase asymmetric IPMSM, where two in-
verters are paginated to emphasize the test system’s duality. The grayscale machine
represents the loading machine, a three-phase IPMSM. The battery simulator along
with the sensor arrays between it and the dual inverter and between the inverter and
the machine are also shown. The blue block coupling the test and loading machine
shafts represents the torque transducer. The sensor arrays and the torque and speed
transducer connect to a power analyzer and an oscilloscope. Auxiliary systems like
the thermal circuit with oil pumps and heat exchangers are not shown in Figure
7.1. They play an important role in not only maintaining the temperature of the
machine and inverter within operating range to avoid component damage but also
to ensure reliable measurements, as many loss components depend on temperature.
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Figure 7.1: Measurement layout

7.1 Interleaving Angle Variation
One may ascertain changes in losses due to the changes in the interleaving angle, or
delay, in two ways: one by driving points to steady state over the entire operating
range with both angles, and the other by choosing one operating point and changing
the angle to record the transient system response. In this section both test results
are presented. It is found that interleaving causes an increase of c.a. 1kW, or 3%
efficiency at low torques and mid-speeds, and an overall increase in losses, especially
along the M = 2/π ≈ 0.6 modulation index iso-curve on the torque-speed plane.
Loss increases occur mainly in the stator iron and the magnets. The FEM does
not capture the additional losses for low torques near the M = 0.6 iso-curve, but
a high-frequency coupling model that completely explains the missing losses was
developed and shown in Figure 5.32. The model is based on the changing magnetic
permeability seen in most lamina steels with coupled Faraday and Amperès laws,
which is usually not modeled using FEM. Another possible explanation for the
increased losses at low torques involves the anisotropy of the non-oriented electrical
steel.

7.1.1 Equilibrium Loss Difference
Figure 7.2 shows the copper losses for interleaving on and off and Figure 7.3 show
the copper loss difference between interleaving on and off. Figure 7.3(a) shows
negligible copper loss difference except for 325V near M ≈ 0.6 at large torques.
There, the copper losses reach 150 W. Paradoxically, one cannot say the same about
loss differences in copper for 400V in the same region, suggesting another mechanism
causes the additional losses in copper other than interleaving. Figure 7.2 shows
the raw copper losses, which, because of the current commissioning used (MTPA),
follows the current magnitude contours.
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(a) θI = 90◦, VDC = 325 V (b) θI = 0◦, VDC = 325 V

(c) θI = 90◦, VDC = 400 V (d) θI = 0◦, VDC = 400 V

Figure 7.2: Copper loss in W

(a) VDC = 325 V (b) VDC = 400 V

Figure 7.3: Copper loss difference, PCu(90◦)− PCu(0◦) in W
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(a) θI = 90◦, VDC = 325 V (b) θI = 0◦, VDC = 325 V

(c) θI = 90◦, VDC = 400 V (d) θI = 0◦, VDC = 400 V

Figure 7.4: Remnant loss in W

157



7.1. INTERLEAVING ANGLE VARIATION

(a) VDC = 325 V (b) VDC = 400 V

Figure 7.5: Remnant loss difference, PRe(90◦)− PRe(0◦) in W

Figures 7.4-7.5 show the remnant loss and remnant loss difference between off-
setting pulses and not offsetting pulses respectively, where remnant loss is simply
the total loss minus the copper losses displayed in Figures 7.2 and 7.3. As a result,
Figure 7.4 contains losses in the iron, losses in the magnets, and miscellaneous me-
chanical losses such as bearing friction and fluid cooling viscous and dynamic losses.
Since the same bearings, coolant, coolant temperature and pressure were used for
each of the tests, the loss difference shown in Figures 7.5 should represent the loss
difference in the iron and magnets as a result of interleaving between dual machines.
As expected, the losses increase almost everywhere. For VDC = 325 V as shown in
Figure 7.5(a), the power loss difference in the region near the operational boundary
between the corner speed and 0.5625 normalized speed is slightly negative, and for
VDC = 400 V as shown in Figure 7.5(b) only one spot at 0.12 normalized moment
and 0.75 normalized speed displays a negative loss difference.

Like Figures 7.2(b) and (d), Figure 7.4(b) has significantly reduced operating
area compared to Figure 7.4(d), as the maximum power curve is rather abruptly
reduced at around 0.75 normalized speed, and therefore the difference maps neglect
that area. Figures 7.4(a) also has a reduced operating area compared to Figure
7.4(c), but the reduction is significantly less. In addition, the correspondence be-
tween the achieved electromagnetic torques is reduced. Since the holes, so to speak,
near 0.75 normalized speed appear at ∼0.12 normalized moment for both voltages,
despite the reduced operating area for 325 V, it is likely that it is independent of
DC bus voltage. Namely, the stability and settling properties lead to oscillating cur-
rents and therefore different power readings. Since the hole is negative, interleaving
reduces the loss peak there and likely reduces circulating currents.

Compared to the iron loss difference simulation in Figure 5.24, most losses are
missing for torques less than 0.2 normalized moment. Accounting for the missing
losses in this region is paramount because it lies in the continuous operation region
of the machine and reduces the efficiency by 1% there. Even if interleaving is not
used, coupling is large for conventional three phase IPMSMs in that region. The
the losses also increase with voltage in that region, meaning that they are likely due
to converter effects on the machine. Furthermore, after inspecting Figure 5.37, the
loss difference between 10 kHz and 20 kHz does not account for the loss difference
seen in Figures 7.5(a) and (b). As mentioned before, interleaving with θI = 90◦
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creates an additional 20 kHz harmonic. The magnet losses cannot account for the
loss increase either, since the additional 20 kHz harmonic in each of the id1 and id2
cancel upon addition, the flux as seen by the magnet does not have the additional 20
kHz harmonic. Note however, that the 2fsw harmonic does not cancel in the stator.
Also, although even non-oriented electrical steels exhibit magnetic anisotropy due
to rolling [137], the inherently circular geometry of the lamina causes the magnetic
field to see all magnetic property orientations within a mechanical period: from a
mechanical period-averaged power loss perspective, the electrical steel is isotropic.
Even isotropic steels have a permeability droop near zero magnetic fields. It then
increases to its maximum to decay once more as the iron saturates. The permanent
magnet however, offsets the field after the permeability maximum to allow for field-
weakening operation, neutralizing any effects the zero field permeability droop may
have on average. The test-setup had many long cables, but at a few meters, their
inductance and mutual inductance is in the tens of nH, which is much too small to
cause additional losses in the range we seek; the cables furthermore run through air,
not iron, so any additional loss will occur in the copper wires. The model in Figure
5.31 approaches the desired trend, but the modeled equivalent bulk magnetic field
has a heuristic factor of 9/8 and the increase in losses at large torques from mid-
torques are not captured. That suggests that permeability changes with frequency.
The issue then becomes that of determining the adequate high frequency permeabil-
ity that the FEM model could not take into account. Since the FEM model only
uses real permeability, one may posit the use of complex permeability. Complex per-
meability arises due to a delay between the magnetic field, H, and the magnetic field
density B in time, which presupposes some equivalent resistance, i.e. loss. That loss
ensues due to mostly eddy currents at high frequency with Ampère’s law included in
addition to Faraday’s law; if Faraday’s law were exclusively used, field dispersion as
a result of the reaction field, and therefore complex permeability, are not modeled.
Complex permeability, or field delay, is therefore a way to model the sum of the
exciting and reaction fields in bulk. As a permeability, complex permeability not
only varies with frequency but also with amplitude, which requires further extensive
characterization of the ferromagnetic material. Since equation (5.1.3) models wide
plates relevant to machine lamina with the reaction field subject to spatially uniform
and time-varying H at the boundaries, only a bulk and real permeability becomes
necessary, albeit with a small bulk factor as mentioned before and high-frequency
characterization outside of a complex permeability framework. One may therefore
conclude that the FEM’s internal eddy current calculator neglects the reaction field.

One may also incorporate the permeability variation into a high-frequency cou-
pling inductance model similar to the boundary condition-based model summarized
in Table II in Chapter 7, but augmented it with inductance information, as in 5.31.
Figure 5.31(a) shows the current ripple difference from said model and Figure 5.31(b)
replicates the information shown in Figure 7.5 except instead of having a current
level curve and the operating points it has the M = 0.6 and maximum power differ-
ence level curves. The modulation index M = 0.6 level curve is also shown in white
and the maximum ripple for every level torque is shown as a dash-dot line. As one
may observe, there is good agreement between the two.
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(a) VDC = 325 V (b) VDC = 400 V

Figure 7.6: Remnant loss difference, PRe(90◦)− PRe(0◦) in W

A full treatment of permeability malleability effects requires modeling the zero-
field permeability droop, the material anisotropy shown in Figure 7.7, the reaction
field, and permeability frequency dependence, all of which are typically not simu-
lated in FEA due to solver convergence and simulation duration issues. Since the
permeability droop encompasses such a small range of H near zero, and since the
linked flux from the permanent magnet biases the field, there are few places where
the H−field nears zero. Furthermore, flux would leak less due to the droop because
the area with lower magnetic field has less permeability than if it were left constant
from the permeability peak to the zero field.

(a) µr (b) Shiozaki diagram [137] for max(µr)

Figure 7.7: Relative magnetic permeability of non-oriented magnetic steel along
different directions

7.1.2 Transient Loss Difference
To confirm that the increase in losses are caused by increasing the interleaving angle
to θI = 90◦, transient measurements were recorded with a step change in the inter-
leaving angle. Along with an increase and decrease in the mean iron temperature
corresponding to a linear response to the step change, one may confirm the increased
losses are caused by the change in interleaving angle. Measurements changing the
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interleaving angle were also taken at different switching frequencies to show the
independence of the increase in losses from the switching frequency, as Figure 7.8
shows. Figure 7.8 also shows the decreasing machine losses with increasing switching
frequency, as observed in the equilibrium measurements. The coolant temperature
was kept the same for all tests and we allowed a pause in order to have similar
temperature initial conditions.

(a) fsw = 8 kHz (b) fsw = 10 kHz

(c) fsw = 16 kHz (d) fsw = 20 kHz

Figure 7.8: Transient loss and temperature changes at 0.1 norm. moment, 0.3125
norm. speed, and UDC = 325 V for various switching frequencies
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(a) UDC = 325 V (b) UDC = 400 V

Figure 7.9: Transient loss and temperature changes at 0.1 norm. moment, 0.3125
norm. speed, and fsw = 10 kHz for various DC bus voltages

Figure 7.10: Transient loss and temperature changes at 0.1 norm. moment, 0.3125
norm. speed, fsw = 10 kHz, UDC = 325 V, and αcontrol = 0◦

Figure 7.9 highlights the effect of increasing the DC bus voltage on machine
losses, namely that the machine losses increase overall as well as the changes in
power loss and therefore temperature. Lastly, Figure 7.10 shows an interleaving
angle sequence of 0◦, 90◦, and 0◦ instead of just 90◦, and 0◦ like Figures 7.8 and 7.9. It
contains data for when the control angle between the two duals, αcontrol = 0◦ instead
of the usual 30◦. That Figures 7.9(a) and 7.10 have similar changes in machine
losses and losses overall shows that interleaving causes losses due to much larger
frequencies than the fundamental, and are therefore independent of the underlying
control.

7.2 Switching Frequency Variation
The reduction in machine losses and increase in inverter switching losses upon in-
creasing switching frequency −keeping the sampling frequency the same −are pre-
sented in this chapter subsection. The results show that having the same sampling
frequency with different switching frequencies introduces sampling harmonics that
slightly modify the expected negative correlation between switching frequency and
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machine losses.

7.2.1 Equilibrium Loss Difference in the Electrical Machine
Starting by inspecting Figure 7.11, one may notice that with any investigated switch-
ing frequency, interleaving with a 90◦ angle, increases machine losses almost every-
where in the torque-speed plane, especially along theM = 0.6 iso-curve, as explained
in Chapter 7.1. The isolated troughs and peaks in all plots in Figure 7.11 are mostly
due to unsettled transients, especially the one in 7.11(c) at 0.46 normalized moment
and 0.0625 normalized speed. Also notice that Figure 7.11(b) and (d) reach different
power levels at large speeds in the field-weakening region. That is likely because the
dead-time compensation was the same irrespective of the actual dead-time, a mis-
match that injects an additional and destabilizing 5th harmonic. The reduced power
occurs for 0 µs dead-time, irrespective of interleaving. Destabilization occurs for
lower speeds for 20 kHz switching because the dead-time compensation is a larger
proportion of the switching period, and therefore commands more compensating
voltage.

(a) fsw = 8 kHz (b) fsw = 10 kHz

(c) fsw = 16 kHz (d) fsw = 20 kHz

Figure 7.11: PEM(90◦)− PEM(0◦)

Figure 7.12 and Figure 7.13 show the different combinations of machine loss
differences upon exciting the machine with switching frequencies of 8, 10, 16, and
20 kHz. Figure 7.12 shows the machine loss differences with interleaving on and
Figure 7.13 shows the machine loss differences with interleaving off. The figures
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show that machine losses increase with decreasing switching frequency for most
operating points. Switching at 20 kHz and sampling at 10 kHz increases machine
losses for large torques in the field-weakening region more than any other switching
frequency. Similarly, machine losses are greater for 16 kHz than 10 kHz near the
power limits and at low speeds. The reason for those trend exceptions is currently
unknown but is likely due to unsettled transients.
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(a) PEM(10 kHz)− PEM(8 kHz) (b) PEM(10 kHz)− PEM(16 kHz)

(c) PEM(10 kHz)− PEM(20 kHz) (d) PEM(20 kHz)− PEM(8 kHz)

(e) PEM(20 kHz)− PEM(16 kHz) (f) PEM(16 kHz)− PEM(8 kHz)

Figure 7.12: ∆PEM for different fsw for θI = 90◦
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(a) PEM(10 kHz)− PEM(8 kHz) (b) PEM(10 kHz)− PEM(16 kHz)

(c) PEM(10 kHz)− PEM(20 kHz) (d) PEM(20 kHz)− PEM(8 kHz)

(e) PEM(20 kHz)− PEM(16 kHz) (f) PEM(16 kHz)− PEM(8 kHz)

Figure 7.13: ∆PEM for different fsw for θI = 0◦
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7.2.2 Equilibrium Loss Difference in the Inverter

(a) fsw = 8 kHz (b) fsw = 10 kHz

(c) fsw = 16 kHz (d) fsw = 20 kHz

Figure 7.14: PLE(90◦)− PLE(0◦)

As Figure 7.14 shows, inverter losses due to interleaving are negligible, except
for 20 kHz, where losses increase with increasing electrical power.

Figures 7.15 and 7.16 show that inverter losses increase with increasing switch-
ing frequency independent of the interleaving angle. That holds except for a few
operating point islands, where transients did not have time to settle. Furthermore,
inverter switching loss differences increase with increasing current magnitude, as
expected.
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(a) PLE(10 kHz)− PLE(8 kHz) (b) PLE(10 kHz)− PLE(16 kHz)

(c) PLE(10 kHz)− PLE(20 kHz) (d) PLE(20 kHz)− PLE(8 kHz)

(e) PLE(20 kHz)− PLE(16 kHz) (f) PLE(16 kHz)− PLE(8 kHz)

Figure 7.15: ∆PLE for different fsw for θI = 90◦
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(a) PLE(10 kHz)− PLE(8 kHz) (b) PLE(10 kHz)− PLE(16 kHz)

(c) PLE(10 kHz)− PLE(20 kHz) (d) PLE(20 kHz)− PLE(8 kHz)

(e) PLE(20 kHz)− PLE(16 kHz) (f) PLE(16 kHz)− PLE(8 kHz)

Figure 7.16: ∆PLE for different fsw for θI = 0◦
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7.3 PWM Method Variation
This section shows comparative torque-speed maps that show the difference in ma-
chine losses −Figures 7.17 and 7.19 − and and inverter losses −Figures 7.18 and
7.20 − for select operating points in the base and field-weakening regions. Regions
where the measured torque for both methods do not match do not have contours.
Since that mostly happens in field-weakening regions, the figures in this section can
only be interpreted in the base-speed region for PWM methods other than space-
vector PWM (SVPWM). The PWM methods investigated were DPWM1, DPWM2,
DPWM3, and SVPWM for the switching frequencies 9, 10, and 11 kHz. Not all com-
binations of PWM methods and switching frequencies could be investigated due to
stability issues and inaccessibility of the basic software.

For those investigated combinations, known trends are mostly confirmed. Figure
7.17 shows that machine losses increase with decreasing switching frequency indepen-
dent of the PWM method. Likewise, Figure 7.18 shows that inverter losses increase
with increasing switching frequency, except for 9 kHz for DPWM1 −Figure 7.18(a)
−and DPWM3 −Figure 7.18(c) −for about half of the points at lower speeds and
mid-speed islands. That can be explained by the difference between the switching
frequency and the sampling frequency, as the current ripple −and therefore high-
frequency losses −is minimized for synchronous switching and sampling frequency.
All data were recorded with 10 kHz sampling frequency, irrespective of the switching
frequency.

Figure 7.19 confirms that for the investigated switching frequencies, all discon-
tinuous methods induce more losses in the machine than space-vector modulation.
Conversely, Figure 7.20 shows that all discontinuous methods induce less losses in
the inverter than space-vector modulation. Both are due to that the discontinuous
methods investigated, the inverter switches 2/3 less than space-vector modulation
for a given switching frequency. Only for modulation indexes above 0.9 with DPWM
switching at a factor of 3/2 of the frequency of SVPWM should the machine losses
with SVPWM exceed those with any DPWM.

For low torques and high speeds, one can discern the additional losses due to
harmonic constructive interference in Figures 7.17(d), (e), and (f). In Figure 7.17(e)
especially, one can see how there is a bulge of negative machine loss difference at
0.625 normalized speed, suggesting that machine losses for 10 kHz increase at 0.625
normalized speed, as predicted by the FEM simulations in Chapter 5. However,
when comparing all studied frequencies simultaneously, as opposed to just two at a
time, the asynchronous sampling dominates the machine high-frequency losses, as
shown in Figures 7.21-??. As a result of having a constant sampling frequency of
10 kHz over various switching frequencies, the harmonic constructive interference as
predicted by the FEM simulations in Chapter 5 could not be observed by varying
the switching frequency. Instead, the machine speed must be varied and transient
measurements recorded, as displayed in Figure 7.22.

Figure 7.21(b) shows a clear loss trough for 10 kHz switching frequency, which is
engulfed by other loss mechanisms at higher speeds as with Figures 7.21(d) and (f).
Figures 7.21(a), (c), and (e) show the variability of the d−current, which although
it increases with lower switching frequencies, does not translate to variability in the
machine power loss calculation from the measured mechanical and electrical power.
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(a) PEM(9 kHz)− PEM(10 kHz), D1 (b) PEM(11 kHz)− PEM(10 kHz), D1

(c) PEM(9 kHz)− PEM(10 kHz), D3 (d) PEM(9 kHz)− PEM(10 kHz), SV

(e) PEM(11 kHz)− PEM(10 kHz), SV (f) PEM(11 kHz)− PEM(9 kHz), SV

Figure 7.17: ∆PEM for different fsw and PWM methods for θI = 90◦
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(a) PLE(9 kHz)− PLE(10 kHz), D1 (b) PLE(11 kHz)− PLE(10 kHz), D1

(c) PLE(9 kHz)− PLE(10 kHz), D3 (d) PLE(9 kHz)− PLE(10 kHz), SV

(e) PLE(11 kHz)− PLE(10 kHz), SV (f) PLE(11 kHz)− PLE(9 kHz), SV

Figure 7.18: ∆PLE for different fsw and PWM methods for θI = 90◦
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(a) PEM(D1)− PEM(SV), 9 kHz (b) PEM(D1)− PEM(SV), 10 kHz

(c) PEM(D1)− PEM(SV), 11 kHz (d) PEM(D2)− PEM(SV), 10 kHz

(e) PEM(D3)− PEM(SV), 9 kHz (f) PEM(D3)− PEM(SV), 10 kHz

Figure 7.19: ∆PEM for different PWM methods keeping fsw constant for θI = 90◦
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(a) PLE(D1)− PLE(SV), 9 kHz (b) PLE(D1)− PLE(SV), 10 kHz

(c) PLE(D1)− PLE(SV), 11 kHz (d) PLE(D2)− PLE(SV), 10 kHz

(e) PLE(D3)− PLE(SV), 9 kHz (f) PLE(D3)− PLE(SV), 10 kHz

Figure 7.20: ∆PLE for different PWM methods keeping fsw constant θI = 90◦
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(a) (id1 + id2)/2, 0.5625 normalized speed (b) PEM, 0.5625 normalized speed

(c) (id1 + id2)/2, 0.625 normalized speed (d) PEM, 0.625 normalized speed

(e) (id1 + id2)/2, 0.6875 normalized speed (f) PEM, 0.6875 normalized speed

Figure 7.21: Experimental average d−current and machine loss for 10 kHz sampling
frequency and θI = 0◦

.
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The machine losses in Figure 7.21(b) increase for 11 kHz from 10 kHz switch-
ing for 0.5625 normalized speed despite almost no change in the set-point. To
understand these counter-intuitive losses, the current ripple was simulated for the
asymmetrical dual-three phase machine for different sampling and switching fre-
quencies. Alluding intermittently to simulation results in Figure 5.8(a), the current
ripple trough especially correlates to the machine loss troughs in Figure 7.21(b),
confirming that the loss trough is due to synchronous sampling and switching fre-
quencies. Figure 5.8(b) shows that the mutual inductance, meaning the magnetic
coupling between the two duals, exaggerates the loss increases when deviating from
the synchronous sampling loss trough.

7.4 Frequency Interaction in the Permanent Mag-
nets

3rd Supraharmonics 

 

24th 

 

Switching Frequency 

 

12th 

 

12th 

 

3rd Subharmonic 

 3rd Subharmonic 

 

12th+3rd Subharmonic 

 

Figure 7.22: Sum of d−axis currents for various speeds for 0.1 norm. moment with
SVPWM as calculated from phase currents with a continuous transformation.

As already analyzed in Chapter 5, there is harmonic interaction between the
tooth reluctance variations as seen from the rotor and the 3rd subharmonic of the
first carrier group, which exists in the rotor frame of reference as the coalescence of
the 2nd and 4th subharmonics of the first carrier group in the stator frame of refer-
ence. Figure 7.22 is evidence of that, since an eight pole, 48-tooth machine at 0.625
normalized speed with an inverter switching at 10 kHz has a 12th harmonic and the
3rd subharmonic of the first carrier group at 8 kHz. The difference between Figure
7.22 and Figure 5.45 is the PWM method and the fact that the speed was varied in-
stead of the switching frequency. The speed was varied in Figure 7.22 instead of the
switching frequency to show the harmonic interactions because in the experimental
data, the sampling frequency remains at 10 kHz but the switching frequency was
able to be varied. Such asynchronicity is not typical of electric drives. Furthermore,
the DPWM methods were not stable in that region during experiments.
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Chapter 8

Experimental Optimization

In this chapter, the experimental data from the previous chapter is used to find
an optimal interleaving angle and switching frequency schedule depending on the
operating point. The optimum is sought to minimize the total power consumption
in the machine and in the inverter. Statistical significance due to measurement er-
ror and fit to a Gaussian process with a stationary squared exponential kernel are
considered. It is found that the trivial interleaving angle θI = 0◦ is optimal for all
operating points, especially for low torques in the base-speed region. The optimal
switching frequency is small for low speeds, increasing with speed and increasing
with decreasing torque up to the field-weakening region, where it increases moder-
ately for the dual three-phase asymmetrical machine and increases to the maximum
measured switching frequency for the three-phase machine. The moderate increase
in the optimal switching frequency in the field-weakening region for the asymmet-
rical machine compared to the three-phase machine is attributed to the anisotropy
of the electrical steel in the asymmetrical machine.

8.1 Optimizing the Interleaving Angle
As shown in the simulation section, the advantages of the interleaving angle should
be constrained to the capacitor current ripple and do not depend on the electrical
load. Furthermore, interleaving reduces the losses in the capacitor to a much lesser
degree than it increases them in the asymmetric machine but increases capacitor
longevity or reduces its size. As such, one may approach the optimization of the
interleaving angle as a multi-objective optimization of capacitor longevity or size
reduction and machine losses. The specific cost function is shown in Equation 8.1.1,
where ac is the cost-longevity or cost per cubic meter of the capacitor, Jc is the
inverse longevity or the volume of the capacitor, akW is the cost per kilo-Watt loss
in the electric machine, and JEM is the electric machine power loss.

J = acJc + akWJEM (8.1.1)

Capacitor longevity and size are proxies for capacitor RMS current, so that one
may also define ac as a cost per ampere over the entire lifetime of the capacitor; it
follows that Jc must be the capacitor RMS current. Setting akW = akWht`, where t`
is the capacitor lifetime, and if JEM still represents the power losses, then because
ac and akWh are in the order of one another (tens of cents under one dollar) and the
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capacitor lifetime is in the order of hundreds of thousands of hours [138], ac � akW.
We can therefore neglect ac and build the binary interleaving strategy to minimize
the machine losses.

For the asymmetric machine, the optimal interleaving angle minimizing machine
losses for all operating points is the trivial θI = 0◦. Figure 8.3(a) might suggest a
non-trivial interleaving strategy be it not for Figure 8.3(b), which shows that the
regions where θI 6= 0◦, the results are not significant. The power and efficiency
gains, as predicted by the FEM simulations in Chapter 5, are the most significant in
the base-speed region for lower torques. There is a mismatch of about 0.5% in the
efficiency gain calculation compared to the FEM simulation in Figure 5.27(a) due to
the inclusion of friction losses in the experimental measurements. The trend, how-
ever, remains nearly identical because the friction losses depend on speed, rendering
their contribution to efficiency loss constant or hyperbolically diminishing along the
speed axis direction in the torque-speed plane. Furthermore, the FEM losses did
not predict the additional losses due to ferromagnetic anisotropy at low torques,
so that the experimental efficiency gains are larger for torques very near zero than
predicted in the FEM.

(a) Fit (b) Fit error as 2σ

Figure 8.1: Fitted power loss at fsw = 10 kHz, θI = 90◦, 325 VDC

(a) Fit (b) Total error as 2σ in W

Figure 8.2: Optimal power loss, fsw = 10 kHz, 325 VDC
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(a) Optimal θI is either 0◦ or 90◦ (b) Significant power gain region

Figure 8.3: Optimal interleaving angle, fsw = 10 kHz, 325 VDC

(a) Percent power gains in % (b) Efficiency gains in %

Figure 8.4: Comparison of power and efficiency gains between optimal interleaving
and θI = 90◦ for 325 VDC

Figures 8.5-8.8 for 400 VDC instead of 325 VDC confirm the triviality of the opti-
mization, namely that θI,opt = 0◦. Again, regions where θI 6= 0◦ are not statistically
significant, as shown by Figure 8.7. Since there were no FEM simulations performed
for 400 VDC, it is not possible to compare the experimental results. However, the
difference trends are similar to those for 325 VDC. Specifically: most of the power
and efficiency gains occur in the base-speed region at low torques. The benefits,
however, are slightly magnified for 400 VDC and broadly spread to larger speeds,
as is expected from a parameterization that reduces current ripple, which itself is
directly proportional to the DC bus voltage, and a parameterization whose benefits
are mostly seen in the base-speed region.
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(a) Fit (b) Fit error as 2σ

Figure 8.5: Fitted power loss at fsw = 10 kHz, θI = 90◦, 400 VDC

(a) Fit (b) Total error as 2σ in W

Figure 8.6: Optimal power loss, fsw = 10 kHz, 400 VDC

(a) Optimal θI is either 0◦or 90◦ (b) Significant power gain region

Figure 8.7: Optimal interleaving angle, fsw = 10 kHz, 400 VDC
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(a) Percent power gains in % (b) Efficiency gains in %

Figure 8.8: Comparison of power and efficiency gains between optimal interleaving
and θI = 90◦ for 400 VDC
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8.2 Optimizing the Switching Frequency
Switching frequency optimization is often dismissed as providing minimal gains to
an electrical drive’s efficiency. This section shows the opposite.

8.2.1 Asymmetrical Dual-Three Phase Machine

(a) Fit (b) Fit error as 2σ

Figure 8.9: Fitted power loss at fsw = 10 kHz, θI = 90◦

(a) Fit (b) Total error as 2σ in W

Figure 8.10: Optimal power loss, θI = 90◦
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(a) Optimal fsw in kHz (b) Significant power gain region

Figure 8.11: Optimal switching frequency, θI = 90◦

(a) Percent power gains in % (b) Efficiency gains in %

Figure 8.12: Comparison of power and efficiency gains between optimal switching
and fsw = 10 kHz, θI = 90◦

(a) Fit (b) Fit error as 2σ

Figure 8.13: Fitted power loss at fsw = 10 kHz, θI = 0◦
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(a) Fit (b) Total error as 2σ in W

Figure 8.14: Optimal power loss, θI = 0◦

(a) Optimal fsw in kHz (b) Significant power gain region

Figure 8.15: Optimal switching frequency, θI = 0◦

(a) Percent power gains in % (b) Efficiency gains in %

Figure 8.16: Comparison of power and efficiency gains between optimal switching
and fsw = 10 kHz, θI = 0◦
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8.2.2 Three Phase Machine
This three-phase machine was fed with a SiC three-phase inverter and with syn-
chronous sampling and switching. The data was fit using Gaussian process regres-
sion with a squared exponential kernel, for maximal smoothness. As a technique to
simplify the fitting, inputs and outputs are normalized. That allows for the use of
a single distance parameter over the prior, rendering the data isotropic. Normal-
izing may in turn ambiguate the interpretation of the confidence intervals of the
fit, which is why Figure 8.17(a) shows the fitted inverter and machine losses over
the electrical frequency instead of the mechanical frequency: since it is already in
the order of the torque, i.e. isotropic in the inputs, normalization is not necessary.
Figure 8.17(b) shows the consequently unambiguated error of the fitted inverter and
machine losses, albeit with re-labeled normalized mechanical speed. Since the fit
error, although negligible, is not the only error source, the power measurement error
must be added in quadrature to arrive at the total error. Figure 8.18 shows the
optimal inverter plus machine losses and the total error estimate. A search opti-
mization results in the switching frequency that minimizes the inverter plus machine
losses over all operating points, as shown in Figure 8.19(a). Figure 8.19(b) shows
the regions where the difference between the losses at the nominal fsw =10 kHz and
the optimum are outside of the 2σ band; regions where the optimization returned
an optimal switching frequency of 10 kHz are considered significant.

(a) Fit (b) Fit error as 2σ

Figure 8.17: Fitted power loss at fsw = 10 kHz
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(a) Fit (b) Total error as 2σ in W

Figure 8.18: Optimal power loss

(a) Optimal fsw in kHz (b) Significant power gain region

Figure 8.19: Optimal switching frequency

(a) Percent power gains in % (b) Efficiency gains in %

Figure 8.20: Comparison of power and efficiency gains between optimal switching
and fsw = 10 kHz
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As an additional comment, only three data points per torque-speed pair were
recorded in order to estimate the variance. Three points does not suffice for a reli-
able estimate of the variance. Also, only stable operating points were investigated,
resulting in the neglect of large regions. Nevertheless, the switching frequency op-
timization shows that reducing the switching frequency at low speeds and most
torques can gain ∆η = 1%. Efficiency gains are reduced to ∆η = 0.02% near the
maximum efficiency bulge in the middle of the torque-speed plane, as Figure 8.20(b)
shows. Efficiency gains begin to increase again as the speed increases further.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This work spanned an overview of synchronous machine first principles and its typ-
ical control methods. This work also encompassed electric drive high frequency loss
modeling and optimization. Coupling not only in dual three-phase machines, but in
conventional three-phase machines by means of the coupling coefficient ς was shown
to play a crucial role in the current ripple profile over the torque-speed plane. Addi-
tional losses in the machine due to interleaving occur mostly at low torques, where
the current ripple −and therefore the magnetic field density ripple −is relatively
small but the permeability is relatively large: high-frequency losses are proportional
to the square-root of the permeability. The FEM analysis could not capture the
low-torque losses because eddy current losses were calculated in a post-processing
step using just Faraday’s law, as opposed to Faraday’s law combined with Ampère’s
law, and therefore the eddy current loss difference mostly followed the current rip-
ple difference and was independent of the permeability. Furthermore, interleaving
resonates with the system’s magnetic coupling, causing the most loss difference near
the modulation index iso-curve with a value of ∼ 2/π. The largest loss difference
when interleaving or not occurs in the stator teeth where coupling between duals
is spatially highest. The developed coupling model enables the calculation of the
eddy currents without the need for FEM. Regarding magnet losses, machine tooth
harmonics overlap with frequency components in the first carrier group at high
speeds, either decreasing or increasing losses depending on the PWM method and
torque level. Said component overlap was confirmed experimentally. As a result of
its smoothness and its ease of use for low-dimensional modeling, the squared ex-
ponential kernel with Gaussian process regression was used to fit measured data.
Measured and simulated data was routinely interpolated by using best-practices, es-
pecially input-output normalization. GPR and interpolation were used to minimize
the inverter and machine losses by varying the switching frequency, PWM method,
and interleaving. Adequate inverter and machine loss models were developed for
that purpose. For the investigated machine and inverter, it was found that due to
the losses induced in the machine compared to in the inverter including the DC link
capacitor, the interleaving angle should remain at zero for strongly coupled machines
like the asymmetric machine. For the polar machine the optimization offers little
improvement. Reducing the switching frequency improves efficiency by about 1%
especially at low speeds where switching losses dominate; increasing the switching
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frequency improves efficiency at high speeds due to the reduction of high-frequency
iron losses. Simulations show that for highly coupled dual three phase machines like
the asymmetric machine, the D6φ SVM-B2 12-sector method optimizes the electric
drive for all operating points except for the field-weakening region and low torques.
For lightly coupled dual three phase machines, all investigated DPWM methods
share the optimal operating space. SVM is almost nowhere drive-loss optimal ir-
respective of the coupling coefficient. Simultaneous switching frequency and PWM
method optimization in simulations results in about a 1% efficiency increase for an
iso-curve spanning from the corner point to the origin. The simulations regarding
optimization agree well for the asymmetric machine but not too well for the polar
machine, it does not have large winding harmonics and therefore the fitted inverter
model overestimates inverter losses for that machine.

9.2 Future Work
Future work on first principles include the characterization of high frequency perme-
ability outside of the framework of complex permeability which may be measured by
conventional Epstein frame methods but with a DC field and small high frequency
components. After constructing the minor loops for different bias fields and fre-
quencies, one may calculate an equivalent permeability to better approximate eddy
current losses in non-oriented electrical steels with the developed model. Anisotropic
permeability and zero-field droops can be incorporated into FEM models by model-
ing half of a machine and modified permeability curves. One must simulate at least
half of the machine to ensure field symmetry due to anisotropy and permeability
must depend on the magnetic field angle relative to some anisotropic reference. Re-
garding future work on control, the low optimal switching frequencies at low speeds
require special multi-input multi-output control methods since the large switch-
ing frequency assumption no longer holds. Developing such a control method and
incorporating it into a variable switching-frequency strategy, preferably with zero
switching at the torque-speed origin, would be interesting future work. Investigating
the advantages of 12 and 24-sector PWM methods experimentally for dual three-
phase IPMSMs is also necessary, as is further investigation into optimizing DPWM
methods in terms of the clamping angle.
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Appendix A

Electromagnetics

A.1 Analysis and Control of Permanent Magnet
Machines

A.1.1 Proof of Torque Equation from Faraday’s Law
After establishing that

f = J×B

f = ∇×
(

Hm + Bs

µ

)
×Bs

f =
(
∇×Hm + 1

µ
∇×Bs −

1
µ2∇µ×Bs

)
×Bs

(A.1.1)

from Faraday, Lorentz, and Ampere’s relations, the tangential component of the
force is

fθ = 1
r

(
1
µ2
∂µ

∂θ
Bs −

∂Hm

∂θ
− 1
µ

∂Bs

∂θ

)
Bs (A.1.2)

Setting the magnetic flux density from the stator, the permanent magnet field
strength, and the permeability quantities as

Bs = B̂s cos (θ − φ) (A.1.3)

Hm = Ĥm cos θ (A.1.4)

µ = µ̂
(
γ + cos2 θ

)
(A.1.5)

equation (A.1.2) becomes

fθ = B̂s

r

(
Ĥm sin θ cos (θ − φ) + B̂s

µ̂

cos(θ − φ)
γ + cos2 θ

(
sin(θ − φ)− 2 cos θ sin θ cos(θ − φ)

γ + cos2 θ

))
(A.1.6)

We now wish to integrate the tangential, volume-specific force (A.1.6) over the
active volume of the rotor. Since the volume differential for a cylinder reads as
dV = r dr dθ dl, the tangential force is proportional to the length of the cylindrical
rotor and its radius. To acquire an expression for the tangential force it is now only
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necessary to integrate the expression over the angle θ over the circumference of the
rotor. Said integral will be apportioned to two parts which read as

Fθ1 =lRB̂sĤm

∫ 2π

0
sin θ cos (θ − φ) dθ

Fθ2 =lRB̂
2
s

µ̂

∫ 2π

0

cos(θ − φ) sin(θ − φ)
γ + cos2 θ

− 2 cos θ sin θ cos2(θ − φ)
(γ + cos2 θ)2 dθ

(A.1.7)

such that Fθ = Fθ1 + Fθ2. Let equation set (A.1.7) make use of sin (θ + φ) =
sin θ cosφ + cos θ sinφ and cos (θ + φ) = cos θ cosφ − sin θ sinφ, or the angle sum
identities. For Fθ1,

Fθ1 =lRB̂sĤm

∫ 2π

0
sin θ cos θ cosφ+ sin2 θ sinφ dθ

=lRB̂sĤm

∫ 2π

0

1
2 sin 2θ cosφ+ 1

2 (1− cos 2θ) sinφ dθ

=lRB̂sĤmπ sinφ

(A.1.8)

Fθ2 appears more complex, which is why we apportion it to two integrals. The first
portion is

Fθ2a =lRB̂
2
s

µ̂

∫ 2π

0

cos (θ − φ) sin (θ − φ)
γ + cos2 θ

dθ

=lRB̂
2
s

2µ̂

∫ 2π

0

sin (2θ − 2φ)
γ + cos2 θ

dθ

=lRB̂
2
s

2µ̂

∫ 2π

0

sin 2θ cos 2φ− cos 2θ cos 2φ
γ + cos2 θ

dθ

=lRB̂
2
s

µ̂

(
cos 2φ

∫ 2π

0

sin θ cos θ
γ + cos2 θ

dθ − sin 2φ
2

∫ 2π

0

cos 2θ
γ + cos2 θ

dθ

)

=lRB̂
2
s

µ̂

− cos 2φ
2 log

∣∣∣γ + cos2 θ
∣∣∣∣∣∣∣∣

2π

0
− sin 2φ

2

∫ 2π

0

cos 2θ
γ + cos2 θ

dθ


=− lRB̂

2
s

µ̂

sin 2φ
2

∫ 2π

0

−1 + 2 cos2 θ

γ + cos2 θ
dθ

=− lRB̂
2
s

µ̂

sin 2φ
2

− 1√
γ(γ + 1)

arctan
(√

γ

γ + 1 tan θ
)∣∣∣∣∣

2π

0
+ 2

∫ 2π

0

cos2 θ

γ + cos2 θ
dθ


=− lRB̂

2
s

µ̂

sin 2φ
2

− 2π√
γ(γ + 1)

+ 2
(
θ −

√
γ

γ + 1 arctan
(√

γ

γ + 1 tan θ
)∣∣∣∣∣

2π

0


=− lRB̂

2
s

µ̂
π sin 2φ

2
(

1−
√

γ

γ + 1

)
− 1√

γ(γ + 1)


(A.1.9)

The integral depends on γ because the antiderivative is discontinuous, which im-
plies that the integrand had Dirac delta functions at the discontinuities of tan θ.
Because it does not, we must subtract those discontinuities. Upon subtraction of
those integrated Dirac impulses −which are step functions −the integral thus re-
veals a dependence on γ. This phenomenon is furthermore not captured by Cauchy
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integration. It may be considered a wrapping of the arctan function over its period
of π. The second portion is similarly

Fθ2b =− 2lRB̂
2
s

µ̂

∫ 2π

0

cos θ sin θ cos2(θ − φ)
(γ + cos2 θ)2 dθ

=− lRB̂
2
s

µ̂

∫ 2π

0

cos θ sin θ(1 + cos(2θ − 2φ))
(γ + cos2 θ)2 dθ

=− lRB̂
2
s

µ̂

(∫ 2π

0

cos θ sin θ
(γ + cos2 θ)2 dθ +

∫ 2π

0

cos 2θ cos 2φ+ sin 2θ sin 2φ
(γ + cos2 θ)2 dθ

)

=− lRB̂
2
s

µ̂

1
2

(
1

γ + cos2 θ

∣∣∣∣∣
2π

0
+
∫ 2π

0

cos 2θ cos 2φ+ sin 2θ sin 2φ
(γ + cos2 θ)2 dθ


=− lRB̂

2
s

µ̂

− cos 2φ
(
γ + 1/2
γ + cos2 θ

+ log
(
2
(
γ + cos2 θ

))∣∣∣∣∣
2π

0
+
∫ 2π

0

sin 2θ sin 2φ
(γ + cos2 θ)2 dθ


=− lRB̂

2
s

µ̂
sin 2φ

∫ 2π

0

sin 2θ
(γ + cos2 θ)2 dθ

=− lRB̂
2
s

µ̂
sin 2φ

 2γ + 1√
γ(γ + 1)

arctan
(√

γ

γ + 1 tan θ
)
− (2γ + 1 + cos 2θ)θ − sin 2θ/2

γ + cos2 θ

∣∣∣∣∣∣
2π

0

=− lRB̂
2
s

µ̂
2π sin 2φ

 2γ + 1√
γ(γ + 1)

− 2


(A.1.10)
Adding equations (A.1.9) and (A.1.10) we arrive at

Fθ2 = −lRB̂
2
s

µ̂
π sin 2φ

 2γ + 1√
γ(γ + 1)

− 2
 (A.1.11)

which results in the equation for the tangential force on the rotor, shown in equation
(A.1.12).

Fθ = πlR

B̂sĤm sinφ− B̂2
s

µ̂
sin 2φ

 2γ + 1√
γ(γ + 1)

− 2
 (A.1.12)

Since the lever arm is perpendicular to the tangential force and the length of the
lever arm is the radius of the rotor, the electromagnetic torque is

Te = πlR2

B̂sĤm sinφ− B̂2
s

µ̂
sin 2φ

 2γ + 1√
γ(γ + 1)

− 2
 . (A.1.13)
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Appendix B

Control

B.1 Local Linearization of the Transformed Non-
linear Machine

B.1.1 Proof of System Order Reduction
The system equations in the rotor-synchronous frame are

udq =
[
Rs −ωeLq
ωeLd Rs

]
idq +

[
Ld 0
0 Lq

]
didq
dt

+
[
0
1

]
ωeψpm , (B.1.1)

which after defining

G :=
[
Rs −ωeLq
ωeLd Rs

]

L :=
[
Ld 0
0 Lq

]

u′dq :=udq −
[
0
1

]
ωeψpm

(B.1.2)

and taking the Laplace transform with zero initial conditions results in

u′dq = (G + sL) idq . (B.1.3)

Let the controller be

u∗dq =
(1
s
P + Q

) (
i∗dq − idq

)
+
[
0
1

]
ωeψpm (B.1.4)

where u∗dq is the system input, or controller, and i∗dq is the desired current command.
To acquire the desired first-order closed loop system behavior with the desired band-
width a, we first declare the desired system transfer function as

idq = a

s+ a
i∗dq . (B.1.5)

Setting udq = u∗dq results in(1
s
P + Q

) (
i∗dq − idq

)
= (G + sL) idq

(P + sQ) i∗dq = (P + sQ + s (G + sL)) idq
(P + sQ + s (G + sL))−1 (P + sQ) i∗dq = idq .

(B.1.6)
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It follows that after setting the matrices in equation (B.1.6) to the transfer function
in equation (B.1.5),

(P + sQ + s (G + sL))−1 (P + sQ) = a

s+ a
s+ a

a
(P + sQ) = (P + sQ + s (G + sL))(

s

a
+ 1

)
(P + sQ) = (P + sQ + s (G + sL))

1
a

(P + sQ) = G + sL

P + sQ = aG + saL

(B.1.7)

holds. Thereafter one may simply match states to arrive at

P = aG
Q = aL

(B.1.8)

as claimed.
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