
Applications of Machine Learning in Materials Science

Zur Erlangung des akademischen Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau des
Karlsruher Instituts für Technologie (KIT)

angenommene

DISSERTATION

von

M.Sc. Yinghan Zhao

Tag der mündlichen Prüfung: 15.04.2024
Hauptreferentin: Prof. Dr. rer. nat. Britta Nestler
Korreferent: Prof. Dr. Markus Reischl





Abstract

The increasing use of data-driven techniques in materials science, including machine learn-
ing, has given rise to materials informatics and shows great potential for expediting the
discovery and development of advanced materials. Machine learning is currently widely
explored in the materials science community, and its applications include discovering
and screening novel materials candidates, accelerating expensive computational simula-
tions, and enhancing the analysis of large amounts of complicated characterization data.
This work aims to summarize fundamental concepts and introduce a unified workflow for
utilizing machine learning in materials science. To illustrate its advantages and effective-
ness, three studies are conducted to serve as practical examples of use, covering the most
common aspects involved in the process of materials research: experiments, character-
ization, and simulation. For experiments, this work utilizes an optimization algorithm
to determine the experimental parameters for the sintering synthesis process of an elec-
trolyte material in the solid-state battery, with the goal of reducing the time needed to
find the optimal experimental parameters. Similarly, this methodology is extended to
find the most appropriate parameters for generating simulated digital porous membrane
microstructures. For simulation, an (artificial) neural network-based model is utilized
to fit a fast predictive model to build process-structure-property relationships for porous
membrane microstructures. In particular, the representation learning ability of the model
is exploited to automatically extract structural information. For characterization, this
work explores different machine learning methods for the analysis of time-of-flight sec-
ondary ion mass spectrometry data measured from lithium compounds. Not only can a
fast classification be built for identifying compositions, but interpretable chemical infor-
mation can also be retrieved based on the feature importance of the model. These studies
are typical examples that illustrate the benefits of applying machine learning methods
in material research and the ideas presented can be extended to different scenarios. Fur-
thermore, the experiences and reflections gained from these studies are discussed, along
with suggestions for future research in this area.
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Zusammenfassung

Der zunehmende Einsatz datengesteuerter Verfahren in der Materialwissenschaft, ein-
schließlich des maschinellen Lernens, hat zur Werkstoffinformatik geführt und birgt ein
großes Potenzial für die schnellere Entdeckung und Entwicklung fortschrittlicher Materi-
alien. Das maschinelle Lernen wird derzeit in der Materialwissenschaft intensiv erforscht
und zu seinen Anwendungen gehören die Entdeckung und das Screening neuer Materi-
alien, die Beschleunigung teurer Computersimulationen und die Verbesserung der Analyse
großer Mengen komplexer Charakterisierungsdaten. Das Ziel dieser Arbeit besteht darin,
grundlegende Konzepte zusammenzufassen und einen einheitlichen Arbeitsablauf für den
Einsatz von maschinellem Lernen in der Materialwissenschaft zu präsentieren. Um die
Vorteile und Effektivität des maschinellen Lernens zu veranschaulichen, werden drei Stu-
dien durchgeführt. Diese dienen als praktische Anwendungsbeispiele und decken die häu-
figsten Aspekte im Prozess der Materialforschung ab: Experimente, Charakterisierung
und Simulation. Für die Experimente wird in dieser Arbeit ein Optimierungsalgorith-
mus verwendet, um die experimentellen Parameter für den Sintersyntheseprozess eines
Elektrolytmaterials in einer Festkörperbatterie zu bestimmen, mit dem Ziel, die Zeit zu re-
duzieren, die benötigt wird, um die optimalen experimentellen Parameter zu finden. Diese
Methodik wird auch erweitert, um die am besten geeigneten Parameter für die Erzeu-
gung simulierter digitaler poröser Mikrostrukturen zu finden. Für die Simulation wird ein
auf einem (künstlichen) neuronalen Netzwerk basierendes Modell verwendet, um schnell
Prozess-Struktur-Eigenschafts-Beziehungen für poröse Membranmikrostrukturen vorher-
sagen zu können. Das Modell nutzt insbesondere seine Fähigkeit, Repräsentationen zu
lernen, um automatisch strukturelle Informationen zu extrahieren. Zur Charakterisierung
werden in dieser Arbeit verschiedene Methoden des maschinellen Lernens zur Analyse
von Flugzeit-Sekundärionen-Massenspektrometriedaten von Lithiumverbindungen unter-
sucht. Es ist möglich, nicht nur eine schnelle Klassifizierung zur Identifizierung von
Zusammensetzungen zu erstellen, sondern auch interpretierbare chemische Informationen
auf der Grundlage der Bedeutung der Merkmale des Modells zu erfassen. Diese Studien
sind typische Beispiele, die den Nutzen der Anwendung von Methoden des maschinellen
Lernens in der Materialforschung verdeutlichen, und die vorgestellten Ideen können auf
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andere Szenarien erweitert werden. Darüber hinaus werden die Erfahrungen und Über-
legungen, die bei diesen Studien gewonnen wurden, erörtert und Anmerkungen für die
künftige Forschung in diesem Bereich gemacht.
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Chapter 1

Introduction

Materials science, a multidisciplinary field that explores the design, characterization, and
utilization of materials, usually relies on empirical and theoretical approaches to discover
novel materials for a wide range of applications in different areas [1, 2]. Currently, the
development of new materials is mainly based on the researchers’ scientific expertise and
a large number of repetitive “trial-and-error” experiments, necessitating often a combi-
nation of professional domain knowledge and serendipity as well as luck. However, given
the competitive nature of the manufacturing industry and the rapid pace of economic
development, materials scientists and engineers must improve their research methodol-
ogy to address the challenges of shortening the development cycles from discovery to real
application of novel materials.

Experimental measurements involving the synthesis and analysis of the relationship be-
tween process, structure, and property offer a traditional approach to materials research.
However, such experiments typically require specialized equipment, controlled environ-
ments, and a high level of researcher expertise, which can be time-consuming and less
efficient. In contrast, computational methods at different scales, including density func-
tional theory [3, 4], molecular dynamics [5], Monte Carlo techniques [6, 7], the phase-field
method [8, 9, 10], and macroscopic continuum approaches [11], can provide an alternative
way for studying materials using computer programs. Their use in computational materi-
als design is expected to uncover new materials and reduce the time and cost of materials
development [12]. Compared to experimental measurements, computational simulations
can offer full control over relevant variables, positioning them as good substitutes for real
experiments. Despite these advantages, computational simulations still face challenges
such as a strong dependence on physical/chemical laws behind the studied system and
the need for high-performance computing clusters. In modern materials research, there is
a growing trend towards the integration of computational and experimental methods for
a comprehensive understanding of the structural and chemical/physical properties of ma-
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CHAPTER 1. INTRODUCTION

terials. However, limitations in both experimental methods and theoretical calculations
hinder the efficiency in accelerating materials discovery and design.

Since the 21st century, the advancements in information technology have ushered in the
era of “big data” [13]. The study of materials has always been an active field with a
long history, and research activities have resulted in a colossal accumulation of valuable
data. However, the collection and structured organization of generated data have been
inadequate due to the broad and heterogeneous variety of research, which prevents their
efficient use. The scientific community is now actively engaged in addressing this issue
and considerable efforts have been made by materials scientists to compile comprehensive
data sets of material properties such as Inorganic Crystal Structure Database (ICSD) [14]
and Materials Project (MP) [15]. These data sets have the potential to accelerate the
materials discovery and design process [16], and have been proven effective for a variety of
material systems such as energy materials [17], porous materials [18], polymer materials
[19]. In addition, advances in characterization techniques are generating large amounts
of data, rendering traditional evaluation methods ineffective, and creating challenges for
scientists to analyze the information promptly. As a result, researchers need new methods
to analyze and evaluate the data generated in their studies [20].

Machine Learning (ML) [21] is becoming a transforming force in the ever-evolving field
of materials science, offering a vast and exciting landscape of innovation and discovery.
The main goal of ML is to design and analyze learning algorithms that allow computers
to automatically analyze and extract patterns from data. These learned patterns can
be used to predict unknown data, assisting humans in decision-making and performing
specific tasks. Therefore, they are promising in aiding researchers to study materials
and accelerate the development of novel materials. The study of ML involves a wide
range of disciplines, such as statistics, mathematical optimization, and computational
science. The current trend in ML is largely attributed to the rapid emergence of neural
network models [22], which have demonstrated remarkable performance in applications
including speech recognition [23] as well as image classification [24], and are showing great
potentials in solving practical problems in materials research [1, 25, 26].

The development of materials usually involves preparing specimens through experimen-
tation, identifying their structure, and measuring their properties using various char-
acterization and testing techniques. Additionally, computational simulations are often
performed to investigate the underlying mechanisms. ML can be utilized in these three
fundamental components of materials research. The advanced ability of ML to analyze
large data sets and identify complex patterns offers a promising solution for addressing
various challenges of materials development. ML can benefit many aspects in the field
of materials science and many studies have proven the ability of ML to significantly ac-
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1. INTRODUCTION

celerate the process of developing materials [27, 28, 29]. Taking advantage of its ability
to build accurate predictive models by learning complex relationships among data in an
automatic manner, ML can be utilized to capture the relationship between materials
and their corresponding properties. Once such a function of mapping from material to its
property is built, it can be used to predict various material properties with satisfactory ac-
curacy, which allows for screening good candidate materials over a large search space [30].
Since the prediction process is very fast, ML can also be used to accelerate computational
simulations by predicting results that are expensive and time-consuming to calculate [31].
In addition, ML’s capability to identify patterns among large data sets makes it appropri-
ate for analyzing and interpreting complex, high-dimensional characterization data [32].
Apart from this, ML is also commonly employed to support decision-making, therefore it
can realize the design of experiments and determination of optimal parameters for simu-
lations, aiming to reduce the required number of trials and streamline standard workflows
for optimization [33]. A close collaboration between ML and materials science has the
potential to revolutionize the way materials are discovered, designed, and optimized, ul-
timately leading to breakthroughs with significant implications for numerous industries
and technologies.

This work proposes a unified workflow for applying machine learning in materials re-
search and explores its multifaceted applications through three compelling use cases.
Each use case demonstrates the significant impact and effectiveness of this methodology
in the process of material development, including the design of experiments, prediction
of simulations, and enhanced analysis of characterization data. As a starting point, an
introduction to ML is provided in Chapter 2, followed by the proposal of the workflow
for applying machine learning in materials science which is illustrated by a comprehen-
sive overview of different ML applications examples in materials research in Chapter 3.
These examples explore a variety of topics such as the discovery of novel materials, pre-
diction of their properties, design of experiments, optimization as well as acceleration
of simulations, and assistance in the analysis of heterogeneous characterization data. In
the next step, three prototypical studies are presented in Chapter 4 to demonstrate the
advantages of using ML to facilitate materials research, encompassing the fundamental
research elements that are essential for material studies: experiments, characterization,
and simulation. Finally, the learned experience and gained reflections during these studies
are summarized and discussed in Chapter 5.
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Chapter 2

Theoretical foundations of machine
learning

In this chapter, the basic concepts, essential elements of Machine Learning (ML), and
most used models will be introduced. Although there are various kinds of ML algo-
rithms, they usually consist of three basic elements: model, learning strategy (criterion),
and optimization algorithm [21]. Most ML algorithms can be considered as different
combinations of these three basic elements. The most dominant classes of methods in
ML nowadays are statistical learning methods which treat ML problems as statistical
inference problems, and the so-called Deep Learning (DL) models which are primarily
based on (artificial) neural networks [34].

2.1 Basic concepts

Machine Learning (ML) is an automatic way of learning knowledge (or laws) by computers
from data. As a discipline, ML typically refers to a set of methods used to solve problems,
such as identifying patterns in observed data (samples), and utilizing the learned patterns
(models) to make predictions on unknown or unforeseen data. A widely accepted standard
definition of ML can be described as follows: a program is considered to have learned
from experience E in a given task T if its performance (measured by P ) at tasks in T can
improve with experience E, then it is named as machine learning [21]. According to this
view, ML is the method by which a computer system improves its performance through
the use of data and statistical methods.

In the early days of engineering, ML was also often referred to as Pattern Recognition
(PR) [35], which was more oriented to specific application tasks such as optical character
recognition, speech recognition, and face recognition. These tasks are typically easy for
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CHAPTER 2. THEORETICAL FOUNDATIONS OF MACHINE LEARNING

humans to perform, but it can be challenging to design a computer program to perform
them since humans may not always understand how they accomplish these tasks. Take
handwritten digit recognition as an example, that is, making the computer automatically
recognize the handwritten digits. Handwritten number recognition is a classical ML task
that is simple for humans but very challenging for computers. It is difficult to summarize
the handwriting characteristics of each number and to design the rule to distinguish
different numbers, so designing a recognition algorithm is an extremely difficult task.
In real life, many problems are similar to this, such as object recognition and speech
recognition. For such problems, it is usually difficult to design a computer program to
solve them, and even if some heuristic rules can be implemented, the process is extremely
complicated. Therefore, ML appears as an alternative solution with the idea of designing
an algorithm that allows the computer to learn some rules from samples and to perform
tasks in an automatic manner. For example, a large number of handwritten digit images
can be manually labeled to train a learning algorithm that generates a reliable model
for recognizing new handwritten digits. This machine learning process shares similarities
with human learning, which is the same process used to teach children to recognize
numbers.

To better describe the concepts of ML and the problems it solves, some basic notations
and definitions are given below. The key principle of ML is to learn knowledge through
data, and a collection of samples (instances) is referred to as a data set. Generally, the
data set can be divided into different parts. Some parts are used to train the ML model
to learn the rules from the data (training set), while the remaining parts are used for
adjusting the model’s settings (validation set) or testing the model’s performance (testing
set). Usually, a D-dimensional vector (called feature vector) x = [x1, x2, · · · , xD]

⊺ is used
to represent features of a sample, where each dimension represents one feature. The label
of that sample is usually represented by the scalar value y.

Assume that the training set D consists of N samples, each of which is Independently
and Identically Distributed (IID), i.e., drawn independently from the same data distribu-
tion, denoted D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N))}. Given a training set D, the
computer needs to automatically find an “optimal” function (model) f ∗(x) from a set of
functions F = {f1(x), f2(x), · · · } to approximate the true mapping between the feature
vector x and the label y for each sample. For a sample x, the value of its label y can
be predicted by the function ŷ = f ∗(x), or through the conditional probability of the
label p̂(y |x) = f ∗

y (x). How to find this “optimal” function f ∗(x) is the key to machine
learning, which is usually done by some optimization algorithms and this search process
is often called the training process. To evaluate the quality of the model, a set of samples
is needed to be taken independently and identically from the same distribution of the
training set as the test set D′. This set is used to evaluate the performance of the model,
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2.2. ESSENTIAL ELEMENTS

which serves as a criterion for guiding the process of learning a good-performing model.

2.2 Essential elements

Machine learning methods can be summarized as follows: (i) starting from a given,
limited set of training data, assuming that the data are independently and identically
distributed and assuming that the model to be learned belongs to a certain function set
called hypothesis space; (ii) applying a certain criterion to evaluate the performance of
the model; (iii) learning an optimal model from the hypothesis space (which is achieved
by some optimization algorithms), so that it has the best performance on both the known
training data and unknown test data [36]. In this way, the learning process consists of
a hypothesis space for the model, a criterion for model selection, and an algorithm for
model learning. These are called the three elements of a machine learning method: model,
learning criteria, and optimization algorithm.

2.2.1 Model

For a machine learning task, the first step is to determine its input space X and output
space Y . The type of output space is the main difference between machine learning tasks.
In the binary classification problem, Y = {+1,−1}, in the multiclassification problem
with C different classes, Y = {1, 2, · · · , C}, and in the regression problem the output
space is usually the real number space R, that is, Y = R. The input space X and the
output space Y form a sample space. For a sample (x, y) ∈ X × Y in the sample space,
it is assumed that the relationship between x and y can be described by an unknown true
mapping function y = g(x) or a true conditional probability distribution pr(y |x). The
goal of machine learning is to find a model that approximates this true mapping function
g(x) or the true conditional probability distribution pr(y |x). Since the exact form of
the true mapping function g(x) or the conditional probability distribution pr(y |x) is
unknown, a set of functions F needs to be assumed empirically, called hypothesis space.
Next, an ideal hypothesis f ∗ ∈ F from it is selected by observing its properties on the
training set D. Assume that the space F is usually a parameterized family of functions
F = {f(x;θ) |θ ∈ RD}, where f(x;θ) is a model (function) with parameters θ, and D

is the number of parameters. Hypothesis spaces can generally be divided into linear and
nonlinear ones, and the corresponding models f are called linear and nonlinear models,
respectively.

Linear models The hypothesis space of the linear model is a parameterized family of
linear functions, i.e., f(x;θ) = w⊺x + b, where the parameters θ contain the weight
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CHAPTER 2. THEORETICAL FOUNDATIONS OF MACHINE LEARNING

vector w and the bias b.

Nonlinear models The generalized nonlinear model can be written as a linear com-
bination of multiple nonlinear basis functions ϕ(x): f(x;θ) = w⊺ϕ(x) + b, where
ϕ(x) = [ϕ1(x), ϕ2(x), · · · , ϕK(x)]

⊺ is a vector of K nonlinear basis functions, and the
parameters θ contain the weight vector w and the bias b. If ϕ(x) is itself a learnable ba-
sis function, for example, ϕk(x) = h(w⊺

kϕ
′(x)+bk),∀1 ≤ k ≤ K, where h(·) is a nonlinear

function, ϕ′(x) is another set of basis functions, and wk and bk are learnable parameters,
then f(x;θ) is equivalent to a neural network model [34].

2.2.2 Learning criteria

Let the training set D = {(x(n), y(n))}Nn=1 be composed of N IID samples, i.e., each sample
(x, y) ∈ X × Y is generated independently and randomly from the joint space of X and
Y according to some unknown distribution pr(x, y). Here the sample distribution pr(x, y)

must be fixed. The learning criteria is that, a good model f(x,θ∗) should be consistent
with the true mapping function y = g(x) for all possible values of (x, y), which can be
measured by an evaluating metric,

∣∣f(x,θ∗)− y
∣∣ < ε, ∀(x, y) ∈ X × Y , or is consistent

with the true conditional probability distribution pr(y|x), i.e., |fy(x,θ∗)− pr(y |x)| < ε,
∀(x, y) ∈ X × Y , where ε is a small positive number and fy(x,θ

∗) is the probability
corresponding to y in the conditional probability distribution predicted by the model.
It should be noted that KL-divergence [37] or cross-entropy [38] is a better metric for
measuring the similarity of the two distributions.

The performance of the model f(x;θ) can be measured by the expected risk R(θ), which
is defined as R(θ) = E(x,y)∼pr(x,y)

[
L
(
y, f(x;θ)

)]
, where pr(x, y) is the true (real) data

distribution, L(y, f
(
x;θ)

)
is the loss function, which is used to quantify the difference

between the two variables. A loss function is a non-negative real function that quantifies
the difference between the model prediction and the true label. Some commonly used
loss functions are listed below:

• 0-1 loss function: L
(
y, f(x)

)
=

1, y ̸= f(x)

0, y = f(x)

• Quadratic loss function: L
(
y, f(x)

)
=
(
y − f(x)

)2
• Absolute loss function: L

(
y, f(x)

)
= |y − f(x)|

• Logarithmic (or log-likelihood) loss function: L
(
y, p(y |x)

)
= − log p(y |x)

• Hinge loss function: L
(
y, f(x)

)
= max

(
0, 1− yf(x)

)
8



2.2. ESSENTIAL ELEMENTS

Risk minimization criteria

A good model f(x;θ) should have a relatively small expected error, however, since the
true data distribution and mapping function are unknown, it is practically impossible
to calculate its (ground-truth) expected risk R(θ). However, given a training set D =

{(x(n), y(n))}Nn=1, the empirical risk can be calculated, which is the average loss on the
training set:

Remp
D (θ) =

1

N

N∑
n=1

L(y(n), f
(
x(n);θ)

)
. (2.1)

Therefore, a practical learning criterion is to find a set of parameters θ∗ that minimizes
the empirical risk, i.e., θ∗ = argmin

θ
Remp

D (θ), which is the Empirical Risk Minimization
(ERM) criterion.

According to the law of large numbers, when the size of the training set |D| approaches
infinity, the empirical risk converges to the expected risk (or expected loss). When the
model is a conditional probability distribution and the loss function is a logarithmic loss
function, empirical risk minimization is equivalent to Maximum Likelihood Estimation
(MLE) [22]. However, typically, access to an infinite number of training samples is not
available, and the training samples often constitute only a small subset of the real data
or contain some noisy data, which do not represent the true distribution of the entire
data set. The principle of ERM can result in a low error on the training set, but a large
error on the unknown data, which is known as overfitting, that is, poor generalization
ability of the model. The issue of overfitting can often arise due to limited training
data, noise, and overly powerful models. To address this, a common practice is to in-
troduce parameter regularization based on ERM, which limits the model’s capability to
prevent over-minimizing empirical risk. This approach is known as the Structure Risk
Minimization (SRM) criterion:

θ∗ = argmin
θ
Rstruct

D (θ) = argmin
θ
Remp

D (θ) +
1

2
λ∥θ∥2 (2.2)

where ∥θ∥ is the L2-norm, serving as the regularization term to reduce the parameter
space and mitigate overfitting, and λ is the strength of the regularization. Another com-
monly used regularization term is the L1-norm regularization, which usually results in the
sparsity of the parameters and is useful in some specific situations. In Bayesian learning,
regularization refers to introducing a prior distribution of parameters that is not entirely
reliant on the training data, for example, Maximum A Posteriori (MAP) estimation is an
illustration of the SRM principle when the model is a conditional probability distribution,
the loss function is a logarithmic loss function, and the model complexity is represented
by the prior probability of the model [22].

The opposing concept to overfitting is underfitting, where the model does not adequately
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fit the training data and has large errors in the training set. Underfitting is typically
caused by insufficient modeling capability. Examples of underfitting and overfitting are
given in Figure 2.1.

Figure 2.1: Example cases for underfitting, good fit, and overfitting, where black points are
samples and fitted function is marked in the green line.

Model selection and validation

A good model should perform well on both the training data set and the test data set,
that is, ML aims to not only fit the data in the training set but also to minimize error
on unknown test samples (generalization ability). This is achieved by finding an optimal
model with low generalization error from the hypothesis space, using the data at hand.
The ultimate goal is to make accurate predictions for unforeseen samples that are not
part of the training set. Thus, machine learning may be considered as the challenge
of generalizing from limited, high-dimensional, and noisy data to more comprehensive
patterns.

A good model should perform well on both the training data set and the test data set.
When faced with a hypothesis space containing models of varying complexity, the task
of selecting an appropriate model arises. It is desired to select or learn an appropriate
model that can approximate the “true” model as much as possible. Figure 2.2 depicts
the relationship between the training error and testing error and the complexity of the
model. As the complexity of the model increases, its fitting ability also improves and the
training error decreases continuously, while the testing error initially decreases, reaches a
minimum value, and then increases (overfitting). The occurrence of overfitting happens
when the model’s complexity is too high, and therefore, overfitting prevention is necessary
during the learning process.

10
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Figure 2.2: Training error and testing error against model complexity.

If the sample data is adequate, one straightforward approach for evaluating the gener-
alization ability of the ML model is to randomly divide the data set into three parts:
the training set, validation set, and test set, followed by training the model on the train-
ing set, tuning the settings of the model for selecting the optimal one, and assessing
the performance of the learning method with the test set. In many practical situations,
insufficient data could hinder the above validation process, prompting the use of cross-
validation techniques. Cross-validation involves repetitively utilizing the data by dividing
it into sliced sets, which are then merged to form a training set and a testing set, and are
iteratively used for training, testing, and model selection. The most widely used cross-
validation method is the K-fold cross-validation, which is as follows. First, randomly
divide the provided data into K separate and equal subsets. Then, train the model using
the data in K − 1 subsets and test it using the remaining subset. Repeat this step for all
possible choices of K. Finally, select the model with the lowest error in the test set among
the K choices. This process is repeated for K possible selections, and the model with
the smallest average test error among the K evaluations is chosen as the best-performing
one.

2.2.3 Optimization algorithm

After determining the training set D, the hypothesis space F and the learning criterion,
the process of obtaining the optimal model f(x,θ∗) can be formulated as an optimization
problem. The training process of ML is the process of solving the optimization problem.
In ML, optimization can be divided into parametric optimization and hyperparametric
optimization. The parameters θ in the model f(x,θ) are learned by the optimization
algorithm. In addition to the learnable parameters θ, there are other parameters that
are used to define the model structure or optimization strategy, called hyperparameters.

11
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Commonly seen hyperparameters include the number of categories in clustering algo-
rithms, the regularization term coefficients, the number of layers in a neural network, the
step size in gradient descent, and the kernel function in a support vector machine, etc.
The process of selecting hyperparameters typically presents a combinatorial optimiza-
tion challenge that optimization algorithms struggle to learn automatically. Accordingly,
optimization of hyperparameters represents a largely empirical ML technique, typically
established through human experience or by searching for sets of hyperparameter combi-
nations through trial and error.

In order to take advantage of some efficient and mature optimization methods in convex
optimization, many ML methods aim to construct a convex function as the optimization
objective by selecting an appropriate model and loss function. However, some models,
such as neural networks, have non-convex optimization objectives which usually offer sub-
optimal solutions. In ML, the gradient descent method serves as one of the most basic
and prevalent optimization algorithms [34], which first initializes the parameters θ0 and
then computes the minimum value of the risk function on the training set D according
to the following iterative equation:

θt+1 = θt − α
∂RD(θ)

∂θ
= θt − α

1

N

N∑
n=1

∂L
(
y(n), f(x(n);θ)

)
∂θ

(2.3)

where θt are the parameter values at the t-th iteration and α is the search step size, which
is also generally referred to as the learning rate.

Stochastic gradient descent and mini-batch gradient descent method

In Equation 2.3, the objective function corresponds to the risk function of the entire
training set. This specific method is referred to as Batch Gradient Descent (BGD). During
each iteration, BGD calculates the gradient of the loss function for each sample and sums
them over the whole data set. However, when the training set has a large number of
samples, both the space complexity and computational overhead per iteration increase
significantly. In order to decrease computational complexity during each iteration, it
is also possible to take only one sample at each iteration, compute the gradient of the
loss function of this sample, and update the parameters. This method is referred to as
Stochastic Gradient Descent (SGD), which can effectively converge to a local optimum
after an adequate number of iterations [39]. The difference between BGD and SGD
lies in their optimization objectives: BGD calculates the average loss function across all
samples, whereas SGD focuses on the loss function for a single sample. SGD is a popular
choice due to its ease of implementation and rapid convergence, and it can be equivalently
interpreted as introducing random noise into the gradient of the BGD method. Moreover,
SGD is advantageous in non-convex optimization challenges as it is less prone to getting
trapped in local optimums.
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However, a drawback of SGD is its limited ability to take advantage of parallel computing.
Mini-Batch Gradient Descent (mini-BGD) proves to be a viable alternative, striking a
balance between BGD and SGD. In every iteration, a few training samples are randomly
chosen (typically set to the power of 2 for greater computational efficiency) to compute
the gradient and update the parameters, enabling the utilization of the random gradient
descent technique and enhancing training efficacy. In the t-th iteration, a subset St
containing K samples is randomly selected. The gradient of the loss function is calculated
and averaged for each sample in this subset, followed by updating the parameters:

θt+1 ← θt − α
1

K

∑
(x,y)∈St

∂L(y, f
(
x;θ)

)
∂θ

. (2.4)

In practice, small-batch stochastic gradient descent offers fast convergence and low com-
putational expense, making it the primary optimization algorithm for large-scale machine
learning [40].

2.3 Feature representation

In practical applications, there are various types of data, including text, audio, image,
and video. The space of raw features varies for different types of data. For instance, a
grayscale image (with a pixel count of D) has a feature space defined by [0, 255]D. To
ensure that input sample features are mathematically computable, numerous machine
learning algorithms necessitate converting these different data types into vector represen-
tations before fitting ML models. Using the original data features to make predictions
necessitates a greater modeling capability. However, these raw features can have certain
drawbacks: (i) they may be monotonous and require non-linear combination for better
usability; (ii) there can be high redundancy amongst features; (iii) not all features may
be applicable for prediction; (iv) features may contain noise. The benefits of feature
selection and extraction lie in their ability to convey the most relevant information from
the original features utilizing fewer parameters, filter out unnecessary noise, and opti-
mize computational efficiency while decreasing dimensionality challenges. Consequently,
feature selection and extraction remain vital for numerous non-regularized models. After
selecting or extracting features, the number of features is typically reduced. This process
is often referred to as dimensionality reduction.

2.3.1 Traditional learning of features

Traditional feature learning is commonly achieved by designing specific criteria and sub-
sequently choosing effective features based on those criteria. This process is generally
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categorized into two types: feature selection and feature extraction. The advantage of
feature selection and feature extraction is that they can represent most of the relevant
information in the original features with fewer features, remove the noise information,
and thus improve the computational efficiency and reduce the curse of dimensionality
[41]. For many models without regularization, feature selection and feature extraction
are necessary.

Feature selection

Feature selection is the procedure for choosing a good subset from the original feature set
to yield the best-performing model. In essence, feature selection entails retaining only
helpful features while discarding the redundant or insignificant ones. One approach to
finding the most accurate subset of features in a machine learning model is to test each
possible subset. However, this method can be incredibly complex and inefficient, as there
can be up to 2D candidate subsets supposing the original feature set contains D elements.
A more commonly used strategy involves a greedy approach, which starts with an empty
set and adds the best features in each round, known as “forward search”, or begins with
the original set of features and removes the most useless features in each round, referred
to as “backward search”. Subset search methods can be categorized into filtering methods
and wrapping methods.

• The filtering method is a feature selection technique that does not depend on any
particular machine learning model. It operates by either adding the most informa-
tive features or removing the least informative ones at each iterative stage [42]. The
information content of a feature can be quantified using information gain, which sig-
nifies the reduction in the uncertainty or entropy of the θ-parameterized conditional
distribution pθ(y |x) upon the incorporation of the feature.

• The wrapping method evaluates subsequent machine learning models by their ac-
curacy [36]. It adds the features that are most helpful for the next machine learning
model or removes the ones that are least helpful for the subsequent task. This ap-
proach encompasses the integration of the machine learning model into the process
of feature selection.

Besides, the L1 regularization can also be used to select features since L1 regularization
leads to sparse features and thus indirectly achieves feature selection [36].

Feature extraction

Feature extraction is the construction of a new feature space by projecting the original
features into the new space to obtain a new representation. Feature extraction can be
separated into two categories: supervised and unsupervised methods. The objective of
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supervised feature learning is to extract the most advantageous features for a specific pre-
diction task, for example, Linear Discriminant Analysis (LDA) [43]. Meanwhile, the goal
of unsupervised feature learning is usually to diminish redundant information and noise,
using techniques like Principal Component Analysis (PCA) [44, 45] and AutoEncoders
(AEs) [46].

2.3.2 Deep learning of features

Traditional feature learning is generally separated from the learning process of the pre-
diction model. For example, effective features can be first extracted through PCA or
LDA and then a specific machine learning model can be trained based on these effective
features. If the process of learning feature representations and the training of machine
learning models are integrated into one framework with an end-to-end learning algorithm,
it has the potential to eliminate inconsistencies between their respective criteria. This
method of representation learning is known as Deep Learning (DL) [22]. The challenge of
the DL approach lies in evaluating the impact of representation learning on the final sys-
tem output, which is commonly referred to as the contribution allocation problem. Neural
network models are currently the most efficient models as they utilize the final output
layer for prediction learning and employ the other layers for representation learning [34].

2.4 Evaluation metrics

To assess the performance of a machine learning model, an evaluation score is calculated
based on the prediction results by applying the model to a test set. The method with a
lower test error is viewed as being more powerful and has better predictive ability.

For regression tasks, one of the most commonly used evaluation metrics is the Mean
Squared Error (MSE), which measures the average of the squares of the errors, that is,
the average squared difference between the estimated values from the model and the true
values (labels). Given a data set D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N))}, assume
that the label y ∈ R, and the learned model f(x;θ∗) is used to predict each sample in
the data set with {ŷ(1), · · · , ŷ(N)}. The MSE can be calculated with:

MSE =
1

N

N∑
n=1

(y(n) − ŷ(n))2. (2.5)

For classification tasks, widely used evaluation metrics are accuracy, precision, recall,
and F -measure, which can be defined as follows (assuming the labels within C classes
y ∈ {1, · · · , C}).
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Accuracy: the most commonly used evaluation metric is accuracy:

Acc =
1

N

N∑
n=1

I(y(n) = ŷ(n)) (2.6)

where I(·) is the indicator function whose value is 1 if true or 0 if false.

Error rate: the error rate corresponds to the accuracy:

Err = 1− Acc =
1

N

N∑
n=1

I(y(n) ̸= ŷ(n)). (2.7)

Precision and recall: accuracy represents the mean performance of all classes, and
to estimate the performance of each class, it is necessary to calculate both precision
and recall, which are prominent metrics in machine learning evaluation. When examin-
ing category c, the model’s results on the data set can be categorized into one of four
categories:

1. True Positive (TP): a sample belongs to true class c and the model correctly predicts
it to be c. The number of samples in this category is denoted as

TPc =
N∑

n=1

I(y(n) = ŷ(n) = c). (2.8)

2. False Negative (FN): a sample with the true class of c is incorrectly classified by
the model as belonging to a different class. The number of samples in this category
is denoted as

FNc =
N∑

n=1

I(y(n) = c ∧ ŷ(n) ̸= c) (2.9)

where ∧ is the logical conjunction.

3. False Positive (FP): a sample is mistakenly classified as class c while its true class
is not. The number of samples in this category is denoted as

FPc =
N∑

n=1

I(y(n) ̸= c ∧ ŷ(n) = c). (2.10)

4. True Negative (TN): a sample belongs to another class, and the model predicts
it to be others. The number of samples in this category is denoted as TNc. For
category c, this case is generally of few concern. In practical studies, it is often
possible to form the confusion matrix of the above four to facilitate the comparison
of relationships.
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Based on the above definition, the precision, recall, and F -measure can be further defined:

• Precision: the percentage of correct predictions for category c among all samples
predicted for category c

Pc =
TPc

TPc + FPc

. (2.11)

• Recall: the percentage of correct predictions for category c among all samples whose
true label is category c

Rc =
TPc

TPc + FNc

. (2.12)

• F -measure: a composite metric that is a summed average of the precision and recall

Fc =
(1 + β)2 × Pc ×Rc

β2 × Pc +Rc

(2.13)

where β is used to balance the importance of precision and recall and is usually
taken to be 1. The F -measure is also called the F1-value when β = 1 and is the
summed average of precision and recall.

In practice, the thresholds of the classification models can be adjusted for a more compre-
hensive evaluation, such as Area Under Curve (AUC), Receiver Operating Characteristic
(ROC) curve, and Precision-Recall (PR) curve [36]. In addition, many tasks have their
own specialized evaluation methods, such as top-N accuracy.

2.5 Types of machine learning models

Machine learning algorithms can be classified according to different criteria. However, in
general, they are usually classified into the following categories according to the informa-
tion provided by the training samples and the feedback methods [36].

2.5.1 Supervised learning

If the goal of machine learning is to model the relationship between the features
of a sample x and its corresponding (usually a scalar value) label y = f(x;θ) or
p(y |x;θ), and if every sample in the training set is labeled, then this type of ma-
chine learning is referred to as supervised learning. Given a training data set D =

{(x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N))}, where (x(n), y(n)), n = 1, 2, · · · , N , are called
samples. The x ∈ X ⊆ RD are the input observations, also called inputs or instances,
and the y ∈ Y are the output observations, also called outputs.
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Supervised learning can be divided into two processes, learning and prediction, which
are performed by the learning system and the prediction system, as shown in Figure
2.3. In the learning phase, the learning system utilizes a given training data set to
learn (or train) a model to map the relationship between input and output, which can
be described by either the conditional probability distribution p(y |x) or the decision
function y = f(x). To predict the corresponding output y(N+1) for a given input x(N+1) in
the test sample set, the prediction system utilizes the model y(N+1) = argmax

y
p(y |x(N+1))

or y(N+1) = f(x(N+1)).

Figure 2.3: Schematic illustration of supervised learning.

Depending on the type of labels, supervised learning can be divided into regression prob-
lems, classification problems, and structured learning problems:

• Regression problem has a continuous value (real or continuous integer) of label y.
The output of f(x;θ) is also a continuous value. It should be noted that regression
tasks can be turned into classification tasks by setting appropriate thresholds [47,
48].

• Classification problem has a discrete category (symbol) of label y. In the classifica-
tion problem, the learned model is also called a classifier. The classification problem
can be divided into binary classification and multi-class classification problems ac-
cording to the number of classes. It should also be noted that in many situations,
classification and regression problems can be converted to each other [35], e.g., the
output of a classification model can be a probability value for a class.

• Structured learning problem is a special kind of classification problem. In structured
learning, the labels y are usually structured objects, such as sequences, trees, or
graphs.

Some of the most popular supervised learning models are described in the following
sections.
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Logistic regression

Logistic Regression (LR), or logit regression [49], as one of the generalized linear models,
is actually one of the classification methods in statistical learning. A schematic diagram
of this model is shown in Figure 2.4.

Figure 2.4: Example of a binary classification problem for 1-D data using logistic regression.

In the binary classification case (binomial logistic regression model), it is used to model
the probability that a given example belongs to the class “1” versus the probability that it
belongs to the class “0” (usually noted as y ∈ {0, 1}). For this statistical model, a linear
relationship is assumed between the predictor variables and the log-odds (also called logit,
odds means the ratio of probability between y = 1 and y = 0). This linear relationship
can usually be written in the following mathematical form:

log(odds) := ln
p

1− p
= ln

p(y = 1 |x)
1− p(y = 1 |x)

= w⊺x+ b (2.14)

where the x ∈ RD are the inputs, the weights w ∈ RD and the bias (intercept) b ∈ R are
parameters. The odds can be recovered by exponentiating the log-odds

p

1− p
= ew

⊺x+b (2.15)

and by some algebraic manipulations the general logistic function p : R → (0, 1) can be
written as:

p = p(y = 1 |x) = ew
⊺x+b

1 + ew⊺x+b
(2.16)

1− p = p(y = 0 |x) = 1

1 + ew⊺x+b
. (2.17)

Given training data set D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N))}, parameters w and
b can be estimated with the maximum likelihood estimation. The model tries to maximize
the log-likelihood

L(w, b) =
N∑
i=1

ln p(y(i) |x(i);w, b) (2.18)

19



CHAPTER 2. THEORETICAL FOUNDATIONS OF MACHINE LEARNING

such that the probability of each sample belonging to its true label is as high as possible.

In the context of multi-class classification, this specific model can be extended to multi-
nominal logistic regression. Furthermore, the One-versus-Rest (OvR) scheme can be
utilized for implementing multi-category classification. The OvR scheme splits the task
of multi-category classification into several binary classifications. Specifically, for each
class, an LR model is trained. During the training process of each model, the selected
class is identified as the positive sample while the other classes are marked as negative
samples.

K-nearest neighbor

The k-Nearest Neighbor (k-NN) method is a basic classification and regression method
[50]. The k-NN basically consists of determining the k-nearest neighbors of the input
instance points from a set of given training instance points. The basic approach is: for
a given set of training instance points and an input instance point, first determine the k

nearest neighbors of the input instance point from the training instance points, and then
use the majority of the classes of these k training instance points to predict the class of the
input instance point (the so-called majority voting method). When employing k-NN for
the regression task, the average method is typically chosen, which means the prediction
is the average value of the closest k training instance points. It should be noted that the
process of finding neighbors can be computationally intensive when dealing with large
data sets. A schematic diagram of this model is shown in Figure 2.5.

Figure 2.5: Schematic illustration of k-NN.

The k-NN model partitions the feature space using the training data set. The training
set, distance metric, k-value, and classification/regression decision rule are the three basic
elements of the k-nearest neighbor method, which uniquely determine the results in k-
NN. Commonly used distance metrics are the Euclidean distance and the more general
Lp distance [51]. The optimal k value is usually selected by cross-validation.
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New instances are predicted by considering their categories/values based on their k-
nearest neighbors from the training instances. Hence, the k-NN model does not have
an explicit learning process. A k-NN model uses the training data set to partition the
feature vector space and serves as a “model” for its prediction. Such kind of setting can
make k-NN more sensitive to local data structures.

Support vector machine

Support Vector Machines (SVMs) are supervised max-margin models that can analyze
data for classification and regression tasks [52]. The margin is defined as the shortest
distance from all samples to the decision hyperplane of the model. Its basic form is a
linear classifier defined as a margin-maximizer on the feature space, which distinguishes it
from a perceptual machine [52, 53]. The original SVM was a binary classification model
and was later generalized to a multi-class classification SVM [54, 55].

Given a dichotomous classification data set D = {(x(n), y(n))}Nn=1, where y(n) ∈ {+1,−1},
if the two classes of samples are linearly separable, i.e., a hyperplane w⊺x + b = 0 can
separate the two classes of samples, then for each sample y(n)(w⊺x(n) + b) > 0. The
distance γ(n) from each sample x(n) in the data set D to the separating hyperplane is:

γ(n) =
|w⊺x(n) + b|
∥w∥

=
y(n)(w⊺x(n) + b)

∥w∥
(2.19)

where ∥w∥ is the L2-norm of w.

The margin γ is defined as the shortest distance from all samples in the entire data set
D to the separating hyperplane γ = min

n
γ(n). The larger the margin is, the more stable

its separating hyperplane is for distinguishing the two classes, and less susceptible to the
noise. The goal of SVM is to find a hyperplane (w∗, b∗) such that γ is maximized, i.e.,
max
w,b

γ. This can be equivalently expressed as a convex optimization form

min
w,b

1

2
∥w∥2

s.t. 1− y(n)(w⊺x(n) + b) ≤ 0, ∀n ∈ {1, · · · , N}
(2.20)

where sample points that satisfy y(n)(w⊺x(n) + b) = 1 are called support vectors. A
schematic diagram of this model is shown in Figure 2.6.
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Figure 2.6: Schematic illustration of SVM.

To find the separating hyperplane with maximum margin, the primal object function
Equation 2.20 can be reformulated with the Lagrange multiplier method as a Lagrangian
dual function

Γ(λ) = −1

2

N∑
n=1

N∑
m=1

λmλny
(m)y(n)x(m))⊺x(n) +

N∑
n=1

λn (2.21)

where λ1 ≥ 0, · · · , λN ≥ 0 are Lagrange multipliers. The primal optimization problem of
SVM is a convex optimization problem that satisfies strong duality, that is, the primal
optimization problem can be solved by maximizing the dual function max

λ≥0
Γ(λ), which is

a convex optimization problem that can be solved by a variety of convex optimization
methods. The decision function of SVM with optimal parameters is

f(x) = sgn(w∗⊺x+ b∗)

= sgn

 N∑
n=1

λ∗
ny

(n)(x(n))⊺x+ b∗

 (2.22)

where sgn(·) is the sign function that takes the values -1,0,1 when the value of the ex-
pression in parentheses is less than, equal to, or greater than 0, respectively.

SVMs can also use kernel functions to map samples from the original feature space to a
higher dimensional space. This allows them to solve linearly non-separable problems that
may exist in the original feature space [56]. In addition to this, soft-margin SVM with
slack variables can be introduced to solve the problem when the samples in the data set
are not linearly separable in the feature space, which works by tolerating some samples
that do not meet the constraints of the original objective function [52].

Gaussian process regression

Gaussian Process Regression (GPR) [57] is a Bayesian non-parametric model commonly
employed for non-linear modeling. The framework uses probabilistic theory to generate
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estimates that have probabilistic meaning. This is accomplished by introducing random-
ness to the model, which can organically integrate the researcher’s a priori knowledge with
information learned from observational data, and reduce uncertainty through Bayesian
inference. GPR models have a strong generalization ability, making them suitable for
solving regression problems involving nonlinear, high-dimensional, and data with small
sample sizes.

As a Bayesian non-parametric model, GPR allows for Bayesian inference in function space
by using a Gaussian process as a prior. The Gaussian process is a more general version
of the multidimensional Gaussian distribution, which is completely determined by the
mean function m(x) and covariance function K(x,x′):

f (x) ∼ GP
(
m(x), K(x,x′)

)
(2.23)

and a schematic diagram of this model is shown in Figure 2.7.

Figure 2.7: Schematic illustration of GPR, where the gray dashed lines denote the unknown
function to be fitted, while the green solid line shows the mean of the GPR prediction. The
shaded area represents the magnitude of uncertainty (assuming that the observed data are noise-
free to facilitate the illustration), and the observed sample points are marked in pink.

Consider the regression problem y = f (x) + ε, assuming noise obeys a (usually normal)
distribution, i.e., ε ∼ N (0, σ2

ε). The joint distribution of the observed values y and the
predicted values f (∗) at the test points x(∗) = (x(n+1), · · · ,x(n+m))⊺ can be obtained:

[
y

f (∗)

]
∼ N

[ m(x)

m(x(∗))

]
,

[
K(x,x) + σ2

nI K(x,x(∗))

K(x(∗),x) K(x(∗),x(∗))

] (2.24)

where the mean function is usually set to 0, i.e., m(x) = m(x(∗)) = 0, K(x,x) is the
n × n symmetric semi-positive definite covariance matrix; K(x(∗),x) = K(x,x(∗))⊺ is
an m× n matrix with [K(x(∗),x)]ij = K(x(n+i),x(j));K(x(∗),x(∗)) is a matrix of order
m×m and [K(x(∗),x(∗))]ij = K(x(n+i),x(n+j)). This gives the posterior distribution of
f (∗) the posterior distribution
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f (∗) | x,x(∗),y ∼ N
(
f (∗), cov(f (∗))

)
(2.25)

where

f (∗) = E[f (∗) | x,x(∗),y]

= m(x(∗)) +K(x(∗),x)[K(x,x) + σ2
εI]

−1(
y −m(x)

) (2.26)

and

cov(f (∗)) = K(x(∗),x(∗))−K(x(∗),x)[K(x,x) + σ2
εI]

−1K(x,x(∗)). (2.27)

Gaussian process regression can capture different statistical features by choosing different
covariance functions (kernel functions) [57], the most commonly used one is the Squared
Exponential (SE) kernel:

KSE = η2 exp

(
−(x− x′)2

2l2

)
(2.28)

where η2 is the signal variance, l is the length scale. Hence, θ =
{
η2, l, σ2

n

}
are the

hyperparameters of the model. The optimal hyperparameters are usually obtained by
maximizing the log marginal likelihood function [57].

Naïve Bayes

The naïve Bayes method is a classification technique that employs Bayes’ theorem and
the assumption of conditional independence of features to classify samples [21, 36], which
is both easy to implement and effective in terms of learning and prediction. The naïve
Bayesian method is a typical generative learning method, which learns the joint proba-
bility distribution p(x, y) from the training data, and then finds the posterior probability
distribution p(y |x). Specifically, the training data are utilized to learn the estimates of
p(x | y) and p(y) to obtain the joint probability distribution

p(x, y) = p(y) p(x | y) (2.29)

and the probability estimation methods can be either maximum likelihood estimation or
Bayesian estimation.

The basic assumption of the naïve Bayesian approach is conditional independence of
features, which is a strong assumption:

p(x | y = ck) = p(x1, · · · , xn | y = ck) =
n∏

j=1

p(xj | y = ck). (2.30)

Because of this assumption, the model contains fewer conditional probabilities, which
greatly simplifies both learning and prediction. However, this approach may result in
lower performance.
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Naïve Bayesian uses Bayes’ theorem with a learned joint probability model for classifica-
tion prediction

p(y |x) = p(x, y)

p(x)
=

p(y) p(x | y)∑
y p(y) p(x | y)

(2.31)

and given an input x, the output y with the highest posterior probability is obtained by

y = argmax
ck

p(y = ck)
n∏

j=1

p(xj | y = ck). (2.32)

Decision tree

Decision Tree (DT) is a kind of basic classification and regression method [58]. As an
example, a classification DT model is a tree structure and represents the process of
classifying instances based on features. It can be viewed as a set of if-then rules or
a conditional probability distribution defined on the feature and class spaces. A DT
consists of nodes and directed edges and there are two types of nodes: internal nodes and
leaf nodes. An internal node represents a decision based on a particular feature, while a
leaf node represents a class. A schematic diagram of this kind of model with a tree-like
structure is shown in Figure 2.8.

Figure 2.8: Schematic illustration of the decision tree.

The learning process of DT aims to construct a DT that fits the training data well and
has low complexity. However, it is a Nondeterministic Polynomial-time complete (NP-
complete) problem to select the optimal DT directly from all possible decision trees, hence
heuristic methods are usually used to learn sub-optimal ones. The process of learning
DT typically involves three steps: feature selection, tree generation, and tree pruning.
The purpose of feature selection is to select features that are capable of classifying the
training data and the key to feature selection is its selection criterion. The commonly
used criteria are information gain (ID3) [58], information gain ratio (C4.5) [59], and
Gini index (Classification And Regression Tree - CART) [60]. Decision trees are often
generated recursively by calculating the criteria metrics, starting from the root node.
This is equivalent to continuously selecting locally optimal features using the criteria
or partitioning the training set into subsets that can be classified almost correctly [61].
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However, this process tends to generate a DT that suffers from an overfitting problem,
hence it needs to be pruned to simplify the learned DT [36]. The pruning of a DT often
works by cutting off some leaf nodes or sub-trees above the original leaf nodes from the
generated tree and taking its parent or root node as the new leaf node.

Ensemble models

Ensemble learning [62] is a class of very popular machine learning methods and it is not a
standalone machine learning algorithm. Instead, it works by constructing and combining
multiple machine learners to complete the task, which can be interpreted as “learning from
many”. For the training set data, one can end up with a good-performing learning model
by training a number of individual machine learning models (called learners, which are
usually weak learners with mediocre performance compared to random guessing), which
can be combined with certain strategies into a better-performing model (usually named
as strong learner) [63]. There are two main problems to be solved in ensemble learning,
the first one is how to get several individual learners and the second one is how to choose
a combining strategy to aggregate these individual learners into a final model.

For the first issue, how to get a group of individual learners, homogeneous learners (all
the individual learners are of the same kind) are more widely used, with CART decision
trees and neural networks being the most common ones (while heterogeneous learners,
being of different kinds, are less used). Homogeneous learners can be further subdivided
into two groups based on the presence of a dependency among individual learners. The
first group comprises learners with a strong inter-dependency, where individual learners
are generated sequentially and the representative algorithms used are boosting algorithms
[64]. The second group is that there is little interdependence between individual learners,
thereby enabling the parallel creation of a batch of individual learners, with bagging
algorithms serving as the representative algorithms [65].

The second issue concerns the aggregation strategy, specifically, how to combine the
prediction of the individual learners as the final result. The most widely used strategies
are: (i) the averaging method for regression problems; (ii) the majority voting method for
classification problems and (iii) the learning method for both problems. One of the most
representative learning methods is stacking [66], that is, instead of carrying out simple
processing of the results of the weak learners, a layer of additional learners is added. In
other words, some weak learners (referred to as the primary learner) are trained on the
samples first, and their outputs are used as inputs to train a second layer of new learners
(referred to as the secondary learner). To obtain the final result, the primary learner first
makes predictions on samples to generate outputs which are then used as inputs for the
secondary learner to perform prediction.
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Boosting

As shown in Figure 2.9a, the boosting algorithm [64] operates by initially training a
first weak learner from the original training set with initial weights. The weights of the
training samples are then updated based on the first weak learner’s results. The weights
of the training samples that have a high error rate will be increased, in this way, these
points can receive increased attention in the training of a second weak learner. The above
process is iterated until the count of weak learners equals the pre-specified value of T .
Subsequently, these T weak learners are combined by certain ensemble strategies to build
the final strong learner. The most well-known algorithms in the boosting family are the
AdaBoost algorithm [67] and the Boosting tree families [68], the most widely used being
the Gradient Boosting Decision Tree (GBDT) [69] and XGBoost [70].

Bagging

The bagging algorithm [65] is different from boosting in that its weak learners are in-
dependent, allowing for parallel generation. This principle is illustrated in Figure 2.9b.
The training set for building each weak learner in bagging is acquired through random
sampling. A total of T sampling sets are obtained by randomly sampling T times, and T

weak learners are trained independently and separately based on each sampling set. In
the end, the T weak learners are combined to form the final, stronger learner.

For random sampling, the Bootstrap method [71] is commonly adopted. This method
works by generating T subsets of samples by sampling the original data set with replace-
ment and using these subsets to train T different models. Due to random sampling, each
sample set is distinct from the original training set and from other sample sets, enabling
the generation of multiple different weak learners.

The random forest model [72, 73] is one of the most popular bagging models and it is
a specialized and advanced version compared to the original idea of bagging. It uses
decision trees as weak learners, and it introduces additional randomness during the train-
ing process by randomly selecting subsets of features to further improve performance.
However, the basic idea of it has not deviated too far from the scope of bagging.

A schematic comparison of these two principles, boosting and bagging, is shown in Figure
2.9.
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Figure 2.9: Schematic comparison of (a) boosting and (b) bagging. The original data set D

is formed into different (sequential or parallel, respectively) subsets {D1, D2, · · ·DT } accord-
ing to the strategies of different methods. The learned T weak learners (models) are noted as
{f1, f2, · · · , fT } and the ensemble strong learner is noted as F .

2.5.2 Unsupervised learning

Unsupervised learning [36, 35, 21, 74] refers to the automatic learning of valuable infor-
mation from training samples that do not contain labels. Typically it includes clustering,
dimensionality reduction, and probability estimation. Unsupervised learning is useful for
data analysis and can be used as preprocessing for supervised learning.

The goal of unsupervised learning is to identify statistical patterns and the underlying
structure within a data set. The fundamental concept of unsupervised learning involves
compressing the data (typically in matrix form) to uncover this structure, with the as-
sumption that the compressed version resulting in the least loss contains the most essential
structure. Assuming that X is the input space and Z is the implicit structure space, the
model to be learned can be represented as a function z = g(x), a conditional probability
distribution p(z |x), or p(x | z), where x ∈ X is the input and z ∈ Z is the output. The
set of all potential models is known as the hypothesis space. The objective of unsuper-
vised learning is to pick out the best model from the hypothesis space based on a specific
evaluation criterion.

Similar to supervised learning, unsupervised learning also consists of the learning sys-
tem and the prediction system, as is shown in Figure 2.10. In the learning process, the
learning system tries to learn from the training data set to obtain an optimal model. In
the prediction process, the prediction system performs either clustering or dimensional-
ity reduction for a given input x(N+1) by yielding the corresponding output z(N+1) by
the model z(N+1) = g(x(N+1)) or z(N+1) = argmax

z
p(z |x(N+1)). For the probability
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estimation task, it predicts the result p(x(N+1) | z(N+1)) with the model p(x | z).

Figure 2.10: Schematic overview of unsupervised learning.

Clustering

Clustering [75] is a data analysis problem that involves grouping samples into “classes” or
“clusters” based on the similarity or distance of their features. Intuitively, similar samples
should be grouped in the same cluster while dissimilar samples should be classified into
different clusters. Clustering involves automatically discovering the sample groups from
the data, without prior knowledge of the sample classes. Typically, the number of sample
clusters is predetermined. If a sample can solely belong to one class, it is referred to as
hard clustering. If a sample can belong to multiple classes, then it is referred to as soft
clustering.

There are various definitions of similarity or distance, and the selection depends on the
problem’s characteristics. The fundamental problem in clustering is the selection of an
appropriate similarity or distance measure since it directly affects the results. Com-
monly used distance measures (smaller values indicate better similarity) are Minkowski
distances, including Euclidean distance, Manhattan distance, Chebyshev distance, and
Mahalanobis distance, while commonly adopted similarity measures (larger values in-
dicate better similarity) are correlation coefficient and cosine of the angle, and so on
[74].

Suppose the input space is the Euclidean space X ⊆ RD, and the output space is the set
of categories Z = {1, 2, · · · , k}. Clustering is modeled by the function z = gθ(x) (hard
clustering model) or the conditional probability distribution pθ(z |x) (soft clustering
model), where x ∈ X is a vector feature of sample, z ∈ Z is the category of samples,
and θ are the parameters. There are numerous clustering algorithms in the literature,
however, proposing a concise categorization of clustering methods is challenging due to
potential category overlaps. Generally, the basic clustering algorithms can be classified
as the following.

Partitioning methods divide the data with a set of N objects into k clusters k ⩽ N .
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This allows each group to contain at least one object, and each cluster represents a
particular partition. Most partitioning methods rely on distance measurements. To
construct k partitions, the initial step is to create an initial partition which is then
refined using iterative relocation to optimize the partition. A crucial requirement for
an efficient partition is that objects within the same group are as similar as possible,
while objects in different groups are as dissimilar as possible. To obtain the best possible
outcome, clustering based on partition may necessitate examining all possible partitions,
which can be computationally intensive. In reality, most popular algorithms use heuristics
to asymptotically improve the quality of clustering and approximate the local optimal
solution, such as k-means and k-center-point algorithms [76].

The k-means clustering [76] is a clustering algorithm that partitions a collection of samples
and divides the sample set into k subsets, creating k classes. Each sample is assigned to
the class with the nearest center, based on its distance from its corresponding center. The
k-means clustering algorithm follows an iterative process, with two steps in each iteration.
Initially, the algorithm selects the centers of the k classes and assigns each sample one
by one to the class whose center is nearest, producing intermediate clustering results.
Afterward, the mean of the samples in each class is updated, which is then regarded as
the new center of that class. These steps are repeated until convergence. It should be
noted that k-means clustering is a heuristic approach that cannot guarantee convergence
to the global optimum, and the choice of the initial center directly affects the clustering
results.

Hierarchical methods create a hierarchical decomposition of a given set of data objects
[77]. Depending on the formation of the hierarchical decomposition, hierarchical methods
can be classified as either agglomerative or divisive. Agglomerative methods, also known
as bottom-up methods, start with each object as a separate group and then merge similar
objects or groups one by one until all combinations are merged into a single group (the
top level of the hierarchy), or until a termination condition is met. The divisive approach,
also known as the top-down approach, begins by placing all objects in a cluster, and in
each successive iteration, a cluster is divided into smaller clusters until eventually each
object is in a separate cluster, or a termination condition is met.

Density-based methods have been developed to solve the problem of difficulty in
detecting clusters of irregular shapes for most distance-based partitioning methods. The
main idea is to continue growing a given cluster as long as the density (number of objects
or data points) in the “neighborhood” exceeds a certain threshold. That is, for each data
point in a given cluster, a neighborhood of a given radius must contain at least a minimum
number of objects. This approach effectively filters out noise and outlier points while also
identifying clusters with varying shapes. Density-based methods have the capability to
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partition a group of objects into distinct clusters that are either hierarchical in structure
or mutually exclusive. It is noteworthy that, in general, density-based methods only
consider mutually exclusive clusters and do not consider fuzzy clusters.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [78] is an ex-
emplary method that performs better with noisy data. This approach can be compared
to drawing a circle to get a cluster, in which two parameters need to be defined: the
maximum radius of the circle and the minimum number of points that should be con-
tained in the circle. Any data point located within the circle is considered a member
of the same class. However, setting the parameters can be problematic, especially given
their high sensitivity to configuration. An extension of DBSCAN called Ordering Points
To Identify Clustering Structure (OPTICS) [79] enhances DBSCAN by prioritizing the
discovery of high-density regions and adjusting the parameters based on their features,
thereby addressing DBSCAN’s weaknesses.

Grid-based methods quantize the object space into a finite number of cells, forming
a grid structure. All clustering operations are performed on this grid structure (i.e.,
the quantized space). The primary benefit of this approach is its speed, as the time
consumption is typically determined only by the number of dimensions of the quantized
space and not by the number of data objects. STING (STatistical INformation Grid)
[80] and CLIQUE (CLustering In QUEst) [81] represent typical algorithms within this
category of methodologies.

Model-based methods rely heavily on probabilistic and neural network models, with
a major emphasis on probabilistic models. Probabilistic models, particularly generative
models, are used to group data from the same “class” in the same probability distribu-
tion. These methods have the advantage of providing a flexible way to define “classes”
probabilistically, expressing the characteristics of each class via parameters. Nonetheless,
a downside is their potential lack of efficiency when dealing with numerous distributions
and limited data.

One of the most common and widely employed techniques is Gaussian Mixture Mod-
els (GMM) [82]. Regarding strategies based on neural network models, they mainly
pertain to Self-Organizing Maps (SOM) [83]. This algorithm assumes the existence of
topological structure or order among input objects, facilitating a mapping that decreases
dimensionality from higher dimensional input space to the 2-dimensional output plane
while preserving topological properties.

Dimensionality reduction

Dimensionality reduction [36] involves transforming data from a high-dimensional space
to a low-dimensional one. This approach enables a better representation of the struc-
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ture and relationships between samples. It assumes that the original data existed in
a low-dimensional space or approximately the same way. A high-dimensional space is
generally a high-dimensional Euclidean space, whereas a low-dimensional space is either
a low-dimensional Euclidean space or a manifold [34]. Low-dimensional spaces are not
predetermined but rather derived from data, with their dimensions often specified in ad-
vance. During the process of dimensionality reduction, it is crucial to minimize the loss
of information in the sample when reducing from higher to lower dimensions.

Suppose te X ⊆ RD, and the output space is also the Euclidean space Z ⊆ RD′ , D′ ≪
D, the latter being of lower dimension than the former. The model for dimensionality
reduction is the function z = gθ(x), where x ∈ X is the high-dimensional feature vector
of the sample, z ∈ Z is the low-dimensional feature vector of the sample, θ are the
parameters, and the function can be linear or nonlinear. The process of dimensionality
reduction is the process of learning a dimensionality reduction model, and each sample is
converted from a high dimensional vector to a low dimensional vector z(n) = gθ(x

(n)), n =

1, 2, · · · , N .

Principal Component Analysis (PCA) [44, 45] is a frequently employed technique for
reducing data dimensionality with the idea of maximizing variance in the transformed
space. For example, as shown in Figure 2.11, when projecting two-dimensional data into
a one-dimensional space, the direction with the greatest variance is chosen to maximize
the variance of the data and to preserve more information about the original data. PCA
is an unsupervised learning method that can be used as a data preprocessing method for
supervised learning to remove noise and reduce the correlation between features.

Figure 2.11: Schematic illustration of PCA applied to two-dimensional data.

Suppose there is a set of D-dimensional samples x(n) ∈ RD,1 ≤ n ≤ N , which are to be
projected into a one-dimensional space with projection vectors w ∈ RD. Without loss of
generality, w is restricted to be of mode 1, i.e., wTw = 1. Each sample point x(n) after
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projection is represented as z(n) = w⊺x(n). Using the matrix X = [x(1),x(2), · · · ,x(N)]

to represent the input samples, and x̄ = 1
N

∑N
n=1 x

(n) to be the centroid of the original
samples, the variance of all the samples after projection is

σ(X;w) =
1

N

N∑
n=1

(w⊺x(n) −w⊺x̄)2

=
1

N
(w⊺X −w⊺X̄)(w⊺X −w⊺X̄)⊺

= w⊺Σw

(2.33)

where X̄ = x̄1⊺
D is the cross product of the vector x̄ and the D-dimensional all-1 vector

1D, i.e., the matrix consisting of D columns x̄, and Σ = 1
N
(X − X̄)(X − X̄)⊺ is the

covariance matrix of the original samples.

It is required to maximize the projected variance σ(X;w) while satisfying the condition
w⊺w = 1, hence this problem can be converted to an unconstrained optimization problem
using the Lagrange method:

max
w

w⊺Σw + λ(1−w⊺w) (2.34)

where λ is the Lagrange multiplier. The solution yields Σw = λw. From the above, it is
known that w is the eigenvector of the covariance matrix Σ, and λ is the eigenvalue. At
the same time,

σ(X;w) = w⊺Σw = w⊺λw = λ. (2.35)

λ is also the variance of the sample after projection. Thus, principal component analysis
can be converted into a matrix eigenvalue decomposition problem where the projection
vector w is the eigenvector corresponding to the largest eigenvalue of the matrix Σ.

If it is desired to project the samples into the D′-dimensional space by the projection
matrix W ∈ RD×D′ , and the projection matrix satisfies W ⊺W = I as an identity matrix,
it only needs to arrange the eigenvalues of Σ from the largest to the smallest and keep
the first D′ eigenvectors, and the corresponding eigenvectors are the optimal projection
matrix:

ΣW = W diag(λ) (2.36)

where diag is the diagonal matrix with λ = [λ1, · · · , λD′ ] are the leading D′ largest
eigenvalues.

The principal components transformation can also be associated with another matrix
factorization, the Singular Value Decomposition (SVD) of a data matrix X, as there are
many efficient algorithms to calculate the SVD, hence computing the SVD is now the
standard way to calculate the PCA [84].
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Manifold learning is a technique for reducing dimensionality that is inspired by the
concept of topological manifolds [34]. A “manifold” is a space that is locally homomorphic
to Euclidean space, which implies that it has Euclidean properties in its local regions and
enables distance calculations using Euclidean distances. Such an idea has a significant im-
pact on dimensionality reduction techniques: if a low-dimensional manifold is embedded
in a high-dimensional space, the distribution of data samples in that space may appear
complex, but Euclidean characteristics are still preserved in local regions. Therefore, it
is feasible to create local dimensionality reduction mappings and extend them globally.
By reducing dimensionality to two or three dimensions, the data can be easily visualized,
which makes manifold learning a useful tool for visualization.

One of its primary usages is to perform nonlinear dimensionality reduction. This process
takes into account not only distance but also the topological structure that generates
the data. Additionally, manifolds have the capability to capture the essence of data. In
simpler terms, this process involves using a mapping that is able to reduce data from a
high-dimensional space to a low-dimensional space without any loss of information. This
mapping takes the original data as input and outputs more intrinsic features of the data,
similar to compression where a smaller amount of data can represent the original data as
accurately as possible.

Commonly seen methods are Isometric mapping (Isomap) [85], Locally Linear Embedding
(LLE) [86], Laplacian Eigenmaps (LE) [87], Stochastic Neighbor Embedding (SNE) as
well as t-SNE [88, 89], and Uniform Manifold Approximation and Projection (UMAP)
[90].

Non-negative Matrix Factorization (NMF) is a common method of matrix factor-
ization which can be used for dimension reduction [91, 92]. Its purpose is factoring a
matrix X with non-negative entries into two matrices W and H that also have only
non-negative entries, which are typically required to have a much lower rank than the
original matrix. That is, the goal of NMF is to achieve X ≃ WH by finding W and
H that minimize the error function (using the Frobenius norm) ∥X −WH∥fro, subject
to W ≥ 0,H ≥ 0. The non-negativity constraints can lead to a decomposition that
allows for a semantically meaningful interpretation of the coefficients. However, in most
cases, the resulting factorization problem has no exact solution, thus requiring optimiza-
tion procedures for finding suitable numerical approximations. The commonly used way
to solve this problem is the iterative methods, such as the gradient descent method or
quasi-Newton’s method.
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2.5.3 Semi-supervised learning and active learning

Semi-supervised learning and active learning are closer to supervised learning. Semi-
supervised learning refers to a machine learning problem that involves learning predictive
models using both labeled and unlabeled data. In practice, the amount of labeled data
is usually small, while the amount of unlabeled data is large. This is because labeling
data usually requires significant manual labor, whereas collecting unlabeled data is easier.
Semi-supervised learning aims to utilize the unlabeled data to support the labeled data,
resulting in enhanced learning outcomes at a reduced cost.

Active learning is a machine learning task in which the machine continuously and actively
selects samples for labeling and the labeled samples are then used to develop a predictive
model. The main objective of active learning is to train a good-performing model at a
lower labeling cost by identifying the most useful and valuable instances (samples), in
other words, it is a subfield of machine learning that investigates the optimal allocation
strategy under finite resources.

Bayesian optimization-based active learning

The goal of active learning is to minimize the number of attempts needed to attain a
performance that is as good as or better than that achieved by exhaustive exploration.
Bayesian Optimization (BO) is one of the most commonly used active learning strategies
and it works by balancing the trade-offs between exploring and exploiting. BO is a class
of optimization methods that focuses on solving the problem max

x∈X
f(x) within an input

domain X ⊆ RD as the bounding box. The ability to optimize the expensive black-
box derivative-free functions makes it extremely versatile [93]. Recently, it has become
popular for tuning hyperparameters in ML models, especially deep neural networks [94].

A typical BO method involves two primary components:

1. a surrogate model for statistical inference, typically Gaussian Process (GP) [95, 57],
which is a widely used surrogate for modeling objective functions. The function f

is typically assumed to be a GP which is determined by a mean function µ and a
covariance kernel K, f ∼ GP(µ,K);

2. an acquisition function a(x) that decides where to sample the next most promising
candidate with the largest objective value. The acquisition function is usually
an inexpensive function that defines a balance between exploring new areas in the
objective space and exploiting areas that are already known to have favorable values
[96]. Typical acquisition functions are the Probability of Improvement (PI) [97],
Expected Improvement (EI) [98, 99], and Upper Confidence Bound (UCB) [100].
These functions are different in how the trade-off is made between exploration and
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exploitation. Such a strategy is important for finding the global optimum efficiently
instead of being trapped in a local optimum.

Given the observed data set D, the question would be where the next point to observe
the function is. The meta-approach in BO is to design an acquisition function a(x). The
acquisition function is usually an inexpensive function, which defines a balance between
exploring new areas in the objective space and exploiting areas that are already known
to have favorable values [96]. This strategy is important for helping to find the global
optimum efficiently instead of being trapped in a local optimum.

The PI is one of the earliest acquisition functions designed for BO which suggests max-
imizing the probability of improvement (P ) over the current best-observed value f(x+),
where x+ = argmax

x∈D1:t

f(x) with the observed data set D1:t, so that

xt+1 = argmax
x∈X

P
(
f(x) ≥ f(x+)

)
= argmax

x∈X
Φ

(
µt(x;D1:t)− f(x+)

σt(x;D1:t)

)
(2.37)

where Φ(·) is the normal Cumulative Distribution Function (CDF), µt and σt are the
posterior mean and posterior standard deviation at iteration t.

Alternatively, maximizing EI over the current best value can also be chosen, which ac-
counts for the amount of the improvement (while PI does not). It can be computed
analytically as:

xt+1 = argmax
x∈X

[(
µt(x;D1:t)− f(x+)

)
Φ(Z) + σt(x;D1:t)ϕ(Z)

]
(2.38)

with
Z =

µt(x;D1:t)− f(x+)

σt(x;D1:t)

where Φ(·) and ϕ(·) are the CDF and Probability Density Function (PDF) of the standard
normal distribution, respectively.

The acquisition function of UCB takes the form:

xt+1 = argmax
x∈X

[
µt(x;D1:t) + κσt(x;D1:t)

]
. (2.39)

This function can be intuitively interpreted as a weighted sum of the prediction of f(x)
and its uncertainty. κ is a tunable hyperparameter that controls how much of the variance
in the predicted values should be taken into account, where higher value favors exploration
over exploitation and vice versa [57].

To find the global optimum in an effective way, the search strategy needs to follow the
aforementioned principle, i.e., combining exploration and exploitation. The model should
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not only focus on the local region where the known maximum value is located but also
explore the whole search space wisely.

In each iteration of BO, the surrogate model is fitted based on the known samples to
obtain information on the statistical mean estimations and uncertainties (represented in
variances) across the input domain space. The information is then fed into the selected
acquisition function to decide the next design points that may potentially improve the
performance of the target function at best. New validations will be conducted on these
new candidates and their results will serve as new inputs to update the whole model
for the next iteration. This loop will continue until certain criteria are met, such as the
achievement of sufficient performance of the original function. On this account, the merit
is that expensive evaluations only need to be conducted on these promising candidates,
which has the potential to reduce the number of required evaluations. Following this
strategy, the overall computational cost of the design process is reduced considerably.
Besides, it should be noted that in practice BO is usually limited to data sets with a
typical size of ∼10k samples due to its prohibitive computational cost when dealing with
large data sets [57, 101].

2.5.4 Reinforcement learning

Reinforcement Learning (RL) is a type of machine learning algorithm that achieves learn-
ing through interaction, which challenges an intelligent system to learn optimal behavioral
strategies continuously while interacting with the environment. The interaction between
the intelligent system and its environment is usually assumed to follow the Markov deci-
sion process [102]. The intelligent system can solely observe the data sequence resulting
from this interaction. The aim of RL is to acquire the optimal sequential decision (pol-
icy). Compared to supervised learning, RL is an online learning mechanism that does not
necessitate the explicit provision of training samples in the form of “input/output pairs”.

Figure 2.12 illustrates the interaction of the intelligent system with the environment.
The intelligent system observes a state st with a reward rt from the environment at each
step t and then performs an action at. Based on the intelligent system’s decision, the
environment outputs the next state st+1 with a reward rt+1. The policy being learned is
based on the action taken in a given state. The objective of an intelligent system is to
maximize long-term cumulative rewards rather than short-term rewards. The RL process
involves the system continuously learning the optimal strategy through trial and error by
interacting with the environment.
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Figure 2.12: Illustration of the interaction between intelligent system and the environment.

The Markov decision process for RL is a stochastic process on a sequence of states,
rewards, and actions, consisting of the quintuple ⟨S,A, p, r, γ⟩:

• S is a finite set of states;

• A is a finite set of actions;

• p is the transition probability function from state s to s′ by taking action a:
p(s′ | s, a) = p(st+1 = s′ | st = s, at = a);

• r is the reward function determined by an environment E: r(s, a) = E(rt+1 | st =
s, at = a);

• γ is discount factor: γ ∈ [0, 1].

The Markov decision process has the property of Markovianity [103], whereby the succeed-
ing state hinges solely on the previous state conditioned on the action applied, represented
by a state transition probability function p(s′ | s, a). The obtained reward rests on the
prior state tied to the action applied, denoted by the reward function r(s, a).

The policy π is defined as a function a = f(s) of the action in a given state or a con-
ditional probability distribution p(a | s). Given a policy π, the behavior of the intelli-
gent system interacting with the environment is determined (either deterministically or
stochastically).

The value function or state value function is defined as the mathematical expectation of
the long-term cumulative reward of the strategy π starting from a certain state s:

vπ(s) = Eπ

[
rt+1 + γrt+2 + γ2rt+3 + · · · | st = s

]
. (2.40)

The action value function is defined as the mathematical expectation of the long-term
cumulative reward of a strategy π starting from a certain state s and action a:

qπ(s, a) = Eπ

[
rt+1 + γrt+2 + γ2rt+3 + · · · | st = s, at = a

]
. (2.41)
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The objective of RL is to choose the strategy with the highest value function π∗ out of all
available options. Typically, learning begins with a certain strategy and then proceeds to
continuously enhance the current strategy. In this context, γ refers to how future rewards
will decay.

RL methods include policy-based and value-based methods, which are model-free. Model-
free, policy-based methods aim to determine the optimal policy, denoted by a function
a = f ∗(s) or a conditional probability distribution p∗(a | s). This approach enables op-
timal decision-making in the environment. The learning process typically begins with
a particular strategy and advances by seeking a superior one. Model-free, value-based
methods try to determine the optimal value function, specifically the optimal action value
function q∗(s, a). This approach enables the indirect acquisition of the optimal policy for
selecting the appropriate action in a given state. Learning usually starts with a specific
value function and proceeds by searching for a more optimal value function.

On the contrary, there are also model-based methods. Model-based approaches attempt
to directly learn a model of the Markov decision process, including the transition prob-
ability function p(s′ | s, a) and the reward function r(s, a). This allows the model to
predict feedback from the environment and find the strategy π∗ that maximizes the value
function.

Deep reinforcement learning

In RL, it is generally necessary to model the policy π(a | s), value function vπ(s), and the
action value function qπ(s, a). Early RL algorithms focused on problems with discrete and
finite states and actions, where tables could be used to record probabilities. Nevertheless,
in many real-world problems, some tasks have a very large number of states and actions.
For instance, the game of Go comprises numerous states. Additionally, there are tasks in
which the states and actions are generally continuous, e.g., in autonomous driving, the
perceived state of the environment includes various sensor data, such as vehicle speed and
steering wheel angle. To address these challenges, a more robust policy function, such
as a (deep) neural network, can be developed. This will enable the intelligent system
to handle complex environments, enhance policy learning, and improve generalization
capabilities. Deep Reinforcement Learning (DRL) [103] combines reinforcement learning
and deep learning. Reinforcement learning is used to define and optimize the objective,
while deep learning is utilized to model the policy and value functions. DRL is believed
to have a degree of generalized intelligence to solve complex problems and has been very
successful in many tasks.
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2.6 Deep learning and artificial neural networks

Deep Learning (DL) [34, 22] typically employs complex models, wherein data flows
through multiple linear or non-linear components of the model between input and tar-
get output, is a rapidly growing field of research in recent years, and has achieved great
success in many fields. Since each component processes information and affects the sub-
sequent components, it is unclear how much each contributes to the final output. This
issue is known as the Credit Assignment Problem (CAP) [104]. In DL, CAP is a crucial
challenge closely tied to parameter learning in each component. Artificial Neural Network
(ANN), a mathematical model inspired by the workings of the human brain’s nervous
system, is currently the most effective solution to the CAP. The nervous system of the
human brain is capable of encoding auditory and visual signals through several layers,
abstracting and processing the signals from their low-level features, and ultimately ac-
quiring the semantic representation of the original signals [34]. Similar to this, the ANN
comprises artificial neurons and connections between neurons, which can be regarded as
an information processing system from input to output. The complexity of the neural
network model results in a longer transfer path from input to output, making the learning
of complex neural networks a form of deep machine learning, commonly referred to as
deep learning. ANN models are the most prevalent models used in DL.

The connections between individual nodes in ANN are given different weights that in-
dicate how much one node affects another. Each node stands for a specific function,
and data from other nodes is synthesized with their corresponding weights before being
processed by an activation function, resulting in a new value of activity (either excitation
or inhibition). From a systemic perspective, an ANN is a dynamic, nonlinear, and adapt-
able system consisting of a vast amount of neurons with complex and highly developed
connections. Although the creation of an ANN is achievable, making it capable of learn-
ing poses considerable difficulty. Perceptrons [105] were the first neural networks with
machine learning ideas, but their learning methods could not be extended to multi-layer
neural networks and it was not until around 1980 that the backpropagation algorithm
[106, 107] effectively solved the problem of multi-layer neural network learning and be-
came the most popular learning algorithm for neural network models. Since an ANN
can be used as a general function approximator (a two-layer neural network can approx-
imate any function) [108, 109], it can be considered as a learnable function and applied
to machine learning. The network capacity of ANN refers to its ability to shape complex
functions, which is directly related to the amount and complexity of data it can store.

A diverse range of neural network architectures have been developed so far. The most
commonly used three neural network structures are feedforward networks, memory net-
works, and graph networks.
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Feedforward networks have neurons that are grouped based on the order of informa-
tion reception, with each group serving as a neural layer. Neurons in each layer receive
the outputs from neurons in the previous layer and transmit them to the next. The
entire network’s information is propagated solely in one direction, represented by a di-
rected acyclic graph with no backward information flow. Feedforward networks consist of
fully connected feedforward networks and convolutional neural networks. A feedforward
network functions as a complex mapping from input space to output space through the
combination of multiple simpler nonlinear functions.

Memory networks Memory networks, also referred to as feedback networks, are net-
works where neurons receive information from not only other neurons but also their own
history. Unlike feedforward networks, neurons in a memory network possess a memory
function and exhibit different states at different moments in time. Information propaga-
tion in a memory neural network can be either unidirectional or bidirectional, which can
be represented as either a directed or undirected graph. Memory networks include re-
current neural networks, Hopfield networks, Boltzmann machines, restricted Boltzmann
machines [22], and so on. A memory network can be considered a program with im-
proved computational and memory capabilities. To increase the memory capacity of such
networks, external memory units and read/write mechanisms can be integrated to store
intermediate network states.

Graph networks The inputs of feedforward and memory networks are typically repre-
sented as vectors or sequences of vectors. However, in many practical applications, the
data takes the form of graph structures, such as knowledge graphs, social networks, or
molecular networks. Handling such graph-structured data can be challenging for feedfor-
ward and memory networks. Graph neural networks [110] are neural networks defined on
graph-structured data. Each node in a graph consists of a neuron or a group of neurons
and the connections between nodes can be directed or undirected. Each node can receive
information from neighboring nodes or from itself. Graph networks are a generalization of
feed-forward and memory networks and contain many different implementations, such as
Graph Convolutional Networks (GCN) [111], Message Passing Neural Networks (MPNN)
[112], and many others.

Examples of network structures for feedforward networks, memory networks, and graph
networks are given in Figure 2.13, where a circular node represents a neuron, a square
node represents a group of neurons, and an arrow represents the flow of information. It
should be noted that in real-world applications, most networks are composite structures,
i.e., a neural network can contain multiple network structures.
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Figure 2.13: Examples of basic network structures for feedforward networks (a), memory net-
works (b), and graph networks (c).

2.6.1 Feedforward neural network

The artificial neuron, short for neuron, serves as the fundamental component of a neural
network, mimicking the structure and features of biological neurons [34]. It accepts a set of
input signals and generates outputs. Suppose a neuron receives D inputs x1, x2, · · · , xD,
such that the vector x = [x1;x2; · · · ;xD] represents this set of inputs. The net input
received by a neuron z ∈ R is denoted by the weighted sum of the input signals of x:

z =
D∑

d=1

wdxd + b = w⊺x+ b (2.42)

where w = [w1;w2; · · · ;wD] ∈ RD is the D-dimensional weight vector and b ∈ R is the
bias. The net input z yields the neuron’s activation value a by a nonlinear function
a = f(z), which is called the activation function. Commonly used activation functions
are: Sigmoid functions (logistic function or tanh function), Rectified Linear Unit (ReLU)
[113, 114] and its variants Leaky ReLU [115], Exponential Linear Unit (ELU) [116], Swish
function [117], Gaussian Error Linear Unit (GELU) [118] and so on. An example of a
typical neuron structure is given in Figure 2.14.

Figure 2.14: Schematic illustration of the neuron structure.
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Given a set of neurons, a network can be constructed using the neurons as nodes. Different
neural network models have different topologies of network connections. A comparatively
simpler topology is the feedforward network. Feedforward Neural Networks (FNN) were
the first artificial neural networks invented and are sometimes called Multi-Layer Percep-
tron (MLP). In a FNN, neurons are spread across multiple layers and neurons in each
layer receive signals from neurons in the previous layer and produce signals as output to
the next layer. Usually, the first layer is called the input layer, the last layer is called
the output layer, and the other intermediate layers are called hidden layers. No feedback
is present throughout the network, and the signal flows unidirectionally from the input
layer to the output layer, forming a directed acyclic graph.

With input layer a(0) = x, the FNN continuously iterates the following equation to
propagate information:

z(l) = W (l)a(l−1) + b(l),

a(l) = fl(z
(l)).

(2.43)

Firstly, the net activation value z(l) of the neuron in the l-th layer is calculated based
on the activation value a(l−1) of the neuron in the (l − 1)-th layer, and then it is passed
through an activation function to get the activation value of the neuron in the l-th layer.
W (l) is the weight matrix and b(l) is the bias from (l−1)-th layer to l-th layer. Therefore,
each neural layer can also be considered as an affine transformation and a nonlinear
transformation. In this way, the FNN can pass the information layer by layer to get the
final output of the network a(L) and the whole network can be regarded as a composite
function ϕ(x;W , b):

x = a(0) → z(1) → a(1) → z(2) → · · · → a(L−1) → z(L) → a(L) = ϕ(x;W , b) (2.44)

where W , b denotes the connection weights and biases of all layers in the network.

2.6.2 Convolutional neural network

Convolutional Neural Network (CNN or ConvNet) [119, 120] is usually a deep feedforward
neural network with local connectivity and weight sharing. CNNs were initially employed
for processing image data instead of fully connected feedforward networks which could
yield two major issues. Firstly, as the number of neurons in the hidden layer increases, the
size of the parameters also dramatically increases. Consequently, the training efficiency
of the neural network decreases and is prone to overfitting. Secondly, objects in natural
images possess local invariant features, including scale, translation, and rotation, which
bear no impact on their semantic information. Nonetheless, fully connected feedforward

43



CHAPTER 2. THEORETICAL FOUNDATIONS OF MACHINE LEARNING

networks struggle to extract these local invariant features, necessitating data enhancement
to improve performance.

CNNs are based on the biological mechanism of the receptive field [121]. This mechanism
refers to certain neurons in the visual (or auditory) nervous systems that only receive
signals from the region they innervate. A neuron’s receptive field is a specific area of
the retina, and only stimuli within this area can activate the neuron. Currently, CNNs
are usually feedforward neural networks consisting of convolutional, pooling, and fully
connected layers stacked on top of each other. CNNs possess three structural properties,
namely local connectivity, weight sharing, and gathering, enabling them to exhibit certain
degrees of translation, scaling, and rotation invariance [120]. CNNs are mainly used for
various tasks in image and video analysis (e.g., image classification, face recognition,
object recognition, image segmentation), and their accuracies are generally higher than
those of other neural network architectures [34]. An overview of some commonly used
CNN architectures is shown in Figure 2.15.

Figure 2.15: Overview of the most commonly used CNN architectures: (a) AlexNet/VGGNet,
(b) ResNet, (c) Inception-Net, (d) U-Net.

AlexNet [24] is the first modern deep convolutional network model, which uses many
modern deep convolutional network techniques for the first time, such as the use of Graph-
ics Processing Units (GPUs) for parallel training, the adoption of ReLU as a nonlinear
activation function, the use of dropout layer to reduce overfitting, and the use of data
augmentation to improve the accuracy of the model. VGGNet [122] is an extension to
AlexNet and it was developed to increase the depth of such CNNs in order to increase
the model performance. In this architecture, a convolutional network can be stacked with
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some consecutive convolutional blocks (convolutional layers and pooling layers) followed
by some fully connected layers. A schematic illustration of these structures is shown in
Figure 2.15a.

Residual Network (ResNet) [123] adds a shortcut connection (also known as a residual
connection) to a nonlinear convolutional layer to improve the efficiency of information
propagation. Suppose that in a deep network, a nonlinear unit f(x;θ) with parameters
θ (which can be one or many layers of convolutional layers) is expected to approximate
an objective function of h(x) and the objective function can be split into two parts: the
identity function x and the residue function h(x)− x.

h(x) = x︸︷︷︸
Identity Function

+
(
h(x)− x

)︸ ︷︷ ︸
Residue Function

. (2.45)

According to the universal approximation theorem [108, 109], a nonlinear unit consisting
of a neural network has sufficient ability to approximate either the original objective func-
tion or the residue function, but in practice, the latter is easier to learn [123]. Therefore,
the original optimization problem can be converted into: having the nonlinear cell f(x;θ)
to approximate the residual function h(x) − x, and using f(x;θ) + x to approximate
h(x).

A typical example of a residual unit is given in Figure 2.15b. The residual unit consists
of multiple cascaded (equal-width) convolutional layers and a directly connected edge
across the layers, which is then activated by, e.g., a ReLU function to obtain the output.

Inception network is designed to solve the critical issue of setting an appropriate kernel
size of a convolutional layer by using a block that contains multiple convolutional oper-
ations with different sizes, which is called inception module [124]. An inception network
consists of multiple inception modules and a small number of convergence layers stacked
together. Inception modules simultaneously use convolution kernels with different sizes,
such as 1× 1, 3× 3, 5× 5, and the resulting feature maps are stacked together in-depth
as the output feature maps (shown in Figure 2.15c).

U-Net can achieve very good performance in different segmentation tasks, e.g. for
biomedical applications [125]. It requires only a small number of labeled images and
is highly efficient with low training time. A typical U-Net architecture is shown in Figure
2.15d and it has an encoder-decoder structure, where the left half of the encoder consists
of a number of convolutions, pooling, and down-sampling of the image, and the decoder
on the right side performs the up-sampling and restores the shape of the original image,
giving a prediction for each pixel. Compared to the traditional CNN architecture, U-Net
utilizes skip connections at the same stage rather than directly supervising high-level se-
mantic features. This guarantees that the final recovered feature maps comprise a higher
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quantity of low-level features and permits the fusion of features from different scales for
multi-scale prediction. Moreover, using multiple up-sampling techniques improves the
granularity of the segmentation map, allowing for more precise recovery of edges and
other important information [126].

2.6.3 Recurrent neural network

Feedforward neural networks transfer information in one direction, which limits their abil-
ity to some extent despite their ease of learning. In contrast, biological neural networks
feature more complex inter-neuron connections. Essentially, a feedforward neural net-
work works as a complex mathematical function, with each individual input determining
the corresponding output. In real-world applications, network output is often determined
not only by the current input but also by its past output. Additionally, it is challenging
for feedforward networks to deal with temporal (time-series) or sequential data, such as
videos, speeches, and texts. The length of time-series data is typically short and variable.
However, feedforward neural networks necessitate fixed dimensions for both inputs and
outputs and do not allow for arbitrary changes. Therefore, to process time-series data, it
is necessary to use more capable models with different connectivity architectures.

Recurrent Neural Networks (RNNs) [127] are neural network models with short-term
memory, where neurons receive input from other neurons as well as themselves, creating
a network structure with loops. RNNs have been widely used in speech recognition
and natural language generation. The parameters of RNNs can be learned using the
backpropagation over time algorithm [128]. An example of an RNN is given in Figure
2.16.By using neurons with self-feedback, it is expected to be able to process time-series
data of arbitrary length. Given an input sequence x1:T = (x1,x2, · · · ,xt, · · · ,xT ), RNN
updates the activity value ht of the hidden layer with feedbacks by the following:

ht = f(ht−1,xt) (2.46)

where h0 = 0 and f(·) is a nonlinear function that can be a feedforward network.

Figure 2.16: Schematic illustration of RNN.

Mathematically, Equation 2.46 represents a dynamical system wherein the state of the

46



2.6. DEEP LEARNING AND ARTIFICIAL NEURAL NETWORKS

system undergoes changes over time following a certain pattern. In simple terms, a
dynamical system describes how all points in a given space (for instance, the state space
of a physical system) change with time. Many real-world phenomena such as the swing of
a pendulum or the trajectory of a billiard ball can be elucidated using dynamical systems.
In theory, RNNs can approximate any nonlinear dynamical system.

Long-term dependency problem

RNNs face a significant challenge during the learning process, which is capturing long-
term state dependencies, as they are more vulnerable to the gradient vanishing or explo-
sion problem, also known as the long-term dependency problem [129, 130].

In order to address this issue, a potential solution is to implement a gating mechanism
that regulates the rate at which information is accumulated. This can involve selectively
adding new information and selectively forgetting previously obtained information, to
ensure optimal control and management of the information flow. Such a type of network
can be called a Gated Recurrent Neural Network (Gated RNN). The most popular two
types of Gated RNN are Long Short-Term Memory (LSTM) networks [130] and Gated
Recurrent Unit (GRU) networks [131, 132]. LSTMs contain a number of “cells” in the
hidden layer of the neural network, with three gates: an input gate, an output gate,
and a forgetting gate. These gates control the flow of information needed to predict the
output of the network. GRU is a variant of RNN and is similar to LSTM in that it is
also designed to solve the short-term memory problem. However, instead of having three
gates, it uses only two: a reset gate and an update gate. Similar to gates in LSTM, the
reset and update gates control what and how much information is retained.

Parallelization problem

In addition to the long-term dependency problem, another drawback of RNNs is that
they cannot be computed in parallel. To enhance parallel computation efficiency and
improve long-term dependency capture, the transformer model [133], a self-attention-
based machine learning model for sequence-to-sequence processing, has been introduced
and gained significant popularity. The attention mechanism finds many applications in
different areas of deep learning, including Computer Vision (CV) for sensory field capture
on images and Natural Language Processing (NLP) for feature or token localization. The
transformer model solely comprises of the attention component, free of any CNN or RNN
layers.

The attention mechanism is implemented to account for the fact that the computation
of RNN is constrained to being sequential, which brings two problems: (i) the compu-
tation of time slice t relies on the results of the computation at time t− 1, which limits
the parallelism of the model; (ii) information can be lost during sequential computation,
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although gating mechanisms such as LSTM mitigates the problem of long-term depen-
dency to some extent, they do not perform well for particularly long-term dependency
situations. The transformer model can resolve these two issues. Firstly, it utilizes the
attention mechanism to decrease the distance between any two positions in a sequence
to a constant. Secondly, it is not a sequential structure resembling RNN, leading to en-
hanced parallelism. The overall structure of the transformer model comprises multiple
repetitions of both the encoder and decoder components, which can facilitate the model’s
ability to deal with large amounts of sequential data such as texts.

In the encoder of the transformer, the input data (usually a vector sequence with words
X = [x1,x2, · · · ,xT ]) will first go through a module called “self-attention” to get a
weighted feature Z:

self-attention(Q,K,V ) = V softmax
(K⊺Q√

Dk

)
(2.47)

where Q is the query matrix, K is the key matrix, V is the value matrix, and Dk is
the dimension of Q and K. The softmax function is used to normalize the output to
a probability distribution [22]. These three matrices are obtained by multiplying the
inputs X by three different weight matrices WQ, WK , and W V . The concept of query,
key, and value is taken from the information retrieval system. Using an online search as
an example: when searching for a product on an e-commerce platform, the user inputs
a query into the search engine. The search engine then matches the query with key
information such as product type, color, and description and retrieves the matching value
based on the similarity between the query and the key. The self-attention (Q,K,V ) plays
a similar role to this concept [134].

The embedded Z obtained after the attention operation is sent to the next module of the
encoder, i.e., Feedforward Neural Network (FNN). This fully connected has two layers,
the first with a ReLU activation function and the second with a linear activation function.
For a vector at each position in the input sequence z ∈ Z:

FNN(z) = ReLU(zW 1 + b1)W 2 + b2 (2.48)

where W and b are parameters of the model.

The decoder differs from the encoder in that it has an additional “encoder-decoder at-
tention” module. The two attentions are used to compute the weights of the inputs and
outputs, respectively. The self-attention is used to learn the relationship between the
current word and the previously outputted words. In self-attention, the query, keys, and
values come from the output of the previous decoder block. On the other hand, the
encoder-decoder attention is used to learn the relationship between the current word and
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the encoded feature vector. The query for the encoder-decoder attention comes from the
output of the previous decoder block, while the keys and values come from the output of
the whole encoder.

The transformer model introduced thus far lacks the ability to capture sequential se-
quences. This means that regardless of how much the sentence structure is disrupted, the
transformer will produce similar results because self-attention abandons sequential opera-
tions in favor of parallel computation. To address this issue, the original paper introduces
the feature of position embedding, which injects absolute or relative positional informa-
tion when encoding word vectors so that the model can distinguish words in different
positions [135]. The transformer’s design achieves its biggest performance improvement
by setting the distance equivalence of any two words to be the same. This approach
is highly effective in solving the tricky long-term dependency problem. An illustrative
structure of the transformer is shown in Figure 2.17.

Figure 2.17: Schematic illustration of the transformer architecture.

2.6.4 Graph neural networks

In practical applications, many data are graph-structured. Dealing with such data is
challenging for both feedforward and feedback networks. To address these difficulties, a
type of neural network known as Graph Neural Networks (GNNs) [136, 110] has been
developed. GNNs extend the concept of message passing to graph-structured data, pro-
viding a solution for analyzing graph-structured data. The primary focus of GNNs is the
graph structure, which can be observed extensively in daily life and scientific research, in-
cluding interpersonal relationships, social networks, web pages, research paper citations,
and molecular structure in chemistry. Consequently, these networks have a wide range
of application scenarios.

Since the initial proposal of GNN, various model architectures have been developed.
These models can be classified into different categories including recurrent graph neural
networks, Graph Convolution Networks (GCN), graph attention networks, graph autoen-
coders, and graph spatial-temporal networks [110, 136, 137]. They have made a lot of
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achievements in a variety of fields such as recommendation systems, knowledge graphs,
images, and texts. Although the architectures of these GNNs are different, each has its
own advantages and disadvantages, the core objective is the same, that is, how to extract
features from graph structures.

An arbitrary graph structure can be represented as G(V , E), where V denotes the set of
nodes, E denotes the set of edges, and each edge denotes a connection between two nodes,
which can be directed or undirected. Each node v in the graph uses a set of neurons to
represent its state h(v), and the initial state can be the input feature x(v) of node v.
Each node can update its own state at t-th moment by receiving messages from itself and
neighboring nodes at (t− 1)-th moment (past state), that is:

m
(v)
t =

∑
u∈N (υ)

f(h
(υ)
t−1,h

(u)
t−1, e

(u,υ)),

h
(v)
t = g(h

(v)
t−1,m

(v)
t ),

(2.49)

where N (υ) denotes the neighbors of the node υ, m(υ)
t denotes the messages (informa-

tion) received by the node υ at the t-th moment, e(u,v) is the feature on the edge e(u,v),
f(·) and g(·) are usually non-linear functions, in this case, neural network models.

The formula above represents a technique for synchronously updating the graph, where
all units receive information and simultaneously update their state. For directed graphs,
using RNNs is usually a more effective asynchronous method for updating the graph.
After the entire graph has been updated T times, a representation of the entire network
can be obtained by a readout function g(·):

ot = g
(
{h(v)

T | v ∈ V}
)

(2.50)

and a schematic diagram of this process is shown in Figure 2.18.

Figure 2.18: Schematic illustration of GNN.
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2.6.5 Generative models

Deep generative models are a category of machine learning models that use deep neural
networks to produce data, frequently in the form of images, text, or complex structures.
Their objective is to capture and reproduce the underlying patterns and structures of
the data they are trained on, allowing for tasks like image generation, text synthesis,
and beyond. The most popular examples include Variational AutoEncoders (VAEs) [138,
139] and Generative Adversarial Networks (GANs) [140], which have revolutionized the
fields of computer vision, natural language processing, and creative content generation.
Furthermore, in recent years, other generative models like the flow-based model [141],
diffusion model [142], and Generative Pre-trained Transformers (GPTs) [143] have also
become more and more popular in generation tasks.

Variational AutoEncoders (VAEs) are a family of generative neural network models
that can learn complex probabilistic distributions of data characterized by latent vari-
ables [138, 139]. They are usually seen as an extension to the AutoEncoders (AEs) models
for their architectural similarity, though VAEs actually belong to the families of proba-
bilistic graphical models and variational Bayesian methods whose goal and mathematical
formulation are significantly different from the standard AEs. Both the VAEs and AEs
are composed of two sub-models: an encoder and a decoder. The encoder z = f(x)

compresses (usually high-dimensional) input data x into a low-dimensional multivari-
ate latent variable z while the decoder x′ = g(z) reconstructs the latent representation
z back to the original data space to generate the output data x′. AEs are trained to
minimize the discrepancy between inputs x and their corresponding reconstructions x′,
however, it has the problem of being prone to generate new outputs with unrealistic or
invalid topology.

The basic VAE was introduced to solve this problem by restricting the distribution of
the encoded latent variables z from the input data to the distribution that is used for
generating the output. This indirectly enforces consistency between the model outputs
and the input data. The model can generate new samples that have similar character-
istics as those in the original data set by sampling the latent variables from the learned
distribution. That is why this model is frequently referred to as a generative model.

Let the input data set be D = {x(n)}Nn=1, which is characterized by true data distribution
p(x) and it is the objective to model. In practical applications, data can be exceed-
ingly complex, and its mathematical expression is frequently unknown. This can pose
significant challenges to accurately model the distribution of such data. In probabilis-
tic graphical models, the observed data x is assumed to be generated from some latent
variables z. This generation process can be divided into two steps: first, latent variables
are sampled from their prior distribution pθ(z), and second, data is generated from these
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sampled latent variables pθ(x | z) with θ as parameters. pθ(z) and pθ(x | z) are usually
assumed to be some parameterized family of distributions, such as Gaussian distribu-
tion. Hence, matching the model distribution with the data distribution is equivalent to
maximizing the marginal likelihood pθ(x):

pθ(x) =

∫
z

pθ(x, z)dz =

∫
z

pθ(x | z)pθ(z)dz = Ez∼pθ(z)

[
pθ(x | z)

]
. (2.51)

Given an observed data sample x, its latent variable z can be inferred from its posterior
pθ(z |x). However, this distribution is usually hard to compute and can even be in-
tractable. To make it feasible and speed up the calculus, in variational inference, another
distribution qϕ(z |x) with parameters ϕ from a known family is introduced to approxi-
mate the posterior distribution pθ(z |x) by minimizing the KL divergence [37] between
these two distributions (generally assumed to be Gaussian): DKL

(
qϕ(z |x) || pθ(z |x)

)
.

In this way, the overall problem is translated into the autoencoder domain, in which the
conditional likelihood distribution pθ(x | z) is carried by a decoder neural network model,
while the approximated posterior distribution qϕ(z |x) is computed by another encoder
neural network model. However, the computation of the KL divergence still involves the
same problem of intractable integrals as in the posterior computation. To solve this, the
original formula is deformed to derive an equivalent function to optimize, which is usually
referred to as the Evidence Lower BOund (ELBO) and is written as:

Lθ,ϕ = log pθ(x)−DKL

(
qϕ(z |x) ∥ pθ(z |x)

)
= Ez∼qϕ(z |x)

[
log pθ(x | z)

]
−DKL

(
qϕ(z |x) ∥ pθ(z)

)
.

(2.52)

Maximizing ELBO is equivalent to maximizing the log-likelihood of the observed data
and minimizing the KL divergence at the same time. The above function can also be
interpreted as two parts: the first term is usually called the reconstruction loss between
the input and the output of the network, which is the expected log-likelihood of recon-
structing the same input x flowing through the model; the second term can be seen as
a regularization posed on the posteriors, which will penalize when it deviates from the
prior. To solve the optimization problem of equation (2.52) using the universal gradient
descent approach by backpropagation, a reparameterization trick is needed to remove the
stochastic sampling from the formation and thus make the training process differentiable.
A schematic diagram of this model is shown in Figure 2.19.
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Figure 2.19: Schematic illustration of VAE.

There are many variants to the original VAE model, which have been used to adapt
the architecture to other domains and improve its performance. β-VAE [144, 145] is
an implementation with a weighted KL-divergence term to better discover disentangled
latent variables and interpret these representations. The Conditional VAE (CVAE) [146]
can add label information into the model (transforming the task into a supervised one),
forcing a deterministic constrained representation of the learned data. Some variants
change the structure of latent space to further improve the representation learning, such
as VQ-VAE [147]. There are also some architectures that mix VAEs and Generative
Adversarial Networks (GANs) to obtain hybrid models [148].

Generative Adversarial Networks (GANs) are a type of generative models developed
by Goodfellow et al. [140] which learns to implicitly represent the Probability Distribution
Function (PDF) of a given data set (i.e., pdata). Since pdata is unknown, the result of the
learning process is an estimate of the PDF called pmodel from which a set of samples can be
generated, that is, they learn a function that can sample from pmodel, which reasonably
approximates those from the real data set (pdata). The idea of GANs originated from
game theory, as a two-player game between the generator and the discriminator.

Specifically, GAN trains a generator network G(z) that produces samples xG from la-
tent variables z to approximate real samples xdata, and a discriminator network D(x)

that distinguishes the generated samples from the real samples. GAN will identify the
latent variables of data by training a generator-discriminator model pair in an adversarial
manner. A more vivid analogy of GAN is given by its original author [149] that in the
adversary scenario, the generator can be thought of as a group of counterfeiters who try
to produce fake currency, while the discriminator is analogous to a team of police, trying
to detect the counterfeit currency from the real money. Competitions in this adversary
game would keep pushing both sides to the equilibrium in which the counterfeits are
indistinguishable. When the generator is capable of producing realistic samples at the
equilibrium, the latent variable z would be naturally taken as the “code” of the data. A
schematic diagram of this model is shown in Figure 2.20.
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Figure 2.20: Schematic illustration of GAN.

The training process of GAN consists of a min-max game between two functions, the
generator G(z) and the discriminator D(x) [140]. G(z) maps a D-dimensional latent
vector z ∈ RD from noise distribution p(z) (typically a Gaussian or a uniform distri-
bution) to a point in the space of real data with parameters θ(G) as G(z;θ(G)), while
D(x) represents the probability that x comes from pdata. The aim of the training is to
make the implicit density learned by G(z) (i.e., pmodel) to be close to the distribution
of real data (i.e., pdata). Through this adversarial game, the two players are in constant
competition, where the discriminator attempts to label the real and fake data correctly,
i.e., D(xdata) = 1 and D

(
G(z)

)
= 0, while the generator tries to fool the discriminator

into misclassifying synthetic data as real, i.e. D
(
G(z)

)
= 1. This problem is formally

defined as a min-max game between the generator and discriminator where the objective
function to optimize is V (G,D) :

min
G

max
D

V (G,D) = Ex∼pdata(x)

[
logD(x)

]
+ Ez∼p(z)

[
log
(
1−D

(
G(z)

))]
(2.53)

This competitive game would eventually lead to a Nash equilibrium [150] between the
generator G and the discriminator D. Throughout the learning process, the generator
learns to represent the probability distribution function pmodel which is as close as pos-
sible to the distribution of the real data pdata(x). At the Nash equilibrium, the samples
of x = G(z) ∼ pmodel(z) are indistinguishable from the real samples x ∼ pdata(x), thus
pmodel(z) = pdata(x) and D(x) = 1

2
for all x since the discriminator can no longer distin-

guish between real and synthetic data.

In theory, a Nash equilibrium is achieved after sufficient training, however, in practice,
this is not always the case. GANs have shown instability during training that can lead
to mode collapse [149, 151]. One important improvement to help train the model was
proposed in the work [152], known as Wasserstein GAN (WGAN). According to their

54



2.6. DEEP LEARNING AND ARTIFICIAL NEURAL NETWORKS

research, the training difficulty arises from the divergence being non-continuous with
respect to the generator’s parameters. To overcome this, they suggest applying the earth
mover’s distance (also referred to as the Wasserstein distance) to measure the difference
between probability distributions, which is continuous under reasonable assumptions and
suits better in situations when two probability distributions have no overlaps. This change
can lead to a more stable convergence of GAN, resulting in better results.

A direct extension of the GAN is Deep Convolutional Generative Adversarial Networks
(DCGAN) [153], except that it explicitly uses convolutional and transposed convolutional
layers instead of the multilayer perceptron in the original GAN in the discriminator and
generator, respectively.

In the original GAN, there is no control over what to generate as the output depends
only on the latent variable of random noise. To improve this, a conditional input c can
be added to the random noise z so that the generated image is defined by G(c, z). This
kind of neural network is named conditional GAN (cGAN)[154]. Usually, the conditional
input vector c is directly concatenated to the noise vector z, and the new resultant
vector is used as the input to the generator. Furthermore, an auxiliary output model
can be added into the architecture to enhance the model’s capabilities, such as Auxiliary
Classifier GAN (ACGAN) [155]. On the other hand, there are also unsupervised ways to
improve the latent space, such as InfoGAN [156], which works by decomposing the latent
vector into an incompressible noise part and an informative label part, and encourages
maximizing mutual information.

In addition to the above, variants of GAN (e.g., pix2pix [157] and cycleGAN [158]) are
also usually used to perform translations between two domains, such as image-to-image
translation or style transfer.
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Chapter 3

Methodology and workflow for machine
learning in materials science

This chapter presents a unified methodology and workflow for effectively applying Ma-
chine Learning (ML) in materials research, which provides a foundational understanding
of these ideas by introducing basic concepts and steps supported by an extensive review
of diverse state-of-the-art application examples.

3.1 Generic principle and methodology

ML is the branch of Artificial Intelligence (AI) concerned with the development of algo-
rithms and models that can automatically learn patterns from data and perform tasks
without explicit instructions or rules [159]. While ML models and algorithms have been
known since the 1950s, it is only in the last decade that the exponential increase in
the amount of data, coupled with the great improvement in computing power (especially
GPUs), make modern ML methods achieve state-of-the-art performance in the mainframe
of computer science, and therefore they have attracted wider attention and interest than
ever before. They have also been adopted and extended to many other fields, such as
physics and chemistry, and have achieved good results and are breaking many new fron-
tiers. ML is also increasingly used to assist researchers in exploring material relationships,
predicting novel materials or properties from existing data, and understanding material
chemistry, due to its ability to solve complex tasks in a largely autonomous manner [17].

The fundamental principle of applying ML models in materials research is to predict
the properties of the material system being studied efficiently and accurately, ultimately
replacing costly experiments/simulations and minimizing the repetitive, time-consuming
work in the analysis of characterization data. In materials research, many ML studies aim
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to construct a model from available data on the studied material system. This model can
efficiently map the relationship between material properties. Once developed, the model
allows for quick prediction of the interested aspects of materials (e.g., compositions,
structures, and properties), and can be later applied to large data sets to expeditiously
screen the most promising candidate for new material discovery, to optimize current ones,
or to efficiently guide the search process. These predicted candidates can be validated by
standard processes in materials research, which usually involves performing experiments
to synthesize samples followed by characterization and testing their performance. In
addition, theoretical simulations are often performed to better investigate the underlying
mechanisms. The obtained new results can also be fed back into the existing database
for further analysis or to improve the performance of ML models, allowing for iterative
development of materials until a desired candidate is found. Based on these concepts
and ideas, this work proposes a unified methodology and workflow for applying ML in
materials research, and a schematic illustration is shown in Figure 3.1.

Figure 3.1: Conceptual workflow of applying machine learning in materials science.

3.1.1 Basic workflow

The generic workflow for applying ML techniques in the field of materials science is
illustrated in Figure 3.2. This process involves setting a task, preparing data, training
and selecting a model, evaluating performance, and applying the model to new data sets.
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Figure 3.2: Workflow for building ML models for material science. The initial step is to identify
the task by setting a clear goal for prediction. Next, collect data related to the studied material
system and process it in a way that benefits training the ML model. Evaluate the model and
select the optimal one, and apply it to fast predictions. In addition, the obtained new results can
be added to the existing database for further analysis or to enhance the performance of the ML
model for predicting the next promising candidate (referred to as “active learning”).

(i) Task identification

The first step in applying ML to materials science involves determining the task by set-
ting the target to predict, which commonly depends on the interests of researchers and
the goals of the project. To construct a feasible machine learning model, the selection of
objectives should be potentially learnable from the relevant available data, and precisely
and unambiguously defined. In materials science, common topics of interest include crys-
tal/molecular structure, composition, elemental information, experimental conditions,
other experimentally measured quantities, and characterization data such as microscopy
images.

An inappropriate selection of the prediction target may lead to imprecise results, large
errors, or limited generation capabilities when applied to new samples, restricting the
model’s scope and potentially causing faulty behavior. Furthermore, modeling difficulties
may arise due to uncertain or inaccurate data from both experimental and computational
sources, which in turn can negatively impact the model’s performance. The selection of an
appropriate model for materials science research often depends on the target to predict
and characteristics of the material system being studied. A common objective in this
field is to solve classification or regression tasks. A classification task seeks to learn the
mapping between inputs and discrete (categorical) targets. Many material properties
are considered to be categorical, such as metal or non-metal, superconductor or non-
superconductor, and types of crystal systems like cubic, tetragonal, and orthorhombic. In
contrast, the regression task aims at learning the mapping between inputs and continuous
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numerical targets, such as properties of materials like conductivity, formation energies,
band gaps, shear modulus, and many others.

(ii) Data preparation

After identifying the target, the next step is to collect and organize the data set about
the targeted material system. The quality and quantity of data play an important role
in ML applications within materials science [32, 160]. The data set usually contains
variables related to material samples that correspond to the desired properties of the
materials. These variables are typically known as features, descriptors, or fingerprints
and encompass representations of information such as chemical compositions, atomic or
molecular properties, and material preparation experimental conditions. Domain exper-
tise is necessary for researchers to pinpoint optimal features by taking into account the
characteristics inherent in the materials system under examination.

The data set required for this task typically originates from two primary sources: ex-
periments or computations. Researchers may create data through large-scale and high-
throughput experiments or computations, or acquire it from publicly accessible platforms.
The data must be of sufficient quantity and quality to comprehensively cover all relevant
information pertaining to the materials being studied. The necessary quantity of data
typically varies depending on the chosen ML model according to the task. Nonetheless, a
common guideline is that more data generally leads to better performance, with a general
rule of thumb that more than 50 data points are required for an ML model to function
reasonably well [161]. Certain ML models, such as neural networks, may require a much
greater quantity of data.

In terms of data quality, a high-quality data set should encompass a wide range of mate-
rials and their corresponding physical/chemical properties, preferably with uncertainties
associated with the data. For instance, a model for predicting material properties that
is trained on data from a limited number of chemical elements is unlikely to perform
effectively across the entire periodic table. Likewise, a model that trains on samples
synthesized under low-temperature conditions is not expected to provide accurate pre-
dictions for samples obtained at high temperatures in the sintering process. Generally,
it is important that the collected data should be representative and cover the nature of
the studied materials. In addition, it should be noted that data uncertainty should be
taken into careful consideration as it has a strong impact on results, which can arise from
multiple sources, such as experimental errors, measuring errors, or computational errors
resulting from oversimplified approximations or numerical errors.

Over the past few decades, researchers have developed numerous materials databases
containing experimental data. Some notable examples include the Pauling file database
[162] and the Inorganic Crystal Structure Database (ICSD) [163], which contain crys-
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tal/molecular structures. Furthermore, many other databases such as Pearson crystal
data [164], the Cambridge structural database [165], Crystal Open Database (COD)
[166], [167], ZINC database [168], GDB databases [169], PubChem [170], provide precise
and accurate data on various substances and molecules, allowing researchers to explore
their properties and potential applications. In addition to the crystallographic databases,
numerous other collections of materials data with measured thermodynamic properties
and other physical/chemical properties have also been established [171, 172]. Some more
comprehensive overviews of materials databases can be found in the reviews [32, 173, 174].

A major challenge in constructing high-quality ML models is the limited size and het-
erogeneity of existing experimental data repositories in the field of materials science.
Inconsistencies in experimental conditions and measurement techniques across laborato-
ries can hinder the development of good-performing ML models. Additionally, human
researchers can introduce bias that compromises the diversity and quality of data, for
example, only successful experiment results are published and many details can be hid-
den [175, 176]. Another obstacle is that most of the databases available are commercial
products that require a costly license, and programmatic Application Programming In-
terfaces (APIs) for large-scale data evaluation are rarely provided. Furthermore, the
convenience of human readability present in a considerable portion of scientific publica-
tions poses a challenge to the accurate and convenient retrieval of information through
automated means by computers. Despite this, innovative text mining techniques such as
those presented in works [177, 178, 179, 180] show potential as a solution to this predica-
ment. Finally, high-throughput and combinatorial experiments demonstrate a promising
capacity to produce extensive experimental material databases with diverse properties in
a short duration and are presently under active development [181, 182].

Given the limitations of experimental data, many researchers consider utilizing compu-
tational data sources to construct ML models. The idea of computational simulation
has advanced across various scientific fields over the past century, encompassing a range
of length scales from ab-initio techniques to finite element methods. Density Functional
Theory (DFT) calculations, a widely-used Quantum Mechanical (QM) method in the field
of physics and chemistry, have an advantage over experiments in terms of scalability as
they can be more easily scaled across diverse chemical spaces. Especially due to the recent
efforts of the Materials Genome Initiative [16], large public databases containing calcu-
lated material properties have spread worldwide. Some popular and well-known general-
purpose databases with a high degree of property diversity are the Materials Project
(MP) [15], AFLOWLIB [183], the computational materials repository [184], the Open
Quantum Materials Database (OQMD) [185], the NOvel MAterials Discovery (NOMAD)
repository [186], AiiDA [187]. These databases are usually based on extensive experimen-
tal records of inorganic materials like ICSD, complemented by a group of theoretically
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predicted stable structures, encompassing diverse properties such as relaxed structures,
energetic profiles, electronic structure properties, and more. Some of these databases,
including MP and AFLOWLIB, also incorporate well-defined APIs for rapid and com-
prehensive data retrieval, which is a fundamental need for efficient ML development
[188, 189]. There are also many other specialized databases, such as the Harvard Clean
Energy Project (CEP) [190] and the National Renewable Energy Laboratory (NREL)
materials database [191], which have been used for several ML works which focus more
on energy materials. In addition, many of these databases are equipped with open-source
software platforms that boost data augmentation by conducting high-throughput com-
putations based on the user’s needs to better adapt ML models to diverse applications
requiring more topic-specific data.

Beyond the quantity and quality of the data, the presentation format of data can also
significantly affect the learning of an ML model. An ML algorithm typically learns
more efficiently using a specific format, making the data representation of the material
system of interest a critical consideration. The process of converting raw data into a
more appropriate format (usually numerical values in the form of vectors or tensors, and
they are commonly referred to as features, descriptors, or fingerprints in the literature)
for an ML model to learn is known as feature engineering (featurization), which will be
discussed in detail in a later section 3.1.2.

(iii) Model training

An appropriate model is selected based on the task’s nature and trained on collected
data. There are basically four types of ML tasks - supervised learning, unsupervised
learning, semi-supervised learning (as well as active learning), and reinforcement learn-
ing. In materials science, the supervised learning task is the most common one. This
type allows the model to learn a complicated function that connects input features, such
as structure or composition of the crystal and molecular, to output properties (labels)
such as energies and bandgaps [192, 193, 194]. For unsupervised learning, the goal of
ML is to identify meaningful patterns from the data without relying on ground-truth
labels. They are frequently employed as visualization techniques to aid in the analysis of
high-dimensional data obtained from materials studies [195, 196, 197]. Semi-supervised
learning and active learning methods have been utilized to predict the most promising
candidates, with the goal of reducing the necessary number of experiments or simulations.
For example, Bayesian optimizations-based active learning strategies have been employed
to reduce the required training data [198] and improve performance by optimizing compo-
sition within a given chemical space [199]. In the case of reinforcement learning, models
are often used to realize some kind of controlling agent (e.g., to control the operation
of an instrument/device during experiments), however, they are still relatively less used
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in materials research because of the general lack of the comprehensive environment and
equipment for fully automated experiments [200].

(iv) Evaluation of performance

According to the “no free lunch” theorem [201], no single ML model can consistently out-
perform others when averaged across all problems. The selection of ML models generally
depends on domain expertise and begins with exploratory data analysis. For instance,
utilizing unsupervised learning algorithms like PCA to conduct dimension reduction for
enhancing visualization can aid in comprehending data distribution and inherent fea-
ture properties, leading to more effective model building. In practice, researchers usually
need to try different ML models on the collected data and select the best-performing one
based on evaluation metrics on the validation data set, such as least Root Mean Squared
Error (RMSE), Mean Squared Error (MSE), and coefficient of determination (R2) for
regression task. Constructing an optimal model that accurately fits the available data,
without overfitting or underfitting, is essential for researchers. Furthermore, it is crucial
to carefully consider the hyperparameters that determine the model configuration and
architecture.

On the other hand, although evaluating the performance of the model is critical, it is
equally important to consider the interpretability of the model. In the scientific field, re-
searchers typically prefer models that provide excellent intuitive interpretability and sim-
plicity. These models can yield valuable insights and enhance the researcher’s awareness
of the matter at hand, consequently benefiting the development of innovative materials.
The model’s simplicity can reduce the overfitting problem and enhance computational
efficiency, which is also beneficial for real-time applications. Researchers can also use fea-
ture importance analysis methods (such as tree-based models) to identify critical physical
or chemical parameters that are related to predictive targets [202, 203, 204, 205], or to
provide chemical intuition such as by visualizing hidden layer activations in deep learn-
ing models [206]. These findings can help researchers gain a better understanding of the
behavior of the ML model in a more chemical/physical intuitive way.

(v) Application of the model

The well-developed ML model can then be used to help the development of materials. For
example, desired candidate materials from a large pool can be selected before synthesis by
predicting the properties of the unknown sample. Besides, ML models can be utilized to
direct experimental/computational design, without the need for exhaustively performing
expensive and time-consuming experiments or computations [48, 207, 208, 209, 210, 211,
212, 213, 214]. ML can also accelerate simulation studies, such as predicting energies or
forces for a given atomic configuration using Machine Learning Inter-Atomic Potentials
(ML-IAPs) in DFT simulations [194]. On the other hand, online platforms and services
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should be provided to users, which can facilitate easier accessibility to the developed ML
models, and also allow for continuous updating of models when new data is added.

3.1.2 Featurization

The optimal representation of data depends on the objectives of the ML models and
demands a thorough grasp of both the scientific problem in question and the workings
of the learning algorithm. It is often unclear which representation can achieve the best
performance, and this topic remains an ongoing pursuit [215]. Ideally, effective feature
sets should offer sufficient information about the studied materials system for the target
space to be predicted. In materials science, researchers usually need to perform featur-
ization to identify robust features for representing materials. These features are often
called fingerprints and they serve as the input for the ML model, whose task is to build a
mapping function from these fingerprints to some properties of interest. The definition of
fingerprints varies depending on the materials system, but a critical requirement is that
the feature set should create a unique match with the crystal/molecular composition
and/or structure of different materials at nano-, micro-, or macro-scales. Furthermore,
it is also important to ensure that the feature set is not excessively elaborate or compu-
tationally demanding to facilitate efficient training as well as prediction and reduce the
potential of overfitting. This is of particular significance in materials science, where data
sets are often of limited size. Specifically, it is generally advisable to avoid incorporating
redundant or highly correlated features. For example, when considering an element’s
properties, it may be most effective to select either its atomic number or its group and
period number in the periodic table, as both contain comparable information. Addition-
ally, many elemental properties, such as melting/boiling points and elastic constants, are
highly correlated and are both influenced by cohesive energy [17].

There are many types of fingerprints available depending on the particular issue being ex-
amined and the accuracy requirements of the predictions. Fingerprints can be categorized
based on different criteria, for example, they can be defined at different levels of granular-
ity and can be roughly classified into three tiers when viewed on a scale from coarse to fine:
gross level, molecular level, and atomic level [216]. Gross-level fingerprints are preferable
for obtaining a high-level understanding of the factors behind complex phenomena, such
as the mechanical strength of materials, especially when structure-property insights are of
interest. Further, molecular-level fingerprints can provide insight into crucial atomic-level
structural fragments and are vital for accurately predicting specific properties within a
broad range of chemical materials, including but not limited to electrical properties and
thermal conductivity. Taking another step forward, achieving even higher precision re-
quires atomic-level fingerprints that contain structural information with sub-Angstrom
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resolution, allowing for extreme chemical accuracy, such as prediction of total energies
and atomic forces in DFT simulations, and accurate identification of structural features,
space groups, or phases.

From a different perspective, fingerprints can also be classified based on whether or not
they include structural information of crystals or molecules, which refers to the positional
information of the individual atoms and the bonds between them [17]. Composition-based
features typically do not contain any structural information, and they solely comprise ele-
mental information. Typically, the characteristics of materials are based on the properties
of their constituent elements, including atomic number, atomic radius, density, electronic
structure, electronegativity, etc. For example, Ward et al. [217] demonstrated that the
use of these elemental physical properties as descriptors for materials can effectively pre-
dict various properties, including band gap energy and glass-forming ability. However,
a significant limitation of composition-based features is their inability to distinguish be-
tween crystal polymorphs and molecular isomers/conformers, like diamond and graphite,
which have vastly different physical and chemical characteristics. Composition-based fin-
gerprints are typically limited to situations with constrained structural freedom, such as
when focusing on specific prototypes like perovskite or garnets [218, 219], or when exam-
ining only the ground state polymorph [220, 221]. On the contrary, in many situations,
spatial structure information proves to be vital. Therefore, it is preferred to possess a
feature set that thoroughly describes the crystal or molecular structure. There are estab-
lished guidelines that state the need for crystal and molecular structural features to have
properties of translational or rotational invariance, and remain unaffected by the permu-
tation of homonuclear atoms [222, 220]. The need for invariances can be tackled by using
ML models such as convolutional neural networks. These techniques have exhibited the
ability to address translation invariance to some degree. However, some cases like pre-
dicting potentials for molecular dynamics simulations could demand further restrictions
to ensure differentiability for subsequent computations. Commonly used methods for
featurizing molecular structures are: distance-based features like Coulomb matrix [223],
London matrix [224] along with the Histograms of Distance, Angle, Dihedral (HDAD),
and Molecular Atomic Radial Angular Distribution (MARAD) [215]; connectivity-based
features like Simplified Molecular-Input Line-Entry System (SMILES) [225], Extended-
Connectivity FingerPrint (ECFP) [226], and bag-of-bonds [227]; multiscale-combined fea-
tures such as Atom-Centered Symmetry Functions (ACSF) [228], Smooth Overlap of
Atomic Positions (SOAP) [222], bispectrum coefficients [229], and moment tensors [230].

In addition to all of the above, graph-based featurization has received considerable at-
tention recently as a natural way to represent atoms (as nodes) and bonds between them
(as edges) in molecules, resulting in state-of-the-art performance in predicting formation
energies, bandgaps, and classifying metal/insulator [231, 232, 233, 234].
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The community has developed various open-source software tools to support different
representations of crystals/molecules, for example, RDKit [235], Dscribe [236], Matminer
[237], Materials Agnostic Platform for Informatics and Exploration (MAGPIE) [217],
MatErials Graph Network (MEGNet) [231].

It is often not enough to just build many candidate fingerprints/descriptors to repre-
sent materials. To construct a high-performing ML model, it is also crucial to select
appropriate ones among candidate features. Feature selection is typically determined
by domain-specific experts or through pure data-driven principles. Domain-knowledge-
driven selection relies on researchers’ physical and chemical intuition, which can introduce
bias and lead to suboptimal performance or the omission of critical information. In con-
trast, data-driven methods start by generating a vast candidate set of features, which
are subsequently refined by the model’s performance. To identify promising features, re-
searchers often begin with a limited number of primary descriptors and use them to con-
struct numerous compound descriptors using algebraic combinations. Next, dozens of the
most effective features will be selected from the large candidate pool. This down-selection
is generally performed through automated means, for example, using L1 regularization
(i.e., Least Absolute Shrinkage and Selection Operator - LASSO [238, 239, 240, 241])
and its advanced variant Sure Independence Screening and Sparsifying Operator - SISSO
[242], ordering feature importance [202, 243], genetic algorithms [244], compressed sensing
[245, 246], and information science [247]. However, a significant disadvantage of employ-
ing data-driven feature selection is that the chosen features may not have a strong causal
connection with the target variable and often depend heavily on the hyperparameters of
the model [248].

Another method for feature selection is to utilize dimension reduction algorithms. These
algorithms are used to synthesize new, low-dimensional features by combining the orig-
inal high-dimensional ones, which can represent the most significant information in a
more efficient manner, resulting in improved model performance. PCA [249] is one of
the most frequently used approaches in this field [233]. In addition, manifold learning
techniques [250] are also widely used as they can effectively capture intricate nonlinear
relationships. For example, the autoencoder family [141], t-SNE [89], and UMAP [90],
can learn extremely low-dimensional representations down to 2–3 dimensions. These al-
gorithms are also widely applied in visualizing the elemental embedding vector trained
from materials property [231], structural similarity [251], word embeddings in text min-
ing of scientific literature [180], electronic fingerprints [252], and physical and genetic
interactions visualization [253], etc.
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3.2 Facilitation of materials development

In materials research, many ML studies aim to construct a model that efficiently maps the
process-structure-property relationship of a material. This model enables rapid prediction
of various quantities, such as compositions, structures, and properties of materials, which
can later be applied to large data sets to quickly screen the most promising candidates
for new material discovery, to optimize existing ones, or to guide the search process.
The main idea of utilizing ML models in materials research is to predict the interested
properties of the material system being studied in an efficient and accurate manner,
ultimately replacing expensive experiments and simulations. Figure 3.3 illustrates this
concept and the basic workflow.

Figure 3.3: Concept of ML-based materials development, which works by building a fast predictive
model between materials (represented in corresponding features) and their interested properties.
The well-trained model can be used to explore and screen candidate space efficiently, leading to
a reduced number of required experiments.

The following section presents a review of various application examples to illustrate the
methodology of applying machine learning models in the development of different mate-
rials and their benefits. In section 4.1, this work shows a concrete example application to
demonstrate the benefits of utilizing ML to accelerate the process of developing electrolyte
materials in batteries. Specifically, the aim is to assist researchers in making efficient de-
cisions during experiments, with the goal of reducing the number of attempts needed to
find the optimal combination of parameters for synthesizing the best-performing material
sample. This method concerns the optimization of the experimental parameters, which
expands the range of application scenarios that mainly focus on searching for candidate
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materials in their compositional space.

3.2.1 Property prediction and discovery of materials

The discovery of new materials with high performance is a fundamental goal in the
field of materials science. Currently, the process of identifying new materials involves
a combination of experimental and computational evaluations, including the study of
element substitution and structural modification. However, the current search spaces
for composition, structure, or both are often severely limited, and standard screening
methods will typically consume significant time and resources. Given the advantages
of ML, it is being applied to the evaluation and screening of new materials “in silico”
with the goal of providing suggestions for possible materials. There are two primary ML
approaches to discovering new materials, which either focus on predicting composition or
crystal structure [1].

For predicting composition, this problem can be reformulated as determining which chem-
ical compositions are likely to yield compounds. Predicting stability is typically used to
solve this problem and is often the key aspect in determining the stable existence of new
materials. The formation energy, or energy above the hull of a material, is usually used as
the metric for evaluating stability. Currently, DFT calculations have been demonstrated
as an effective method for accurately estimating formation energies [254]. However, these
calculations remain computationally expensive and are not suitable for traversing large
combinatorial chemical spaces. The need for rapid prediction of formation energies (or
closely related ones such as enthalpies of formation [255]) is in line with the application
area of ML [218, 219, 256, 257]. Common applications include predicting perovskites and
Heusler compounds, where the training data can be obtained from DFT simulations or
experimental measurements [157, 158, 218, 219, 231, 232, 258, 259, 260, 261, 262, 263]. In
addition to predicting the stability, there are also methods that use probabilistic modeling
to directly predict the probability of a compound forming [220, 264, 265].

The prediction and characterization of crystal structures is another crucial topic for the
efficient design of materials. If the crystal structure can be predicted in advance, it
can help avoid unnecessary structure-related studies, such as significantly reducing the
computational resource consumption during DFT calculation due to the enormous set
of possible combinations. ML works mainly by learning empirical rules obtained from
extensive data, which are highly effective in addressing this concern. Examples include
predicting the probability of forming a particular binary crystal structure based on its
elemental composition [266], predicting preferred crystal structure [241, 259, 267, 268],
and classifying crystal structures [242, 269, 270].
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Aside from discovering new materials, a common scenario arises when a material has
already been discovered and is added to the database, but lacks measured or recorded
properties. Prediction of the property of interest for this material is necessary in order
to determine its applicability. To address this issue through ML, a common strategy is
to construct a quick predictive model utilizing available data and map it to the database
to screen for suitable materials [182]. This application has a wide scope, covering various
multi-scale property predictions, such as vibrational free energies [271], defect energies
[272], superconductivity [47, 48, 273, 274], melting temperatures [275], mechanical prop-
erties [257, 276, 277, 278, 279, 280, 281, 282], thermal conductivity [283], catalytic activity
[284, 285], band gap [210, 243, 286, 287, 288, 289, 290, 291], different properties of polymer
dielectrics [292, 293, 294, 295], to name a few.

Another area of interest is the design of new materials using deep generative models,
such as Variational AutoEncoders (VAEs) and Generative Adversarial Networks (GANs)
[296]. These models are particularly well suited for implementing inverse material design,
wherein the desired material properties are initially listed, and then candidate materials
are generated, validated, and evaluated on the fly [297]. Inverse design poses the challenge
of exploring an extremely large chemical space and to solve this problem, generative
models can be used to project the original chemical space into a low-dimensional space
(acting as a dimensionality reduction), which can facilitate the optimization process.
There, different materials can be represented as continuous low-dimensional variables,
enabling simpler design and optimization of materials. Candidates found in the low-
dimensional space can then be inversely mapped back to the original space and later
verified for validity. Typical solutions include the use of (i) GANs to automatically suggest
and evaluate novel molecules for a desired application [192] such as using CrystalGAN
model [298] to generate, screen, and discover new stable hydride compounds for solid-
state hydrogen storage applications, predicting new high-melting-point organic molecules
based on Objective-Reinforced GAN for Inverse-design Chemistry (ORGANIC) model
[299], discovering novel molecules for drug design and development [300]; (ii) VAEs to
search for optimizing functional compounds such as drug-like molecules [301] in a targeted
manner by performing gradient-based optimization directly in the latent space.

3.2.2 Adaptive design and active learning

The previous sections deal with the prediction of various properties. All of these methods
inevitably have the ultimate goal of minimizing the time it takes to find a new optimal
material with tailored properties. To achieve this goal, the number of experiments or
computationally expensive calculations that need to be performed should be reduced, as
these are the most time-consuming and expensive parts of the discovery process. ML is
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also beginning to gain popularity in solving this problem, which is usually referred to as
adaptive design or surrogate-based optimization in this field [302, 303]. These approaches
usually rely on uncertain information to direct the search process such as predicting the
best experimental condition for synthesizing a material. Selecting the optimal candidate
necessitates ML models that provide not only predictions but also associated uncertainty.
In short, the region where the model produces the largest uncertainties usually indicates
that samples from that region contain valuable information that can improve the model’s
performance. Therefore, it is worthwhile to explore.

Usually, this method involves an iterative updating process: the ML model generates
the most promising sample, which is then validated by experiments or computations to
evaluate its performance. The obtained results are then fed back into the model for re-
fitting, leading to further improvement in performance. In the next iteration, the model
will predict the next best candidate, and this process will be repeated until the optimal
solution is found or the maximum number of attempts is reached. In order to decide
which is the most worthwhile sample, an ML model usually needs to balance between
exploration and exploitation [304, 305]. This involves exploiting the information in the
existing data (i.e., samples with the best predictions) and exploring less sampled search
space (i.e., data points that are likely to have large uncertainties). In the early stages
of the iteration process, the goal of the model is typically to thoroughly explore and
learn the search space. As the number of tested samples increases, the performance of
the ML model over the whole search space is expected to improve gradually, and the
associated uncertainties will decrease. An “adaptive design” scheme enables a gradual
shift from exploration to exploitation, resulting in a step-by-step and progressive increase
of training data that effectively searches for the target with minimal attempts.

In general, there are three primary methods for assessing uncertainty in the context of ap-
plying ML models to materials science. The first type of approach is the most popular one
in recent years, which leverages the characteristics of probability distribution-based mod-
els to estimate the uncertainty of the prediction as well as the prediction itself. Bayesian
methods are the most widely used models, among which the Gaussian process regression
model receives the most attention [57]. This model assumes that the available data follow
a Gaussian distribution. Consequently, the output of the model also follows a distribution
instead of a scalar value, allowing its uncertainty to be measured in a straightforward way.
This offers a significant advantage over other methods, which may require additional work
at a significant cost to estimate uncertainties. The mean and variance of these estimates
represent the most likely predicted value and the associated uncertainty of the prediction,
respectively, which are inherent outcomes of Bayesian approaches [306]. The second type
of approach uses a versatile scheme called bootstrapping method [307, 308], the idea of
which is simple but practical: data fluctuations are artificially introduced (e.g., only a
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random portion of the data is used to train the model at a time) to train slightly different
models, and the outputs of these models are collected to obtain uncertainty information.
The mean and variance of the predictions generated by these models can serve as the
prediction and provide information about its uncertainty. In essence, such an approach
attempts to explore the sensitivity of the model to “perturbations” to the given data set.
The third method quantifies uncertainty explicitly through the creation of heterogeneous
models, which are models constructed with slightly varying architectures (or with dif-
ferent random initialization), such as using neural networks models with dropout layers
[309] or decision tree-based models with different architectures, and the distribution of
predicted values is used to estimate uncertainty [310].

The adaptive design has already been widely employed in materials science, for instance,
some researchers use this method to discover, develop, and design targeted materials,
such as NiTi-based shape memory alloys [199], polymers [311], solid-state batteries [312,
313, 314], solar cells [315], and many other material systems [316, 317, 318, 319, 320, 321].
It is worth noting that the process described above is sometimes referred to as “active
learning” in the field of materials science. However, this differs somewhat from the original
concept of active learning in ML, which is more focused on achieving a good-performing
model by training with minimal data. In this case, the primary objective is to identify
the best-performing samples with the fewest experimental trials.

Recently, the adaptive strategy has been also integrated with autonomous high-
throughput experimentation performed by robots with on-the-fly decision-making [32,
322, 323, 324]. This integration holds promise for conducting ML-assisted exploration
of vast material spaces with minimal human intervention. This could significantly accel-
erate the speed of materials discovery, while also assisting with research involving toxic
materials or challenging environments, and mitigating human bias in materials stud-
ies [192, 325]. Some recent examples include the synthesis and crystallization of a new
polyoxometalate compound [325], predicting the outcome of untested chemical reactions
and identifying unusual reaction mixtures [326], automating experimentation for carbon
nanotubes using a robot system [327].

3.3 Prediction of simulation

ML can accelerate computational simulations for complex material systems on larger
length/time scales with high accuracy. This works by directly predicting simulation re-
sults or replacing parts of the expensive calculations, taking advantage of the speed of ML
predictions while maintaining high accuracy. Predictions of simulations can be broadly
categorized as predicting intermediate variables necessary for the simulation process,
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for instance, potentials in Molecular Dynamics (MD) simulations [30], Finite Element
Method (FEM) simulations [328], or directly predicting simulation results, such as the
structural evolution outcomes during Phase-Field Method (PFM) simulations [329]. Neu-
ral network models are commonly used in this field because simulated data is typically
larger, richer, and more complicated than experimental data, often requiring a better-
performing model with a higher degree of accuracy. Another special application is the
use of neural network models to solve the numerical equations directly to obtain results
instead of performing simulations. These ideas are presented in a unified manner and are
illustrated in Figure 3.4.

Figure 3.4: Schematic illustration of the principle of using ML to accelerate simulation: 1.
replacement of some of the intermediate variables in the simulation process that are subject to
expensive calculations; 2. direct prediction or solution of the final results of the simulation.

The following section presents a review of various application examples to illustrate the
methodology and advantages of applying machine learning models in accelerating simu-
lation studies. In section 4.2, this work illustrates an example to verify the effectiveness
of the above concepts by building a fast prediction model for linking process-structure-
property relationships in porous microstructures with a neural network model. This
model can be used to predict the quantity that needs to be solved by computational
simulation and can also be used to solve the inverse design problem efficiently in combi-
nation with other optimization strategies. In particular, this work leverages unsupervised
learning to automatically learn basic structural features from large amounts of digitally
generated microstructures, without the need for manual design of descriptive features. By
combining the learned high-quality representation with transfer learning, it is possible to
generalize to downstream tasks with only a small number of labeled samples, resulting in
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a fast predictive model for interested properties.

3.3.1 Acceleration of simulation

The fundamental challenge in computational materials science is the trade-off between
scale (length and time), accuracy, and transferability. Applying ML to accelerate sim-
ulations generally involves using the rapid predictive capabilities of ML to replace the
computationally expensive and time-consuming parts in the simulation, while maintain-
ing acceptable accuracy.

One of the often-discussed topics is using ML to approximate potentials in MD simu-
lations. Traditionally, semi-empirical potentials (classical force fields) based on physi-
cal rules are favored in MD due to their ability to access appropriate length and time
scales. These potentials make use of prior knowledge about interatomic interactions
under known conditions and use parameterized analytical equations to determine proper-
ties such as total energies and atomic forces. However, they are usually not transferable
across chemistries and are of limited accuracy [30]. On the other hand, potentials based
on quantum mechanical calculations can also be used in MD, e.g. those based on DFT
calculations, are transferable and more accurate. However, they are usually computa-
tionally demanding for large systems and long-time scales. Hence, it is usually limited to
runs of a few picoseconds and simulations with hardly more than thousands of atoms.

Recently, ML models have gained attention for bridging the gap between quantum me-
chanical and semi-empirical methods. These models offer surrogate models that combine
the most favorable aspects of both methods, resulting in the development of ML po-
tentials. Generating ML potentials is essentially a complex regression task that involves
mapping from atomic configuration to properties like potential energy surface or the force
field, or both, by fitting an ML model based on a large training data set of {atomic con-
figuration→ property}, typically containing thousands of high-fidelity DFT calculations.
The prediction can be several orders of magnitude faster than normal calculation and it
has the potential to maintain quantum mechanical and chemical accuracy, in particular
potential energy and reaction enthalpy predictions with small errors < 1 kcal/mol, and
atomic force predictions with errors < 0.05 eV/Å [216]. Other than predicting potentials
for MD simulations, ML techniques can also be used to develop exchange and correla-
tion potentials and energy functionals for DFT simulations [330, 331, 332] or bypass the
problem of solving the Kohn-Sham equations (namely, directly learning the map between
the potential and the density) [333], offering feasible, efficient, and fast ways to provide
highly accurate simulation results.

The key challenge in achieving the aforementioned application is to develop appropriate
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fine-level fingerprinting schemes for the material system. These fingerprints need to meet
specific requirements in simulations, such as maintaining strict invariance with respect
to arbitrary translations, rotations, and exchanges of atoms, as well as being smooth and
differentiable for small variations in atomic positions. Many candidate solutions have
been proposed, including functions-based fingerprints [228, 334, 310], bispectra of neigh-
borhood atomic densities [229], Coulomb matrices (and its variants) [223, 335], Smooth
Overlap of Atomic Positions (SOAP) [222, 336, 337, 332], and others [338, 339]. In addi-
tion to this, highly accurate prediction is also very important, and numerous ML models
have been utilized to accurately map the fingerprints to various material properties of
interest, such as neural networks, GPR, and moment tensor [230]. One of the most suc-
cessful and widely used schemes to date is Behler and co-workers’ [228] approach, which
employs symmetry function fingerprints that are mapped onto the total potential energy
using a neural network. This has been used to study various systems including surface
diffusion, liquids, phase equilibrium in bulk materials, etc. Furthermore, the combina-
tion of Bispectra-based fingerprints and GPR learning schemes has resulted in Gaussian
approximation potentials [229], which have demonstrated good chemical accuracy, versa-
tility, and efficiency. For a more comprehensive review of various fingerprinting schemes
and ML potential/force field predictions, please refer to [340, 341].

Another type of application is more concerned with predicting the results of simulations
directly, rather than the intermediate variables needed for subsequent simulations, such
as predicting the structural evolution process in phase-field simulations [329, 342, 343,
344, 345, 346, 347, 348, 349] and building structure-property relationships [350, 351]. In
some studies, a reduced-order representation of the original simulation domain is used for
dimensionality reduction, resulting in higher accuracy. To learn the “evolution” process,
ML usually needs to build a “dynamic” predictive function that can effectively model
sequential (time-series) relationships, therefore, RNN-based models are the widespread
choice. In other words, the researchers aim to be able to infer future outcomes based on
the first few evolutionary steps of the simulation.

In addition, multi-fidelity learning [352] is also gaining popularity in accelerating simula-
tions by bridging the gap between results obtained with less accurate but faster methods
(low fidelity) and those obtained with slower but more accurate methods (high fidelity).
The results derived from low-fidelity computations can be used as additional information
to train machine learning models to predict their corresponding high-fidelity property
values. This type of approach, known as multi-fidelity learning, is used in various do-
mains to overcome computationally demanding engineering design problems [353], but
has only recently emerged in the field of materials informatics [289].
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3.3.2 Physics-informed neural networks

Purely data-driven ML models may fit observations (training data) accurately, but their
predictions may be physically inconsistent or implausible due to extrapolation or ob-
servational bias. As a result, this can lead to inferior generalization performance. In
contrast, another branch of ML applications integrates fundamental physical laws and
domain knowledge into ML models. This provides useful prior information that includes
robust theoretical constraints and inductive biases, in addition to observational evidence
(training samples). A recent example of this learning philosophy is the family of Physics-
Informed Neural Networks (PINNs) [354]. This approach is primarily geared toward
conventional numerical domains, with a particular emphasis on addressing issues con-
nected to Partial Differential Equations (PDEs), including equation solving, parameter
inversion, model detection, control, and optimization. One of the main objectives of de-
veloping these algorithms is to enhance the generalization ability of ML methods that are
more understandable and able to withstand imperfect data such as missing or noisy values
and outliers. By utilizing prior knowledge and constraints, these methods can provide
accurate and physically consistent predictions, even for extrapolation tasks [355, 356].
The primary use of PINNs is solving PDEs, specifically for Computational Fluid Dynam-
ics (CFD) [357]. It is particularly interesting to note that for this particular application,
PINNs are trained without any training data but only through initial and boundary
conditions. The model then solves the equation by minimizing specifically designed loss
functions for obtaining the results [354]. The principle of this process is to approximate
PDE solutions by minimizing a specially designed loss function that incorporates physical
constraints like residual terms of initial and boundary conditions and PDE residuals at
specific points in the region (usually referred to as “collocation points”). After training,
an inference can be performed to obtain spatio-temporal values at these points [358].

Examples of successful applications in materials development include identification and
precise characterization of a surface crack in a metal plate [359], extraction of mechanical
properties of 3D printed materials [360], analysis of internal structures and defects [361],
design of composite materials [362], improvement of MD simulations [363], and many
other systems [364, 365].

3.4 Enhanced analysis of characterization data

ML is a popular tool for analyzing and interpreting characterization data, which can
provide valuable and intuitive insights. With the development of modern characterization
techniques, the accuracy of measurement data increases rapidly and the amount of data
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explodes, which renders traditional analysis methods obsolete and time-consuming. For
instance, interpreting and labeling experimental images (such as Scanning Transmission
Electron Microscopy - STEM) [366] and spectra (such as X-Ray Diffraction - XRD) [367]
typically demand significant expertise and extensive time investments from researchers to
accomplish. ML models adapted from other application areas, including factor analysis,
computer vision, and speech recognition, can be advantageous in simplifying analysis
and expediting the process. Based on the data dimensions, characterization data can
be categorized into spectral data (usually 1D) or image data (usually 2D or 3D). The
concept of applying ML in analyzing and interpreting characterization data is shown in
Figure 3.5.

Figure 3.5: Schematic illustration of applying ML in analyzing and interpreting characterization
data for better information retrieval from spectral data or image data.

The following section presents a review of various application examples to illustrate the
methodology of applying machine learning models in analyzing various kinds of char-
acterization data. In section 4.3, this work demonstrates a robust analytical method
that enables researchers to analyze information from measured spectral data of lithium-
compound materials in an intuitive way. A robust workflow is proposed and the study
comprehensively compares the results of different machine learning methods based on a
limited amount of data. In particular, the original problem is analyzed from multiple
points of view and modeled from both classification and regression perspectives, breaking
the traditional single modeling approach. The developed models can assist researchers in
recognizing different lithium compounds and identifying compositions from mixture sam-
ples. In addition, chemical information that corresponds to the properties of the materials
can be obtained through further analysis of the model, enhancing their interpretability
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and validity.

3.4.1 Spectral data

Spectroscopy is a field of study that examines the spectra of electromagnetic radiation
as a function of wavelength or frequency using spectrographic instruments and other
methods to learn about structural, dynamic, and compositional properties of materials.
Spectroscopy techniques, therefore, serve as a critical tool for characterizing materials.
Spectroscopic analysis usually involves fitting a quantitative physical model, for example,
Rietveld refinement for XRD, or more empirical approaches, such as fitting linear com-
binations of reference spectra, as is the case with X-ray Absorption Near-Edge Structure
(XANES) [368]. Typically, these approaches require considerable expertise and profi-
ciency of the researcher. In recent years, the increasing use of advanced instrumentation
and high-throughput experiments, along with the surge in data amount, has presented
several challenges for dealing with the “big data” scenario. However, these advances
also provide opportunities for researchers to use ML techniques to automatically extract
knowledge from the data, potentially reducing the repetitive and time-consuming work
involved in the analysis process.

In the analysis of spectral data, ML is commonly employed to aid in the extraction of
information, specifically crystal structure and mixture components. The most prevalent
usage is in XRD, a well-established technique for characterizing the crystal structure
of materials. Because ML models typically require large amounts of data for training,
the majority of research in this field has centered around the use of extensive simulated
XRD data. Usually, researchers are interested in extracting or predicting structural
information from XRD spectra, such as space group prediction [367], crystal classification
[369, 370], phase identification from samples consisting of a mixture of several phases [371],
and others [372]. ML usually requires data cleaning and processing, including duplicate
checking. Therefore, it is crucial to give extra attention to the XRD data, considering
that the database (such as ICSD [373]) may contain many duplicates that have to be
filtered out to avoid information leakage for a fair evaluation. Furthermore, the problem
of imbalance in the types of structures in each space group can also lead to difficulties.
Additionally, in order to improve the model’s performance on XRD data, researchers
have also designed several special data augmentation methods to take into account the
nature of XRD, such as adding extracted experimental spectral noise to the calculated
XRD [374], using an ensemble of models to reproduce experimental variations (missing
peaks, broadening, peak shifting, noise) [375, 376], or proposing a modular neural network
architecture to reduce overfitting that allows the combination of diffraction patterns and
chemical data to provide a ranked list of predictions [377]. Some successful examples
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include the determination of structural parameters [378], classification of materials based
on phases or structural properties [379, 380], automation of phase diagram generation
using high-throughput XRD measurements for various compositional ranges [20, 381,
380, 382], and interpretation of multiphase [383].

In addition to XRD, ML methods have also been applied to other spectral data,
for example, to analyze the structural information on different scale levels. This in-
cludes predicting coordination numbers from X-ray Absorption Spectroscopy (XAS)
[384, 385, 386, 387, 388], discriminating and estimating the concentration of compo-
nents in a mixture from vibrational spectroscopies such as Raman and InfraRed (IR)
waves [389, 390, 391, 392, 393, 394, 395], classifying space groups from Pair Distribution
Function (PDF) data [396].

On the other hand, the inverse problem of the above, i.e., predicting the spectroscopy
itself, where the data can be viewed as a high-dimensional material property of the struc-
ture, is also interesting. This is common in molecular science, where the predictions of
infrared spectra [397] and molecular excitation spectra [398] have attracted wide interest.
Examples are prediction of infrared spectra directly from molecular structure descriptors
using neural networks [399, 400], prediction of phonon Density Of State (DOS) spectra
[401] from atomic positions and element types [402, 403], and prediction of XAS spectra
[404, 405].

In addition to learning structure-spectra or spectra-structure relationships, some studies
have also explored the possibility of relating spectra to some other material properties,
such as predicting catalytic properties from electronic DOS spectra calculated from DFT
[406], mapping between the image and the UltraViolet-visible (UV-vis) spectrum of the
material [407], and predicting gas adsorption isotherms [408, 409]. In addition to predic-
tion problems, ML methods can also be used to assist in the analysis of complex char-
acterization data. Many MultiVariate Analysis (MVA) techniques [410], such as PCA,
and Non-negative Matrix Factorization (NMF), are showing great promise for analyzing
complicated high-dimensional spectral data. Among them, NMF is a method closely re-
lated to PCA in that it takes a set of patterns as a matrix and then compresses the data
by reducing the dimensionality by finding the most important components. In NMF, a
constraint is applied that all the components and their weights must be strictly positive.
This constraint often corresponds to many real physical situations, for instance, spectra
typically possess positive values, as do the weights (amounts) of chemical elements. As
a result, NMF can often result in decomposed components and weights that are more
interpretable and physically meaningful. Examples include decomposing mixture spectra
to recover individual components [411], and analyzing multi-component systems such as
Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) [412].
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3.4.2 Image data

With numerous image-based techniques available for material characterization, re-
searchers have used a variety of Computer Vision (CV) techniques, resulting in a wide
range of applications. Image data from characterization techniques often span multiple
length scales and contain information about local atoms, defect distribution as well as
type, material composition, microstructure, etc. Technological advances in characteri-
zation facilities have led to an exponential increase in the number of image data sets,
requiring an automated high-throughput method to analyze these large and complex
data, ideally in real time. Good overviews of ML applications in different characteriza-
tion techniques can be found in papers [413, 174].

According to the needs in image analysis, the applications can be roughly divided into
image classification, prediction of properties of interest, object detection, instance or
semantic segmentation, image enhancement to facilitate further analysis, auto-tuning of
experimental imaging parameters, microstructure representation learning, and so on. The
following are some examples of typical applications.

Classification and regression are the processes of predicting discrete or continuous vari-
ables of the subject being photographed. For classification applications in image data,
researchers can classify different material systems such as particles and fibers in Scanning
Electron Microscope (SEM) images [414], detect cracks in macro-scale materials images
[415, 416], identify the space group of simulated diffraction patterns for crystal structures
[270], classify symmetries in simulated scanning tunneling microscope measurements of
2D material systems [417], predict the corresponding space group for a given Electron
BackScatter Diffraction (EBSD) pattern [418], etc. For regression applications, ML mod-
els can be used to predict interested property on noisy and heterogeneous industrial
data sets of limited size [419, 420], predict the Euler angles representing the orientation
in EBSD [421, 422], learn crystal plasticity from images of strain profiles [423], predict
the strain distribution across a given 3D microstructure [424], and many other systems
[425, 426].

In addition to classifying or predicting certain quantities from an image, object detection
techniques can be used to detect/localize individual instances of objects in the image.
The traditional approach is to manually design features to anchor the target object that
relies heavily on expert knowledge such as setting thresholds, edge detectors, or other
hand-crafted filters, which cannot effectively deal with noise and other artifacts in the
data, making manual analysis time-consuming or even impractical. The ML approach, on
the other hand, works by providing the model with a large number of example detections
and making the model learn its own criteria to perform the task. This technique has
been used extensively to detect individual atoms and defects in microstructural images of
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various material systems, including detecting atoms in simulated atomic resolution TEM
images of graphene for autonomous defect characterization [427], detecting and tracking
atomistic defects in sequences of atomic resolution STEM images of WS2 [428], detecting
vacancies and dopants from STEM images [429], identifying defects in transmission and
STEM images of steel including dislocations, precipitates and voids [430], and so on
[431, 432, 433, 434].

Another closely related field to target detection is image segmentation. This process
involves recognizing objects at the pixel level (in other words, classifying each pixel).
Pixel-wise image segmentation is believed to be able to provide more detailed information
about the size, position, orientation, and morphological features present in images. It has
received much attention in materials science research, such as instance-level segmentation
of individual particles and satellites in dense powder images and further acquirement of
morphological statistics [435], segmentation of martensite, bainite, and pearlite in SEM
images of carbon steels [436], segmentation of microstructural constituents in the ultra-
high carbon steel database [437], characterization of dendrite growth from computed
tomography data [438], and segmentation of components in lithium-ion batteries [439].

ML can also be used to improve the quality of image data, facilitating further analysis
and reducing the time required to acquire information from images. For example, super-
resolution techniques can be used to artificially increase the resolution of TEM/SEM
images, which require long dwell times and can introduce undesired artifacts during
high-resolution image acquisition. Successful examples include mapping low-resolution
SEM images to higher resolutions for carbon samples containing gold nano-particles [440],
reconstructing full STEM images from corresponding partial images [441], and enhancing
SEM imaging of lithium Nickel Manganese Cobalt (NMC) oxide particles [442]. Besides,
ML can also be used to reduce noise such as for tomography images [443], benefit further
analysis by data augmentation through style transfer [444], generate synthetic image
using GANs [445], colorize images [446], refocus SEM images [447], and so on.

ML is also employed for automating or improving the process of capturing images, such
as automating the tip conditioning for Scanning Probe Microscopy (SPM) experiments,
i.e., monitoring artifacts resulting from degradation in tip quality and automatically re-
conditioning the tip [448], autonomously correcting the defects and adjusting parameters
during manufacturing for 3D printing [449], detecting chemicals, materials, and transpar-
ent vessels in a chemistry lab setting for autonomous experimentation [450].
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3.5 Information extraction from literature

In addition to accelerating the process of developing materials, ML can aid researchers
in rapidly extracting valuable information from extensive documentation, which can con-
siderably diminish manual labor. Although numerous scientific literature can offer re-
searchers a wealth of information, navigating through it is becoming increasingly difficult
due to the abundance of journals, publications, and databases. Text mining, a branch of
ML techniques, has emerged as a favored approach for identifying and extracting data
from unstructured text sources such as papers. This concept is illustrated in Figure 3.6.

Figure 3.6: Schematic illustration of using ML to perform text mining from scientific publications
for extracting structured, useful information.

Text mining makes use of a variety of sophisticated and specialized techniques, such as a
combination of traditional text processing and Natural Language Processing (NLP) tech-
niques. This method can be used to transfer knowledge between different scientific dis-
ciplines/domains, analyze high-throughput experiments, develop specialized databases,
and extract logical facts and relationships in a structured form [179]. The extracted in-
formation can be utilized to aid researchers in making objective inferences within general
decision-making contexts, including the design of experiment [451].

A large portion of the current knowledge in the field of materials lacks structure and
is only presented in the form of unstructured text, tables, or images in various publica-
tions. Ideally, it is recommended to convert publications from a document format, often
PDF, into a machine-readable format, such as HyperText Markup Language (HTML)
or JavaScript Object Notation (JSON), for easier parsing. In general, using text mining
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techniques to analyze text data involves several steps, including retrieving the raw data,
performing appropriate forms of “preprocessing” such as tokenization, word stemming,
and lemmatization, various forms of feature extraction such as word embedding as vec-
tors, and finally train ML models for information extraction. There are many challenges
in this area, including resolving long-term dependencies between words and phrases across
multiple sentences and paragraphs during the analysis of very long text content. Besides,
copyright restrictions can often present challenges as access to or extraction of various
scientific data sets, such as peer-reviewed scholarly articles and patents, are often lim-
ited. Another challenge in extracting text information stems from the specialized nature
of materials science, which involves complex chemical formulas, scientific terminology,
and notations like oxidation states or symbols for physical units, as well as mathemat-
ical equations. These factors may contribute to erroneous parsing of data. To solve
this issue, specially designed software is needed to perform good text preprocessing to
enhance the identification of chemical formulas and elements. Several software libraries
are under active development in this community, for example, ChemDataExtractor [178],
ChemicalTagger [452], MaterialsParser and Borges [453, 454], and mat2vec [180].

NLP methods have also been applied to extract information, search, and discover ma-
terials. One of the primary applications of NLP techniques involves retrieving data sets
from published research texts. Collecting and retrieving data from literature has typi-
cally required researchers to possess extensive knowledge and experience, as the process
involves manually entering information to create a complete data set, which can be both
laborious and time-consuming. Successful examples of applying NLP to extract data
sets include Curie magnetic phase transition temperatures [455], battery properties [456],
UV-vis spectra [457], and surface and pore characteristics of metal-organic frameworks
[458]. In recent years, DL-based NLP approaches such as the use of RNN-based mod-
els and transformer-based models, are becoming popular and they have been used to
extract various categories of information [459], in particular, materials synthesis informa-
tion [453, 454, 460]. The mined data can be further used to predict synthesis routines
for titania nanotubes [179], different binary and ternary oxides [461], and perovskites
[462]. Additionally, the codified databases can be further used to train other ML mod-
els to screen materials with target functional properties, such as the discovery of HoBe2

with large magnetocaloric properties [463], and the design of dye-sensitized solar cells
[464]. Another interesting use case involves predicting the suitability of untested mate-
rials for specific applications, such as identifying potential thermoelectric materials by
calculating similarities between their compositions and application keywords [180]. Ad-
ditionally, there is potential to explore under-researched areas of metallocene catalysis
through similar predictive methods [465].

More recently, Large Language Models (LLMs), which can systematically analyze natural
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language and possess a good understanding of human language text, have been utilized
for analyzing publications [466]. Their typical applications include generating formatted
information such as tables or structured templates. For instance, the fine-tuning of a
GPT-3-based LLM enables the direct conversion of scientific text to structured tabular
data stored in JSON format [467]. To facilitate data extraction from literature by LLMs,
there are two primary strategies: utilizing documents as external databases for LLMs
to query (more general-purpose information retrieval), or retraining LLMs on collected
data sets to enhance their accuracy (better performance for specific domains or tasks).
BERT [468] and GPT [143] are two famous branches of LLMs, based on which new
possibilities for extracting information from literature are emerging. Examples include
MatSciBERT [469], Battery-Bert [470] and large polymer corpora [471]. Among LLMs,
ChatGPT, an AI chatbot developed by OpenAI and released in late 2022, has perhaps
received the most attention for its crushingly competitive performance compared to other
models (although it is a commercial, non-open source one), and it has been used to extract
scientific information from literature [472, 473] or to act as a research assistant [474]. Such
models have the potential to greatly accelerate the research process by helping researchers
extract the data they need from the vast amount of literature and breakthroughs are
expected in the coming years to disclose data and knowledge currently hidden in scientific
publications through the utilization of these techniques.
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Chapter 4

Results of machine learning
applications in materials science

This chapter presents three example studies that demonstrate the advantages of using
ML to facilitate materials research. These studies cover typical application scenarios in
materials research, namely, experiment, simulation, and characterization, and illustrate
how ML methodologies can be applied in solving different problems from predicting in-
terested properties to analyzing complicated data in the materials studies. In the first
study, an optimization algorithm is used to design the experimental parameters for the
sintering synthesis of electrolyte material in a solid-state battery. The goal is to mini-
mize the time and trials required to find the optimal experimental parameters. Similarly,
this approach is extended to determine the optimal parameters for generating digital
porous membrane microstructures. In the second study, a neural network-based model
is used to develop a rapid prediction model to establish the process-structure-property
relationships for digitally generated porous membrane microstructures. The third work
focuses on the analysis of characterization data measured from the time-of-flight sec-
ondary ion mass spectrometry of lithium-compound materials, where different machine
learning techniques are investigated and compared.

4.1 Design of experiment for electrolyte in battery

Lithium-ion batteries with solid electrolytes provide greater safety, energy density, and
long-term performance, representing a promising alternative to traditional liquid elec-
trolyte batteries. One potential solid electrolyte candidate is Lithium Aluminum Tita-
nium Phosphate (LATP), given its high Li-ion conductivity. To systematically evaluate
LATP’s performance, it is necessary to investigate the influences of experimental param-
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eters on materials design. In this section, a materials design approach utilizing Machine
Learning (ML) is used to design experimental conditions for synthesizing LATP. Exper-
imental parameters are varied with a focus on studying the tolerance toward possible
deviations in precursor concentration, sintering temperature influence, and holding time.
Specifically, the study compares models created using diverse design selection strategies,
based on training data collected from previous laboratory experiments. The optimal
model is then selected to design new experiment parameters, followed by measuring the
performance of newly synthesized samples. To gain a deeper understanding of the mech-
anisms behind the high ionic conductivity displayed by these samples, the resulting phase
compositions and crystal structures are analyzed using X-ray diffraction. In addition to
this, the microstructures of sintered samples are also investigated using scanning electron
microscopy. This research illustrates the benefits of utilizing ML to design experimental
parameters for synthesizing desired materials, which can effectively reduce the number of
required experiments. These results have been been published in [475] and the following
sections are based on this publication. The overview of this study is shown in Figure 4.1.

Figure 4.1: An overview of ML-assisted design of experiments by applying the Bayesian opti-
mization method. It consists of five main components and forms an iterative loop: (i) collecting
initial data points from experiments; (ii) fitting an inference model (e.g., a Gaussian process
regression model) based on the existing data set; (iii) predicting the property in the search space
along with uncertainty, taking both prediction (of the best known so far) and uncertainty (i.e.,
exploitation vs. exploration) into consideration for selecting the next optimal experimental con-
figuration which has the potential to yield a better-performing material sample; (iv) performing
the experiment to synthesize new sample and (v) validating the new sample’s performance using
different characterization techniques. The resulting sample is fed back into the initial training
data set for the next iteration. Reproduced with permission [475].

4.1.1 Materials and data

Currently, Lithium-Ion Batteries (LIBs) are widely used, as they show great promise
as an effective energy storage technology for a wide range of applications from mobile
devices to electric vehicles. However, commercial LIBs confront hidden risks which are
due to the utilization of fluid electrolytes, which may cause a variety of safety and per-
formance problems, such as the potential ignition of the flammable solvent. To address
these problems, lithium-ion batteries with solid electrolytes have the potential to be safer
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and longer-lasting alternatives with higher energy density compared to conventional liq-
uid electrolyte batteries by allowing the use of high-voltage cathodes, which can decrease
flammability, and suppress dendrite formation [476]. However, the principal challenge of
solid electrolytes is their restricted ionic conductivity, which is typically many orders of
magnitude lower than that of liquids (1×10−2 S cm−1) [477]. The feasibility of these con-
cepts depends on the applied solid-state electrolyte, for which a wide range of materials is
being considered [478]. One of the promising materials is the family of lithium-containing
NASICON (sodium superionic conductor) materials, such as LATP, Li1+xAlxTi2-x(PO4)3

[479]. They have received wide attention due to their high ionic conductivity, low cost,
and stability [480].

The ionic conductivity of LATP is particularly high for the composition
Li1.3Al0.3Ti1.7(PO4)3, and several studies have reported values up to 1 × 10−3 S cm−1

[481, 482, 483, 484]. Li1.3Al0.3Ti1.7(PO4)3 ceramics have been successfully synthesized by
different routes, such as calcination of stoichiometric mixtures of oxide precursors [485],
glass crystallization [483], or sol-gel [484]. However, these studies are usually limited to
laboratory scale, i.e., in small quantities and under experimental environments. In order
to make ceramic electrolytes usable and competitive in the next generation of batteries,
it is necessary to identify processing routes for upscale production. The sol-gel route has
already been adopted successfully for the mass production of many materials for indus-
try and therefore provides a good basis for LATP synthesis. For the sake of maintaining
quality and reproducibility, it is necessary to identify the critical processing parameters.
As the first step towards the upscaling of LATP production via the sol-gel route, the
influence of possible deviations in the concentration of the precursors was investigated
in a previous study [486]. This applies especially to phosphoric acid which is difficult to
specify due to its hygroscopicity. In the case when precursors are not exactly stoichio-
metric, this can easily lead to the second-phase formation. In particular, for LATP, such
second phases have a great influence on the densification and ionic conductivity. Hupfer
et al. [487] report how the second phases AlPO4 and LiTiOPO4 can have impacts on the
properties of LATP. In this work, the synthesis of LATP is studied by varying concen-
trations of the reactants, dwell time, and sintering temperature while microstructures,
phase compositions, and ionic conductivities of the samples are further analyzed.

A key challenge in developing better materials is the large potential search space for
optimal chemistries and processing conditions. Traditionally, the development of new
materials requires a vast number of experiments guided by intuition, trial, and error, and
is complemented by simulations and other tools to analyze the mechanism or optimize the
design [488]. As a result, this process is time-consuming and challenging, which is often
accompanied by detours or serendipity. Recently, the use of machine learning methods to
accelerate materials development has received a lot of attention and many advances using
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this kind of technique have been made in the study of solid-state electrolytes, such as
screening fast ion conductor candidates in supervised [214] or unsupervised [489] manner,
filtering electrolytes in consideration of suppression of dendrite formation in lithium metal
anodes [490], and developing good candidates combining theoretical calculations as well
as experimental data sets [491].

In this study, LATP powders are prepared following a modified sol-gel synthesis route
described by [484]. Appropriate amounts of lithium acetate Li(C2H3O2) · 2 H2O (purity ≥
99%, Alfa Aesar GmbH & Co KG, Germany), aluminum nitrate Al(NO3)3 · 9 H2O (purity
≥ 98.5%, Merck KGaA, Germany), titanium-isopropoxide Ti[OCH(CH3)2]4 (purity ≥
98%, Merck KGaA, Germany) are used as precursors. Lithium acetate and aluminum
nitrate are dissolved in distilled water under constant stirring. Titanium-isopropoxide is
then added dropwise to the solution. By adding the phosphoric acid slowly through a
drip funnel, a white gel forms, which is then dried at room temperature for 24 hours.
The subsequent heat treatment is performed in two steps: first, samples are heat treated
at 400 °C for 6 hours to achieve the precursor formation and to eliminate reaction gases;
second, samples are then processed at 900 °C for 8 hours to complete the reaction to
crystalline LATP. One sol-gel batch is prepared with all precursors in stoichiometric
quantities (marked as 0.0 wt%). To test whether the sol-gel route is tolerant against
possible deviations in the concentration of the precursors, different sol-gel batches are
also explored with either an excess up to +7.5 wt%, or a deficiency up to −15.0 wt% of
phosphoric acid compared to the stoichiometric composition.

To ensure a high sinterability, the obtained powders are further processed in a planetary
ball mill. The pellets are formed by uniaxial pressing and then further densified by cold
isostatic pressing at 400 MPa. All pressed samples have a green density of approximately
62 % relative density. Samples are sintered at temperatures ranging from 850 to 1050 °C
and with isothermal sintering time between 30 and 540 min. After sintering, samples
are cooled down to room temperature in a furnace, and their corresponding densities are
determined by Archimedes’ method. For the ionic conductivity measurements, impedance
analysis is performed at room temperature over the frequency range from 0.1 Hz to 1 MHz
with an AC amplitude of 50 mV in the frequency response analyzer (AMETEK GmbH,
VersaSTAT 4, USA). For further details of the experimental part please refer to the
previous work [486].

To apply machine learning methods in guiding the experimental study, 80 initial data
points from the aforementioned phosphoric acid deviation study are used to train the
Gaussian Process Regression-based Bayesian Optimization (GPR-BO) model. These data
points are sampled from an equidistant grid from −22.5 wt% to +7.5 wt% deviation
of phosphoric acid compared to the stoichiometric composition. Sintering parameters
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Table 4.1: Search range of experimental parameters.

Iteration 1–2 Iteration 3–4

Experimental parameters Value range

Rel. amount of acid wt% -22.5, -15.0, -7.5, 0.0, 7.5 -22.5, -18.75, -15.0, -11.25, -7.5, -3.75, 0.0, 3.75, 7.5

Temperature ◦C 800–1100 (step size 50) 800–1100 (step size 25)

Time min
10, 20, 30, 40, 50, 60, 90,
120, 240, 360, 480, 540

10, 20, 30, 40, 50, 60, 90, 120, 150, 180, 210, 240,
270, 300, 330, 360, 390, 420, 450, 480, 510, 540

with temperatures ranging from 800 °C up to 1100 °C in steps of 100 °C and isothermal
durations of 10, 30, 60 and 480 min are applied. To further investigate the effect of these
synthesis and sintering conditions on the properties of LATP, the machine learning model
is used to predict promising candidates to investigate. Considering the long time needed
to synthesize samples with different acid concentrations, the experimental parameters
available to the model are expanded in two steps: for the first two iterations (1–2), the
model is only allowed to make a choice among the available experimental settings; for
the last two iterations (3–4), the range of allowed acid concentrations is expanded. Such
kind of condition setting is derived from the results of previous grid search study and
offers an efficient compromise that would address the otherwise excessively large search
space. In total, 22 new samples have been synthesized in 4 iterations following the model’s
predictions. Detailed settings for the experiments are listed in Table 4.1.

4.1.2 Choice of Bayesian optimization strategy

Bayesian Optimization (BO) based on the Gaussian Process Regression (GPR) model is
used to design experimental parameters in this work. It is a class of machine-learning-
based optimization methods that focuses on solving the problem argmax

x∈X
f(x) within

a domain X ⊆ RD as the bounding box. Its ability to optimize expensive black-box
derivative-free functions makes BO extremely versatile [93]. Recently, it has become
extremely popular for tuning hyperparameters in machine learning algorithms [94] and
for the design of experiments in materials science.

In order to make full use of our experiment facilities, it is better that the model can
suggest several samples simultaneously in the pre-defined search space in each iteration
of BO. However, one of the limitations of BO is that the acquisition is myopic and permits
only a single sample per iteration [492]. To alleviate this problem, the so-called Kriging
believer approach [493] is used to suggest 5–6 samples at the same time during each
iteration of BO in this study: to suggest more than 1 sample in each iteration, this
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approach (temporarily) adds each predicted sample to the training data set for updating
the model, and then predicts another sample subsequently.

As there is no clear indication of which optimization strategy to use (according to the “no-
free-lunch theorem” [494], there is no universal best-performing model for all problems),
optimization efficiencies of BOs are compared with random search, Expected Improve-
ment (EI), Upper Confidence Boundary (UCB) and Probability of Improvement (PI)
strategies with the 80 initial points from the grid search study. The strategy of achieving
the maximum ionic conductivity (1.09 × 10−3 S cm−1) with the least number of average
iterations is considered to be optimal. During the experiment of comparing these strate-
gies, random noise is added to the observations, and the sample is allowed to be picked
more than once (namely, with replacement). In detail, a given number of samples is
randomly selected from the training data with replacement as initial data points, then
the model is trained using a given acquisition function and the total number of extra
tries (after initial random picks) needed to find the best sample (that is, the one with the
largest ionic conductivity) in the grid search study is counted. The model is only allowed
to make up to m attempts (m = 80 − number of initial data points) to find the maxi-
mum value. This process is called a “virtual experiment” and is repeated 200 times with
different sets of randomly selected samples. In the overall count, the initial random picks
are excluded. Detailed results of comparing different strategies of acquisition functions
are shown in Figure 4.2.

Figure 4.2: Comparison of GPR-based Bayesian optimization with different acquisition func-
tions, EI (dark purple), UCB (light purple), PI (orange), and random selection (grey dashed):
(a) number of counts to find the global maximum in the repeated 200 virtual experiments, where
random selection (grey dashed line) can find 126 times (63%); (b) number of additional tries of
different strategies needed after n initial random selections (x-axis) to find the global maximum
of ionic conductivity (1.09 × 10−3 S cm−1) in the training data set (grid search). On average
random selection takes about 34.7 tries to arrive at the maximum. It is noticeable that only
those cases where the global minimum is found are counted to calculate the average. Reproduced
with permission [475].

Figure 4.2a illustrates how many times different strategies can find the global maximum
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(1.09 × 10−3 S cm−1) within the 80 tries in 200 virtual experiments. The grey dashed
line represents how many counts the random selection can find the global maximum.
Among the 200 virtual experiments, the random selection can find 126 times (63%) and
it acts as the baseline for evaluating the performance of other models. From the figure,
it can be seen that the GPR model with an EI (dark purple) or UCB (light purple)
acquisition function can find the maximum in most virtual experiments (≥ 95%), where
UCB performs slightly better than EI in some cases. In contrast, PI (orange) performs
slightly worse than the other two, but still much better than the random selection. We
speculate that PI sometimes gets stuck in the local optimum, making it difficult for the
model to reach the global maximum. As a result, it fails to find the global maximum in
some cases.

Figure 4.2b illustrates the average number of extra tries (after a given number of ini-
tial data points) required for the models with different acquisition functions to find the
global maximum. The random selection takes an average of 34.7 trials to find the global
maximum, which is marked as a grey dashed line in the figure. It can be seen that all
three models perform much better than the random selection. The performance of EI
and UCB is similar, with UCB being slightly better and it takes the fewest extra tries
to achieve the best result. More specifically, the number of extra tries needed to find the
global maximum for EI and UCB decreases quickly with more initial data points, which
is reasonable as the models’ ability to fit and predict is gradually enhanced. After more
than 15 initial data points, the gain of introducing more initial data points gradually
decreases and the required extra tries finally stabilizes at about 5. This phenomenon is
very beneficial for experiments because the model can achieve good performance even
with only a small number of initial data points, significantly reducing the number of
attempts required. In contrast, the performance of PI is worse than the other two strate-
gies as it requires more steps to obtain the global optimum. Therefore, the model with
the UCB acquisition function is selected and used to predict the optimal experimental
conditions, as it is more robust and takes fewer steps to reach the global optimum.

4.1.3 Result of newly synthesized samples

The experimental conditions predicted by the model and their measured properties of
the resulting new samples, namely, relative density after sintering and ionic conductivity,
are listed in Table 4.2. All samples have a green density of approximately 62% so this
property is not listed. Starting with 80 data points, 4 iterations (each predicting 5–6
samples) are performed to optimize the experimental conditions to obtain LATP with
higher ionic conductivity. At the end of each iteration, the newly synthesized samples are
fed back to the model for retraining. After the update, new experimental conditions are
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Table 4.2: Recommended samples using BO and measured properties

Experimental parameters Measured properties

Iteration No. rel. H3PO4 wt% Temperature °C Time min rel. Density % Ionic Conductivity S cm−1

1

1 -7.5 1000 40 87.99 5.67× 10−4

2 -7.5 1000 360 92.78 7.21× 10−4

3 -7.5 1000 540 95.81 1.06× 10−3

4 0.0 900 20 96.29 7.23× 10−4

5 -7.5 1000 240 92.12 6.89× 10−4

2

6 -15.0 950 480 78.24 1.27× 10−4

7 -22.5 950 540 80.00 4.93× 10−5

8 7.5 950 540 75.22 6.67× 10−5

9 0.0 850 30 92.56 4.91× 10−4

10 0.0 1050 30 81.27 6.11× 10−5

3

11 0.0 900 40 95.80 4.07× 10−4

12 -11.25 1000 480 97.47 9.06× 10−4

13 -11.25 1000 510 96.11 7.87× 10−4

14 -11.25 1000 450 97.52 1.09× 10−3

15 -7.5 1000 450 95.00 4.02× 10−4

16 -7.5 1000 510 97.36 4.37× 10−4

4

17 -15.0 1000 450 97.21 7.81× 10−4

18 -11.25 1000 420 95.25 8.36× 10−4

19 -15.0 1000 510 96.81 5.36× 10−4

20 -15.0 1025 450 98.89 5.87× 10−4

21 -11.25 1000 540 91.31 6.38× 10−4

22 -11.25 1000 390 91.60 7.10× 10−4

predicted for the next iteration. This process forms a loop, which is repeated until the
target number of iterations has been achieved. In total 22 new samples are synthesized.

It can be seen from Table 4.2 that the model quickly discovers a new sample (sample No.
3) with the second highest ionic conductivity (1.06 × 10−3 S cm−1) in the first iteration.
The ionic conductivity of this sample is very close to the highest one of all samples
(1.09×10−3 S cm−1), which shows a very good performance of the model. The comparison
of experimental conditions shows that even though the sintering time of the new sample
(540 min) is 60 minutes longer than that of the known maximum sample (480 min, with
a deficiency of −7.25% H3PO4 at 900 °C), it can still maintain good performance. This
indicates that LATP samples synthesized under this condition are stable against long
holding time. On the other hand, comparing the densities of samples No. 2 (360 min)
and No. 5 (240 min) it can be concluded that a shorter holding time is not enough for the
samples to get fully sintered as the densities of these samples are less than those with a
longer holding time. Therefore, the ionic conductivities of these samples are significantly
lower than those of the fully sintered ones.
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As BO involves a trade-off process between exploration and exploitation, it is important
to explore unknown areas efficiently, which can help to find the global optimum in a
scientific way. This can be well reflected in experiments of this study. It can be seen
that in the first iteration, the model explores experimental conditions with holding time
at 360 min (sample No. 2) and 240 min (sample No. 5), as the original experimental
conditions of grid search have a large gap (uncertainty) of holding time between 60 and
480 minutes. Similarly, this can also explain why the model in the second iteration
explores temperature intervals that have never been explored before, as these areas are
subject to relatively large degrees of uncertainty. Though samples obtained in the second
iteration show poor ionic conductivity (on average 1.59×10−4 S cm−1), it does not render
this iteration a failure. This attempt is reasonable and can help the model to quickly
explore this unknown region and excludes the possibility of an optimal value appearing
in that region, which effectively reduces the number of tries it needs compared to the
exhaustive method. Notably, starting from the third iteration, the range of experimental
conditions that can be chosen has been expanded, more centrally, the extent to which
the amount of precursor H3PO4 can be adjusted is increased, as its preparation can
take a long time. It can be clearly seen that the model also undergoes a competitive
process between exploration and exploitation in the third and fourth iterations. It first
makes predictions (samples No. 12–14) with experimental conditions with a deficiency
of −11.25% H3PO4, which has never been explored before (exploration). At this point,
the model finds a new sample (sample No. 14) with a value of ionic conductivity which
is as large as the previous maximum (1.09 × 10−3 S cm−1). Then the model begins to
make the most of this information and makes several attempts (samples No. 18, 21, 22)
around this point (exploitation). It can be seen that the properties (ionic conductivity)
of later samples are inferior to that of sample No. 14, indicating that the model has a
good predictive performance. As a result, it can find the optimal value efficiently and
quickly, reducing the number of required experiments.

The values of ionic conductivity (black line) during the four iterations and the values
of the maximum (grey line) are plotted in Figure 4.3. It can be noted that the overall
result shows a step-wise upward trend, illustrating the improvement of new samples
during iterations. During the iteration, the model goes through a process of exploration
and exploitation, which can be reflected in the fluctuating experimental results of ionic
conductivity. The model first selects a sample that yields moderate performance (5.67×
10−4 S cm−1). Afterwards, the performance of samples increases with iterations and it
quickly finds the second highest maximum (sample No. 3). From sample No. 11, the search
space is extended (marked as the vertical grey dashed line in the middle) and the model
quickly finds another global maximum (sample No. 14, marked as a red star). Overall, the
results of the predictions prove that the model has a good ability to help researchers find
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another sample with maximum ionic conductivity under different experimental conditions
where it has never been explored before. Using the Bayesian optimization method can
help the experimentalist to quickly narrow the search space and hence can reduce the
number of required experiments effectively.
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Figure 4.3: The values of ionic conductivity for each sample (black line) during the four iterations
and the values of the maximum (grey line). The results of experiments show a fluctuating trend,
reflecting the exploration vs. exploitation in the optimization process. The overall result exhibits
a step-wise upward trend and it can be seen that the model has found the largest values of ionic
conductivity (marked as a red star) within several iterations. Reproduced with permission [475].

To further explore why these samples (e.g., sample No. 14) have better performances
than others, characterization measurements are performed to investigate the mechanisms
governing the high ionic conductivity. Details are given in the next section.

4.1.4 Characterization of samples

A standard stoichiometric LATP sample reaches the highest ionic conductivity at a sin-
tering temperature of 900 °C and a holding time of 30 minutes. With the aid of machine
learning algorithms, the best properties are achieved for sample No. 14, which is sintered
from a LATP batch synthesized with a deficit of −11.25 wt% in phosphoric acid and sin-
tered at 1000 °C for 450 minutes. For a better understanding of why this sample has also
reached ionic conductivity performance in the order of 1× 10−3 S cm−1, even though syn-
thesis and sintering conditions deviated from the standard procedure, the microstructure
is analyzed. Figure 4.4 shows a comparison of the X-ray diffraction patterns of the stan-
dard stoichiometric LATP (0.0 wt%) sample and another LATP (−11.25 wt%) sample.
While the stoichiometric sample is still phase pure in the expected NZP-structure after
sintering, clear foreign peaks can be seen in the LATP (−11.25 wt%) sample. Among
the foreign phases that have formed in addition to the NZP-structure, TiO2 could be
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identified as a second phase.

Figure 4.4: X-ray diffraction patterns for the LATP (−11.25 wt%) sample sintered at 1000 °C
for 450 minutes and one LATP (0.0 wt%) sample sintered at 900 °C for 30 minutes. A standard
X-ray diffraction pattern of Li1.3Al0.3Ti1.7(PO4)3 from the database is shown in red color for
reference. Reproduced with permission [475].

In addition, the different microstructure developments are shown in Figure 4.5. Figure
4.5a shows the LATP (0.0 wt%) sample sintered at 900 °C with a holding time of 30

minutes. There, the ionic conductivity in the order of 1 × 10−3 S cm−1 is achieved by
a homogeneous and dense microstructure with small and uniform grains as well as very
small and finely distributed pores. Despite the significantly different sintering parameters,
Figure 4.5b shows a similar homogeneous microstructure with only slightly larger grains
and pores for the LATP (−11.25 wt%) sample. The homogeneous grain size and dense
structure are not typical for LATP sintered at this high temperature as the comparison in
Figure 4.5c with LATP (0.0 wt%) sintered with these parameters shows. There, abnormal
grain growth and the related micro-cracks in these large grains, due to a high thermal
expansion anisotropy between a and c lattice parameters, shatter the microstructure and
cause a drastic decrease in ionic conductivity [495, 496, 497]. Grain growth seems to
be suppressed for the LATP (−11.25 wt%) sample by second-phase particles, which are
visible as homogeneously distributed bright dots throughout the structure at the triple
points of the grain boundaries.

The evaluation of the corresponding XRD-pattern leads to the assumption that the second
phase is TiO2 and this is reinforced by the results of the Energy Dispersive X-ray (EDX)
analysis of one of these particles shown in Figure 4.6. The line-scan shows a clear increase
in the titanium intensity in the EDX measurement at the position of the bright particle.
The interaction between second-phase particles and migrating grain boundaries is known
as the Zener-type mechanism in ceramic materials and can reduce grain growth. This is
likely to be the reason for the moderate grain growth of the LATP (−11.25 wt%) sample
at these high sintering temperatures [498]. It allows for densification of the microstructure
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Figure 4.5: Microstructure of (a) LATP (0.0 wt%) sample sintered at 900 °C for 30 minutes;
(b) LATP (−11.25 wt%) sample sintered at 1000 °C for 450 minutes and (c) LATP (0.0 wt%)
sample sintered at 1000 °C for 450 minutes. Reproduced with permission [475].

that in turn results in an ionic conductivity in the order of 1 × 10−3 S cm−1. The above
analysis serves to explain the possible mechanism why samples like No. 14 have better
performances than others, which agrees well with the conclusions from previous study
[486] where a deficiency of phosphoric acid in the synthesis can lead to the formation of
LiTiOPO4 and TiO2. It seems that the second phases are the reason for the prevention of
abnormal grain growth for sintering temperatures up to 1000 °C. Because the small grains
are less susceptible to microcracking, a dense structure with high ionic conductivity is
achievable even sintered at these high sintering temperatures. Experimental parameters
for other samples, such as sample No. 3 (1.06×10−3 S cm−1) synthesized with parameters
(−7.5 wt%, 1000 °C, 540 min), are comparable to one of the samples (−7.5 wt%, 1000 °C,
480 min with ionic conductivity of 1.09×10−3 S cm−1) in the paper mentioned above and
one can therefore assume that a comparable microstructure is the reason for the high
ionic conductivity of this sample as well.

Figure 4.6: EDX-line-scan of a bright second phase particle in the structure of the sintered
LATP (−11.25 wt%) sample. A significant increase can be clearly seen in titanium intensity at
the position of the bright region, which indicates that the second phase is highly possible to be
TiO2. Reproduced with permission [475].
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4.1.5 Conclusion

This study demonstrates that a data-driven materials design strategy based on Bayesian
optimization using the Gaussian process regression model can be utilized to effectively
design experimental conditions for synthesizing LATP, a promising candidate for solid
electrolytes used in batteries. The design strategy can be divided into various sections.
Firstly, virtual experiments are conducted to compare models that are built using different
design strategies. The training data used in such experiments is collected from previous
laboratory studies. It has been determined that the Upper Confidence Boundary (UCB)
strategy results in the best performance. Next, the optimal model is chosen to predict new
experimental parameters in order to produce a new sample with the highest achievable
level of ionic conductivity. Following this, the corresponding characteristics of the newly
sintered samples are analyzed and these results are utilized to improve the model in
preparation for the subsequent iteration of the design process. The results show that
within several iterations, newly synthesized samples guided by the model can achieve good
performance with a maximum value of 1.09× 10−3 S cm−1, which is in the same order of
magnitude as the maximum Li-ion conductivity that LATP can achieve. In addition, the
range of the search space can be dynamically adjusted during the experiment, making this
method flexible according to the researcher’s needs. Moreover, it can help the researcher
to quickly explore the boundary of the range of experimental parameters that can yield
samples with good performance, thus helping to design experiments in an effective and
reasonable way to reduce the number of required experiments. It is noteworthy that the
main focus of this work lies in the single objective optimization domain, wherein only
ionic conductivity is considered. This entails simplifying the optimization problem, as
other properties - such as sintered density - may also influence the property of interest.
Therefore, taking these factors into account and treating the problem as a multi-objective
optimization problem may further improve the performance of the model and thus lead
to better samples. This issue deserves further investigation.

4.2 Microstructure analysis and parameter optimiza-
tion for simulation

Porous membranes are extensively used in various fields due to their unique features and
it is crucial to rigorously characterize their microstructures to understand correspond-
ing properties and enhance their performance for specific applications. A promising
method for quantitatively analyzing porous structures involves using physics-based gen-
eration of such structures at the pore level, validating them against real experimental
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microstructures, and using data-driven algorithms to build process-structure-property
relationships. A Variational AutoEncoder (VAE) neural network model is utilized in this
study to characterize the 3D structural information of porous materials and then repre-
sent them as low-dimensional latent variables. These variables can also used to model
the structure-property relationship and tackle the inverse problem of process-structure
linkage by implementing the Bayesian optimization method. The adopted methods pro-
vide an approach to automatically extract structural information through unsupervised
learning, which can effectively characterize porous microstructures. These results have
been published in [499] and the following sections are based on this publication. An
overview of this study is shown in Figure 4.7.

Figure 4.7: An overview of building a fast prediction model for linking process-structure-property
relationships in porous microstructures with a neural network model. This neural network model
can extract structural information from microstructures and represent them in low-dimensional
variables (1). The trained model can be used to solve the inverse design problem in combination
with other optimization strategies (2) and can also be used to predict the quantity that needs to
be solved by simulation (3). Reproduced with permission [499].

4.2.1 Materials and data

In this section, 3D digital twins of polymeric porous media are introduced. The data
sets representing the digital twins are obtained by applying a Voronoi-tessellation-based
generation algorithm and by converting reconstructed computer tomography scans from
the real membrane microstructure into 3D data of voxels [500].

Generated porous microstructure

3D polymeric porous microstructures are generated by an in-house implemented generator
based on a previous study [500]. The generation process is performed by two main steps:
(i) random points are dispersed inside the simulation volume for the construction of
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the Voronoi-diagram, which will divide the domain of interest in Voronoi regions (cells)
according to the nearest neighbor rule. Coordinates of these points are determined using a
deterministic working random function which can recreate the same random distribution
of points by using the (random) seed parameter; (ii) porous microstructure is generated on
the framework constructed by edges of the polyhedral Voronoi cells, with stanchions and
pores being formed parametrically during the generation process. After these two steps,
certain post-processing can be followed such as placing multiple spheres with possible
varying radii by obeying a logarithmic distribution function and smoothing the structure
by appropriate Gaussian filters. Porous membranes created using the algorithm described
above can hold diverse features.

The most influencing factors that determine the morphology of porous microstructure
are: the density (number) of Voronoi seed points, the prescribed thickness of ligaments,
the resulting overall porosity as well as the pore size (directly related to the number of
Voronoi points), and the stretching factor for the x-, y- and z-directions, which orients
the ligaments in certain directions to introduce anisotropy to the microstructure. For
stretched microstructures, the produced Voronoi diagram is manipulated according to
the stretching factor followed by performing the microstructure generation. As a result,
the stretching process only leads to a distortion of the Voronoi region while the primary
features of the microstructure remain unaffected.

Features of generated microstructures can be controlled by varying parameters for dig-
ital generation, which can yield microstructures with a wide variety of morphology and
properties, e.g., the pore size of the membrane structure is indirectly defined by the
number of Voronoi points. A smaller number of Voronoi points leads to larger pores
and thus also to a higher porosity. In this work, the most important parameters for the
generated microstructures are selected as: (i) the number of Voronoi points n: 40–170;
(ii) stretching factor e: 0.5–1.0 (only one direction at a time, smaller value stands for
stronger stretch); (iii) stanchion radius r: 3.4. Choices of these parameters are made so
to cover various morphologies and to match the algorithm-generated microstructures as
closely as possible with the real experimental structures (detailed in the next section).
For real membranes, their microstructural characteristics can be controlled by processing
parameters during the production process, such as temperature, humidity, evaporation
speed, and composition of the added solvents [501]. In this work, the research interest
is how to use the Bayesian optimization algorithm to quickly find the parameters for
generating microstructure of porous membranes with given morphology, however, this
principle is promising to be adapted and transferred to real production scenarios. Since
the parameters used for digital data generation do not directly translate into real process-
ing parameters, further studies are required, e.g. a quantitative and qualitative analysis
of their linkages and influences on resulting microstructures.
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In this work, microstructures are characterized by using data-driven descriptors, i.e., fea-
tures of microstructures are learned by the neural network model automatically in an
unsupervised manner and microstructures are represented as low-dimensional latent vari-
ables. The analysis of latent variables and their association with microstructural proper-
ties are discussed in the results sections. For the training of the Variational AutoEncoder
(VAE) neural network model used for data-driven characterization, a data set which con-
sists of a total of 10000 porous microstructures (generated by uniform sampling within
the selected range of parameters for generation) with a domain size of 2003 cells (about
30×30×30 µm3 corresponding to the real physical world) is produced by algorithm-based
generation (a few representative ones are depicted in Figure 4.8a–d). These microstruc-
tures serve as the inputs for training the model. For generating digital membranes, the
in-house developed PACE3D simulations tool was used and it took about 15 seconds (av-
eraged on 100 generations on a platform with CPU Intel Xeon Gold 6146 × 2, 24 cores,
48 threads) to generate a single sample (and in total about 42 hours for 10000 samples as
the data set). To meet the input requirements of the proposed VAE model, generated mi-
crostructures are resized to 1283 using spline interpolation [502]. The morphology of the
resulting produced porous microstructure is controlled by processing parameters during
generation. In addition to the generated microstructures which are stretched in a single
direction, another batch of microstructures (3000) which are stretched in two directions
(a few representative ones are depicted in Figure 4.8e–g) are also generated to serve as
the additional test data set for validating the VAE model’s ability to characterize porous
microstructures.
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Figure 4.8: Examples of generated porous microstructure stretched in different directions. Sam-
ples (a)–(c) are stretched (with 0.5 stretching intensity) only in x-, y-, and z-directions, respec-
tively, while the sample in Figure (d) is an isotropic one (no stretch). For samples (e)–(g) they
are stretched in two directions at the same time. Sample (h) is a real reconstructed structure
from the experiment. Reproduced with permission [499].

Real experimental porous microstructure

The geometric anisotropy is one of the most interested properties, as this can reflect
many microstructural properties of the porous microstructure, such as the permeability
in different flow directions. Hence, quantification of the degree of average anisotropy
in the real porous microstructure is one of the main interests. In this study, real 3D
images of three different microstructure samples are obtained by high-resolution X-ray
Computer Tomography (XCT), whose anisotropy is of the most interest. The XCT
scans are carried out with ID16B-NA beamline at the European Synchrotron Radiation
Facility (ESRF) in Grenoble [503]. The beamline has a minimum and maximum beam
size of 50.0× 50.0 nm2 up to 1.0× 1.0 µm2 using an energy range of 6.0 keV to 65.0 keV.
The reconstructed 3D microstructure samples are composed of 900 equally spaced 2D
images with the resolution of 150 nmpixel−1. The size of the resulting segment of the
real membranes is 900 × 500 × 500 voxels (approximately 75 × 135 × 75 µm3) for each
sample. The resulting 3D data are obtained as a stack of 8-bit (256 intensity levels) gray-
scale images in XCT imaging, which is further required to be filtered and then segmented
to obtain a clear separation between the microstructure and the pore space. To reduce
the noise in the images, a Gaussian 3D filter with variance σ2 = 3 voxels is applied
first. Then the threshold for segmenting the images into zeros and ones (representing
the pore space and the membrane material, respectively) is continuously adjusted until

101



CHAPTER 4. RESULTS OF MACHINE LEARNING APPLICATIONS IN
MATERIALS SCIENCE

the experimentally obtained porosity values match up with the porosity of the segmented
microstructures [504]. To meet the need for the input of the model, the original large
microstructures are cropped into smaller cubes with a size of 2003 and then are resized to
1283. Among them, 15 structures are randomly selected to validate the effectiveness of
the neural network model to extract microstructural features and to relate them to the
interested properties (porosity and anisotropy). These properties are estimated by using
the clustering method (finding the closest neighbor) in the low-dimensional space, to be
more specific, their properties are inferred from the most similar generated microstructure
found in the training data set. More details about these real porous membranes are
described in previous work [505]. Figure 4.8h displays one of the real reconstructed
experimental 3D microstructures.

4.2.2 Low-dimensional representation

The architecture of the VAE model used in this work is summarized in Table 4.3. This
architecture is obtained empirically by trial and error based on the performance of vali-
dation data (10% of the whole data set). An exhaustive systematic study of varying the
architecture was not performed, which may be helpful for improving the performance.
For the inputs, as the original data is already in binary format (pore: 0, structure: 1), no
scaling is performed. Binary cross-entropy is chosen as the loss function for measuring the
reconstruction difference. Besides, Adam optimizer (learning rate: 10−5, moment terms
β1: 0.9, β2: 0.999) is used as the optimization algorithm for stochastic gradient descent
to train the neural network model with batch size of 64 for 1000 epochs. The models
were trained on a single NVIDIA A100-80GB GPU and it took about 14 hours to finish
the training process (averaged on 10 trials of training).
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Table 4.3: Architecture of the VAE model.

Model Functions Parameters Model dimensions

Encoder Input - 128, 128, 128, 1
Conv3d + ReLU filters = 16, kernel = 4, stride = 2 64, 64, 64, 16
Conv3d + ReLU filters = 32, kernel = 4, stride = 2 32, 32, 32, 32
Conv3d + ReLU filters = 64, kernel = 4, stride = 2 16, 16, 16, 64
Conv3d + ReLU filters = 128, kernel = 4, stride = 2 8, 8, 8, 128

Flatten - 65536, 1
Dense + ReLU 2048 2048, 1

Dense × 2 256 × 2 µ: 256, 1; σ: 256, 1

Decoder Dense + ReLU 65536 65536, 1
Reshape - 8, 8, 8, 128

ConvTranspose3d + ReLU filters = 64, kernel = 4, stride = 2 16, 16, 16, 64
ConvTranspose3d + ReLU filters = 32, kernel = 4, stride = 2 32, 32, 32, 32
ConvTranspose3d + ReLU filters = 16, kernel = 4, stride = 2 64, 64, 64, 16

ConvTranspose3d + Sigmoid filters = 1, kernel = 4, stride = 2 128, 128, 128, 1

A total number of 10000 porous structures are generated using the physics-based algo-
rithm for evaluating the VAE model. This data set is divided into 80% of the training
part, 10% validation part, and 10% test part. The training part is used to train the model
and the validation part is used to select good hyper-parameters for the model and the
training algorithm. After identifying the satisfying architecture of the model, the train-
ing and validation parts are merged as a larger training data set to retrain the model for
further improving its performance. The remaining 10% test part is utilized for evaluating
the final performance of the model. Figure 4.9 shows the total loss of the VAE model
during the training process of 1000 epochs. In the beginning, the loss decreases quickly
until this changing rate eventually drops significantly after about 150 epochs. Then, the
loss of the test set declines slowly and gradually converges and finally levels off in the
last 200 epochs, while the loss of the training set is still slowly continuing to decrease.
A gap between the loss of the training set (blue solid line) and the test set (grey dashed
line) can be observed after about 250 epochs of the training, and it is speculated that the
model appears to be slightly over-fitted.
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Figure 4.9: Total loss of the neural network model during the training process. The loss of the
training set is marked with a blue solid line while the loss of the test set is marked with grey
dashed line. Reproduced with permission [499].

The encoder part of the VAE model processes the algorithm-generated structures and
thus represents them as low-dimensional latent variables. It is found that in this latent
space, the most interested structural information is scattered across multiple dimensions
and no single dimension is found to be obviously well disentangled (detailed in Appendix
A). Hence, to further refine the information and to visualize the result, the Principal
Component Analysis (PCA) is performed on these latent variables. The distribution of
the generated porous microstructures in the space of the first three principal components
is shown in Figure 4.10. The top two subplots (a and b) exhibit the space distribution of
the training set (points without edges) and test set (points with black edges). The mag-
nitude of porosity is reflected by the color shade of the data points (the darker the color,
the larger the value of porosity) and it can be found that the value of porosity gradually
increases along the negative direction of the third principal component (PC3) axis (right
to left). Hence, it is concluded that PC3 mainly captures the porosity information of
microstructures. Besides, it can also be observed that the number of Voronoi points used
in the microstructure generation process decreases (indicated by the sizes of the data
points) along the negative direction PC3 axis. This is in accordance with the properties
of the generated microstructure as more skeletal structures are produced with increasing
Voronoi points during the generation process, which will take up more space and hence
result in a smaller porosity value. In addition, the subplot on the top of Figure 4.10b
shows the distribution of stretching directions along the PC3 axis and it is observed that
all the microstructures are uniformly distributed along the PC3 axis. Therefore, PC3 is
inferred to contain less amount of directional information and only capture information
related to porosity.

The distribution of the generated microstructures in PC1 and PC2 is presented in Figure
4.10a and it can be inferred that the directional features of the microstructures correlate
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mainly to these two principal components. In this figure, the microstructures are color-
coded according to their stretching directions. It can be seen that microstructures without
the preferred stretching direction are concentrated in the center, while structures with
different stretching directions are distributed along their respective orientation branches
and lie at an angle of about 120 degrees to each other. The embedded subplot depicts the
stretching strength of the microstructure in the y-direction, with lighter colors implying
a stronger degree of stretching. It can be observed that the color changes from darker to
lighter from the center outward in the corresponding branch (microstructures stretched
in y-direction) and the farther the microstructure is from the center, the stronger the
stretching strength is. Besides, the top and right subplots (the density distribution of the
stretching direction) also demonstrate that PC1 and PC2 together can clearly capture
the directional information of microstructures. Furthermore, comparing the distribution
of the training set (points without edges) and validation set (points with black edges), the
model performs well on both and can accurately characterize their stretching intensities
and directions.

To further demonstrate the model’s ability to extract microstructural information, an
additional test data set which contains microstructures stretched in two directions is
generated. These new microstructures are also processed by the VAE model to extract
structural information, represented as low-dimensional variables and further projected to
principal component space. Similar results are shown in Figure 4.10c–d. From Figure
4.10d (PC2 vs. PC3) it is known that PC3 can also capture the information related
to porosity (and the associated number of Voronoi points). Along the negative direc-
tion of the PC3 axis, the color of the data points changes continuously from light to
dark, implying the increase of porosity values of microstructures, and it corresponds to
a decrease in the number of Voronoi points set in the microstructure generation process.
This finding is consistent with the conclusions from the previous analysis based on the
microstructures stretched in a single direction. Figure 4.10c (PC1 vs. PC2) shows the
distribution of stretching directions of all generated microstructures. From the figure,
it can be known that the model shows good performance in extracting the directional
information of new microstructures that have not shown in the training period and can
project them to reasonable positions according to their stretching direction. For exam-
ple, the model projects microstructures stretched in both x-and y-directions (purple) to
the place between microstructures stretched in only a single direction (x or y, blue or
orange, respectively). This further demonstrates the model’s robust ability to extract
microstructural information and shows its robust performance on new unseen data.
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Figure 4.10: The distribution of porous microstructures in the first three principal component
spaces (PC1–3). (a) and (b) exhibit microstructures with a single stretching direction while (c)
and (d) show microstructures having at most two stretching directions. It is found that the first
two principal components (PC1–2) together capture the information of stretching direction and
strength while PC3 mainly contains information related to porosity/Voronoi points of microstruc-
tures. Reproduced with permission [499].

4.2.3 Characterization of experimental microstructure

The VAE model is further applied to the 3D experimental microstructures which are
reconstructed from CT images. The above analysis of the model’s performance on gener-
ated microstructures proves that the trained VAE model shows robust performance and
only slight overfitting is observed. As before, the trained neural network model is used
to extract microstructural features from the reconstructed experimental microstructures
and to represent them as low-dimensional latent variables. Together with the generated
microstructures, PCA is performed on these latent variables. In the principal compo-
nent space, microstructures with similar properties will be clustered closer to each other
and it is intended to analyze the interested properties of the experimental microstructure
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according to the meanings represented by PC1–3. These results are shown in Figure 4.11.

First, the porosity value of the experimental microstructure is estimated according to
PC3, which correlates most with the information about porosity. From Figure 4.11b
it can be seen that the reconstructed experimental microstructures are concentrated in
the central place of all the data points, locating at the position in PC1 axis where it
should correspond to a porosity value of about 0.84. The porosity value of experimental
microstructures can be estimated by finding the closest algorithm-generated microstruc-
tures (i.e., nearest neighbor) where the “similarity” is measured by calculating the differ-
ence in PC3. The calculated porosity of reconstructed experimental microstructures, as
well as the estimated (predicted) porosity value according to the closest found algorithm-
generated microstructures, are listed in Table 4.4. It is found that there are some dif-
ferences between the numerically calculated porosity value and the estimated value. By
comparing the reconstructed experimental and algorithm-generated microstructures, it is
speculated that such kind of discrepancy is mainly caused by some dissimilarities between
real reconstructed experimental and algorithm-generated microstructures. Though our
generated microstructures can resemble the morphology of real microstructures, artifacts
caused by e.g., noise during the reconstruction process of experimental microstructures,
can lead to some deviations. As a result, this impairs the performance of the model’s
ability to characterize microstructures to a certain extent.

In addition, the limited amount of the data used to train the model somehow restricts
the model’s ability: only about 10000 microstructures are adopted and they may not be
able to completely cover all possible configurations and morphologies of the real experi-
mental microstructures. It is therefore understandable that for some microstructures (for
example, No. 2 and No. 13, whose porosity values are located at the marginal place of
the porosity distribution of the training set), no good corresponding algorithm-generated
microstructures are identified to estimate the porosity accurately.

107



CHAPTER 4. RESULTS OF MACHINE LEARNING APPLICATIONS IN
MATERIALS SCIENCE

Figure 4.11: The distribution of algorithm-generated porous microstructures and real recon-
structed microstructures from experiments (marked as CT). In (a) (PC1 vs. PC2) the recon-
structed experimental microstructures are concentrated near the center and biased in the y-axis.
Their microstructural anisotropy (measured in stretching direction) is estimated by finding the
closest algorithm-generated microstructures in PC1–2. The porosity value of reconstructed exper-
imental microstructures is estimated in PC3 (b) as it is found to correlate with the information
about porosity. Reproduced with permission [499].

In addition, it is possible to estimate the stretching direction of reconstructed experimen-
tal microstructures in PC1–2 as they represent directional information of microstructures.
From Figure 4.11b it can be clearly seen that experimental microstructures (marked with
white stars) are concentrated near the center and biased in the y-axis. Similarly, the
distance (similarity) can be calculated in PC1 and PC2 to find the closest algorithm-
generated microstructures to estimate the stretching direction of the reconstructed ex-
perimental microstructures. Besides, the anisotropy of the microstructure can be judged
accordingly. In the present work, the tortuosity is numerically calculated by the simu-
lation method, which is used to approximate the anisotropy of the microstructure, as it
can indirectly represent the directional orientation of the microstructure. More specifi-
cally, if a microstructure is stretched in a certain direction, the tortuosity value should
be small, which means that the microstructure shows a high anisotropy in this direction.
The calculated tortuosity values in x-, y-, and z-directions of the reconstructed experi-
mental structures are regarded as their true values and they are listed in Table 4.4. It
can be seen that all reconstructed experimental microstructures have the smallest values
in the y-direction, implying that they all tend to have a relatively large stretch along the
y-direction. It is worth noting that tortuosity values in each direction do not differ much,
which indicates the reconstructed experimental structures show only weak anisotropy.
The average of the ratio of tortuosity in the y-direction to the x- and z-directions, respec-
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tively, is used to approximate the degree of anisotropy in the y-direction. The estimated
stretching intensities of the reconstructed experimental structures according to their clos-
est generated microstructures are given in Table 4.4. It is known that for most of the real
experimental microstructures, the estimated stretching directions and intensity values are
satisfyingly accurate. However, two wrong estimations of the stretching direction for sam-
ples No. 4 and No. 6 are made. This discrepancy is understandable, as the reconstructed
experimental microstructures possess only very weak anisotropy (slightly stretched) so
inherently it is hard to infer accurately. Such phenomena can also be observed in Figure
4.11a (PC1 vs. PC2) where the microstructures tend to cluster close to the center, and
a slight deviation may lead to misjudging the stretching direction. In general, the VAE
model performs well in extracting directional information of the reconstructed experi-
mental microstructure, and their stretching direction (anisotropy), as well as stretching
strength, can be estimated with high accuracy.

Table 4.4: Numerically calculated property values of experimental microstructures and their es-
timated (predicted) values.

Porosity Tortuosity Geometric anisotropy

Sample
No.

C P Diff. %
Axis Direction Intensity

x y z C P C P Diff. %

1 0.846 0.822 -2.791 1.162 1.121 1.161 y y 0.965 0.980 -1.554
2 0.894 0.836 -6.441 1.101 1.077 1.105 y y 0.976 0.960 -1.639
3 0.842 0.839 -0.291 1.165 1.119 1.162 y y 0.962 0.980 1.871
4 0.866 0.858 -0.862 1.127 1.104 1.134 y x 0.977 0.980 0.307
5 0.850 0.825 -2.919 1.162 1.111 1.159 y y 0.958 0.960 0.208
6 0.857 0.824 -3.740 1.143 1.125 1.137 y no 0.987 1.000 1.317
7 0.887 0.835 -5.755 1.106 1.086 1.115 y y 0.978 0.980 0.204
8 0.861 0.833 -3.207 1.140 1.109 1.139 y y 0.973 0.990 1.747
9 0.827 0.829 0.242 1.184 1.147 1.188 y y 0.967 0.950 -1.758
10 0.845 0.839 -0.702 1.167 1.130 1.157 y y 0.972 0.970 -0.205
11 0.790 0.806 2.046 1.227 1.192 1.250 y y 0.962 0.950 -1.247
12 0.836 0.829 -0.834 1.169 1.122 1.184 y y 0.953 0.980 2.833
13 0.898 0.827 -7.869 1.096 1.073 1.105 y y 0.976 0.980 0.409
14 0.844 0.830 -1.641 1.156 1.115 1.173 y y 0.957 0.950 -0.731
15 0.842 0.825 -1.967 1.169 1.140 1.158 y y 0.980 0.970 -1.020

C: calculated value, P: predicted value. Geometric anisotropy is measured in stretching strength.
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4.2.4 Inverse problem of the process-structure linkage

The VAE model is used to extract structural information and represent microstructures
as latent variables. With these low-dimensional variables, mathematical metrics such as
Lp-norm, can be calculated to measure the difference between various microstructures.
Taking advantage of this kind of data-driven descriptors of microstructures, an inverse de-
sign problem of the process-structure linkage is explored in this section. In order to verify
the validity of the model’s performance on unseen microstructures, four microstructures
(marked as A, B, C, and D) with morphologies that are quite different from the train-
ing data are intentionally generated and their corresponding true processing generation
parameters are listed in Table 4.5. The corresponding generation parameters to produce
these microstructures are assumed unknown to us and the goal is to find these values.
Such a problem is treated as an optimization task, and an active learning approach based
on Bayesian Optimization (BO) is used to solve it effectively.

Table 4.5: Results of Bayesian optimization in finding parameters for digital generation of target
microstructures.

Sample
No.

Stanchion
radius

Number of
Voronoi points

Stretch Difference in
latent variable spacex y z

A Real 3.40 100 1.00 0.75 1.00 -
Median 3.58 100 1.00 0.75 1.00 3.82
Best 3.39 100 1.00 0.75 1.00 0.18

B Real 3.40 180 1.00 0.75 1.00 -
Median 3.57 183 1.00 0.75 1.00 4.14
Best 3.28 179 1.00 0.74 1.00 1.51

C Real 5.40 180 1.00 0.75 1.00 -
Median 5.35 184 1.00 0.75 1.00 8.03
Best 5.57 179 1.00 0.75 1.00 2.02

D Real 3.40 180 0.65 0.55 1.00 -
Median 3.77 179 0.61 0.50 1.00 8.23
Best 3.40 178 0.63 0.55 1.00 3.12

The convergence plot of the difference between the target microstructure and generated
microstructure being minimized during the optimization process is shown in Figure 4.12.
At the beginning of the optimization, 20 random microstructures are generated to serve
as the input to initialize the Bayesian optimizer, and the number of iterations is relaxed
to 1500 to ensure that the optimal parameters can be reached as close as possible. For
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each target microstructure, the optimization process is repeated 10 times to draw basic
statistical information for better evaluating the optimization results. Among the results
(marked in grey lines), the round of iteration result corresponding to the median is marked
in blue for better visualization. To visually display the optimization process, above each
subplot, the corresponding structures generated by the found processing parameters at
the initial state, at one-half and one-fourth states of initial difference values, and the final
found value, are also drawn respectively. True processing parameters that generate the
structures and results of the Bayesian optimization are summarized in Table 4.5.

From the BO results it is found that the corresponding processing generation parameters
for the target microstructures can be satisfyingly estimated despite a certain amount of
discrepancy. Besides, it can be observed from Figure 4.12 that during the optimization
process, the similarity of the generated microstructure to the corresponding target is im-
proved significantly at the very beginning part of the optimization process and the degree
of improvement gradually slows down as the number of iterations grows. It is noticeable
that the optimization process has also experienced several plateaus, which is due to the
nature of BO as it takes both the mean estimation and the uncertainty in the meta-model
into consideration (the so-called exploration vs. exploitation). Comparing the optimiza-
tion results of the four target microstructures, it is found that for microstructures (A, B
in Table 4.5) that are more similar to the original training set, the VAE model can better
characterize them and hence can better distinguish them, resulting in fewer iterations
needed to find the optimum. On the other hand, for those microstructures (C, D in
Table 4.5) that are more different from the original training set, the model is also able
to extract their structural information and differentiate between them, though the per-
formance is slightly poorer. Thus, more iterations are required in these cases for BO to
converge to the optimal value. Apart from that, the variance of these results is also larger
than those of microstructures A and B, indicating that the optimization process is less
stable. Overall, the process of combining data-driven microstructural descriptors learned
by the VAE model with the Bayesian optimization can provide a satisfying solution to
the inverse problem of structure-process linkage, i.e., finding the processing generation
parameters of unknown target microstructure. This further validates the ability of the
VAE model to characterize the porous microstructures and proves the applicability of
the Bayesian optimization method in solving the considered problem effectively. Be-
sides, finding the appropriate parameters that can generate microstructure resembling
real experimental microstructure will be an interesting extension of this strategy and is
of interest for future exploration.
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Figure 4.12: Iteration history of the Bayesian optimization in solving the inverse problem of
process-structure linkage for four different target microstructures (a–d). For each target mi-
crostructure (A–D), the optimization process is repeated 10 times and the result corresponding to
the median of final differences is highlighted with a blue line. The difference between the target
microstructure and the generated one is measured by calculating the Euclidean distance in the
latent space. Reproduced with permission [499].

4.2.5 Structure-property linkage

Transfer learning for predicting tortuosity

The performance of the neural network model is often related to the setting of the initial
weights of the model. Hence, good choices in setting these initial weights play an im-
portant role in obtaining a good neural network model. The VAE model was trained on
generated porous microstructures in an unsupervised manner and the model has learned
some knowledge about extracting the structural information. Hence, it is expected that
re-using parts of the trained model can show better performance on prediction tasks such
as building the structure-property linkage. To be specific, the encoder part of the VAE
model is taken out to serve as the basic part of building a neural network-based regressor,
that is, these pre-trained weights are re-used and are believed to be able to yield better
results than random initialization of the weights, especially when only limited amount of
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labeled data is provided. This idea is one of the key points in Transfer Learning (TL)
[506].

In this work, a structure-property linkage is built by training another neural network
model, that is, the relationship between porous microstructures and their corresponding
tortuosity values (described in Appendix B). For this purpose, an additional 300 new
unseen structures (250/50 training/test split) with large differences (number of Voronoi
points n = 180–250, stanchion radius r = 2.8) from the training set in previous sections
are generated and simulations are performed to calculate tortuosity values (labels). Fine-
tuning is adopted as a means to achieve transfer learning. More specifically, the whole
process is divided into three steps: (i) transferring architecture and weights of the encoder:
the pre-trained encoder part of the VAE model is taken out to serve as the microstructural
information extractor and it is the basic building block for the new neural network model.
It should be noted that no sampling process is performed on the latent variables (unlike
that during the previous training of the VAE model); (ii) adding dense layers at the
end of the encoder: immediately following the output of the encoder, two more dense
layers (64 ReLU) are connected, and a final linear output neuron is added to yield the
predicted scalar value (tortuosity). The weights of these layers are randomly initialized
using the Xavier uniform initialization method [507]. Furthermore, a weak L2 constraint
(10−5) is imposed as a regularization term to mitigate the overfitting phenomenon; (iii)
fine-tuning weights of the model: the Mean Squared Error (MSE) is chosen as the loss
function for this regression task. Besides, the Adam optimizer [508] is adopted as the
optimization algorithm for the training and the parameters are set to be the same as
those used in training the VAE model. The optimization is set to last for 100 epochs to
ensure convergence. During the training process, the encoder part is frozen so only the
weights of fully-connected layers are updated. It is noted that for the sake of brevity,
other network architectures and training strategies are not exhaustively investigated in
this study.

To demonstrate the benefit of employing the TL technique for developing the struc-
ture–property linkage model, another neural network model, which is built with exactly
the same architecture but with all weights initialized randomly (rather than using the pre-
trained weights of the encoder), is also trained for comparison (referred to as the “training
from scratch”). The mean-squared errors are calculated on both the training and testing
data to evaluate the performance of these two models trained with different strategies.
To better assess the models’ performance, the training process and evaluation are re-
peated 20 times and the results are shown in Figure 4.13. It can be noticed that results
obtained from the TL method (averaged MSE: 0.00401 on training data and 0.00502 on
test data) are better than those from the “training from scratch” method (averaged MSE:
0.00460 on training data and 0.00567 on test data). Besides, results from the TL method
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are also significantly more stable as they exhibit smaller variance. For both models, the
errors on the test set are slightly larger than those on the training set, but the difference
between the TL strategy is smaller than that with the “training from scratch” method,
indicating that models obtained with the transfer learning strategy are more robust in
extrapolation. It is speculated that such a privilege may come from the anti-overfitting
effect introduced by freezing the weights in the pre-trained encoder model. Furthermore,
although occasionally the model trained from scratch can achieve a smaller value of MSE
on the training set, its performance on the test set is apparently worse than that of the
TL strategy. Based on these results, it is inferred that the transfer learning strategy can
facilitate the development of the structure-property prediction model in many aspects
such as improving its accuracy and stability, especially when only a limited amount of
data is provided. These results are consistent with the previous hypothesis that the model
trained in an unsupervised manner has gained useful knowledge from the data and can
be transferred to other downstream tasks which helps achieve better performance. More-
over, it should also be mentioned that there are many other model architecture designs
and training strategies. Their impacts on the results of transfer learning, and how useful
transfer learning can be in different application scenarios, are worth exploring and are of
interest for future work.

Figure 4.13: Mean Square Errors (MSE) of predicted tortuosity on both the training set and test
set for two neural network models with the same architecture but trained with different strategies:
one is trained from scratch and another adopts the transfer learning strategy. Reproduced with
permission [499].

4.2.6 Conclusion

The Variational AutoEncoder (VAE) neural network model is used to characterize the
three-dimensional microstructures of porous membranes. The model is used to extract
structural information and represent it with low-dimensional latent variables as data-
driven descriptors. The ability of the model to characterize porous structural informa-
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tion is verified in three aspects regarding the establishment of process–structure–property
linkages. First, Principal Component Analysis (PCA) is performed to refine information
and the meanings of the first principal components are interpreted, namely porosity and
stretching direction as well as stretching factor. These properties can be estimated by
finding the most similar known microstructures in the corresponding principal component
space and are validated on both unseen algorithm-generated porous microstructures and
reconstructed experimental microstructures. Second, Bayesian Optimization (BO) is uti-
lized to efficiently solve the inverse problem of process–structure linkage, that is, finding
the parameters for generating given target microstructures. The results are validated on
several microstructures whose morphologies are different from the previous training data.
Third, following the transfer learning strategy, a structure–property linkage (predicting
the tortuosity of microstructure) is established by re-using the parts of the VAE model.
The results show that its performance is better and more stable than the model trained
from scratch, especially when only a small amount of data is provided. The above stud-
ies demonstrate the robust ability of the VAE model to characterize microstructures of
porous membranes and have the potential for other geometries.

4.3 Enhanced analysis of characterization data

A detailed understanding of surface contamination and passivation compounds on
Lithium Metal Anodes (LMAs) is crucial for their implementation in All-Solid-State Bat-
teries (ASSBs). To characterize the surface condition of LMA samples, Time-of-Flight
Secondary Ion Mass Spectrometry (ToF-SIMS), a highly sensitive surface analysis tech-
nique, can be utilized with reliability. Nonetheless, manual data analysis of complex ToF-
SIMS data is often challenging and time-consuming. In this study, two well-established
machine learning techniques are utilized to identify the characteristic secondary ions of
five distinct pure lithium compounds, and their results are compared, namely, Principal
Component Analysis (PCA) and Logistic Regression (LR). Moreover, both methods are
applied to real LMAs samples and mixtures to enable the identification of their compo-
sitions based on the measured ToF-SIMS spectra. The machine learning-based approach
demonstrates strong capabilities in identifying characteristic ions of measured compounds,
which align with their chemical nature information. Furthermore, it achieves satisfactory
accuracy in recognizing compositions of previously unseen samples. Additionally, the
practical applications, scope, and limitations of this strategy are explored. This exam-
ple demonstrates a sturdy analytical method that enables researchers to extract more
information from their ToF-SIMS data more efficiently. This study has been published in
[509] and the following sections are based on this publication. A conceptual illustration
of this work is shown in Figure 4.14.
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Figure 4.14: An overview of applying ML in analyzing characterization data of measured spectral
data from lithium-compound materials using Time-of-Flight Secondary Ion Mass Spectrometry
(ToF-SIMS). A classification model is developed to predict the classes of the studied compounds,
based on which chemical information that matches the nature of the materials is extracted and
analyzed from various perspectives. Reproduced with permission [509].

4.3.1 Materials and data

Sample preparation: 5 different lithium compounds, namely, Li2CO3, Li2O, Li3N,
LiH and LiOH, were pressed into pellets (3 t, 1.5 min) under Ar-atmosphere. Mixtures
of Li2CO3/LiOH and LiH/Li2O were prepared by mixing equal weights of the selected
lithium compounds in a vial by shaking and then following the same pressing. As reference
LMA samples, one commercial lithium foil exposed to an N2-plasma and two untreated
foils were chosen. The LMA samples were cut into a small piece with a size of about
1× 1 cm2. All samples were attached to a LEICA sample holder above an electronically
insulating tape. The subsequent transfer to the ToF-SIMS instrument was also done
under Ar-atmosphere.

Data acquisition and management: the ToF-SIMS measurements were performed
using a TOF.SIMS 5-100 instrument (ION-TOF GmbH, Muenster, Germany) equipped
with a 25 kV Bi-cluster primary ion gun for analysis and with a 20 kV Gas Gluster
Ion Beam (GCIB) for sputtering. For the pure lithium compounds, mixtures, and N2-
plasma sample, the corresponding surface regions were sputter-cleaned with Ar +

1500 using
a fluence of 4 × 1015 ions/cm2 (10 kV, 10 nA) before the analysis. For the lithium foil,
different fluences (1 frame = 9 × 1013 ions/cm2 or 150 s = 9.5 × 1015 ions/cm2) were
applied to reach certain specific sample regions. For analysis, areas of 100 × 100 µm2

were measured in spectrometry mode, using Bi +
3 (20 kV, 1 pA) as primary ion by setting

an ion dose density of 1012 ions/cm2. Measurements were done in negative ion mode, with
a cycle time of 100 µs. A flood gun was used for charge compensation during sputtering
and analysis. For each material, 12 different spots were examined.

Data pre-processing: the software SurfaceLab 7.1 (ION-TOF GmbH, Muenster, Ger-
many) was used for the first processing of the ToF-SIMS data. All spectra were calibrated
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to the ion signals 6Li– , Li– , O– , OH– and O –
2 . Afterward, an automated peak search

was conducted up to mass-to-charge (m/z) = 120 a.u. and for peaks with a minimum
of 100 counts, after which the borders of the found peaks were calibrated to uniform
ranges for subsequent comparison. The peak area was exported for all selected peaks and
spectra to be used for further analysis.

4.3.2 Analysis of data using principal component analysis

PCA workflow

Principal Component Analysis (PCA) is one of the most widely used techniques and
represents the basis for many other methods [412]. Therefore, PCA is first adopted
to analyze our data and its results are compared with those obtained by the logistic
regression. General introductions to PCA [510, 249], as well as more specific studies
related to PCA usage in ToF-SIMS can be found in literature [511, 512, 513]. The ToF-
SIMS spectra are usually stacked to build the data matrix that is used as input for PCA,
where each row of the matrix represents one sample spectrum and each column is a given
m/z peak. PCA can be understood as a data transformation that combines a set of
possibly correlated variables to a new set of uncorrelated variables, which is achieved by
projecting the original data into a new orthogonal coordinate system where the axes are
ordered according to the variance explained by each of these new axes, which are typically
referred as Principal Components (PCs). The most important outputs of the PCA are
scores and loadings. The scores are the projection of the original spectra on each PC, and
each point in a scores plot stands for one measurement, that is, one ToF-SIMS spectrum.
The loadings indicate the relationship between the principal components and the original
features (peaks) of the data, that is, how the original features contribute to each PC.
When applied in ToF-SIMS studies, for individual samples, the analysis of plotted scores
and loadings can reveal which peaks allow for better discrimination of different samples.
The NESAC/BIO toolbox (Spectragui) is used to perform PCA in this work.

Figure 4.15 gives an overview of how the measured 5 different lithium-containing com-
pounds can be identified according to the ToF-SIMS peaks-based PCA scores and load-
ings. The analysis is based on the work of Graham and Castner and can be divided into
three steps [412]. First, the different PCs are manually checked to select the ones that
can best differentiate the 5 analyzed compounds, by giving priority to the analysis of
the first PCs, which describe a higher variance of the data. For example, by checking
the PC2, one can notice that LiH (red points in Figure 4.15a) has negative and much
lower scores compared to the other compounds, making PC2 eligible as a discriminator
between LiH and the other chemical species of interest. Next, the second step consists
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of analyzing the loadings of the identified PCs to identify which are the principal m/z

peaks constituting that specific PC (in the example of Figure 4.15, PC2), i.e., which m/z

peaks allow the distinction between the different compounds (in the same example, to
distinguish between LiH and the other compounds). From the loading plot reported in
Figure 4.15b it can be clearly seen that the peak contributing most to PC2 is found at
m/z = 9.03, identifying it as the most important ion fragment for the identification of
LiH. This inference is further verified by the peak area plot (Figure 4.15c) for the m/z =
9.03 peak, for which LiH shows the maximal intensity compared to the other compounds.
Finally, the last step consists of identifying from which ion(s) originates the key peak(s)
identified as a discriminator in steps 1 and 2, to assess the chemical correctness of this
finding. In the example of Figure 4.15, the m/z = 9.03 peak is assigned to LiH –

2 , further
justifying its usage to discriminate LiH from the other species. With the help of these
steps, PCA can greatly reduce the complexity of ToF-SIMS analysis.

Figure 4.15: Example for the identification of key secondary ions for discriminating among the
different Li compounds with PCA through a scores plot (a), and the corresponding loadings plot
(b) and peak area plot (c). The scores and loadings plots are presented for PC2, explaining a
data variance of 29%. Reproduced with permission [509].

Effects of different data pre-processing methods

In order to study the effects of different data pre-processing methods on PCA results,
several processing methods are compared and the obtained scores plots are shown in
Figure 4.16. The preferred pre-processing method is the one that benefits both the closer
clustering of the same species and the clearer separation of different materials in the
associated principal component space. It can be observed from the figure that if no pre-
treatment is applied to the raw data, the PCA result is not satisfying: it is harder to
distinguish some pure substances (e.g., Li2CO3 and Li2O in scores plot PC1–2) as they
overlap significantly. The situation is similar when using a logarithm scaling as Li2CO3

and LiOH are densely piled up in PC1–2, while Li2O, Li3N, and LiH overlap in PC3–
4. For samples processed through normalization, the same substances are more closely
grouped together, however, the distances between different groups are short, hindering a
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good classification. Results obtained from standardization, min-max scaling, and Poisson
scaling methods are similar, with min-max scaling being slightly better than the other
two as materials within the same group are clustered closer. In PC3–4, Li2CO3 and LiH
can be better separated, and Li3N and LiOH are clustered closely with standardization,
while the opposite is true for min-max scaling. Poisson scaling does not have obvious
advantages over others, though the 5 pure substances can be a bit better distinguished, in
PC3–4, the mixture sample (Li2CO3+LiOH) will fully cover the area of LiH, which may
lead to misjudgment. In summary, different pre-processing methods are found to have
relatively complex influences on the PCA results and no one is found to perform much
better than others in identifying all the species. However, among them, the min-max
scaling shows comparatively better results, hence it is adopted across the study.

Figure 4.16: 2D scores plots of the first 4 PCs for the five pure lithium compounds and two
mixture samples processed with different pre-processing methods: logarithmization (of one plus
data to avoid undefined value), standardization (scaling data by removing the mean and scaling
to unit variance), normalization (scaling each peak profile to its maximum), min-max scaling
(scaling data in a range between 0 and 1 according to their minimum and maximum), Poisson
scaling (accounting for Poisson noise in ToF-SIMS data). Reproduced with permission [509].

Identification of specific secondary ions

The characteristic (specific) peaks identified for the 5 lithium compounds through PCA
are reported in Table 4.6A. The 15-top m/z values with the highest absolute loading
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values are chosen, i.e., the ones contributing the most to the identification of the different
Li compounds. These peaks are then assigned to a specific ion fragment, and their area
plots are checked. Table 4.6A reports the m/z and the assigned ion fragment of these
peaks in order of their relevance (peak 1 with higher absolute loading than peak 2, and so
forth). The results for both unscaled input data (Table 4.6A) and min-max scaled input
data (Table 4.6B) are given.

As expected, it can be seen that the results based on scaled data are better, as there are
more ion fragments marked in bold, indicating that they are chemically valid and reason-
able specific secondary ions. Besides, checking the total intensities of the identified peaks
shows that if the raw data are not pre-processed, only secondary ions with comparably
high intensities can be found. In contrast, the min-max scaling can mitigate this effect
by allowing peaks with lower intensities to be treated equally and hence can facilitate the
analysis. In summary, a proper pre-processing of the data is a necessity for performing
robust analysis.

For a better comparison between PCA and the Logistic Regression (LR) model (detailed
in a later section), the m/z values identified by both techniques are underlined in Table
4.6. It is found that results obtained for Li2CO3, Li3N, LiH, and LiOH by the two
methods are very similar: both techniques have identified at least 8 out of 15 common
characteristic peaks. A few peaks also match chemical information well despite their
relatively low intensity (marked in normal font). Moreover, almost no secondary ions are
found to mismatch their chemical information (marked in italics). Overall, the validity of
the two methods is further demonstrated by the similarities between their results and the
good compatibility with the chemical nature of each tested compound. However, access
to the key information is more easily accessible with the LR model than with PCA, which
requests manual steps to identify these characteristic peaks.

Identification of compositions for mixture samples

PCA is tested to identify the 5 lithium compounds on the mixture and LMA samples.
The presence (or absence) of each lithium compound in the samples of interest is inferred
according to the score plots of the first several PCs, i.e., the ones describing most of
the data information. Specifically, the PCs of the samples of interest and pure reference
compounds are compared: if the PCs of the interested sample are inside the confidence
interval (here 95% confidence interval) of the PCs value associated with one reference Li
compound, it is inferred that it contained that specific compound. To illustrate and verify
such a procedure, two kinds of powder mixtures, namely 1:1 weight mixed LiOH+Li2CO3

(sample No. 1) and 1:1 LiH+Li2O (sample No. 2), are prepared and analyzed through
PCA. For a fair comparison, PCA is first performed on pure lithium compounds to
obtain the base principal components and later mapped to the two mixture samples. The
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Table 4.6: Results of identified specific peaks presented in different font styles for better illustra-
tion. Besides, m/z values identified by both PCA and LR techniques (with min-max scaled data)
are underlined for better comparison.

A) PCA no scaling

LiH Li3N Li2CO3 LiOH Li2O

No. m/z Ion m/z Ion m/z Ion m/z Ion m/z Ion

1 9.03 LiH2- 26.00 CN- 67.00 LiCO –
3 41.02 LiO2H –

2 7.02 Li–

2 7.02 Li– 7.02 Li– 59.99 CO –
3 40.01 LiO2H– 25.01 C2H–

3 26.00 CN– 16.02 NH2- 31.99 O –
2 7.02 Li– 13.01 CH–

4 8.02 LiH– 15.01 NH– 39.00 LiO –
2 65.04 Li2O3H –

3 23.01 LiO–

5 8.03 6LiH –
2 12.00 C– 40.01 LiO2H– 31.99 O –

2 6.02 6Li–

6 17.05 Li2H –
3 6.02 6Li– 23.01 LiO– 9.03 LiH –

2 19.00 F–

7 24.02 LiOH– 67.00 LiCO –
3 12.00 C– 64.04 Li2O3H –

2 14.03 Li –
2

8 24.00 C –
2 8.02 LiH– 7.02 Li– 26.00 CN– 19.01 H3O–

9 13.01 CH– 14.03 Li –
2 13.01 CH– 33.00 O2H– 31.02 CH3O–

10 16.02 NH –
2 59.99 CO –

3 25.01 C2H– 39.00 LiO –
2 41.00 C2HO–

11 19.00 F– 13.01 CH– 31.02 CH3O– 67.00 LiCO –
3 24.00 C –

2
12 12.00 C– 25.01 C2H– 45.00 CO2H– 56.01 LiO3H– 23.02 6LiOH–

13 6.02 6Li– 24.00 C –
2 55.00 LiO –

3 25.03 LiOH –
2 18.00 H2O–

14 15.04 Li2H– 23.01 LiO– 66.00 6LiCO –
3 23.01 LiO– 22.01 6LiO–

15 14.03 Li –
2 22.02 LiNH– 25.03 LiOH –

2 24.02 LiOH– 49.01 C4H–

B) PCA min-max scaling

LiH Li3N Li2CO3 LiOH Li2O

No. m/z Ion m/z Ion m/z Ion m/z Ion m/z Ion

1 14.04 6LiLiH– 21.02 LiN– 67.00 LiCO –
3 34.00 H2O –

2 19.00 F–

2 9.03 LiH –
2 22.02 LiNH– 66.00 6LiCO –

3 64.04 Li2O3H –
2 31.02 CH3O–

3 8.03 6LiH –
2 14.03 Li –

2 43.99 CO –
2 33.00 O2H– 31.03 Li2OH–

4 15.04 Li2H– 13.03 6LiLi– 59.99 CO –
3 19.01 H3O– 55.04 CH4O2Li–

5 22.06 Li3H– 26.00 CN– 46.03 Li2O –
2 18.01 H2O– 43.02 C3Li–

6 17.05 Li2H –
3 15.01 NH– 31.02 CH3O– 65.04 Li2O3H –

3 19.01 H3O–

7 25.08 Li3H –
4 27.00 CHN– 55.00 LiO –

3 56.01 LiO3H– 7.02 Li–

8 24.09 6LiLi2H –
4 21.05 Li –

3 38.01 6LiO –
2 41.02 LiO2H –

2 6.02 6Li–

9 33.10 Li4H –
5 6.02 6Li– 23.02 6LiOH– 63.03 Li2O3H– 14.03 Li –

2
10 16.05 Li2H –

2 7.02 Li– 23.01 LiO– 40.01 LiO2H– 45.03 C2H5O–

11 16.05 6LiLiH –
3 23.04 LiNH –

2 55.04 CH4O2Li– 6.02 6Li– 13.03 6LiLi–

12 7.02 6LiH– 30.00 NO– 15.02 CH –
3 7.02 Li– 31.01 NOH–

13 21.05 Li –
3 31.01 NOH– 22.01 6 LiO– 49.05 Li2O2H –

3 15.02 CH –
3

14 8.02 LiH– 16.02 NH –
2 39.00 LiO –

2 63.96 O –
4 18.01 H2O–

15 14.03 Li –
2 24.04 LiNH –

3 60.99 CO3H– 47.97 O –
3 23.02 6LiOH–

C) LR min-max scaling

LiH Li3N Li2CO3 LiOH Li2O

No. m/z Ion m/z Ion m/z Ion m/z Ion m/z Ion

1 9.03 LiH –
2 27.00 CHN– 67.00 LiCO –

3 65.04 Li2O3H –
3 48.00 C –

4
2 8.03 6LiH –

2 26.00 CN– 66.00 6LiCO –
3 64.04 Li2O3H –

2 49.01 C4H–

3 17.05 Li2H –
3 21.02 LiN– 43.99 CO –

2 49.05 Li2O2H –
3 49.05 Li2O2H –

3
4 25.08 Li3H –

4 22.02 LiNH– 59.99 CO –
3 63.03 Li2O3H– 8.02 LiH–

5 16.05 Li2H –
2 15.01 NH– 12.00 C– 34.00 H2O –

2 31.99 O –
2

6 24.09 6LiLi2H –
4 23.04 LiNH –

2 68.01 LiCO3H– 41.02 LiO2H –
2 65.04 Li2O3H –

3
7 16.05 6LiLiH –

3 30.00 NO– 54.00 6LiO –
3 33.00 O2H– 15.04 Li2H–

8 15.04 Li2H– 34.03 CHNLi– 51.01 H3O –
3 56.01 LiO3H– 56.01 LiO3H–

9 33.10 Li4H –
5 16.02 NH –

2 60.99 CO3H– 40.01 LiO2H– 60.99 CO3H–

10 8.02 LiH– 33.02 CNLi– 55.00 LiO –
3 18.01 H2O– 36.00 C –

3
11 7.02 6LiH– 24.04 LiNH –

3 61.99 CO3H –
2 19.01 H3O– 64.04 Li2O3H –

2
12 22.06 Li3H– 21.05 Li –

3 39.00 LiO –
2 33.99 H2O –

2 12.00 C–

13 33.05 Li2OH –
3 38.04 CH3OLi– 62.02 Li2O –

3 31.99 O –
2 63.03 Li2O3H–

14 14.04 6LiLiH– 14.03 Li –
2 38.01 6LiO –

2 47.03 Li2O2H– 33.99 PH –
3

15 24.00 C –
2 13.03 6LiLi– 46.03 Li2O –

2 63.96 O –
4 55.00 LiO –

3
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resulting scores plots of the first four PCs are shown in Figure 4.17. The results illustrate
that the aforementioned procedure works well with sample No. 1: LiOH+Li2CO3 mixture,
as its scores partially overlap with regions identified by the pure LiOH and Li2CO3 in
PC1–2 (Figure 4.17a), while the scores in PC3–4 (Figure 4.17b) are distributed along the
line of concatenation between the pure LiOH and Li2CO3. Therefore, it can be inferred
that mixture sample No. 1 contains both LiOH and Li2CO3. However, for mixture sample
No. 2 (composed of LiH and Li2O), the interpretation is less straightforward. In the scores
plot of PC1 vs. PC2, this sample does not overlap with any regions of LiH or Li2O. In
the scores plot of PC3 vs. PC4, data points of mixture sample No. 2 overlap with the
region of Li2O, but are far away from all other compounds, and notably far from LiH.
Based on these results, it would not have been possible to correctly identify LiH in this
mixture sample using PCA. This indicates that PCA cannot always be used to correctly
identify the compositions of the mixture, especially when multiple components could
interfere with the identification. Besides, even if such kind of visualization method is
very intuitive, it requires the researcher to manually check the results and choose which
are the reference samples in the mixture. This procedure could be particularly challenging
if the analysis of different PCs leads to different conclusions. Given all the above, PCA
does not seem to be suitable for the identification of the composition of a mixture.

Figure 4.17: 2D scores plot of the first four PCs for the 5 pure lithium compounds and 2 mixtures
(Li2CO3+LiOH noted as sample No. 1 and LiH+Li2O noted as sample No. 2). The PCs are
numbered according to the proportions of variances (listed in parentheses) they include starting
with PC 1 for the highest value. Reproduced with permission [509].

Results of pure lithium compounds and LMA samples

PCA results of five measured pure lithium compounds and LMA samples No. 3–5 in the
main text are shown in Figure 4.18. From these scores plots, it can be seen that data
points of sample No. 5 lie between several pure substances in PC1–2 (Figure 4.18a) and
overlap with Li2CO3 and LiH in PC3–4 (Figure 4.18b). Such results can easily mislead
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the identification of its compositions and a lot of manual interventions are required to
classify these samples. The case is more complex for sample No. 3 as it is far away from
those of pure substances in principal component spaces, hindering the determination of its
compositions. In particular, for sample No. 4, its far apart from other samples suggests its
unusual data distribution, implying a further examination and the need to deal with this
outlier. From these results, it can be seen that using PCA alone to infer the composition
of the mixture accurately is difficult. Therefore, alternative ML methods are tested and
the LR model is finally selected as the candidate to overcome the limits of PCA, as it
does not only perform classification but also outputs the probability of belonging to a
given class, which can be used to infer the possible components in mixtures with minimal
manual interpretation.

Figure 4.18: 2D scores plots of the first four PCs for the five pure lithium compounds and
three LMA samples No. 3–5. For better visualization of all data points, sample No. 4 is shown
separately in the embedded plot of each sub-figure in (a) and (b). Reproduced with permission
[509].

4.3.3 Analysis of data using logistic regression

The schematic diagram of the workflow followed to build the Logistic Regression (LR)
model is illustrated in Figure 4.19, and it mainly consists of four processing steps (from
left to right in the figure):
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Figure 4.19: Schematic workflow adopted to build the LR model applied to the analysis of ToF-
SIMS data, which consists of data pre-processing, model training, 5-fold cross-validation to eval-
uate its performance, application on unseen samples (predictions), and analysis of the classi-
fication results. More information about ToF-SIMS spectra, such as the importance of specific
peaks or the composition of the mixture samples, can be obtained by further analysis of the model
results. Reproduced with permission [509].

1. Pre-processing: the raw ToF-SIMS data are denoised and scaled to have comparable
values between different variables, which is one of the key steps preceding any ML-
based approach. In the field of ToF-SIMS analysis, there are many commonly used
pre-processing methods. However, no general method was found yet to be able to
fit all the situations. In this study, the min-max scaling method is found to perform
well on this data set. For the min-max scaling, each intensity value of spectra is
first subtracted from the minimum value of the corresponding m/z peak and is
then divided by its intensity range (difference between the original maximum and
minimum intensity of that m/z peak). In this way, the intensity in each m/z peak
is scaled to a range between 0 and 1. This kind of scaling approach was found
to be beneficial for the identification of the specific secondary ions, allowing the
distinction between the samples.

2. Model training and evaluation: the LR model is trained to classify the 5 pure
lithium compounds based on their measured ToF-SIMS spectra. An accurate model
should not only be able to classify samples it has been trained on, but it should
also perform well on new samples that it has not seen before. The K-fold Cross-
Validation (CV) strategy is used to take full advantage of the limited amount of
ToF-SIMS data and to assess the predictive performance of the LR model in a fair
manner. The prediction accuracy is quantified as the number of correct predictions
divided by the total one, and through the F -score. The K evaluation results are
then averaged to assess the overall performance of the model. Besides, in many
cases, an optional extra unseen test data set can also be utilized to further evaluate
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the model performance. In this study, there is no such kind of additional test set
due to the limited number of measured samples. A 5-fold cross-validation scheme
is adopted, and in each cross-validation step, the min-max scaling is performed.
The scaling parameters are defined as a function of the training set, and these same
parameters are applied to the associated test set. This allows keeping the test
set as “unseen” for the model, which ensures the fairness of the model evaluation
procedure. Considering the limited amount of training data (60 spectra from 5 pure
compounds) and the large variance within the data, this process is critical to ensure
robust results.

3. Prediction: as mentioned above, the fitted LR model is evaluated on 5 test sets (12
spectra each) of pure Li compounds through a 5-fold CV, to ensure its correctness.
Once the LR model accuracy for pure Li compounds is assessed, it is further applied
to compound mixtures, to test its capability of identifying their compositions, and
to real LMA samples. In this case, the probability of each sample belonging to any
pure Li compound is computed through the trained LR model, and it is considered
that a given Li compound is present when the associated probability is high enough
to suggest this.

4. Analysis: to better analyze and interpret the results of the LR model, the data of
ToF-SIMS spectra were reduced to low dimensions with the aid of PCA to visualize
the classification results from the LR model. Moreover, feature importance obtained
from the LR model’s parameters is utilized to infer which are the specific ions
allowing to better distinguish among different compounds. The final identification
of the key specific ions is based on the average feature importance calculated during
the 5-fold CV.

Comparison of different classification models

Table 4.7 summarizes the results of classifying the 5 measured pure lithium compounds
from commonly utilized machine learning algorithm architectures. To evaluate the per-
formance of different models, two measures are calculated, namely, accuracy and F -score
metrics, and the higher their scores, the better the model performs [514]. Trained on
pure compounds only, these models are further applied to two mixture samples (LiH/Li2O
and Li2CO3/LiOH, mixing in equal weight proportions, respectively), and their predicted
probability values are also shown in Table 4.7 where the two largest values are bolded.
The probability value indicates how confident the model is in the prediction of individual
compounds. For simplification, the model is expected to output a certain probability
value for the corresponding components in the mixture and zero for others. It should be
noted that the probability value can indicate how confident the model is in the prediction
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of the individual compound and these probability values are used only as a qualitative in-
dicator, which means, they do not coincide strictly with their proportions in the mixture.
The predictions may deviate from the expected values due to many possible reasons, such
as uneven mixing and the matrix effects, which will change the assumption of a linear
combination of two components and therefore can disturb the model.

In this study, the tested machine learning models are: logistical regression [49], Support
Vector machine Classifier (SVC) with linear or Radial Basis Function (RBF) kernel [52],
k-Nearest Neighbors (k-NN) (reported in an unpublished US Air Force School of Aviation
Medicine report in 1951 and later introduced as a non-parametric algorithm for pattern
classification) [515], decision tree [58], and its advanced variants: random forest [72,
65] and Adaptive Boosting (AdaBoost) method (both with decision tree as the base
estimator) [67], Gaussian Naive Bayes (NB) [516], and a shallow neural network with
Multi-Layer Perceptron (MLP) [108]. Each model performs well when trained on pure
substances and applied in identifying pure Li compounds. On the one hand, it is satisfying
that these models can achieve good performance with 98–100% accuracy/F -score. On the
other hand, such a high evaluation score poses difficulties in tuning the hyperparameters
for these models. As a result, for simplicity, the default parameter settings from the
associated machine learning library are adopted for all the models. As can be seen from
Table 4.7, when the models are applied to mixture samples, some models show strong
overfitting and fail to identify the correct multi-compositions (e.g., k-NN model fails to
detect LiH in LiH/Li2O mixture) or cannot distinguish different substances well (e.g., SVC
with RBF kernel just yields relatively uniform probability values for all the substances).
This phenomenon is understandable because the data distributions of mixture samples
can be quite different from those of pure substances. In this case, the LR model performs
better than the others. It is speculated that such a good performance comes from the LR
model’s nature of being a quasi-linear model: as the spectra of mixtures can be somehow
seen as a (possible) linear combination of the spectra of pure substances and hence the
LR model suits better on these samples.

It is important to note that the comparison between models is neither systematic nor
comprehensive. Tuning the hyperparameters of these models is likely to produce very
different results. As an example, for the LR model, different hyperparameters are tried
to see their effect on the model performance, and their results are listed in Table 4.8.
To be specific, here the hyperparameters are mainly related to the selection of regular-
ization terms and different regularization strengths, that is, no regularization, L1 or L2

regularization, or elastic net (both L1 and L2, here their ratio is set to 1:1 for simplic-
ity). It can be seen that the model without regularization term has already received a
satisfying result, though it yields a noteworthy prediction of possible (10% probability)
existence of Li3N (which ought not to be there) for the LiH/Li2O mixture sample. On
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the one hand, it can also be noticed that a too strong regularization (smaller value of
C) of the model is detrimental to its performance. On the other hand, an appropriate
regularization strength can ensure the good performance of the model, and no significant
differences are observed in terms of classifying pure compounds (about 100% accuracy/F -
score) with moderate regularization settings. Since it is also desired to use the model to
determine the composition of the mixture, the model should ideally also predict higher
probability values for the substances that it may contain. With this rule, combinations
of hyperparameters that give unreasonable prediction values can be excluded. For ex-
ample, with L1 regularization (C = 1), although the classification performance is almost
perfect for pure substances, it gives high predicted probability values for substances that
should not be present in the mixture samples (e.g., 0.18 for Li2CO3, 0.19 for Li3N and
0.19 for LiOH in LiH+Li2O mixture sample, and 0.19 for Li2O, 0.16 for Li3N and 0.15
for LiH in Li2CO3+LiOH mixture sample). Since the predicted probability values do
not strictly quantify the proportion of components in the mixture (see main text for de-
tailed discussion), it is hard to choose the optimal one among the remaining moderate
hyperparameters. In this regard, the model trained with the default hyperparameters
(L2 regularization with strength C = 1) from the machine learning library is empirically
chosen. However, such kind of study of all the combined parameters for all these models
would be too time-consuming and tedious. Hence, the principle of Occam’s razor is fol-
lowed: choosing a simple and practical model. Therefore, the LR model is finally selected
as the standard model in this study.

Identification of specific secondary ions

The trained LR model is able to make accurate (>99%) classifications of the measured
5 kinds of pure Li compound samples. Based on the feature importance given by the
LR model, the characteristic peaks are identified for the 5 lithium compounds samples
and they are listed in Table 4.6C, where the 15-top m/z values are reported in the order
of importance. For Li2CO3, Li3N, LiH, and LiOH, the LR model has identified at least
12 out of 15 characteristic peaks (marked in bold font) that have the highest intensities
in the peak area plots and shows good compatibility with their corresponding chemical
nature. A few peaks also match chemical information despite their relatively low intensity
(marked in normal font). Moreover, almost no secondary ions are found to mismatch their
chemical information (marked in italics).

Besides, it is worth noting that the result for Li2O is unsatisfying, as the selective identifi-
cation of Li2O through ToF-SIMS can be particularly difficult due to its similarities with
Li2CO3. For example, some peaks, such as LiO– and LiO –

2 , which could be intuitively
regarded as specific for Li2O, appear even more intense in the Li2CO3 samples. As a
result, no prominent secondary ions solely specific to Li2O can be determined by the LR
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Table 4.7: Accuracy and F-score for classifying pure Li compounds and predicted probability for
mixture samples from different machine learning models.

Model
Pure compounds

Mixture
Composition probability

Accuracy F -score Li2CO3 Li2O Li3N LiH LiOH

LR 1.0 1.0
LiH + Li2O 0.00 0.83 0.03 0.14 0.00

Li2CO3+ LiOH 0.54 0.00 0.00 0.00 0.46

SVC (RBF) 1.0 1.0
LiH + Li2O 0.09 0.48 0.15 0.20 0.08

Li2CO3+ LiOH 0.33 0.15 0.11 0.11 0.30

SVC (linear) 1.0 1.0
LiH + Li2O 0.05 0.51 0.16 0.21 0.07

Li2CO3+ LiOH 0.44 0.11 0.03 0.02 0.39

k-NN 1.0 1.0
LiH + Li2O 0.00 0.99 0.00 0.01 0.00

Li2CO3+ LiOH 0.50 0.00 0.00 0.00 0.50

Decision Tree 0.97 0.97
LiH + Li2O 0.00 0.10 0.57 0.33 0.00

Li2CO3+ LiOH 0.62 0.00 0.00 0.00 0.38

Random Forest 1.0 1.0
LiH + Li2O 0.03 0.21 0.28 0.42 0.06

Li2CO3+ LiOH 0.37 0.08 0.02 0.00 0.53

AdaBoost 0.97 0.97
LiH + Li2O 0.00 0.98 0.00 0.02 0.00

Li2CO3+ LiOH 0.37 0.08 0.02 0.00 0.53

Gaussian NB 1.0 1.0
LiH + Li2O 0.00 0.00 0.00 1.00 0.00

Li2CO3+ LiOH 0.08 0.00 0.00 0.00 0.92

MLP 1.0 1.0
LiH + Li2O 0.06 0.39 0.16 0.32 0.07

Li2CO3+ LiOH 0.41 0.03 0.00 0.00 0.56
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Table 4.8: Accuracy and F-score for classifying pure Li compounds and predicted probability
for mixture samples from LR models with different hyperparameter settings. (C*: Inverse of
regularization strength)

Regularization C*
Pure compounds

Mixture
Composition probability

Accuracy F -score Li2CO3 Li2O Li3N LiH LiOH

None - 1.0 1.0
LiH + Li2O 0.00 0.74 0.04 0.21 0.01

Li2CO3 + LiOH 0.50 0.01 0.00 0.00 0.49

L1

0.01 0.13 0.04
LiH + Li2O 0.20 0.20 0.20 0.20 0.20

Li2CO3 + LiOH 0.20 0.20 0.20 0.20 0.20

0.1 0.12 0.04
LiH + Li2O 0.20 0.20 0.20 0.20 0.20

Li2CO3 + LiOH 0.20 0.20 0.20 0.20 0.20

1 1.0 1.0
LiH + Li2O 0.06 0.37 0.08 0.40 0.08

Li2CO3 + LiOH 0.42 0.09 0.05 0.02 0.42

10 1.0 1.0
LiH + Li2O 0.01 0.53 0.05 0.38 0.02

Li2CO3 + LiOH 0.50 0.05 0.00 0.00 0.45

100 1.0 1.0
LiH + Li2O 0.00 0.59 0.04 0.36 0.00

Li2CO3 + LiOH 0.51 0.03 0.00 0.00 0.46

L2

0.01 0.92 0.92
LiH + Li2O 0.15 0.24 0.22 0.24 0.16

Li2CO3 + LiOH 0.30 0.16 0.12 0.11 0.30

0.1 1.0 1.0
LiH + Li2O 0.01 0.69 0.09 0.20 0.02

Li2CO3 + LiOH 0.53 0.06 0.01 0.00 0.45

1 1.0 1.0
LiH + Li2O 0.00 0.83 0.03 0.14 0.00

Li2CO3 + LiOH 0.54 0.00 0.00 0.00 0.46

10 1.0 1.0
LiH + Li2O 0.00 0.89 0.03 0.08 0.00

Li2CO3 + LiOH 0.55 0.00 0.00 0.00 0.45

100 1.0 1.0
LiH + Li2O 0.00 0.93 0.02 0.05 0.00

Li2CO3 + LiOH 0.46 0.00 0.00 0.00 0.54

Elastic net

0.01 0.92 0.92
LiH + Li2O 0.19 0.19 0.20 0.20 0.21

Li2CO3 + LiOH 0.19 0.19 0.20 0.20 0.21

0.1 1.0 1.0
LiH + Li2O 0.18 0.23 0.19 0.21 0.19

Li2CO3 + LiOH 0.26 0.19 0.16 0.15 0.24

1 1.0 1.0
LiH + Li2O 0.07 0.54 0.10 0.21 0.07

Li2CO3 + LiOH 0.49 0.10 0.01 0.01 0.38

10 1.0 1.0
LiH + Li2O 0.05 0.50 0.12 0.28 0.06

Li2CO3 + LiOH 0.47 0.07 0.00 0.00 0.45

100 1.0 1.0
LiH + Li2O 0.04 0.48 0.15 0.29 0.04

Li2CO3 + LiOH 0.52 0.06 0.00 0.00 0.42
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model within this sample data set.

Identification of compositions for mixtures and LMAs

The identified specific peaks for the different lithium compounds can help researchers rec-
ognize these materials from their ToF-SIMS spectra, especially for those having unique
characteristic peak(s). In addition, it is desirable to be able to identify chemical species
with no particular characteristic peak, like Li2O in the present samples. However, real-
istic samples may contain several different compounds, from which secondary ions could
originate that overlap on the characteristic peaks identified for the pure Li compounds
under consideration. This could significantly complicate the spectrometric analysis. To
identify the compositions on a mixture sample, the obtained LR model is used to infer the
possible components based on the probability values it outputs for different substances.

Identification of compositions for mixtures with LR

The obtained LR model does not only perform classification but also outputs the prob-
ability of belonging to a given class, which can be used to infer the possible components
in mixtures without much need for manual interpretation. To better understand the pre-
dicted probability values from the LR model and the work process of the model, 5 pure
lithium compounds and 2 mixture samples (Li2CO3+LiOH and LiH+Li2O) are projected
to the low-dimension space with PCA for better visualization (shown in Figure 4.20a and
4.20c). It can be seen that both mixtures lie in the position between their corresponding
two constituents. Besides, the decision boundary plots of LiH are also shown in Figures
4.20b and 4.20d. They serve as the schematic diagram to illustrate how the compositions
of a Li2O+LiH mixture sample can be identified by the LR model, i.e., the probability
associated with its presence. These decision boundary plots are obtained as follows: the
PC1–3 spaces are uniformly gridded into dense data points, which are then inversely
mapped back to the original feature space (m/z peaks), and their corresponding proba-
bilities of being LiH are calculated by the LR model. The inverse mapping is performed
in this way: PCA scores S can be given by S = XW , where X is the raw (centered)
data matrix and W is the matrix consisting of eigenvectors, therefore, the inverse re-
construction of data X̂ to the original feature space is calculated by X̂ ≈ SW T . In
the schematic diagram, only pure LiH (red star), Li2O (blue cross) substances, and the
associated mixture samples (purple triangle) are shown for the convenience of visualiza-
tion. The warmer the color, the higher the probability that LiH is present according to
the model, while cold color indicates a low probability. It can be clearly seen that the
mixtures lie in between the two reference compounds and are biased towards Li2O (espe-
cially in PC2–3), which is consistent with the predicted probability values (0.83 for Li2O
and 0.14 for LiH) for this mixture sample (sample No. 2 in Table 4.9). In conclusion, for
mixture samples, their corresponding compositions can be estimated qualitatively based
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on the LR model’s predictions.

Figure 4.20: 2D scores plot of the first four PCs for the 5 pure lithium compounds and 2 mixtures,
namely Li2CO3/LiOH and LiH/Li2O. The PCs are numbered according to the variance (listed in
parentheses) they include starting with PC1 for the highest variance. Reproduced with permission
[509].

Table 4.9 reports the probabilities predicted by the LR model for the two prepared mix-
tures (samples No. 1–2). For these mixtures, the model can correctly predict their com-
positions as it yields the highest probabilities for these corresponding compounds. Before
examining the predicted values in detail, it should be noted that during the measurement
of SIMS spectra, the secondary ion currents are ideally proportional to the amount of a
species, but it usually could not strictly reflect the quantitative composition of the mea-
sured sample due to varying ionization probabilities caused by matrix effects. Therefore,
the predicted values from the model are used only as a qualitative indicator rather than a
quantitative metric. For the mixture sample No. 1, a mixture of Li2CO3 and LiOH in 1:1
weight proportion (the molar ratio is about 1:3.1), the model predicts a probability value
of 0.54 for Li2CO3 and 0.46 for LiOH, which matches well the position of these mixture
samples in Figure 4.20: they are indeed located in the middle of pure Li2CO3 and LiOH
compounds, explaining why the model makes such a prediction of roughly equal propor-
tions. On the other hand, for mixture No. 2 (1:1 weight mixed from Li2O and LiH), the
model predicts a probability of 0.83 for Li2O and only 0.14 for LiH, implying that they
may contain more Li2O. This can be supported by the fact that these mixture samples
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lie towards Li2O in decision boundary plots, indicating they are more similar to Li2O.
Furthermore, it is found that the model also predicts a very small value of 0.03 for Li3N,
which is not expected in this sample. Such a prediction is presumably due to the inter-
ference from noisy peaks, and a closer examination is given in a later section. Overall,
the analysis of the above results reveals that the possible compounds in a mixture can be
qualitatively identified according to the predicted probability values from the LR model,
though these values do not strictly correspond to their expected molar or weight ratios.
Furthermore, the model can predict compounds that do not show specific peaks, namely
Li2O, which could be helpful for an accurate determination.

Table 4.9: Predicted probability for mixture and LMA samples from the LR model.

Sample No.
Compositions
(expected)

Category Remark
Composition probability

Li2CO3 Li2O Li3N LiH LiOH

1 Li2CO3/LiOH mixture 1:1 mixed 0.54 0.00 0.00 0.00 0.46

2 LiH/Li2O mixture 1:1 mixed 0.00 0.83 0.03 0.14 0.04

3 Li3N LMA N2-plasma treated 0.01 0.12 0.83 0.00 0.00

4 Li2CO3/LiOH LMA smaller sputter dose 0.72 0.00 0.02 0.00 0.26

5 Li2O/LiH LMA double sputter dose 0.00 0.40 0.05 0.55 0.00

Identification of compositions for LMAs

Based on the analysis above, the LR model is applied to the real LMA samples (No. 3–5
in Table 4.9). Besides, to better investigate and understand the reasons for the model to
make such predictions, the intensity values of the LMA ToF-SIMS spectra in the top 5
characteristic m/z peaks of the five examined pure compounds, are exhibited in Figure
4.22. For better comparison, all spectra data are scaled together using the min-max
scaling method.

Sample No. 3 is a lithium metal foil that was exposed to N2-plasma to produce Li3N on its
surface. As can be read from Table 4.9, the model predicts the highest probability value
for Li3N (0.87), which is in line with the expectation of nitride formation and can also
be demonstrated by the large intensity values of these samples in the characteristic m/z

peaks of Li3N (shown in Figure 4.22). It is worth noting that the model outputs a small
probability value for Li2O (0.12), suggesting the possible presence of Li2O. To investigate
this inference, XPS measurements are performed on this sample, whose results not only
confirm the formation of Li3N but also reveal that there are indeed some oxide residuals
on this sample (Figure 4.21). These are presumed to be either introduced by oxidation
processes during sample transport or other contamination. Thus, the model success-
fully helps to identify the component that may be overlooked otherwise, and it reminds
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researchers to process the samples carefully to reduce possible influencing impurities.

Figure 4.21: For sample No. 3, a lithium metal foil that was exposed to N2-plasma, the presence
of Li3N and Li2O could be confirmed by the X-ray Photo-electron Spectroscopy (XPS) in the Li
1s region. XPS measurements were conducted as reported previously after sputtering with Ar+

with 1 kV for 3 min, 2 kV for 8 min, and 4 kV for 30 min. Reproduced with permission [509].

In the following, particular attention will be given to the other two LMA samples, as
they allow discussion of potential difficulties in the interpretation of the LR results,
and therefore its limitations. It should be noted that during the training process, the
LR model has only seen the data of pure lithium compounds, but it is now applied to
unseen samples that may contain multiple components. Before measuring their ToF-
SIMS spectra, different sputter times were applied. The longer the sputtering time is,
the more sample volume is ablated, and the subsequent analysis should give information
on deeper parts of that sample.

For sample No. 4, only 1 frame (= 9×1013 ions/cm2, smaller sputter dose) was sputtered
to remove contaminants from the very outermost surface layer. The model correctly
predicts the presence of Li2CO3 (0.72) and LiOH (0.26) on this sample, which is consistent
with the XPS analysis of lithium metal foil, showing the existence of Li2CO3 and LiOH.
However, a direct comparison between their results is not possible, as ToF-SIMS is more
surface sensitive (1–3 upmost atom layers) than XPS (about 10 nm). Therefore, these
results could indicate that Li2CO3 and LiOH are the dominating components on the very
top of the sample surface and consequently mainly detected with ToF-SIMS. In addition,
it should be noted that an unusual data distribution of this sample can be observed
in Figure 4.22, as intensity values in some peaks are even higher than the one of the
pure samples. For example, in the characteristic peak of Li2CO3 where m/z = 59.99
(CO –

3 ), the intensity value of sample No. 4 is even ∼3.5 times higher than that of the
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pure Li2CO3 sample. This phenomenon is understandable as this sample was measured
after a shorter sputter time to get information on the outermost layer. Such a large
value – though this signal may come from additional contamination like hydrocarbons
– could dominate the model’s behavior and may lead to misleading results. Hence, this
sample is regarded as an outlier and to mitigate the possible negative impact, a data
treatment is performed to truncate the particularly high peak values, to be specific, a
maximum truncation method is adopted as one step in the preprocessing to mitigate the
possible negative effects of outliers. That is, if the peak intensity exceeds the maximum
value of pure substances, a truncation is performed. After this treatment, the prediction
results have improved greatly, otherwise, the LR model, which was trained only on pure
lithium compounds, would assign a probability of 100% Li2CO3, and not even a very
small probability associated with LiOH.

For sample No. 5, a sputtering time of 150 seconds was applied prior to the ToF-SIMS
measurements, which allows the investigation of a deeper part of the lithium metal foil.
The model predicts the presence of Li2O (0.40), and XPS analysis also indicates the
presence of Li2O mainly after longer sputtering, while going even deeper in the sample
can lead to the detection of lithium metal. Additionally, the model also predicts LiH
(0.55) on this sample, which is difficult to determine with XPS measurements, as it can
only rule out the presence of large amounts of LiH, making the potential identification
of LiH through ToF-SIMS especially interesting. To further study this, the original ToF-
SIMS spectra are investigated. Considering the longer sputtering time that was applied to
sample No. 5, its outermost layers should have already been removed completely before
the analysis. This agrees with the lack of peaks associated with Li2CO3 (illustrated
in Figure 4.22), explaining why the model predicts a probability value of 0.0 for this
compound. On the contrary, certain signal intensity is detected in the characteristic m/z

peaks of LiH, which further confirms the accuracy of the model.

Besides, the very small probability values associated with Li3N for sample No. 4 (0.02) and
No. 5 (0.05) attract attention and raise concerns about the model’s prediction. Similar to
the case of the mixture sample No. 2, the original peak profiles of this sample (especially
characteristic peaks for Li3N) are carefully examined to investigate whether the model has
misclassified species. From the peak profiles (Figure 4.23) it is known that certain strong
intensities are detected in some characteristic peaks for Li3N, which suggests a possible
presence of Li3N on these samples, showing model’s predictions are reasonable. However,
these peaks seem to be very noisy, which may interfere with the model’s prediction,
explaining why the LR model predicts a very low probability value of Li3N. However,
it is not particularly clear where these peaks originate from. Possible reasons could be
that a small portion of particles was brought on these samples when sputtering the Li3N
LMA sample, as the samples were in the analysis chamber at the same time.
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Alternatively, another option is that these two LMA samples were brought into contact
inadvertently. On the one hand, the short period of sputtering time on sample No. 4
was not sufficient to remove all contamination on the sample surface, which might lead
to different charging of the LMA sample. This can result in a different data distribution
in the measured spectrum of this sample compared to those of pure samples, for which
a longer sputter time was applied. On the other hand, sample No. 5, after a longer
sputtering time, has possibly reached the metallic lithium area, the signal of which may
add a different intensity distribution to the measured spectra, which may interfere with
the model to some degree, making an accurate prediction challenging. However, as the
correlation of sputter times in ToF-SIMS and XPS is difficult and the lithium metal does
not show any specific signals in ToF-SIMS analysis itself, from the available results alone
it is impossible to infer whether the lithium metal is present or not. When this is the
case, researchers need to examine the raw data to ensure the reliability of the model.
Nevertheless, such samples can still be analyzed more easily and quickly with the help
of the characteristic peaks previously identified by the model. Lastly, the importance
of considering comparable sputter times and the need to reduce surface contamination
should be emphasized, which are critical to ensure the accuracy of machine learning
models applied to ToF-SIMS analysis.

Finally, it should also be noted once more that the LR model has only seen the data of
pure lithium compounds, but it is now applied to unseen mixture samples with unusual
data distribution (extrapolation), which is a considerably challenging task. A possi-
ble improvement would be adding mixture samples to the training process. However,
the scarcity of mixture samples in this work hinders this realization. To overcome this
problem, a data augmentation method is used to synthesize pseudo-mixture samples,
with which the original problem of identifying composition is transformed as a regres-
sion problem, and a random forest regression model is fitted to predict the quantity of
substance (detailed in the later section). Such a model can better predict the presence
of Li3N, which can serve as a supplement and comparison to the LR model. In addition
to this, increasing the number of data samples, e.g., performing ToF-SIMS imaging to
record richer information, or preparing more samples of various pure substances to enrich
the database, is expected to improve models’ performance and is considered as a future
work.
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Figure 4.22: Scaled intensity values for the 5-top specific m/z peaks (labeled in each subplot)
for 5 pure lithium compounds and LMAs samples in these peaks. Each circular area plot (in
polar coordinate) represents one pure compound, where its corresponding intensity in each m/z

peak is marked in a darker color, while other materials are in a lighter color. Reproduced with
permission [509].

Analysis of predicted Li3N on the mixture and LMA samples

The LR model predicts a very small possibility value for Li3N for samples No. 2, No. 4,
and No. 5. To investigate whether the model has misclassified species on these samples,
their peak profiles are carefully inspected and the 15-top Specific m/z Peaks (SP) of Li3N
are exhibited in Figure 4.23. It can be observed that samples No. 2 and No. 5, do show
intensities in some m/z peaks of Li3N (but not in all SP), explaining the reason why
the LR model suggests smaller amounts of Li3N on these samples. It can also be seen
that the peak intensities of sample No. 5 are generally higher than those of sample No. 2,
explaining why the model yields slightly higher values for Li3N on sample No. 5 than on
No. 2. On the other hand, sample No. 4 is inferred to contain much more Li3N than the
other two based on the SP plot, however, the LR model only predicts a small possibility
value (0.02) for Li3N. The reason why the model only yields a small probability value is
inferred to be caused by the unusual data distribution (the excessive peak intensity) of
this sample compared to the training set, leading to the interference. Such deviations in
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its data distribution, while large, are common occurrences in data analysis, in particular
in treating outliers. Meanwhile, such kind of predictions can be expected, since the LR
model is trained on a limited number of pure substances and generalized to new unseen
mixture samples with large differences in data distribution.

Figure 4.23: 15-top specific m/z peaks of Li3N (colored in red). For better comparison, the other
four pure lithium compounds (colored in gray), mixture sample No. 2 (LiH+Li2O, colored in
green), LMA sample No. 4 (colored in light blue), and LMA sample No. 5 (colored in dark blue)
are also exhibited. Reproduced with permission [509].

4.3.4 Other methods and perspectives

Decomposition of the mixture and LMA samples

In this section, the Non-negative Matrix Factorization (NMF) method is applied to the
mixture and LMA samples to analyze their compositions. Basically, the NMF method
attempts to separate the independent original signal from the mixed signal source. NMF
works by first assembling a matrix A, which contains samples in its rows and variables
(spectral channels) in its columns, and then factorizing it approximately into non-negative
matrices W and H using a multiplicative algorithm, i.e., A ≈ WH . H represents
the characteristic spectra of a specific number of “pure compounds” presented in the
samples and W represents their distribution maps, which can be interpreted as the
“concentrations” of these compounds in each observation. An important parameter for
this method is the number of components n to be decomposed. Since it is not known
in advance how many independent components a mixture sample consists of, a simple
heuristic, the “elbow” method is used to determine the optimal number in this work:
a relationship diagram is plotted with n ranging from 2 to 5 (on the horizontal axis)
against the corresponding reconstruction error (on the vertical axis), from which the
“elbow” point with the largest rate of error change (the point where the rate of reduction
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drops significantly) is selected as the best number.

For the two mixture samples No. 1–2, decomposition results obtained from the NMF
method are shown in Figure 4.24. It can be deduced that both mixture samples are
mainly composed of two independent components according to the relationship plots (n
vs. reconstruction error), as a sharp turn can be observed at the elbow point where
n = 2. This is consistent with the fact that the two mixtures were made by mixing
two pure substances respectively. For each mixture sample, its recovered peak profiles
(decomposed spectra of “pure compounds” according to matrix H) sub-scripted with (i)
and (ii), together with their best-matching pure lithium compounds, are also exhibited
for better comparison. The matching similarity is measured by calculating the Pearson
correlation coefficient p (a value between -1 and 1, where a larger value reflects a stronger
positive relationship) between the peak profiles [517]. It can be seen that except for
Li2O, other reconstructed profiles have a high degree of agreement (> 0.98) with those
of the pure substance. In addition, their relative “concentrations” can be quantified by
evaluating the NMF intensities (distribution maps in matrix W ) [518, 519]. For sample
No. 1, it is found to consist of 75% Li2O and 25% LiH while sample No. 2 consists of 67%
Li2CO3 and 33% LiOH. From these results, it can be concluded that the NMF method
performs well in decomposing the artificially manufactured mixture samples and can be
used to assist researchers in accurately identifying the composition of these samples.
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Figure 4.24: Decomposition results obtained from the NMF method for the two mixture samples
(No. 1 and No. 2) are shown in (a) and (b), respectively. In each sub-figure, the peak profile of
the mixture sample, the change of reconstruction error with respect to the number of components,
and the recovered individual component profiles (i)–(ii) along with the best matching peak profiles
of pure compounds (measured in Pearson correlation coefficient, abbreviated as p and marked
in the lower right corner of each decomposed component plot), are exhibited. The peaks are
normalized to the maximum of their corresponding profile for better visualization and comparison.
Reproduced with permission [509].

Similarly, the NMF method is also applied to LMA samples No. 3–5, and their results
are shown in Figure 4.25. The case of real LMA samples is more complicated than that
of artificially mixed samples. For sample No. 3, it is inferred to be composed of two
components, however, both components are inferred to be Li3N (i.e., 100%) as they are
all best matched with the pure Li3N compound. Pearson correlation coefficient is used to
measure the similarity between profiles, generally, a higher value implies a better match.
From Figure 4.25a it is observed that component 1 with a higher p-value (0.753) is indeed
more visually similar to Li3N than component 2 (p = 0.607). Sample No. 4 is estimated
to contain four components, three of them (components 1–3) are found most similar to
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LiOH (83%, in line with expectations), and the 4-th component is closest to Li3N (17%)
but with lower p-value (0.438). For those three components matched with LiOH, it can be
observed that the match of the spectra profile with LiOH gradually becomes poorer as the
p-value decreases, and for the third component (p = 0.411), there are many mismatched
peaks and only some characteristic peaks are well aligned. For sample No. 5, it is inferred
to consist of three components: LiH (67%), Li2O (25%), and Li3N (8%). Among them,
the recovered peak profiles, which are inferred to be LiH (p = 0.891) and Li2O (p = 0.660),
match the expected compositions of this LMA sample. The obtained 3rd component is
found to be most like Li3N, however, its relatively low p-value (0.415) implies it may be
an inaccurate result. This can also be noted from the visual comparison between their
peak profiles, as only a limited number of the characteristic peaks are properly matched.
Taking into account the results of the three LMA samples, a threshold value of p-value
is needed to filter out the poorly matched components, and an empirical value of 0.5 is
picked for this study.

In summary, the results of the five analyzed samples have demonstrated the limited
effectiveness of adopting NMF in the analysis of mixtures, as it may miss components or
give misleading results. For the homogeneously blended, artificially fabricated samples,
this method allows accurate separation of the original independent components. This
is reasonable because these mixtures were actually made by milling the pure samples
and their profile nature should be closer to those of the pure substances, resulting in
better decomposition performance. However, for real LMA samples, this method is not
always effective, which can lead to failure in identifying some constituents or even giving
wrong outcomes. In addition, a higher level of manual intervention is still required, such
as visual inspection or setting threshold values based on the researcher’s experience for
filtering possibly misleading results. Besides, it is worth pointing out that the number
of data samples in this study is very limited, and the increase in the amount of data is
expected to improve the accuracy of the decomposition result.
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Figure 4.25: Decomposition results obtained from the Non-negative Matrix Factorization (NMF)
method for the real LMA samples No. 3–5 are shown in (a)–(c), respectively. In each sub-figure,
the peak profile of the mixture sample, the change of reconstruction error with respect to the
number of components, and the recovered individual component profiles sub-scripted with the
symbol (i)–(iv) along with the best matching pure compounds (measured in Pearson correlation
coefficient, abbreviated as p and marked in the lower right corner of each decomposed component
plot), are exhibited. The peaks are normalized to the maximum of their corresponding profile for
better visualization and comparison. Reproduced with permission [509].

Predicting compositions using regression models

It is another option to have models trained also on mixture data and treat the task of
identifying the compositions of the mixture and LMA samples as a multi-label classifica-
tion problem. However, the scarce number of mixture samples in this work hinders this
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realization. To alleviate this, the discussed problem is transformed into a regression task:
a regression model can be trained to predict the amount of different pure substances in a
sample, enabling the identification of its compositions according to the predicted quan-
tity values. To make use of the limited amount of data, a data augmentation approach
is used: new pseudo-mixture samples are made by randomly selecting two peak profiles
of different substances and then the two are mixed by multiplying random weights for
each (the two weights are seen as the quantities of substances in a mixture, and they
sum to 1). The task of the regression model is to predict these weights (i.e., the quantity
of the corresponding substances) based on these synthetic peak profile data. To achieve
satisfying results, approximately 10k pseudo-mixture samples are generated.

To evaluate the performance of the model, the coefficient of determination R2 is adopted
(larger value, better result). The studied machine learning regression models are: linear
regression [520, 521], Support Vector machine Regressor (SVR) with linear or Radial
Basis Function (RBF) kernel, decision tree, and its advanced variants: Random Forest
(RF), Adaptive Boosting (AdaBoost) method, gradient boost machine (all with decision
tree as the base estimator) [69], Gaussian Process Regression (GPR) [522, 523], and a
shallow neural network. The studied problem is a multi-output task (5 outputs for 5 pure
substances), and if the model does not natively support multi-target regression, a simple
strategy is adopted, i.e., training multiple models, each fitting one target. The whole
data set is divided into 60/20/20% as training, validation, and test sets. For each model,
it is tried ten times on the training set with different hyperparameters, and the validation
set is used to determine the most appropriate one. Afterward, the model is trained with
the found best hyperparameters on a data set assembled by the training and validation
sets, and the final performance of the model is evaluated on the test set. Among the
tested models, the RF model (number of trees = 200) achieves the best performance (R2

= 0.999).

This model is then applied to the mixture and LMA samples for composition identification
and their results are summarized in Table 4.10. According to the evaluation criteria
described in Section 4.3.3, the regression model shows good results on these samples.
Compared with the LR method that relies on the classification probabilities to determine
the compositions, it is found that both methods yield essentially similar conclusions
despite differences in the specific values. It should be emphasized that the two sets
of results are only qualitatively compared since the probability values obtained from
the classification model are not strictly equivalent to the amounts of the substances.
Moreover, it is also worth noting that for sample No. 4 the data are also pre-treated with
the maximum truncation method, and the regression method predicts a small value (0.1)
for the presence of Li3N on it (where the LR model predicts an almost negligible value
0.02). The most likely reason for the presence of Li3N on sample No. 4 is presumed to
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be residual contaminants on the sample surface and it is discussed in the main text. As
can be concluded from the above results, treating the original problem as a regression
problem allows it to better identify some compositions on a mixture sample, although
certain data enhancement and longer time costs of the fitting model are needed. These
results can be a good complement to the original analysis, opening a new perspective to
analyze the problem of composition identification.

Table 4.10: Predicted probability for mixture and LMA samples from the RF model.

Sample No.
Compositions
(expected)

Category Remark
Composition probability

Li2CO3 Li2O Li3N LiH LiOH

1 Li2CO3/LiOH mixture 1:1 mixed 0.65 0.00 0.00 0.00 0.35

2 LiH/Li2O mixture 1:1 mixed 0.00 0.73 0.00 0.27 0.00

3 Li3N LMA N2-plasma treated 0.04 0.20 0.74 0.00 0.02

4 Li2CO3/LiOH LMA smaller sputter dose 0.55 0.01 0.10 0.00 0.34

5 Li2O/LiH LMA double sputter dose 0.01 0.50 0.00 0.49 0.00

4.3.5 Conclusion

In summary, the LR model performs satisfactorily on the three tested LMA samples
despite the challenge of extrapolation. With the help of the characteristic peaks obtained
from the model and the predicted probability associated with the different compounds,
the compositions of the mixture and LMA samples can be identified qualitatively in
a faster and simplified way. Besides, it is worth noting that detecting and handling
the outlier samples are necessary steps to offer a more robust result. Hence, a more
elaborate measuring procedure would need to be designed to ensure as much as possible
a consistent distribution of data across the sample to mitigate possible negative effects.
Moreover, depth profiles can be measured to investigate probability change as a function
of sputter time utilizing the high sensitivity and lateral resolution of ToF-SIMS. This
could be helpful in identifying any artifact introduced by sputtering and assist in making
more confident interpretations about oxidation, surface segregation, and other related
activities such as the matrix effects [524, 525].
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Chapter 5

Conclusion and outlook

5.1 Summary and perspective on materials research

In this work, a comprehensive and structured overview of applying machine learning in the
field of materials science is presented. It systematically distills and explains the essential
core principles, methodologies, and theoretical foundations necessary for comprehending
and engaging with machine learning paradigms in materials research. These applications
have become increasingly prevalent in recent years due to the unparalleled successes that
machine learning has achieved in various scientific and technological domains.

For the three primary components of materials research, namely, experimentation, sim-
ulation, and characterization, this work shows example studies to demonstrate the ad-
vantages and effectiveness of using machine learning methods to solve practical problems
during the research process. The presented studies cover typical application scenarios
and cover a wide range of research areas, scales, and data types. For application to
experiments, Bayesian optimization is utilized to design experiments for synthesizing an
oxide electrolyte in a solid-state battery. The goal is to minimize the required num-
ber of attempts, resulting in a reduction of overall time. This method has proven to
be helpful in assisting researchers in making decisions and is approximately 2–3 times
faster than traditional methods. For application to simulation, a neural network model,
specifically a variational autoencoder, is used to automate the extraction of structural
information of digitally generated porous microstructure. This structural information
can then be represented in low-dimensional variables, enabling the development of fast
predictive models for building process-structure-property relationships, which is a critical
topic in materials studies. For application to characterization, using the one-dimensional
data of time-of-flight secondary ion mass spectrometry as an example, this work explores
the effectiveness of different machine models and makes comparisons between the results.
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Not only a fast classification and identification model has been built, but interpretable
chemical information can be retrieved based on the feature importance from the model.

Throughout the course of this work, many discussions were held with collaborators during
the realization and completion of these studies. In addition, to better understand the
current status and opinions of applying machine learning methods in materials research,
surveys and workshops were conducted with project partners, from which many reflections
and views were gained and they are discussed in the following.

Individual data workflows and missing data standards

Data workflows within the materials field exhibit considerable variability depending on
factors such as specific research focus, data acquisition techniques, and individual re-
searcher preferences. Although materials researchers can generate extensive knowledge
about the relationships between processing, structure, properties, and performance of
materials, the differing methods of data generation, analysis, and dissemination present
significant challenges to the reuse and re-purposing of others’ data. Through surveys with
materials researchers at academic institutions or in industry [526] and experience from
this work, each individual researcher can make different choices among characterization
techniques, simulation tools, data management platforms, and data analysis methods.
This fragmentation impedes the centralization and standardization of materials data.
Therefore, fostering cross-disciplinary collaboration and establishing a comprehensive,
centralized data clearinghouse will be vital for advancing materials research, which needs
to be designed to organize and store diverse data more effectively.

The current landscape of materials data appears as a disjointed mosaic of smaller
databases, each catering to specific sub-disciplines. The majority of existing material
data resources are currently geared towards “low-throughput” human consumption. In
contrast, modern data analytics techniques require systematic access to extensive data
sets, whereas the current state of materials data is fundamentally incompatible with
cutting-edge computational methods for gaining insights. Currently, many resources uti-
lize idiosyncratic data formats and the absence of a standardized data format is a signifi-
cant obstacle to improving the materials data landscape. This lack of standardization can
impede reuse and analytics due to interpretability challenges posed by the varied data
formats. Moreover, the absence of data standards creates additional challenges when
attempting to extract valuable information from extensive material data resources. In
order to overcome this issue, it is imperative to establish adaptable, standardized, and
machine-readable data protocols, which will facilitate organized data management, dis-
tribution, analysis, and sharing. Achieving broad agreement on data standards among
various stakeholders is crucial and necessitates the cooperation of multiple working groups
spanning the globe.
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Diversity of stakeholders and research areas

As a vast and multidisciplinary field, materials science flourishes through intricate col-
laborations between data producers (researchers from universities, government labora-
tories, and industry), funding agencies, instrument manufacturers, software developers,
and distributors of research results (often represented by journal publishers). While these
stakeholders are important to materials research, their motives for making materials data
widely available are not always aligned. For instance, researchers may opt to withhold
noteworthy findings to postpone potential publication by others, and unfavorable out-
comes might be completely concealed. Industrial researchers often need to protect their
most valuable results as trade secrets, while equipment manufacturers may develop pro-
prietary data formats to differentiate their tools through software. Publishers may provide
limited or paid databases, driven by a financial incentive to control access to publications
and data. In addition, the establishment of a uniform framework to standardize all the
data is challenging due to variations in material systems and scales.

Lack of incentives and questioning reliability

Currently, materials researchers have little motivation to share their data. It is uncertain
whether making research data widely available in the materials community will lead to
benefits such as increased academic impact and citations, improved funding prospects,
or enhanced opportunities for professional advancement and promotion. Some countries
are starting to require a data management plan for the funded research. Future efforts
may focus on encouraging data sharing by funding agencies and journal publishers, either
through rewarding researchers for community data contributions or by prescribing data
management practices.

Beyond the absence of incentives for data sharing, the materials community also lacks a
compelling motivator for a structured data access and advanced analytics culture. Many
materials researchers persist in utilizing conventional “small data” generation and analysis
methodologies, neglecting the advantages that can be gained from applying large-scale
data analysis techniques in their research. In addition, a number of machine learning
methods remain suspect due to their “black box” nature, i.e., lacking clear explanatory
properties. Researchers tend to reject methods that they find difficult to interpret. In-
deed, in many cases, the predicted results from machine learning models still need to
be verified experimentally and the underlying physical/chemical principles need to be
investigated in detail. The issue of interpretability is also a hot research topic in the field
of machine learning. Solving this problem requires not only the advancement of the field
but also more cross-disciplinary scholars to combine these techniques to promote practical
applications. Besides, there are still many misconceptions surrounding machine learning
and related concepts. Therefore, it is crucial to increase awareness and provide better
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training for materials scientists. This will enable them to appreciate the significance of
standardized data and instruct them on how to utilize data-driven research methodolo-
gies for their own research data. Such kind of training should include practical guidelines
and examples for data acquisition, refinement, accessibility, and mastery of relevant tools
and competencies.

5.2 Comment and future direction

In the realm of data-driven materials science, many barriers have been identified which
hinder modern materials research, however, there is a positive shift in the landscape of this
field. Open-access content is on the rise, with a growing number of publishers embracing
open-access models and releasing papers under free licenses that enable users to access
content and data at no cost. Governments worldwide are working to improve accessibility
to research data and to develop a standardized approach for open data sharing to facilitate
seamless collaboration. Funding agencies are recognizing the significance of meta-data
and data provenance in materials research while industrial stakeholders are acknowledging
the urgency of open manufacturing data and unified standards.

Notable projects are emerging to build a data management platform for organizing re-
search data, as well as to develop unified workflow tools capable of integrating diverse
software to streamline research processes. Repositories are also being developed to sup-
port structured data formats, resulting in varying levels of accessibility. The in-house
implemented scientific data management framework Kadi4Mat [527], and the standard-
ized workflow tool KadiStudio [528], which are under active development by the group,
will be powerful tools for helping researchers in this community better manage data in
an FAIR manner [529] and streamline daily research work. The generated data in this
work and adopted machine learning methods, should be better structured and integrated
into these tools as examples for reference by relevant parties who are interested.

Furthermore, it is recommended to increase awareness of machine learning applications
in materials research. This can be achieved through the organization of workshops that
illustrate fundamental concepts and offer practical guidance, facilitating a swift compre-
hension of the topic for researchers. In order to reduce entry barriers and facilitate the
rapid development of machine learning models to solve practical problems in materials
research, low-code platforms should also be developed. An example of this is the inter-
active and visual dashboard in the KadiAI framework [328], which is being developed by
the working group actively. Furthermore, it is imperative to encourage the involvement
of more interdisciplinary scholars in this field, as it will increase practical illustrations,
widespread interest, and broader cooperation.
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5.2. COMMENT AND FUTURE DIRECTION

The materials science community currently lags behind other scientific disciplines in the
integration and application of large-scale data-driven methods, which presents both chal-
lenges and opportunities. Fortunately, there is a noticeable and improving trend toward
remedying this situation. Ongoing and related initiatives are expected to strengthen
materials research by building and expanding access to large, well-organized data sets,
where text-mining techniques are expected to be very helpful. Additionally, increasing
interdisciplinary collaboration can broaden the applications of machine learning in ma-
terials science, ultimately benefiting the field of materials research. Time serves as the
fertile ground for growth and harvest, let us witness the dawn of a new era in this field.
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Appendices

A. Analysis of latent variables of porous membranes

In Section 4.2 of this work, microstructures of porous membranes have been fed into
the encoder of the Variational AutoEncoder (VAE) model to be projected into low-
dimensional latent space. In this way, microstructures are represented as latent variables,
which are then processed by the Principal Component Analysis (PCA) to further refine
the information and to facilitate visualization. The third Principal Component (PC3)
is found to mainly correlate with information on porosity, while PC1 and PC2 together
represent information on directionality. A detailed analysis is given in the following
paragraphs.

The main reason for performing PCA on the low-dimensional latent variables is that in the
original latent space, the most interested structural information is found to be scattered
across multiple dimensions and no single dimension can be obviously well disentangled.
Therefore, PCA is employed to further extract and integrate the most important infor-
mation. Figure A.1a shows the cumulative explained variance ratio from the PCA result
and it can be seen that to contain over 95% of the original information, all the first 228
principal components need to be considered. This suggests that the information com-
pressed by the VAE model in the latent space is already very condensed and a further
compression may not work well.

The pairwise relationships between the first 6 principal components to each other are ex-
hibited in Figure A.2 where each data point represents one microstructure and is colored
according to its stretching direction. The subplots along the diagonal exhibit distribu-
tions of the stretching directions in the corresponding principal components. It can be
clearly observed that the data points can be well distinguished (in terms of stretching
direction) by PC1 and PC2 and the geometry of their distribution is intuitively consis-
tent. Certain clustering can also be observed in some other principal components, but it
is not as obvious as that in PC1/2. For many principal components, it is neither easy
to judge whether they can capture directional information well, nor to explain their spe-
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Figure A.1: Result of principal component analysis: (a) shows the cumulative explained variance
ratio in all the 256 principal components; (b) depicts the correlation loadings of the top three
principal components. Reproduced with permission [499].

cific physical meanings. Therefore, PC1 and PC2 are selected together to represent the
information on the stretching direction in the microstructure. The analysis procedure
of microstructural information in PC3 is similar and it is found to be mainly related to
porosity/number of Voronoi points.

The correlation loadings of PC1–3 are plotted in Figure A.1b. It can be found that all
these three principal components are related to multiple dimensions of the latent vari-
ables, which further indicates the original structural information is spread over multiple
dimensions in the latent space. Therefore, using some dimensions of latent variables alone
cannot disentangle the microstructural information well. The top 3 dimensions of latent
variables that are most relevant to PC1 and PC2, respectively, are further selected and
their pairwise relationships are drawn in Figure A.3. It can be seen that even choosing
the dimensions that are mostly related to the directional information, microstructures
still can not be well clustered and separated according to their stretching directions.

Based on the above analysis, PCA is required to be performed on the latent variables
in the latent space to refine the microstructural information of interest. Apparently,
microstructural information is not well disentangled in the low-dimensional latent space
learned by the neural network model trained in an unsupervised way. During the training
process, the neural network model is not set to learn any specific property targets rather
than reconstructing the inputs and making the latent variable obey a normal distribution.
As a result, it is difficult to control how the model should learn the microstructural
information and assign it to the latent variables in a well-structured manner. The question
of how to make the model disentangle the information effectively for building a well-
structured latent space is well worth exploring. Some improvements to the basic VAE
models, such as β-VAE [144], infoVAE [530] and other variants, may be helpful.
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Figure A.2: Pairwise distributions of generated microstructures in the top 6 principal component
space. Microstructures are colored according to their stretching directions. Reproduced with
permission [499].

153



APPENDICES

Figure A.3: Pairwise distributions of generated microstructures in the dimensions of latent space
that are most closely related to PC1 and PC2, which represent directional information in mi-
crostructures, and are colored according to their stretching directions. Reproduced with permis-
sion [499].
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B. Calculation of tortuosity

In Section 4.2 of this work, the tortuosity of the generated porous media is calculated
by numerically solving a Laplace’s equation in a Cartesian grid with the finite difference
method [531]. As a special case of the Poisson’s equation, the Laplace’s equation is a
homogeneous, second-order partial differential equation, which acts as a mathematical
model to provide the common basis for describing different physical relationships:

∇ · (λ∇Φ) = 0 (1)

where λ stands for the general conductivity and Φ is the potential function to be inter-
preted. Under the assumption of source-free and turbulence-free as well as stationary
potential fields, many physical quantities can be described, for example, heat conduction
processes, diffusivity, and electrical conductivity. To determine the tortuosity, the analogy
between the physical processes is used and, within the scope of this work, the electrical
conduction is considered as the physical process to be modeled. For this purpose, a po-
tential difference of 1 V is applied across two edges of the porous microstructure with
the distance L in such a way that a direction of flow through the pore space is specified.
From the following differential equation

∇ · (σP∇Φ) = 0, (2)

the potential field can then be determined together with the known intrinsic conductivity
σP, whereby a homogeneous Neumann boundary condition is defined as a further bound-
ary condition on the surface between the pore and structure space, which prevents the
flow normal to the wall. The result of the local gradient of the potential field (∇Φ) is
the electric current I through the pore space. The effective resistance R, which leads to
the effective conductivity σeff, follows the Ohm’s law (U = RI)

σeff =
I

∆Φ

L

A
(3)

where L is the direct length of the transport path and A is the cross-sectional area. From
the effective conductivity σeff and the ideal conductivity σP, in combination with the
porosity ε, the tortuosity τ can finally be determined as follows:

τ = ε
σP

σeff
. (4)
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List of symbols

x Variable, usually a scalar feature in feature vector x

y Variable, usually a scalar label
z Variable, usually a scalar intermediate output
C Scalar, a hyperparamter for the number of classes
D Scalar, a hyperparamter for the spatial dimension
K Scalar, a hyperparamter for the number of clusters or parts
L Scalar, a hyperparamter for the number of layers in neural networks
M Scalar, a hyperparamter for the number of features
N Scalar, a hyperparamter for the number of samples
T Scalar, a hyperparamter for the length of sequence

x ∈ RD D-dimensional column vector in real space, usually an input sample
[x1, · · · , xD] D-dimensional row vector with subscript representing the dimension

RD D-dimensional real space
x⊺ Transpose of vector x

A ∈ RK×D Matrix of size K ×D

X Matrix, usually input samples
0,1 Vector of zeros/ones
I Identity matrix
L1 Taxicab norm
L2 Euclidean norm
Lp p-norm

D or {(x(n), y(n))}Nn=1 Set of data with superscript representing the index among N samples
S Subset of a given set

N (µ,Σ) Multivariate normal (Gaussian) distribution with mean values µ and
covariance matrix Σ

p(x) Probability distribution of variable x

p(y |x) Conditional probability distribution of y given x

Ex∼p(x)[f(x)] Expectation of function f(x) where x follows p(x)

Φ Cumulative distribution function
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ϕ Probability density function
θ Parameters of the model
w Weights vector (usually for linear model)
b Bias (usually for linear model)
Γ Lagrangian dual function
λ Lagrange’s coefficient or strength of regularization
β Balance factor of precision and recall
γ Margin in support vector machine or discount factor in reinforcement

learning
a Action in reinforcement learning
s State in reinforcement learning
r Reward in reinforcement learning
π Strategy in reinforcement learning
A Set of actions
E Set of edges
L Loss function
R Expected risk
V Set of nodes
X Input space
Y Output space
Z Implicit structure space
F Set of function
GP Gaussian process
N Neighbors of an object

x, y, z x/y/z-coordinate
µ Mean value
σ2 Variance
e Stretching factor
r Stanchion radius
C Inverse of regularization strength
p Pearson correlation coefficient
λ General conductivity
Φ Potential function
σP Intrinsic conductivity
σeff Effective conductivity
I Electric current
R Effective resistance

158



LIST OF SYMBOLS

U Electric potential difference
L Direct length of the transport path
A Cross-section area
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