
Stress and Emotion Recognition
based on

Remote Photoplethysmography

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Elektrotechnik und Informationstechnik
des Karlsruher Instituts für Technologie (KIT)

angenommene

Dissertation
von

M.Sc.

Kai Zhou
aus Wuhan

Tag der mündlichen Prüfung: 22. 04. 2024
Hauptreferent: Prof. Dr. rer. nat. Wilhelm Stork
Korreferent: Prof. Dr. rer. nat. Werner Nahm





Abstract

In this dissertation, the measurement principle of remote Photoplethysmog-
raphy (rPPG) is discussed in detail and on this basis, a system for rPPG-based
stress and emotion recognition is designed. The focus of this work is on the
design of algorithmic approaches.

Within this scope, the work introduces a deep learning-based core algorithm
for rPPG. The design of the algorithm considers signal processing from both
temporal and spatial dimensions. The algorithm is evaluated on multiple
benchmark datasets in various measurement setups with different evaluation
metrics, demonstrating the state-of-the-art performance of the algorithm.

Furthermore, this work delves into the exploration of methods for stress and
emotion recognition based on the camera-derived measurements. For stress
recognition, the investigation prioritizes the feasibility of end-to-end meth-
ods, while the focus for emotion recognition is on the automatic assessment
using a dimensional model for emotion description.
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Kurzfassung

In dieser Dissertation wird das Messprinzip der remote Photoplethysmogra-
phy (rPPG) detailliert diskutiert und auf dieser Grundlage wird ein System zur
Stress- und Emotionserkennung auf Basis von rPPG entworfen. Der Fokus der
Dissertation liegt auf dem Entwurf algorithmischer Ansätze.

In diesem Rahmen wird ein auf Deep Learning basierender Kernalgorithmus
für rPPG vorgestellt. Das Design des Algorithmus berücksichtigt die Signal-
verarbeitung sowohl aus zeitlicher als auch aus räumlicher Dimension. Der
Algorithmus wird anhand mehrerer Benchmark-Datensätze in verschiedenen
Messaufbauten mit unterschiedlichen Metriken bewertet, was seine Perfor-
mance von Stand der Technik unter Beweis stellt.

Darüber hinaus vertieft diese Arbeit die Erforschung von Methoden zur
Stress- und Emotionserkennung, die auf kamerabasierten Messungen basie-
ren. Der Teil der Stresserkennung priorisiert die Untersuchung der Machbar-
keit von End-to-End-Methoden, während der Teil der Emotionserkennung
die Präzision der Erkennung unter Verwendung eines dimensionalen Modells
zur Emotionsbeschreibung betont.
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1
Introduction

OVER the past few decades, significant advancements in microelectronics
and sensing technologies have led to the development of more com-

pact and sophisticated measurement devices for physiological data. These
advancements not only greatly enhance the accuracy and convenience of the
measurement, but have also prompted the transition of these devices from
clinical environments into everyday settings. Alongside these advancements,
physiological parameter measurements have been integrated into wearable
devices such as smartwatches or smart patches. These devices enable the con-
tinuous measurement of physiological data in daily life, which can provide
more comprehensive information about an individual’s physical condition.
As a result, the objectives behind measuring these physiological parameters
have evolved. These measurements are now not limited to clinical scenarios
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1 Introduction

of disease treatment and monitoring, but also include the management of an
individual’s physical, mental and emotional health in everyday life.

Furthermore, non-contact measurement for physiological parameters are ac-
tively being researched and developed, utilizing technologies such as WiFi
[Wan17a, Kha21, Gu17], radars [Car71, Zha18], ultrasound [Nan15, Wan18b,
Wan21], thermal cameras [Sha12], and remote Photoplethysmography. Non-
contact measurements for physiological parameters allow for the information
extraction without requiring close proximity to the subject or constraining
their activity. Among these methods, remote Photoplethysmography (rPPG)
stands out as one of the most extensively studied techniques. It utilizes a cam-
era to measure physiological parameters such as Pulse Rate (PR), Pulse Rate
Variability (PRV), Respiratory Rate (RR), blood oxygen saturation (SpO2) or
even Blood Pressure (BP). This versatile technique finds its applications in the
physical monitoring across various scenarios. It has been utilized in neona-
tal care [Kev17]. In daily life, it can be used not only for fitness monitor-
ing, as described in [Wan16b], but also for assessing the physical condition
of drivers, as studied in [Blö17] and [Wu17]. In the context of the COVID-
19 pandemic, the increased utilization of telehealth has also underscored the
significance of remote physiological measurement techniques. By providing
healthcare professionals with flexible and efficient access to patients’ physio-
logical information, rPPG technology could play a vital role in supporting the
effectiveness of telehealth systems, thereby contributing to the improvement
of healthcare services.

Besides monitoring of physical status, the application of rPPG technology has
ushered in new opportunities in the realm of affective computing. It offers
more adaptive and user-friendly methods for assessing stress and emotions.
This potential of rPPG in affective computing, specifically in stress and emo-
tion recognition, will be the central focus of this dissertation.
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1.1 Motivation

1.1 Motivation

Recognition of stress and emotion status holds potential implications across
various domains. Decades of research have demonstrated the consistent and
compelling relationship of stress and negative emotions with disease risk and
mortality. It has been proven that stress and negative emotions are signif-
icantly associated with depression, hypertension, cardiovascular events and
metabolic disorders [Cro20, Alb16].

Mental illnesses add significant burdens on the healthcare system. Based on
data from the German Federal Statistical Office [Bun23], Germany allocated
up to 9.45 billion Euros for addressing depression-related illnesses in 2020.
Mental illness and behavioral disorders constitute amajor portion, accounting
for 13% of overall healthcare spending, equivalent to cardiovascular diseases,
as shown in Figure 1.1. These staggering figures highlight the urgent need
for reliable and efficient tools for stress and emotional state assessment. The
development of such tools should be able to enhance diagnostic accuracy of
mental health issues, improve the efficacy of therapeutic interventions, and,
ultimately, elevate the quality of care provided in mental health settings.

Moreover, as a vital task in the field of affective computing, stress and emo-
tion recognition facilitates the creation of user-friendly human-machine in-
terface (HMI), which can seamlessly integrate into diverse application envi-
ronments such as ambient assisted living [Pud19], education [Con18] and
robotics [San17].

Stress and emotion status manifest through various avenues:

• Affective perception

• Affective behavior

• Physiological reactions

While affective perception focuses on the emotional state an individual con-
sciously acknowledges and is often gauged through self-reported surveys or
questionnaires, objective evaluations of a person’s affective state are derived
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13%

11%

10%

53%
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Diseases of circulatory system Mental and behavioural disorders

Diseases of digestive system Neoplasms

Other diseases

Figure 1.1: Cost of illness 2020 in Germany. Source: [Bun23].

from either observing the outward expressions characterized as affective be-
havior or by analyzing the inherent physiological reactions in response to
emotional stimuli.

One of the traditional methods for objectively assessing affective states is
through the measurement of cortisol level [Gri06], typically conducted via
sample tests (blood, saliva, urine, hair, etc). Since real-time analysis of these
samples is currently difficult, this method is not suitable for applications
where low latency in the feedback process is required.

Presently, research in automatic stress and emotion recognition using physi-
ological reactions predominantly relies on contact sensors such as Electroen-
cephalogram (EEG) [Liu17, Meh17, Lu15, Qin19, Sub21, Zha20b], Electrocar-
diography (ECG) [Bug17, Suz21, Nar15], or Galvanic Skin Response (GSR)
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1.2 Research objectives

[Mar13, Shu19, Udo17]. These sensors measure parameters such as brain ac-
tivity, heart rates, and sweat levels, respectively. Given that they require di-
rect physical contact with the skin, their deployment for daily use or large-
scale monitoring poses significant challenges. In recent years, the use of cam-
eras for stress or emotion measurement has emerged as a vibrant area of re-
search, with behavior analysis such as pose recognition or facial expression
recognition standing as one of the most investigated methodologies. How-
ever, affective behaviors can be influenced by both conscious and subcon-
scious manipulations, potentially leading to a discrepancy between displayed
emotions and the true affective state of an individual.

Against this backdrop, remote Photoplethysmography technology presents a
novel possibility for assessing individuals’ affective states by measuring phys-
iological parameters via cameras, a process that is not under conscious con-
trol. One notable advantage of rPPG lies in its straightforward measurement
setup, requiring only a camera, a light source, and a processing unit. This
stands in contrast to other techniques like EEG and ECG, which often ne-
cessitate complex sensor placement procedures and expert assistance from
medical professionals. Additionally, the contactless nature of rPPG measure-
ments eliminates any discomfort associated with sensor attachment, making
it particularly beneficial for long-term continuous measurement.

This dissertation focuses on investigating the potential of the rPPG technol-
ogy in the capture and evaluation of affective states of individuals. Leveraging
the inherent advantages of rPPG, this research seeks to contribute to the de-
velopment of accurate, flexible and reliable methods for automatic stress and
emotion recognition.

1.2 Research objectives

This dissertation aims to make a contribution to the development of a mea-
surement system that enables stress and emotion state monitoring using re-
mote Photoplethysmography. The system captures Blood Volume Pulse (BVP)
signals and vital parameters from designated facial regions using a camera.
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1 Introduction

Then, based on the extracted information, it assesses the affective condition
of the subjects being measured. Within the scope of this research, a new algo-
rithm for rPPG will be proposed. Given the remarkable performance of deep
learning in various computer vision and signal processing tasks, this disserta-
tion will try to utilize deep learning for camera-based pulse signal extraction.
Thus, the following question should be discussed:

• What advantages do neural networks offer compared to traditional
methods for rPPG signal extraction?

• How can the strengths of neural networks be combined with those of
traditional methods, and what signal quality can be achieved
compared to state-of-the-art rPPG algorithms?

To ensure scalability and cost-effectiveness, a low-cost webcam was selected
as the primary measurement sensor. The focus of the algorithm development
is to answer the following question:

• What measurement accuracy can be achieved for vital parameters
such as pulse rate and pulse rate variability using a low-cost camera?
Is this level of accuracy sufficient for stress and emotion recognition?

Based on these considerations, the evaluation will investigate the following
questions within two application scenarios:

• What level of accuracy can be attained for stress recognition using
rPPG from a low-cost camera?

• Is it feasible to recognize dimensional emotions using rPPG? How
does the quality of the measurement compare to that of facial
expression analysis?

6



2
Basics

THIS chapter presents the fundamental principles necessary for a compre-
hensive understanding of this dissertation. It starts with an exploration

of the descriptive models of stress and emotion. This is followed by an in-
depth look at the cardiovascular system, covering the anatomical description
of the heart and vascular system, the physiology underlying cardiac conduc-
tion, and the derivation of blood volume pulse along with crucial parameters
like heart rate and heart rate variability. Following this, properties of the skin
tissue are introduced, including its structure, the vascular circulation of the
face skin, the blood flow regulation and properties of skin colors. Finally, the
chapter introduces the underlying principle of Photoplethysmography (PPG),
coupled with an introduction to the remote Photoplethysmography measure-
ment model.
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2 Basics

2.1 Descriptive models for stress and emotion
recognition

Recognition of stress and emotion is a subset of the larger field of affective
computing. For the recognition task, a descriptive model is required to de-
fine the target affective characteristics that the system is intended to identify
and categorize. The following sections will discuss the descriptive models for
emotion and stress recognition.

2.1.1 Emotion model

Figure 2.1: Emotion categories as described by Ekmann [Ekm73]: disgust, joy, surprise, fear,
anger, contempt, sadness, and the neutral emotion.

The study on emotions has a long history, including antique descriptions such
as the seven emotions (joy喜, anger怒, sorrow哀, fear惧, love爱, hatred
憎, and desire欲) by Confucian philosophy, and Cicero’s four basic emotions
( fear metus, pain aegritudo, lust libido, and pleasure laetitia). In the 19th cen-
tury, Darwin and Prodger [Dar98] proposed the theory that emotions have
evolved via natural selection, and were universally shared across cultures.
In the 1970s, Ekmann [Ekm73] expanded upon this theory, proposing the
categorized model that has a profound influence on the subsequent emotion
recognition research. The categorized model groups the emotions into seven
classes: joy, sadness, fear, anger, disgust, surprise and contempt. These seven

8



2.1 Descriptive models for stress and emotion recognition

emotions are illustrated in Figure 2.1. However, not all researchers accepted
the theory of universal emotions. Averill [Ave74] challenged Darwin’s the-
ory, arguing that the social aspect and the relationship between language and
emotion should be considered in the description for emotions as well. More-
over, categorical models can not fully capture the complexity of emotional
states, as they do not represent certain emotions such as calmness or serenity
that are part of a broader linguistic range of emotions.

Excited

Cheerful

Alert

Enthusiastic

Happy

Elated

Activation

Valence

A
rou

sal

Positive

Deactivation

Contented

Serene
Relaxed

CalmFatigued

Disgusted

Depressed
Sad

Sluggish

Bored

Fearful

Terrified

Angry
Furious

Tense

Negative

Figure 2.2: Circumplex model by Russell [Rus79].

Dimensional models represent emotions along continuous dimensions. One
of the most widely adopted dimensional models for emotion recognition is the
circumplex model, proposed by Russell [Rus79] in the late 1970s. The circum-
plex model describes emotions along two dimensions: valence and arousal.
Valence represents the pleasantness or unpleasantness of the affective status,
while arousal describes the degree of activation or energy associated with the
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2 Basics

emotion. These two dimensions divide the emotion space into four quadrants:
Low-Arousal Low-Valence (LALV), exemplified by emotions such as sadness;
Low-Arousal High-Valence (LAHV), with calmness being an example; High-
Arousal Low-Valence (HALV); and High-Arousal High-Valence (HAHV), as
shown in Figure 2.2. Occasionally, a third dimension is considered, such as
Dominance [Aba15] or Liking [Koe11]. Compared to categorical models, di-
mensional models are able to represent more complex emotions and are more
adaptable when dealing with emotions that are non-discrete or that have a
high degree of variability [Por17].

2.1.2 Stress model

In 1936, Hungarian endocrinologist Hans Selye conducted an experiment in
which he exposed rats to various stressors (cold, hunger, shock, or excessive
muscular exercise). He found that regardless of the stressor, the rats always
showed the same physiological responses, such as adrenal hyperactivity, lym-
phatic atrophy, and peptic ulcers [Sel36]. He used the term stress to describe
this phenomenon, conceptualizing it as the nonspecific response of the body to
any demand that either causes or results in pleasant or unpleasant conditions
[Sel76]. Selye proposed the General Adaptation Syndrome (GAS) model to
explain the total body response to stressors. In the first alarm stage of the
GAS, the body mobilizes all resources in preparation to either fight off or es-
cape from immediate stressors. During this stage, the body releases hormones
such as epinephrine and norepinephrine to increase heart rate, respiratory
rate and blood pressure; the blood glucose level is increased by elevated cor-
tisol to provide more energy to the body. This process is also known as the
“fight or flight” response, which was first described by Cannon [Can53] at
the beginning of the 20th century. In the second stage, the body begins to
repair itself and return to its status prior to the stress, accompanied by a de-
creased release of alarm hormones. If stress continues, the body could enter
the third exhaustion phase, where the body is no longer able to cope with the
stress and chronic health conditions can develop. To prevent the risks present
in the exhaustion stage, an effective detection of the acute stress in the first

10



2.2 Physiological basics of the cardiovascular system

stage is particularly critical, which is also one of the focal points of research
in this dissertation.

To describe stress and emotion in a unified model, several works expanded
an extra dimension in the circumplex emotion model for stress description.
For example, Thayer [Tha90] along with Schimmack and Rainer [Sch02]
split the arousal dimension into tense-arousal and energetic arousal, where
tense-arousal stands for the dimension related to stress. While it has been
demonstrated that there are connections between stress and negative emo-
tions [San10], stress is typically not considered as an emotion in the affect
computing research [Sch19]. In this dissertation, emotion and stress will be
considered as two separate aspects of affective status, and therefore, the tasks
of stress and emotion recognition will be investigated in two independent
Chapters 7 and 8.

2.2 Physiological basics of the cardiovascular
system

2.2.1 Anatomical structure and physiology of the heart

The cardiovascular system is composed of the heart and blood vessels. Act-
ing as the system’s core, the heart provides the essential mechanical force,
through contractions, needed to circulate blood throughout the body. It con-
tains four chambers: two atria and two ventricles, which are divided into left
and right sections by the interatrial and interventricular septa, respectively,
as illustrated in Figure 2.3. Each atrium and ventricle pair is interconnected
by a leaflet valve —the mitral valve on the left and the tricuspid valve on
the right—governing the direction of blood flow within the heart. The exit
of blood from the heart is regulated by the semilunar valves, specifically the
aortic valve at the aorta and the pulmonary valve at the pulmonary artery.

The cardiovascular system is responsible for the delivery of vital oxygen and
nutrients to the organs and tissues of the body. This system encompasses two
primary sectors:

11



2 Basics

V. cava superior

V. cava inferior

Right ventricle
Tricuspid valve

Pulmonary artery

Right atrium
Pulmonary valve

Aorta

Pulmonary vein

Aortic valve

Mitral valve

Left ventricle

Left atrium

Figure 2.3: Anatomical structure of the human heart.

• Systemic circulation, pertaining to the delivery of nutrients and oxygen
to the body’s tissues

• Pulmonary circulation, concerned with the oxygenation of blood

Deoxygenated blood from the body’s periphery is returned to the right side
of the heart via the venae cavae. During the heart’s relaxation phase, or dias-
tole, this blood enters the right ventricle through the tricuspid valve and sub-
sequently departs the heart via the pulmonary valve, transitioning into the
pulmonary arteries. Here, a gas exchange occurs in the lungs, with the blood
relinquishing carbon dioxide and acquiring oxygen. This oxygen-enriched
blood is then transported to the left atrium via the pulmonary veins before
progressing into the left ventricle. From this point, during the subsequent
heart contraction, or systole, the oxygenated blood is propelled into the sys-
temic circulation via the aortic valve, reaching the arterial vessels, or arteri-
oles and capillaries, within the body’s periphery.
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Figure 2.4: Cardiac conduction system.

2.2.2 Cardiac conduction

The heart contraction is induced by electrical impulses that are initiated and
propagated by the cardiac conduction system. The heart is composed of two
types of cells: (i) contractile muscle cells, responsible for executing the me-
chanical contraction of the heart, and (ii) pacemaker cells, which generate
electrical impulses and regulate the heart rate. While contractile muscle cells
constitute approximately 99% of the heart wall’s cellular makeup, the remain-
ing 1% comprises pacemaker cells [Bet13]. These pacemaker cells have the
capacity to not only receive signals from the brain, but also to spontaneously
generate impulses, a phenomenon referred to as autorhythmicity.

Pacemaker cells are primarily located in the sinoatrial node (SA node), posi-
tioned in the right atrium near the coronary sinus on the interatrial septum
[Kur10], and the atrioventricular node (AV node), situated in the lower seg-
ment of the right atrium near the tricuspid valve, as shown in Figure 2.4. The
SAnode andAVnode serve as the primary and secondary pacemakers, respec-
tively. In a normally functioning heart, electrical impulses originate from the
sinoatrial node and are propagated through the muscle cells of the atria to
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the AV node. There, these impulses experience a delay of approximately 0.09
seconds, ensuring that the atria have completed the ejection of blood prior to
ventricular contraction [Cam02]. The impulses then continue along the Bun-
dle of His, the bundle branches (Tawara branches) and the Purkinje fibers,
prompting synchronized contractions of the ventricles.

2.2.3 Blood volume pulse

The expulsion of blood from the left ventricle initiates a pulse wave, which
disseminates throughout the systemic circuit encompassing the entire body.
This propagation of the pulse wave within the arteries can be analogized to
fluid dynamics within an elastic pipe. As the ventricles pump blood, the ar-
terial pressure increases, subsequently expanding the arterial cross section.
The inherent tension within the artery wall initiates its contraction, pushing
the blood towards the subsequent segment of the artery. Three distinctive
physical phenomena can be observed during this process: the flow pulse, the
pressure pulse, and the volume pulse [Kor09]. The measurement and analysis
of the volume pulse form the crux of plethysmography.

Figure 2.5 illustrates the foundational form of the pulsewave, measured from a
peripheral artery. The waveform can be broadly categorized into two phases:
systole and diastole. The systolic phase commences with the contraction of
the left ventricle and concludes with the closure of the aortic valve. The ex-
pulsion of blood from the ventricle induces the first steep rise of the wave,
referred to as the percussion wave. The tidal wave, observed in the latter
portion of systole, may be induced by an echoed pulse returning from the
upper body [Sub19]. At the onset of diastole, the third, dicrotic wave can be
observed, which is a consequence of the aortic valve’s closure and the subse-
quent alterations in aortic pressure [Nir14].

The morphology of the pulse wave is influenced by both inter- and intra-
individual factors. For instance, the waveform observed in the aorta differs
from that measured in peripheral arteries. Additionally, factors such as the
elasticity of the blood vessels, which in turn depends on variables including
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Figure 2.5: Exemplary shape of the pulse wave in peripheral arteries.

age, gender, height, diet, health conditions, and medication, can further in-
fluence the waveform [ORo01]. Consequently, these morphological analysis
of the pulse wave can provide indicators of cardiovascular conditions such as
arterial stiffness or hypertension.

2.2.4 Heart rate and heart rate variability

Vital signs serve as indicators that reflect bodily functions. The most fre-
quently monitored vital signs in clinical settings include heart rate, respira-
tory rate, temperature, and blood pressure. These parameters are critical in-
dicators used to assess whether an individual is in a non-critical physical con-
dition. Given the relevance of heart rate and heart rate variability to this dis-
sertation, these parameters will be discussed in detail in the ensuing section.

2.2.4.1 Heart rate

Heart rate is defined as the number of heartbeats perminute. The resting heart
rate varies depending on factors such as age, weight, and overall cardiovascu-
lar health. The range of a typical resting heart rate lies between 60 to 100 beats
per minutes (bpm). Neonates can exhibit a resting heart rate higher than 120
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bpm, while long-term athletes may have resting heart rates as low as approx-
imately 40 bpm. Heart rate serves as a critical indicator to track changes in
an individual’s physiological status. It is also commonly used to quantify the
intensity of physical exertion during athletic activities. Additionally, varia-
tions in heart rate can be indicative of changes in psychological states, with
factors like stress or emotional arousal tending to cause an increase in heart
rate [Was21].

2.2.4.2 Heart rate variability

The heart rate is regulated by various mechanisms within the human body
in response to internal and external conditions. A cardiovascular system that
is robust and healthy can rapidly adapt to changes in environment or inter-
nal state, ensuring an efficient supply of oxygen and nutrients to meet the
body’s demands.

One way to assess the effectiveness of this adaptive response is through Heart
Rate Variability (HRV). It quantifies the time intervals between successive
heartbeats and is regulated by the Autonomic Nervous System (ANS), also
known as the vegetative nervous system.

The ANS consists of the sympathetic nervous system (SNS) and the parasym-
pathetic nervous system (PNS), which operate in a coordinated yet comple-
mentarymanner. Sudden changes in the external environment trigger height-
ened sympathetic nervous system activity, mobilizing the body’s resources.
Such intensified sympathetic activity elevates the heart rate whilst decreasing
heart rate variability. In contrast, heightened parasympathetic activity results
in a decrease in heart rate and an increase in heart rate variability. It serves for
regeneration and the buildup of the body’s own reserves (trophotropic effect)
[Ber97]. Heart rate variability can also be influenced by the baroreceptor re-
flex and respiration. Baroreceptors are sensory nerve endings located on the
walls of certain large blood vessels. They detect changes in arterial wall dila-
tion caused by alterations in blood pressure and transmit signals to the brain,
which regulates heart rate and maintaining heart rate variability. Respiratory
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sinus arrhythmia (RSA) is the phenomenon where heart rate is influenced by
respiratory activity, primarily regulated by the parasympathetic system.

Since HRV reflects the activity of ANS, it can function as a marker for the
body’s adaptive capabilities. The analysis of HRV serves as a crucial pre-
dictive parameter for cardiac and immune system disorders [Fra22], offer-
ing a metric to evaluate the regulatory capability of the autonomic nervous
system. Furthermore, HRV analysis yields significant insights in diagnosing
mental illnesses, including depression [Jun19], burnout [Lo20], and panic at-
tacks [Coh00].

HRV is characterized not merely by a single metric, but by a set of parame-
ters. These parameters are derived from the Inter-Beat Interval (IBI) signals,
and describe the variation in heartbeat from various perspectives. In the case
of ECG signals, IBI signals are computed as the duration between two con-
secutive R-peaks:

𝑅𝑅𝑖 = 𝑡𝑖 − 𝑡𝑖−1 , (2.1)

where the 𝑖-th interval 𝑅𝑅𝑖 signifies the interval between the (𝑖 − 1)-th and
𝑖-th R-peaks. For PPG signals, IBI signals are derived from the peaks of blood
volume pulse signals. Technically, the variability parameters obtained from
pulse signals are denoted as Pulse Rate Variability (PRV), which, while intrin-
sically linked to, are fundamentally different from HRV. In this dissertation,
the camera sensor measures the blood volume changes, and PRV is analyzed
as a proxy for HRV.The PRV/HRV analysis incorporates characteristic values
in the time, frequency, and non-linear domains, as shown in Table 2.1. The
PRV/HRV parameters adopted in this dissertation will be discussed in greater
detail subsequently.

Time domain HRV parameters

Time domain HRV parameters represent the statistical analysis of the inter-
beat intervals in the time domain. One of the commonly used parameters is
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the Standard Deviation of the IBI of Normal Sinus Beats (SDNN), mathemat-
ically expressed as:

𝑆𝐷𝑁𝑁 =
√√√
√

1
𝑁 − 1

𝑁
∑
𝑖=1
(𝑁𝑁 𝑖 − ̄𝑁𝑁)2 , (2.2)

where ̄𝑁𝑁 and𝑁 symbolize the average value and the total count of intervals,
respectively. 𝑁𝑁 intervals refer to the normal-to-normal intervals where any
artefacts in the peak-to-peak intervals brought about by cardiac arrhythmia

Table 2.1: Overview of HRV parameters

Domain Parameter Unit Description
SDNN ms Standard deviation of the IBI of normal sinus

beats
RMSSD ms Root mean sum of squared successive dis-

tanceTime
domain

pNN50 % Percentage of successive differences greater
than 50 ms

Total power ms2 Absolute power of the IBI signal (≤0.4 Hz)
ULF ms2 Absolute power of the Ultra Low Frequency

band (≤0.003 Hz)
VLF ms2 Absolute power of the Very Low Frequency

band (0.003-0.04 Hz)
LF ms2 Absolute power of the Low Frequency band

(0.04-0.15 Hz)
HF ms2 Absolute power of the High Frequency band

(0.15-0.4 Hz)
LF/HF Ratio of LF to HF
LF norm n.u. Relative power of the Low Frequency band

(0.04-0.15 Hz)

Frequency
domain

HF norm n.u. Relative power of the High Frequency band
(0.15-0.4 Hz)

SD1 ms Ellipse width of the Poincaré diagram
SD2 ms Ellipse length of the Poincaré diagramNonlinear
𝑆𝐷1/𝑆𝐷2 Ratio of SD1 to SD2
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have been filtered out. The customary time frame for SDNNmeasurement is 5
minutes, although researchers have also proposed short-term measurements
ranging from 60 seconds to 240 seconds [Sha17]. Both PNS and SNS activities
contribute to SDNN. Furthermore, SDNN shows a high correlation with the
low-frequency energy of the IBI signals.

In addition to SDNN, other crucial time domain parameters include RootMean
Sumof Squared Successive Distance (RMSSD) or Percentage of Successive Dif-
ferences Greater than 50 ms (pNN50). RMSSD is mathematically expressed
as:

𝑅𝑀𝑆𝑆𝐷 =
√√√
√

1
𝑁 − 1

𝑁−1
∑
𝑖=1

(𝑁𝑁 𝑖+1 −𝑁𝑁 𝑖)2 , (2.3)

This formula calculates the average difference between two successive inter-
vals. RMSSD estimates vagally mediated changes in parasympathetic activ-
ity and serves as an indicator of organ recovery ability. Lower RMSSD val-
ues may point to potential psychological and physical stress or even Sudden
Death in Epilepsy (SUDEP) [DeG10].

The pNN50 parameter is the percentage of𝑁𝑁 intervals that differ from each
other by more than 50 ms:

𝑝𝑁𝑁50 = 𝑁𝑁50
𝑁 − 1 ⋅ 100% . (2.4)

Similar to RMSSD, the pNN50 parameter characterizes the high-frequency dy-
namics of heart rate changes and exhibits a strong correlation with parasym-
pathetic activity. Accurate measurement of pNN50 necessitates a higher level
of precision and sampling frequency.
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Frequency domain HRV parameters

As the IBIs are represented as a time-discrete signal sequence that may not
be uniformly sampled along the time axis, it is necessary to perform interpo-
lation prior to conducting frequency domain analysis. By doing so, the spec-
trum of the IBI signals can be obtained using methods such as Fast Fourier
Transformation (FFT) or Autoregressive (AR) modeling.

The Task Force of the European Society of Cardiology and the North Amer-
ican Society of Pacing and Electrophysiology divide the spectrum of IBI into
several sub-ranges: Very Low Frequency (VLF), Low Frequency (LF), High
Frequency (HF), and occasionally Ultra Low Frequency (ULF) (≤ 0.003 Hz).

The VLF band, ranging from 0.0033 Hz to 0.04 Hz, signifies heart rate varia-
tions between 25 seconds and 300 seconds. It gives indications of chronic in-
flammation [Ste08], cardiovascular disease [Guz05], and shows a strong cor-
relation with the prognosis of metabolic disorders [Ass10] and arrhythmic
death [Big92].

The LF band (0.04 Hz to 0.15 Hz) includes modulations with periods between
7 and 25 seconds and is sometimes referred to as the baroreceptor region due
to its predominant regulation by baroreceptors during rest [McC15]. This
band is subject to both sympathetic and parasympathetic influence and offers
a valuable measure for evaluating physical and mental stress levels.

The HF band (0.15 Hz to 0.4 Hz), known as the respiratory band, reflects
parasympathetic activity and encapsulates the heart rate variation associ-
ated with respiration. The HF power shows high correlation with RMSSD
and pNN50, and is associated with negative mental experience such as stress,
panic, anxiety, and worry [Sha17].

Since the LF band is regulated by both the sympathetic and parasympathetic
systems, and the HF band is chiefly influenced by the parasympathetic system,
the ratio of LF to HF power (LF/HF ratio) offers a useful metric for assessing
the interplay between these autonomic systems.
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Thepower values are typically expressed either in absolute termswith the unit
ms2 or in normal unit (n.u.). Normalization provides a relative value for each
power component in relation to the total power minus the VLF component,
thereby facilitating inter-individual comparisons despite individual variations
in the power of specific bands or the total power.

Nonlinear HRV parameters

Owing to the intricate regulatory mechanisms involved, HRV exhibits non-
linear characteristics. One of the most widely employed techniques to in-
terpret these non-linear characteristics is the Poincaré Plot, an approach de-
veloped by the French mathematician, Jules Henri Poincaré. To construct a
Poincaré Plot, pairs of consecutive intervals𝑁𝑁 𝑖 and𝑁𝑁 𝑖+1 are represented
in a two-dimensional coordinate system, where𝑁𝑁 𝑖 and𝑁𝑁 𝑖+1 serve as the
X and Y coordinates respectively, as depicted in Figure 2.6. For healthy indi-
viduals, this usually yields a point cloud approximating an ellipse. The anal-
ysis of this elliptical shape can provide valuable insights into the dynamics
of HRV.

To calculate the nonlinear parameters, the diagram is first rotated by an angle
of 𝜋/4. This operation transforms the coordinates to align with the axes of
the ellipse:

𝑥𝑖,1 =
𝑁𝑁 𝑖 −𝑁𝑁 𝑖+1

√2
, (2.5)

𝑥𝑖,2 =
𝑁𝑁 𝑖 +𝑁𝑁 𝑖+1

√2
, (2.6)

for 𝑖 ∈ (1, 2, ..., 𝑁 − 1).

The parameters are subsequently calculated as the standard deviation of the
point distribution along these two new axes:

SD1 = 𝜎(𝑥𝑖,1) , (2.7)
SD2 = 𝜎(𝑥𝑖,2) . (2.8)
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Figure 2.6: Example of a Poincaré diagram. The standard deviations SD1 and SD2 stand for the
width and length of the ellipse, respectively.

The parameters SD1 and SD2 specify the width and length of the ellipse, re-
spectively. Notably, SD1 is identical to RMSSD andmeasures the body’s short-
term adaptation capabilities. On the other hand, SD2 correlates with both low
and high frequency powers, representing short- and long-term HRV charac-
teristics. Analogous to the LF/HF ratio, the SD1/SD2 ratio can be employed
to assess the balance between the parasympathetic nervous system and sym-
pathetic nervous system.

2.3 Skin

Skin, the largest organ of the human body, constitutes approximately 15% of
total body weight [Ric03]. As part of the integumentary system, along with
its appendages, it forms the outermost layer of the human body. This system
serves as a protective barrier, preventing bacteria and germs from penetrating
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Figure 2.7: Anatomical structure of the human skin and reflection model for rPPG.

the body. The skin provides several critical functions including body temper-
ature regulation, sensory reception (such as pressure, touch, or pain), and
maintaining hydration.

As displayed in Figure 2.7, human skin is comprised of three layers: the epi-
dermis, dermis (also known as corium in Latin), and hypodermis (or subcutis
in Latin). The dermis can be further divided into the papillary dermis and
the reticular layer. The papillary dermis, the superficial layer, consists of
fine, loosely arranged collagen fibers. In contrast, the reticular layer, situ-
ated deeper, is composed of dense, irregular connective tissue that imparts
firmness and elasticity to the skin.

The skin region features an abundant supply of arteries, veins, and capillaries.
Blood vessels that bifurcate and connect to the rest of the body are found in the
hypodermis layer. These blood vessels extend their endings into the dermis
layer, thereby providing nutrients to the epidermis, which is devoid of blood
supply by itself. This network of blood vessels within the hypodermis layer
is referred to as the subcutaneous plexus.
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The dense network of blood vessels offers an opportunity to non-invasively
measure vital signs such as heart rate and oxygen saturation levels by assess-
ing blood volume. Interestingly, the skin on the face is more exposed com-
pared to other body parts and also experiences high blood flow, rendering it
an optimal site for such measurements, as will be demonstrated in this study.

2.3.1 Face vascular circulation

The skin on the face exhibits highmetabolic activity and is richly vascularized.
These vascular tissues facilitate growth and recovery from damage in facial
skin. The arterial supply to the face primarily originates from the external
carotid artery, from which the facial artery and superficial temporal artery
arise directly, and other arteries like the transverse facial artery (from the
superficial temporal artery) and the infraorbital artery (from the maxillary
artery) are branched out. However, a significant arterial contribution to the
forehead is provided by the ophthalmic artery, which arises from the internal
carotid artery [Arx18].

Main skin perforators penetrate the deep tissues, forming a dense subdermal
plexus that provides vascularization to facial areas [Hou00]. The number of
capillary loops beneath the epidermis of the face varies significantly from one
region to another, and the diameter of these capillaries also differs across var-
ious skin areas. Regions such as the forehead, perioral region, nose, philtrum,
lip, chin, and ocular region have abundant capillary blood flow. In contrast,
the temporal region, lateral cheeks, and jaw are less vascularized, and the
ears display moderate vascularization [Mor59].

2.3.2 Skin blood flow regulation

The regulation of skin blood flow is critical formaintaining thermal homeosta-
sis. It is modulated by sympathetic vasodilation and vasoconstriction mech-
anisms. At rest, skin blood flow typically falls within the range of 1 to 3
mL/100g/min [How06]. During strenuous physical exercise or exposure to
heat, increased temperatures are sensed by the hypothalamus, which further
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triggers autonomic regulation. More specifically, the process of cutaneous
vasodilation is intensified, during which the skin blood flow rate can rise to
approximately 60% of total body cardiac output [Dyc75]. Conversely, vaso-
constriction reduces skin blood flow and decreases heat dissipation when ex-
posed to cold conditions.

Skin blood flow also responds to other factors, including physiological re-
actions like a sudden inspiratory gasp, or psychological conditions such as
mental stress or emotional stimuli [Ami12]. An inspiratory gasp activates
vasoconstriction through a brainstem reflex. Vasoconstriction can also be ob-
served during mental stress or in response to a sudden noise. Empirically, it
is known that emotions such as anger and embarrassment can increase fa-
cial blood flow, leading to blushing, while fear and disgust may reduce blood
flow, resulting in paleness.

2.3.3 Skin color

One of the primary factors contributing to differences in skin color among in-
dividuals is the variation in melanin pigmentation. The most common forms
of melanin are eumelanin and pheomelanin. Eumelanin imparts coloration
that varies from brown to black and is present in the hair and skin. Pheome-
lanin presents a pink to red hue and can be found in red hair, lips, and nipples.

For individuals with dark skin, skin color is primarily determined by the con-
centration of melanin. The color of light skin is primarily determined by the
bluish-white connective tissue under the dermis, with some influence from
the color of blood (due to hemoglobin) in the dermis and subcutaneous tissue.
The concentration of indigenous skin melanin correlates with the geographic
distribution of ultraviolet radiation (UVR).The Fitzpatrick Scale [Fit75] classi-
fies human skin color into six categories based on the skin’s response to UVR,
ranging from Type I (palest, always burns) to Type VI (dark brown to darkest
brown, never burns).

Owing to the higher concentration of melanin, which absorbs more light, the
light intensity captured by a camera is weaker for individuals with dark skin,
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thus, the quality of rPPG measurements declines. It is a critical consideration
within the rPPG research community to develop methods that account for all
skin types [Now20]. Changes in skin color can also occur due to variations
in blood oxygen saturation. For instance, the lips may appear bluish in color,
if blood oxygen saturation levels fall below 70%, a condition also known as
cyanosis that can be caused by cold, inadequate gas exchange in the lungs,
or heart disease.

2.4 Measurement of cardiac activity

2.4.1 Photoplethysmography

The term Plethysmography originates from the Greek word plethysmos, mean-
ing “increasing”. It is an instrument used to examine volume changes in or-
gans or the entire body. Photoplethysmography specifically examines blood
volume changes within the microvascular bed of tissue. It operates on the
principle of light absorption by hemoglobin in the blood. When light is emit-
ted from an illumination source, a fraction of it is absorbed by blood, while
another fraction is detected by a photo sensor. PPG can operate in either
transmissive or reflective modes. In the transmissive mode, the light source
and photo-detector are positioned on opposite sides of the tissue to be mea-
sured, such as a finger or earlobe. The light then travels through the tissue
before it is detected by the photo sensor. In contrast, in the reflective mode,
the light source and photo-detector are placed on the same side of the tis-
sue, such as on the arm or forehead. In this setup, the light is reflected back
towards the photo sensor for detection after interaction with the tissue.

PPG is a widely employed for the determination of peripheral oxygen satura-
tion (SpO2), a pivotal parameter for patient triage that has been highlighted
during the COVID-19 pandemic. The measurement of SpO2 relies on dis-
parities in the light absorption properties of oxygenated and deoxygenated
hemoglobin at varying wavelengths, which are shown in Figure 2.8. Notably,
the most pronounced distinction in light absorption occurs within the red
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Figure 2.8: Light absorption of blood at various wavelengths. Data source: [Pra23].

spectrum (600-750 nm) and the near-infrared spectrum (850-1000 nm). Specif-
ically, oxygenated hemoglobin exhibits greater absorption of infrared light
compared to deoxygenated hemoglobin, whereas deoxygenated hemoglobin
displays greater absorption of red light. The property of light absorption vari-
ation in the red, green and blue ranges is also adopted for disturbance compen-
sation in pulse signal extraction using RGB cameras, which will be discussed
in Chapter 5.

2.4.2 Dichromatic reflection model

The dichromatic reflection model [Sha85] presents the underlying physics
governing the reflection properties of heterogeneous materials possessingmi-
croscopically irregular surfaces and particles of a colorant that induce scatter-
ing and colorization. In the context of pulse signal measurement, the skin can
be considered as a heterogeneous medium, and consequently, the reflection
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mechanism of the skin can be explained using the framework of the dichro-
matic reflection model:

𝐶(𝜆, 𝑖, 𝑒, 𝑔) = 𝐶𝑖(𝜆, 𝑖, 𝑒, 𝑔) + 𝐶𝑏(𝜆, 𝑖, 𝑒, 𝑔) (2.9)
= 𝑚𝑖(𝑖, 𝑒, 𝑔) ⋅ 𝑐𝑖(𝜆) + 𝑚𝑏(𝑖, 𝑒, 𝑔) ⋅ 𝑐𝑏(𝜆) . (2.10)

In this equation, the light reflected back to the camera sensor𝐶 is decomposed
into the interface component 𝐶𝑖 and body component 𝐶𝑏 . The interface com-
ponent stands for the light that is reflected at the skin surface. The body com-
ponent is the light component that penetrates into the skin, gets scattered by
the under skin tissues or eventually absorbed, then reflected to the camera.
Both components are further decomposed into two parts. The composition
𝑐𝑖 and 𝑐𝑏 refer to the spectral power distributions for the interface and body
components which are only dependent on the wavelength 𝜆. The amplitude
parts 𝑚𝑖 and 𝑚𝑏 are independent from the wavelength and only relevant to
the geometrical parameters such as the incidence angle (𝑖), emittance angle
(𝑒) and the phase angle (𝑔).

2.4.3 Skin reflection model for rPPG

Equation 2.10 introduces a static model that does not account for the dynamic
variations of each factor. In reality, the target signal is influenced by the dy-
namic modulation caused by changes in blood volume. As a result, the com-
position component 𝑐𝑏 should be a function of time as well. Furthermore,
when measuring blood volume signals, it is essential to consider potential
disturbances such as head motions, as they can alter the geometric parame-
ters for both the body and interface components. Therefore, a comprehensive
model should not only incorporate the temporal dynamics of the composition
component but also effectively account for the effects of disturbances on the
geometric parameters during blood volume measurements.
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Based on the dichromatic reflection model, Wang et al. [Wan16b] proposed a
model to describe the skin pixel C captured by the camera:

C(𝑡) = 𝐼(𝑡) ⋅ (v𝑠(𝑡) + v𝑑(𝑡)) + v𝑛(𝑡) , (2.11)

where the illumination intensity 𝐼(𝑡) is a scalar function representing the in-
tensity of the light, assuming a constant spectral distribution in this model.
It is important to note that 𝐼(𝑡) is not solely determined by the emitted light
intensity from the light source, but also influenced by the relative positioning
between the light source, measurement site, and camera sensor. The illumina-
tion intensity is further modulated by the specular reflection component v𝑠(𝑡)
and the diffuse reflection component v𝑑(𝑡). These components correspond to
the interface and body reflection components in the dichromatic model. Here,
the specular and diffuse reflection components are represented as vectors,
accommodating both multi-channel and monochrome measurement setups.
v𝑛(𝑡) represents the quantization noise of the camera system.

The change of the specular component v𝑠(𝑡) depends only on the geometrical
relationship between the light source, camera sensor and the measurement
site on the skin. The specular component can be decomposed into stationary
and time-varying components:

v𝑠(𝑡) = u𝑠 ⋅ (𝑠0 + 𝑠(𝑡)) , (2.12)

where the specular component v𝑠(𝑡) is the result of the multiplication of a
unit vector u𝑠 representing the spectral distribution of the illumination, and
the sum of the constant term 𝑠0 and the time-varying component 𝑠(𝑡). The
constant term 𝑠0 represents the stationary part of the specular component,
while 𝑠(𝑡) accounts for the dynamic changes induced by motion.

The diffuse component can be further expanded as:

v𝑑(𝑡) = u𝑑 ⋅ 𝑑0 + u𝑝 ⋅ 𝑝(𝑡) , (2.13)

where the diffuse component v𝑑(𝑡) is decomposed into two parts. The sta-
tionary part is represented by the product of a unit vector u𝑑 corresponding

29



2 Basics

to the color of the skin tissue, and 𝑑0 which signifies the reflection strength.
This model assumes that the time-varying component of the diffuse part is
primarily attributed to the changes in blood volume, denoted as 𝑝(𝑡). u𝑝 is
a unit vector that characterizes the relative strength of the pulsatile signal in
each color channel.

Combining Equation 2.12 and 2.13, Equation 2.11 can be written as:

C(𝑡) = 𝐼(𝑡) ⋅ (u𝑠 ⋅ (𝑠0 + 𝑠(𝑡)) + u𝑑 ⋅ 𝑑0 + u𝑝 ⋅ 𝑝(𝑡)) + v𝑛(𝑡) (2.14)
= 𝐼(𝑡) ⋅ (u𝑐 ⋅ 𝑐0 + u𝑠 ⋅ 𝑠(𝑡) + u𝑝 ⋅ 𝑝(𝑡)) + v𝑛(𝑡) , (2.15)

where the stationary components are combined into a single term:

u𝑐 ⋅ 𝑐0 = u𝑠 ⋅ 𝑠0 + u𝑑 ⋅ 𝑑0 . (2.16)

The illumination intensity can be separated into stationary and time-varying
parts as well:

𝐼(𝑡) = 𝐼0 ⋅ (1 + 𝑖(𝑡)) , (2.17)

where 𝐼0 denotes the stationary part, and 𝐼0 ⋅ 𝑖(𝑡) is the time-varying change
in illumination. Thus the model can be further expanded as:

C(𝑡) =𝐼0 ⋅ (1 + 𝑖(𝑡)) ⋅ (u𝑐 ⋅ 𝑐0 + u𝑠 ⋅ 𝑠(𝑡) + u𝑝 ⋅ 𝑝(𝑡)) + v𝑛(𝑡) (2.18)
=u𝑐 ⋅ 𝐼0 ⋅ 𝑐0 + u𝑠 ⋅ 𝐼0 ⋅ 𝑠(𝑡) + u𝑝 ⋅ 𝐼0 ⋅ 𝑝(𝑡)+ (2.19)
u𝑐 ⋅ 𝐼0 ⋅ 𝑐0 ⋅ 𝑖(𝑡) + u𝑠 ⋅ 𝐼0 ⋅ 𝑠(𝑡) ⋅ 𝑖(𝑡)+
u𝑝 ⋅ 𝐼0 ⋅ 𝑝(𝑡) ⋅ 𝑖(𝑡) + v𝑛(𝑡) .

By ignoring the noise v𝑛(𝑡) and the production of time-varying terms (e.g.,
𝑝(𝑡) ⋅ 𝑖(𝑡)), the model can be then expressed in a simple linear equation:

C(𝑡) ≈ u𝑐 ⋅ 𝐼0 ⋅ 𝑐0 + u𝑐 ⋅ 𝐼0 ⋅ 𝑐0 ⋅ 𝑖(𝑡)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
Intensity

+u𝑠 ⋅ 𝐼0 ⋅ 𝑠(𝑡)⏟⎵⎵⏟⎵⎵⏟
Specular

+u𝑝 ⋅ 𝐼0 ⋅ 𝑝(𝑡)⏟⎵⎵⏟⎵⎵⏟
Pulse

. (2.20)

This model approximately decomposes the skin color captured by the camera
into three main components: intensity, specular, and pulse components. It
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2.4 Measurement of cardiac activity

is important to note that both the specular and pulse components have zero
mean values. The only stationary (DC) component is present within the inten-
sity component, which can be easily eliminated through temporal normaliza-
tion. Consequently, the primary objective of the core remote Photoplethys-
mography algorithm is to extract or isolate the pulse signals from the time-
varying (AC) portions of the intensity and specular reflection components.
Advantages and limitations of this model will be discussed in Chapter 5.
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3
State of the Art

THIS dissertation focuses on developing an rPPG measurement system and
its application in stress and emotion recognition. Unlike traditional mea-

surement techniques such as ECG, rPPG does not necessitate the attachment
of sensors to the human body, allowing for continuous vital parameter mea-
surement without causing physical discomfort. This chapter will introduce
the state of the art and related work in the field of rPPG and stress/emotion
recognition.

First, Section 3.1 will provide an overview of the current research status of
stress and emotion recognition. Then, Section 3.2 will introduce different
techniques for contactless vital parameter measurement, and offer a com-
parative analysis. Finally, Section 3.3 will delve into the state of the art of
rPPG in detail.
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3.1 State of the art for stress and emotion
recognition

3.1.1 Sensor modalities

Data for emotion and stress recognition can be derived from behavioral or
physiological modalities. Behavioral modalities include text, tone, speech,
body gesture, and facial expression. One drawback of affective status recog-
nition using behavioral data manifests when individuals intentionally regu-
late their emotional displays or the individuals are naturally more reserved in
expressing their emotions [Agr11].

In contrast, physiological modalities record the physiological responses. The
physiological responses are regulated by the ANS and not under conscious
control. As discussed in Chapter 2, the ANS consists of the sympathetic ner-
vous system and the parasympathetic nervous system. The SNS is active dur-
ing the alarming stage of the stress response, triggering the fight or flight
mechanism. Conversely, the PNS directs the body to relax, promoting the
“rest and digest” functions.

The activities of the autonomic nervous system can be reflected by physiolog-
ical signals, such as the ECG [Bug17, Suz21, Nar15], PPG [Udo17], Electroder-
mal activity (EDA) [Mar13, Shu19, Udo17], Electromyogram (EMG) [Has19],
and EEG [Liu17, Meh17, Lu15, Qin19, Sub21, Zha20b]. Among the parame-
ters measured by these sensors, cardiac and pulmonary parameters like heart
rate, respiratory rate and heart rate variability are some of the most widely
used for emotion/stress recognition. These parameters can also be measured
using non-contact sensors such as radar, WiFi, sonar, or cameras, which will
be discussed in detail in Section 3.2.
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3.1 State of the art for stress and emotion recognition

3.1.2 Processing methods

The standard data processing pipeline for affect recognition comprises data
pre-processing, feature calculation/selection, and status recognition. The pre-
processing of physiological data for affect recognition includes denoising,
detrending, synchronization, resampling, and pruning (of severely contam-
inated data segments). Feature calculation extracts stress or emotion-related
information from the physiological data, which is then input into a recogni-
tion module. The recognition module is usually a machine learning model.
The selection of features is essential for the recognition performance. An op-
timal feature set should contain pertinent information about the affect status
while avoiding representation redundancy.

While traditional methods focus on manual feature extraction, recent ad-
vancements have leveraged deep learning techniques for an end-to-end
assessment of affective states. These methods have shown promising perfor-
mance. Dzieżyc et al. [Dzi20] demonstrated that CNN-based networks can
be used for affect recognition from physiological sensors. Martinez et al.
[Mar13] used Convolutional Neural Network (CNN) combined with denois-
ing auto-encoders to extract features from EDA and BVP, with the CNN
networks outperforming manual ad-hoc feature extraction. Liu et al. [Liu17]
proposed a multi-layer Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) with temporal and spectral band attention mechanisms for
emotion recognition from videos and EEG signals.

Qiu et al. [Qiu18] introduced the Correlated Attention Network to incorporate
the correlation of high-level features between EEG and eye movement signals
into the attention mechanism. The Correlated Attention Network achieved
higher accuracy than feature-based Support Vector Machines (SVMs). Li et al.
[Li20] explored an attention-based LSTM-RNN model to extract emotionally
salient information from spectrograms. Harper and Southern [Har20] used a
Bayesian deep learning model to classify emotional valence from inter-beat
interval series, introducing the confidence analysis to the evaluation results.
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3.2 Non-contact measurement of cardiac and pulmonary parameters

3.2 Non-contact measurement of cardiac and
pulmonary parameters

Cardiac and pulmonary parameters, such as heart rate and respiratory rate,
are among the vital signs routinely monitored in the healthcare environment.
The gold standard for measurement of heart rate and heart rate variability is
ECG, which measures the electrical activity of the heart as reflected in voltage
changes on the skin surface. This change can also be measured without direct
contact with the skin by capacitive ECG [Heu11]. Capacitive ECG introduces
a dielectric layer between the skin and the electrode to build a coupled ca-
pacitor. However, it can only provide satisfactory quality at a measurement
distance of a few millimeters at most, meaning that this is considered a quasi-
contact-based approach. In addition, the signal quality can be affected by the
type of clothing worn by the subject.

Cardiac and pulmonary parameters can also be measured by observing mo-
tion caused by heartbeats and breathing. Radar is one of the most researched
motion-based methods for contactless measurement of vital signs. The
first radar-based monitoring system for vital signs was introduced in 1970s
[Car71]. Since then, various technical solutions have been developed such
as continuous-wave (CW) [Mer17, Gu16], ultra-wideband (UWB) [Gol20,
Yan18c] and Frequency Modulated Continuous Wave (FMCW) [Adi15].
FMCW technology allows the separation of signals reflected from different
directions based on the time of signal propagation, thus enabling identifi-
cation of body movement caused by heartbeats and breathing. Radar also
enables signal measurement of multiple subjects. Besides measurement of
respiratory rate or heart rate, researchers have investigated the application
of radars for blood pressure measurement. Zhao et al. [Zha18] presented
a system to measure beat-to-beat blood pressure with a continuous wave
Doppler radar.

Radio-Frequency Identification (RFID) technique can be utilized to monitor
vital signs as well [Hou17, Yan18a, Yan19]. The vital sign signals are captured
from the reflected waves by the RFID tags attached to the subjects’ clothing.
Compared to radar systems which necessitate extra hardware components,
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RFID-based measurement systems are much cheaper and can produce signals
of high accuracy over a broad scanning range.

The WiFi-based solution has also attracted a lot of attention due to the ex-
tensive and already existing deployment of WiFi infrastructure. WiFi-based
systems have been applied to solve tasks such as activity recognition [Gu17,
Xu19, Yan18b], gesture recognition [Pu13, Pu15], fall detection [Din20,
Wan16a, Pal18] and indoor localization [Che16a, Du18]. Vital sign mea-
surement using WiFi device relies on the Channel State Information (CSI),
which contains amplitude and phase information of subcarriers. This infor-
mation reflects how human interacts with the electromagnetic waves in the
environment, including subtle movements caused by breathing and heart-
beats. The algorithms for the CSI data processing can be classified into three
groups: model-based methods [Wan17a, Kha17, Wan17c, Zha19], data-driven
methods [Kha21, Lee18, Zha17, Wan17d] and hybrid methods [Gu17].

Vital signs can be extracted using acoustic sensing technique as well. The
acoustic measurement system contains a speaker sending the inaudible sound
waves and a microphone which receives the acoustic waves reflected from the
measurement subjects. Nandakumar et al. [Nan15] has used a speaker andmi-
crophone embedded in a smartphone to detect apnea. The system was able to
detect respiratory events with a distance of 0.7 m. Wang et al. [Wan18b] pro-
posed a correlation-based FMCW algorithm which achieves a ranging resolu-
tion of about 0.4 cm. Since heartbeats only incur body movements of 0.3-0.8
mm, measuring heart rates is a much more challenging task for systems based
on acoustic sensing. Wang et al. [Wan21] proposed to use FMCWchirp signals
to extract cardiac rhythm. The measured R-R intervals exhibited a correlation
coefficient of 0.93 compared to the ECG reference. While the acoustic system
offers a contactless and cost-effective solution, the measurement performance
can be limited by factors such as sound attenuation through thick fabric, or
the orientation of the body motion with respect to the acoustic devices.

The utilization of depth sensors for vital sign monitoring has been studied as
well, including structured-light sensors [Pu13, Pu15], Time-of-Flight sensors
[Che16a, Du18] and stereo vision sensors [Sch20], a more detail introduction
of which can be found in [Reh20]. Similar to the above mentioned sensors,
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3.3 State of the art for remote Photoplethysmography

the depth sensors measure vital signals by capturing the subtle mechanical
movements caused by the heartbeats or breath.

Besides observing changes in electrical charge and motions, cardiac and pul-
monary parameters can also bemeasured through thermography using a ther-
mal camera [Sha12]. For instance, the respiratory rate can be determined by
observing temperature changes caused by breath flow around the nostrils.
Heart rate can be measured by analyzing temperature changes due to blood
perfusion in specific areas, such as the neck. The non-contact measurement
techniques for vital parameters are summarized in Table 3.1.

This dissertation will apply camera as the sensor for the parame-
ter measurement. The fundamental principle of camera-based mea-
surement is centered around detecting subtle variations in skin color
caused by the underlying blood volume fluctuations, modulated by the
rhythmic heartbeat. These color variations can be effectively captured
by a camera and subsequently enhanced through signal processing
approaches. Compared to other non-contact measurement devices,
cameras are more accessible and relatively cost-effective. Addition-
ally, by capturing environmental and background information such
as facial expressions, cameras can further enrich the dimensionality
of the measurement.

3.3 State of the art for remote
Photoplethysmography

In the following sections, the state of the art of rPPG is discussed, with sub-
divisions according to aspects such as the measurement setup and the signal
processing algorithms. Several authors, including McDuff [McD23], Yu et al.
[Yu21], Chen et al. [Che18b], and Zaunseder et al. [Zau18], have provided
comprehensive overviews of the current state of the art, which serve as foun-
dational references for the subsequent discussion as well.
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3.3.1 Measurement setup

The first rPPG system was proposed by Wu et al. [Wu00]. They introduced
a Charge-Coupled Device (CCD) near-infrared imaging system capable of vi-
sualizing vessel networks and assessing peripheral venous system disorders.
Takano and Ohta [Tak07] validated the near-infrared camera system’s abil-
ity to measure cardiopulmonary parameters. The first rPPG system employ-
ing an RGB camera was proposed by Verkruysse et al. [Ver08]. Utilizing a
consumer-level camera, he was able to measure heart and respiratory rates
under daylight conditions and conventional fluorescent lighting. Although
initial efforts in rPPG system development were based on near-infrared se-
tups, most contemporary research prefers RGB cameras due to their wide
availability and cost-effectiveness.

Usual camera specifications include sensor type, resolution, pixel size, frame
rate and pixel bit depth. Further factors defining imaging performance in-
clude quantum efficiency, dark noise, and dynamic range of the imaging sen-
sor. Additionally, software settings such as auto exposure, white balance,
and auto focus should be taken into account for imaging quality. The opti-
mal specifications are highly dependent on the intended application scenar-
ios. For instance, in environments with constant illumination, auto exposure
is typically turned off to keep the exposure time settings stable. However, in
environments with significant changes in light, such as in driver state moni-
toring, it is desirable for the camera to be able to adaptively adjust exposure
time to prevent pixel saturation or underexposure. Consequently, it is essen-
tial to validate camera configurations in the intended scenario by examining
the signal quality using a benchmark algorithm.

Several researchers have developed more sophisticated setups to enhance
measurement accuracy. Hülsbusch and Rembold [Hül08] employed four LED
modules in their measurement setup to improve illumination homogeneity.
Guazzi et al. [Gua15] used diffuse sheets to create a more uniform light
reflection onto the subject’s face. Amelard et al. [Ame15] introduced a cam-
era system using a temporally-coded illumination sequence. This sequence
measures both active and ambient illumination components, helping to
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mitigate variations caused by changes in ambient illumination. Researchers
have also explored multi-imaging setups. Studies by Estepp et al. [Est14] as
well as Blackford and Estepp [Bla17b] indicated that multi-imaging systems
can provide superior measurement results during motion artifacts compared
to single-camera systems.

Some studies have investigated the use of polarized illumination for rPPG
measurement, though findings in the literature are inconsistent. While Hüls-
busch and Rembold [Hül08] reported no improvement with the use of polar-
ization, a study by Trumpp et al. [Tru17] found that the perpendicular filter
setting could help suppress ballistocardiographic effects and enhance signal
quality.

This dissertation aims to maximize the potential applicability of the algorith-
mic system, with minimal requirements for hardware components. Therefore,
it will primarily focus on simple measurement setups with single camera sys-
tem under lighting conditions such as LED or natural daylight.

3.3.2 Detection and tracking of measurement sites

Regarding the Region of Interest (ROI) for measurement, viable areas include
the lower leg, the forearm, the palm, and the face. Compared to other re-
gions, the face is typically uncovered and more readily accessible in video
images. Additionally, the facial region is more vascularly supplied, yielding
superior quality of measurement signals. Figure 3.1 contrasts the signals ex-
tracted from various body parts. The signal derived from the facial region
displays the most pronounced periodicity, as observed in the figure.

Initial research efforts obtained the region of interest by manually cropping
the facial region or selecting a rectangular area on the forehead in the initial
frames of the face video [Ver08]. The selected ROI, once defined, was applied
consistently to each video frame, predicated on the assumption of minimal
or no significant motion in the video. However, even minor head movement
could introduce significant noise or distortions into the target signal. Rec-
ognizing these challenges, automatic ROI detection methods were proposed
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Figure 3.1: Comparision of pulsatility from different measurement sites. The video image was
segmented into superpixels using the Simple Linear Iterative Clustering algorithm.
The pulse signals were extracted from each superpixel using Plane Orthogonal to
Skin (POS) algorithm [Wan16b]. Among all regions, the facial signal exhibits the
strongest pulsatility.

to compensate for the head motions. Early methods used an automatic face
detection algorithm to localize the face region in the image. The most well-
known face detection algorithm is the Viola-Jones algorithm [Vio01]. It de-
tects the face using a cascade of boosted classifiers based onHaar-like features,
and then produces a bounding box of the face region. One drawback is that the
algorithm searches for the facial region in the entire video image, which slows
down the processing, affecting its suitability for real-time applications. More-
over, noise in pixel intensity can lead to variations in the detection results and
introduce jittering of box size and location among consecutive frames. Also,
the bounding box includes non-skin pixels such as eyes or facial hair, which
are not relevant for signal extraction and can introduce disturbances.

With the advancement of computer vision techniques, more efficient and re-
liable face alignment algorithms have been used for ROI detection, such as
Discriminative Response Map Fitting [Ast13], Kanade-Lucas-Tomasi (KLT)
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Algorithm [Ast13], Supervised Descent Method [Xio13], and Cascaded De-
formable Shape Model [Yu13]. Face alignment not only tracks the face loca-
tion but also the position of specific facial landmarks, which can be used to
localize face regions with stronger pulsatility such as the forehead and cheeks.
Similar to the Viola-Jones algorithm, the prediction outputs of the face track-
ers could also suffer from fluctuations or instability, which further impacts
signal extraction. To this end, temporal noise filtering is usually required for
the landmark position output by face trackers.

Segmentation of the skin region can be further improved by utilizing color
characteristics. This method transforms image pixels into the YCbCr color
space, followed by the removal of non-skin pixels by setting a threshold for
each color channel. More advanced methods, such as the one proposed by
Wang et al. [Wan14], utilize a one-class support vector machines for skin pixel
classification. This classification process can also filter out regions with satu-
rated brightness, which is a common cause of measurement accuracy degra-
dation in inhomogeneous illumination scenarios such as driver state moni-
toring [Blö20].

In addition to using fixed face regions, the region of interest can be adaptively
refined by leveraging the spatial redundancy of image sensors. This refining
process divides face regions into fine-grained local patches, treating each local
patch as an independent sensor [Wan14, Blö20]. Each patch is then individ-
ually evaluated based on local pulsating intensity and skin characteristics. A
final pulse signal is extracted from the aggregated regions.

One challenge of the multi-patch approach is to align the subregion location
in two consecutive frames. Poh et al. [Poh10] utilized the Kanade–Lucas–
Tomasi (KLT) feature tracking algorithm to align the subregions based on
Speeded Up Robust Features (SURF). Wang et al. [Wan14] proposed the use
of the Farnebäck dense optical flow algorithm [Far03] to compensate for local
motion. Blöcher [Blö20] defined a dense face tracking model and aligned the
local patches using the Supervised Descent Method [Xio13].

The multi-patch approaches demonstrate higher robustness against local dis-
turbances such as facial expressions. Remarkably, multi-patch analysis can
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even enable signal extraction without face detection. Bobbia et al. [Bob19]
used Simple Linear Iterative Clustering (SLIC) to decompose the video image
into several superpixels, and then calculated the pulse signal from the super-
pixels that exhibited pulse-related variations.

3.3.3 Signal processing algorithms

Once the ROI has been determined, the color signals are obtained from the
color intensity of pixels inside the area. First studies of rPPG [Ver08] demon-
strated that the target pulse signal can be recovered from the color signal of
one single channel. Changes in skin color indicating the target signals are
very subtle and susceptible to distortions including body motions and illumi-
nation changes. To improve the signal quality in presence of disturbances,
a vast amount of methods have been proposed. Primarily, this involves the
use of detrending methods or bandpass filters. The cut-off frequencies of the
bandpass filters are based on the physiological range of the heart rate (e.g.
40-240 bpm in [De 13]). Bousefsaf et al. [Bou13] adopted continuous wavelet
filters to process the signal. Wang et al. [Wan17b] proposed the amplitude-
selective filter based on the fact that the pulse signal from human skin has
only a limited relative pulsatile amplitude. Blöcher et al. [Blö18] proposed to
reduce the affect of artefacts for heart rate measurement by adaptively set-
ting the cut-off frequencies of the filters. Huang et al. [Hua17] adopted a
Least Mean Squares (LMS) based adaptive filter to measure signals while per-
forming periodical exercises on fitness machines. Li et al. [Li14] employed
Normalized Least Mean Squares (NLMS) adaptive filter to rectify the inter-
ferences of illumination variations. Additionally, the application of Empirical
Mode Decomposition (EMD) [Che16b] and Kalman Filter [Pra18, Jia14] for
disturbance compensation were discussed as well.

Spectral redundancy can also be exploited to effectively improve the signal
measurement. Blind Source Separation (BSS) is one group of the methods
which considers the color signals as a mixture of pulsatile signals with noise
and disturbance. Two representative BSS methods are Principal Compo-
nent Analysis (PCA) [Lew11] and Independent Component Analysis (ICA)
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[Poh11]. The BSS methods de-mix the signals based on the statistical char-
acteristics of the underlying signal components. For instance, ICA recovers
the pulse component by maximizing the non-gaussianity of the recovered
pulse signals. However, several works reported no significant improvement
of measurement accuracy when applying BSS methods [Zau18]. Also, the
outcome of BSS is dependent on the preselection of input signals. Addi-
tionally, since no unique ordering of components is offered after signal
separation, the problem of permutation indeterminacy should be addressed
for the application of BSS-based methods.

Besides statistical properties, signal extraction can be improved by leveraging
the physical and optical characteristics of rPPG signals. One of the critical
characteristics used for rPPG algorithm design is the varying relative PPG-
amplitude over the spectrum, which has been introduced in Figure 2.8. From
the model by Hülsbusch and Rembold [Hül08], De Haan and Van Leest [De
14] identified the normalized BVP vector. This corresponds to the relative
PPG-amplitude in temporally normalized color signals. The pulse signal is
extracted by projecting the color signal onto a vector, resulting in the relative
amplitude on each channel proportional to the Blood Volume Pulse vector.
Wang et al. [Wan19] extended the BVP vector by accounting for disturbance
signals, improving the measurement in NIR setup. Skin tone is another char-
acteristic used for pulse signal extraction. De Haan and Jeanne [De 13] pro-
posed the Chrominance-based method (CHROM) to extract the blood volume
pulse signal by assuming a standardized skin-color to white-balance images.
Wang et al. [Wan16b] proposed the Plane Orthogonal to Skin (POS) algorithm,
which extracts BVP signals by projecting color traces onto a plane where in-
tensity components cancel out. Both POS and CHROM algorithms project
the temporally normalized color signals onto a predefined pair of orthogo-
nal vectors and refine the pulse signal using alpha-tuning [De 13], which will
be discussed in detail in Chapter 5. Definition of the projections vectors re-
quires prior knowledge about the color direction of disturbances and pulse
components.

Differing from non-supervised methods using linear projection to estimate
the physiological signal, supervised methods typically use machine learning
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methods to regress a non-linear mapping from color signals to pulse signals.
Many works have been proposed to use deep networks to extract rPPG sig-
nals from image sequences. Usually, these methods take face images [Spe18,
Yu19a] or the difference between consecutive frames [Che18a] as the network
input. Chen and McDuff [Che18a] introduced an end-to-end Convolutional
Attention Network (CAN) that estimates pulse signals from the normalized
difference between two consecutive frames, aided by an attention branch with
appearance inputs. McDuff et al. [McD20] proposed amethod to use synthetic
data to train CAN. Spetlík et al. [Spe18] proposed to estimate heart rates with
a two-step convolutional network, in which networks for pulse extraction and
heart rate prediction were designed separately. Yu et al. [Yu19a] manipulated
the spatio-temporal features of face images using a 3D convolutional neural
network and recurrent neural network.

In addition to using the face image as the network input, other networks ex-
tract signals from stacked color signals. RhythmNet [Niu19] and SynRhythm
[Niu18] extract color signals from subregions of faces and concatenate the
color signals into a spatial-temporal map. Hsu et al. [Hsu17] applied short-
time Fourier transform on the color signals and used the 2D time-frequency
representation as input for a VGG network [Sim14]. Several studies utilizing
more sophisticated network architectures have been proposed to enhance the
measurement accuracy. Yu et al. designed a video-to-video generator to im-
prove the signal quality from compressed videos [Yu19b]. Niu et al. [Niu20]
adopted disentanglement representation learning to distill the physiological
features from non-physiological information such as head motions and light-
ing change. Liu et al. [Liu20b] and Lee et al. [Lee20] proposed to use meta-
learning to improve cross-dataset performance.

3.3.4 Application of rPPG in stress and emotion
recognition

The remote Photoplethysmography (rPPG) technique offers a way to measure
BVP signals contactlessly through video cameras. From the derived BVP, PRV
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can be determined, which can be considered a surrogate of HRV and is related
to the activity of the autonomic nervous system.

A limited number of studies have been carried out to explore the possibility
of stress detection from rPPG signals. Bousefsaf et al. [Bou13] formulated a
stress index to describe stress states considering the trend variations, rhyth-
mic fluctuations and frequency variations from the remote PRV signals. Mc-
Duff et al. [McD14, McD16] and Sabour et al. [Sab21] used classical feature-
based machine learning methods to recognize cognitive and social stress from
face videos.

Such techniques often necessitate expert knowledge to select the clas-
sification features manually, a non-trivial process due to the am-
biguous relationship between physiological features and affect states.
Given that the selected features may not cover the entire feature space
for accurate identification of different stress states, the question arises:
Could deep networks simplify and enhance the process by analyzing
rPPG-derived signals without the need for intricate PRV feature com-
putation?

For emotion recognition, the application of remote Photoplethysmography
has been explored to a limited extent in the literature, often exhibiting con-
strained accuracy or with a focus on specific emotion categories. Burzo et al.
[Bur12] attempted to differentiate emotions relying exclusively on heart rate
features captured by camera. The resulting accuracy was not ideal, registering
at just 53.57% when distinguishing between positive and negative emotions.
In another attempt, Benezeth et al. [Ben18] utilized frequency domain features
derived from camera-based PRV to detect “disturbed emotions”. Notably, both
investigations emphasized categorical emotion interpretation.
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Since emotions are not always experienced in distinct categories, but
rather along continuous dimensions, it would be interesting to ex-
plore if rPPG based features can also be utilized for dimensional affect
recognition. Taking cues from Bugnon et al. [Bug17]’s work, which
demonstrated that HRV features can be used for fine-grained emo-
tional analysis, it stands to reason that delving into the prospects of
camera-derived PRV parameters for a dimensional emotion analysis
could be a worthwhile endeavor.

3.4 Contributions and distinctions from
current works

From current literature, it’s clear that stress and emotion recognition through
camera-based physiological data is still in its infancy. This dissertation aims
to contribute to this area by focusing on the design of a new rPPG algorithm
and its application for stress and emotion analysis.

Building upon the notable efficacy of neural networks in diverse computer
vision and signal processing domains, this dissertation will first seek to de-
sign a deep learning method for the extraction of pulse signals via camera. It
begins by dissecting the performance of neural networks in terms of remote
BVP signal extraction from two perspectives: temporal processing and spa-
tial operation. Given that current deep learning-based methods utilize only
minimal knowledge of the physical rPPG process, as identified in the review
of the state of the art, this study aims to bridge the gap between the design
process of the deep learning network and traditional rPPG algorithms. For
the temporal processing algorithm, this work will investigate if combining
the fast response of the traditional framework to changing measurement con-
ditions, with the non-linear temporal modeling ability of neural networks,
could facilitate the rPPG signal extraction. Additionally, to leverage the spa-
tial redundancy present in image data, the work will discuss the incorporation
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of spatial operation into the convolutional network in order to adaptively ex-
tract pulsatility-related features from the ROI. Moreover, face normalization
is investigated for robustness improvement of the network against motion.

Bridging from the discussions in Section 3.3.4, the dissertation will assess the
viability of implementing end-to-end methods for the recognition of cogni-
tive stress using camera-based signals. The investigation aims to determine
whether it’s possible to detect cognitive stress from camera-derived signals
using deep learning methods, without calculating pulse rate variability. This
is the first work that explores the application of deep learning methods for
stress recognition based on physiological signals derived from cameras.

In addition to stress recognition, the dissertation explores the potential of us-
ing parameters derived from camera-captured physiological signals to mea-
sure emotions. Specifically, it focuses on measuring dimensional emotions
based on measurements through rPPG, which is an area that has not been
extensively explored in the current state of the art.
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4
System Concept

THIS chapter provides an overview of the system concept for the devel-
opment of an affect recognition system based on remote Photoplethys-

mography (rPPG).The hardware configurationwill be specified, drawing from
insights gained through the analysis of the current state of the art in Chapter
3. A comparison will be conducted with other measurement setups to validate
and justify the configuration of the proposed system. Additionally, the soft-
ware architecture will be introduced, offering a comprehensive description of
the sub-components and their respective interfaces. This detailed exploration
will provide a solid foundation for understanding the fundamental functions
and interactions of the system subcomponents.
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4.1 System specification

The system specification for this dissertation adopts a straightforward mea-
surement setup utilizing RGB color cameras. This selection is driven by vari-
ous considerations. Firstly, the simplicity of the setup, comprising only a cam-
era and computing component, allows for seamless integration into diverse
environments, facilitating the system’s prototypical implementation in vari-
ous application scenarios. In situations where sufficient daylight is available,
there is no need for an additional lighting module. In cases where measure-
ments are conducted at night or in environments with limited daylight, a cost-
effective LED can be effortlessly augmented to provide adequate illumination.

From the perspective of principles, the measurement using RGB color cam-
eras provides higher signal quality. Firstly, the RGB camera sensors offer the
possibility to exploit the spectral redundancy of the signals, allowing for noise
compensation by means of multi-channel analysis. Secondly, the absorption
maxima of oxygenated hemoglobin lies in the greenwavelength range (541nm
and 577nm), as shown in Figure 2.8. That means, the blood volume-dependent
absorption effect of light can be more sensitively detected by means of RGB
cameras. Generally, compared to measurement with near infrared spectral
range, measurements in visible range have stronger relative rPPG strength,
which gives robuster measurement of the target parameters.

Another notable benefit of employing RGB sensors is the availability of a wide
range of low-cost cameras. These off-the-shelf cameras can offer satisfactory
measurement accuracy. For this system, webcams (Logitech c920 and c922,
priced under 100 euros) were chosen for data collection during the evalua-
tion of all algorithmic components. These cameras have previously proven to
meet the minimum requirements for effective signal capture [Blö20]. In more
challenging scenarios, it is feasible to replace the image acquisition system
with higher-quality sensors to cater to specific application demands.
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Facial Expression Analysis Emotion Recognition

Stress Detection

Physiological Measurement

Spatial Operation Temporal Operation Physiological 
Signals

Facial 
Expressions

Affective Recognition

Video Recording

Figure 4.1: Overview of the software architecture. ¹

4.2 Software architecture

The purpose of this section is to develop the concept of software architecture.
The software architecture is shown in Figure 4.1 and can be broken down into
several sub-components:

• Read-in component: Component for loading and storing image data
and occasionally reference data for validation

• Physiological measurement component: Algorithmic component to
extract physiological parameters from images

• Affective recognition component: Component for affect status
assessment based on the camera-based physiological parameters

¹ This diagram has been designed using icons from Flaticon.com.
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The read-in component serves as the interface to the camera system, neces-
sary for the loading and storage of camera images. These stored images are
subsequently used for offline analysis. In order to validate the results, the
read-in component also registers and synchronizes any available reference
data, such as ECG or PPG signals.

The primary focus of this dissertation lies in the development of the algorith-
mic components. The physiological measurement component is specifically
designed to extract physiological signals from videos. Following the standard
processing pipeline for rPPG, the physiological measurement component can
be further divided into two main parts:

• SO Spatial operation component: Evaluation and selection of the
measurement site (ROI) for signal extraction

• TO Temporal operation component: Signal processing to extract blood
volume pulse signals from the selected measurement site

As indicated in Chapter 2, stress and emotion recognition will be addressed
separately within this dissertation. Consequently, the affective recognition
component can be further divided into two distinct subcomponents:

• SD Stress detection component: Stress detection based on physiological
data measured using the rPPG measurement component

• ER Emotion recognition component: Emotion evaluation based on the
parameters measured by the rPPG measurement component

Given that Facial Expression Recognition (FER) is one of the most widely re-
searched approaches for emotion recognition, this work will also compare the
effectiveness of rPPG-based recognition with a FER model. The interfaces of
these components are further elaborated in terms of input and output data
within Table 4.1.

Chapter 5 will provide an introduction to the core function of the rPPG algo-
rithm, namely its temporal signal processing. This chapter will focus on the
development of a new temporal operation method, which form the founda-
tion of the algorithm’s functionality.
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Table 4.1: Component interfaces with input and output data

Component Input Output
Read-in component Raw image data Image frames in RGB color

space (𝐻 ×𝑊 × 3 × 𝑇)
SO component Image frames in RGB color

space
Color features

TO component Color features Signal of length 𝑇 in BVP
Signal Buffer (1 × 𝑇)

SD component Signal of length 𝑇 in BVP
Signal Buffer

Stress level

ER component Signal of length 𝑇 in BVP
Signal Buffer

Valence and arousal scores

Building upon the temporal processing algorithm, Chapter 6 will present an
automatic method that effectively processes spatial pixel information in an
adaptive manner. The chapter will delve into the details of this method, high-
lighting its significance in improving the overall performance and accuracy
of the rPPG algorithm.

Upon this, the capabilities of the entire system to assess stress and emotion
status will be extensively discussed in Chapter 7 and 8. These chapters will
explore the implementation of algorithms in detecting and categorizing stress
levels as well as evaluating dimensional emotional states. The comprehensive
analysis will shed light on the potential applications and benefits of the rPPG
technology in affective recognition.
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5
Short Window Network for Remote

Photoplethysmography

ACCURATE extraction of physiological signals is fundamental for recog-
nizing individuals’ physical and psychological status. As introduced in

Chapter 4, the signal extraction is accomplished by the spatial and temporal
operations, with the temporal operation being the core of the rPPG algorithm.
This chapter will discuss the temporal operation method proposed in this dis-
sertation. The work presented in this chapter has been published previously
in the paper: “Short Window Network for Remote Heart Rate Measurement”
[Zho21].

As discussed in Chapter 3, the core remote Photoplethysmography (rPPG)
algorithms can be broadly classified into non-supervised and supervised
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Facial Expression Analysis Emotion Recognition

Stress Detection

Physiological Measurement

Spatial Operation Temporal Operation Physiological 
Signals

Facial 
Expressions

Video Recording

Affective Recognition

Figure 5.1: Overview of the software architecture - Temporal Operation.

methods. Supervised and non-supervised methods follow different process-
ing paradigms. Unlike non-supervised methods that use linear projection
for estimating the physiological signal, most supervised methods utilize
neural networks to establish a non-linear mapping from color signals to
pulse signals. While non-supervised core rPPG algorithms typically focus on
temporal operations and require additional spatial operations such as pixel
averaging of a selected skin region or using a more sophisticated multi-site
strategy [Wan14], supervised methods simultaneously extract spatial and
temporal features, from cropped face images [Che18a, Yu19a, Liu20b] or
stacked color signals that are extracted from different facial locations [Niu20,
Niu19]. In this regard, it is challenging to determine the extent to which
the improved performance of deep learning algorithms is attributed to their
temporal modeling capabilities.

Furthermore, the design of supervisedmethods often deviates from the frame-
work of classical rPPG algorithms. On the other hand, insights gained from
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the design of classical rPPG algorithms can still be applied to supervisedmeth-
ods. Specifically, the short-window and overlap-adding strategy [De 13], a
classical processing pipeline that allows algorithms to adapt more effectively
to changing measurement conditions, could also benefit deep learning algo-
rithms. Thus, we propose integrating a deep network into the short-window
and overlap-adding pipeline as a replacement for conventional rPPG algo-
rithms. By sharing the same pre- and post-processing steps with classical
methods, this approach enables a direct and fair comparison of temporal op-
eration ability between deep networks and conventional linear projection al-
gorithms.

The remainder of this chapter is structured as follows. In Section 5.1, we will
introduce the proposed method in detail. In Section 5.2, a benchmark ex-
periment will be conducted to evaluate the measurement performance of the
proposed method. In the final Section 5.3, we draw conclusions.

5.1 Method

In Section 5.1.1, we commence our discussion by examining the short-window
and overlap-adding pipeline employed in the model-based algorithms. This
pipeline is the foundation for the subsequent discussions. We then discuss
about the limitation of traditional projection methods for rPPG. Following
this, the network architecture will be introduced in Section 5.1.2.

5.1.1 Short observation window and overlap-add

Themain task of rPPG is to derive blood volume pulse signals from face video
recording. In classical rPPG algorithms, this process involves extracting raw
signals from each color channel by spatially averaging pixel values inside the
ROIs for each individual video frame. The time-varying raw color signals are
typically expressed as a matrixC ∈ ℝ3×𝑇 with 𝑇 being the signal length (with
unit in frame). The model-based rPPG algorithms extract the pulse signal
using the short-window and overlap-adding schema, in which pulse signals
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are first retrieved from short color signals and then overlap-added into a long
time pulse signal. Unlike the BSS-based methods which require a relatively
longer observation interval to ensure sufficient resolution in the frequency
domain, methods using the short-window and overlap-adding pipeline have
faster adaptation to disturbances and changing measurement conditions [De
13]. The short-window and overlap-adding pipeline is illustrated in Figure

Short signal
window

Core rPPG 
algorithm

Red

Green

Blue

Pulse 
signal

𝐡 = 𝐹(𝐂 )

Overlap-
adding

𝐡 ∆

𝐂 ∆ 𝐂

∆𝑡

𝑙

𝐂 , =
𝐂 ,

𝜇(𝐂 , )
− 1

Temporal 
normalization

𝐡

Figure 5.2: The long color signals are sampled by a short time window. After being temporally
normalized, the short window signals are mapped into a short pulse signal using a
core rPPG algorithm. The short pulse signals are gluing together into a long pulse
signal using overlap-adding.

5.2. The red, green and blue traces are raw color signals extracted from a face
video. At a given time point 𝑡, sampling short color signals from the long

60



5.1 Method

signal traces C can be expressed as:

C𝑡 = CL𝑡, 𝑡 ∈ {0, 1, 2, ..., 𝑇 − 𝑙} , (5.1)

with the entry L𝑡,𝑖𝑗 of the samplingmatrix L𝑡 ∈ ℝ𝑇×𝑙 being 1 only if 𝑖 − 𝑗 = 𝑡,
otherwise zero, which can be expressed using the Kronecker delta function:

L𝑡,𝑖𝑗 = 𝛿(𝑡 − 𝑖 + 𝑗). (5.2)

The sampling Equation 5.1 yields short color signalsC𝑡 ∈ ℝ3×𝑙 with the length
𝑙 being equal to the observation window length. The observation window
moves along the time axis with a step size of Δ𝑡, which is set as 1 frame in
this work.

Time-varying components of color signals are of greater interest in the con-
text of rPPG. Since the pulse component has a relatively small amplitude in
the color signals, temporal normalization is required to remove the station-
ary components before mapping the color signals to pulse signals. Temporal
normalization is achieved via dividing the color signals by their stationary
components and then removing the average (which is equal to 1):

C̃𝑡,𝑐 =
C𝑡,𝑐

𝜇(C𝑡,𝑐)
− 1, 𝑐 ∈ {𝑟, 𝑔, 𝑏} (5.3)

where 𝑐 denotes the index of the color channel and 𝜇(⋅) calculates the station-
ary components. Temporal normalization eliminates the dependency of the
signals on the stationary color as well as brightness level of the light source,
yielding zero-centered color signals. The pulse signal h𝑡 is extracted using a
core rPPG algorithm on C̃𝑡 :

h𝑡 = 𝐹(C̃𝑡) , (5.4)
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where h𝑡 has a length of 𝑙. Then, overlap-adding the short signals h𝑡 gives
the pulse signal H with the original length 𝑇:

H =
𝑇−𝑙
∑
𝑡=0

h𝑡L⊤𝑡 . (5.5)

Linear projection in classical methods

Conventional methods for rPPG signal extraction can be considered as look-
ing for a projection vector p ∈ ℝ3×1 in the color space, on which the projected
signals have the highest pulsatility. Thus, the core function in Equation 5.4
can be then expressed as:

h𝑡 = 𝐹(C̃𝑡) = p⊤C̃𝑡 . (5.6)

Various rPPG methods select the projection vector p by utilizing signal char-
acteristics from various aspects. For example, ICA treats the color signals as
a mixture of plethysmographic signals and other disturbances caused by arti-
facts. It assumes that the underlying signal sources are independent of each
other and seeks to determine a de-mixing matrix that maximizes the non-
Gaussian of each source [Poh10].

In addition to utilizing statistical characteristics, the determination of the pro-
jection vector can also be based on the optical properties of the signal com-
ponents. The model-based algorithms, for instance POS and CHROM, de-
compose the time-varying components of color signals into a combination of
pulsatile components along with intensity and specular disturbances, as dis-
cussed in Chapter 2. These algorithms initially project the normalized color
signals onto two pre-defined vectors p1 and p2, resulting in two signal traces
s1 and s2:

[s⊤1 , s⊤2 ]⊤ = [p1,p2]⊤C̃𝑡 . (5.7)
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Subsequently, the signals are refined using the alpha-tuning method. The re-
sulting short rPPG signal can be written as:

h𝑡 = s1 + 𝛽 ⋅ 𝜎(s1)𝜎(s2)
⋅ s2 , (5.8)

where 𝛽 = −1 for CHROM and 1 for POS. 𝜎(⋅) calculates the standard de-
viation of the signals.

The projection of color signals onto two vectors can be seen as a projection
onto a plane within the RGB space. In model-based methods, this plane is
specifically designed to compensate for certain disturbances, such as inten-
sity disturbance in the case of the POS algorithm and specular disturbance
in the case of the CHROM algorithm. The alpha-tuning process is based on
the assumption that if the target signal components are in-phase in s1 and s2,
the disturbance components will be anti-phase in the two signal traces, and
vice versa [Wan16b].

Therefore, for POS and CHROM algorithms, the signal extraction process can
be conceptualized as initially constraining the projection vector onto a pre-
defined plane, followed by further refinement using alpha-tuning. For POS
algorithm, the final projection vector can be expressed as:

pPOS =
1

√1 + 𝜎2(s1)/𝜎2(s2)
(pPOS,1 +

𝜎(s1)
𝜎(s2)

pPOS,2) , (5.9)

where pPOS,1 = 1/√2⋅[0, 1, −1]⊤ and pPOS,2 = 1/√6⋅[−2, 1, 1]⊤. Since pPOS,1
and pPOS,2 are in unit length and orthogonal to each other, the coefficient
1/√1 + 𝜎2(s1)/𝜎2(s2) ensures that pPOS is a unit vector. The projection vector
for CHROM can be determined in an analogous fashion.

The projection vector can also be determined based on frequency characteris-
tics of the signals. The Projection using Spectral Characteristics (PSC) [Zho20]
algorithm, for example, extracts the pulse signal by searching for the projec-
tion vector thatmaximizes the ratio of LF toHF energy in stationary scenarios,
and minimizes the LF energy in the presence of disturbances. Figure 5.3 illus-
trates signals obtained by projecting a set of color signals contaminated by
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disturbances onto different vectors on a predefined plane. It is demonstrated
that the signal projected onto different vectors shows various frequency dis-
tribution and different levels of pulsatility, with the highest level of pulsatility
exhibited by the signal with the minimal HF energy.

While the process to determine the projection vector p is non-linear, such as
using Equation 5.9 for the model-based algorithms or through an optimiza-
tion step for the PSC algorithm, the pulse signal is reconstructed by Equation
5.6 in these methods, which means that the nature of mapping from color sig-
nals to pulse signals is still linear. Figure 5.4 provides a comparison of signals
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Figure 5.3: Projecting the color signals onto four distinct vectors on the constraint plane yields
signals with varying pulsatility and HF energy. The signal obtained with the minimal
HF energy (the lowest plotted) exhibits the highest level of pulsatility.
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extracted using the POS and PSC algorithms. Although these methods use
different approaches to determine the projection vectors and there is a con-
siderable distance between the vectors in the color space, the signals obtained
using these methods exhibit a high level of morphological similarity.

The linear projection methods also share certain common limitations. In sce-
narios where disturbances are present, the linear projection methods deter-
mine the projection direction by approximately minimizing disturbance en-
ergy. Since the energy of disturbances is usually much higher than the target
signal, the resulted projection vector depends heavily on the relative strength
of the disturbance in the color channel. If the disturbance has a smaller angle
relative to the target components in the color space, the projection will also
cancel out the energy of pulsatile components. This explains exactly the re-
duced signal amplitude observed in segments (II), (IV), and (VI) in Figure 5.4,
where disturbances are present.

Moreover, the determination of the projection vector in the classical methods
is usually based on certain assumptions or approximations about the physical
properties of the rPPG process, for example, the linearity of the description
model in Equation 2.20, or the in/anti-phase properties, uponwhich the alpha-
tuning was developed. In situations where these assumptions are invalid, the
pulse signal could then not be properly derived.

It is also important to note that linear projection methods have only explored
a limited region within the overall function space, as indicated by the mor-
phological similarity of signals extracted using the POS and PSC algorithms.
Given that the skin-light interaction involved in rPPG is a highly non-linear
process, there is a motivation to extend the core rPPG algorithms to a more
complex function space. In light of this, we propose replacing the linear core
rPPG algorithm with a deep neural network, allowing for the learning of a
non-linear mapping from skin color to pulse signals.

65



5 Short Window Network for Remote Photoplethysmography

(I) (III) (IV)(II) (V) (VI)

PSC POS

[0, 1,-1]

[-2, 1,1]

(a)

(c)

(b)

vୗ

vୗେ

Time [frame]

Time [frame]

Time [frame]

V
ec

to
r 

an
gl

e
B

V
P 

si
gn

al
B

V
P 

si
gn

al

-20

0

20

40

60

80

100

120

-0.05

0

0.05

-0.05

0

0.05

Figure 5.4: Comparison of projection vectors obtained by POS and PSC. The projection vectors
in (a) are constrained on the plane orthogonal to [1, 1, 1]⊤. The directions of the
projection vectors are close when a large disturbance occurs in (II), (IV) and (VI).
Despite differences in the projection angle in stationary scenarios (I, III and V), the
pulse signals extracted by PSC (b) and POS (c) are morphologically similar to each
other.

5.1.2 Short window network

The proposed neural network is specifically designed to integrate into the
processing pipeline of classical linear methods, where the neural network is
selected as the core function represented by Equation 5.4, while the remain-
ing steps of the processing pipeline are kept unchanged. The utilization of
the classical short-window overlap-adding pipeline provides several notewor-
thy advantages in this particular context. As previously discussed, this ap-
proach significantly enhances the algorithm’s adaptability to distortions by
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5 Short Window Network for Remote Photoplethysmography

effectively limiting the temporal impact range of disturbances. Moreover, the
implementation of a short sampling window not only reduces the size of in-
put and output data, but also contributes to the reduction in the overall size
of the network model, thereby enhancing its generalization capability. Fur-
thermore, the network’s repetitive signal processing on each frame within
the overlap-adding pipeline introduces the bagging mechanism, enhancing
the overall robustness of its predictions.

Inspired by Niu et al. [Niu20], we choose the encoder-decoder structure as
the network backbone. The network architecture is shown in Figure 5.5.
The encoder 𝐸 temporally down-samples the input color signals into a high-
dimensional feature space. Down-sampling is controlled by the stride step in
the average pooling and 1-D convolutional layers. The decoder 𝐷 transforms
the high-dimensional features back to a temporal signal through a series of
transposed convolutional layers. The pulse signal can be written as:

h𝑡 = 𝐷(𝐸(C̃𝑡,𝛼𝛼𝛼𝐸),𝛼𝛼𝛼𝐷) , (5.10)

where the core function 𝐹(⋅) in Equation 5.6 for linear projection methods is
replaced by the encoder-decoder𝐷(𝐸(⋅,𝛼𝛼𝛼𝐸),𝛼𝛼𝛼𝐷). 𝛼𝛼𝛼𝐸 and𝛼𝛼𝛼𝐷 are the concate-
nations of all parameters of the encoder and decoder respectively. Combining
with Equation 5.5, the long-interval pulse signal extracted by the network is
expressed as:

H =
𝑇−𝑙
∑
𝑡=0

𝐷(𝐸(C̃𝑡,𝛼𝛼𝛼𝐸),𝛼𝛼𝛼𝐷)L⊤𝑡 . (5.11)

The network is trained by minimizing the negative Pearson correlation
[Yu19a] between the prediction s𝑝𝑟𝑒 and ground truth signal s𝑔𝑡 :

𝐿𝑛𝑃(s𝑝𝑟𝑒, s𝑔𝑡) = −
𝐶𝑜𝑣(s𝑝𝑟𝑒, s𝑔𝑡)

√𝐶𝑜𝑣(s𝑝𝑟𝑒, s𝑝𝑟𝑒)√𝐶𝑜𝑣(s𝑔𝑡, s𝑔𝑡)
, (5.12)

which drives the network to generate a signal correlated to the target signal.
In our context, s𝑝𝑟𝑒 is the predicted pulse signal h𝑡 and the PPG signal is

68



5.2 Experiment

the target ground truth s𝑔𝑡 . The loss function of the whole length predicted
signal is represented as the penalty summation of the short window signals
h𝑡 . Considering Equation 5.10, it can be expressed as:

𝐿𝑟𝑝𝑝𝑔(𝛼𝛼𝛼𝐸 ,𝛼𝛼𝛼𝐷) =
𝑇−𝑙
∑
𝑡=0

𝐿𝑛𝑃(h𝑡(𝛼𝛼𝛼𝐸 ,𝛼𝛼𝛼𝐷),PPG𝑡)

=
𝑇−𝑙
∑
𝑡=0

𝐿𝑛𝑃(𝐷(𝐸(C̃𝑡,𝛼𝛼𝛼𝐸),𝛼𝛼𝛼𝐷),PPG𝑡) ,
(5.13)

where PPG𝑡 = PPG ⋅ L𝑡 is the cropped PPG signal.

As we can see, the network operates in the identical pipeline of model-based
methods. It takes the same input signals cropped by a short interval win-
dow, and the output signals are further processed using the same steps as in
CHROM and POS. Since the network extracts pulse from short color signals,
we name the Short Window Network (SWN).

5.2 Experiment

In this section we evaluate measurement performance of the proposed SWN.
The evaluation dataset is introduced in Section 5.2.1. Section 5.2.2 describes
the implementation details. The experiment results are reported in Section
5.2.3.

5.2.1 Dataset

The VitalCamSet [Blö19], which contains videos of 26 participants, was used
for the evaluation. Each video was recorded at 30 frames per second (fps) and
lasts for 120 seconds. PPG signals were recorded as ground truth signals using
an oximeter. The experiment was conducted on RGB videos from 7 scenarios.
The first scenario is a stationary scenario without considerable head motion
and illumination change. Scenarios 103 - 104 are scenarios with various il-
lumination changes. The illumination was controlled by means of a smart
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5 Short Window Network for Remote Photoplethysmography

Table 5.1: Scenario overview of VitalCamset

Scenario
Disturbance Nr.

Name Description

Still 101 Natural light-
ing Daylight without movement

103 Abrupt chang-
ing lighting

Scenario with rapid and
smaller lighting changesLighting

change
104 Slowly chang-

ing lighting
Scenario with slow and larger
lighting changes

201 Rotatory
movement

Motion scenario with rota-
tory head movement

202 Scaling move-
ment

Motion scenario with scaling
head movement

203 Translatory
movement

Motion scenario with transla-
tory head movement

Motion

204 Text writing Motion scenario by writing a
text

home light shutter. Scenarios 201 - 204 simulate situations with movement
disturbances, where the participants were instructed to conduct various head
motions. An overview of the scenarios is shown in Table 5.1.

5.2.2 Implementation details

We extracted the face landmarks using the open-source face tracker OpenFace
[Bal16], as it has less jittering effect and more stable alignment for large head
motions. A region of interest was defined based on the landmarks output by
the face tracker, as shown in Figure 5.6. We calculated raw color signals by
averaging pixels inside the defined region and then extracted pulse signals
via different core rPPG algorithms.

The model-based core algorithms CHROM and POS, and the proposed SWN
were implemented in the short-window overlap-adding pipeline. Thewindow
length 𝑙 was set as 32 frames. As BSS-methods require a sufficient observation
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5.2 Experiment

Figure 5.6: The ROI is defined based on the landmark points (denoted as red points) output by
the face tracker. Raw color signals are extracted from the defined ROI.

length for an effective spectral resolution, ICA extracted pulse signals from
the long color signals (10 seconds) in the experiment. Joint Approximation
Diagonalization of Eigen-matrices (JADE) [Car99] was adopted as the core
implementation for ICA.

To train the neural network, the ground truth PPG signals were first down-
sampled into 30 Hz corresponding to the videos’ frame rate. We eliminated
the time delay between the video and oximeter sensor by aligning the PPG
signal with the remote pulse signal extracted using POS. The neural network
was implemented in PyTorch. We used an Adam optimizer [Kin14] to train
the network model. The learning rate was set to 0.005 and the network was
trained for 30 epochs.

We set the length of the long pulse signal as 10 seconds (300 frames). A band-
pass filter was used to reduce noise in signals extracted by the non-supervised
methods. The cutting frequencies of the band-pass filter were set as 0.6 and
4 Hz. We calculated pulse rates from the extracted pulse signals by perform-
ing peak detection in the frequency domain. In order to compare SWN with
other benchmark methods, we calculated Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Success Rate (SR), Signal-to-Noise Ratio (SNR)
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5 Short Window Network for Remote Photoplethysmography

Table 5.2: Benchmark performance of pulse measurement on stationary and motion scenarios
of VitalCamSet

Metric Scenario ICA CHROM POS SWN

101 1.23 0.75 0.64 0.42
201 6.27 4.98 3.94 1.13
202 2.83 1.02 0.97 0.47
203 5.32 2.86 2.38 0.72
204 3.85 2.53 2.09 1.02

MAE
(bpm)↓

Arg. 3.87 2.42 2.00 0.75

101 4.52 3.11 2.71 1.55
201 11.76 11.92 10.30 3.03
202 8.13 3.51 3.50 1.27
203 11.91 8.05 7.09 2.00
204 10.09 8.27 8.25 3.49

RMSE
(bpm)↓

Arg. 9.64 7.71 7.00 2.44

101 94.42 96.31 96.83 98.00
201 65.77 73.78 78.28 91.87
202 88.31 95.02 95.28 98.00
203 78.02 86.70 88.27 95.75
204 83.57 87.50 90.48 94.13

SR (%)
↑

Arg. 82.12 87.88 89.86 95.53

101 4.28 6.41 7.37 9.10
201 -4.26 -2.20 -1.05 4.69
202 1.34 4.16 5.06 7.57
203 -1.20 0.95 2.67 6.38
204 0.62 2.27 3.68 7.08

SNR
(dB) ↑

Arg. 0.20 2.35 3.57 6.98

101 0.93 0.97 0.97 0.99
201 0.52 0.61 0.66 0.95
202 0.73 0.94 0.94 0.99
203 0.49 0.72 0.77 0.98
204 0.63 0.72 0.72 0.95

𝜌 ↑

Arg. 0.67 0.78 0.81 0.97
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5.2 Experiment

and Pearson’s correlation coefficient (𝜌) as evaluation metrics. We define the
Success Rate as the percentile number of predictions within a tolerance of ±3
bpm as in [De 13].

5.2.3 Benchmark experiment

5.2.3.1 Cross-participant evaluation

We conducted the cross-participant experiment using the VitalCamSet, divid-
ing the dataset into four folds. Each fold comprised 6 - 7 participants. Follow-
ing a four-fold cross-validation schema, we obtained the evaluation results,
which are presented in Table 5.2.

From the tables, we can see that all methods achieve the best performance on
the stationary scenario 101 and have the worst results in Scenario 201 with
rotatory head movement. Comparing the proposed method with the linear
projection approaches, SWN shows the best results for all metrics (MAE: 0.75
bpm, RMSE: 2.44 bpm, SR: 95.53%, SNR: 6.98 dB, 𝜌: 0.97) and outperforms
the linear-projection methods significantly (with over 60% reduction in MAE
compared with POS). It can also be seen that the model based methods have
higher accuracy than the BSS-based ICA; among the non-supervisedmethods,
POS provides the second best results. We illustrate the correlation between
the ground truth and predicted PR given by POS and SWN in Figure 5.7. We
can see that SWN provides accurate predictions in the heart rate range be-
tween 40 and 110 bpm, and has a higher correlation with the ground truth HR
than POS. The failing predictions of POS tend to give a lower estimate of the
pulse rate, which can be explained by the fact that the head motions in these
scenarios have relatively lower frequencies than pulse rates.

5.2.3.2 Cross-scenario evaluation

We also conducted a cross-scenario evaluation on the changing illumination
scenarios. The evaluation was kept participant-independent as before and the
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Figure 5.7: The proposed SWN gives proper PR estimates in the range between 40 bpm to 110
bpm on VitalCamSet. In terms of correlation with the ground truth HRs, the pre-
dicted PRs given by SWN (red points) outperform those given by the POS algorithm
(blue points).

network model was not fine-tuned on the videos of the changing illumina-
tion scenarios. The results are listed in Table 5.3. We can see that all methods
provide accurate PR predictions in the scenario with slowly changing light-
ing, while the measurement performance drops significantly in the scenario
with abrupt illumination changes. Besides, even though the network model
was only trained on videos from stationary and motion scenarios, it general-
ized well to the slowly changing illumination scenario 104 and outperformed
the linear-projection approaches in Scenario 103. This can be explained by the
fact that both headmotion and illumination change induce signal components
with different amplitudes and morphology to pulse signals. The network has
learned to differentiate between color variations caused by pulsatile compo-
nents and disturbances, and will try to suppress the disturbance strength if
head motion or lighting change is present.
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Table 5.3: Benchmark performance of pulse measurement on changing lighting scenarios of Vi-
talCamSet

Metric Scenario ICA CHROM POS SWN

103 6.44 5.04 5.41 3.69
104 2.32 1.06 0.99 0.38MAE

(bpm)↓
Arg. 4.41 3.08 3.22 2.06

103 17.45 16.00 16.24 14.93
104 6.93 4.46 3.73 1.42RMSE

(bpm)↓
Arg. 13.34 11.81 11.85 10.67

103 76.93 82.26 80.99 89.90
104 88.90 94.88 95.13 98.54SR (%)

↑
Arg. 82.84 88.49 87.96 94.16

103 -1.91 -0.97 -0.48 5.01
104 2.71 4.75 5.61 8.68SNR

(dB) ↑
Arg. 0.37 1.85 2.52 6.82

103 0.46 0.53 0.51 0.61
104 0.84 0.93 0.95 0.99𝜌 ↑
Arg. 0.58 0.66 0.66 0.73

5.2.4 Experiment for the window length

Since SWN works with a short window length, it is necessary to discuss how
the window length could impact the extraction performance. To this end,
we ran an experiment with varying window length 𝑙 from 32 to 128 frames.
In this experiment, we fixed the network architecture and only change the
input length. The varying length of the input signals gives rise to changing
feature dimensions after down-sampling by the encoder. Since the temporal
up-sampling in the decoder has the same step number as down-sampling in
the encoder, the output will keep the same length with the input signal. The
experiment results are displayed in Figure 5.8. It shows that SWNhas a drop in
performance as the window length increases. With a smaller 𝑙, the estimated
pulse rates have higher accuracy in terms of both MAE and Success Rate.
Analogously to the model-based methods, a shorter observation window can
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improve the adaptability of SWN to distortions as well, and thereby boost the
measurement performance of the algorithm.
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Figure 5.8: Experiment results for varying window length 𝑙. The estimation performance de-
grades for an increasing window length.

5.2.5 Combination with prior knowledge

We followed the analysis approach in [Zha20a] to investigate if combining
SWN with prior knowledge of the model-based rPPG algorithms could ben-
efit the measurement. We projected the temporally normalized color signals
onto the vectors predefined in CHROM and POS before inputting them into
the networks. The vectors in POS are defined as [0, 1, −1; −2, 1, 1]⊤, and in
CHROM as [3, −2, 0; 1.5, 1, −1.5]⊤. Since projection of color signals onto two
vectors gives two signal traces, we adapted the channel number of the first
convolution layer in the encoder into two. Networks with inputs projected
on CHROM and POS vectors are denoted as SWN + CHROM and SWN + POS
respectively. We compare the performance of the modified networks with the
original SWN in the box plots in Figure 5.9. The box plots illustrate the statis-
tics of MAE and Success Rates across participants. It shows that SWN + POS
has a marginal performance improvement against the original SWN, while
SWN + CHROM shows lower accuracy than the original SWN. This may be
due to the invalid assumption of the skin reflection vectors in CHROM. The
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Figure 5.9: Experiment results combining with prior knowledge. Combining with the POS vec-
tors can slightly improve the accuracy of SWN, but projecting input signals onto the
CHROM vectors gives worse results than the original network.

projection onto the inaccurately defined skin reflection vectors could enhance
the disturbance and reduce the relative strength of pulsatile components in the
projected signals. The experiment results suggest that combining SWN with
the prior knowledge can potentially improve the measurement accuracy, but
a less robust physical assumption could harm the performance of SWN.

We also investigated effectiveness of temporal normalization. We simply re-
placed the temporal normalization defined in Equation 5.3 with two general
normalization approaches, i.e., Min-Max normalization and Z-Score normal-
ization. Min-Max normalization is defined as:

C̃𝑡,𝑐 = 2 ⋅
C𝑡,𝑐 −min(C𝑡,𝑐)

max(C𝑡,𝑐) −min(C𝑡,𝑐)
− 1 , (5.14)

while Z-Score normalization is expressed as:

C̃𝑡,𝑐 =
C𝑡,𝑐 − 𝜇(C𝑡,𝑐)

𝜎(C𝑡,𝑐)
. (5.15)
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Figure 5.10: Experiment results with different input normalization approaches. The original
SWN with temporal normalization slightly outperforms the Min-Max and Z-Score
normalization.

The network with the min-max normalized input is denoted as SWN - Min-
Max and that with the Z-Score normalized input as SWN - Z-Score. We men-
tion that both Min-Max and Z-Score approaches distort the cross-channel rel-
ativity of pulse signal strength which was the foundation for the design of
the model-based methods.

The experiment results for temporal normalization are shown in Figure 5.10.
We can see that SWN - Min-Max and SWN - Z-Score work properly despite
the distorted relative rPPG strength in the color channels and both give bet-
ter measurement results (with MAE < 1 bpm) than the non-supervised meth-
ods. Besides, SWN with the original temporal normalization outperforms the
general normalization approaches slightly. We note that methods with gen-
eral normalization approaches display more outliers in the box plot, though
they have more compact 25th/75th percentiles than the original SWN.The re-
sults indicate that temporal normalization, which conserves the relative rPPG
strength in the color channels, could help the network extract more accu-
rate signals.
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5.2.6 Respiratory rate measurement

This section evaluates the measurement performance of the network for res-
piratory rate (RR), which is reported in [Gen22]. The facial color change is
modulated by the respiration in three ways. First, the intra-thoracic pres-
sure variations cause the change in the baseline color intensity under the face
skin. Secondly, the variation amplitude of the pulsatile components in the
skin color signals can be modulated by the cardiac output, which decreases
due to reduced ventricular filling during inspiration. Thirdly, the breathing
frequency also causes the rhythmical fluctuations in heart rates (RSA) due to
the regulation of the autonomous nervous system. The change in the baseline
color is the primary source for photoplethysmographic respiratory measure-
ment [Van16].

The network for respiratory rate measurement was also trained on the Vital-
CamSet. In the dataset, the reference breathing signals (from the abdomen and
thorax) were recorded using the vital sign monitoring system, SomnoScreen
Plus. Since the reference signal recording was affected by body movement as
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Figure 5.11: Experiment results for respiratory rate measurement.
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well, only the data from the stationary scenario were used for training. Any
measurement segments with artifacts were pruned from the data.

Figure 5.11a compares the network and the POS algorithm for their ability
to extract respiratory rate. It can be seen that the POS algorithm is prone to
be affected by the LF noise, which is potentially caused by the involuntary
body motions. The network has a much lower measurement error (MAE: 1.06
breaths/minute) compared to the linear method (MAE: 3.12 breaths/minute).

Here it should be mentioned that the window size for respiratory measure-
ment is larger than the pulse signal measurement, since the respiratory rates
(typically in the range 10-40 breaths/min) are lower than heart rates. A win-
dow that is too short cannot appropriately capture dynamics of the breath-
ing signals. An experiment involving various window lengths for respiratory
measurement is depicted in 5.11b, where the plot illustrates the Area under
the Curve (AUC) of the measurements. The figure shows that the best mea-
surement results were achieved with a window length of 256 frames, which
is used for the evaluation in Figure 5.11a as well.

5.3 Conclusion

In this chapter, we proposed a deep network for blood pulse signal extrac-
tion, which is integrated into the framework of the classic rPPG algorithms.
The design of the network was aimed to combine the advantages of both the
deep learning approaches and the traditional rPPG algorithms. In the evalu-
ation experiment, the proposed method exhibited more robust performance
than the benchmark algorithms on the large-scale dataset VitalCamSet. The
experiment also discussed the impact of the observation window length on
the measurement performance of the proposed network. The results indicate
that the short-window overlap-adding pipeline benefits signal extraction for
the SWN. Moreover, it was demonstrated that the proposed network can be
used to extract respiratory signals as well, and exhibited better results than
the linear POS algorithm.
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6
Face Normalization and Spatial

Feature Extraction for Short
Window Network

CHAPTER 5 introduced the concept of the short window network. This net-
work processes signals along the temporal dimension, converting color

signals from face videos into Blood Volume Pulse (BVP) signal. In classi-
cal methods, the color signals are calculated by averaging pixel intensities
within a fixed, predefined face region. This naive averaging approach assigns
equal weights to all face sub-regions, disregarding the variations in the rela-
tive strengths of pulse signals across different regions. These variations can
arise due to factors such as inhomogeneity in illumination, presence of facial
hair, local facial motions, and individual anatomical differences.
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Facial Expression Analysis Emotion Recognition

Stress Detection

Physiological Measurement

Spatial Operation Physiological 
Signals

Facial 
Expressions

Video Recording

Affective Recognition

Temporal Operation

Figure 6.1: Overview of the software architecture - Spatial Operation.

Figure 6.2 illustrates an example from the Talking scenario in the PURE data-
set [Str14], a dataset that will be utilized for cross-dataset evaluation in sub-
sequent sections. The raw color signal was computed by averaging the pixels
inside three face regions - the forehead, the chin, and the overall selected face
region - while the participant was talking. The figure clearly shows that the
illumination on the skin is not homogeneous across the face region, with the
forehead exhibiting lighter color and the chin region appearing darker. Fur-
thermore, the skin color signals exhibit different levels of periodicity across
different face regions. The pulsatile variation is most pronounced in the sig-
nal extracted from the forehead, while the signal from the chin is dominated
by local movements. Given the larger energy of disturbance compared to the
pulsatile variation, simply averaging the pixels in the selected face regions
will result in color signals significantly contaminated by the motion. This is
illustrated in the second plot of the figure.
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Figure 6.2: Signals of different quality exhibited from different facial regions. In this example,
local facial motions such as talking and making facial expressions introduce distur-
bance components into the color signal.

Several works have proposed more adaptive spatial operation strategies to
leverage the spatial redundancy of video images. For instance, Wang et al.
[Wan14] proposed a method that generates a set of pixel trajectories by
connecting pairs of pixels from two consecutive frames using the forward-
backward optical flow tracking [Kal10]. They subsequently performed global
motion compensation by combining the Viola-Jones face detection algorithm
[Vio01] and tracking-by-detection using Circulant Structure with Kernels
(CSK) [Hen12]. The pixel trajectories were pruned based on pixel color
and signal amplitude in the motion direction. Another approach was pre-
sented by Blöcher [Blö20], who defined local patches based on the Active
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Appearance Model (AAM) [Coo98] and selected ROI according to the local
signal-to-noise ratio.

Filter kernel

Input sequence

Local features Global features

v

T

u

T

u

Pooling

Figure 6.3: The face images are stacked along the time dimension and fed into a neural network.
The network employs spatial convolution to extract local features, which are then
aggregated via the pooling operation.

Neural network-based approaches can exploit spatial redundancy in various
ways. One approach involves extracting raw signals from subregions of the
face, then stacking them to build a signal map that represents the temporal
color changes of each face region [Niu19, Niu20]. However, this has a dis-
advantage of losing the relative spatial relationship between adjacent skin
subregions due to the one-dimensional indexing of the signal map.

Another approach is to use cropped face images directly as inputs for neural
networks [Che18a, Liu20b, Niu20, Spe18, Yu19a, Yu19b]. The cropped face
images are stacked along the time dimension and input into a three dimen-
sional (3D) convolutional network. The local features can be extracted in both
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spatial and temporal dimensions, as shown in Figure 6.3. In the temporal di-
mension, the network learns patterns and changes that occur from one frame
to the next. The operation in the spatial dimensions extracts information
across different measurement sites. However, the spatial operation usually
necessitates an attention mechanism to guide the network to assign weights
to the measurement regions since the input image also encompasses back-
ground noise and areas with scarce physiological information. One poten-
tial factor that could degrade the performance of the attention mechanism is
the discrepancies in data distribution between training and testing conditions
[Liu20b]. The attention mechanism might not generalize effectively across
varying subjects and recording environments, possibly leading to diminished
measurement accuracy by overemphasizing image regions with less physio-
logical information.

Furthermore, utilizing cropped raw images as input for neural networks intro-
duces challenges related to addressing the spatial shift of the ROI in adjacent
frames, especially in scenarios involving head motions. The same pixel in two
consecutive frames often corresponds to different locations on the face, lead-
ing to spatial misalignment. This spatial shift can introduce noise into the
color signal and affect measurement accuracy, particularly given that skin
color on the face is not perfectly homogeneous.

In this chapter, we propose using a three dimensional deep network to extract
pulse signals from face image sequences that are normalized onto a stan-
dardized coordinate system. The face normalization can remove face shape
variations and irrelevant information from backgrounds, and further reduce
distribution discrepancy between training and testing data. The core con-
tributions of this chapter are to: (1) propose the use of face normalization
for remote Photoplethysmography measurement, (2) propose a 3D convolu-
tional network (3D-SWN)whichworks in the classical short-window overlap-
adding scheme for rPPG measurement, (3) evaluate the proposed network on
public rPPG datasets (VitalCamSet [Blö19], PURE [Str14], UBFC [Bob17] and
NIRP [Mag18]).
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6.1 Method

This section will elaborate on themethod proposed in this chapter. Subsection
6.1.1 will detail an approach for face normalization, which can present the
pixel information of face images in a standardized coordinate system. The
architecture and specific training details of the network will be discussed in
Subsection 6.1.2 and 6.1.3, respectively.

6.1.1 Face normalization

Facial shape variation caused by headmotion and facial expressions is a major
challenge in various face analysis tasks. Several studies have employed face
normalization techniques to improve the accuracy of these tasks, such as for
facial expression recognition [Yao16, Hu17], face recognition [Hua17, Tra17]
and face alignment [Zhu17, Tzi17]. These techniques include texture warp-
ing [Has15] and generative model-based methods [Sag15]. The texture warp-
ing methods synthesized the normalized images by projecting the input face
image into a reference coordinate system, while the generative model based
methods construct the normalized image using a statistical model trained
from data.

While texturewarpingmethods translate pixel intensities directly from the in-
put face image, generative model-based methods may introduce deviations in
intensity into the normalized image. In the context of rPPG signal extraction,
where the detection of subtle intensity changes is critical, any introduced de-
viation could lead to undesirable noise in the signal extraction process. Thus,
texture warping is more suitable for the rPPG task compared to generative
model-based methods and will be adopted in this work.

The definition of the face shape is fundamental for achieving effective face
normalization. While a common approach involves using a Procrustes
transformation on a face shape dataset to obtain a 2D front-view face model
[Coo01, Sag15, Yin17, Has15], this method may not be suitable for the rPPG
task, particularly when dealing with lateral head poses. It fails to adequately
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account for pixels from lateral facial regions, such as the cheekbone (zygo-
matic) area and the area around the jaw muscle (parotid-masseteric), which
are key regions of interest for the lateral head pose in rPPG analysis.

In this work, we propose a unified model that can represent faces in both
front and lateral poses. The model is based on a dense 3D Morphable Model
(3DMM) defined using the 300W-LP [Zhu16] dataset. The 3D face model𝕄3𝐷
consists of a set of points with their 3D locations {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖), 𝑖 ∈ [0,𝑁 − 1]},
where 𝑁 represents the number of model points. As shown in Figure 6.4 (a),
the 3D face model can be approximately considered as a cylinder with the
axis {(𝑥, 𝑦, 𝑧)|𝑥 = 0, 𝑧 = 0}. To represent the face surface in a 2D plane, face
images are projected onto a cylinder surface that shares the same axis as the
face model. The coordinate of the projected point 𝑖 can be expressed as:

𝑢𝑖 = arctan( 𝑧𝑖𝑥𝑖
) , (6.1)

𝑣𝑖 = 𝑦𝑖 . (6.2)

The projected face model, denoted as𝕄, is equal to {(𝑢𝑖, 𝑣𝑖), 𝑖 ∈ [0,𝑁−1]}, as
shown in Figure 6.4 (b). Next, the face model is rescaled to the network’s input
size 𝐻 × 𝑊. To achieve this, the 𝑢𝑖 and 𝑣𝑖 coordinates of the projected face
model are normalized to be within the range [1,𝑊] and [1,𝐻], respectively,
using the min-max normalization. We denote the normalized 2D image can-
vas as N and set 𝐻 and 𝑊 as 36, which is a compromise between averaging
camera noise and preserving spatial resolution, a choice validated by previ-
ous works [Liu20a, Che18a, Liu20b].

The projected face model 𝕄 is highly dense. In order to apply this model
on the 36×36 canvas N more efficiently, a subset of model points is selected,
which will serve as vertices for face region subdivision. To ensure that the
selected vertices are evenly distributed on the plane, we define a set of anchor
points 𝔸. The anchor points are equidistantly sampled on the 2D plane N
with a fixed distance of 𝑑 pixels in both 𝑢 and 𝑣 dimensions. The horizontal
coordinate of each second row is offset by 𝑑/2 pixels:

𝔸 = {(𝑑𝑚+(𝑛 mod 2) ⋅𝑑/2, 𝑑𝑛)|𝑚 ∈ [0, ...,𝑊/𝑑], 𝑛 ∈ [0, ..., 𝐻/𝑑]} . (6.3)
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(a)

(b) (c)

(𝒙𝒊, 𝒚𝒊, 𝒛𝒊)

(𝒖𝒊, 𝒗𝒊)

Figure 6.4: Definition of the face model for face normalization: (a) The 3D Morphable Model is
projected onto a cylinder surface with the same axis as the face model. (b) Vertices
for triangulation are sampled equidistantly from the projected model points on the
2D surface. (c) Delaunay triangulation divides the face surface into subregions.

The offset is used to generate isosceles triangles where the base and height are
equal, as opposed to right-angled isosceles triangles without the offset. This
creates a more balanced subdivision of the facial region into smaller, more
symmetric triangles, which decreases the maximal distance between two arbi-
trary pixels inside the subregion. The anchor points 𝔸 are depicted as points
of lighter color in Figure 6.4 (b).

The closest point v in the face model𝕄 to each anchor point is subsequently
selected as a vertex for the face region subdivision. Mathematically, this can
be expressed as follows:

𝕍 = {𝑎𝑟𝑔𝑚𝑖𝑛v∈𝕄(|v − a|)|a ∈ 𝔸} . (6.4)

Having selected the vertices, we then use the Delaunay Triangulation [Bor34]
to subdivide the face surface. The triangulated face region is denoted as 𝕋,
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with each subregion represented by T𝑘 (𝑘 ∈ [0, ..., |𝕋| − 1]), as shown in
Figure 6.4 (c).

Given an input image frame I during runtime, we first use a face alignment
algorithm 𝐹𝐴(⋅) to localize the triangle vertices. Here it should be noted that
the triangle position T𝑘 is in the coordinate system of the normalization can-
vas N, while 𝐹𝐴(T𝑘) gives the triangle position in the coordinate system of
the image I. For each pixel o in the triangle T𝑘 , the pixel color in the normal-
ization canvasN is determined as the average value within the corresponding
triangle region 𝐹𝐴(T𝑘) in the input image I. The average color is computed
using the following equation:

N(o) = 1
|𝐹𝐴(T𝑘)|

∑
𝑗∈𝐹𝐴(T𝑘)

I(𝑗), ∀o ∈ T𝑘 , (6.5)

𝐹𝐴( )

Figure 6.5: Processing steps for face normalization: For each subregion T𝑘, the location within
the face image I is determined using the alignment algorithm 𝐹𝐴(⋅); the pixel in-
tensity on the normalization canvas N is calculated as the average color within the
triangle 𝐹𝐴(T𝑘).
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where |𝐹𝐴(T𝑘)| is the pixel number of the subregion T𝑘 in the image I. The
normalization steps are illustrated in Figure 6.5.

Figure 6.6 compares face images generated using the normalization method
(in the third column) with those simply cropped from the input images (in
the second column). The first and last columns depict input images with dif-
ferent head motions, specifically translation and rotation. In the normalized
face image, the target facial point (such as the left eye corner) is brought to a
consistent coordinate. In contrast, in the cropped face images, there is a posi-
tional offset of this point. Additionally, to reduce noise from the background,
the face normalization process masks out pixels outside the face region by
setting them zero, which eliminates the disturbance in the background pixels
and can benefit the signal extraction further.

Translation Rotation

Left eye corner

Cropping Face normalization

Figure 6.6: Comparison between cropping and face normalization: (1) Face normalization pro-
vides shape invariant face images for the network; (2) pixel changes originating from
the background are filtered out.
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6.1.2 Network architecture

Similar to Section 5.1.2, the 3D network follows the short-window overlap-
adding pipeline. Given an RGB video with a length of 𝑇, the normalized
face images N are stacked in the temporal dimension to form an image se-
quence M ∈ ℝ𝑇×3×36×36. The image sequence is segmented using a time
window, resulting in a short sequence M𝑡 ∈ ℝ𝑙×3×36×36 of length 𝑙, where
𝑡 ∈ {0, 1, 2, ..., 𝑇 − 𝑙} represents the time index of frame sequences. Next, to
remove the non-varying temporal components of image sequence as in the
classic one-dimensional (1D) methods, a channel-wise temporal normaliza-
tion is performed on the image sequence:

M̃𝑐,𝑢,𝑣
𝑡 =

M𝑐,𝑢,𝑣
𝑡

𝜇(M𝑐,⋅,⋅
𝑡 )

− 1 , (6.6)

where 𝜇(M𝑐,⋅,⋅
𝑡 ) stands for the average value across the channel 𝑐. 𝑢 and 𝑣

represent spatial locations of the pixel.

Following the temporal normalization of the image sequence, an encoder-
decoder network architecture is employed for processing the input data. In
contrast to Section 5.1.2, where the input was a one-dimensional temporal
signal, the network input in this chapter is a three-dimensional matrix with
three color channels. Given the effectiveness of temporal processing of the
model demonstrated in Section 5.1.2, the operation along the time dimension
is maintained unchanged in the 3D network. To account for the spatial char-
acteristics of the data, we introduce spatial processing by replacing the cor-
responding layers in the 1D network with three-dimensional blocks, while
preserving the parameters for the temporal dimension.

After passing through the final pooling layer of the encoder, the spatial di-
mensions of each feature map are reduced to 1 × 1, meaning that the feature
map is condensed to a single point in the spatial dimensions, but still retains
a full set of feature channels. This implies that the features obtained using
the 3D encoder have the same shape as those obtained with the 1D version.
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Consequently, the decoder architecture remains unchanged, as described in
Section 5.1.2.

The pulse signal, calculated using the three-dimensional network, can be rep-
resented as:

h𝑡 = 𝐷(𝐸3𝐷(M̃𝑡,𝛼𝛼𝛼𝐸3𝐷),𝛼𝛼𝛼𝐷) , (6.7)

where 𝐸3𝐷 represents the 3D encoder architecture and 𝛼𝛼𝛼𝐸3𝐷 its parameters.
After performing overlap-adding, we obtained the full-length signal:

H =
𝑇−𝑙
∑
𝑡=0

𝐷(𝐸3𝐷(M̃𝑡,𝛼𝛼𝛼𝐸3𝐷),𝛼𝛼𝛼𝐷)L⊤𝑡 . (6.8)

Similar to Equation 5.13, for each data pair (M,PPG) in the training set, con-
sisting of an image sequence and a corresponding ground truth PPG signal,
we define the loss function as the sum of losses computed for each individual
short window of the signals:

𝐿𝑟𝑝𝑝𝑔(𝛼𝛼𝛼𝐸3𝐷 ,𝛼𝛼𝛼𝐷) =
𝑇−𝑙
∑
𝑡=0

𝐿𝑛𝑃(h𝑡,PPG𝑡) (6.9)

=
𝑇−𝑙
∑
𝑡=0

𝐿𝑛𝑃(𝐷(𝐸3𝐷(M̃𝑡,𝛼𝛼𝛼𝐸3𝐷),𝛼𝛼𝛼𝐷),PPG𝑡) , (6.10)

where 𝐿𝑛𝑃 is the negative Pearson correlation defined in Equation 5.12, which
aims to maximize the correlation (or minimizing the negative correlation) be-
tween the predicted and ground-truth PPG signals.

6.1.3 Training details

The training process for the 3D network followed the same procedure as de-
scribed in Chapter 5. An Adam optimizer [Kin14] with a learning rate of 0.005

93



6 Face Normalization and Spatial Feature Extraction for Short Window Network

was used to train the network for 30 epochs. To ensure a fair comparison be-
tween the 1D and 3D networks, both were trained using the same dataset with
identical pre- and post-processing steps in the ensuing evaluations.

6.2 Evaluation

This section evaluates the performance of the proposed 3D short window net-
work. First, we will explore the enhancements achieved through the spatial
operation of the 3D convolutional network. Secondly, the improvements re-
sulting from face normalization will be examined. Lastly, a comparison will
be conducted between the performance of the proposed network and other
state-of-the-art methods.

6.2.1 Dataset

Besides the VitalCamSet adopted in Chapter 5, we evaluated the algorithm
using three further public datasets: PURE [Str14], UBFC [Bob17], and NIRP
[Mag18].

PURE

The PURE dataset contains videos from 10 participants, recorded at a distance
of 1.1 meters with a resolution of 640x480 and a frame rate of 30 fps. This
dataset simulates scenarios with global head movements, including transla-
tion and rotation, as well as local facial motions, like talking. The diverse
motion scenarios within the dataset enable a more thorough evaluation of
the proposed method’s performance.

UBFC

The UBFC dataset is one of the most widely utilized datasets for evaluating
rPPG algorithms. It consists of 42 RGB videos, recorded at a frame rate of
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30 fps and a resolution of 640x480. During the recording, participants were
instructed to engage in a mathematical game designed to increase their heart
rates. Reference PPG data were collected using a transmissive pulse oximeter.
The ground truth heart rates within the dataset cover a range of 60 to 140 bpm.

NIRP

The NIRP dataset is a public dataset designed to evaluate the rPPG algorithm
within a NIR setup. It comprises eight participants aged between 20-40 years,
including four Indians, three Caucasians, and one East Asian individual. Illu-
mination within the measurement setup is provided by two Bosch illumina-
tors (EX12LED-3BD-9W) with diffusers, for both horizontal and vertical ori-
entations. The NIR videos were captured using a Grasshopper camera (GS3-
U3-41C6NIR-C), equipped with a narrow-band 940 nm bandpass filter and a
10 nm passband.

6.2.2 Results

Spatial operation

The evaluation results of the 3D network are presented in Table 6.1. The ta-
ble compares the performance of the one-dimensional and three-dimensional
networks. It also discusses performance differences resulting from adopting
various pre-processing steps on the face images, including cropping (SWN-
Crop), masking (SWN-Mask), and face normalization (SWN-FN). During pixel
masking, image regions outside the face areas are masked as zero, without the
face shape in the input image normalized. This help us to discern the advan-
tages of negating the impact of pixel intensity changes from the background.

Similar to the findings in Chapter 5, all methods achieved the best results in
the stationary scenario (Scenario 101) and exhibited lower performance in the
motion scenarios. In terms of all evaluation metrics, the 3D network with face
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Table 6.1: Comparison of pulse measurement between 1D and 3D networks on the VitalCamSet

Metric Scenario SWN-1D SWN-FN SWN-
Crop

SWN-
Mask

101 0.41 0.33 0.38 0.37
201 1.11 0.87 1.18 1.03
202 0.54 0.51 0.67 0.61
203 0.77 0.69 0.98 0.91
204 1.02 0.78 0.95 0.88

MAE
(bpm)↓

Arg. 0.77 0.64 0.83 0.76
101 1.48 1.17 1.32 1.24
201 2.92 2.65 3.93 2.58
202 2.01 1.53 2.69 2.27
203 2.29 2.48 3.46 3.07
204 3.37 3.10 3.62 3.36

RMSE
(bpm)↓

Arg. 2.51 2.31 3.14 2.61
101 98.39 99.14 98.61 98.78
201 93.51 95.48 94.46 93.96
202 98.14 98.26 97.74 97.82
203 96.23 97.20 95.69 95.94
204 94.81 97.15 96.05 96.59

SR (%)
↑

Arg. 96.21 97.45 96.52 96.63
101 11.72 12.34 12.01 12.04
201 6.47 8.14 7.65 7.30
202 9.80 10.23 9.86 9.86
203 8.48 9.50 8.91 8.95
204 8.92 10.11 8.68 9.08

SNR↑

Arg. 9.10 10.08 9.43 9.46
101 0.99 1.00 0.99 0.99
201 0.96 0.96 0.92 0.96
202 0.98 0.99 0.96 0.97
203 0.97 0.97 0.94 0.95
204 0.95 0.96 0.94 0.95

𝜌 ↑

Arg. 0.97 0.98 0.96 0.97
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normalization (SWN-FN) consistently outperformed the 1D network (SWN-
1D). However, it is worth noting that the 3D network did not always outper-
form the one-dimensional network when using simply cropped face images
as input (SWN-Crop). For instance, in the motion scenarios, the SWN-Crop
method had higher MAE values (1.18 bpm, 0.67 bpm, 0.98 bpm, and 0.95 bpm
for the motion scenarios 201, 202, 203 and 204, respectively) compared to the
1D-SWN method (1.11 bpm, 0.54 bpm, 0.77 bpm and 1.02 bpm). This can be
attributed to the changes in the background pixels and face shape variations
during motion. The face region masking operation improved performance
(MAE 1.03 bpm, 0.61 bpm, 0.91 bpm and 0.88 bpm for Scenario 201, 202, 203
and 204), proving more effective than cropping alone. This is due to its ability
to effectively remove the impact of background changes. The most significant
improvement was observed with face normalization (SWN-FN: 0.87 bpm, 0.51
bpm, 0.69 bpm and 0.78 bpm for Scenario 201, 202, 203 and 204), which ad-
dressed both background changes and face shape variations. Averaged across
all scenarios on the VitalCamSet dataset, the 3D network with face normal-
ization reduced the MAE by approximately 20% compared to the 1D method.

To further demonstrate the superior performance of the proposed three-
dimensional network compared to the one-dimensional approach, an eval-
uation was conducted using the public PURE dataset. Table 6.2 presents
the MAE, RMSE, and Pearson coefficient for each approach. The results
indicate that the 3D network achieved lower errors in pulse rate estimation

Table 6.2: Benchmark performance of pulse measurement on the PURE dataset

Method MAE↓ RMSE↓ 𝜌↑
2SR [Wan15] 2.44 3.06 0.98
CHROM [De 14] 2.07 2.50 0.99
HR-CNN [Niu18] 1.84 2.37 0.98
SynRhythm [Niu18] 1.88 2.45 0.98
NAS-HR[Lu21] 1.65 2.02 0.99
SWN-1D 0.55 2.21 1.00
SWN-FN 0.45 1.10 1.00
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Figure 6.8: Comparison of pulse signal extraction using the 1D and 3D networks. The 1D net-
work suffers from contamination by local facial movement, while the 3D network
successfully recovers the blood volume pulse signal by leveraging spatial redun-
dancy.

(MAE: 0.45 bpm, RMSE: 1.10 bpm) compared to the 1D network (MAE: 0.55
bpm, RMSE: 2.21 bpm).

Referring back to the example shown in Figure 6.2, the pulse signals calculated
using the 1D and 3D networks are depicted in Figure 6.8. It is evident that the
pulse signal extracted using the 1D network is heavily contaminated by local
facial movement. However, the 3D network successfully recovers the blood
volume pulse signal despite the presence of disturbances. This underscores the
ability of the 3D network to extract pulse-related features from face regions
by leveraging spatial redundancy.
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Cross-dataset evaluation

The proposed network’s generalization ability is further evaluated by com-
paring it to other state-of-the-art approaches on the public datasets listed in
Section 6.2.1. The network model was trained on the VitalCamSet dataset,
which has a heart rate distribution of up to about 110 bpm. To ensure that the
training data encompasses a wider range of heart rates, we augmented the
training data by downsampling videos by a factor of 2. More specifically, the
augmented videos were generated by selecting every second frame from the
original video data. This approach allowed the training data to cover heart
rates up to 220 bpm. The evaluation was conducted on 12-second sequences
extracted from the video data, following the parameter setting adopted in
[Liu20b].

Results in Table 6.2 demonstrate that the 1D (MAE: 0.55 bpm, RMSE: 2.21 bpm,
𝜌: 1.00) and 3D (MAE: 0.45 bpm, RMSE: 1.10 bpm, 𝜌: 1.00) SWNs achieve
the highest measurement accuracy on the PURE dataset. Compared to other
methods that extract signals from cropped face images, the proposed net-
works process signals from a cleaner region of interest with less noise from
irrelevant pixels. Furthermore, compared to the best benchmark algorithm
(NAS-HR [Lu21]) listed in the table, the 3D network reduces the MAE from
1.65 bpm to 0.45 bpm and the RMSE from 2.02 bpm to 1.10 bpm, demonstrat-
ing its superior performance.

Table 6.3: Benchmark performance of pulse measurement on the UBFC dataset

Method MAE ↓ RMSE ↓ SNR ↑ 𝜌 ↑
3D CNN [Bou19] 5.45 8.64 - -
Meta-rPPG [Lee20] 5.97 7.42 - 0.53
CAN [McD20] 5.16 10.1 -2.83 0.80
MetaPhys [Liu20b] 1.90 2.62 3.84 0.96
SWN-1D 0.59 1.91 3.95 0.99
SWN-FN 0.55 1.98 4.34 0.99
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Table 6.4: Benchmark performance of pulse measurement on the NIRP dataset

Metric SWN-FN

CAN+
Distrac-
tion

[Now21]

CAN
[Now21]

Sparse-
PPG

[Mag18]

Distance-
PPG

[Kum15]

MAE ↓ 0.65 2.34 7.78 - -
RMSE ↓ 1.95 4.46 16.81 1.06 6.23
SNR ↑ 4.75 2.27 -3.24 - -
𝜌 ↑ 0.976 0.85 -0.03 - -
SR ↑ 96.41 - - 95.18 82.32

The proposed network also demonstrates the best performance on the UBFC
dataset, as presented in Table 6.3. The 3D network significantly reduces the
MAE by over 70%, from 1.90 bpm achieved by MetaPhys [Liu20b] to 0.55 bpm.

Furthermore, the network can be utilized for pulse extraction in a NIR setup.
As discussed in Chapter 4, the measurement in NIR setup presents additional
challenges compared to the RGB setup. In the NIRP dataset, the images con-
sist of only one color channel, necessitating adaptation of the network’s input
channel to 1. The network was trained on the data from the NIR subset of the
VitalCamSet. Evaluation results displayed in Table 6.4, show that the 3D net-
work with the proposed face normalization achieves the best results in terms
of the most metrics, suggesting that the network is able to extract reliable
pulse signals in the NIR setup as well.

6.3 Discussion

This chapter proposes a novel approach for accurate pulse signal extraction
using a three-dimensional convolutional neural network. The network archi-
tecture was designed to operate in the short-window overlap-adding pipeline
as the one dimensional network proposed in Chapter 5, to reserve the tempo-
ral processing ability of the model. The 3D network addresses the limitations
of the 1D model by adaptively incorporating the spatial information of face
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images. Moreover, a method for face normalization was proposed to elimi-
nate the impact of face shape variation and disturbances from backgrounds
to improve the measurement robustness.

The effectiveness of the proposed method was evaluated on multiple pub-
lic datasets, including the VitalCamSet, PURE, UBFC, and NIRP. The results
demonstrated that the proposed method outperformed the 1D network in
terms of measurement accuracy, especially in scenarios involving head mo-
tions and facial shape variations. The face normalization proved beneficial
for signal extraction.

Comparison with state-of-the-art methods showcased the superior perfor-
mance of the proposed network in terms of MAE, RMSE, and Pearson corre-
lation coefficient. The 3D network exhibited better accuracy and robustness,
reducing errors by a significant margin compared to existing benchmark al-
gorithms.
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7
End-to-End Deep Learning for

Stress Recognition Using
Remote Photoplethysmography

THE algorithm described for pulse signal extraction in previous discussions
forms the foundation for subsequent chapters focused on affective status

recognition. This chapter provides a detailed analysis of the system’s ability to
detect stress, specifically stress resulting from cognitive workloads that mir-
ror common workplace challenges. By utilizing camera-based measurements,
the system aims to determine if an individual is under stress or in a baseline
state. As highlighted in Section 3.4, this discussion emphasizes end-to-end
approaches for rPPG-based stress detection, distinguishing it from traditional
feature extraction methods.
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Facial Expression Analysis Emotion Recognition

Stress Detection

Physiological Measurement

Spatial Operation Temporal Operation Physiological 
Signals

Facial 
Expressions

Video Recording

Affective Recognition

Figure 7.1: Overview of the software architecture - Stress Detection.

The remainder of this chapter is structured as follows. Section 7.1 introduces
the collection protocol and pre-processing steps of the experiment data. Clas-
sification methods are described in detail in Section 7.2. Section 7.3 discusses
the the experiment results. The work presented in this chapter has been pub-
lished previously in the paper: [Zho22].

7.1 Data collection

This section outlines the procedure for data collection adopted in the experi-
ment. The details of the recording setup, including how measurements were
made, are discussed in Section 7.1.1. Section 7.1.2 presents the cognitive tasks
employed during the experiment to induce stress. The steps involved in pro-
cessing the recorded data are further explicated in Subsection 7.1.3.
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Light Sources

Camera

Cognitive Test

Keyboard

Chin Rest

ECG Sensor

Figure 7.2: The experiment measurement setup. The head was stabilized by a headrest; an ECG
sensor was used to record the reference signal.

7.1.1 Recording setup

The experimental data were recorded in a laboratory [Wei22], where the
blinds were closed. In the experiment 15 participants were recruited, includ-
ing male and female, different ages (Mean ± SD: 26.71 ± 2.58) and ethnicities.
Lighting was provided by two LED light sources reflected from the wall, as
shown in Figure 7.2. This ensures that a constant lighting condition was
maintained during all measurements and that the lighting of the external
environment was negligible.

Participants sat in a height-adjustable chair. In addition to face videos, brain
activity was recorded by an EEG device for later multimodal analysis. Based
on the previous work [Sto20], a headrest was used to stabilize the head in
order to minimize disturbance of head movements. Experimental instruc-
tions and visual stimuli were displayed on a monitor, on which sat a webcam
recording the participant’s face. The auditory stimuli were played by speak-
ers with the volume set to the most comfortable level for each participant. A
chest strap (Movisens EcgMove 4) recorded the reference ECG signal for the
validation of the camera-based measurements.
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Baseline Attention Task Attention Task

1000 Hz

2000 Hz

1000 Hz

1000 Hz

Time

Target

7

4

3

1

Time

CPT SARTRest

Target

(a) (b)

Figure 7.3: Structure of the measurement, including one rest session and two neurocognitive
tests: (a) Continuous Performance Task (CPT), (b) Sustained Attention Response
Task (SART).

7.1.2 Neurocoginitive tests

Continuous Performance Task (CPT) and Sustained Attention Response Task
(SART) were adopted as the neurocognitive tests in the experiment. Prior to
performing the neurocognitive tests, participants were asked to take a two-
minute break to achieve a relaxed state. Then, the cognitive tasks were per-
formed to generate cognitive load. At the beginning of each task, the partici-
pants were asked to read instructions displayed on the screen and familiarize
themselves with the tasks through the given examples. The neurocognitive
tests were implemented using the Python package PsychoPy [Pei19].

Continuous Performance Task

The CPT test is an auditory task with eyes closed. The general structure is
shown in Figure 7.3(a). During the task, two auditory stimuli with different
tones were played: a non-target tone stimulus with a frequency of 1000 Hz
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and a target tone stimulus with a frequency of 2000 Hz. The stimuli were
randomly distributed during each test with a temporal distance between 1.5
and 2 seconds. Participants had to focus on the tone being played and respond
to the target stimulus as quickly as possible by pressing the space bar. The
duration of each test session was 10 minutes.

Sustained Attention to Response Task

The SART test was implemented as a visual task. In this task, the digits 1 to 9
were displayed randomly in white on the black screen with a fixed period of
800 ms. If a digit other than 3 was displayed on the screen, participants had
to press the space bar as quickly as possible, as shown in Figure 7.3(b). The
probability of the number 3 appearing was 20%. All digits were displayed for
a brief period of 200 ms only. The test lasted for approximately 6 minutes.

7.1.3 Data processing

An overview of the data processing steps is shown in Figure 7.4. We used the
Short Window Network introduced in this work to extract pulse signals as
shown in Figure 7.4 (a). Then the pulse peaks were detected in the pulse sig-
nals, as illustrated in Figure 7.4 (b). After that, the temporal distances between
two adjacent peaks were calculated as the IBI signals.

Despite using a headrest during recording, slight head motions and facial ex-
pressions were observed for several participants. Additionally, light from the
monitor might introduce disturbances into the face videos. Consequently,
these factors can contaminate the pulse signals, leading to false detection of
pulse peaks. We used the PhysioNet-Toolbox [Ves18] to reduce artifacts in the
IBI signals caused by incorrectly detected pulse peaks. Absolute and rela-
tive thresholds were defined to identify non-normal intervals. The absolute
thresholds formed a confidence range, beyond which the intervals were con-
sidered artifacts. The upper and lower thresholds were set as 0.375 and 2 sec-
onds, respectively, corresponding to 160 and 30 bpm in heart rate. The relative
threshold was defined based on the median value of the previous and next five
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Figure 7.4: Overview of the data processing: (a) blood volume pulse signals extracted from face
region, (b) peaks detected in pulse signals, (c) IBI signals after artefacts pruned.

neighboring intervals. We pruned the intervals that change more than a rel-
ative threshold with respect to the median value. The relative threshold was
set as 0.2 in this work. The pruned intervals were then interpolated using the

108



7.2 Methods

nearest valid values. The red line in Figure 7.4(c) shows the post-processed
IBI signal, in which the non-normal interval observed around 1105 s in Figure
7.4(b) was filtered out.

7.2 Methods

This section will explore the methodologies employed for stress recognition.
Initially, the data collected during the experiment will be validated, as dis-
cussed in Section 7.2.1. Following this, the specific methods under investiga-
tion will be detailed in Section 7.2.2. Lastly, the process of training and testing
the models will be described in Section 7.2.3.

7.2.1 Measurement validation

We validate the non-contact measurement by comparing the camera-based
PRV features with HRV measurements using the reference ECG sensor. PRV
and HRV features were calculated from the extracted IBI signals. The time-
domain features considered include the Average Interval between Normal
Heart Beats (AVNN), SDNN, RMSSD and pNN50. Notably, the AVNN is es-
sentially the reciprocal of the Heart Rate (HR).

For frequency-domain features, we calculated the power spectral density
(PSD) from the Lomb-scargle periodogram of IBI signals. The VLF, LF and
HF powers were calculated as the area under PSD curve corresponding to
the frequency bands respectively. The total power was obtained by summing
the power in all three bands. In addition to absolute spectrum powers,
normalized powers and LF/HF were also calculated. Moreover, the nonlinear
features SD1, SD2 and S from Poincaré plots were extracted as well.

We investigated the relative errors and correlation between camera-based
PRV features and the reference ECG sensor. The relative error was defined
as the ratio of the measurement difference to the reference value. Relative er-
rors of all sessions are visualized in Figure 7.5. Pearson correlations between
the camera and reference sensor are shown in Figure 7.6.
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Figure 7.5: The relative error of the rPPG-based PRV features compared to the reference ECG
sensor. The PRV features were measured with different accuracy: pNN50 had sig-
nificant measurement errors for all sessions, while features such as AVNN can be
accurately measured.

Comparing the results across different sessions in Figure 7.5, we can find that
the measurement accuracy of the SART test was generally lower than that of
the baseline and the CPT test. This is due to the fact that more head motions
occurred during the SART test. We can see that the relative error for AVNN
was negligible during all sessions, demonstrating that pulse rates can be mea-
sured with a very high accuracy. SDNN and SD2 showed lower relative errors
than RMSSD, SD1 and S. pNN50 exhibited the most significant measurement
error, which was caused by the camera’s relatively low frame rate (30 frames
per second). The shift of the peak position in just one frame leads to a change
of 67ms in the difference between two corresponding adjacent intervals, mak-
ing the pNN50measurements very sensitive to disturbances. The same reason
can explain the significant inaccuracy in the measurement of RMSSD.
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Except the LF/HF ratio and normalized LF, all frequency domain features had
a correlation greater than 0.9 between camera and ECG-based measurements.
The correlation for the LF/HF ratio was 0.81, though it had a low relative error.
The outliers of LF/HF measurements have significantly reduced the correla-
tion between the measurement and reference, as shown in Figure 7.6.

Unlike the use of expensive industrial cameras or digital single-lens reflex
(DSLR) cameras in [McD16, Sab21], a low-cost webcam was used in the mea-
surement setup of this work. While some PRV parameters like AVNN could
be accurately measured in the experiment, other widely used PRV features
such as LF/HF ratio and RMSSD had a only limited accuracy. It should be
investigated if the accuracy of the low-cost measurement setup is sufficient
in recognizing stress states and if it is possible to obsolete the calculation of
the PRV features for stress state recognition.

7.2.2 Classification methods

We investigated two groups of classification methods. The first group of ap-
proaches recognizes the stress state based on the handcrafted PRV features
discussed above. The second group of approaches skips the calculation of
PRV features and identifies the stress state directly from IBI signals in an end-
to-end manner.

Feature-based methods take PRV features as input and use a classical machine
learningmodel to predict whether an individual is at rest or in a state of stress.
For these methods, the features were first normalized to zero mean and unit
deviation based on the normalization parameters (feature mean and devia-
tion) obtained from the training data. Nine machine learning methods were
considered in this experiment:

• Nearest Neighbors

• Support Vector Machines with linear kernels (Linear SVM)

• Support Vector Machines with Radial Basis Function kernels (RBF
SVM)
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• Gaussian process

• Decision Trees

• Random Forest

• Neural Network

• AdaBoost

• Naive Bayes.

In the end-to-end methods, the IBI signals were resampled at 4 Hz and then
normalized into a range between zero and one. Various deep learning network
architectures were discussed for the end-to-end classification:

• five architectures for time-series classification such as:
– Fully Convolutional Network (FCN) [Wan18a]

– Residual Network (RESNET) [Wan17e]

– Multi-Layer Perception (MLP) [Wan18a]

– Time Convolutional Neural Network (CNN)

– Multichannel Deep Convolutional Neural Network (MCDCNN))
[Zha21]

• two Long Short-Term memory (LSTM) networks such as:
– Convolutional Neural Network with LSTM (CNN-LSTM)

– Multi-Layer Perception with LSTM (MLP-LSTM)

• plus two additional networks:
– Spectrotemporal Residual Network (STRESNET) [Gjo20]

– INCEPTIONTime [Ism20].

Classificationmethodswere implemented in Python. The feature-basedmeth-
ods were implemented using the Scikit-learn toolbox [Ped11], while the im-
plementation of the end-to-end methods was based on the code provided by
[Dzi20].
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Table 7.1: Summary of the classification methods and hyper-parameters

Classifier Optimized hyperparameters
MLP Output dense layer size, dense layer

depthMLPLSTM
MCDCNN

Convolutional filter size, number of
convolutional filtersCNN

FCN
CNNLSTM Convolutional filter size, number of

convolutional filters, LSTM unit num-
ber

RESNET
Kernel size, filter number, number of
blocksINCEPTION

End-to-end

STRESNET
Nearest Neighbors Number of neighbors
Linear SVM Regularization parameter
RBF SVM Regularization parameter, kernel coef-

ficient
Gaussian Process Scale coefficient, RBF kernel coefficient
Decision Tree Maximum depth of tree
Random Forest Maximum depth of tree, number of

trees
Neural Net Strength of the L2 regularization term

Feature-based

AdaBoost Maximum number of estimators

7.2.3 Training and validation

The end-to-end methods were trained from scratch, without using any pre-
trained weights. We followed the more challenging Leave-One-Subject-Out
(LOSO) validation scheme to compare the recognition performance of the
methods. The data were cropped into one-minute segments and divided into
the training set (11 participants), validation set (3 participants), and test set (1
participant). We resampled the training data to compensate for the imbalance
caused by the different session lengths. Since the test data were unseen by
the model, results of the LOSO validation were subject-independent. In order
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to ensure a fair comparison of all classification methods, the two groups of
methods adopted the same pre- and post-processing steps.

As in [Dzi20], hyperparameters were tuned using the Hyperopt package
[Ber13] in this work. Tree-structured Parzen Estimator Approach (TPE)
[Ber11], one of the Sequential Model-based Global Optimization (SMBO)
[Hut11] algorithms, was chosen as the optimization strategy. SMBO al-
gorithms build a model to approximate the performance score of hyper-
parameters based on historical measurements and suggest the next set of
hyperparameters to evaluate based on the model. The considered hyperpa-
rameters for each classification model are listed in Table 7.1.

7.3 Results

This section analyzes the experiment results. We first compare the recognition
accuracy of all classification methods. Four metrics were used to measure the
performance: precision, accuracy, recall and F1-score. The results are shown
in Table 7.2, with best results represented in bold.

For classification with handcrafted features, the best performance was
achieved by Neural Net in the SART test (Precision: 0.76, Accuracy: 0.70,
Recall: 0.72, F1: 0.74) and SVM with linear kernel function in the CPT test
(Precision: 0.75, Accuracy: 0.62, Recall: 0.71, F1: 0.73).

The end-to-end methods showed better results than the feature-based meth-
ods in general. In agreement with the results reported in [Dzi20], CNN-based
architectures outperformed other approaches, with FCN (Precision: 0.86, Ac-
curacy: 0.82, Recall: 0.82, F1: 0.84 for SART, Precision: 0.84; Accuracy: 0.72,
Recall: 0.75, F1: 0.79 for CPT) achieving the best results in terms of the most
metrics for both test tasks. Architectures with LSTM-unit did not improve
the recognition accuracy, suggesting that convolutional layers may be more
robust than LSTM in feature representation. Poor performance of STRES-
NET indicates that spectro-temporal networks could be unsuitable for stress
detection from IBI signals.
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Figure 7.7: Acceptance or rejection of predictions. The predictions further away from the 0.5
boundary are more likely to be accurate. Predictions are rejected if inside the range
[0.5 - 𝛼, 0.5 + 𝛼].

The classification performance was generally worse on the CPT test than on
the SART test. All classifiers had better recognition results than a random
guess for the SART test, while for the CPT test accuracy and recall of some
feature-based methods were only about 50%. This is due to the fact that the
test task in CPT is easier than in SART, thus less cognitive load was elicited
in the CPT test.

The deep networks output a continuous prediction of probability through a
softmax layer. The predictions of the Fully Convolutional Network, which
showed the best results in the experiment, are displayed in Figure 7.7, where
green points stand for rest class and yellow points for stress. It can be seen
that the predictions close to 0 and 1 were more likely to be classified cor-
rectly. To integrate confidence into the result analysis, Harper and Southern
[Har20] utilized Monte Carlo dropout to approximate posterior distribution
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7 End-to-End Deep Learning for Stress Recognition Using Remote Photoplethysmography

over model predictions, in which the network needs to run an efficient num-
ber of times to generate the posterior distribution for a single input sample.
The repeated runs of the network increase the execution time for the predic-
tion. We simply considered the distance of the output to the 0.5-threshold as
a measure of certainty and defined a rejection zone by a boundary coefficient
𝛼. For all outputs in the range [0.5 - 𝛼, 0.5 + 𝛼], the classifier considered it
uncertain whether the measurement was in a restful or stress state and made
therefore no prediction. Measurements outside the range were considered
reliable and classified into either rest or stress state.

The relationship between the boundary coefficient 𝛼 and the classification
performance is demonstrated in Figure 7.8 and 7.9 for the SART and CPT test,
respectively.

We can see that the classification performance increased with the growth of
the boundary coefficient 𝛼, suggesting that the model provided more reliable
classification results with a larger boundary coefficient. On the other hand,
the coverage rate decreased with the increase of the coefficient 𝛼 as more
outputs below the threshold were discarded. We see that with the boundary
threshold set as 0.2, our model achieved 0.9 for the F1-Score and 0.89 for the

0.2 0.4
0.86

0.93

0.98

1

Pr
ec
is
io
n

0.2 0.4

0.82

0.89

0.95

1

A
cc
ur

ac
y

0.2 0.4

0.82

0.87

0.94

1

R
ec
al
l

0.2 0.4

0.9

0.96

1

F1
-S
co

re

0.2 0.4
0

0.49

0.79

1

C
ov

er
ag

e

rPPG
ECG

Figure 7.8: Metrics as functions of 𝛼 on SART test.
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Figure 7.9: Metrics as functions of 𝛼 on CPT.

accuracy on the SART test, with 79% of the outputs being accepted. If the
boundary was set as 0.4, 49% of measurements were reliable, with the F1-
Score and accuracy being 0.96 and 0.95, respectively. A similar tendency was
observed for the results on the CPT-test: the F1-Score and accuracy were 0.87
and 0.81 respectively, if 𝛼 was set as 0.2, and increased to 0.95 and 0.93 with
the boundary coefficient set as 0.4.

The classification performance with the camera and the ECG sensor were
compared as well. In both tests, ECG-based recognition had a higher recov-
ery rate than the camera-based recognition at the same boundary coefficient.
In the SART test, ECG-based detection outperformed the camera, while the
camera-based measurement achieved higher performance scores in the CPT
test.

Outperforming of the deep networks suggests that the networks were able
to extract characteristics of different cognitive states from the IBI signals. To
obtain a deeper insight, an experiment was conducted to visualize the pat-
terns learned by the network using the activation-maximization technique
[Sim13]. We froze the network model’s parameters and calculated the out-
put’s gradient with respect to the input signal. An optimal pattern for each
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Figure 7.10: Row 1 are input patterns that maximize the output activations. Rows 2-4 are sam-
ples from the training data, where samples in the same row correspond to the same
participant. Samples in the stress class have a higher frequency peak than that in
the rest class. This characteristic is also presented in the activation patterns learned
by the network.

class was obtained by updating the input signal using the gradients until the
corresponding output unit of the softmax layer was maximized.

The obtained patterns for both stress and rest class are displayed in the first
row of Figure 7.10. The patterns are presented in the time and frequency do-
mains. Both patterns had a clear frequency peak, while the pattern for the
stress class had a peak of higher frequency than the rest class. Some input
signal samples corresponding to both classes from the dataset are presented
in rows 2-4. We can see that the samples demonstrated the same characteris-
tics learned by the network: samples in the stress class had a frequency peak
higher than 0.25 Hz, and those in the rest class had a lower one. It should be
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mentioned that 0.25 Hz is not the typical frequency boundary to define PRV
features. Instead, the boundary between the LF and HF power is usually set as
0.15 Hz. The examples demonstrate that the network can extract characteris-
tics of different cognitive states without prior knowledge about the features.

The relationship between the classification performance of FCN and the win-
dow length is shown in Figure 7.11. Even though the performance degraded
with a decreasing window length, FCN could achieve a F1-score of 78% on the
SART test and 69% on the CPT test for the 20-second window length. This
indicates that the deep network can extract features from a relatively short
time interval, which allows cognitive state measurement in situations with a
requirement of low latency.

7.4 Conclusion

This chapter investigates the ability of the remote measurement system for
cognitive stress recognition. The vital parameters measured by the system
were first evaluated by being compared with a reference ECG sensor. For

121



7 End-to-End Deep Learning for Stress Recognition Using Remote Photoplethysmography

selection of the recognition method, classification performance of ten end-to-
end deep networks was compared with the feature-based classification meth-
ods. The CNN-based networks showed the best performance in the “Leave-
One-Subject-Out” validation. Visualizing the features learned by the network
using activationmaximization has shown that the network can extract charac-
teristics of signals for different stress states, indicating that computing hand-
crafted features is not necessary for camera-based stress recognition.
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8
Dimensional Emotion Recognition
from Camera-based PRV Features

THIS chapter delves into the potential of rPPG in the realm of emotion
recognition. While rPPG-based emotion recognition has been explored,

as highlighted in Section 3.3.4, the prevailing focus remains on categorical
affect interpretation. Since emotions are not always experienced in distinct
categories, but rather along continuous dimensions, dimensional representa-
tion of emotion status holds significant interest. Drawing insights from the
study of Bugnon et al. [Bug17], which used self-organizing models and ex-
treme learning machines for emotion recognition with ECG-based HRV fea-
tures, this chapter seeks to assess the applicability of rPPG for dimensional
emotion recognition. The work presented in this chapter has been published
previously in the paper: [Zho23].

123



8 Dimensional Emotion Recognition from Camera-based PRV Features
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Figure 8.1: Overview of the software architecture - Emotion Recognition.

Section 8.1 provides an introduction to a FER-based benchmark method for
emotion recognition, with which the rPPG-based approach will be compared
in the later sections. Thereafter, Section 8.2 outlines the data acquisition pro-
cess, followed by a discussion on data annotation in Section 8.3. Insights into
the features and recognition methods used in this Chapter can be found in
Section 8.4 and Section 8.5.The analysis results of the methods are discussed
in 8.6. The chapter concludes with findings summarized in Section 8.7.

8.1 Benchmark facial expression analysis
method

Facial expression analysis is one of the most widely researched solutions for
vision-based emotion analysis, with state-of-the-art performance achieved by
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Figure 8.2: The architecture of the baseline network used for facial expression analysis. The
network is derived from the VGG-Face network. CBAM modules are integrated into
the last three convolutional layers. Additionally, three Gated Recurrent Units (GRUs)
are connected to the last three layers of the network.

various deep learning approaches. This section introduces a VGG-based net-
work [Sim14] for Facial Expression Recognition (FER), which will serve as
a benchmark for evaluating the measurement method using camera-based
physiological signals. The architecture of the network is shown in Figure 8.2.

In the network architecture, Convolutional Block Attention Module (CBAM)
[Woo18] modules are integrated into the last three convolutional layers to
refine the intermediate features along the channel and spatial dimensions.
Additionally, three Gated Recurrent Units (GRUs) [Cho14] are connected to
the last three layers (the last convolutional layer, the last pooling layer, and the
fully connected layer) respectively in order to extract the temporal features
of the sequential inputs.

The affect-in-the-wild (Aff-Wild) dataset and the one-minute general emotion
behavior (OMG-Emotion) dataset were utilized for network training and test.
The Aff-Wild dataset contains 298 videos with a total length of more than 30
hours, and the OMG-Emotion dataset contains 420 videos with a total length
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8 Dimensional Emotion Recognition from Camera-based PRV Features

of around 10 hours. We trained the network on the Aff-Wild and the training
set of the OMG-Emotion dataset, and then tested it on the test set of the OMG-
Emotion dataset.

Figure 8.3 shows the Concordance Correlation Coefficient (CCC) of the net-
work on the test set. It can be seen that the attention modules and the GRUs
have notably improved the prediction accuracy of the network, with the best
results achieved by the model CNN + CBAM + GRU (Valence: 0.40, Arousal:
0.19). More details of the benchmark FER method can be found in [Wan20].
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Figure 8.3: Performance comparison upon the ablation of CBAM and GRU modules. The best
results were achieved with the CNN+CBAM +GRU model.

8.2 Data acquisition

Thirteen participants (6 females, 7 males) between the ages of 22 and 35, from
four different nations and with no history of mental illness, were recruited
for this experiment [Ard19]. Prior to the study, the participants were fully
informed about the experimental procedures, including the recording of ECG
data and face videos. They were requested to sign a consent form, which
allowed the recordings to be used for this study and future research purposes.
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8.2 Data acquisition

Unlike in many datasets that were collected for facial expression analysis,
where the expressions were usually posed, this study aimed to recognize emo-
tions that were naturally elicited. To ensure the study could be adapted to
real-life monitoring conditions, measurements were conducted in a simple
setup with daylight and no use of additional light sources. We employed the
same camera system and processing algorithm as used in the previous work
in Chapter 7, where the reliability of the PRV measurements was validated.

Participants were presented with audio-video stimuli selected to elicit High-
Arousal High-Valence (HAHV) and Low-Arousal Low-Valence (LALV) emo-
tions (specifically amusement and sadness), while seated approximately 0.6 m
away from a screen. The audio-visual stimuli utilized in the study were short
film clips selected from a list validated by Gross and Levenson [Gro95]. The
video used in the HAHV session lasted for about 65 seconds, while the one for
the LALV session lasted for about 120 seconds. Including the baseline neutral
state, the recording sessions involved three emotion classes.

Before the experiment began, participants were instructed to sit quietly for a
period of 2 minutes to return to the neutral emotional state. This duration was
determined to be adequate, as it yielded no significant variance in either pulse
rates or the model’s emotion output at the end of this pre-experiment resting
phasewhen compared to baseline levels. After that, each audio-video stimulus
was then played on the screen while the participants’ faces were recorded
simultaneously. To minimize the carry-over of emotions from one stimulus to
the next, participants received a 2 minute rest period after each stimulus. The
reference ECG signal was recorded using a chest strap (EcgMove, Movisens 512
Hz). Additionally, the sensor also registered signals for acceleration, rotation
rate, air pressure, and temperature in parallel. The signals measured by the
contact sensor were synchronized with the facial video based on the system
timestamp.
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8.3 Annotation

8.3.1 Annotation tool

TheSelf-AssessmentManikin (SAM) is commonly used in affective computing
for obtaining emotion labels. However, it may not be suitable for continuous
labeling, since it requires frequent inquiries about emotional status, which
can distract participants from viewing stimuli and potentially fail to induce
the target emotions. To this end, we developed an annotation tool inMATLAB
for external annotators to label emotions after video recording. A screenshot
of the tool is shown in Figure 8.4. The interface of the annotation tool is
divided into four regions. The top left region displays the face video, which
can be paused or resumed by clicking the play button located in the bottom left
corner of the player window. At the top right of the annotation tool, two sets
of reference labels are displayed separately in two coordinate systems. The
reference labels were generated automatically through the use of two models:
the FER model introduced in Section 8.1 and a HRV-feature-based model. The
HRV-featured-based emotion classifier was provided by [Bug17], where the
HRV features were extracted from the ECG sensor. The labels generated by
the FER model and the HRV-feature-based model are intended to serve as
basic guides, offering a general direction for emotion tracking.

A dotted line is plotted in both coordinates to represent the current image
frame in the time axis. Annotators can drag the dotted line along the time
axis to select any time point for annotation input. The current values of the
reference labels are shown in the valence-arousal-plane at the lower right of
the interface, represented in red and blue colors. The labeling values for both
arousal and valence dimensions were limited within the range [-0.5, 0.5]. The
annotators input an label by clicking on a point in the valence-arousal plane.
The annotated label sequences for the entire video sequence are displayed at
the lower left section of the interface.
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Figure 8.4: Annotation tool for emotional labeling: (a) video player, (b) reference labels given
by a facial expression recognition network and a HRV-based recognition model, (c)
label sequence over time, (d) annotation input.

8.3.2 Annotation validation

Three annotators were recruited for the annotation task and were given an
introduction to the dimensional emotion model, along with guidance on how
to use the annotation tool, prior to the annotation process. The annotators
were not provided with any information about the content of the video stim-
uli. It is crucial to acknowledge that the labels given by the benchmark FER
model and the HRV-based model are not to be regarded as gold standards,
due to the inherent imperfections that come with algorithmic outputs. Our
annotators have been thoroughly informed about these limitations and have
been explicitly directed to prioritize their own subjective assessments, rather
than relying exclusively on these algorithmically generated labels for their
annotation tasks.
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Figure 8.5: Labeling consistency among the annotators. Annotators rated valence and arousal of
the participant by viewing the face videos. The Cronbach’s alpha and Concordance
Correlation Coefficient for each video are indicated by the scale color: from green to
yellow, the higher the consistency of the labels.

Since the emotions develop relatively slowly and do not change in every
frame, it is unnecessary to manually annotate each frame. Instead, the an-
notators were asked to input the annotations every second based on the ob-
servation of the video image displayed in the tool. The annotations were then
interpolated at 30 fps to produce a label for each frame of the video.

Table 8.1: Statistics of labeling consistency

CCC MAE Cronbach’s 𝛼
mean 0.31 0.09 0.62

Arousal std 0.18 0.04 0.24
mean 0.27 0.11 0.61

Valence std 0.17 0.03 0.25

Since the annotation was based on subjective judgments, there may be vari-
ances between the labels provided by different annotators. To assess the
quality of the annotations, we used three metrics to describe the consistency
of the annotations: MAE, CCC, and Cronbach’s alpha. We calculated the
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value of each metric by taking the average of all three pairs of annotators-
to-annotators.

The mean and standard variance of the labeling consistency metrics across
all 13 participants are listed in Table 8.1. The mean MAE values for arousal
and valence were 0.09 and 0.11, respectively, which are considered accept-
able given the value range of [-0.5, 0.5]. The CCC and Cronbach’s alpha also
showed positive correlations among the annotators. Figure 8.5 visualizes the
CCC and Cronbach’s alpha for all participants, where brighter colors rep-
resent higher values and darker colors represent lower values. The figure
displays that labeling consistency varies among the annotators for different
participants, with Participant 1, 6 and 11 exhibiting the lowest correlation.
The valence label for Participant 1 and the arousal label for Participant 11
even showed negative correlation, which may have resulted from the lack
of distinct facial expressions displayed by these participants during watch-
ing stimuli, resulting in the inaccessibility of facial cues for the annotators.
These annotation analysis results demonstrate the challenges of acquisition
of ground-truth emotional label. Although there were differences in annota-
tion for some participants, the labels were considered to be largely consistent
among the annotators.

8.4 Feature calculation

As in Chapter 7, the features for emotion recognition were extracted from the
recorded video data. The pulse signal was extracted from the skin color sig-
nals using the Short Window Network [Zho21]. A peak detection algorithm
was then utilized to determine the positions of each heart beat in the pulse
signal, and the distances between two adjacent peaks were calculated as the
IBI signals. To mitigate disturbances caused by local facial motions and light
changes from the monitor, artifacts were removed from the IBI signals using
PhysioNet-Toolbox [Ves18].

As in the implementation provided [Bug17], a window size of 20 seconds and
a sliding step of 0.5 seconds were used to extract the features. The features
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extracted included statistics of Pulse Rate such as mean (MeanPR), variation
(ampPR), skewness, and kurtosis. Additionally, frequency domain features
such as LF and HF power, LF/HF ratio, and spectral decay slope (Pregr3) were
considered. Five equidistant bands P0-4 in the range of [0.04-1] Hz were
included, along with two commonly used time domain features SDNN and
RMSSD. In total, 18 PRV features were extracted from the camera-based IBIs
signals.

8.4.1 Feature analysis

This section analyzes whether there is a significant relationship between the
features and emotion classes. Prior to analysis, the features were rescaled us-
ing min-max normalization. A visualization of the normalized features from
different recording sessions is presented in Figure 8.6.

The figure shows that the PR features alone demonstrate significant differ-
ences between the amusement and the other two emotion sessions. Partic-
ipants tended to have a higher heart rate while viewing the stimuli of the
amusement emotion. Similarly, other features such as ampPR, LF, SDNN, and
the equidistant frequency bands (P0-4) also exhibit similar tendencies. High
order statistical features of heart rate, such as skewness and kurtosis, show
the least relevance to the target emotions compared to other features.

Furthermore, it can be observed that the feature difference between the neu-
tral emotion and the sadness session is much less significant. This could be
due to the induced sadness being less intense compared to the amusement
emotion, which leads to a less pronounced physiological response.

8.4.2 Feature selection

It was verified in [Suz21] that the ensemble feature selection can improve the
accuracy of emotion estimation compared to using a single feature selection
method. In the ensemble approach, the features are first ranked by multiple
feature selection methods, and then selected based on the results of all feature
selection approaches. In this study, we employed an ensemble strategy that
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Figure 8.6: Feature comparison across the experiment sessions. Remarkable differences are
shown between the feature of amusement and other recording sessions; the differ-
ences between the neutral emotion and sadness session are less pronounced. Skew-
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incorporated four feature selection methods: Minimum Redundancy Maxi-
mum Relevance (MRMR) [Din05], F-test, Chi-square test, and ReliefF [Rob03].

The MRMR algorithm selects the optimal feature set by maximizing the rele-
vance between the selected features and the targeted variables while concur-
rently minimizing the information redundancy among the features. The F-
test and Chi-square-test are statistical hypothesis tests employed to ascertain
whether the features are independent of the targets. Specifically, one-way
analysis of variance (ANOVA) is applied for the F-test. The ReliefF algorithm
evaluates and ranks the importance of the features by penalizing the features
that exhibit differing values in closely related samples, while rewarding fea-
tures with varying values in samples that have contrasting targets.

The weights of the features were analyzed with respect to both arousal and
valence labels. To conduct the F-test and Chi-square-test methods, the fea-
tures were first discretized into 15 bins. Then, the features were ranked based
on their importance as determined by the algorithms, and represented in the
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Figure 8.7: Feature importance using four feature selection methods: Minimum Redundancy
Maximum Relevance (MRMR), F-test, Chi-square test, and ReliefF. V: Valence label;
A: Arousal label. The sorting index stands for the average ranking obtained by all
methods.
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colormap in Figure 8.7. Features with a higher rank are shown in dark green,
while those with a lower rank are represented in lighter colors. The sorting
index was obtained by averaging the results of all four methods.

The figure indicates that there is a significant correlation between the fea-
ture weights for arousal and valence labels, since this work is focused on the
recognition of HAHV and LALV emotions. To investigate whether the iden-
tification of amusement and sadness is sensitive to the same set of features,
feature importance analysis was performed on segmented data, i.e., separately
for amusement vs. neutral and sadness vs. neutral sessions, in addition to the
analysis of the entire measurement session.

The results show that MeanPR, LF, LF/HF, SDNN, RMSSD, and P0 demon-
strated high correlations with the labels of both emotions. AmpPR had a high
importance only for sadness recognition, while P2 and P4 had a relatively
high importance only for the identification of amusement. Among the results
for all feature selection algorithms, PR skewness and kurtosis were found to
have the lowest correlations with the labels, indicating a low dependence be-
tween these two features and emotional states, which is consistent with the
results illustrated in Figure 8.6. Features that demonstrated high correlation
with both emotions were selected for the recognition task later, as shown in
bold in Figure 8.7.

8.5 Recognition methods

Totally ten machine learning methods were discussed for the dimensional
emotion recognition task:

• Supervised Self-organizing Maps (sSOM)

• Extreme Learning Machines with neural network (nELM)

• Extreme Learning Machines based on kernels (kELM)

• Nearest Neighbors

• Linear SVM
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• RBF SVM

• Decision Tree

• Random Forest

• Neural Network

• AdaBoost

The evaluation of the sSOM [Koh13], nELM and kELM [Hua14] models was
performed using the implementation provided in [Bug17], while for other
methods, the Scikit-learn toolbox [Ped11] was employed. To validate the per-
formance of the models, the Leave-One-Subject-Out (LOSO) cross-validation
approach was adopted. Specifically, the data was split into𝑁 (13 in this work)
partitions, with each partition representing a single participant. For each
model, the training was performed on the data from 𝑁 − 1 partitions and
tested on the remaining partition. This ensured that the test data was com-
pletely unseen by the model and the results were thus subject-independent.

8.6 Results and discussion

8.6.1 Correlation analysis

Table 8.2 presents the evaluation results of the recognition models, which are
compared based on their predictive performance using CCCs and F-statistics
as evaluation metrics for prediction quality.

CCCs assess the correlation between model predictions and labels. The CCCs
were computed for each participant’s valence and arousal labels and then av-
eraged across all 13 participants. The table shows that all recognitionmethods
yielded positive CCC values for both valence and arousal estimates. Among
the methods, kELM achieved the highest CCC values with 0.34 for valence
prediction and 0.36 for arousal prediction. For valence, sSOM had the second
highest correlation with a CCC of 0.26, while for arousal, NeuralNet had the
second highest CCC with a value of 0.3.
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(b) Outputs of kELM for Participant 13

Figure 8.8: Outputs of kELM that achieved the best Concordance Correlation Coefficient. The
black solid line represents the averaged annotations, while the shadowed region re-
flects the variations in annotations.

In Figure 8.8, the predictions of kELM are displayed for two participants. The
black solid lines represent the average label, and the green shaded areas indi-
cate the labeling variation among the annotators. Overall, it can be observed
that the labels have positive values in the amusement session for both arousal
and valence dimensions. However, the change from the neutral emotion is
less noticeable in the sadness session. For instance, the average valence la-
beling in the sadness session of Participant 13 is even slightly higher than the
neutral emotion, highlighting the challenge of distinguishing sad emotions
from neutral one.

The kELM model’s predictions (represented in blue lines) exhibit a similar
trend as the labels, with high valence and arousal values for the amusement
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Table 8.2: Mean CCCs and F-statistics of the prediction models

Valence Arousal
Method CCC 𝐹𝐴 𝐹𝑆 CCC 𝐹𝐴 𝐹𝑆
sSOM 0.26 14.46 9.79 0.17 16.46 3.94
nELM 0.23 17.15 2.35 0.26 11.23 4.60
kELM 0.34 18.10 3.62 0.36 17.51 8.19
Nearest Neighbors 0.22 9.44 2.67 0.14 9.71 3.73
Linear SVM 0.23 5.66 1.83 0.13 12.54 5.72
RBF SVM 0.24 17.38 5.93 0.23 12.97 3.60
Decision Tree 0.15 19.84 3.76 0.28 15.20 4.32
Random Forest 0.17 13.95 13.39 0.28 20.40 2.43
Neural Net 0.19 17.82 5.78 0.30 11.24 0.58
AdaBoost 0.23 14.80 1.70 0.21 16.40 1.88

session in the data from both participants. The model is even able to track
the dynamics of mood change; for example, the labels and model predictions
showed a valley value around 20 seconds for both participants in the amuse-
ment session. However, the transition from a neutral emotional state to a
sad one was very gradual and subtle, making it difficult to discern noticeable
shifts from the neutral emotion to sadness in the output curves. In order to
gain more insight into the models’ performance, a statistical analysis will be
conducted in the next section.

8.6.2 Statistical analysis

We further analyse the separability of measurements from different record-
ing sessions using the one-way ANOVA F-statistic. The one-way ANOVA F-
statistic is defined as the ratio between the group variability and the within-
group variability:

𝐹 = 𝑉 𝑏𝑒𝑡𝑤𝑒𝑒𝑛/(𝑐 − 1)
𝑉𝑤𝑖𝑡ℎ𝑖𝑛/(𝑃 − 𝑐) ∼ 𝐹𝑐−1,𝑃−𝑐 , (8.1)
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where

𝑉 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =
𝑐
∑
𝑗=0

(𝑦𝑗 − 𝑦)2 , (8.2)

and

𝑉𝑤𝑖𝑡ℎ𝑖𝑛 =
𝑐
∑
𝑖=1

𝑃
∑
𝑗=1

(𝑦𝑖𝑗 − 𝑦𝑗)2 , (8.3)

with 𝑦𝑖𝑗 denoting the averaged prediction value for the 𝑖-th participant and
the 𝑗-th emotion. 𝑦𝑗 is the average output for the 𝑗-th emotion and 𝑦 repre-
sents the overall average.

Under the null hypothesis that all group means are equal, the F-statistic fol-
lows an F-distribution with degrees of freedom of (𝑐 − 1, 𝑃 − 𝑐), where 𝑐 is
the number of groups (i.e., sessions in this case) and 𝑃 is the total number of
samples (i.e., participants). The F-statistic can be interpreted as a measure of
separability among the emotion sessions, where a larger F-value indicates that
the distribution among the emotions are less likely to be the same, indicating
more significant differences in the predictions for different emotions.

The F-statistics were calculated with the neutral session as reference. The sep-
arability of amusement 𝐹𝐴 and sadness 𝐹𝑆 with respect to the neutral session
was assessed independently. The results can be found in Table 8.2 as well.

For the amusement session, all methods achieved high F-statistics for both
arousal and valence dimensions. Among the methods, Decision Tree achieved
the highest F-statistic of 19.84 for valence prediction, while Random Forest
performed the best with a F-statistic of 20.4 for arousal prediction. As ex-
pected, the results show a lower separability of the sadness session from the
neutral emotion. For valence prediction, sSOM, RBF SVM, Random Forest,
and Neural Net had F-statistics greater than 5.0. The highest separability of
the prediction of the valence for the sadness session was obtained by Random
Forest with an F statistic of 13.39. Regarding the prediction of arousal, high
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separability was obtained by kELM and linear SVM, with kELM achieving the
best results with an F-statistic of 8.19.

The scatter plot in Figure 8.9 - (rPPG) displays the measurements obtained by
kELM, which has the highest correlation coefficient. The differently colored
dots represent measurements from the three emotional sessions. It is appar-
ent that the measurements for the amusement session are mainly located in
the positive quadrant of the arousal-valence plane, and are distinctly sepa-
rated from the measurements of the other sessions. However, the distinction
between the sadness and neutral sessions is less noticeable, consistent with
the observations in Figure 8.8. Nonetheless, it is still noticeable that the mea-
surements for sadness tend to have lower arousal and valence values than
neutral emotions. The plot also depicts an outlier from the sadness session
(Valence: 0.060, Arousal:0.013) with a higher valence value than all neutral
measurements, which can explain the lower F-statistic of kELM (3.62) for va-
lence prediction presented in Table 8.2.

8.6.3 Comparison with facial expression analysis

Table 8.3 compares the recognition using different modalities. The scatter plot
of each modality is illustrated in Figure 8.9. The results for facial expression
analysis were given by the model described in 8.1. The measurements shown
in Figure 8.9 - (rPPG + Facial Expression) were obtained by concatenating the
PRV features with the output of the facial expression analysis network. In
Table 8.3, it can be seen that, both facial expression (𝐹𝑎: 35.26 for valence
and 35.51 for arousal) and rPPG-based measurements (𝐹𝑎: 18.10 for valence
and 17.51 for arousal) show high F-statistics for the amusement session, indi-
cating that both modalities can differentiate between amusement and neutral
emotions. In terms of sadness recognition, the rPPG-based measurements
(𝐹𝑠: 3.62 for valence and 8.19 for arousal) gave higher F-statistics than fa-
cial expressions (𝐹𝑠: 3.15 for valence and 3.94 for arousal). It is worth noting
that the annotation label demonstrated less pronounced statistical differences
between neutral and sadness than between neutral and amusement as well.
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Figure 8.9: Distribution of the averaged output of each session on the valence-arousal plane. For
all modalities, the outputs for amusement are mainly located in the HAHV region.
For the sadness session, more samples are located in the LALV region when using
both rPPG and facial expression features.

However, in Figure 8.9 - (Annotation) it can be seen that, the annotation as-
signed much lower values to the samples from the sadness sessions compared
to the model predictions.

Furthermore, the combination of facial expression features with rPPG has
been shown to improve the detection of negative emotions compared to
analysing facial expressions alone. Specifically, our analysis revealed that
the F-statistic for valence and arousal increased from 3.15 and 3.94 to 3.96
and 5.41, respectively, when using both modalities as opposed to only facial
expression data. Moreover, although the arousal recognition for the sadness
emotion did not outperform the rPPG-based measurement (𝐹𝑠: 8.19) in terms
of F-score when combining both modalities (𝐹𝑠: 5.41), there were more
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Table 8.3: Mean CCCs and F-statistics of different modalities

Valence Arousal
Modality CCC 𝐹𝐴 𝐹𝑆 CCC 𝐹𝐴 𝐹𝑆
Annotation − 20.93 5.67 − 20.65 4.80
rPPG 0.34 18.10 3.62 0.36 17.51 8.19
Facial Expression 0.42 35.26 3.15 0.47 35.51 3.94
rPPG + Facial Expression 0.41 39.34 3.96 0.49 30.66 5.41

samples from the sadness emotion located in the LALV region shown in
Figure 8.9 - (rPPG + Facial Expression) than in Figure 8.9 - (rPPG), indicating
that the combination of facial expression features and rPPG can still provide
valuable insights for detecting the negative emotions. However, although
rPPG-based measurements showed better recognition results in detecting
LALV emotions compared to facial expression analysis, recognizing emotions
with less noticeable changes remains a challenge.

8.7 Conclusion

This chapter examined the ability of the rPPG system for dimensional emo-
tion recognition. Ten machine learning methods were investigated, along
with camera-based PRV features, to carry out the recognition task. The re-
sults of the analysis have confirmed that the system is capable of detecting
high-arousal high-valence emotions, such as amusement. Furthermore, for
emotions with less noticeable changes, such as sadness, rPPG-based measure-
ments exhibited superior performance compared to the benchmark method
for facial expression analysis. To improve the accuracy of affective labels,
future studies may benefit from using an interactive experimental protocol.
Additionally, it is important to expand the sample size to increase generaliz-
ability of the findings. Furthermore, investigating the recognition of emotions
in other valence-arousal quadrants, such as anger, would be valuable, despite
the challenges associated with eliciting and labeling data for these emotions.
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WITH the significant advancements of measurement technologies, the ac-
quisition of physiological parameters has moved beyond the conven-

tional clinical sphere, spreading into everyday life. Beyond the fundamen-
tal medical applications of diagnosis, monitoring, and treatment of diseases,
these measurements now serve as tools for enhancing physical, psychologi-
cal, and emotional performance in daily life. In recent years, camera-based
measurement of physiological parameters using rPPG has attracted a tremen-
dous interest in the research community. In comparison to measurements us-
ing contact sensors, the camera-based measurement approach eliminates the
need for specialized apparatus and negates the requirement of professional
guidance for sensor probe placement. Another key advantage of rPPG is its
non-invasive nature. It avoids direct interaction between the skin and the
sensor, which significantly improves user comfort.
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The central point of this work is the development of robust algorithms for
a camera-based emotion/stress recognition system. The algorithm develop-
ment can be divided into two distinct parts: the remote Photoplethysmogra-
phy (rPPG) algorithm for measurement of physiological signals, and affective
assessment algorithms. The accurate measurement of physiological signals
forms the foundation of this measurement system. To ensure scalability and
cost-effectiveness, the study utilizes low-cost cameras exclusively. The sig-
nal quality obtained from the blood volume pulse measurement is rigorously
examined, with a particular emphasis on its sufficiency for stress/emotion
recognition.

The development of the rPPG algorithms begins with the discussion of the
short-window overlap-adding processing pipeline used in classical rPPG al-
gorithms. The new algorithm was developed by iteratively investigating and
improving the processing steps of the traditional methods. The algorithm
consists of two integral components:

• Spatial operation component: Identifies the measurement sites for
signal extraction based on the temporal and spectral features of each
skin region.

• Temporal operation component: Processes the colors signals to extract
blood volume pulse signals from the selected measurement sites.

In the temporal operation component, the core linear projection used in
traditional rPPG algorithms was replaced by an encoder-decoder network.
The network’s performance was then evaluated on the VitalCamSet dataset,
which comprises data from 26 participants. The evaluation experiment
showed that the network benefits from using the short window overlap-
add pipeline. Moreover, the proposed method has been proven to extract
respiratory parameters with higher accuracy than traditional linear methods.

For the spatial operation component, the algorithm incorporates spatial con-
volution within the three-dimensional neural network to leverage the inher-
ent spatial redundancy in image data. In contrast to traditional multi-trace
approaches that select the ROIs through numerous hard thresholds, the neural
network can autonomously retrieve the pulse-related features across spatial
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dimensions. Additionally, this research introduces a technique to normalize
facial images, thereby mitigating the impact of disturbance factors such as
different head poses, facial expressions, and background disruptions. Evalu-
ations on the VitalCamSet dataset demonstrated that this face normalization
method enhanced signal measurement compared to the fixed ROI approach.

The proposed methods have achieved state-of-the-art performance. An eval-
uation was conducted to compare with the state-of-the-art approaches using
three public datasets. On the PURE dataset, the 3D network developed in
this research outperformed others, achieving the best results (MAE: 0.45 bpm,
RMSE: 1.10 bpm, 𝜌: 1.00). When compared to the second-best results, the pro-
posed network significantly reduced the MAE from 1.65 to 0.45 bpm, and the
RMSE from 2.02 bpm to 1.10 bpm. A similar superior performance of the net-
work was observed on the UBFC dataset, where the 3D network reduced the
MAE by over 70%, from 1.90 to 0.55 bpm. The network was also evaluated for
measure pulse signals in Near-Infrared setups, and demonstrated competitive
results on the NIRP dataset.

The algorithm developed for physiological measurement is subsequently ap-
plied to the tasks of stress and emotion recognition.

In the context of stress recognition, this research introduced an end-to-end
strategy for stress detection, bypassing the conventional calculation of pulse
rate variability parameters and directly determining stress levels from inter-
beat-interval signals derived from the rPPG measurement. An evaluation ex-
periment was conducted to evaluate the end-to-end algorithm. In the experi-
ment, 15 participants were instructed to perform cognitive stress tasks. Their
reactions were captured using a cost-effective webcam. In the data process-
ing steps, the accuracy of PRV measurement was assessed by comparing it
with the measurement using an ECG sensor. Although there were disparities
in the absolute measurement values, rPPG-based measurements of most PRV
parameters demonstrated a correlation over 0.9 with ECG-based HRV mea-
surement. The HF features exhibited lower accuracy due to the low frame
rate of the camera. Subsequently, ten feature-based approaches and ten end-
to-end deep learning networks were tested using the recorded data. The out-
comes indicated that, among all the tested methods, the fully convolutional
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network achieved the highest performance (Precision: 0.86, Accuracy: 0.82,
Recall: 0.82, F1: 0.84 for SART test).

In the emotion analysis task, an experiment was conducted with 13 partici-
pants, who were subjected to audio-visual stimuli designed to elicit various
emotions. The rPPG-based measurements were compared with a network
for facial expression analysis, which was developed based on the VGG-Face
network, supplemented with Convolutional Block Attention Module (CBAM)
and Gated Recurrent Unit (GRU) modules to enhance its feature extraction
capabilities. The results indicated that the rPPG-based emotion analysis
achieved a Concordance Correlation Coefficient (CCC) of 0.34 for valence
prediction and 0.36 for arousal prediction. The statistical analysis confirmed
that for subtler emotional shifts, such as sadness, rPPG-based measurements
showed superior performance compared to the benchmark facial expression
analysis method.

Prospects

Although this study has shown the potential viability of rPPG technology for
affective evaluation, there remain obstacles to address before it can be widely
deployed in real-world systems. First, this dissertation focused on measure-
ments obtained in an indoor setting, where illumination conditions are rela-
tively controllable. In application scenarios such as driver state monitoring,
factors such as head movements, shadows projected from buildings or trees
alongside the street, and light reflection from other traffic participants, could
pose challenges for signal extraction. Furthermore, the parameters of interest
may differ across scenarios. For instance, there are differences between the
stress experienced during driving and the stress elicited in cognitive tests. It
is important to investigate whether the stress induced by real-world driving
conditions can be accurately detected in vehicle applications as well. These
practical considerations include additional variables such as traffic conges-
tion, driving speed, or even the stress level from interacting with other road
users. Addressing these factors requires the technology to discern more nu-
anced or complex affective states.
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Aside from software and algorithm, improvement related to hardware, such
as structured illumination or camera parameter regulation, can augment the
robustness of measurement, especially in scenarios with high illumination
dynamics.

In addition, investigating other physiological parameters such as blood pres-
sure or Pulse Transit Time (PTT) also holds great promise. Apart from the
intrinsic significance of these parameters themselves, such investigation can
also enrich the field of emotion and stress recognition.

Moreover, the incorporation of multi-modal setups, which leverage other con-
tactless sensor technologies such as radar or WiFi, could bring about inno-
vative solutions that enhance the overall performance of the system. Such
advancements could offer a more comprehensive, accurate, and robust as-
sessment, thereby propelling the field of remote physiological measurement
to new heights.
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