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1 Introduction

The search for new particles is one of the primary tasks of the experiments at the Large
Hadron Collider (LHC). Supersymmetry (SUSY) [1–6] remains one of the best-motivated
ideas for physics beyond the Standard Model. SUSY predicts a plethora of new particles
which — if their masses are around the TeV scale — can ameliorate the electroweak hierarchy
problem and contribute to the dark matter in the universe. So far, LHC experiments have
not observed signals for such SUSY particles, but it should be noted that SUSY can be
realised in several distinct ways with different properties.

The most common SUSY model is the Minimal Supersymmetric Standard Model (MSSM).
An alternative is provided by the Minimal R-symmetric Supersymmetric Standard Model
(MRSSM). Both are minimal but in different respects. The usual MSSM predicts the minimal
particle content: besides the Standard Model (SM), the MSSM introduces a second Higgs
doublet and SUSY partners to all particles. Its strongly interacting sector contains squarks
q̃L, q̃R corresponding to all quark flavours and chiralities and a Majorana gluino. All up-type
squarks and all down-type squarks can mix, leading to potentially large flavour-changing
neutral current interactions and the SUSY flavour problem.

The MRSSM, in contrast, has a higher degree of symmetry and, as a result, predicts more
particles but has fewer free parameters [7]. It postulates a global U(1) R-symmetry [8, 9]
under which SM states are uncharged, while SUSY particles such as squarks and gluinos
are charged. The R-charges of q̃L and q̃R are opposite, such that left-right squark mixing
is forbidden and many free parameters related to flavour mixing are absent in the MRSSM.
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The nonzero R-charge of the gluino implies that the gluino is a Dirac instead of a Majorana
fermion. All of these differences strongly impact the LHC phenomenology of the MRSSM.

One important consequence is that several squark production modes are forbidden in
the MRSSM. Specifically, the production of q̃Lq̃L pairs or q̃Lq̃∗R pairs (or similar pairs
with R ↔ L exchanged) is forbidden by R-charge conservation in the MRSSM. Another
important difference affects the production of e.g. q̃Lq̃R or q̃Lq̃∗L pairs. These production
channels are allowed both in the MSSM and the MRSSM, but due to the Majorana nature
of the gluino in the MSSM there is only a 1/mg̃ suppression of gluino t-channel diagrams
for heavy gluino masses mg̃, while the Dirac gluino contribution in the MRSSM is more
strongly suppressed as 1/m2

g̃.
Because of these differences, the LHC production cross sections for squarks are significantly

suppressed compared to the MSSM. This suppression is particularly important since for
squark and gluino masses within LHC reach, squark production processes typically dominate.
The phenomenological consequences have been quantitatively explored in refs. [10–14] with
increasing accuracy. The result is that in the MRSSM, smaller squark masses are more
compatible with the negative LHC search results than in the MSSM. Specifically, ref. [14]
found approximately 600 GeV lower squark mass limits in the MRSSM compared to the
MSSM, based on a next-to-leading order theory calculation.

The MRSSM has several further attractive features beyond increasing the viable parameter
space of squark masses. The absence of left-right squark mixing eliminates many parameters
responsible for flavour-violating interactions and thus alleviates the SUSY flavour problem.
The electroweak and Higgs sectors contain new interactions which can push the Higgs boson
mass up to the observed value for smaller values of top-squark masses than in the MSSM [15–
18], and which can contribute to the W -boson mass [16, 18, 19]. The MRSSM also contains
various possibilities to explain dark matter [20–22], particularly in connection with an extra
light singlet Higgs [18] as well as colour-octet scalars [23–27] and Dirac gauginos [28–30].
The special flavour physics properties have also been studied in the lepton and top sectors
in refs. [31–33] and including muon g−2 in ref. [34].

Despite the strong motivation of the MRSSM, so far, the theoretical predictions for LHC
processes have not reached the same level of precision as in the MSSM, with the corresponding
calculations reported in refs. [35–58]. The present paper is dedicated to an improved evaluation
of the squark production cross section in the MRSSM. It includes fixed-order next-to-leading
order (NLO) corrections (as already discussed in ref. [13]) and the resummation of large
logarithmic corrections due to soft gluon emission close to the production threshold.

Including the soft-gluon resummation is essential because the MRSSM squark cross
sections are suppressed, but resummation is expected to increase the cross sections, with the
effect most pronounced for heavy squark masses. Carrying out threshold resummation requires
process-specific information on the LO contributions and higher-order non-logarithmic terms
which do not vanish at threshold, all decomposed in a chosen colour basis. As we aim here to
perform next-to-next-to-leading logarithmic (NNLL) resummation for the colour channels
which in the threshold limit receive the dominant contribution in the s-wave configuration,
we need to calculate, in addition to the LO cross sections, one-loop virtual corrections in the
MRSSM for the relevant colour channels. For the channels which are p-wave dominated at
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threshold, i.e. suppressed, the resummation is carried out at the next-to-leading logarithmic
(NLL) accuracy, in accordance with the approach adopted in the MSSM case [53, 56, 57].
The computation presented here will allow future LHC analyses to be interpreted both in
the MSSM and the MRSSM on an equal footing and to obtain precise information on the
additional squark mass range viable in the MRSSM.

The paper is organised as follows. In section 2 we collect the relevant details of the
MRSSM and the squark cross sections at leading order. Section 3 describes the resummation of
soft-gluon contributions in the MRSSM and the combination with fixed-order NLO corrections.
Section 4 presents numerical results for the cross sections, the differences between the MRSSM
and the MSSM and for the remaining uncertainties, and section 5 presents conclusions. The
appendix provides the leading-order colour-split cross sections and the analytical results for
the one-loop hard-matching coefficient relevant for threshold resummation.

2 The Minimal R-symmetric Supersymmetric Standard Model

In this section, we provide details on the MRSSM and its strongly interacting sector. We
also define the input parameters and the employed renormalisation scheme.

2.1 Field content, Lagrangian and renormalisation scheme

The defining property of the MRSSM is the unbroken continuous U(1) R-symmetry un-
der which SM fields are uncharged. R-symmetry does not commute with SUSY, and in a
superspace formulation, the Grassmann coordinates θ transform into eiαθ. The resulting nonva-
nishing R-charges of superpartners to SM fields depend on the structure of the supermultiplet.

Left-handed squarks q̃L are part of chiral supermultiplets, and the resulting R-charge of
q̃L is R = +1. In contrast, right-handed squarks q̃R are part of antichiral supermultiplets and
have opposite R-charge R = −1. Gluinos g̃ have R-charge R = +1 and are Dirac fermions.
The left-handed gluino and the right-handed antigluino behave like their MSSM counterparts.
The additional Dirac gluino degrees of freedom are absent in the MSSM; they are described
by an additional chiral supermultiplet which does not admit direct couplings to quarks or
squarks. However, they have their own SUSY partners, which are spin-0 colour octets Oa,
the so-called scalar gluons (sgluons) with R = 0.

We illustrate the field and particle content by reproducing the Lagrangian for soft SUSY
breaking in the coloured sector; see also ref. [13]:

Lsoft = −
(m2

q̃L
)ij

2 q̃∗iLq̃jL−
(m2

q̃R
)ij

2 q̃∗iRq̃jR−m2
O |Oa|2−mg̃ g̃g̃ +mg̃

(√
2DaOa +h.c.

)
. (2.1)

Here, i and j are flavour indices running over the six flavours of up- and down-type quarks.
The squark mass matrices can have significant off-diagonal components in flavour space. As
mentioned in the Introduction, other flavour-violating terms present in the MSSM are absent
here, alleviating the flavour problem of the MRSSM. The Da are auxiliary fields of the
SU(3) vector SUSY multiplet, which can be eliminated in favour of squark fields, leading
to interactions between sgluons and squarks which influence LHC squark production at the
one-loop level. The sgluon field can be decomposed as O = (Os + iOp)/

√
2, such that the
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Figure 1. Examples of tree-level and one-loop Feynman diagrams for the production of squark-
antisquark pairs and squark-squark pairs. The second diagram exemplifies t-channel gluino exchange,
where in the MRSSM only the two indicated chirality combinations of squarks are possible because
of R-charge conservation. The third diagram exemplifies the appearance of the sgluon at the one-
loop level.

tree-level masses of the pseudoscalar Op and the scalar Os are given by mOp = mO and
mOs =

√
m2

O + 4m2
g̃, respectively.

In the calculations presented in this paper, we assume the absence of squark flavour-
violating parameters and, thus, the absence of flavour mixing. The free parameters in the
coloured sector are then the masses mq̃ for each squark flavour and each chirality, the gluino
mass mg̃, the sgluon mass parameter mO and the strong coupling constant αs.

As another illustration, we reproduce sample Feynman diagrams relevant to squark
production at LHC in figure 1. The first diagram contributes to the production of squark-
antisquark pairs at the tree-level, and the second diagram contributes to squark-squark
production via t-channel gluino exchange. In the MRSSM, only the two indicated chirality
combinations of squarks are possible because of R-charge conservation, and only the left-
handed part of the gluino can contribute to the t-channel. In the MSSM, other chirality
combinations are possible, and the Majorana mass term of the gluino can appear. For these
reasons, the squark production rate is significantly lower in the MRSSM than in the MSSM.
The third diagram exemplifies the appearance of the sgluon at the one-loop level. Together
with renormalisation, loop diagrams with sgluons lead to non-decoupling, super-oblique
corrections for heavy sgluons; see the discussion in ref. [14].

Finally, we briefly define the renormalisation scheme employed here, and already in
ref. [13], for the NLO computation. The relevant parameters were listed above and comprise
the masses mq̃, mg̃ and mO and the strong coupling constant αs. The masses of squarks
and gluinos are defined in the on-shell scheme such that the parameters mq̃ and mg̃ coincide
with the respective physical pole masses. The sgluon mass needs no renormalisation since
it only appears inside one-loop diagrams. The strong coupling is defined in a decoupling
scheme such that the value of αs entering the computation coincides with the well-known
SM 5-flavour scheme used in parton distribution functions.

2.2 Qualitative features and leading-order results

To further illustrate the differences between the MRSSM and the MSSM in figure 2, we show
the LHC production cross sections of squarks and gluinos predicted at leading order (LO)
by both models. Confronting the left and central plots, it is clear that the MRSSM exhibits
extreme suppression for the squark pair production and a strong one for squark-antisquark
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Figure 2. LO cross sections at the LHC for
√

S = 13.6 TeV, summed over the first five flavours.
We used the Hessian PDF set of PDF4LHC21 [59], and set the scales to the average final state mass
µR = µF = m1+m2

2 . Left plot: gluino and squark production in the MSSM at fixed mg̃ = 3 TeV.
Center: equivalent processes in the MRSSM. Right: squark production across a wide gluino mass
range, having fixed mq̃ = 2 TeV.

production compared to the MSSM. In addition, the dependence on the masses is different
in the two models. The plots also show that, compared to the MSSM, the gluino production
is enhanced in the MRSSM because of the additional degrees of freedom. However, this
enhancement is less relevant in the parameter regions with a heavy gluino, which are
theoretically preferred [7]. The right plot in figure 2 portrays the differences between the
MRSSM and MSSM differently and varies the gluino mass over a vast range while keeping
a fixed squark mass. The phenomenologically most interesting region is the one where the
squark and gluino masses are of a similar order, and the plot clearly shows the reduced
MRSSM cross section in this region. However, the plot also highlights two interesting limits.
First, in the (theoretical) limit of very light gluino masses, the difference resulting from
the Dirac versus Majorana mass becomes irrelevant; hence the MRSSM and MSSM cross
sections become equal. Second, in the limit of ultra-heavy gluino masses, the gluino t-channel
diagrams become negligible. Therefore in both models the squark-antisquark cross section
effectively receives contributions from an equivalent subset of Feynman diagrams. Moreover,
one can notice that in this decoupling limit, as expected by both models, the squark-squark
production cross section approaches zero, but with a different power of the gluino mass, i.e.
in the MRSSM the suppression is ∝ 1/mg̃

4, while in the MSSM it is ∝ 1/m2
g̃.

The LO cross sections and their behaviour have been discussed in detail in ref. [13]; see
also refs. [11, 12]. In appendix A we provide analytical expressions for the LO cross sections
decomposed in the s-channel colour basis, needed for the intended threshold resummation,
cf. section 3. This type of resummation enables to control large logarithmic contributions
arising close the production threshold, i.e. in the limit

√
ŝ → 2mq̃, or, expressed in terms

of the squark velocity β ≡
√

1 − 4m2
q̃/ŝ, the limit β → 0. In appendix A we additionally

provide the leading terms in the expansions of the colour-decomposed LO cross sections in β.
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While all the expressions which can be found in appendix A are given for the general
SU(Nc) gauge group, here we present the leading terms in the threshold expansion for the
colour-decomposed LO cross section specifically for Nc = 3, with the colour basis indices
appropriately adapted to the respective SU(3) representations. For the qiqj → q̃q̃∗ process,
we obtain:

σ̂
(0,th)
qiq̄j→q̃q̃∗,1 = 64πα2

s
243

β3 m2
q̃(

m2
g̃ +m2

q̃

)2

 , (2.2)

σ̂
(0,th)
qiq̄j→q̃q̃∗,8 = δij

(nf −1)
27m2

q̃

πα2
s β3 + 4παsα̂s

81

 β3(
m2

g̃ +m2
q̃

)
+ 8πα̂2

s
243

β3 m2
q̃(

m2
g̃ +m2

q̃

)2

 . (2.3)

The leading behavior of both singlet 1 and octet 8 cross sections is thus given by terms of
O(β3), i.e. the p-wave dominates, and there is no s-wave contribution. This constitutes a big
difference to the MSSM as the R-symmetry forbids the production of different “chiralities”
resulting in the suppression at the threshold. Note that in these and the following formulas,
we distinguish the strong gauge coupling for gluon interactions αs from the gluino-quark-
squark coupling α̂s, even though numerically αs = α̂s throughout (at higher orders the
counterterm to both couplings differ in regularisation schemes which do not manifestly
preserve supersymmetry, see ref. [13] for details for the present case).

The leading terms in the expansion in β of the gg → q̃q̃∗ LO cross section split into
colour channels read:

σ̂
(0,th)
gg→q̃q̃∗,1 = (nf − 1) πα2

s
96

[
β

m2
q̃

]
, (2.4)

σ̂
(0,th)
gg→q̃q̃∗,8S

= 5 (nf − 1) πα2
s

192

[
β

m2
q̃

]
, (2.5)

σ̂
(0,th)
gg→q̃q̃∗,8A

= (nf − 1) πα2
s

64

[
β3

m2
q̃

]
. (2.6)

Importantly, near threshold the singlet 1 and the symmetric octet 8S squark-antisquark
configurations are produced in the s-wave, while the antisymmetric octet 8A is suppressed
by β2. The results for gg → q̃q̃∗ are the same as for the MSSM. This is to be expected as
neither gluinos nor sgluons play a role at the lowest order.

Expanding the LO cross section for the q̃q̃ production near threshold yields the dom-
inant terms:

σ̂
(0,th)
qiqj→q̃q̃,3̄ = 16πα̂2

s
81

β3 m2
q̃(

m2
g̃ + m2

q̃

)2

 , (2.7)

σ̂
(0,th)
qiqj→q̃q̃,6 = 8πα̂2

s
81

β3 m2
q̃(

m2
g̃ + m2

q̃

)2

 . (2.8)

Also in this case, the leading behavior is given by terms of O(β3), and the production of the
q̃q̃ pair proceeds in the p-wave. This power-suppressed behavior is different from the MSSM.
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It arises in the MRSSM since the chirality projectors effectively remove the gluino mass in
the numerator of the gluino propagator in the expressions for t-channel diagrams.

3 Threshold resummation

In the case of production of a heavy-mass system, a significant contribution to the cross
section comes from the region near threshold, where the partonic centre-of-mass-energy is
close to the kinematic restriction for the on-shell production, here ŝ ≥ 4m2

q̃ . The dominant
corrections in this region arise either from soft-gluon emission off the initial- or final-state
legs, or from an exchange of gluons between slowly moving coloured particles in the final state
(Coulomb corrections).1 The contributions due to soft-gluon radiation have the general form

αn
s logm(β2), m ≤ 2n .

The logarithmic threshold corrections can be resummed using the direct QCD techniques [60,
61] or in the framework of soft-collinear effective field theories [62]. In the following we briefly
review the threshold resummation formalism applied to the squark-(anti)squark production
in direct QCD.

3.1 General framework

The resummation of the soft-gluon contributions is performed after taking a Mellin transform
(indicated by a tilde) of the hadronic cross section,

σ̃h1h2→q̃q̃(∗)
(
N, {m2}

)
≡
∫ 1

0
dρ ρN−1 σh1h2→q̃q̃(∗)

(
ρ, {m2}

)
=
∑
i,j

f̃i/h1(N + 1, µ2) f̃j/h2(N + 1, µ2) ˜̂σij→q̃q̃(∗)
(
N, {m2}, µ2) , (3.1)

where {m2} denotes all masses entering the calculations and ρ is a hadronic threshold variable,
ρ = 4m2

q̃/S. Partonic quantities are indicated by a hat symbol. The logarithmic contributions
become large when the partonic centre-of-mass energy

√
ŝ approaches 2mq̃, i.e. in this limit,

the partonic threshold variable ρ̂ = 4m2
q̃/ŝ behaves as ρ̂ → 1. The corresponding limit in

Mellin space is N → ∞.
The all-order summation of logarithmic terms is based on the factorisation of the hard,

(soft)-collinear, and wide-angle soft modes in the cross section [42, 60, 61, 63–66]. Near
threshold, the resummed partonic cross section up to NNLL accuracy has the form:

˜̂σ(res)
ij→q̃q̃(∗)

(
N, {m2}, µ2) =

∑
I

˜̂σ(0)
ij→q̃q̃(∗),I

(
N, {m2}, µ2) (1 + αs

π
C

(1)
ij→q̃q̃(∗),I

(N, {m2}, µ2)
)

× exp
[
Lg1(αsL) + g2,I(αsL) + αsg3,I(αsL)

]
, (3.2)

where σ̃
(0)
ij→q̃q̃(∗),I

denotes the colour-decomposed LO cross section in Mellin-moment space.
The colour label I corresponds to an irreducible representation of the colour structure of

1The Coulomb corrections can be resummed as well [40, 42], however such resummation is beyond the
scope of this paper.
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the process. The one-loop matching coefficient C
(1)
ij→q̃q̃(∗),I

collects all O(α3
s ) non-logarithmic

(in N) contributions which do not vanish at threshold. The exponent in the second line of
eq. (3.2) captures all dependence on the large logarithm L = log(N). Reaching the NLL
accuracy requires knowledge of the g1 and g2 functions in the exponential. The NNLL
accuracy additionally requires knowledge of g3, as well as the one-loop matching coefficient
C(1) which is not included at NLL. While the exponential factor in eq. (3.2) is the same as in
the case of the MSSM and the functions gi are well known and can be found in e.g. [38, 44],
the calculation of C(1) needs to be carried out anew for the MRSSM.

Our calculations include the soft-gluon corrections up to the NNLL accuracy for the
colour channels for which it is possible to produce the sparticle pair with zero angular
momentum, i.e. in the s-wave. As seen in section 2, this is the case for the singlet 1 and
the symmetric octet 8S colour configurations for the squark-antisquark production in the
gg channel. Otherwise, analogously to the approach adopted for the MSSM [53, 56, 57], for
higher partial wave contributions resummation is performed only up to the NLL accuracy.

The hadronic cross section σh1h2→q̃q̃(∗) in physical momentum space can be obtained
by performing the inverse Mellin transform. To retain full information contained in the
complete NLO cross section [13], we combine the NLO and NNLL results through a matching
procedure that avoids double counting of the NLO terms:

σ
(NLO+(N)NLL)
h1h2→q̃q̃(∗)

(
ρ, {m2}, µ2) =

∑
i,j

∫
CT

dN

2πi ρ−N f̃i/h1(N + 1, µ2)f̃j/h2(N + 1, µ2) (3.3)

×
[
˜̂σ(res)

ij→q̃q̃(∗)

(
N, {m2}, µ2)− ˜̂σ(res)

ij→q̃q̃(∗)

(
N, {m2}, µ2)∣∣∣

(NLO)

]
+ σ

(NLO)
h1h2→q̃q̃(∗)

(
ρ, {m2}, µ2),

where “res” refers to either NNLL or NLL, depending on the dominant partial wave contri-
bution. The integral of the inverse Mellin transform is calculated along a contour, denoted
here as CT, according to the “minimal prescription” of [67].

3.2 Calculation of the hard-matching coefficient

As discussed above, in order to perform NNLL resummation for the q̃q̃∗ production in the
MRSSM, we need to calculate the corresponding one-loop matching coefficients C

(1)
gg→q̃q̃∗,I for

I = 1, 8S. They can be computed either by expanding the full NLO partonic cross section
in the threshold variable β, or by separately calculating the virtual and real corrections
in the threshold limit,

σ̂
(1,th)
I = σ̂

(V,th)
I + σ̂

(R,th)
I .

Most importantly, the latter approach, discussed in detail in [44], does not rely on the
knowledge of the analytical expression for the full cross section. The calculation of the C(1)

coefficient requires determining terms that are proportional to β0, β, β log (β), β log2 (β).
Terms with higher powers of β are suppressed in Mellin space and therefore do not contribute
in the threshold limit.

The expression for the real contributions at threshold, derived for any 2 → 2 process
with massive coloured particles in the final state, can be found in [49]. However, the virtual
contributions to the MRSSM cross sections need to be separately calculated. To this end, we
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developed a subroutine to colour-decompose the amplitude squared at the loop level inside the
FeynArts/FormCalc framework [68, 69]. The model file used for the MRSSM was generated
by SARAH [70–73] and the one-loop counterterms were included by hand [13]. The colour-
decomposed amplitude squared was then expressed in terms of masses, Mandelstam variables
and scalar integrals, paying special attention to the conventions used in the expressions for
scalar integrals. In the next step, we replaced the Passarino-Veltman integrals with their
analytical expansions using FeynCalc, FeynHelpers, PackageX [74–79], and integrated
over the phase space. Calculated in the conventional dimensional regularization scheme, the
factors that multiply the scalar integrals have no negative powers of β, i.e. their expansions
start at O(β0). Since the phase-space integration brings terms of O(β) and higher, one does
not need to expand the scalar integrals beyond O

(
β0) to find out the contributions to the

cross section up to O(β). Special attention has to be paid to the Coulomb integrals which
are proportional to inverse powers of β and cancel the ∝ β suppression from the phase-space
integration. Consequently, when transforming to Mellin-moment space, they are N -dependent,
and we thus subtract the Coulomb integrals for the purpose of calculating only hard-matching
coefficients, i.e. the N -independent contributions to the matching coefficients. In the result
of eq. (3.2), the Coulomb contributions are again added. After combining the real and the
virtual threshold corrections, the result must be free of divergences, which provides a strong
check on the final result. The one-loop matching coefficients are now obtained by dividing the
Mellin-transformed result by the LO threshold cross section in Mellin space and considering
only the terms that do not contain powers of log N . One can schematically represent this by:

αs
π

C
(1)
gg→q̃q̃∗,I =

˜̂σ(1,th)
gg→q̃q̃∗,I

˜̂σ(0,th)
gg→q̃q̃∗,I

∣∣∣∣∣∣
log N−independent

.

We have checked that this approach reproduces the known analytical expressions for C
(1)
ij→q̃q̃∗,I

coefficients in the MSSM [49].
The complete analytical expressions for the one-loop matching coefficients C

(1)
gg→q̃q̃∗,I , I =

1, 8S including the split into Coulomb corrections and the hard-matching coefficients C(1)
gg→q̃q̃∗,I

can be found in appendix B. The behaviour of the latter as a function of m = mq̃ for two
values of the sgluon mass mO = 2 TeV and mO = 100 TeV, and under the assumption
of equal squark and gluino masses m = mq̃ = mg̃, is shown in figure 3. We also show
the corresponding hard-matching coefficients in the MSSM, which reduce to a constant
for mq̃ = mg̃ and µF = µR = m. The biggest relative difference between the one-loop
hard-matching coefficients in the MRSSM and the MSSM can be observed for the colour
singlet production when the sgluon masses are small. As m decreases, the differences between
results in the two models become smaller, since in the limit m = mg̃ → 0 the nature of
the gluino does not play a role and the cross sections in the two models are equal. This
is the same effect as already observed for the LO cross sections in section 2, see figure 2.
The MSSM results are also recovered in the limit of large sgluon masses, where the sgluon
degree of freedom decouples. For the range of masses considered in figure 3, this effect is
particularly visible in the 8S channel.
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Figure 3. Mass dependence of the hard-matching coefficients C(1)
gg→q̃q̃∗,1 (top) and C(1)

gg→q̃q̃∗,8S
(bottom)

in the MRSSM and the MSSM for two sgluon masses mO = 2 TeV (left) and mO = 100 TeV (right),
calculated setting µF = µR = m.

4 Numerical results

In the following, we present numerical predictions for q̃q̃∗ and q̃q̃ production2 in proton-
proton collisions at the LHC with a centre-of-mass energy of

√
S = 13.6 TeV, obtained

using the PDF4LHC21_40_pdfas Hessian PDF set [59] accessed via the LHAPDF library [80].
Unless otherwise noted, the renormalisation and factorisation scales have been chosen equal,
µ ≡ µR = µF , and set to the central scale choice µ = µ0 = mq̃, and a top-quark mass of
mt = 172 GeV is used. We consider the left- and right-handed superpartners of the light
quarks u, d, c, s, b to be degenerate in mass,3 and the results are thus given assuming a
10-fold squark degeneracy with q̃ = ũL, ũR, d̃L, d̃R, c̃L, c̃R, s̃L, s̃R, b̃L, b̃R, excluding the
production of stops as the partners of top quarks, corresponding to the treatment in the MSSM
calculations4 [53, 56, 57]. The NLO cross sections are calculated using MadGraph5_aMC@NLO
v2.9.16 [81], with virtual matrix elements provided by GoSam [82] based on the MRSSM

2We always imply the Hermitian conjugated process, so when discussing q̃q̃ production, we actually consider
the sum of q̃q̃ and q̃∗q̃∗.

3For non-degenerate squark masses, we expect a similar behaviour as for the MSSM, studied e.g. in [47, 50,
54]. There, it was found that the difference between NLO K-factors for degenerate and non-degenerate squark
mass spectra is negligible. Thus, to a good approximation, higher-order results in the non-degenerate case can
be obtained by rescaling the LO cross section with non-degenerate masses by the NLO and (N)NLL K-factors
of the degenerate case.

4Since we are not considering top quarks in the initial state, at LO, t-channel diagrams with gluino exchange
are absent for stop production. Thus, we do not consider them with the other squark flavours. The dependence
on the gluino and sgluon masses is only introduced at higher orders, therefore we expect their impact to be
small and the process to behave similarly to the MSSM [56].
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UFO [72, 83] model file. The required renormalisation constants are added by hand to
the Fortran code generated by GoSam (for a comprehensive explanation of this procedure
consult ref. [13]). The on-shell gluino singularity in real emission contributions is handled
using diagram subtraction via MadSTR [84] (variant istr=3 with str_include_pdf=True and
str_include_flux=True). This semi-automated calculation was cross-checked against our
public code RSymSQC, which calculates cross sections for respective processes based on an
analytic calculation [85].5 The corrections due to threshold resummation have been calculated
and cross-checked using two independent in-house codes.

We begin by analysing the impact of soft-gluon corrections on the theoretical predictions
for squark production. In figure 4 we show the (N)NLL K-factors, defined as the ratio of the
resummed and matched cross section according to eq. (3.3) over the NLO cross section,

K(N)NLL ≡ σ(NLO+(N)NLL)

σ(NLO) , (4.1)

for q̃q̃∗ and q̃q̃ production in the MRSSM and MSSM, as a function of mq̃ and mg̃. We
study each process in the MRSSM for two values of the sgluon mass, mO = {2, 100}TeV,
probing two opposite ends of the sgluon mass spectrum. As explained above, the accuracy
of resummation is different for the two processes due to the difference in the composition
of the cross section in terms of partial waves. It reaches NLO+NNLL for the q̃q̃∗ process,
while the q̃q̃ production is considered at NLO+NLL. As expected, we see that soft-gluon
corrections get larger with increasing squark masses. The NNLL corrections can increase
the q̃q̃∗ cross section by up to 14%, both in the MRSSM and MSSM. However, the MRSSM
and the MSSM K-factors for the q̃q̃∗ process differ substantially in their dependence on the
squark and gluino mass. While the q̃q̃∗ MSSM K-factor almost does not depend on mg̃, the
MRSSM K-factor appears to have a stronger dependence on mg̃ than on mq̃. This means
that at NNLL, an MRSSM correction of comparable size to the one in the MSSM can only
be obtained if the gluino mass is sufficiently high. For q̃q̃ production in the MRSSM, with
the dominant contribution to the LO cross section in the p-wave channel and consequently,
the resummed correction being only of NLL order, the change in the cross section amounts
to at most a few per cent for mq̃ and mg̃ up to 3 TeV. The relative soft-gluon corrections
to the q̃q̃ and q̃q̃∗ MRSSM cross sections do not significantly depend on the sgluon mass, in
agreement with the sgluon mass only entering in the genuine one-loop diagrams.

Apart from providing a positive correction to the total cross section, resummation impacts
the theoretical prediction by reducing the size of the theoretical error due to scale variation.
We illustrate this effect for the MRSSM cross sections in figure 5, where we only show the case
of mO = 100 TeV as the uncertainties for mO = 2 TeV look almost identical, with an overall
slightly reduced size. The scale error is calculated using the 3-point method, i.e., considering
the variation of µ around the central scale µ0 = mq̃ between 0.5µ0 and 2µ0. This method of
estimating the scale error corresponds to the scale error estimate in the MSSM provided by
the NNLL-fast code [57]. Additionally, in figure 5, we also show the size of the theoretical
error due to the PDF uncertainties including also a variation of the value of αs. Compared
to the NLO cross section, the scale uncertainty of the q̃q̃∗ cross section at NLO+NNLL is

5It is planned that a manual for it will be published shortly after the present work.
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(right column), as defined in eq. (4.1). Shown are the MRSSM results evaluated for a sgluon mass of
mO = 2 TeV (top row), for mO = 100 TeV (middle row), and the MSSM results (bottom row).
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Figure 5. Scale and PDF+αs uncertainties for q̃q̃∗ production at NLO+NNLL (left) and q̃q̃ production
at NLO+NLL (right) in the MRSSM, with the sgluon mass being fixed to mO = 100 TeV. ∆σ is
defined as the relative uncertainty with respect to the central cross-section prediction. The scale
uncertainty shown here is obtained via the 3-point method, see the text below.

reduced by almost a half for all values of mq̃ = mg̃. At small mass values, the scale error is
now of a similar size as the PDF error, while at NLO it constitutes the dominant source of
the theory uncertainty. In line with the resummation corrections being significantly smaller
at NLL and for p-wave channels, the reduction of the scale error is much less pronounced
for the q̃q̃ process. At high masses, the PDF error begins to dominate, although, due to the
presence of the qq̄ channel at LO and thus the appearance of sea-quark PDFs, it happens
at lower mass values for the q̃q̃∗ rates than for q̃q̃, which only receives a contribution from
the qq initial state, dominated by valence-quark PDFs, at LO. As both the fixed order and
resummed cross sections are calculated with the same NNLO PDF4LHC21 set, the difference
in the size of the PDF error for the two results is understandably modest. We note in passing
that in case of unequal squark and gluino masses, the PDF error mainly depends on the
squark masses. Therefore, its dependence on the gluino mass is moderate. In fact, if we
fix mg̃ = 3 TeV, and therefore just consider the dependence on the squark mass, the PDF
error is almost exactly the same as in the equal-mass case.

We then move onto discussing the differences between the resummation-improved predic-
tions for squark pair production in both models. Figure 6 shows the ratio of the NLO+NNLL
cross sections in the MRSSM and MSSM for q̃q̃∗ production (top row), and the ratio of
the NLO+NLL cross sections in the MRSSM and MSSM for q̃q̃ production (bottom row),
respectively. For both processes, the MRSSM cross section is drastically reduced compared to
the MSSM. The stronger effect of the two is present for the q̃q̃ process, where for mg̃ ∼ 3 TeV
the cross section is reduced by almost two orders of magnitude. While the MRSSM q̃q̃ cross
section departs most rapidly from the MSSM one with increasing mg̃, for q̃q̃∗ this happens
when both mq̃ and mg̃ grow bigger simultaneously. In the latter case, the NLO+NNLL
cross section in the MRSSM is about five times smaller than in the MSSM for mq̃ and
mg̃ around 3 TeV. The origin of this behaviour can be traced back to LO, discussed in
section 2. In particular, the extreme suppression of the q̃q̃ cross section mentioned there can
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Figure 6. Ratios of MRSSM cross sections over the MSSM ones, computed at the same accuracy. For
q̃q̃∗ production (top row), the cross sections are calculated at NLO+NNLL, while for q̃q̃ production
(bottom row), the calculation is performed at NLO+NLL. The ratios are shown for two sgluon
mass configurations for the MRSSM predictions: mO = 2 TeV (left column), and mO = 100 TeV
(right column).

also be observed in figure 6. It is driven by the t-channel gluino exchange diagram shown
in figure 1 which yields vastly different results in the two models, resulting at large mg̃ in
a m−4

g̃ suppression in the MRSSM, as opposed to the m−2
g̃ suppression in the MSSM. For

q̃q̃∗, on the other hand, the diagram with t-channel gluino exchange is suppressed for infinite
gluino masses, so that the cross sections become equal in the two models, as shown in the
right-most plot of figure 2 for LO results. We note that the higher-order corrections to the
q̃q̃∗ production cross sections exhibit the same behaviour.

Finally, in figure 7, we present the total cross-section predictions in the MRSSM for q̃q̃∗

and q̃q̃ production at their best available accuracies NLO+NNLL and NLO+NLL, respectively,
and compare to the state-of-the-art results in the MSSM from NNLL-fast [57], evaluated
at NNLOApprox+NNLL accuracy including the resummation of Coulomb-gluon exchange
and bound-state contributions, and computed with PDF4LHC21 PDFs and a centre-of-mass
energy of

√
S = 13.6 TeV. For this plot, the squark and gluino masses have been set equal,

m ≡ mq̃ = mg̃. We show the central cross sections for the LHC with
√

S = 13.6 TeV as a
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Figure 7. Total cross-section predictions for q̃q̃∗ and q̃q̃ production at the LHC with
√

S = 13.6 TeV
confronting the two models MSSM and MRSSM at their best accuracy as explained in the text. The
error bands denote the total theoretical uncertainty due to scale variation with the 3-point method
and the PDF+αs error, added in quadrature. The MRSSM predictions have been computed with a
sgluon mass of mO = 100 TeV, and the variation due to changing the sgluon mass to mO = 2 TeV is
shown as one-sided error bars below the central values.

function of the common mass m including total uncertainty bands, consisting of the scale
and PDF uncertainties added in quadrature. For the central predictions in the MRSSM, a
sgluon mass of mO = 100 TeV has been used. As already discussed, we see that MRSSM
cross sections are significantly reduced compared to the case of the MSSM. The higher the
common mass m, the stronger the reduction in the MRSSM becomes. As shown by figure 6,
the reduction of the MRSSM cross sections also depends on the squark-gluino mass splitting.
For the MRSSM results, the effect of the variation of the sgluon mass from mO = 100 TeV to
mO = 2 TeV is shown in figure 7 as one-sided error bars below the central values.6 While
the effect is generally rather small, in particular for large squark and gluino masses, the
variation can be of the size of the combined scale and PDF uncertainty for small squark and
gluino masses. The difference between the two sgluon masses can impact the q̃q̃ cross sections
between 5% and 17%, while the effect is smaller for q̃q̃∗ and reaches only from 0% up to
8%. We note that the dependence on the sgluon mass is mainly driven by the behaviour of
the NLO cross section, as beyond NLO, the sgluon mass only appears in the hard-matching
coefficients for q̃q̃∗ of the non-dominant gg initial-state channels.

The results of figures 6 and 7 highlight the importance for experimental searches, as
a reduced cross section will lead to less stringent mass limits for squarks and gluinos, and

6As cross sections with mO = 100 TeV are typically larger than with mO = 2 TeV, the error bars are plotted
only in the direction of smaller cross sections.
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subsequently a larger allowed parameter space in the MRSSM than in the MSSM. The
size of the uncertainty band in the MSSM is smaller compared to the MRSSM, due to the
additional contributions of higher orders taken into account in the resummation procedure
in the former case.

5 Conclusions

The Minimal R-symmetric Supersymmetric Standard Model is an appealing alternative
minimal realization of supersymmetry. Not only does it predict a rich electroweak sector,
but it also involves a strongly altered coloured sector compared to the usual MSSM, with
significant modifications to LHC phenomenology. Most notably, half of the production
channels for squarks or antisquarks are forbidden, and the remaining ones are suppressed
by the Dirac nature of the gluino mass.

The present paper presents state-of-the-art computations for the LHC production of
squarks in the q̃q̃ and q̃q̃∗ channels. It takes into account fixed order NLO corrections and
threshold resummation either at the NLL or NNLL accuracy. While the NLO corrections
have been already available [13], the calculation of the resummation-improved cross sections
presented here is new. Apart from increasing the predictions for the total cross sections, the
threshold corrections reduce the theoretical error due to scale variation, particularly for the
q̃q̃∗ production. With this computation, the MRSSM predictions are available at almost the
same accuracy as MSSM predictions implemented in the public code NNLL-fast [57].

We have presented a detailed comparison between the MRSSM and the MSSM predictions
for LHC squark/antisquark production. The leading order as well the NLO and also the
resummation corrections show characteristic differences between the two models. Most
notably, the MRSSM cross sections are lower by up to two orders of magnitude in parameter
regions of interest. In addition, the suppression depends strongly on the overall mass scale
as well as on the mass splitting between squarks and gluinos.

Because of these differences, clearly lower squark masses are compatible with LHC searches
in the MRSSM compared to the MSSM. Preliminary analyses using recastings of LHC data
have shown that around 500–600 GeV lighter squarks are possible in the MRSSM [12, 14].

It would be valuable to delineate the allowed region of parameter space in the MRSSM
more accurately, to determine the additional viable squark mass range in presence of R-
symmetry. The computations of the present paper enable such a dedicated analysis of actual
LHC data for squark searches in the MSSM and the MRSSM in parallel, using similarly
precise theory predictions including NLO and (N)NLL corrections.

The cross sections for squark-antisquark and squark-squark production in the MRSSM
including soft-gluon corrections up to (N)NLL as calculated in this paper are publicly available,
for centre-of-mass energies of

√
S = 13 TeV and

√
S = 13.6 TeV, as a numerical code package

from the NNLL-fast website: https://www.uni-muenster.de/Physik.TP/~akule_01/nnllfast.
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A Leading order colour decomposed

In this appendix, we list all the used s-channel base tensors cI and their quadratic Casimir
invariant C2(RI) for each colour representation RI in a general SU(Nc) theory together with
the colour-split LO cross section from ref. [13]. The base tensors are written in terms of
Kronecker deltas in colour space δab, the generators of the fundamental representation T c

ab,
the structure constants fabc and their symmetric counterparts dabc. The colour labels a1 and
a2 denote the initial-state particles while a3 and a4 refer to the final-state particles [49]. To
keep the expressions short, we use the following definitions:

β =

√
1 −

4m2
q̃

ŝ
, L1 = ln

(
ŝ + 2m2

− − ŝβ

ŝ + 2m2
− + ŝβ

)
;

m2
− = m2

g̃ − m2
q̃ , m2

+ = m2
g̃ + m2

q̃ .

The squark-antisquark production in the quark channel can be decomposed as:

qi(a1)qj(a2) → q̃(a3)q̃∗(a4) Nc ⊗ Nc = 1 ⊕
(
N2

c − 1
)

;

c1 = 1
Nc

δa1a2δa3a4 ; C2 (R1) = 0;

c2 = 2T c
a2a1T c

a3a4 ; C2 (R2) = Nc.

In SU(3), R1 = 1 and R2 = 8. Using these bases, we can project the LO cross section
[eq. (3.3) of [13]] onto the two colour representations:

σ̂
(0)
1 = πα2

s
ŝ

(
(N2

c − 1)2

2N4
c

)[
−2β −

(
1 + 2m2

−
ŝ

)
L1

]
; (A.1)

σ̂
(0)
2 = δij

(nf − 1) πα2
s

ŝ

(
N2

c − 1
6N2

c

)
β3

+ δij
παsα̂s

ŝ

(
N2

c − 1
2N3

c

)[
β

(
1 + 2m2

−
ŝ

)
+
(

2m2
g̃

ŝ
+ 2m4

−
ŝ2

)
L1

]

+ πα̂2
s

ŝ

(
N2

c − 1
2N4

c

)[
−2β −

(
1 + 2m2

−
ŝ

)
L1

]
. (A.2)
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If one expands near threshold, β → 0, one obtains:

σ̂
(0,th)
1 = πα2

s

(
(N2

c − 1)2

2N4
c

)β3 2m2
q̃

3
(
m2

g̃ + m2
q̃

)2

 ; (A.3)

σ̂
(0,th)
2 = δij

(nf − 1) πα2
s

4m2
q̃

(
N2

c − 1
6N2

c

)
β3

+ δijπαsα̂s

(
N2

c − 1
2N3

c

) β3

3
(
m2

g̃ + m2
q̃

)


+ πα̂2
s

(
N2

c − 1
2N4

c

)β3 2m2
q̃

3
(
m2

g̃ + m2
q̃

)2

 . (A.4)

Both contributions (corresponding to singlet and octet cross sections in the case Nc = 3) go
to zero as β3, i.e. they behave as a p-wave contribution. This constitutes a big difference
to the MSSM as the R-symmetry forbids the production of different “chiralities”, resulting
in the suppression at threshold. The squark-antisquark production in the gluon channel
can be decomposed as:

g(a1)g(a2) → q̃(a3)q̃∗(a4)
(
N2

c − 1
)
⊗
(
N2

c − 1
)

= 1 ⊕
(
N2

c − 1
)

S
⊕
(
N2

c − 1
)

A

c1 = 1√
Nc (N2

c − 1)
δa1a2δa3a4 ; C2 (R1) = 0;

c2 =
√

2Nc

N2
c − 4da1a2cT c

a3a4 ; C2 (R2) = Nc;

c3 = i
√

2
Nc

fa1a2cT c
a3a4 ; C2 (R3) = Nc.

If one considers SU(3) then R1 = 1, R2 = 8S, R3 = 8A. We can use these bases to project
the LO cross section [eq. (3.4) of [13]] onto the three colour representations:

σ̂
(0)
1 = πα2

s
ŝ

(
nf − 1

Nc (N2
c − 1)

)[(
1 +

4m2
q̃

ŝ

)
β +

(
4m2

q̃

ŝ
−

8m4
q̃

ŝ2

)
ln
(1 − β

1 + β

)]
; (A.5)

σ̂
(0)
2 = πα2

s
ŝ

(
(nf − 1)

(
N2

c − 4
)

2Nc (N2
c − 1)

)[(
1 +

4m2
q̃

ŝ

)
β +

(
4m2

q̃

ŝ
−

8m4
q̃

ŝ2

)
ln
(1 − β

1 + β

)]
; (A.6)

σ̂
(0)
3 = πα2

s
ŝ

((nf − 1) Nc

N2
c − 1

)[(1
6 +

16m2
q̃

3ŝ

)
β +

(
2m2

q̃

ŝ
+

4m4
q̃

ŝ2

)
ln
(1 − β

1 + β

)]
. (A.7)

At threshold this becomes:

σ̂
(0,th)
1 = πα2

s

(
nf − 1

Nc (N2
c − 1)

)[
β

4m2
q̃

]
; (A.8)

σ̂
(0,th)
2 = πα2

s

(
(nf − 1)

(
N2

c − 4
)

2Nc (N2
c − 1)

)[
β

4m2
q̃

]
; (A.9)

σ̂
(0,th)
3 = πα2

s

((nf − 1) Nc

N2
c − 1

)[
β3

24m2
q̃

]
. (A.10)
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As expected, this channel shows no difference with respect to the MSSM, as neither gluinos
nor sgluons play a role at the lowest order. Since the singlet and symmetric octet are in an
s-wave state, they can be resummed at NNLL accuracy.

The squark-squark production initiated by two quarks of any flavour can be decom-
posed as:

qi(a1)qj(a2) → q̃(a3)q̃(a4) (+h.c.) Nc ⊗ Nc = Nc (Nc − 1)
2 ⊕ Nc (Nc + 1)

2

c1 = 1
2 (δa1a4δa2a3 − δa1a3δa2a4) ; C2 (R1) = (Nc + 1) (Nc − 2)

Nc
;

c2 = 1
2 (δa1a4δa2a3 + δa1a3δa2a4) ; C2 (R2) = (Nc − 1) (Nc + 2)

Nc
.

They correspond to R1 = 3̄ and R2 = 6 for SU(3). The LO cross section [eq. (3.5) of [13]]
can then be split into:

σ̂
(0)
1 = πα̂2

s
ŝ

(Nc − 1)(Nc + 1)2

4N3
c

[
−2β −

(
1 + 2m2

−
ŝ

)
L1

]
; (A.11)

σ̂
(0)
2 = πα̂2

s
ŝ

(Nc + 1)(Nc − 1)2

4N3
c

[
−2β −

(
1 + 2m2

−
ŝ

)
L1

]
. (A.12)

If one expands near threshold, β → 0, one obtains

σ̂
(0,th)
1 = πα̂2

s
(Nc − 1)(Nc + 1)2

4N3
c

β3 2m2
q̃

3
(
m2

g̃ + m2
q̃

)2

 ; (A.13)

σ̂
(0,th)
2 = πα̂2

s
(Nc + 1)(Nc − 1)2

4N3
c

β3 2m2
q̃

3
(
m2

g̃ + m2
q̃

)2

 . (A.14)

The production of squarks is power-suppressed in the MRSSM due to the absence of the
gluino mass in the numerator. This constitutes a big difference to the MSSM as here, we
can only resum up to NLL accuracy.

B Expressions for the C-coefficients

In this appendix, we present the results for the one-loop matching coefficients C
(1)
gg→q̃q̃∗,I of

eq. (3.2) for squark-antisquark production in the gluon channel.7 The matching coefficient
can be split into a part corresponding to the one-loop Coulomb corrections and the one-loop
hard-matching coefficient:

C
(1)
gg→q̃q̃∗,I = CCoul,(1)

gg→q̃q̃∗,I(N, {m2}, µ2) + C(1)
gg→q̃q̃∗,I({m2}, µ2) . (B.1)

7Recall that the matching coefficients for squark-antisquark production in the quark-antiquark channel as
well as the matching coefficients for squark-squark production, both of which occur in a p-wave state only, are
zero, C

(1)
qq→q̃q̃,I = C

(1)
qq̄→q̃q̃∗,I = 0, as we take these channels into account only up to NLL accuracy.
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The expressions for the Coulomb contributions CCoul,(1)
gg→q̃q̃∗,I can be found in appendix A of [53].

In the following, we thus only show the results for the hard-matching coefficients C(1)
gg→q̃q̃∗,I .

The results are presented by introducing suitable abbreviations and carrying out simpli-
fications. We did not change the arguments of the logarithms or polylogarithms resulting
from the FeynArts/FormCalc computation in order to avoid any problems from branch
cuts/imaginary parts.

Singlet. In the MSSM, the singlet part of the hard-matching coefficient can be written as

C(1)
MSSM,1 = Re

{
−4 + 11π2

12 + 6γ2
E + 6γE log

(
µ2

F

4m2
q̃

)
+ 23

6 log
(

µ2
R

µ2
F

)

+ 2
3

(
1 −

m4
g̃

m4
q̃

)
log

(
m2

g̃ − m2
q̃

m2
g̃ + m2

q̃

)
−

4m2
g̃

3m2
q̃

−
3m2

g̃

2m2
q̃

log2

2mq̃

(√
m2

q̃ − m2
g̃ − mq̃

)
m2

g̃

+ 1


+

3
(
m2

g̃ + m2
q̃

)
2m2

q̃

[
Li2

(
−

m2
q̃

m2
g̃

)
− Li2

(
m2

q̃

m2
g̃

)]}
. (B.2)

In the MRSSM, the following additional singlet terms arise,

C(1)
MRSSM,1 − C(1)

MSSM,1 = Re
{

2
3m2

g̃

(
π2

m2
Os

+ 4
m2

q̃

)

+
[
3A1

(
m2

q̃ , m2
g̃, m2

Os

)
+ A4

(
m2

q̃ , m2
g̃, m2

Os

)]
m2

Os

+ 8A4
(
m2

q̃ , m2
g̃, m2

Os

)
m2

q̃ + 6A5
(
m2

q̃ , m2
g̃, m2

Os

)
− 8A7

(
m2

q̃ , m2
g̃, m2

Os

)}
. (B.3)

Symmetric octet. The MSSM octet part of the hard-matching coefficient can be written as

C(1)
MSSM,8S

= Re
{

2+3γE + 31π2

24 +6γ2
E +6γE log

(
µ2

F

4m2
q̃

)
+ 23

6 log
(

µ2
R

µ2
F

)

−
4m2

g̃

3m2
q̃

−
3m2

g̃

4m2
q̃

log2

2mq̃

(√
m2

q̃ −m2
g̃ −mq̃

)
m2

g̃

+1


+

3m2
g̃

2m2
q̃

[
Li2

(
−

m2
q̃

m2
g̃

)
−Li2

(
m2

q̃

m2
g̃

)]
+ 2

3

(
1−

m4
g̃

m4
q̃

)
log
(

m2
g̃ −m2

q̃

m2
g̃ +m2

q̃

)}
. (B.4)

The additional MRSSM octet terms are

C(1)
MRSSM,8S

− C(1)
MSSM,8S

= Re
{[

3A1
(
m2

q̃ , m2
g̃, m2

Os

)
+ A4

(
m2

q̃ , m2
g̃, m2

Os

)] (
m2

Os − m2
q̃

)
+ 3A5

(
m2

q̃ , m2
g̃, m2

Os

)
− 8A7

(
m2

q̃ , m2
g̃, m2

Os

)
+ m2

g̃

(
8

3m2
q̃

− π2

12m2
Os

)}
. (B.5)

– 20 –



J
H
E
P
0
5
(
2
0
2
4
)
1
5
1

Here, the following abbreviations for combinations of dilogarithms and logarithms have
been used:

A1
(
m2

q̃ ,m2
g̃,m2

Os

)
=

m2
g̃m2

Os

2m2
q̃(m4

Os
−3m2

Os
m2

q̃ +2m4
q̃)

{
L2

14−L2
13

+2
[
−Li2

(
2(m2

Os −m2
q̃)

mOs(mOs + r̃−Os
)

)
+Li2

(
2(m2

Os −m2
q̃)

m2
Os

−2m2
q̃ +mOs r̃

−
Os

)

−Li2
(

2(m2
Os −2m2

q̃)
m2

Os
−2m2

q̃ −r+,4
Os

)
+Li2

(
2(m2

Os −m2
q̃)

m2
Os

−2m2
q̃ −r+,4

Os

)

−Li2
(

2(m2
Os −2m2

q̃)
m2

Os
−2m2

q̃ +r+,4
Os

)
+Li2

(
2(m2

Os −m2
q̃)

m2
Os

−2m2
q̃ +r+,4

Os

)]}
; (B.6)

A4
(
m2

q̃ ,m2
g̃,m2

Os

)
=

m2
g̃

6m2
Os

(
m2

Os
−m2

q̃

){L2
8−L2

9 +L2
15

+2
[
Li2

(
2(m2

Os −m2
q̃)

mOs(mOs + r̃−Os
)

)
+Li2

(
2(m2

Os −2m2
q̃)

m2
Os

−2m2
q̃ −mOs r̃

−
Os

)

+Li2
(

2(m2
Os −2m2

q̃)
m2

Os
−2m2

q̃ +mOs r̃
−
Os

)
−Li2

(
2(m2

Os −m2
q̃)

m2
Os

−2m2
q̃ +mOs r̃

−
Os

)

+Li2
(

2(m2
Os −2m2

q̃)
m2

Os
−r+,4

Os

)
−Li2

(
2(m2

Os −m2
q̃)

m2
Os

−2m2
q̃ −r+,4

Os

)]}
; (B.7)

A5
(
m2

q̃ ,m2
g̃,m2

Os

)
=

m2
g̃m2

Os

4m2
Os

m2
q̃ −8m4

q̃

L2
12; (B.8)

A7
(
m2

q̃ ,m2
g̃,m2

Os

)
=

m2
g̃

6m4
q̃ r̃−Os

[
mOs

(
m2

Os −2m2
q̃

)(
log
(2mq̃

mOs

)
−L7

)

+ r̃−Os
r+,4

Os

(
log
(

mOs

2mq̃

)
+L10

)]
. (B.9)

Further abbreviations for square roots and logarithms are

r−Os
=
√

m2
q̃ − m2

Os
, r−g̃ =

√
m2

q̃ − m2
g̃, (B.10)

r̃−Os
=
√

m2
Os

− 4m2
q̃ , r+,4

Os
=
√

m4
Os

+ 4m4
q̃ , (B.11)

L7 = log
(

mOs + r̃−Os

mOs

)
, (B.12)

L8 = log
(

r+,4
Os

− m2
Os

r+,4
Os

+ m2
Os

)
, (B.13)

L9 = log
(

r+,4
Os

+ 2m2
q̃ − m2

Os

r+,4
Os

+ m2
Os

)
, (B.14)

L10 = log
(

r+,4
Os

+ 2m2
q̃ + m2

Os

m2
Os

)
, (B.15)

– 21 –



J
H
E
P
0
5
(
2
0
2
4
)
1
5
1

L12 = log
(

m2
Os − 2m2

q̃ + 2mq̃r−Os

m2
Os

)
, (B.16)

L13 = log
(
mOs(−mOs + r̃−Os

)
)
− log

(
mOs(mOs + r̃−Os

)
)

, (B.17)

L14 = log
(
m2

Os − 2m2
q̃ + mOs r̃

−
Os

)
− log

(
mOs(−mOs + r̃−Os

)
)

, (B.18)

L15 = log
(
−m2

Os + 2m2
q̃ + mOs r̃

−
Os

)
− log

(
mOs(mOs + r̃−Os

)
)

. (B.19)
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