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We measure and model the combined relaxation of a qubit coupled to a discrete two-level system (TLS) 
environment, also known as the central spin model. If the TLSs are much longer-lived than the qubit, non-
exponential relaxation and non-Poissonian quantum jumps can be observed. In the limit of large numbers of 
TLSs, the relaxation is likely to follow a power law, which we confirm with measurements on a superconducting 
fluxonium qubit. Moreover, the observed relaxation and quantum jump statistics are described by the Solomon 
equations, for which we present a derivation starting from the general Lindblad equation for an arbitrary number 
of TLSs. We also show how to reproduce the non-Poissonian quantum jump statistics using a diffusive stochastic 
Schrödinger equation. The fact that the measured quantum jump statistics can be reproduced by the Solomon 
equations, which ignore the quantum measurement back action, hints at a quantum-to-classical transition.

I. INTRODUCTION

Relaxation processes induced by spin environments are
not only encountered in many areas of experimental physics,
but also in theoretical physics as a popular toy model for
understanding decoherence processes and the crossover from
the quantum to the classical world [1–14]. A thorough un-
derstanding of spin relaxation was first achieved by studying
long-lived nuclear spins in the field of nuclear magnetic reso-
nance (NMR). One of the most important NMR spectroscopy
methods for the structural analysis of molecules and even
proteins [15–17] is based on the nuclear Overhauser effect and
its description via the Solomon equations [18]. Here, we use
the Solomon equations on a physically very different but con-
ceptually similar spin system, consisting of a superconducting
qubit coupled to a collection of two-level systems (TLSs).

In the field of superconducting quantum hardware, a com-
mon source of decoherence can be attributed to different
types of TLSs that are typically short-lived compared to the
qubit and therefore provide a well-thermalized environment
[19,20]. However, in a recent experiment, the interaction with
long-lived TLSs, potentially electronic spins, has been re-
ported [21]. In view of these experimental findings and similar
observations of memory effects in the qubit environment [22],
we present here a derivation of the Solomon equations for an
arbitrary number of TLSs, starting from a general Lindblad
equation [23,24] for the qubit and the TLSs.

Interestingly, in contrast to NMR, the superconducting
qubits and the TLSs are of a very different physical na-
ture. Therefore, we can expect the qubit to interact with a
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large number of TLSs with potentially different frequencies,
coupling strengths, and coherence times [Fig. 1(a)]. Conse-
quently, we show how to deal with Solomon equations of
infinite size for a given cross-relaxation distribution. We de-
duce the resulting power-law relaxation on long time scales,
which we show to be in agreement with our experiments.
Beyond superconducting devices, our analysis may also prove
useful for the accurate description of dipolar relaxation pro-
cesses, similar to Ref. [25]. In addition, our results invite
more NMR methods to be used on quantum processors, for
instance using the nuclear Overhauser enhancement spec-
troscopy method to identify spurious qubit couplings.

Last but not least, we show that the measured non-
Poissonian quantum jump statistics of our superconducting
qubit [Fig. 1(b)] can be reproduced by a diffusive stochastic
Schrödinger equation. Surprisingly, the quantum jump statis-
tics can also be generated in a much simpler way using the
Solomon equations by essentially neglecting the measure-
ment backaction on the TLSs. This procedure can therefore
serve as a testbed to study the quantum-to-classical transition
[26,27]. Our quantum jump analysis can readily be utilized
on quantum processors with the TLSs replaced by qubits. We
speculate that a reduced measurement backaction indicates
the transition to a chaotic regime, as discussed in Ref. [28],
and could falsify error syndromes in quantum error-correction
protocols.

We consider a mesoscopic superconducting qubit inter-
acting with n TLSs via a σ x-type coupling, while the
TLSs are assumed noninteracting. The system Hamiltonian is
given by

H = h̄ωq

2
σ q

z +
n∑

k=1

h̄ωk

2
σ k

z +
n∑

k=1

h̄gkσ
q
x σ k

x , (1)

https://orcid.org/0000-0001-8640-3270
https://orcid.org/0000-0002-7507-3998
https://orcid.org/0000-0003-4937-8189
https://orcid.org/0000-0002-6776-9792


(a)

(b)

FIG. 1. Qubit and long-lived TLSs. (a) The qubit acts as the
central spin for the surrounding TLSs. Under the presence of de-
coherence, their interaction leads to a mutual cross relaxation with
individual rates �k

qt. (b) Measured nonexponential quantum jump
statistics of our fluxonium qubit dwell times in the excited state (|e〉,
left panel) and the ground state (|g〉, right panel). The statistics is
based on 12 000 counts corresponding to an ∼4 s quantum jump
trace. The bin size is 2 µs. For |g〉 the histogram was binned by a
factor of 3 in order to reduce the noise. The device is the same as in
Ref. [21].

where ωq and ωk are the frequencies of the qubit and the kth
TLS, gk is their coupling strength, and σ

q
x,z and σ k

x,z denote
their Pauli matrices. The physics of the central spin model
[29–31] as of Eq. (1) with added dissipation is generally
complex and an active field of research, including phenomena
such as superradiance [32,33], state revivals [34–36], dynam-
ical phase transitions [37–39], and exceptional points [40].
With increasing decoherence in the system, one can expect
a transition from coherent oscillations to a regime where the
expectation values of the populations follow a simple rate
equation. This means that the qubit population pq should be
governed by a linear differential equation of the form

ṗq(t ) = −�1(t )[pq(t ) − peq(t )] (2)

with potentially time-dependent coefficients �1(t ), the qubit
relaxation rate, and peq(t ), the equilibrium population, i.e., the
qubit population at which ṗq(t ) would vanish. The coefficients
�1(t ) and peq(t ) are given by the current state of the TLS
environment, which in turn might also depend on the qubit
history. The main task is therefore to validate Eq. (2) and to
derive exact or approximate solutions for different scenarios,
which in retrospect allow us to draw conclusions on the TLS
environment.

We want to note that by observing the qubit population dy-
namics alone, �1(t ) and peq(t ) are a priori unknown functions
that cannot be disentangled. However, if one has access to
both qubit transition rates �↑,↓, for instance by resetting the
qubit to its ground or excited state and measuring the subse-
quent population change, then the time-dependent transition
rates are

�↑(t ) = ṗq(t )|pq=0 and �↓(t ) = −ṗq(t )|pq=1 (3)

after resetting to the ground or excited state, respectively. This
method is applicable for any qubit with active state reset ca-
pability. With Eq. (2), one then obtains the usual expressions

�1(t ) = �↑(t ) + �↓(t ), (4)

peq(t ) = �↑(t )/�1(t ). (5)

For a TLS environment, it turns out that �1 is constant over
time, i.e., it does not depend on the TLS populations, which
also implies that �1 is temperature-independent (cf. Eqs. (9)
and (27) and Ref. [21]).

The manuscript is structured as follows. We begin the dis-
cussion with a review of the Bloch-Redfield master equation,
which is applicable for a large but weakly coupled TLS bath
(Sec. II). In this case, the bath populations remain unaffected
by the qubit dynamics, and consequently peq is constant in
time. We then transition to a countable set of TLSs, for which
we derive the Solomon equations (Sec. III). Next, we apply
the Solomon equations to the situation in which the TLSs
are not interacting with each other and the relaxation matrix
has the shape of a so-called arrowhead matrix (Sec. IV). We
then present an analytical solution of the rate equation for the
scenario in which all TLSs have the same cross-relaxation rate
with the qubit. For the case of a cross-relaxation distribution,
we show that the relaxation becomes a power-law on long
timescales. We then discuss the qubit relaxation as a function
of the mutual decoherence and show that the relaxation of the
Bloch-Redfield master equation can be recovered (Sec. V). In
a final step, we use the Solomon equations to simulate the
qubit’s non-Poissonian quantum jump statistics and show its
agreement with our measurements (Sec. VI).

II. BLOCH-REDFIELD MASTER EQUATION

For a later comparison to the Solomon equations, we
briefly review the derivation and results of the widely used
Bloch-Redfield master equation with secular approximation
[41,42], also known as the Born-Markov or quantum optical
master equation [43]. We closely follow the derivation and no-
tations of Ref. [44]. The Bloch-Redfield master equation rests
on the Born approximation. With the qubit being the system
and the TLSs forming the bath, the Born approximation is
valid when the qubit interacts weakly with a large number of
TLSs, in which case their populations will not be altered sig-
nificantly by the qubit and can be approximated as constant.
In close relation, one assumes that there are no initial system
bath correlations and that the bath itself is in an equilibrium
state that does not evolve in time. For a small number of TLSs
with a long intrinsic lifetime, the Born approximation is cer-
tainly not fulfilled, requiring a description with the Solomon
equations (Sec. III).

The Bloch-Redfield master equation is typically derived
in the interaction picture. Here, the qubit’s reduced density
matrix ρq in second-order perturbation is governed by

ρ̇q(t ) = − 1

h̄2

∫ ∞

0
C(τ )

[
σ q

x (t ), σ q
x (t − τ )ρq(t )

]
+ C∗(τ )

[
ρq(t )σ q

x (t − τ ), σ q
x (t )

]
dτ, (6)
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FIG. 2. Illustrative model for a cross-relaxation distribution.
(a) Spectral coupling density γ of the TLSs and density of states
νq of the qubit. The TLSs are randomly distributed in frequency with
individual coupling strength to the qubit and intrinsic decoherence.
(b) Density of cross-relaxation rates following from Eq. (11) for
a random TLS frequency distribution, assuming the same coupling
strength g and mutual decoherence �2 for all TLSs. The parameters
are taken from Ref. [21]. If the TLSs have some distribution in g
and �2, the divergence at the maximal cross-relaxation rate washes
out and disappears, whereas the divergence for low cross relaxation
rates remains. The color gradient from blue to gray illustrates the
increasing frequency detuning between the qubit and the TLSs of the
corresponding cross-relaxation rates.

where we have already used the first and second Markov
approximations, i.e., evaluating the qubit’s density matrix at
the current time t and extending the integration over the bath
correlation function C(τ ) to infinity. With the secular approx-
imation, which means removing the explicit time dependence,
the above equation becomes the Bloch-Redfield master equa-
tion, which is of Lindblad type. The bath correlation function
is given by

C(τ ) = h̄2
∑

k

g2
k Tr

{
σ k

x (t )σ k
x (t − τ )ρTLSs

}
= h̄2

∑
k

g2
k

[
pk

t eiωkτ + (
1 − pk

t

)
e−iωkτ

]
, (7)

where ρTLSs is the time-independent density matrix of the
TLS bath, which contains the populations pk

t of the TLSs.
Typically, the TLSs are assumed to be in thermal equilibrium
and given by the Fermi-Dirac distribution pk

t = n(ωk ). As a
consequence, the qubit will relax to the same thermal equilib-
rium with pq = n(ωq).

The usual way to continue the derivation from Eq. (7) is to
consider the limit where the TLSs become dense in frequency
with a vanishing coupling strength such that they form a
spectral coupling density γ (ω) = 〈g2νt〉(ω), with νt being the
TLS density [44,45]. Alternatively, this transition to a density
may be viewed as an ensemble average over qubit and TLS
frequencies for many instances of the experiment. In Fig. 2(a)
we illustrate γ (ω) and the qubit’s density of states νq. The

correlation function can now be expressed via the integral

C(τ ) = h̄2
∫ ∞

0
γ (ω)[pt(ω)eiωτ + [1 − pt(ω)]e−iωτ ]dω

= h̄2
∫ ∞

−∞
[s(ω) + a(ω)]eiωτ dω, (8)

where we introduce the symmetric s(ω) = s(−ω) and an-
tisymmetric a(ω) = −a(−ω) frequency components of the
bath correlation function with s(ω � 0) = γ (ω)/2 and a(ω >

0) = γ (ω)[pt(ω) − 1/2], which helps to compute the half-
sided inverse Fourier transform in Eq. (6).

Next, we can rewrite Eq. (6) as ρ̇q = Lρq by introducing
the Liouvillian superoperator L. Separating L in its real and
imaginary parts, we define ρ̇q = ρ̇relax

q + ρ̇Lamb
q = Re(L)ρq +

iIm(L)ρq. The real part describes the qubit relaxation and
decoherence,

ρ̇relax
q

2πγ (ωq)
= −1

2

(
2ρ00 ρ01

ρ10 −2ρ00

)
+ pt(ωq)σz. (9)

Here, we obtain the important result that the qubit relaxation
�1 = 2πγ (ωq) and decoherence �2 = �1/2 are independent
of the TLS populations [46]. For completeness, the imaginary
part incorporates the Lamb shift,

ρ̇Lamb
q = i P.V.

∫ ∞

−∞

2ωqs(ω)

ω2
q − ω2

dω

(
0 −ρ01

ρ10 0

)
, (10)

where the integral has to be evaluated by means of the
Cauchy principal value. Again, there is no dependence
on the TLS populations. Note that by integrating also
over negative frequencies, contributions from counter-rotating
waves are included in the Lamb shift. Thus the Lamb shift
vanishes for a constant spectral coupling density. If we had
applied the rotating-wave approximation in the Hamiltonian
in Eq. (1), the Lamb shift would not contain contributions
from counter-rotating waves [45,47], and for a constant spec-
tral coupling density the Lamb shift would diverge.

In view of the following section, the Bloch-Redfield master
equation can also be used to estimate the cross-relaxation rate
between the qubit and a single TLS. Assuming the qubit and
TLS spectral densities are Lorentz distributions centered at ωq

and ωq + δ with linewidths �
q
2 and �t

2, respectively [Fig. 2(a)],
then, for a short time such that the Born approximation re-
mains valid, we can calculate the average qubit relaxation rate
and with that obtain the cross-relaxation rate

�qt = 2g2�2

�2
2 + δ2

, (11)

with the mutual decoherence �2 = �
q
2 + �t

2. Expanding the
scope to include multiple TLSs, we can now define the com-
ponents of the total loss rate of the qubit �1 = �q + ∑

k �k
qt.

The rate �q accounts for additional losses from other envi-
ronments. If the TLS detunings δk are randomly distributed in
frequency, Eq. (11) defines the density of the cross-relaxation
rates ν(�qt) depicted in Fig. 2(b). Note that adding the rates
implicitly assumes that we can ignore higher-order coherent
effects in the system, as discussed in detail in the next section.



III. DERIVATION OF SOLOMON’S EQUATIONS

For a small number of TLSs, the Born approximation
is no longer valid since their populations will be altered
by the qubit excitation [48,49]. Ideally, the qubit and the
TLSs are treated on an equal footing. In experiments, the
dissipation required to yield a master equation is naturally
provided by the surrounding environment of the qubit and the
TLSs. In NMR, this environment is known as the spin-lattice
for which a detailed derivation can be found in Ref. [50].
The spin-lattice can either be modeled as a classical noise
source in the framework of the stochastic Liouville equa-
tion or treated quantum mechanically, essentially following
the Bloch-Redfield formalism. Based on these results, we will
construct the Liouvillian from a general Lindblad equation.

The general idea behind the Solomon equations is to reduce
the Liouvillian to an equation of motion for the expecta-
tion values of the qubit and TLS populations [18,51]. As
will be discussed in more detail in the following, in case
the decoherence and frequency spread in the system is large
in comparison to the couplings, coherent effects can be ne-
glected. An intermediate step is therefore the derivation of
Pauli’s master equation for the diagonal components of the
density matrix. Here, we use the adiabatic elimination of the
coherences. Alternatively, one may derive the Pauli master
equation from a generalized Schrieffer-Wolff transformation
[52], yet others refer to it as the Nakajima-Zwanzig-Markov-
Pauli master equation [53]. However, beyond the qubit and a
single TLS, deriving closed-form solutions is practically in-
feasible due to the emergence of multispin phenomena (cross
correlations), which are discussed in NMR within the frame-
work of magnetization modes [51].

In this context, our main focus is to present a compact
derivation of the Solomon equations, which we show to follow
from the Markov approximations for the coherences and from
the neglect of higher-order coherent processes. We accom-
pany our derivation by showing explicit calculations for the
case of a qubit coupled to a single TLS. We formulate the
Lindblad equation for the Hamiltonian in Eq. (1) by including
individual dissipators for the qubit and each of the TLSs:

ρ̇ = − i

h̄
[H, ρ] +

∑
α

LαρL†
α − 1

2
{L†

αLα, ρ}. (12)

Here, Lα are the jump operators, which are given by
√

�
j
↓σ−

j

and
√

�
j
↑σ+

j for energy relaxation and excitation, respectively,

and
√

�
j
↑/2σ

j
z for dephasing. We use the index j to denote

both the qubit and the TLS variables. Casting the Liouville–
von Neumann equation [Eq. (12)] in superoperator notation
ρ̇ = Lρ, the Liouvillian L can be represented by a matrix
and ρ by a vector (see Appendix A). In view of Nakajima-
Zwanzig’s projection operator technique [54,55], we may sort
the density matrix ρ = (ρD, ρC)T for diagonal entries ρD

(populations) and nondiagonal entries ρC (coherences). Then
Eq. (12) reads

ρ̇ =
(

� RT

R C

)
ρ. (13)

The matrix � depends only on the decay rates �
j
↑,↓ and de-

scribes the relaxation of the system to thermal equilibrium.
The matrix R couples populations and coherences, giving rise
to vacuum Rabi oscillations and energy exchange between the
qubit and the TLSs. Therefore, its matrix elements Rmn are
either zero or amount to one of the coupling terms, in short
Rmn ∈ {0,±igk}. The matrix C describes the oscillations, de-
coherence, and interference of the coherences between the
qubit and TLSs as well as between the TLSs. Since the σ x-
coupling in Eq. (1) induces only one-photon (flip-flop) and
two-photon transitions (flip-flip), we can order the coherences
ρC = (ρCZ , ρCD , ρCR , ρQ)T and bring Eq. (13) into the
form

ρ̇ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� RT
Z RT

D 0 0

RZ CZ 0 ST
Z 0

RD 0 CD ST
D 0

0 SZ SD CR 0

0 0 0 0 Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ρ (14)

with the indices Z and D denoting those entries that give rise to
zero and double quantum transitions, respectively, i.e., excita-
tion differences. The dynamics of the remaining coherences
that do not directly couple to populations are described by
CR and couple via SZ,D to the relevant coherences. Similar to
R, one finds SZ,D;mn ∈ {0,±igk}. All irrelevant coherences ρQ

between even and odd photon states undergo an independent
evolution described by Q. The matrix Q makes up half the
size of the Liouvillian. For the qubit and a single TLS, CR and
SZ,D do not exist and a transformation of the Liouvillian leads
to the so-called Redfield kite [51,56]. The matrix structure of
the Liouvillian is depicted in Appendix A as an illustration for
the qubit coupled to one or two TLSs.

We may further decompose CZ,D = DZ,D − OZ,D with D
being diagonal and in charge of the oscillation and decoher-
ence of the relevant coherences. The entries DZ,D;mm, e.g.,
describing the coherence of the qubit with the kth TLS, are of
the form DZ;mm = −�k

2 ± iδk and DD;mm = −�k
2 ± iσk , with

the mutual decoherence �k
2 = �

q
2 + �

tk
2 and the general de-

tunings δk = ωk − ωq and σk = ωq + ωk . The decoherence
of the qubit �

q
2 and of the TLSs �

tk
2 are as usual of the

form �2 = �ϕ + �1/2 with �1 = �↑ + �↓. In case the qubit
is coupled to only one TLS, the matrix OZ,D is zero. For
more TLSs, the coherences of different photon manifolds can
interfere when the TLSs undergo relaxation processes [57,58].
Thus, OZ,D;mn ∈ {0,±�

tk
↑ ,±�

tk
↓ } (Appendix A), and in case

the TLSs are lossless, the matrices CZ,D are diagonal. For
completeness, even though not applicable in Ref. [21], in the
scenario where the TLSs are coupled with each other, there
are additional off-diagonal matrix elements that arise from
vacuum Rabi oscillations. In this case, one has OZ,D;mn ∈
{0,±�

tk
↑ ,±�

tk
↓ ,±igk}. Lastly, it is important to mention that

the diagonal entries of CR always contain various combina-
tions of decoherences and detunings.

In the case of a qubit and a single TLS, we find for the
density matrix entries ρmn = 〈vm|ρ|vn〉 of the single-photon



manifold [59]

ρ̇11 = ig(ρ12 − ρ21) − (�t
↓ + �

q
↑)ρ11 + �

q
↓ρ00 + �t

↑ρ33,

ρ̇21 = ig(ρ22 − ρ11) − (
�

q
2 + �t

2 − iδ
)
ρ21,

ρ̇22 = ig(ρ21 − ρ12) − (�q
↓ + �t

↑)ρ22 + �t
↓ρ00 + �

q
↑ρ33,

(15)

and ρ12 = ρ∗
21. The wave functions |v0〉, |v1〉, |v2〉, |v3〉 cor-

respond to the states |11〉, |01〉, |10〉, |00〉, respectively, with
the first entry for the qubit and the second for the TLS.
For more details on the notation, see Appendix A. In case
the mutual decoherence �2 = �

q
2 + �t

2 is large compared to
the timescales on which the occupations ρ11 and ρ22 vary,
one may approximate ρ21 by the population-dependent steady
state value, which leads to overdamped vacuum Rabi oscilla-
tions (Appendix B). In view of Eq. (13), this means

ρC = −C−1R · ρD. (16)

This approximation is best understood in the framework of
Nakajima-Zwanzig’s master equation [54,55]. Solving the dy-
namics of the coherences in Eq. (13) gives

ρC(t ) = eC(t−t0 )ρC(t0) +
∫ t−t0

0
eCτ R ρD(t − τ )dτ. (17)

Insertion in the dynamics of the populations results in the
integrodifferential equation

ρ̇D(t ) = �ρD(t ) + RT eC(t−t0 )ρC(t0)

+
∫ t−t0

0
RT eCτ R ρD(t − τ )dτ. (18)

Under the assumption that the populations vary slowly com-
pared to the relaxation of the coherences, we can perform
several approximations. First of all, we can neglect the sec-
ond term as we are only interested in the slow population
dynamics on long time scales. In the literature, it is often
assumed instead, under the Born approximation, that the cou-
pling between system and environment is switched on at t0,
in which case the initial coherences vanish on average [45].
If the coupling is always on, the initial coherences ρC(t0) do
not necessarily vanish in thermal equilibrium [cf. Eq. (16)].
Next, we can also apply the first and second Markov ap-
proximations, as we did for the Bloch-Redfield equation (see
Sec. II). This means we can approximate ρD by its current
time ρD(t − τ ) ≈ ρD(t ) and extend the integration to infinity,
yielding

ρ̇D(t ) = �ρD(t ) + RT C−1eCτ R
∣∣∞
0 ρD(t )

= (� − RT C−1R)ρD(t ) = LD ρD(t ). (19)

This proves that Eq. (16) follows from the two Markov ap-
proximations. For a quantitative discussion on the Markov
approximations, see Appendix B.

If the qubit is coupled to more than one TLS, calculating
the inverse of C is not feasible. However, since we assumed
for the Markov approximation that the coherences vanish
rapidly, the diagonal entries of C must be large in comparison
to the off-diagonal entries. Therefore, we can approximate
the inverse up to second order in the diagonal entries (see
Appendix D). If the TLSs are lossless (and not interacting with

each other) the matrices CZ,D are diagonal and the inverse can
readily be computed. Otherwise, we need to approximate CZ,D

to be diagonal (Appendix D) to yield the Solomon equations.
We have

RT C−1R ≈ RT
Z C−1

Z RZ + RT
DC−1

D RD (20)

� RT
Z D−1

Z RZ + RT
DD−1

D RD. (21)

Depending on the situation, one finds up to first or second
order the cross-relaxation rates �


k
qt between the qubit and the

kth TLS. The cross-relaxation rates are of the form [18,59]

�

k
qt = 2g2

k�
k
2(

�k
2

)2 + 
2
k

(22)

with 
k ∈ {δk, σk}. As a reminder, �k
2 is the sum of the qubit

and TLS decoherence rates. The derivation of the formula can
be tracked in Eq. (15) when the coherence ρ12 is approximated
by its population-dependent steady-state value. In the case
of a qubit and a single TLS, where none of the previously
discussed approximations are needed, the relaxation matrix
can be written as

LD =

⎛
⎜⎜⎜⎜⎝

−�
q
↓ − �t

↓ �
q
↑ �t

↑ 0

�
q
↓ −�

q
↑ − �t

↓ 0 �t
↑

�t
↓ 0 −�

q
↓ − �t

↑ �
q
↑

0 �t
↓ �

q
↓ −�

q
↑−�t

↑

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

−�σ
qt �σ

qt

−�δ
qt �δ

qt

�δ
qt −�δ

qt

�σ
qt −�σ

qt

⎞
⎟⎟⎟⎟⎠ (23)

and similarly for more TLSs (see Appendix E).
So far, we were able to reduce the 4n+1-dimensional

Liouvillian in Eq. (13) for the qubit and n TLSs to a 2n+1-
dimensional rate equation for the occupations. However, we
want to reduce the rate equation even further to the (n + 1)-
dimensional Solomon equations, describing the expectation
values of the populations, i.e., the measurable population
probabilities pj . In general, one cannot expect that there is
an equation of motion for a closed set of expectation val-
ues, which is why several truncation strategies exist in the
literature [60–64]. As we elaborate in the next paragraph, the
approximations in Eqs. (20) and (21) are sufficient to obtain
the Solomon equations for an arbitrary number of TLSs,
which is the central result of this derivation. For physical
intuition, one can think of the approximation in Eq. (20) as
neglecting coherence between TLSs, i.e., the TLSs are not
cooperative, and in Eq. (21) as ignoring interference between
different cross-relaxation pathways [57].

The Solomon equations were originally derived for two
nuclear spins, analogous to a qubit with a single TLS. In this
case the derivation is straightforward and was first presented
by Solomon [18]. The general idea is to find a coordinate
transformation S for ρD that leads to a covariant description of
the probabilities. The probabilities are obtained by computing
the corresponding partial traces. With our choice of ordering



the diagonal entries (Appendix A), it holds that

pq =
∑

�m/2
 integer

ρmm, pk
t =

∑
�m/2k
 integer

ρmm, 1 =
∑

m

ρmm.

Next, we apply a basis transformation S on ρD such that ρ ′
D =

S · ρD with ρ ′
D = (pq p1

t · · · pn
t 1 · · · )

T
, leading to

the dynamics ρ̇ ′
D = S · LD · S−1ρ ′

D. Note that the unity in the
line above is required to describe the excitations from the
ground state. As we prove in Appendix E, on the basis of
Eq. (21), the new rate equation is of the form

S · LD · S−1 =
⎛
⎝Ā �̄↑ 0 · · · 0

· · ·

⎞
⎠, (24)

where Ā is an (n + 1)-dimensional square matrix and �̄↑
is an (n + 1)-dimensional vector. They define the Solomon
equations, which are independent of the microscopic structure
of the populations, as reflected by the zeros to the right of
�̄↑. Because of this decoupling, the matrix elements below
the horizontal line are irrelevant for the dynamics of the
probabilities. Ā and �̄↑ describe the relaxation and excitation
processes of the probabilities, respectively. The bar on top of
Ā and �̄↑ denotes that the rates are altered by the two-photon
cross-relaxation rates �

σk
qt . The Solomon equations comprise

the following new relevant rates: the cross-relaxation rates
�̄k

qt := �
δk
qt − �

σk
qt , the transition rates of the TLSs �̄

tk
↑,↓ :=

�
tk
↑,↓ + �

σk
qt , and the qubit transition rates �̄

q
↑,↓ := �

q
↑,↓ +∑

k �
σk
qt . However, in the usual regime �k

2 � ωq for supercon-
ducting qubits, contributions from two-photon processes are
negligible.

In our scenario, where the TLS are not interacting with
each other, we obtain for Ā a so-called arrowhead-type matrix
so that the Solomon equations are of the form

ṗ=−

⎛
⎜⎜⎜⎜⎜⎝

�̄
q
1 + ∑

�̄k
qt −�̄1

qt · · · −�̄k
qt

−�̄1
qt �̄1

1 + �̄1
qt

...
. . .

−�̄n
qt �̄n

1 + �̄n
qt

⎞
⎟⎟⎟⎟⎟⎠p+

⎛
⎜⎜⎜⎜⎜⎝

�̄
q
↑

�̄1
↑
...

�̄n
↑

⎞
⎟⎟⎟⎟⎟⎠

with the usual definition �̄1 = �̄↑ + �̄↓.
Finally, we want to note that the proof in Appendix E is

also valid when the TLSs are interacting with each other.
This means that the Solomon equations are correct as long
as the approximations that lead to the cross-relaxation rates
in Eq. (22) can be justified. In general, it is very difficult to
foresee the range of validity when the TLSs become coherent
and close in frequency [65]. At some point a collective behav-
ior of the TLSs comes into play, where the TLSs essentially
form a large single spin, as discussed in detail in the context
of superradiance [32,33,65].

IV. ANALYTIC SOLUTIONS AND APPROXIMATIONS

The rich relaxation dynamics of the Solomon equations al-
low us to draw conclusions on the connectivity and strength
of the cross-relaxation rates. In NMR, the measured cross-
relaxation rates contain information on the nuclear spins
and their distances. This paved the way for the broad field

of two-dimensional NMR spectroscopy [17]. Similarly, we
show in this section that the relaxation dynamics on long
time scales contains information on the cross-relaxation dis-
tribution. From this distribution, one might be able to draw
conclusions on the frequency and spatial distribution of the
TLSs and get an idea of their physical nature. For instance, if
there is a dipolar coupling between the qubit and the TLSs,
one has gk ∝ 1/r3, with r being the distance to the qubit.
When the TLSs are spread on the surface around the qubit,
we count the number k(r) ∝ r2 of TLSs within r and con-
sequently �k

qt ∝ 1/r6
k ∝ 1/k3. In case the TLSs are spread in

all three dimensions, one obtains �k
qt ∝ 1/k2. For the scenario

presented in Fig. 2, when the coupling and the mutual deco-
herence are approximately constant but the TLSs are spread
in frequency, we also expect �k

qt ∝ 1/k2.
To simplify the discussion, we assume that the mutual

decoherence of the qubit and the TLSs is strong enough
(�k

2 > 4gk ; see Appendix B) for the Solomon equations to
be valid. For superconducting qubits this assumption is not
always fulfilled. For instance, it is possible to observe co-
herent oscillations with dielectric TLSs [66,67]. For weakly
coupled TLSs, e.g., spins, this regime is applicable. When we
compute the cross-relaxation distribution, we can assume that
�k

2 � ωq such that two-photon processes �σ
qt can be neglected

[Eq. (22)]. Note that this assumption might not be valid for
low-frequency fluxonium qubits [68]. Both assumptions and
the form of the cross-relaxation rate Eq. (22) imply that the
qubit will only exchange energy significantly with those TLSs
that are close in frequency, δk � �k

2. We will therefore as-
sume that the qubit and the TLSs relax approximately to the
same thermal population pth = �

j
↑/�

j
1. Moreover, we assume

that all TLSs are of the same physical origin, suggesting
a single intrinsic relaxation rate for the TLSs. Under these
assumptions, we can now rewrite the Solomon equations: we
remove the bar on top of the rates to indicate the neglect of
two-photon processes, and for convenience we introduce the
intrinsic relaxation rates �q = �

q
1 and �t = �

tk
1 . The Solomon

equations then read

ṗ= −

⎛
⎜⎜⎜⎜⎜⎝

�q+
∑

�k
qt −�1

qt · · · −�k
qt

−�1
qt �1

t + �qt

...
. . .

−�n
qt �n

t +�qt

⎞
⎟⎟⎟⎟⎟⎠p+

⎛
⎜⎜⎜⎜⎝

�q

�t

...

�t

⎞
⎟⎟⎟⎟⎠pth.

Following from Eqs. (3) and (4), we have for the qubit

�↑(t ) = �q pth +
∑

k

�k
qt p

k
t (t ), (25)

�↓(t ) = �q(1 − pth) +
∑

k

�k
qt

[
1 − pk

t (t )
]
, (26)

�1 = �q + �TLSs, (27)

where we see once more that the total qubit relaxation rate
�1 is independent of the TLS populations. The qubit relax-
ation induced by the TLSs is given by �TLSs = ∑

k �k
qt. From

Eq. (5) we obtain

peq(t ) = �q pth + ∑
k �k

qt p
k
t (t )

�1
. (28)



Similarly, we can introduce

pTLSs
eq (t ) =

∑
k �k

qt p
k
t (t )∑

k �k
qt

, (29)

which would be the equilibrium population of the qubit in
the absence of intrinsic qubit loss, and hence it serves as a
measure for the TLS population.

In the past, numerous techniques have been invented to
achieve hyperpolarization, i.e., to create a population that is
far from thermal equilibrium. Typically, hyperpolarization is
associated with nuclear spins. At first, the nuclear Overhauser
effect [69] was predicted and soon after experimentally veri-
fied. Polarization was achieved by saturating electronic spins
via microwave irradiation, which then cross-relax and polarize
the nuclear spins. Soon after, hyperpolarization with optical
pumping was discovered. In Ref. [6] the authors optically
reset a nitrogen spin in a stroboscopic manner to either its
ground or excited state, which then cross-relaxes and hyper-
polarizes its surrounding nuclear spins.

Making use of design flexibility and fast control of super-
conducting artificial atoms, hyperpolarization of long-lived
TLSs can be achieved in many different ways, for instance
by using saturation pulses [21]. Similarly to Ref. [6], in
the experiments presented later in this section, the TLSs are
cooled or heated by stroboscopic qubit preparations using an
active feedback protocol, as discussed in detail in our earlier
work (Ref. [21]). During this polarization sequence of length
Ntrep, where trep is the repetition time, the qubit population is
approximately constant, corresponding to the targeted prepa-
ration state. Consequently, the Solomon equations predict an
exponential relaxation for the TLSs to their new steady-state
value. Immediately after the polarization sequence at t = 0,
the TLS populations pk

t,0 := pk
t (t = 0) are given by

pk
t,0 = (

pth − pk
s

)
e−(�k

qt+�t )Ntrep + pk
s (30)

with steady-state values

pk
s = �t pth + �k

qt

�t + �k
qt

or pk
s = �t pth

�t + �k
qt

for heating or cooling of the environment, respectively. These
initial TLS populations pk

t,0 are shown in Fig. 3 for various
polarization times.

The structure of the arrowhead matrix in the Solomon
equations entails many useful properties [70,71]. Without
loss of generality, we can assume that the rates are nonzero,
�k

qt > 0, and sorted, �k
qt � �k+1

qt . With this definition, we can
state one of the most important properties following from
the interlacing theorem. It yields immediately the following
relations for the eigenvalues:

λ0 > �1
qt + �t � λ1 � · · · � �n

qt + �t � λn, (31)

λ0 > �1 � λn. (32)

Furthermore, λn � min{�q, �t} is equal if and only if �q =
�t. The inequality [Eq. (31)] shows that the cross-relaxation
distribution translates approximately into the same dis-
tribution for the eigenvalues of the Solomon equations.
To simplify the following calculations, we introduce the

FIG. 3. TLS hyperpolarization. Initial TLS populations pk
t,0 plot-

ted vs their detuning δk for various polarization times Ntrep, with trep

being the repetition time of the stroboscopic qubit preparations to
|e〉 (top panel) and |g〉 (bottom panel). The TLS populations were
calculated using Eq. (30).

out-of-equilibrium population p∗ = p − pth, where pth =
(pth, . . . pth )T is the steady state for the system in thermal
equilibrium.

A. The case of identical cross-relaxation rates

The system of differential equations can be solved ana-
lytically for the special case when all cross-relaxation rates
are identical, �k

qt = �qt. While this case is likely not relevant
for dielectric TLSs in superconducting devices, it might be
applicable for an environment consisting of hyperfine split
spins given their narrow frequency distribution [72]. When
the system is driven out of equilibrium by operating the qubit,
e.g., following the polarization protocol described earlier, the
TLSs will always be populated identically. This means that
the (n − 1)-fold eigenvalue λ1 = �t + �qt does not take part
in the relaxation dynamics, which will therefore be biexpo-
nential. We derive the analytical solutions in Appendix F.

The relaxation of the qubit and the corresponding transition
rates �↑ and �↓ are depicted in Fig. 4 for different numbers
of TLSs with different initial populations. The qubit initial-
ization, typically to the ground state p∗

q,0 = 0 or excited state
p∗

q,0 = 1, leads to distinct long-term relaxation dynamics. This
can be observed in particular for a small number of TLSs,
as shown in Fig. 4(a). The qubit initialization does not affect
the starting value for the transition rates. However, since the
initialization adds or removes one quanta in the system, we
notice a difference in the relaxation on longer time scales,
as shown in Fig. 4(b). The biexponential relaxation in this
scenario is qualitatively similar to the experimental results
presented in Ref. [21], but insufficient to describe the slow
and nonexponential relaxation observed on long time scales
[cf. Fig. 5(b)]. These effects can only be explained when the
rates �k

qt are not identical. Instead, a few fast and many slow
cross-relaxation rates are required.

We want to add that in the limit of infinitely many weakly
coupled TLSs such that �TLSs is constant, we have λ0,2 ∈
{�1, �t}. Then it follows from Eq. (F1) that the TLSs evolve



(a)

(b)

FIG. 4. Qubit relaxation and transition rates for identical cross-relaxation rates to n TLSs. (a) Relaxation dynamics of the qubit population
pq and equilibrium population peq following qubit initialization to |g〉 or |e〉. We assume that all n TLSs have the same initial population p∗

t,0.
The curves with the higher initial TLS population are shifted in time for better visibility. Between the left and right panel, only the number
n is varied. Additionally, we assume the TLSs to be lossless �t = 0 and a thermal population pth = 0.12 for qubit and TLSs. The parameters
were chosen to resemble the experimental findings [21]. (b) Qubit transition rates �

q
↑,↓ corresponding to the relaxation curves shown in panel

(a). Not surprisingly, the cooling and heating effect from the qubit initialization, i.e., the difference between, e.g., the orange and red curves, is
less pronounced for increasing n. All curves are obtained from Eq. (F1) and using Eqs. (25), (26), and (28).

independently of the qubit with p∗
t (t ) = p∗

t,0e−�tt , while the
qubit dynamics remains biexponential, governed by

ṗq = −�1 pq + �TLSs p∗
t,0e−�tt + �1 pth, (33)

as may also be read from the Solomon equations. To be more
precise, in the interesting scenario in which the TLSs are long-
lived, �t < �1, we have λ2 = �t + �TLSs(�q − �t )/(�1 −
�t )/n + O(1/n2) and for the TLSs it then holds that p∗

t (t ) =
p∗

t,0e−λ2t + O(1/n). In the limit n � 1 with the TLSs being
initially in thermal equilibrium p∗

t,0 = 0, their relaxation thus
becomes asymptotically decoupled from the qubit decay, jus-
tifying the Born approximation in this limit.

B. The case of distributed cross-relaxation rates

Without loss of generality, we will assume that all the
transfer rates are nonzero and distinct from each other. This
is justified because if relaxation rates happen to be identical,
their eigenvalues do not individually take part in the relax-
ation dynamics of the qubit and can be collapsed with Givens
rotations, as illustrated in the previous case analysis. The
eigenvalues λm of an irreducible arrowhead matrix are given
as the roots of the so-called Pick function [71]:

f (λ) = �q +
∑

�k
qt − λ −

∑ (
�k

qt

)2

�k
qt + �t − λ

= 0. (34)

The corresponding eigenvectors can be expressed via

vm = (
1 �1

qt/
(
�1

qt + �t − λm
) · · · �n

qt/
(
�n

qt + �t − λm
))T

.

(35)

Fortunately, one can find that ‖vm‖2 = − ∂ f
∂λ

|λm
. The funda-

mental solution of the Solomon equations from Sec. IV can
now be written as

p(t ) =

⎛
⎜⎝1/‖v0‖ · · · 1/‖vn‖

...
...

⎞
⎟⎠
⎛
⎜⎝e−λ0t

. . .

⎞
⎟⎠

×

⎛
⎜⎝1/‖v0‖ · · ·

...

1/‖vn‖ · · ·

⎞
⎟⎠p∗

0 + pth. (36)

When initially only the qubit is out of equilibrium, we have

pq(t ) =
n∑

m=0

e−λmt

‖vm‖2
p∗

q,0 + pth, (37)

and from Eq. (28) with the help of Eq. (34) we find

peq(t ) =
n∑

m=0

�1 − λm

�1

e−λmt

‖vm‖2
p∗

q,0 + pth, (38)

where one may recognize Eq. (2) when inserting Eq. (37) into
Eq. (38).

C. Polynomial relaxation

In the following, we will discuss possible long-term re-
laxation behaviors of the system. Since pq and peq decay in
a similar way on long time scales [see Eqs. (37) and (38)],
we will use pq(t ) to discuss the relaxation, which is directly
accessible in experiments. In particular, we are interested in



(a)

(b)

FIG. 5. Polynomial relaxation. (a) Relaxation of the qubit with
only the qubit being excited initially (blue lines) or with the first nine
TLSs being excited in addition (orange lines). The black curves show
the limit solution of either Eq. (43) or (44). We use the distribution
�k

qt = 4ab2/k2 with a and b as in panel (b). The top panel shows the
scenario without any losses in the system �q = �t = 0, simulated
with 2000 TLSs, whereas the bottom panel depicts the scenario with
the intrinsic qubit loss �q taken from the experiment and simulated
with 100 TLSs. (b) Qubit relaxation taken from Ref. [21] for different
lengths of the TLS polarization sequence to the excited state. To
reduce the noise, a fifth-order Savitzky-Golay filter with increasing
window length w(t ) = t/2 was applied on the data. The curves
N = 101–103 are shifted leftwards for better visibility by factors of√

10. The continuous lines show the exact result [Eq. (36)] using
the distribution of Eq. (39) with a = 25.5 kHz, b = 0.48 and c = 0,
slightly updated compared to Ref. [21]. The initial polarization is
modeled with Eq. (30) as shown in Fig. 3. The simulation was
carried out with 101 TLSs, with more than 50 TLSs required for
convergence. The limit solution (44) deviates with increasing initial
polarization, since the condition t � 1/λn with p∗

j,0 = 0 for j > n is
not fulfilled (see the text and Fig. 3).

the emergence of nonexponential relaxation curves that must
arise by virtue of Eq. (37) from the sum of many exponential
functions. Obviously, if the qubit interacts with a finite num-
ber of TLSs, the relaxation can be approximated on long time
scales by pq(t ) ≈ αe−λnt and the nonexponential behavior can
only appear for t < 1/λn. An exponential relaxation will also
be seen for an infinite number of TLSs that have a finite

lifetime �t > 0, in which case we obtain pq(t ) ≈ αe−�tt on
long time scales, as can be deduced from Eq. (31), and
therefore a nonexponential behavior can only appear for t <

1/�t. Thus, a nonexponential relaxation appears on long time
scales for a large number of TLSs that are long-lived, �t ≈ 0,
and with eigenvalues λi that vanish continuously with
λi − �t → 0.

As an insightful example, we will now discuss the exper-
imental situation in which the TLSs are spread in frequency.
For the modeling, we will assume that the TLSs are equally
spaced in frequency with spacing 
. In this case, the cross-
relaxation rates [Eq. (22)] are given by

�h
qt = ab2

b2 + (h − bc)2
with h ∈ Z, (39)

where a = 2g2/�2, b = �2/
, c = 
0/�2, and 
0 describes
a frequency shift of the TLSs with respect to the qubit fre-
quency. Due to the periodicity, 
0 can be restricted to 
0 ∈
{0,
/2}. We use the index h to clarify that these rates are not
sorted [Eq. (31)]. In case b � 1, which corresponds to a high
TLS density, many TLSs interact with the qubit with a similar
rate. Here, a good approximation on moderate timescales is
given by case study A. In the case b � 1, as in our experiment,
we have the interesting situation in which the rates vanish
continuously.

Next, we compute the long time scale relaxation dynamics
following from Eq. (37). For the distribution in Eq. (39), the
analysis below can only be applied for the special cases 
0 =
0 (one TLS in resonance with the qubit), 
0 = 
/4 (equally
spaced detunings |δk|), and 
0 = 
/2 (maximum detuning
between the closest TLSs and the qubit). For more details,
see Appendix G. However, as we are mainly interested in
the long-time dynamics, we can slightly approximate the rate
distribution to yield a simpler and more instructive analysis.
We use

�k
qt = a/k2 with k ∈ N+

→ �TLSs =
∑

�k
qt = aπ2

6
. (40)

Note that for a direct comparison with the distribution defined
in Eq. (39), the parameter a needs to be scaled by a factor of 4.
With the new distribution, the Pick function can be simplified
and expressed in a closed form:

f (λ) = �q − �t − λ′

2
− πa

2

√
λ′

a
cot

√
π2a

λ′ (41)

with λ′ = λ − �t. Furthermore, we can compute ‖vm‖2 using
the fact that by definition f (λm) = 0, which yields

‖vm‖2 = − f ′(λ)

∣∣∣∣
λm

= − ∂ f

∂λ′

∣∣∣∣
λ′

m

= 1

2
+ 3�TLSs − (�q − �t )

2a
zm + (�q − �t )2

a2
z2

m

= 1/2 + βzm + γ 2z2
m. (42)

Here, we further introduced zm = a/λ′
m. We will see that the

linear and quadratic terms in zm give rise to different long-term
relaxation dynamics.



The next step is to evaluate the sum in Eq. (37) on long
time scales. The derivation is presented in Appendix F. In the
situation in which γ 2 = 0, which essentially describes the di-
lution of the initial qubit excitation into the TLS environment,
the long-term relaxation dynamics is governed by

p∗
q,approx.(t ) = lim

t→∞ p∗
q(t ) =

√
π

2β

e−�tt

(at )1/2
p∗

q,0. (43)

In the experimentally more likely situation in which γ 2 > 0,
the relaxation dynamics becomes

p∗
q,approx.(t ) = lim

t→∞ p∗
q(t ) =

√
π

4γ 2

e−�tt

(at )3/2
p∗

q,0. (44)

The long-time relaxation dynamics is likely to be hidden
in the noise when initially only the qubit is brought out of
equilibrium. A simple way to improve the visibility is to also
initialize a few of the most resonant TLSs, as in the experi-
ment (see Fig. 3). Then, for a large number of TLSs where we
have λ′

m → 0, one can deduce from Eqs. (35) and (36) that
the long-time solution is still valid. We just have to replace
p∗

q,0 with the total out-of-equilibrium excitation
∑

j p∗
j,0. The

long-term solution sets in under the condition t � 1/λn with
n such that p∗

j,0 = 0 for j > n. In Fig. 5(a) we show several
relaxation curves verifying the power-law decay on long time
scales, which can also be observed in the experiment [see
Fig. 5(b)]. However, in the experiment the above condition
is only approximately fulfilled, since all TLSs were at least
partially excited during the polarization sequence (see Fig. 3).

D. Generalization

As discussed in the beginning of this section, one can ex-
pect also other cross-relaxation distributions in experiments.
In the following, we will therefore discuss the long time
behavior for a general cross-relaxation distribution of the form

�k
qt = a/kd with d > 1 and k ∈ N+

→ �TLSs =
∑

�k
qt = ζ (d ), (45)

with ζ being the Riemann zeta function. The derivation of
the limit behavior is similar to the one presented above and
is given in Appendix F. The difficulty is to determine the
value of β, for which analytical expressions can be derived
for integer values of d , as shown in Appendix G. For γ = 0,
the relaxation dynamics approaches

p∗
q, approx.(t ) = lim

t→∞ p∗
q(t ) = �

(
1 + 1

d

)
β

e−�tt

(at )1/d
p∗

q,0.

Here, � denotes the Gamma function. For γ 2 > 0 it becomes

p∗
q,approx.(t ) = lim

t→∞ p∗
q(t ) = �

(
2 − 1

d

)
γ 2d

e−�tt

(at )2−1/d
p∗

q,0.

For d � 1, this solution sets in very late and will be difficult to
observe in the experiment, unless the system is approximately
lossless γ → 0.

FIG. 6. TLS-induced qubit relaxation. �TLSs as a function of the
mutual decoherence �2 for various TLS frequency densities 1/
.
The shift of the TLS ladder with respect to the qubit frequency is
encoded in 
0, i.e., the detuning to the most resonant TLS. The
dashed line indicates the threshold above which the calculation of
the cross-relaxation rate Eq. (11) is no longer valid. In this region,
the qubit and the most resonant TLSs undergo damped vacuum Rabi
oscillations (for more details, see Appendix B).

V. QUBIT RELAXATION AS A FUNCTION
OF THE MUTUAL DECOHERENCE

In this section, we discuss the qubit relaxation as a func-
tion of the mutual decoherence �2. From Eq. (22) we see
that the added qubit relaxation induced by a single TLS is a
nonmonotonic function in �2, which vanishes in both limits
of �2 → 0 and �2 → ∞. The contribution to the relaxation is
maximized when �2 = δ, amounting to �qt = g2/δ. When the
TLSs are spread in frequency with a single coupling strength
g and mutual decoherence rate �2, the sum of the distribution
in Eq. (39) can be evaluated analytically and results in

�TLSs =
∞∑

h=−∞

ab2

b2 + (h − bc)2

= πab
sinh(2πb)

cosh(2πb) − cos(2πbc)
(46)

with a, b, and c as defined in Eq. (39). Since �2 cancels
in the prefactor ab = 2g2/
, for sufficient decoherence such
that b � 1, we recover the result of the Bloch-Redfield master
equation:

�TLSs ≈ 2πg2



= 2πg2νt,

with νt being the TLS density. In Fig. 6 we plot the qubit
relaxation as a function of the mutual decoherence for various
TLS densities. Note, if the qubit is mainly coupled to a single



FIG. 7. Illustration of the measurement backaction. Simula-
tion of a stroboscopic quantum jump trace using the stochastic
Schrödinger equation. The qubit is measured with a repetition time
trep = 2 µs. In the simulation shown here, the qubit and the five most
resonant TLSs are assumed to be lossless but exposed to stochastic
dephasing. At t = 0 the system is in a product state with popula-
tions pj = pth and random phases. Eventually, the system will be
trapped, here in the two-photon manifold, where the total popula-
tion (black lines) remains constant. We use the parameters of the
experiment [Fig. 5(b)] and the dephasing rates �q

ϕ = 0.5 MHz and
�tk

ϕ = 1.0 MHz.

TLS, the qubit relaxation can be improved by increasing the
decoherence of the TLS, e.g., by changing the ambient tem-
perature or applying saturation pulses on the TLS. However,
this improvement is lost for multiple TLSs, since the spectral
broadening due to the increased �2 exposes the qubit to far de-
tuned TLSs. Another method for increasing �2 and changing
qubit relaxation is to exploit the photon shot noise dephasing
during qubit readout, as recently demonstrated in Ref. [73].

VI. QUANTUM JUMP STATISTICS

The quantum jumps of a qubit in a Born-Markovian en-
vironment are Poisson-distributed, i.e., the qubit undergoes
an exponential relaxation. When the qubit is coupled to a
finite-size TLS environment, a non-Poissonian statistics can
be expected due to measurement-induced temperature fluctu-
ations in the TLS environment (Fig. 7 and Ref. [74]), which
we visualize by taking a histogram of the qubit dwell times
in the excited or ground state [Fig. 1(b)]. The quantum jump
statistics are extracted from quantum jump traces obtained
by stroboscopic projective qubit measurements at equidistant
intervals. We used the same fluxonium device described in
Ref. [21].

In this section, we show that the measured quantum
jump statistics can be reproduced using a diffusive stochas-
tic Schrödinger equation (SSE) (Fig. 8) and also, somewhat
surprisingly, using the Solomon equations (Fig. 9). While the
SSE offers a more complete picture by tracking the entangle-
ment of the qubit and the TLSs, the stochastic evolution of
the wave function becomes computationally demanding with
increasing system size. In addition, the SSE is not unique as
it depends on the system details. In a nutshell, the quantum-
mechanical challenge is to describe the flow of excitation and

(a)

(b)

FIG. 8. Comparison between SSE-simulated and measured
quantum jumps. (a) SSE simulation of a quantum jump trace similar
to Fig. 7, but including qubit relaxation and the seven most resonant
TLSs. The cross relaxation of the remaining TLSs was added to
the intrinsic qubit loss. (b) Measured and SSE-simulated quantum
jump statistics of the qubit dwell times in |e〉 and |g〉, respectively.
The histograms are generated as described in Fig. 1. The black
dashed line shows the exponential distribution for a Born-Markovian
qubit environment with qubit relaxation �1 = �q + �TLSs in thermal
equilibrium corresponding to pth.

energy during the measurement process, in particular when
additional environments of the qubit [75] and the TLSs are
included.

Using the Solomon equations implicitly assumes that the
measurement backaction on the TLSs does not change their
population expectation values. Therefore, one cannot expect
an agreement with the SSE in general. Indeed, we show
numerically in Appendix C and experimentally in Ref. [76]
that the Solomon equations can lead to distinct quantum jump
distributions for a small number of TLSs that dominate the
intrinsic qubit loss. This allows us to differentiate between
a quantum and classical behavior. Measuring the quantum
jump statistics can therefore be used to identify a reduced
measurement backaction as well as to investigate a quantum-
to-classical transition with an increasing number of TLSs.

Before proceeding with the experimental results, we will
clarify in the following the role of the measurement backac-
tion. At this point it should be emphasized that the TLSs in
the experiment, while being approximately lossless, provide
the main loss mechanism for the qubit. For now, we can there-
fore neglect additional environments and consider the closed
qubit-TLS system. Let |ψi〉 and |ψf〉 denote the wave functions
before and after a projective qubit measurement, respectively.



(a) (b)

(c) (d)

FIG. 9. Comparison between Solomon-equations-simulated and measured quantum jumps. (a) Schematic simulation of a quantum jump
trace using the Solomon equations. The blue dots show the positions and outcomes of the measurement at trep intervals. The qubit is projected
to its eigenstates with the probability corresponding to the qubit population pq. In the lower panel, we show the excess population of the TLSs,
assuming that the TLS populations remain unchanged by the qubit measurement (see the main text for the discussion of the measurement
backaction). In between the measurements, the system evolves according to the Solomon equations [Eq. (36)]. (b) Simulation of a longer
quantum jump trace following the same method as in panel (a) with trep = 2 µs and using the same parameters as in Fig. 5(b). Here, we
only show the qubit measurement outcome and the excess TLS population at the time of the measurement. Due to the heat capacity of the
environment and the relatively low thermal population pth = 0.12, the quantum jumps appear bunched when the TLS temperature is increased.
(c), (d) Measured and Solomon-equations-simulated quantum jump statistics of the qubit dwell times in |e〉 and |g〉, respectively. The histograms
are generated as described in Fig. 1. The black dashed line shows the exponential distribution for a Born-Markovian qubit environment. The
experimental data presented here plus additional quantum jump traces are publicly available [77].

Following a textbook quantum-mechanical measurement on
the qubit, |ψf〉 will be a product state with the qubit being
projected either to its ground state |g〉 or to its excited state
|e〉. We have

|ψf〉 =
{

|e〉 ⊗ |ψ ′
TLSs〉 with prob. pq,

|g〉 ⊗ |ψ ′′
TLSs〉 with prob. 1 − pq,

with the TLS wave function altered depending on the mea-
surement outcome. In this setting, we highlight three scenarios
representing very different backaction properties.

In the first scenario, we show that the excitation difference
of the qubit before and after the measurement can be provided
by the TLSs. Let M(m) denote the mth excitation manifold.
Then, if |ψi〉 ∈ M(m), it follows that |ψf〉 ∈ M(m) and the
excitation number is conserved. Here, the measurement pro-
cess does not change the excitation number, but if the qubit
and TLS photon energies are different, it must account for the
energy difference.

The second scenario is essentially opposite to the first and
contains those wave functions where the expectation values
of the TLS populations remain unchanged by the qubit mea-
surement. For example, if the qubit and the TLSs are in the

nonentangled product state, then it holds that

|ψi〉 = (
√

1 − pq |g〉 + √
pqeiϕ |e〉) ⊗ |ψTLSs〉

→ |ψf〉 =
{|e〉 ⊗ |ψTLSs〉 with prob. pq,

|g〉 ⊗ |ψTLSs〉 with prob. 1 − pq.

Here, the excitation difference of the qubit must be provided
entirely by the measurement process.

Lastly, in general, in the third scenario the excitations can
change arbitrarily. Consider, for instance, the following wave
function, which is a mixture of two excitation manifolds:

|ψi〉 = √
1 − pq |g〉 ⊗ |ϕ〉 + √

pqeiϕ |e〉 ⊗ |χ〉 ,

where |ϕ〉 ∈ M(m) and |χ〉 ∈ M(n). After the measurement,
the final wave function will be either in |ψf〉 ∈ M(m) or in
|ψf〉 ∈ M(n + 1). Here, we see that the total excitation differ-
ence must be provided by the measurement process, and that
repeated measurements on the qubit have a tendency to steer
the system into an excitation manifold. For several TLSs in
higher excitation manifolds, this purification will become less
effective and will likely not compete with relaxation processes
that provide transitions between neighboring manifolds. For
an experimental verification of a spin bath purification, see
Ref. [9].



To clarify the previous discussion about the measurement
backaction, we depict in Fig. 7 a stroboscopic quantum jump
trace simulated with the diffusive SSE. Since in the discussion
the system was considered to be closed, we only allow for
dephasive processes (see Appendix C for more details). To
illustrate the different backaction scenarios, the system wave
function was initialized in a product state with populations
pj = pth and random phases. The fluctuating and varying
excitation in the system comes solely from the measurement
process indicating mainly scenario three, but also scenario two
in the very beginning. Eventually, these fluctuations come to
an end when the system state is trapped in one of the photon
manifolds; in the case shown here, the system state is trapped
in the two-photon manifold. From here on, the dynamics are
described by the first scenario.

Due to the trapping behavior, the lossless SSE is not suited
to simulate longer quantum jump traces with a specific av-
erage qubit population corresponding to the temperature. In
reality, this temperature is defined by additional qubit en-
vironments that are responsible for its intrinsic relaxation,
essentially providing transitions between excitation manifolds
of the qubit-TLS system. We show in Appendix C vari-
ous lossless SSE-simulated quantum jump statistics for an
even larger system consisting of 16 TLSs trapped in the
three-photon manifold and therefore pth = 3/16. In some
of these simulations, we use the majority of the TLSs to
emulate the intrinsic qubit relaxation. Alternatively, we find
that the same statistics can be obtained much faster by us-
ing a diffusive SSE [43,78,79] that incorporates the qubit
relaxation (Appendix C). We show in Fig. 8 the result of
such a diffusive SSE, which reproduces the measured quan-
tum jump statistics (Appendix C for more details). The
computational complexity could be kept on an acceptable
level by recognizing that in particular the most resonant
TLS contributes dominantly to the non-Poissonian quantum
jump statistics. Accordingly, the simulation was performed
for the qubit and the seven most resonant TLSs. As a per-
spective, it would be enlightening to examine other master
equation unravelings of the qubit-TLS system of increas-
ing size, while taking into account additional environments
if needed. In this context, one may also utilize recent de-
velopments for the efficient simulation of larger systems
[80–84].

If the second backaction scenario is realized, the Solomon
equations can be used to accurately explain the measured
quantum quantum jump statistics. Suppose the measurement
process is not changing the TLS populations. Then, we can
integrate the Solomon equations to obtain the qubit population
at the time of the upcoming measurement and obtain the
probabilities of the measurement outcome. Starting in ther-
mal equilibrium, we can generate a quantum jump trace and
compute the fluctuating energy in the TLS bath that in turn
influences the measurement outcome of the qubit [Figs. 9(a)
and 9(b)]. The resulting martingales for the energies in the
system are similar to Pólya’s urn model, except that the qubit
and the TLSs can (i) saturate and (ii) decay into their en-
vironments. The quantum jump statistics generated in this
way is contrasted in Figs. 9(c) and 9(d) with the experiment
and shows quantitatively an even better agreement than the
SSE in Fig. 12. Importantly, we want to note that measuring

non-Poissonian quantum jump statistics hampers the accurate
extraction of the qubit’s transition rates �↑,↓ [Figs. 9(c), 9(d)
and 12(a)].

VII. CONCLUSION

We presented a thorough derivation of the qubit dynamics
in contact with a two-level system environment. An infinite
number of weakly coupled TLSs provides a Born-Markovian
environment for the qubit. In this case, the well-known Bloch-
Redfield master equation is the method of choice to describe
relaxation and decoherence of the qubit. The situation changes
drastically for a finite number of long-lived TLSs, as the Born
approximation is no longer valid. For this case we presented
a detailed derivation of the Solomon equations, applicable
in the absence of coherent interactions. In contrast to the
Bloch-Redfield master equation, the Solomon equations do
not require the rotating wave or secular approximation and
they are therefore also valid for low-frequency qubits [68].

The accuracy of the Solomon equations is demonstrated
by the measured and computed qubit relaxation on timescales
more than three orders of magnitude longer than the qubit
lifetime. We calculated and experimentally confirmed the
power-law relaxation behavior on long timescales. The rich
relaxation dynamics contains information on the cross-
relaxation distribution. This allows drawing conclusions on
the frequency and spatial distribution of the TLSs and can
provide insights into their physical nature. In a last step, we
showed that both the stochastic Schrödinger equation and the
Solomon equations can predict the measured non-Poissonian
quantum jump statistics. This finding expands the common
expectation that non-Poissonian statistics stems from fluctua-
tions of the qubit’s relaxation time, e.g., a fluctuating number
of quasiparticles in the superconductor [85].

Our derivation of the Solomon equations opens new av-
enues to compute higher-order cross-relaxation pathways that
arise from the finite lifetime of the TLSs and from interactions
between the TLSs [58]. In future work, it would certainly
be interesting to expand the analysis to describe the qubit’s
decoherence and frequency shift induced by the discrete TLS
environment. Extending the derivation for more complex in-
teractions and environments such as spins with larger quantum
number requires additional approximations and the consid-
eration of ancillary expectation values in the equation of
motion [51]. Furthermore, the Solomon equations suggest the
applicability of the nuclear Overhauser effect spectroscopy
method on quantum processors when the qubits are tuned in
resonance. In this way, one can identify spurious couplings
between the qubits.

Last but not least, we believe that tracking the energy flow
in multipartite systems [86,87] is a powerful tool to under-
stand the backaction of quantum measurements. Analyzing
the quantum jump statistics as presented allows us to investi-
gate a quantum-to-classical transition with increasing number
of TLSs. Anomalies in the measurement backaction, which
could for instance be the result of an accelerated thermal-
ization, have far-reaching consequences because uncorrelated
measurement backaction is a key ingredient for quantum error
correction.
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APPENDIX A: LIOUVILLIAN
IN SUPEROPERATOR NOTATION

First, we use this paragraph to define the order of the wave
functions. The wave function |ψ〉 of the qubit and n TLSs can
be expressed as |ψ〉 = ∑

i ci |vi〉, with the basis functions

|v0〉 = |1111 . . . 1〉 , |v1〉 = |0111 . . . 1〉 ,

|v2〉 = |1011 . . . 1〉 , |v3〉 = |0011 . . . 1〉 ,
...

...

|v2n+1−2〉 = |1000 . . . 0〉 , |v2n+1−1〉 = |0000 . . . 0〉 .

Here, the first entry stands for the qubit, the second for the
TLS k = 1, the third for the TLS k = 2, and so forth, with 0
and 1 denoting the ground and excited state, respectively. In
this basis, the density matrix reads

ρ = |ψ〉 〈ψ | =

⎛
⎜⎜⎝

c0c∗
0 c0c∗

1 · · ·
c1c∗

0 c1c∗
1

...
. . .

⎞
⎟⎟⎠.

To verify the structure and matrix elements in Eq. (14)
we state here the Liouvillian in superoperator notation fol-
lowing Ref. [44]. The trick is to write the density matrix as
a tensor product ρ → �ρ = ∑

ρmn |m〉 ⊗ |n〉. It then follows
that Aρ → (A ⊗ 1)�ρ and similarly ρB → (1 ⊗ BT )�ρ. We
also need AρB → (A ⊗ BT )�ρ. Since we have a symmetric
Hamiltonian H = HT and real valued dissipators Lα = L∗

α , the
Lindblad equation [Eq. (12)] reads

⃡L = − i

h̄
(H ⊗ 1 − 1 ⊗ H )

+
∑

α

Lα ⊗ Lα − 1

2

(
LT

α Lα ⊗ 1 + 1 ⊗ LT
α Lα

)
.

In this form, the matrix elements can easily be computed. For
example, for the qubit coupled to two TLSs, one of the off-
diagonal entries of CZ originates from

⃡Lmn = 〈100| ⊗ 〈010| ⃡L |101〉 ⊗ |011〉 = �
t2
↓ .

Casting the tensor products in ⃡L and �ρ in matrix and vector
form gives the Liouvillian L, which can then be structured as
stated in Eq. (14) and depicted in Fig. 10.

APPENDIX B: CROSS RELAXATION BETWEEN QUBIT
AND TLS IN THE PRESENCE OF PURE DEPHASING

In our derivation of the Solomon equations (Sec. III), we
did not give a quantitative argument that allows for the use of
the Markov approximation for the coherences, nor did we give
any intuition for using the Lindblad equation in the first place.
In the first part of this Appendix, we therefore briefly review

FIG. 10. Liouvillian matrix structure. Liouvillian L in superop-
erator notation [Eq. (12)], in the block structure stated in Eq. (14) for
the qubit and (a) one TLS and (b) two TLSs. We indicate nonzero
real entries from �

j
↑,↓ in blue, nonzero imaginary entries from the

couplings gk in red, and nonzero real and imaginary entries from
various relaxation, dephasing, and frequency contributions in black.

the classical derivation of the spin-lattice relaxation via the
quantum stochastic Liouville equation [50,88]. In the second
part, we focus on the Markov approximation by presenting a
detailed derivation for the system dynamics comprising the
qubit and a single TLS, similar to Ref. [18].

The discussion is greatly simplified when we assume that
the qubit and the TLS are lossless. In this case, we can model
the perturbation of the qubit and the TLS by a classical longi-
tudinal noise source. The time-dependent Hamiltonian reads

Htot = h̄ωq

2
σ z

q + h̄ωt

2
σ z

t + h̄gσ x
q σ x

t

+ h̄ηq(t )σ z
q + h̄ηt(t )σ z

t ,

where ηq,t are classical noise sources with a certain power
spectral density and zero mean. The Hamiltonian can be
decomposed into two manifolds, namely the single-photon
(flip-flop) and the two-photon (flip-flip) manifold. Since the
derivation is analogous in both manifolds, we can focus on
the single-photon manifold that gives the main contribution to
the population transfer. Introducing the detuning δ = ωt − ωq,
one obtains

H = h̄

(
δ
2 g
g − δ

2

)
+ h̄η(t )σz

with the mutual dephasing η = ηt − ηq. The evolution of the
density matrix is given by the Liouville equation

ρ̇ = − i

h̄
[H0 + Hη(t ), ρ] = [L0 + Lη(t )]ρ = L(t )ρ (B1)

with the solution ρ(t ) = �(t )ρ(0). The propagator �(t ) un-
fortunately cannot be written simply as a matrix exponential
function, as L0 and Lη do not commute. However, as we
are only interested in the averaged density matrix ρ(t ) =
〈�(t )〉ρ(0), we wish to find an effective propagator eLeff t ≈
〈�(t )〉 that is local in time and correctly captures the long-
term dynamics of the density matrix. The general procedure of
deriving the stochastic propagator 〈�(t )〉 is discussed in great
detail in Ref. [88]. We present thereof the relevant derivation
and conditions that lead to a time-local master equation.



In short summary, the effective Liouvillian Leff gives a
good approximation when the noise is sufficiently weak and
incoherent such that the noise can be integrated independently
on short time scales. For our system we can already surmise
that for the correlation time τc of the noise it must hold that
τc � 2π/�, with � =

√
4g2 + δ2 being the Rabi frequency.

It follows that the coherence entries of the density matrix ac-
cumulate an additional random phase ϕ within the correlation
time. For isotropic noise, one then obtains on average the
decoherence rate �2 = (1 − 〈eiϕ〉)/τc.

More explicitly, we derive Leff from second-order perturba-
tion theory in the interaction picture [88]. The density matrix
in the interaction picture ρI is defined by ρ = eL0tρI and
governed by the equation of motion

ρ̇I = e−L0tLη(t )eL0tρI = LI(t )ρI.

A formal solution ρI(t ) = U (t, t0)ρI(t0) is given by the Dyson
series

U (t, t0)=1+
∫ t

t0

dt1LI(t1)+
∫ t

t0

dt1LI(t1)
∫ t1

t0

dt2LI(t2)+· · · ,

so that the evolution of the averaged density matrix in the
Schrödinger picture reads

ρ̇ = L0ρ + eL0t 〈ρ̇I〉

= L0ρ + eL0t d

dt
〈U (t, t0)〉 ρI(t0)

= L0ρ + eL0t 〈e−L0tLη(t )eL0t 〉︸ ︷︷ ︸
=0

ρI(t0)

+
∫ t

t0

dt ′〈Lη(t ) e−L0(t−t ′ )︸ ︷︷ ︸
≈1

Lη(t ′) e−L0(t−t ′ )︸ ︷︷ ︸
≈1

〉eL0t ρI(t0)︸ ︷︷ ︸
≈ρI (t )

+ · · ·

≈
(
L0 + 1

2

∫ ∞

−∞
〈Lη(0)Lη(τ )〉dτ

)
ρ = Leff ρ. (B2)

In the above we made several assumptions. First, we assumed
that the noise is isotropic, and that it is sufficiently incoherent
such that τc � 2π/� so that t0 ≈ t − τc. Next, we supposed
that the noise is weak enough so that we can approximate
ρI(t0) by its current time ρI(t ) and that the Dyson series can
be terminated at second order. Finally, we assume the noise
to be stationary, and we extended the integral boundaries to
infinity allowing us to link the decoherence rate �2 = 2Sηη(0)
with the power spectral density Sηη(ω) of the noise η(t ) [89].

Since the population (ρ11 + ρ22) ∈ [0, 1] in the single-
photon manifold is conserved, we can rewrite Eq. (B2) as a
special case of the three-dimensional Bloch equations [90,91].
Defining the polarization z = ρ11 − ρ22, and directions x =
2 Re(ρ21), and y = 2 Im(ρ21), we obtain

d

dt

⎛
⎝x

y
z

⎞
⎠ = −

⎛
⎝�2 δ 0

−δ �2 2g
0 −2g 0

⎞
⎠
⎛
⎝x

y
z

⎞
⎠. (B3)

It immediately follows from the steady-state solution that, on
average, both states of the single-photon manifold are equally
populated. For a finite temperature, this steady-state solution
contradicts the Boltzmann distribution when the qubit and the

TLS have different energies. This result is typical for stochas-
tic Liouville equations and a consequence of the real valued
noise acting as an infinite temperature environment [50]. The
steady-state solution is a good approximation as long as the
energy difference is small in comparison to the temperature.

What remains is to show under which conditions the
coherent population transfer can be neglected. Solving the
equation of motion requires finding the roots of the character-
istic polynomial, which is cubic and cannot be easily factored.
In the absence of a coherent population transfer, we expect the
relaxation to be described by the real root with the smallest
absolute value, which will be shown in the following.

Fortunately, the structure of the characteristic polynomial
of the Liouvillian in Eq. (B3) allows for a good approximation
in a wide parameter range. We have

λ3 − 2�2λ
2 + (

�2
2 + 4g2 + δ2

)
λ − 4g2�2 = 0,

and by defining μ = λ/�2 we obtain

μ3 − 2μ2 + �2
2 + 4g2 + δ2

�2
2

μ − 4
g2

�2
2

= 0. (B4)

Now, let μi denote the roots of the above polynomial, and let
μ0 denote the real root with the lowest value in a case when
all roots are real. For the corresponding eigenvectors one
finds vi = (δμi/(1 − μi ),−�2μi, 2g)T , which do not form an
orthogonal basis as the Liouvillian in Eq. (B3) is not a normal
operator. Nevertheless, when μ0 → 0 we can already surmise
that this eigenvalue contributes dominantly to the relaxation.
Unfortunately, it is not straightforward to give a quantita-
tive answer, particularly because the eigenvalues can become
degenerate. It is therefore very instructive to derive a few
properties of the roots that allow for a better understanding
of the resulting relaxation dynamics.

When �2
2 + δ2 � 4g2 or, equivalently, when μ0 → 0, the

root μ0 can be approximated to first order,

μ0 ≈ 4g2

�2
2 + 4g2 + δ2

. (B5)

Besides the negligible term 4g2 in the denominator and an
overall factor of 2, we obtain once again the cross-relaxation
rate [cf. Eq. (22)]. The factor of 2 in the numerator simply
results from the fact that λ0 describes the qubit and TLS
relaxation, whereas the cross-relaxation rate �qt is a transition
rate between the qubit and TLS.

The next two roots μ1,2 can in principle be expressed
with the help of μ0, but in doing so we do not gain
any intuition and we would have to do a case analysis
on the sign of the discriminant D [92] of the third-order
polynomial. Instead, we follow a different approach. First,
using the Routh-Hurwitz stability criterion, one can eas-
ily show that Re(μi ) ∈ (0, 1]. Second, we have

∑
i μi =

2. Thus, whenever μ0 → 0 we have that Re(μ1,2) → 1,
and if the discriminant D > 0, the imaginary part is given
by Im(μ1,2) = ±

√
3/4µ2

0 − μ0 + (4g2 + δ2)/�2
2 . As a side

note, the value μi = 1 is realized for one root if and only
if δ = 0. In this special case, the polynomial decomposes



into (μ − 1)(μ2−μ + 4g2/�2
2 ) = 0 with solutions

μi = 1 ∨ μ j,k = 1

2
±
√

1

4
− 4g2

�2
2

.

The relaxation dynamics following an initial condition z0, x0, and y0 can be expressed as

z(t ) =
2∑

i=0

(1 − μi )
(1 − μi+1)(1 − μi+2)2g�2 x0 + 2gδ y0 + μi+1μi+2 δ�2 z0

δ�2(μi+1 − μi )(μi+2 − μi )
e−μi�2t , (B6)

where we defined μi+3 = μi cyclically. More compactly, we
may write

z(t ) =
2∑

i=0

(uix0 + viy0 + wiz0)e−μi�2t =
2∑

i=0

cie
−μi�2t .

Next, we need to show that c0 → z0 for μ0 → 0. In this case,
after approximately 1/�2, when the initial coherent onset
has vanished, the remaining term is the slow decay of the
polarization from z0 at the rate μ0�2. Using Eq. (B4) and our
knowledge of the roots, we find

u0(μ0) =
√

μ0μ1μ2(1 − μ0)(1 − μ1)(1 − μ2)

(μ1 − μ0)(μ2 − μ0)
= O(

√
μ0),

v0(μ0) =
√

μ0μ1μ2

(μ1 − μ0)(μ2 − μ0)
= O(

√
μ0),

w0(μ0) = (1 − μ0)μ1μ2

(μ1 − μ0)(μ2 − μ0)
= 1 − O(μ0).

We see here that the incoherent relaxation with e−μ0�2t with
the prefactor c0 is well behaved when μ0 → 0.

To also be concrete for the coherent population transfer
with e−μ1,2�2t , we must handle the prefactors c1,2, which may
diverge when the eigenvalues become degenerate. One way
to circumvent the divergence is to calculate the area A under
the relaxation curve by integrating Eq. (B6), which can then
be compared to the corresponding exponential decay with the
rate μ0�2. In doing so, we get

A(x0, y0, z0) =
∫ ∞

0
z(t )dt =

∫ ∞

0

2∑
i=0

cie
−μi�2t dt

= δx0 + �2y0

2g�2
+ δ2 + �2

2

4g2�2
z0. (B7)

Interestingly, the inverse of the prefactor of z0 is exactly the
twofold cross-relaxation rate �qt that was derived in the main
text [Eq. (22)]. We therefore conclude that �qt is the average
rate when the system starts in an incoherent state, meaning
that x0 = y0 = 0. The relative proportion of z0 that decays
coherently is

ε =
(

A(0, 0, z0) −
∫ ∞

0
z0e−μ0�2t dt

)/∫ ∞

0
z0e−μ0�2t dt

= μ0

(
μ1 + μ2

μ1μ2
− 1

)
, (B8)

which approaches zero for μ0 → 0. Similarly, one might
wonder to what extend an initial coherence is converted into

polarization. With zmax = ρ11 + ρ22 we find the maximal area
to be

max
x0,y0

A(x0, y0, z0) =
√

z2
max − z2

0

√
�2

2 + δ2

2g�2
,

which should be compared to μ0�2 to give the effectively
reached polarization

zeff = μ0

√
z2

max − z2
0

√
�2

2 + δ2

2g
,

approaching zero for μ0 → 0. In summary, we conclude that
if

√
�2

2 + δ2 � 4g, the relaxation of the population is gov-
erned by

ż = −μ0�2z. (B9)

In Fig. 11 we show various solutions of the Liouville equa-
tion using Eq. (B6), the relative proportion ε, and the relative
approximation error of the root λ0.

For sake of completeness, we can conveniently derive
again the Solomon equations for our current simple scenario.
From Eq. (B9), it follows for the qubit

ρ̇22 = −ρ̇11 = −μ0�2
ρ22 − ρ11

2
.

Inserting the definition of the probabilities pq = ρ00 + ρ22

and pt = ρ00 + ρ11 and for simplicity neglecting contributions
from two-photon processes, we obtain the Solomon equations

ṗq = −μ0�2

2
pq + μ0�2

2
pt,

ṗt = −μ0�2

2
pt + μ0�2

2
pq,

with the cross-relaxation rate

�qt = μ0�2

2
≈ 2g2�2

�2
2 + δ2

. (B10)

APPENDIX C: QUANTUM JUMPS FROM THE
STOCHASTIC SCHRÖDINGER EQUATION

As we have shown in the main text, the measured quantum
jump statistics can also be explained by an unraveling of the
Lindblad master equation, which includes the measurement
backaction. The unraveling of master equations is not unique,
but can sometimes be motivated by the underlying physical
processes [93,94]. A successful modeling of the measured
quantum jump statistics may therefore distinguish different



(a) (b)

(c) (d)

FIG. 11. Qubit TLS cross relaxation. (a),(b) Relaxation of the polarization z in the qubit-TLS single-photon manifold for various
decoherence rates �2 (a) and frequency detunings δ (b). (c) Relative proportion ε [cf. Eq. (B8)] of the initial polarization that does not
relax via the cross-relaxation rate, as a function of the detuning and decoherence. Note the quadratic axes. The black curve shows where
the discriminant D is zero. For D > 0 the polarization can show oscillatory behavior. In the region where

√
�2

2 + δ2 > 4g, the incoherent
cross relaxation becomes the dominant relaxation mechanism. For reference, the green dashed line shows where the TLSs were located in the
experiment assuming a mutual decoherence of �2 = 0.5 MHz. (d) Relative error in approximating the root λ0 with the cross-relaxation rate.

unravelings and could reveal a deeper understanding of the
qubit environmental interaction.

Following the discussion in the main text (Sec. VI), we
will first consider a closed system consisting of the qubit
and the discrete TLS environment under the presence of pure
dephasing. As in Appendix B, we may assume a diffusive
process for the dephasing, meaning that the qubit and the
TLSs accumulate a random phase during their coarse-grained
evolution. The state diffusion may therefore be modeled by
the stochastic Schrödinger equation. To speed up the simu-
lation, we perform the rotating-wave approximation for the
σ

q
x σ k

x qubit TLS interaction in Eq. (1), so that the integration
time step dt = 1/32μs can be kept on an acceptable level in
the interaction picture. Due to the longitudinal noise, trans-
formation to the interaction picture can be performed exactly
via

|ψI(t )〉 =
∏

j

ei
(

ω j t

2 +
√

�
j
ϕ

2 W j
t

)
σ

j
z |ψ (t )〉 ,

with W j
t denoting independent Wiener processes. In addition,

the longitudinal noise allows separating the simulation into
the excitation manifolds. Integration of the wave function is
performed by

|ψI(t + dt )〉 = |ψI(t )〉 − i

h̄
HI(t ) |ψI(t )〉 dt,

after which we normalize the wave function. The instanta-
neous projective qubit measurements are performed at trep =
2 µs intervals. For the qubit we use the measured dephasing
rate �

q
ϕ = 0.5 MHz. For the unknown dephasing of the TLSs,

we use �t
ϕ = (0.1 or 1.0) MHz.

As discussed and shown in Fig. 7 in the main text, under
the presence of stroboscopic qubit measurements the system
state will eventually be trapped in one of the photon man-
ifolds when the system is closed. One might wonder if in
this case a nonexponential quantum jump behavior can still
be observed. We decided to investigate a system consisting
of 16 elements trapped in the three-photon manifold, which
corresponds to a thermal population of pth = 3/16, similar to
the experiment. To illustrate that the SSE and the Solomon
equations lead to distinct nonexponential distributions and
to validate the SSE with qubit relaxation, we perform sim-
ulations where the entire measured cross-relaxation �TLSs

originates from only one or two long-lived TLSs in resonance
with the qubit and with �tk

ϕ = 1.0 MHz. The remaining 14
or 13 weakly coupled TLSs are used to emulate the mea-
sured intrinsic qubit loss. We assume for them 
 = 0, and
�tk

ϕ = 1.0 MHz as well. The simulation in the three-photon
manifold provides enough excitations to populate the qubit
and the strongly coupled TLSs. The qubit will therefore expe-
rience a fluctuating temperature [see Eq. (29)] resulting from
the random walk on the hypersphere. The various simulation
results are depicted in Fig. 12(a). Interestingly, simulations
with the lossy SSE, which incorporates the qubit relaxation,



(a)

(b)

FIG. 12. Comparison of various simulated quantum jump statistics. (a) Simulated quantum jump statistics of the qubit dwell times in |e〉
(left panels) and |g〉 (right panels), respectively, assuming that the qubit is coupled strongly to n = 1 or 2 TLSs, such that their cross relaxation
adds up to the total measured cross relaxation �TLSs. The distributions for n = 2 were shifted upwards by a factor 10 for better visibility. In the
lossless SSE simulation, the qubit couples in addition weakly to (15 − n) TLSs which model the intrinsic qubit relaxation �q. In all simulations,
therefore, the thermal population was set to pth = 3/16. For similar measured distributions, see Ref. [76]. (b) Lossless SSE simulation for the
qubit and the 15 most resonant TLSs using the measured experimental parameters [Fig. 5(b)], while assuming the system state trapped in
the three-photon manifold. We simulate with the dephasing rates �q

ϕ = 0.5 MHz and �t
ϕ = (0.1 and 1.0) MHz. For the higher coherence, a

non-Markovian onset can be seen in the ground-state statistics. The histograms are generated as described in Fig. 1, except that all distributions
are based on 20 000 counts.

yield the same statistics, whereas the classical behavior ex-
pected from the Solomon equations differs clearly. The highly
nonexponential distributions predicted by the SSE are also
observed experimentally for one TLS being strongly coupled
to the qubit [76].

In addition, we depict in Fig. 12(b) the quantum jump
statistics of the experimental situation for the qubit and the
15 most resonant TLSs. Qualitatively, the experimentally ob-
served nonexponential distribution can be reproduced. The
non-Markovian onset for �2 = 0.6 MHz visible in the ground-
state statistics, which is absent in the experiment, disappears
when the decoherence time becomes smaller than the mea-
surement repetition time. For this reason, we adhered to �tk

ϕ =
1.0 MHz in all other simulations. A comparison with the
Solomon equations is precluded, due to the absence of qubit
relaxation.

Instead of including additional qubit environments in the
simulation, transitions between the excitation manifolds may
also be induced by modeling the qubit relaxation with jump
operators. They can be interpreted as measurements on the
qubit’s intrinsic environments. In the spirit of the previous
simulations, we decided to use again a diffusive SSE. In this
case, integration of the phase noise and of the interaction

Hamiltonian can be performed as before. For the diffusive
relaxation, we have in addition [43,78,79]

|ψI(t + dt )〉

= |ψI(t )〉 − i

h̄
Hint(t ) |ψI(t )〉 dt

+
∑

α

(
〈L†

α〉Lα − 1

2
L†

αLα − 1

2
〈L†

α〉〈Lα〉
)

|ψI(t )〉 dt

+
∑

α

(Lα − 〈Lα〉) |ψI(t )〉 dWα√
2

,

with 〈Lα〉 = 〈ψI|Lα|ψI〉, the qubit jump operators L1 =√
�

q
↓σ−

q and L2 =
√

�
q
↑σ+

q , and dWα independent complex

Wiener increments. Each step is followed by a normalization
of the wave function.

APPENDIX D: APPROXIMATING THE INVERSE
OF THE COHERENCES MATRIX

For the derivation of the Solomon equations, we need
to compute C−1, where we can make use of the blockwise



inversion formula. We write C as

C =
(

CZD ST
ZD

SZD CR

)
,

with index ZD denoting the joint matrices. Under the assump-
tion that the inverse matrices C−1

ZD and (CR − SZDC−1
ZDST

ZD)−1

exist, the upper left block of the inverse matrix C−1 is

C−1
ZD + C−1

ZDST
ZD

(
CR − SZDC−1

ZDST
ZD

)−1
SZDC−1

ZD.

Next, we can use the Neumann series to obtain a Taylor
expansion for the inverse of a matrix. For a given matrix A,
with the decomposition A = D − O, with D being diagonal,
it holds that

A−1 = D−1 + D−1OD−1 + D−1OD−1OD−1 + · · · ,

as long as ‖D−1/2OD−1/2‖ < 1. With this expansion, we find
in lowest order in the diagonal entries

C−1 = D−1
ZD + D−1

ZDOZDD−1
ZD + D−1

ZDST
ZDD−1

R SZDD−1
ZD

+ O(D−4).

APPENDIX E: PROOF OF THE TRANSFORMATION
IN EQ. (24)

For more TLSs it is expedient to express the rate equa-
tion LD with the help of spin creation and annihilation
operators. These operators obey the anticommutation relations

{σ−
j , σ+

j } = 1, {σ−
j , σ−

j } = {σ+
j , σ+

j } = 0

for the same element, while for different elements j �= i they
commute with each other:

[σ−
j , σ−

i ] = [σ+
j , σ+

i ] = [σ−
j , σ+

i ] = 0.

Using these operators, the non-Hermitian rate equation LD

can now be expressed for an arbitrary number of TLSs. For
brevity, we will focus on the scenario in which the TLSs are
not interacting with each other. We have

LD =
n∑

j=0

�
j
↓(σ−

j − σ+
j σ−

j ) +
n∑

j=0

�
j
↑(σ+

j − σ−
j σ+

j )

+
n∑

j=1

�
δ j
qt (σ+

j σ−
0 − σ−

j σ+
j σ+

0 σ−
0

+ σ−
j σ+

0 − σ+
j σ−

j σ−
0 σ+

0 )

+
n∑

j=1

�
σ j
qt (σ+

j σ+
0 − σ+

j σ−
j σ+

0 σ−
0

+ σ−
j σ−

0 − σ−
j σ+

j σ−
0 σ+

0 ), (E1)

where we use the index j = 0 for the qubit and j > 0 to
denote the TLSs. The covariant vectors 〈vi| such that pi =
〈vi| ρD as well as 1 = 〈1| ρD can be created via

〈vi| = 〈0| σ−
i

∏
j �=i

(1 + σ−
j ),

〈1| = 〈0|
∏

j

(1 + σ−
j ).

The next step is to show that these vectors are mapped
onto each other when they are applied to the rate equation
in Eq. (E1) from the left. The first sum simply results in
〈vi|LD = −�i

↓ 〈vi| + · · · . In a similar way, the second sum
vanishes for j �= i. However, for j = i the simplification is
more intricate. Here, we can show

〈0| σ−
i (σ+

i − σ−
i σ+

i ) · · · = 〈0| σ−
i (σ+

i − 1 + σ+
i σ−

i ) · · ·
=− 〈vi| + 〈0| (1 + σ−

i − 1)(σ+
i + σ+

i σ−
i ) · · ·

=−〈vi|+〈0| (1+σ−
i )(σ+

i + 1 − σ−
i σ+

i ) · · · −�����〈0| (σ+
i · · ·

= − 〈vi| + 〈1| − 〈0| (1 + σ−
i )(σ+

i − σ−
i σ+

i ) · · ·︸ ︷︷ ︸
���〈0|σ+

i ···

= − 〈vi| + 〈1| ,

thus 〈vi|LD = · · · + �i
↓(〈1| − 〈vi|) + · · · . The third sum

yields

〈v0|LD = · · · +
n∑

j=1

�
δ j
qt (〈v j | − 〈v0|) + · · · ,

〈vi|LD = · · · + �
δi
qt(〈v0| − 〈vi|) + · · · for i > 0.

Finally, the fourth sum goes to

〈v0|LD = · · · +
n∑

j=1

�
σ j
qt (〈v j | − 〈v0| + 〈1|),

〈vi|LD = · · · + �
σi
qt (〈v0| − 〈vi| + 〈1|) for i > 0.

The last two equations can be incorporated into the previ-
ous equations by redefining the rates as stated in the main
text. Thus, we have 〈vi|LD = ∑

j Āi j 〈v j | + �̄↑,i 〈1|. Conse-
quently, for any evolution following ρ̇D = LDρD we obtain
the Solomon equations for the expectation values of the pop-
ulations:

ṗi = 〈vi| ρ̇D = 〈vi|LDρD =
∑

j

Āi j p j + �̄↑,i.

APPENDIX F: ANALYTIC SOLUTIONS
AND APPROXIMATIONS

1. The case of identical cross-relaxation rates

As discussed in the main text, the system dynamics must
be governed by the two eigenvectors v0,2 = (x0,2 1, . . . , 1)T

and corresponding eigenvalues λ0,2 = −�qtx0,2 + �t + �qt

with

−2�qtx0,2 = �q + (n − 1)�qt − �t︸ ︷︷ ︸
()

±
√

()2 + 4n�2
qt︸ ︷︷ ︸√

.

Given the initial out-of-equilibrium populations of the qubit
p∗

q,0 := p∗
q(t = 0) and of the TLSs p∗

t,0 := p∗
t (t = 0), it holds

that

p∗
0 = p∗

t,0 − q

2
v0 + p∗

t,0 + q

2
v2



with q = (2�qt p∗
q,0 + ( ) p∗

t,0)/
√

, and the qubit and TLS
dynamics finally read

p∗
q(t ) = x0

2
(p∗

t,0 − q)e−λ0t + x2

2
(p∗

t,0 + q)e−λ2t ,

p∗
t (t ) = 1

2
(p∗

t,0 − q)e−λ0t + 1

2
(p∗

t,0 + q)e−λ2t . (F1)

The time-dependent transition rates and the equilibrium pop-
ulation can now be easily computed using Eqs. (25), (26), and
(28).

2. The case of distributed cross-relaxation rates

The Pick function of the distribution Eq. (40) may first be
brought into the form

f (λ) = �q − �t − a

a/λ′ −
∞∑

k=1

a

a/λ′ − k2
(F2)

with λ′ = λ − �t. Here, we see the nature of the Pick function:
it is a meromorphic function of z in the complex plane, with
z = a/λ′ = a/(λ − �t ). The sum in Eq. (F2) can be expressed
in closed form. It holds that

f (z)

a
= γ − 1

2z
− π

2
√

z
cot π

√
z, (F3)

where we introduced γ = (�q − �t )/a. The normalization
can now conveniently be calculated via

‖vm‖2 = − f ′(λ)|λ=λm = z2 ∂

∂z

f (z)

a

∣∣∣∣
z=zm

= 1

2
+
(

π2

4
− γ

2

)
zm + γ 2z2

m. (F4)

Here, we see that ‖vm‖2 is a continuous function of zm, which
allows the use of simple approximations for the roots zm in the
next step.

So far our analysis is still exact. We are left with the evalua-
tion of the sum in Eq. (37), which becomes an integral on long
time scales. This motivates us to interpret z as a continuous
function of m. The structure of Eq. (31) with the rates �k

qt,
given by Eq. (40), suggests

λm = a[
m + 1

2 + δ(m)
]2 + �t

⇒ z(m) =
(

m + 1

2
+ δ(m)

)2

,

where we defined the deviation δ(m) ∈ (−1/2, 1/2).
As a side note, a very good approximation can be found

for the mth root when the Pick function is approximated
piecewise by its surrounding poles. We will make use of this
later for the analysis of a more general rate distribution. Here,
we obtain

z(m) ≈ m2 + m + 1/γ + 1/2

− sgn(γ )
√

m2 + m + 1/γ 2 + 1/4, (F5)

which becomes z(m) = m2 + m + 1/2 for γ = 0. At first
glance, when the derivative f ′ is also approximated by the
surrounding poles, insertion of Eq. (F5) gives the correct

limit ‖vm‖2 → γ 2m4 for large m and γ 2 > 0. However, when
checking γ 2 = 0, one obtains the slightly inaccurate limit
‖vm‖2 → 2m2 instead of ‖vm‖2 → βm2 = (π2/4)m2 accord-
ing to Eq. (F4).

With the function z(m) we have everything needed to eval-
uate the sum in Eq. (37) on long time scales. We begin with
the simpler scenario in which γ 2 = 0, which essentially de-
scribes the qubit relaxing into the TLS environment. Defining
y(m) = (x(m) + 1/2+δ(m)√

at
) and x(m) = m√

at
, we have

∞∑
m=0

e−λ′
mt

‖vm‖2
= 1√

at

∞∑
m=0

e
− 1

y(m)2

1/2
at + β y(m)

1√
at

≈ 1√
at

∫ ∞

0

e
− 1

y(m(x))2

1/2
at + β y(m(x))

dx

≈ 1√
at

∫ ∞

0

e− 1
x2

1/2
at + βx2

dx

≈ 1√
at

∫ ∞

0

e− 1
x2

βx2
dx =

√
π

2β

1

(at )1/2
,

where at first the sum was approximated by an integral, requir-
ing

√
at � 1, which also allows the second approximation

(1/2 + δ)/
√

at ≈ 0, since |δ| < 1/2. In the last step, the de-
nominator was approximated, which is valid when

√
at �

1/
√

2β.
The scenario γ 2 > 0 can be treated similarly. We have

∞∑
m=0

e−λ′
mt

‖vm‖2
≈ 1

(at )3/2

∫ ∞

0

e− 1
x2

1/2
(at )2 + β

at x2 + γ 2x4

1√
at

≈ 1

(at )3/2

∫ ∞

0

e− 1
x2

γ 2x4
dx =

√
π

4γ 2

1

(at )3/2
,

which in addition to the previous scenario requires
√

at �√
β/γ 2. The final limit relaxation behaviors are stated in the

main text.
For the generalized distribution in Eq. (45) we find analo-

gously

f (λ) = �q − �t − a

a/λ′ −
∞∑

k=1

a

a/λ′ − kd
.

Unfortunately, to our knowledge, this function cannot be ex-
pressed in a closed form, nor can its derivative be expressed
via the function itself. For integer values of d , one can express
f as a sum of digamma functions, which for even integers
can be rewritten as a sum of cotangents. In Appendix G, we
show the relevant cases d = 3 and 4. We will therefore pro-
ceed as discussed before and approximate f piecewise by its
surrounding poles. For γ 2 > 0 we then find ‖vm‖2 → γ 2[m +
1/2 + δ(m)]2d for large m in congruence with Eq. (F4). For
γ 2 = 0 one finds in leading order ‖vm‖2 → 8/d2m2, which
surprisingly is always quadratic in m and not with the power
of d , as one might surmise from Eq. (F4). Note, as discussed
before, the prefactor 8/d2 is only an approximation. For in-
stance, for d = 3 the correct prefactor is 4π2/27 and for
d = 4 one finds π2/8 (cf. Appendix G). We therefore continue
by reintroducing the prefactor β via ‖vm‖2 → βm2 for large



m. As was done before, we have for γ 2 = 0

∞∑
m=0

e−λ′
mt

‖vm‖2
≈ 1

(at )1/d

∞∑
m=0

e
− 1

y(m)d

β m2

(at )2/d

1

(at )1/d

≈ 1

(at )1/d

∫ ∞

0

e− 1
xd

βx2
dx = �

(
1 + 1

d

)
β

1

(at )1/d

with the approximation becoming valid for (at )1/d � 1. Here,
� denotes the Gamma function. For γ 2 > 0 we find

∞∑
m=0

e−λ′
mt

‖vm‖2
≈ 1

(at )2−1/d

∞∑
m=0

e
− 1

y(m)d

γ 2 y2d

(at )2

1

(at )1/d

≈ 1

(at )2−1/d

∫ ∞

0

e− 1
xd

γ 2x2d
dx

= �
(
2 − 1

d

)
γ 2d

1

(at )2−1/d
,

which is again only valid when (at )1/d � 1. The final relax-
ation behaviors on long time scales are stated in the main text.

APPENDIX G: SPECIAL SOLUTIONS

In the following, we will derive a few more exact solutions
for the Pick function. We begin with the Lorentzian distribu-
tion as defined in Eq. (39). Note, in the case of 2bc ∈ Z the
cross-relaxation rates are not distinct from each other and the
Pick function is not directly applicable. In this case, the ir-
relevant eigenvalues given by the degenerate cross-relaxation
rates have to be treated beforehand. The analysis is then very
similar to that shown in the following, which is valid for
2bc /∈ Z. The Pick function can be rewritten as

f (λ)

a
≡ γ − 1

z
−

∞∑
h=−∞

b2

(z − 1)b2 − (k + bc)2

= γ − 1

z
− πb

2
√

z − 1
[cot(πbc + πb

√
z − 1)

− cot(πbc − πb
√

z − 1)].

Moving from the first to the second line requires z > 1, which
becomes valid for λ � λ0. Unfortunately, when taking the
derivative, the divergent terms cannot be removed simultane-
ously, except for the symmetric cases bc ∈ {0, 1/4, 1/2}. For
instance, for bc = 1/4 we obtain

f (λ)

a
= γ − 1

z
+ πb√

z − 1
tan(2πb

√
z − 1)

and

‖vm‖2 = 1 + 1

2

(γ zm − 1)zm

(zm − 1)2
+ π2b2z2

m

zm − 1
+ (γ zm − 1)2.

Note, when expressing this solution as a continuous function
z(m) = [m/2 + 1/4 + δ(m)/2]2 = (m + 1/2 + δ(m))2/4, the
TLSs with negative and positive detuning have to be consid-
ered. To compare this result with the one from the distribution
defined in Eq. (40), the parameter a must be scaled by a factor
of 4.

Next, we discuss the distribution defined in Eq. (45), which
can be solved analytically for integer values d > 1. We only
present the illustrative calculations of d = 3 and 4. For d = 4
it holds that

f (λ)

a
= γ − 1

z
−

∞∑
k=1

1

z − k4

= γ − 1

z
− 1

4z3/4

∞∑
k=1

1
4
√

z + k
+ 1

4
√

z − k

+ 1
4
√

z + ik
+ 1

4
√

z − ik

= γ − 1

2z
− πcot(π 4

√
z)

4z3/4
− πcoth(π 4

√
z)

4z3/4
.

Expressing the oscillating cotangent through regular terms via
the Pick function yields

‖vm‖2 = 3

8
+ πz1/4

m

4
coth(π 4

√
zm) + π2z2/4

m

8
− γ zm

4

− πγ z5/4
m

2
coth(π 4

√
zm) + γ 2z2

m.

Representing this solution again as a continuous function
z(m) = [m + 1/2 + δ(m)]4, we obtain the expected behavior
in the limit m → ∞ and we find β = π2/8. In general, when
d is even, f contains d/2 cotangent functions with complex
coefficients. Rewriting the oscillating cotangent on the real
axis using the Pick function gives a continuous function for
‖vm‖2.

In principle, we can use the same strategy for d = 3:

f (λ)

a
= γ − 1

z
−

∞∑
k=1

1

z − k3

= · · · − 1

3z2/3

∞∑
k=1

1
3
√

z − k
+ e

2π i
3

3
√

ze
2π i

3 − k
+ e− 2π i

3

3
√

ze− 2π i
3 − k

= · · · − 1

3z2/3

[
ψ0(1 − 3

√
z) + e

2π i
3 ψ0

(
1 − 3

√
ze

2π i
3
)

+ e− 2π i
3 ψ0

(
1 − 3

√
ze− 2π i

3
)]

= · · · − 1

3z2/3

[
π cot(π 3

√
z) + ψ0( 3

√
z)

− e
2π i

6 ψ0
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√
z)

3z2/3
,

where ψ0 is the digamma function, and I ( 3
√

z) = O(1/z4/3) is
an integral expression that vanishes continuously and suffi-
ciently fast as z → ∞. The integral expression enters as

ψ (z) = ln(z) − 1

2z
−
∫ ∞

0

(
1

2
− 1

t
+ 1

e−t − 1

)
e−zt dt,



valid for Re(z) > 0. By taking the derivative and remov-
ing the divergent cotangent, one obtains β = 4π2/27. The
procedure essentially works for any integer d � 2. If one
is only interested in the closed-form expression for ‖vm‖2,

one may only use the reflection formula once to introduce
the cotangent, via ψ0(1 − d

√
z) = π cot(π d

√
z) + ψ0( d

√
z). In

this case, the poles on the negative real axis are canceled
with ψ0( d

√
z).
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