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Aerosols influence weather and climate by interacting with radiation through absorption and
scattering. These effects heavily rely on the optical properties of aerosols, which are mainly governed
by attributes such as morphology, size distribution, and chemical composition. These attributes
undergo continuous changes due to chemical reactions and aerosol micro-physics, resulting in
significant spatio-temporal variations. Most atmospheric models struggle to incorporate this
variability because they use pre-calculated tables to handle aerosol optics. This offline approach often
leads to substantial errors in estimating the radiative impacts of aerosols along with posing significant
computational burdens. To address this challenge, we introduce a computationally efficient and
robust machine learning approach called MieAI. It allows for relatively inexpensive calculation of the
optical properties of internally mixed aerosols with a log-normal size distribution. Importantly, MieAI
fully incorporates the variability in aerosol chemistry andmicrophysics.Our evaluationofMieAI against
traditional Mie calculations, using number concentrations from the ICOsahedral Nonhydrostatic
model with Aerosol and Reactive Trace gases (ICON-ART) simulations, demonstrates that MieAI
exhibits excellent predictive accuracy for aerosol optical properties. MieAI achieves this with errors
well within 10%, and it operates more than 1000 times faster than the benchmark approach of Mie
calculations. Due to its generalized nature, the MieAI approach can be implemented in any chemistry
transport model which represents aerosol size distribution in the form of log-normally distributed
internally mixed modes. This advancement has the potential to replace frequently employed look-up
tables and plays a substantial role in the ongoing attempts to reduce uncertainties in estimating
aerosol radiative forcing.

Aerosol particles have a significant impact on Earth’s radiation balance due
to their interactions with solar radiation and clouds. Particles’ ability to
scatter and absorb radiation, known as the aerosol direct effect, is influenced
by theirmixing state – how different aerosol types are distributedwithin the
population1,2. This mixing state can range from external mixing (single
species) to internal mixing (mixture of species). Newly emitted aerosols
usually have external mixing, while aging processes lead to internal mixing.
Aerosol particles consist of diverse organic and inorganic components,
showing significant variability in composition and abundance across time
and space. Previous studies emphasize the importance of mixing state in
understanding aerosols’ optical properties (AOPs)1,3–5. For example, studies
demonstrate a greater positive forcing for internally mixed black carbon

aerosols under the assumption of core-shell mixing in contrast to homo-
geneous volume-mixing and external mixing scenarios2,6,7.

Accurately modeling aerosol populations and predicting their impact
on air quality, weather, and climate has long been amajor challenge.Despite
a good understanding of the underlying physics, resolvingmany small-scale
processes, especially within atmospheric models, remains difficult. Precise
quantification of AOPs, including mass extinction coefficient (ke), single-
scattering albedo (ω), andasymmetry factor (g) are crucial for improving the
forecasting capabilities of the atmospheric composition models (ACMs).

Accurate representation of AOPs of internallymixed particles remains
a significant challenge in ACMs1,8. Currently, many ACMs use large data-
base of pre-calculated AOPs, in the form of look-up tables9–15. These AOPs

Institute of Meteorology and Climate Research - Troposphere Research, Karlsruhe Institute of Technology, Karlsruhe, Germany.
e-mail: pankaj.kumar@kit.edu

npj Climate and Atmospheric Science |           (2024) 7:110 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00652-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00652-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00652-y&domain=pdf
http://orcid.org/0000-0003-0301-1357
http://orcid.org/0000-0003-0301-1357
http://orcid.org/0000-0003-0301-1357
http://orcid.org/0000-0003-0301-1357
http://orcid.org/0000-0003-0301-1357
mailto:pankaj.kumar@kit.edu


are often archived using Mie calculations for a discrete set of chemical and
micro-physical attributes (such as particle size and refractive index)8,16. But
aerosol size and composition have large spatial and temporal variability in
model simulations. An interpolation is inevitable whenever AOPs in the
model are queried for a set of input parameters different from the archived
values. The interpolationmay lead to non-trivial errors due to non-linearity.
Such errors can be reduced by addingmore parameters to the interpolation.
For example,12 implemented polynomial fits to account for the variability of
median diameter of log-normal modes during atmospheric transport (due
to faster sedimentation of large particles). The database, however, grows
larger as the number of parameters increases, making the offline AOPs less
convenient for use with diverse applications14,17.

Due to the significant computational burden, online calculation of
AOPs using Mie code is only feasible for specific applications and
impractical for real-time use in ACMs15. To tackle this issue, several
attempts have been made for the online calculation of AOPs that often
parameterize the Mie calculations for variable aerosol size and
composition10,18–20. Yet, these methods are also subjected to large uncer-
tainties and errors stemming from underlying assumptions and interpola-
tions. This highlights the immediate demand for accurate and
computationally efficient tools for online calculaton of AOPs consistent
with the aerosol chemical and microphysical characteristics in ACMs14.

In recent years, the application of Machine Learning (ML) and, more
specifically, Deep Learning (DL), has garnered significant prominence
within the domain of weather and climate research. This prominence is
reflected in its diverse applications, spanning across various aspects
including weather prediction21,22, the refinement of numerical model out-
puts through post-processing23, and even the substitution of pivotal model
physics24 and parameterizations25,26. The methodologies employed encom-
pass a variety of techniques, spanning from emulation27 to the resolution of
partial differential equations (PDEs) via widely adopted ML algorithms28.
ML has undergone significant advancements in recent years, particularly
after 2010, as a result of the development of effective techniques for training
a neural network (NN) of considerable size. NNs excel in learning knowl-
edge representation inveryhigh-dimensional spaces; in formsof connecting
weights in between neurons of the networks. The organization of the net-
works or the network architecture is thus amapping of the knowledge space
of various domains. As demonstrated in recent studies, it is feasible to
predict the optical properties of aerosol particles by means of a NN, rather
than solving Maxwell’s equation as in Mie calculations14,17,29.

Therefore, the objective of this study is to develop aNNbased emulator
to replace the current aerosol optics parameterization for internally mixed
aerosols used in ACMs such as ICON-ART. We present a multi-layer fully
connected feed-forward NN to derive optical properties for spherical par-
ticles covering a large size range accurately and efficiently; thereby meeting
the emergent requirements in both remote sensing and atmospheric
modeling of aerosol particles. This study builds upon prior endeavors that
employedML techniques for emulating aerosol optics and radiative transfer
modeling14,15,17,24,29–33. The overarching objective here is to devise an
approach capable of robust generalization as the existing literature lacks the
discussionon the challengesof utilizing a neural network-basedapproach in
real world applications.

Results
MieAI training and testing
In this study, we use a MLP with multiple hidden layers (named MieAI) to
emulate the calculation of AOPs using Mie theory. MieAI considers the
mixing state of particles by incorporating inputs such as size parameter, shell
thickness, and RI of both core and shell. It then outputs three AOPs,
includingQext,Qsca, and g.ω is calculated fromQext andQsca using Eq. (10).

MieAI model, selected after hyper-parameter tuning, is trained for
5000 epochs until the loss function is minimized, resulting in an optimized
network. The NN was trained on 500,000 training data samples whereas
verification was done on 100,000 test samples randomly chosen from
600,000 Mie samples. Supplementary Fig. 3 provides a comprehensive

visualization of the dynamic evolution of two crucial loss metrics, the MSE
and the MAPE, throughout the training process of our NN model. These
loss metrics are pivotal for assessing the model’s performance, particularly
in its capacity to accurately approximate AOPs. The observed trends in this
figure offer profound insights into the model’s convergence and its effec-
tiveness in learning from the training data. Notably, the continuous and
monotonic decrease in validation losses, both in terms of MSE and MAPE,
serves as a strong indicator of the model’s robust fitting to the data. This
persistent reduction in validation losses underscores the model’s consistent
improvement in its ability to predict AOPs accurately as the training pro-
gresses. Such a trend is highly promising, as it demonstrates the model’s
capacity to continually refine its representations and effectively grasp the
intricate relationships inherent in the AOP data.

It’s important to highlight that our model’s training incorporates an
early stoppingmechanism,with a patienceparameter set at 50. This strategy
ensures that the model training halts at the 2548th epoch, optimizing the
MieAI model with a validation MSE of 0.01187. This early stopping
mechanism is a prudent approach to prevent overfitting and ensure that the
model generalizes well to unseen data.

To verify the optimized network, we evaluated its performance by
comparing itsAOPpredictions against the trueAOPvalues estimated using
Mie calculations and the R2 values for different AOPsmodeled in this study
are shown in Fig. 1a–c. As depicted in the figure, our trained NN model
demonstrates a commendable ability to model AOPs effectively, as evi-
denced by high R2 values of 0.994, 0.994, and 0.997 for Qext, Qsca, and g,
respectively. These results underscore the robust learning capability of the
selected NN model, affirming its aptitude for capturing the intricate rela-
tionships within the data.

However, it is worth noting that whileMieAI excels in predicting these
threeAOPsoverall, there are specific regionswhere it encounters challenges.
In particular, these challenges become apparent in the case ofQext andQsca,
especiallywhen these values fall below 2 and 1, respectively. In these regions,
MieAI appears to struggle, leading to more substantial discrepancies
between its predictions and the actual values.

To gain deeper insights into these discrepancies, we examine the dis-
tribution of relative errors in MieAI predictions, as illustrated in Fig. 1d-f.
This analysis reveals that MieAI tends to underestimate Qext and Qsca

slightly when compared to those calculated using theMie theory. However,
notably, there is no such bias observed in the case of g. These findings
provide valuable insights into the performance characteristics ofMieAI and
highlight specific areas where further model refinement may be warranted.

MieAI validation using ICON-ART simulations
Next,we compare theAOPpredictions ofMieAI against the same estimated
usingMie theory for the outputs of ICON-ART simulations and are shown
in Figs. 2–4 for different real events examined in this study. For this purpose,
the number concentrations for the constituent species ofmixedmodes were
taken from ICON-ART output. We first map the ICON-ART number
concentrations to RIs for core and shell as shown in Supplementary Fig.
1and ICON-ART modes to bins assuming log-normal distributions as
illustrated in Fig. 5. MieAI predictions for the bins are integrated back to
modes and then compared with the Mie calculations.

Figure 2 shows the spatial distribution ofAOPs for simulated internally
mixed volcanic aerosols in coarsemode, obtained frombothMie andMieAI
(see Supplementary Fig. 4 for the comparison in accumulation mode). The
illustration focuses on the derived AOPs after the La Soufrière volcanic
eruption inApril 2021, specifically showcasing the comparisonat an altitude
of 15 km above sea level 27 hours after the start of the simulation. The
median diameters, shown in Fig. 2m, exhibit a range spanning from100 nm
to 1200 nm. Concurrently, the shell (coating) thickness, depicted in Fig. 2n,
varies from 10 to 80% of the total diameter. It is notable that a majority of
particles possess median diameters exceeding 500 nm and exhibit thick
coatings (more than 50% coating fraction). In this case, volcanic ash con-
stitute the core whereas water and inorganic species (sulfate, nitrate and
ammonium) are the constituents of the coating/shell. A discernible trend
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emerges in the figure, where Qsca (Fig. 2d) and consequently Qext (Fig. 2b)
appear to align with the distribution of both median diameter and coating
fraction.Higher valuesofQext andQsca are observed in regions characterized
by lower median diameters and coating fractions. Conversely, both ω
(negative correlation; Fig. 2g) and g (positive correlation; Fig. 2j) show a
more pronounced correlation with changes in median diameter, with a
lesser influence from the coating fraction. Impressively, MieAI, shown in
Fig. 2b, e, h, k, effectively captures these dependencies, showcasing an
impressive agreement between its predictions andMie theory estimates.The
comparison betweenMieAI predictions andMie theory estimates reveals a
very good agreement, with relative errors (depicted in Fig. 2c, f, i) generally
staying within 10% for all AOPs, except for g (Fig. 2l), where the relative
error reaches up to 12%. This suggests that the NN model effectively cap-
tures the intricate relationships between particle morphology, mixing state,
and optical properties. Interestingly, it’s worth noting that network errors
exhibit a degree of dependencyon the coating fraction for allAOPs, except g.
In the case of g, network errors closely track the distribution of median
diameter, with higher relative errors occurring in regions where themedian
diameter is smaller.

Figure 3 shows a comparison of thebulkAOPsestimated fromMieAI
andMie for casewildfire. This case study centers on anAustralianwildfire
event from 2019, specifically examining the comparison at an average
altitude of 850 m above sea level after 23 hours of simulation (23rd of
November 2019, 23:00 UTC). The selected altitude corresponds to the
mass weighted height of the plume, further the plume at that level is wide
spread with a high concentrations compared to other model levels. The
time step selected is towards the end of the one day simulation, enabling
transport and aging of the aerosol. In this case, soot constitutes the core
whereas water, organic and inorganic species (sulfate, nitrate and
ammonium) are the constituents of the coating/shell. Here, the median
diameter (Fig. 3m) for the internally mixed aerosol in coarsemode ranges
from 50nm to 1000nm whereas the shell (coating) thickness (Fig. 3n)
varies from 35 to 50% of the total diameter (see Supplementary Fig. 5 for

the comparison in accumulation mode). It’s worth noting that this
simulation predominantly features aerosol particles with total diameters
exceeding 900 nm. Similar to case volcano, intriguing patterns emerge
wherein all four optical properties exhibit alignment with the distribution
ofmedian diameters. In particular, changes inQext (Fig. 3a),Qsca (Fig. 3d),
and ω (Fig. 3g) showcase a negative correlation with the variations in
median diameters, while g (Fig. 3j) demonstrates a positive correlation
with the same. Intriguingly, none of the optical properties appear to
exhibit sensitivity to variations in the shell thickness. Remarkably, the
comparison betweenMieAI, shown inFig. 3b, e, h, k, andMie calculations,
shown in Fig. 3a, d, g, j, underscores an excellent agreement, reaffirming
the robustness of the employed NN model in effectively emulating Mie
theory for internally mixed aerosols. The relative errors for all optical
properties, shown in Fig. 3c, f, i, l, in this case remain within the 10%.
Notably, in contrast to the La Soufrière case study, network errors in this
instance appear to be particularly responsive to changes in median dia-
meters rather than variations in the coating fraction.

Finally, Fig. 4 shows a comparison of the MieAI predictions using the
model trained with quantile transformation and Mie calculation for coarse
mode internally mixed particles using ICON-ART simulation for case dust.
The investigation focuses on a dust event occurring over central Europe,
wherein the simulation encompasses a comprehensive range of aerosol
species emissions, including sea salt, dust, and soot. The figure exclusively
showcases these comparisons at an altitude of 5 km above sea level. In terms
of particle characteristics, the median diameter (Fig. 4m) for mixed-phase
aerosols within the coarse mode exhibits a range spanning from 200 nm to
2300 nm.Notably, themajority of these particles possess amedian diameter
of less than500nm.Concurrently, the shell (coating) thickness varies from0
up to 50%of the total diameter as shown in Fig. 4n.However, it is important
to note that a substantial proportion of the particles feature a shell thickness
of less than10%.As anticipated, the optical properties (Fig. 4a, d, g, j) display
sensitivity to changes in median diameter, mirroring the patterns observed
in previous cases. While akin to the previous case, the influence of shell

Fig. 1 | MieAI training and evaluation. a–cMieAI predictions against true AOPs estimated usingMie calculations for the test dataset. d–fDistribution of NN errors for the
test dataset. Here, error reported is the percentage error of MieAI with respect to true AOPs estimated using Mie calculations.
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Fig. 2 | Comparison of AOPs predicted by MieAI against those estimated using
Mie theory for coarse mode internally mixed aerosol particles at an altitude of 15
km above sea level for the La Soufrière volcanic eruption (denoted by the plus
symbol) event simulated using ICON-ART.Here, left column (a, d, g, j) shows the
AOPs estimated using Mie theory, middle column (b, e, h, k) shows the same

predicted from MieAI and right column (c, f, i, l) shows the relative error of MieAI
AOPs prediction against Mie calculations. m The geographical distribution of the
aerosol median diameter simulated using ICON-ART, whereas (n) shows the geo-
graphical variation of shell thickness, as a fraction of the total particle diameter (in
percentage), of the coated aerosol.
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thickness remains relatively limited. As expected, MieAI (Fig. 4b, e, h, k)
excels in capturing the variations in AOPs, with relative errors (Fig. 4c, f, i)
staying below10% forQext andQsca as well asω. The prediction accuracy for
g (Fig. 4l) is also reasonably strong, with errors generally remaining within
15%. Importantly, it is noteworthy that the magnitude of errors in g is
sensitive to the coating fraction, a characteristic distinguishing it from the

other three optical properties. For a complementary comparison in the
accumulation mode, please refer to Supplementary Fig. 6.

The comparisons between AOPs estimated using Mie theory and the
predictions made by MieAI, employing a model trained without quantile
transformation, are presented in Supplementary Fig. 7. As clearly evident
from the figure, the MieAI model, when trained without quantile

Fig. 3 | Comparison of AOPs predicted by MieAI against those estimated using
Mie theory for coarse mode internally mixed aerosol particles at an altitude of
850 m above sea level for Australian biomass burning event simulated using
ICON-ART. Here, left column (a, d, g, j) shows the AOPs estimated using Mie
theory, middle column (b, e, h, k) shows the same predicted from MieAI and right

column (c, f, i, l) shows the relative error of MieAI AOPs prediction against Mie
calculations.m The geographical distribution of the aerosol median diameter
simulated using ICON-ART whereas (n) shows the geographical variation of shell
thickness, as a fraction of the total particle diameter (in percentage), of the coated
aerosol.
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transformation, exhibits notable shortcomings in capturing the variations in
AOPs, with the exception of Qext. This discrepancy becomes particularly
conspicuous despite themodel’s impressive performanceon the test dataset,
where correlation coefficients (R) exceeded 0.98 for all AOPs examined,
including Qext, ω, and g, as demonstrated in Supplementary Fig. 8.

The divergence between the model’s performance on the test dataset
and its application to real-world data underscores a critical limitation in its
ability to generalize beyond the training context. Implications of this
observation are far-reaching and offer valuable insights into the complex-
ities of emulating intricate physical mechanisms using NNs, particularly

Fig. 4 | Comparison of AOPs predicted by MieAI against those estimated using
Mie theory for coarse mode internally mixed aerosol particles at an altitude of 5
km above sea level in ICON-ART simulation of a dust event over central Europe.
Here, left column (a, d, g, j) shows the AOPs estimated using Mie theory, middle
column (b, e, h, k) shows the same predicted fromMieAI and right column (c, f, i, l)

shows the relative error of MieAI AOPs prediction against Mie calculations.m The
geographical distribution of the aerosol median diameter simulated using ICON-
ART, whereas (n) shows the geographical variation of shell thickness, as a fraction of
the total particle diameter (in percentage), of the coated aerosol.
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when not validated against real-world scenarios. Consequently, it under-
scores the critical importance of comprehensive preprocessing of datasets
before their integration intoMLmodels, serving as a precautionarymeasure
against potential pitfalls in model generalization.

In summation, this comprehensive analysis underscores the robustness
of the MieAI model (with quantile transformation) in reproducing the
optical properties of internally mixed aerosols. Note that the MieAI was
trained using a datasetwhichhad shell thickness up to 40%onlywhereas the
comparisons in all three cases include shell thickness beyond 40% (up to
50%). Thus, the comparisons clearly demonstrate the extrapolating cap-
ability of MieAI. The fact that the model successfully extrapolates its pre-
dictions beyond the training data’s confines is a testament to its inherent
capacity to generalize and capture the underlying physical principles gov-
erning the interactions between aerosol particles and light. This character-
istic is particularly valuable in real-world scenarios where aerosol properties
can exhibit a wide range of variability, often extending beyond the confines
of training data.MieAI’s capacity to accurately predict optical properties for
aerosols with shell thicknesses up to 50% highlights its versatility and
reliability as a Mie emulator.

Computational efficiency of MieAI
In addition to its high fidelity inmodelingAOPs,MieAI offers a remarkable
advantage in computational efficiency, showcasing significant computa-
tional enhancements in comparison to traditional Mie calculations
employed for the same purpose. As indicated in Table 1, MieAI demon-
strates a computational speedup exceeding 500 times that of Mie calcula-
tions across all scenarios investigated in this study.

The extentofperformancegain is particularlynoteworthy; for instance,
during the 2019 dust event over central Europewith 28,800 ICONgrid cells,
MieAI exhibited a speedup of approximately 500 times. As the number of
grids increases, this gain becomes more pronounced, with speedups sur-
passing three orders ofmagnitudewhen compared toMie calculations. This
phenomenon is exemplified in the ICON-ART simulations for events such
as the La Soufrière volcanic eruption with 73,500 ICON grid cells, where
MieAI achieved a speedupof around 1900 times, and theAustralianwildfire
eventwith 74,865 ICONgrid cells, boasting a remarkable speedupof around
1800 times.

Furthermore, the computational cost associated withMieAI training is
exceedingly minimal, taking approximately 3 hours and 20 minutes. This
stands in stark contrast to the runtime requirements of ICON-ART simu-
lations. Notably, MieAI training utilized a single computing node from a
high-performance computing (HPC) cluster equippedwithmultiple nodes,
eachhousing36 IntelXeonCPUs. It is pertinent tomention that bothMieAI
predictions andMie calculations were executed utilizing a single CPU core.

Discussion
This study endeavors to introduce an innovative and computationally
efficient framework, aptly named MieAI, specifically designed for calcu-
lating the bulk optical properties of internally mixed and coated aerosols
characterized by a log-normal size distribution. Our approach leverages a
straightforwardmulti-layer perceptron, a typeof artificial neural network, to
unravel the intricate relationship betweenAOPs and their physico-chemical
characteristics, such as particle size distribution, mixing state, and chemical
composition.Central toMieAI is the representation of both core and shell as
ternary systems, subsequently linked to RIs via a volume mixing approach.

In order to validate the efficacy of our approach, we subjected it to
rigorous evaluation against the gold standardmethodofMie calculations– a
technique renowned for its precision albeit its notably sluggish computa-
tional speed. Our comparative evaluation unveiled that the NN-based
MieAI approach not only attains remarkable accuracy – with errors con-
fined within 10% – but also exhibits an excellent computational efficiency,
boasting a speed improvement of three orders of magnitude.

Furthermore, our study underscores the paramount significance of
meticulous pre-processing in enhancing the accuracy and generalizability of
NN-based methodologies. We emphasize the necessity for rigorous evalua-
tions of novelML-based approaches prior to theirwidespread deployment in
scientific applications. Moreover, MieAI model proposed in this paper tries
to emulate the Mie calculations for thinly coated aerosols assuming the
aerosols particles to be spherical and having the core-shell configuration.
However, this approach can be extended to account for non-spherical shape
and the morphologically complex configurations such as embedded, partly
embedded, thick coating and partially embedded configurations1,33,34.

With its generic design, the approach presented herein holds versatile
applicability, seamlessly integrating into ACMs that adopt either bin or
modal frameworks for representing aerosols and their optical properties.
Moreover, the same framework can be extended to accommodate externally
mixed aerosols and aerosol models featuring non-spherical shapes.

The substantial precision achieved through our developed approach
bears the potential to significantly contribute to the ongoing efforts aimed at
mitigating uncertainties in aerosol forcing estimations. By bridging the gap
between precision and computational efficiency, MieAI emerges as a
valuable asset in the realm of physics-based weather and climate models,
especially ACMs; poised to contribute substantially to advancing our
understanding of aerosol-climate interactions and fostering more robust
climate models.

Methods
Mie calculation of aerosol optical properties
Optical properties are a function of the particle size and the wavelength-
dependent refractive indices (RIs) of the constituents of the aerosol
particles35. Both relative RI of the particle with respect to surrounding
medium and particle shape should be accounted for in radiation interaction
studies29. If the particle shape is spherical,Mie theory canbeused to calculate
the optical properties. Mie theory uses Maxwell’s equations to solve a 3-D
electromagnetic wave equation whose solution can be written as an infinite
series of products of orthogonal functions36. As per Mie theory, the
extinction (Qext) / scattering (Qsca) efficiencies and g of a spherical particle
can be written as:

Qext ¼
2
x2
X1
n¼1

ð2nþ 1ÞRðan þ bnÞ ð1Þ

Qsca ¼
2
x2
X1
n¼1

ð2nþ 1Þðjaj2n þ jbj2nÞ ð2Þ

g ¼ 4
Qscatx2

X1
n¼1

nðnþ 2Þ
nþ 1

Rðana�nþ1 þ bnb
�
nþ1Þ þ

X1
n¼1

2nþ 1
nðnþ 1ÞRðanb�nÞ

" #

ð3Þ

Table 1 | Timing results (in seconds) of MieAI and Mie calculations for different real cases investigated in this study

Case Number of grid cells Mie MieAI Computational Gain

2021 La Soufrière Volcanic eruption 73,500 423.3126 s 0.2136 s 1981.80×

2019–20 Australian Wildfire 74,865 398.1323 s 0.2108 s 1888.67×

Summer 2019 dust event over central Europe 28,800 132.9224 s 0.1971 s 0674.39×

Here, MieAI results are shown for the prediction batch size of 8192.
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Here, an and bn are theMie scattering coefficients and x is the sizeparameter
which, in turn, is given by:

x ¼ πdp
λ

where dp is the particle diameter.
An approximate solution for Qext, Qsca and g can be obtained by

truncating the infinite series as explained by ref. 36. Mie codes calculate the
Mie scattering coefficients (an and bn), which are solely dependent on
particle diameter (dp), incident wavelength (λ) and RI (Bλ), followed by
determination of the number of terms required before truncation and cal-
culation of the series.Mass extinction coefficient (ke) is obtained fromQext

37:

keðl; λ;BλÞ ¼
R1
0

π
4 d

2
pQextðdp; λ;BλÞψ0;lðdpÞddpR1
0 ρp½π6 d3p�ψ0;lðdpÞddp

ð4Þ

where ψ0,l and ψ3,l are the parameters of the log-normal distribution for
aerosol mode l.

To calculate the optical properties of the internally mixed aerosol
particle using Mie calculations, some assumption are required. Mie theory
assumes that the particles have spherical shapes. In reality, the majority of
aerosol particles are non-spherical. However, the process of liquid coating
frequently leads to the formation of spherical coating surfaces, thus justi-
fying the assumption of particle sphericity in mixed mode models. Recent
studies suggest that coated particles can also exhibit non-spherical shapes,
which complicates this assumption15,38–41. Nevertheless, the use of coated
spheres remains a practical approximation inmany cases and is widely used
configuration in ACMs14,15,42,43. In this study, aerosol particles were assumed
to be spherical in a core-shell configuration, with solid phase as the core and
liquid species as the shell. Both core and shell are considered as ternary
systemsof different chemical species. For example, core is the ternary system
consisting of dust, sea salt and soot whereas the shell is constituted bywater,
inorganic and organic species as shown in Fig. 5. This assumption does not
imply theone-to-one existence of suchmixtures innature.Rather, it covers a
wide range of the possible RIs for core and shell accruing in the atmosphere
which is shown in Supplementary Fig. 1.We employ thePyMieScatt Python

library for computing the optical characteristics of a coated sphere usingMie
theory44. This library is built on Mie codes originally written by45 and7,
rooted in the concepts presented by36.

Emulation of the Mie Calculation: MieAI
In this study, we propose a multi-layer fully connected NN popularly known
asmulti-layerperceptron(MLP) toemulate thecalculationofAOPsusingMie
calculation i.e.MieAI.As a universal function approximator, the feed-forward
NN is ideally suited formodelingnonlinear processes. The schematic diagram
of the MLP is shown in Fig. 6. Specifically, it is used here to establish the
relationships between the micro-physical parameters of aerosol particles and
corresponding single-scattering properties14,15,17,46. Its feature is the inter-
connection of neurons with all nodes in the front and rear hidden layers. The
outputOðlÞ

i of the i-thnode in the fully connected layer l canbecalculated from
theoutputof theprevious layer l− 1with anon-linear activation function (ϕ).

OðlÞ
i ¼ ϕ

XNðl�1Þ

j¼1

wðlÞ
i;j O

ðl�1Þ
j þ bðlÞi

 !
ð5Þ

Here,wðlÞ
i;j represents the weight of the j-th neuron in the layer l− 1 to the i-

th neuron in the layer l and bðlÞi represents the bias termof the i-th neuron in
the layer l. N(l−1) is the number of neurons in layer l− 1.

For estimating AOPs using MieAI, 7 aerosol micro-physical para-
meters are regarded as input features (X = [x1, x2,…, x7]) and 3 single-
scattering properties (Y = [Qext, Qsca, g]) are output targets as shown in
Fig. 6. Here the input features are the size parameter (x), wavelength (λ),
coating fraction (f) for coated, internallymixed aerosol andRIs for both core
(RIc) and shell (RIs). Using a dataset comprising known input and output
matrices, denoted asX and Y respectively, the model undergoes training to
optimize its parameters - weights (w) and biases (b). This optimization is
achieved via back-propagation, which minimizes the cost function Cy:

Cy ¼
XN
i¼1

ðytrue � ypredÞ2 ð6Þ

Fig. 5 | Coated internally mixed aerosol particle. It is assumed to be composed of a
core that is insoluble and a shell that is soluble. The core consists of black carbon,
volcanic ash, sea salt and dust whereas the shell consists of organic, inorganic matter
(such as ammonia (NH4), nitrate (NO3), chlorine (Cl), sulfate (SO4) and sodium
(Na) and water (H2O)). Here, Dc represensts the diameter of the core and Dt is the
total diameter of coated, mixed aerosol particle that consists of both core and shell.
Refractive indices (RI) for all chemical species constituting themixed aerosol particle
except dust are obtained from ref. 65whereas those for dust are obtained from ref. 64.

Fig. 6 | MieAI Architecture. MieAI is a NN based model with multiple hidden
layers. The first and last layers represent input and output of MieAI respectively.
Here, size parameter (x), wavelength (λ), coating fraction (f), real and imaginary
parts of refractive indices for both core (RIcre and RIcim) and shell (RIsre and RIsim)
constitute the input of MieAI whereas the extinction (Ext), scattering (Sca) Effi-
ciency and asymmetry parameter (Asy) are the output.
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This function quantifies the error between the predicted values (ypred)
generated through forward propagation in the NN and the actual values
(ytrue). The cost function Cy is differentiable with respect to the model
parameters (w and b), enabling the application of various gradient descent
techniques for efficient optimization.

Training Data and its preprocessing
To facilitate MieAI training, a total of 30 distinct combinations of core and
shell chemical compositions are considered, as outlined comprehensively in
Supplementary Table 1. The computation of optical characteristics relies on
wavelength-dependent RI. As emphasized by47, distinct peaks in the real
component of theRImanifest as prominentmaxima inQext. Simultaneously,
the ω and, consequently, the absorption efficiency (Qabs) is governed by the
imaginary componentof theRI. InSupplementaryFig. 1a,wepresent the real
and imaginary components of RI for the chemical species composing both
the core and shell of aerosol particles43,47,48. Supplementary Fig. 1b illustrates
the variations in the real and imaginary components of the RI for internally
mixed and coated particles as a function of changes in the chemical com-
position of the core and shell across various wavelengths of solar radiation.
The real part of the RI exhibits a range from1.1 to 2.75 for the core and 1.2 to
2 for the shell, contingentupon the specific chemical compositionsof the core
and shell.Meanwhile, the imaginary component varies from values as low as
10−8 to 0.5 for the core and from 10−9 to 1 for the shell. It’s noteworthy that
the core is characterized as a volume-averaged ternary system involving
mineral dust, sea salt, and soot,while the shell is likewisemodeled as a ternary
system, featuring water, inorganic, and organic constituents.

The training, test and validation datasets for MieAI are generated by
randomly selecting 600,000 samples (about 2%) frommore than 45million
possible combinations of input features arising from varying wavelength
(0.2 to 100 μm), shell thickness (from 0 to 40% of total diameter with a step
wise of 0.1%), core diameter (from 10 nm to 20 μm) and RI by considering
30 different combinations for core and shell as discussed before. Randomly
selected samples were divided into training (70%), validation (15%) and test
datasets (15%) while optimizing the NN architecture and parameters.

Both input and target datasets have a large variability; hence it is
important to normalize them before feeding to NN for training in order to
improve the model learning ability. Hence, input and target data to NN
model is transformedusingMin-Maxnormalization before being fed toNN
model. Afterwards, the output from the NN model is denormalized to its
original optical properties space. We first normalized the training dataset
and used the same normalization scale to transform validation and test
datasets to avoid data leakage during model training.

Due to the non-normal distribution of the target AOPs in training
dataset, we perform a quantile distribution mapping over the raw target
AOPs to a normal distribution. Quantile mapping transforms all input
features to the same target distribution (Gaussian distribution in this case)
based on the formula G−1(F(X)) where F is the cumulative distribution
function (CDF) of the input feature and G−1 is the quantile function of the
target distribution G49. Quantile mapping smooths out uneven distribution
and is influenced less by outliers unlike scaling methods like min-max
transformation. Quantile mapping has been used extensively in meteorol-
ogy for bias correction50 and statistical downscaling51. We use the python
library scikit-learn for performing quantilemapping in this study. As shown
in Fig. 7, the raw training dataset for g is bi-modal with one peak over 0 and
another over 1. While non-linear algorithms like MieAI may not have a
Gaussian distribution assumption, however they perform better if variables
have a Gaussian distribution. Thus, mapping to the normal distribution
improves the generalization of the trained network. During inference, the
predicted AOPs are transformed back to the original distribution using
inverse quantile transform with the same parameters used during the
training.

Optimization and assessment of MieAI
In addition to the model parameters optimized by the NN training proce-
dure, there are hyper-parameters that define the model architecture and

control the learning process, such as the number of hidden layers, the
number of neurons in each layer, the activation function, batch size and the
learning rate of the optimizer. Themean squared error (Eq. (6)) is employed
as the loss function for the optimizer to minimize. We apply a non-linear
activation function to all of the layers except the output where we apply
linear activation to restrict the NN output between 0 and 152. After the
training, the weight matrices in the NN are saved and used afterwards for
evaluation using ICON-ART simulations.

To assess the performance of the network, we used the coefficient of
determination (R2) and Mean Absolute Percentage Error (MAPE) as
metrics to evaluate the fitness of the predictions with the true values. R2 is
defined as:

R2 ¼ 1� ΣM
i¼1ðyi � fiÞ2

ΣM
i¼1ðyi � �yÞ2 ð7Þ

Here, fi is the value predicted by MieAI and yi is the true value. �y is the
average of all true values. The closerR2 is to 1, the higher the performance of
MieAI. The MAPE metrics is defined as:

MAPE ¼ 100
N

XN
i¼1

Ymie � YMieAI

Ymie

����
���� ð8Þ

Here, YMieAI is AOP prediction from MieAI, Ymie is the AOP estimated
using Mie theory and N is the number of times AOPs are predicted
using MieAI.

To avoid over-fitting and other training related issues, we chose our
NN hyper-parameters using keras-tuner hyper-parameter optimization
library and apply early stopping with patience parameter set as 5053. The
hyper-parameters of the model have been meticulously optimized through
the application of Bayesian optimization. The entire hyper-parameter
tuning procedure is executed in a two-stage approach, wherein each stage
serves to fine-tune distinct aspects of the model. In the first stage, we focus
on optimizing critical architectural components, including the number of
hidden layers, the neuron count in each hidden layer, activation functions,
and the choice of optimizer. Subsequently, the second stage hones in on
further enhancements by fine-tuning the learning rate and the batch size of
the training data, for the NN selected in the first stage. During hyper-
parameter optimization, we trained various NN architectures for 200
epochs. The corresponding MSE values for these diverse NN architectures
are presented in Supplementary Table 2 (first stage) and Supplementary
Table 3 (second stage). The resultant optimal values for all hyper-
parameters are shown in Table 2.

As depicted in Supplementary Table 2, the MieAI model with Adam
optimizer having 5 hidden layers with 64 neurons in each layers and GELU
activation functionperformed thebestwith the lowestMSE.With the aim to
select the most accurate NN with smallest possible number of trainable
parameters, we performed the second stage of tuning wherein we varied the
numberof hidden layers and thenumberof neurons in each layer alongwith
the batch size and learning rate of Adam optimiser selected after the first
stage tuning. As shown in Supplementary Table 3, the MieAI model with 4
hidden layers outperformed the 5 layer NN as selected in first stage when
batch size and learning rate were also optimized. We apply early stopping
with patience set as 50 and reduce the learning rate of the optimizer by one-
fifth if the validation loss plateaus during both hyper-parameter tuning and
training of the network. Therefore, the best NN after hyper-parameter
optimization is aMLPwith 4 hidden layers each having 64 neurons trained
using Adam optimizer with learning rate of 0.01 and training batch size
of 128.

ICON-ART model system
In addition to evaluating the trained MieAI using test datasets, we con-
ducted three reference ICON-ART simulations for real-world events to
validate theMieAI prediction of AOPs againstMie calculations. The ICON
modeling framework excels in solving the nonhydrostatic and compressible
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Navier-Stokes equations on an icosahedral-triangular grid54. This model
exhibits versatility in predicting various processes across scales, from global
to local, as highlighted by55 and56. Complementing the ICON model, the
ART module forms an integral part responsible for simulating trace gases
and aerosols in both the troposphere and stratosphere. This module
encompasses processes spanning emission, transport, physicochemical
transformation, removal of gases and aerosols as well as their interactions
with clouds and radiation12,57,58. DeutscherWetterdienst (DWD)uses ICON
and ICON-ART for operational weather and mineral dust forecasting and
pollen, respectively.

ICON-ART uses the European Centre for Medium-Range Weather
Forecasts (ECMWF) radiation scheme ecRad59 as the standard radiation
scheme for numerical weather prediction60,61. To calculate the local radiative
transfer parameters, ecRad needs the kel,j, ωl,j and gl,j for every mode l and
every waveband j for 30 wavelength bands between 0.2 and 100 μm. These
are often obtained using Mie calculations. Together with the local aerosol
mass mixing ratios (ψ3,l) from ART and air density (ρa), they allow for
calculation of the volume specific extinction coefficient37:

βext;l;j ¼ kel;j � ρa � ψ3;l � 10�6 ð9Þ

ω gives the scattering coefficient:

βscat;l;j ¼ ωl;j � βext;l;j ð10Þ

These volume specific properties are then converted to values per model
layer by multiplying with the respective layer height (Δz), followed by
summation across all model layers to calculate total aerosol optical depth
(AOD) for the ART aerosol within a specific waveband. These computed

Fig. 7 | Transformation of MieAI output using
quantile mapping. Quantile mapping transforms
input features to a Gaussian distribution with mean
0 and standard deviation 1. Here, left column
(a, c, e, g) shows AOPs before quantile mapping and
right column (b, d, f, h) shows AOPs after quantile
mapping.

Table 2 | Hyper-parameter tuning of MieAI model

Tried value ranges Best value

Number of hidden layers 1–5 4

Neurons per hidden layer 8, 16, 32,64 64

Minibatch size 128, 256, 512, 1024 128

Activation function relu, gelu, sigmoid, tanh gelu

Optimizer adam, sgd, rmsprop adam

Initial learning rate 10−1, 10−2, 10−3, 10−4 10−2

We use the keras-tunerhyper-parameter optimization library to tune the hyper-parameters ofMieAI.

https://doi.org/10.1038/s41612-024-00652-y Article

npj Climate and Atmospheric Science |           (2024) 7:110 10



values then serve as input parameters for the radiation scheme12. This
approach ensures full coupling and feedback between aerosol processes,
radiation, and the atmospheric state48,62.

The present study focuses on the interaction of internally mixed
aerosols with radiation, which is comprehensively addressed through the
use of the AEROsol DYNamic module (AERODYN) in ICON-ART. This
module enables examination of aerosol dynamics processes, including
nucleation, condensation and coagulation that generate internally mixed
aerosols. AERODYN comprises flexible number of log-normal modes (up
to 10) that accounts for Aitken, accumulation, and coarse particles in
soluble, insoluble, andmixed states, alongside a giant insolublemode43. The
term “mixed state" here pertains to an aerosol that is composed of an
insoluble core anda soluble shell, and the latter constitutesno less than5%of
the overallmass of the aerosol. Theprognostic equations fornumberdensity
and mass concentration are solved for each species and each mode while
maintaining constant standard deviations. There exist two distinct cir-
cumstances that result in the alteration of particle modes. The first cir-
cumstance is when the mass threshold of soluble coating on insoluble
particles surpasses 5%, leading to a transition from insoluble tomixedmode.
The second circumstance is when the diameter threshold of the soluble and
mixedmode is exceeded, resulting in a shift to a larger mode. Alterations in
the particle modes can modify the optical properties of particles with con-
sequential impacts on both the atmospheric state and radiation43,63.

In ICON-ART, eachaerosol componentwas assigned aRI, and theRI
values were obtained from64 for dust and65 for other species. The volume-
average mixing rule is used to compute the complex RI of both core and
shell, which then serves as input for the core-shell calculation. To facilitate
a comparison between Mie calculations and MieAI predictions, we
initially derived bulk AOPs for each aerosol mode by aggregating optical
properties across individual aerosol population bins. To achieve this, we
initially mapped each aerosol mode, based on its median diameter, to 15
log-normal bins, as illustrated in Supplementary Fig. 2. Both Mie calcu-
lations and MieAI emulation were then applied to these bins, and the
results were subsequently integrated to obtain bulk optical properties for
eachmode. For our validation, we employed RI values at a wavelength (λ)
of 550 nm.

Case studies
In order to validate accuracy and computational efficiency of MieAI, we
apply bothMieAI andMie code to the outputs of three different case studies
with different aerosol species. In the following, we briefly explain the
experiments. Table 3 summarizes the relevant aerosol characteristics in each
experiment. It is noteworthy thatMieAIwas exclusively trained on a dataset
featuring shell thicknesses up to 40%, while the comparisons in all three
cases encompass shell thicknesses beyond 40%, reaching up to 50%. This
extension aims to demonstrate the generalization capability of MieAI.
Additionally, it is imperative to recognize that the stability of the Mie code
output diminishes as the coating exceeds 50%. Furthermore,wehypothesize
that particles undergo a transition into an optically soluble mode beyond a
coating threshold of 0.5 i.e. they are treated as particles in soluble mode
instead of the mixed mode. Importantly, our focus is not to validate the
model simulations in these events. Rather, we aim at evaluating the MieAI
performance with real model data.

Thefirst numerical experiment (case volcano) is a simulationof the last
La Soufrière eruption in April 2021 and was performed by ref. 63. Located
on the StVincent island in theCaribbean, the La Soufrière volcanic eruption
occurredduring 09–21April 2021 and emitted volcanicmaterial such as ash

and SO2 in 49 eruption phases. The simulation covered the initial four days
of the eruption, encompassing 43 of the 49 eruption phases starting from 09
April at 12 UTC. The simulation had a grid spacing of 13 km with 2 nested
grids around the volcanowith 6.6 and 3.3 kmgrid spacing, respectively. The
model employed 90 vertical levels to resolve the atmosphere up to 75 km.
The experiment accounts for aging of volcanic ash (ash coated by sulfate-
water mixture) due to aerosol dynamics. More details on this experiment is
provided by ref. 63.

The second case (case wildfire) investigated the catastrophic 2019–20
Australian wildfires in Queensland, which severely affected over 7.5million
hectares and caused a decline in air quality. A 1-day simulation was per-
formed on November 23rd in an area on the eastern coast of Australia
(150∘E–160∘E, 23∘S–33∘S). The model featured a grid spacing of 6.6 km,
extending vertically to 20 km with 125 levels in a limited area setting. The
emissionfluxes are taken from theGlobal FireAssimilation System (GFAS).
25% of the particle mass is emitted in the Aitken mode and 75% in the
accumulation mode. The emission height is parameterized with the plume
rise model according to refs. 66–69.

The third case study (case dust) centered around a dust event over
central Europe during 22–27 June 2019, involving global-scale simulations
with a 40 km grid. The simulation considers comprehensive aerosol emis-
sions (including sea salt, dust, and soot) and their dynamic processes (such
as nucleation, condensation and coagulation), with simplifications made in
gas-phase chemistry for operational forecasting. Similar to the wildfire case
study, chemical species were reinitialized daily using CAM-Chem data.

Data availability
The training data and output from ICON-ART simulations generated in
this study are available on Radar4KIT.

Code availability
The ICONmodel is openly available and is accessible through the following
link: https://icon-model.org/. MieAI model and python codes used for
performing analyses can be accessed here: https://github.com/
pankajkarman/MieAI.
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