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Abstract

Subgroup-discovery methods allow users to obtain simple descriptions
of interesting regions in a dataset. Using constraints in subgroup discov-
ery can enhance interpretability even further. In this article, we focus on
two types of constraints: First, we limit the number of features used in
subgroup descriptions, making the latter sparse. Second, we propose the
novel optimization problem of finding alternative subgroup descriptions,
which cover a similar set of data objects as a given subgroup but use dif-
ferent features. We describe how to integrate both constraint types into
heuristic subgroup-discovery methods. Further, we propose a novel Satis-
fiability Modulo Theories (SMT) formulation of subgroup discovery as a
white-box optimization problem, which allows solver-based search for sub-
groups and is open to a variety of constraint types. Additionally, we prove
that both constraint types lead to an NP-hard optimization problem. Fi-
nally, we employ 27 binary-classification datasets to compare heuristic
and solver-based search for unconstrained and constrained subgroup dis-
covery. We observe that heuristic search methods often yield high-quality
subgroups within a short runtime, also in scenarios with constraints.

Keywords: subgroup discovery, alternatives, constraints, satisfiability modulo
theories, explainability, interpretability, XAI

1 Introduction

Motivation The interpretability of prediction models has significantly gained
importance in recent years [21, 72]. There are various ways to foster inter-
pretability in machine-learning pipelines. In particular, some machine-learning
models are simple enough to be intrinsically interpretable [21]. Subgroup-
discovery methods fall into this category. The goal of subgroup discovery is to
find ‘interesting’ subgroups, i.e., subsets of a dataset, e.g., data objects where the
prediction target takes a particular value [3]. Further, such subgroups should be
described with a combination of simple conditions on feature values. E.g., Fig-
ure 1 displays a rectangle-shaped subgroup description for a two-dimensional,
real-valued dataset with a binary prediction target. This subgroup is defined
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Figure 1: Exemplary subgroup description in the form of a rectangle for a
dataset with two real-valued features and a binary prediction target.

by (Feature 1 ∈ [3.0, 5.1]) ∧ (Feature 2 ∈ [1.0, 1.8]) and contains a consider-
ably higher fraction of data objects with Target = 1 than the complete dataset.
While such subgroup descriptions already tend to be understandable for users,
we see further potential to increase interpretability with the help of constraints.

Problem statement This article addresses the problem of constrained sub-
group discovery. In particular, we focus on two types of constraints related to
the features used in subgroup descriptions:

First, feature-cardinality constraints limit the number of selected features,
i.e., features used in subgroup descriptions. Thus, the subgroup descriptions
become sparse, which increases their interpretability at the potential expense of
subgroup quality. E.g., in Figure 1, one can use bounds on either feature instead
of both to define a subgroup still containing all data objects with Target = 1.
Such a description is simpler but covers more data objects with Target = 0. In
general, even intrinsically interpretable models may lose interpretability if they
involve too many features [69, 72]. Further, feature selection [39, 60] is common
for other machine-learning tasks than subgroup discovery as well.

Second, we formulate constraints to search alternative subgroup descriptions:
Given an original subgroup, an alternative subgroup description should use
different features but cover a similar set of data objects. E.g., in Figure 1, one
may define a subgroup with an interval on one feature and then try to cover a
similar set of data objects with the other feature. With alternative subgroup
descriptions, users obtain different explanations for the same subgroup. Such
alternative explanations are also popular in other explainable-AI techniques
like counterfactuals [74, 83], e.g., to enable users to develop and test multiple
hypotheses or foster trust in the predictions [47, 89].

Related work There are various search methods for subgroup discovery, ex-
haustive [6, 19, 35, 58] as well as heuristic [28, 54, 65, 80] ones. We see research
gaps in three aspects: First, all widely used subgroup-discovery methods are al-
gorithmic in nature and only support a limited set of constraints, as the search

2



routines need to be specifically adapted to particular constraint types. Second,
the number of features used in a subgroup description is a well-known measure
for subgroup complexity [40, 41, 88]. However, there is a lack of systematic
evaluations for this constraint type, particularly regarding evaluations with dif-
ferent cardinality thresholds and comparing multiple subgroup-discovery meth-
ods. Third, various subgroup-discovery methods yield a diverse set of subgroups
rather than only one subgroup, thereby providing alternative solutions [14, 19,
54, 58, 64, 80]. However, this notion of alternatives targets at covering different
subsets of data objects from the dataset. In contrast, our notion of alterna-
tive subgroup descriptions tries to cover a similar set of data objects as in the
original subgroup but with different features in the description.

Contributions Our contribution is fivefold:
First, we formalize subgroup discovery as a Satisfiability Modulo Theories

(SMT) optimization problem. This novel white-box formulation admits a solver-
based search for subgroups and allows integrating and combining a variety of
constraints in a declarative manner.

Second, we formalize two constraint types for this optimization problem, i.e.,
feature-cardinality constraints and alternative subgroup descriptions. For the
latter, we allow users to control alternatives with two parameters, i.e., the num-
ber of alternatives and a dissimilarity threshold. We integrate both constraint
types into our white-box formulation of subgroup discovery.

Third, we describe how to integrate these two constraint types into three
existing heuristic search methods and two novel baselines for subgroup discovery.
The latter are faster and simpler than the former, so they may serve as additional
reference points for future experimental studies on subgroup discovery.

Fourth, we analyze the computational complexity of the subgroup-discovery
problem with each of these two constraint types. In particular, we prove several
NP-completeness results and thereby show that finding optimal solutions under
these constraint types is computationally challenging.

Fifth, we conduct comprehensive experiments with 27 binary-classification
datasets from the Penn Machine Learning Benchmarks (PMLB) [77, 82]. We
compare solver-based and heuristic subgroup-discovery methods in different ex-
perimental scenarios: without constraints, with a feature-cardinality constraint,
and for searching alternative subgroup descriptions. In particular, we evaluate
the runtime of subgroup discovery and the quality of the discovered subgroups.
We also analyze how the subgroup quality in solver-based search depends on
the timeout of the solver. We publish all code1 and experimental data2 online.

Experimental results In our experimental scenario without constraints, the
heuristic search methods yield similar subgroup quality as solver-based search.
On the test set, the heuristics may even be better since they show less overfitting,
i.e., a lower gap between training-set quality and test-set quality. Additionally,

1https://github.com/Jakob-Bach/Constrained-Subgroup-Discovery
2https://doi.org/10.35097/caKKJCtoKqgxyvqG
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the solver-based search is one to two orders of magnitude slower. Using a solver
timeout, a large fraction of the final subgroup quality can be reached in a fraction
of the runtime, though this quality is lower than for equally fast heuristics.

With a feature-cardinality constraint, heuristic search methods are still com-
petitive quality-wise compared to solver-based search. Further, subgroups that
only use a few features show relatively high quality compared to unconstrained
subgroups. I.e., there is a decreasing marginal utility in selecting more features.
Additionally, feature-cardinality constraints reduce overfitting.

For alternative subgroup descriptions, heuristics also yield similar quality as
solver-based search. Our two user parameters for alternatives control the solu-
tions as expected: The similarity to the original subgroup and the quality of the
alternatives decrease for more alternatives and a higher dissimilarity threshold.

Outline Section 2 introduces fundamentals. Section 3 proposes two baselines
for subgroup discovery. Section 4 describes and analyzes constrained subgroup
discovery. Section 5 outlines our experimental design, while Section 6 presents
the experimental results. Section 7 reviews related work. Section 8 concludes
and discusses future work. Appendix A contains supplementary materials.

2 Fundamentals of Subgroup Discovery

In this section, we describe fundamentals for our work. First, we introduce
the optimization problem of subgroup discovery (cf. Section 2.1). Second, we
describe common heuristic search methods to solve this problem (cf. Section 2.2).

2.1 Problem of Subgroup Discovery

Context In general, subgroup discovery involves finding descriptions of inter-
esting subsets of a dataset [3]. There are multiple options to define the type of
dataset, the kind of subgroup description, and the criterion of interestingness.
In the following, we formalize the notion of subgroup discovery that we tackle
in this article. For broader surveys, see [3, 40, 41, 88].

Dataset We focus on tabular, real-valued data. In particular, X ∈ Rm×n

stands for a dataset in the form of a matrix. Each row is a data object, and
each column is a feature. We assume that categorical features have been made
numeric, e.g., via a one-hot or an ordinal encoding [67]. There are also subgroup-
discovery methods that only process categorical data and require continuous
features to be discretized [41, 69]. Xi· ∈ Rn denotes the values of all features
for the i-th data object, while X·j ∈ Rm denotes the values of the j-th feature
for all data objects. y ∈ Y m represents the prediction target with domain Y ,
e.g., Y = {0, 1} for binary classification or Y = R for regression. To harmonize
formalization and evaluation, we focus on binary-classification scenarios in this
article. In general, one may also conduct subgroup discovery in multi-class,
multi-target, or regression scenarios [3].
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Subgroup (description) A subgroup description typically comprises a con-
junction of conditions on individual features [69]. For real-valued data, the
conditions constitute intervals. Thus, a subgroup description defines a hyper-
rectangle. In particular, the subgroup description comprises a lower and upper
bound for each feature. The bounds for a feature may also be infinite to leave
it unrestricted. A data object resides in the subgroup if all its feature values
are in the intervals formed by lower and upper bounds:

Definition 1 (Subgroup (description)). Given a dataset X ∈ Rm×n, a subgroup
is described by its lower bounds lb ∈ {R∪{−∞,+∞}}n and upper bounds ub ∈
{R ∪ {−∞,+∞}}n. Data object Xi· is a member of this subgroup if ∀j ∈
{1, . . . , n} : (Xij ≥ lbj) ∧ (Xij ≤ ubj).

For categorical features, one may replace the inequality comparisons with
equality comparisons against categorical feature values [3].

Throughout this article, we often use the terms subgroup and subgroup de-
scription interchangeably. In a more strict sense, one may use the former term
to denote the subgroup’s members and the latter for the subgroup’s bounds [3].

Subgroup discovery Framing subgroup discovery as an optimization prob-
lem requires a notion of subgroup quality, i.e., interestingness of the subgroup.
A function Q(lb, ub, X, y) shall return the quality of a subgroup on a particular
dataset. Without loss of generality, we assume a maximization problem:

Definition 2 (Subgroup discovery). Given a datasetX ∈ Rm×n with prediction
target y ∈ {0, 1}m, subgroup discovery is the problem of finding a subgroup
(cf. Definition 1) with bounds lb, ub ∈ {R ∪ {−∞,+∞}}n that maximizes a
given notion of subgroup quality Q(lb, ub, X, y).

While this definition refers to one subgroup, some subgroup-discovery meth-
ods return a set of subgroups [3].

Subgroup quality For binary-classification scenarios, interesting subgroups
should typically contain many data objects from one class but few from the other
class. While traditional classification tries to characterize the dataset globally,
subgroup discovery follows a local paradigm, i.e., focuses on the data objects
in the subgroup [69]. Without loss of generality, we assume that the class with
label ‘1’ is the class of interest, also called positive class. Weighted Relative
Accuracy (WRAcc) [51] is a popular metric for subgroup quality [69]:

WRACC =
mb

m
·
(
m+

b

mb
− m+

m

)
(1)

Besides the total number of data objects m, this metric considers the number
of positive data objects m+, the number of data objects in the subgroup mb,
and the number of positive data objects in the subgroup m+

b . In particular,
WRAcc is the product of two factors: mb/m expresses the generality of the
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subgroup as the relative frequency of subgroup membership. The second factor
measures the relative accuracy of the subgroup, i.e., the difference in the relative
frequency of the positive class between the subgroup and the whole dataset. If
the subgroup contains the same fraction of positive data objects as the whole
dataset, WRAcc is zero. The theoretical maximum and minimum of WRAcc
depend on the class frequencies in the dataset. In particular, the maximum
WRAcc for a dataset equals the product of the relative frequencies of positive
and negative data objects in the dataset [66]:

WRACCmax =
m+

m
·
(
1− m+

m

)
(2)

This maximum is reached if all positive data objects are in the subgroup and
all negative data objects are outside, i.e., m+

b = mb = m+. Depending on
the feature values of the dataset, a corresponding subgroup description may
not exist. Further, the maximum value of this expression is 0.25 if both classes
occur with equal frequency but becomes smaller the more imbalanced the classes
are. Thus, it makes sense to normalize WRAcc when working with datasets with
different class frequencies. One normalization, which we use in our experiments,
is a max-normalization to the range [−1, 1] [66]:

nWRACC =
WRACC

WRACCmax
=

m+
b ·m−m+ ·mb

m+ · (m−m+)
(3)

Alternatively, one can also min-max-normalize the range to [0, 1] [20, 88].

2.2 Heuristic Search Methods

In general, there are heuristic and exhaustive search methods for subgroup dis-
covery [3]. In this section, we discuss three popular heuristic search methods,
which we will employ in our experiments.

PRIM Patient Rule Induction Method (PRIM) [28] is an iterative search al-
gorithm. In its basic form, it consists of a peeling phase and a pasting phase.
Peeling restricts the bounds of the subgroup iteratively, while pasting expands
them. Algorithm 1 outlines the peeling phase for finding one subgroup, which
is the flavor of PRIM we consider in this article and denote as PRIM. Pasting
may have little effect on the subgroup quality and is often left out [1]. Further,
we do not discuss extensions of PRIM like bumping [28, 50], which uses bagging
of multiple PRIM runs to improve subgroup quality, or covering [28], which
returns a sequence of subgroups covering different data objects.

The algorithm PRIM starts with a subgroup containing all data objects,
which is the initial solution candidate (Lines 1–4). It continues peeling until
the current solution candidate contains at most a fraction β0 of data objects
(Line 5). The support threshold β0 ∈ [0, 1] is a user parameter. The returned
subgroup is the optimal solution candidate over all peeling iterations (Line 20).
In our PRIM implementation, we add a small post-processing step after peeling:
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Algorithm 1: PRIM for subgroup discovery.

Input: Dataset X ∈ Rm×n,
Prediction target y ∈ {0, 1}m,
Subgroup-quality function Q(lb, ub, X, y),
Peeling fraction α ∈ (0, 1),
Support threshold β0 ∈ [0, 1]

Output: Subgroup bounds lb, ub ∈ {R ∪ {−∞,+∞}}n

1 for j ← 1 to n do // Start with unrestricted subgroup

2 (lboptj , uboptj )← (−∞,+∞)

3 Qopt ← Q(lbopt, ubopt, X, y)

4 (lbpeel, ubpeel)← (lbopt, ubopt)
5 while mb

m > β0 do // Support threshold satisfied

6 Qcand ← −∞
7 for j ∈ get permissible feature idxs(. . . ) do

8 (lb, ub)← (lbpeel, ubpeel) // Try peeling lower bound

9 lbj ← quantile(X·j , lb, ub, α)

10 if Q(lb, ub, X, y) > Qcand then

11 (lbcand, ubcand)← (lb, ub)

12 (lb, ub)← (lbpeel, ubpeel) // Try peeling upper bound

13 ubj ← quantile(X·j , lb, ub, 1− α)

14 if Q(lb, ub, X, y) > Qcand then

15 (lbcand, ubcand)← (lb, ub)

16 (lbpeel, ubpeel)← (lbcand, ubcand) // Retain best candidate

17 if Q(lbpeel, ubpeel, X, y) > Qopt then // Update optimum

18 Qopt ← Q(lbpeel, ubpeel, X, y)

19 (lbopt, ubopt)← (lbpeel, ubpeel)

20 (lb, ub)← (lbopt, ubopt)
21 for j ← 1 to n do // Reset non-excluding bounds

22 if lbj = mini∈{1,...,m} Xij then lbj ← −∞
23 if ubj = maxi∈{1,...,m} Xij then ubj ← +∞
24 return lb, ub
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We set non-excluding bounds to infinity (Lines 21–23). These are bounds that
do not exclude any data objects from the subgroup, i.e., lower/upper bounds
that equal the minimum/maximum feature value over all data objects. There
are two reasons behind this post-processing: First, we ensure that these bounds
remain non-excluding for any new data, where global feature minima/maxima
may differ. Second, it becomes easier to see which features are selected in the
subgroup description and which are not.

In the iterative peeling procedure (Lines 5–19), the algorithm generates new
solution candidates by trying to restrict each permissible feature (Lines 7–15).
In unconstrained subgroup discovery, each feature is permissible, but the func-
tion get permissible feature idxs(. . . ) will become useful once we introduce con-
straints. For each Feature j, the algorithm tests a new lower bound at the
α-quantile of feature values in the subgroup and a new upper bound at the
1−α-quantile of feature values in the subgroup. The peeling fraction α ∈ (0, 1)
is a user parameter. It describes which fraction of data objects gets excluded
from the subgroup in each peeling iteration. Having tested two new bounds
for each feature, the algorithm takes the subgroup with the highest associated
quality (Line 16) and continues peeling it in the next iteration. Further, if this
solution candidate improves upon the optimal solution candidate from all prior
iterations, it is stored as the new optimum (Lines 17–19).

Beam Search Beam search is a generic search strategy that is also common in
subgroup discovery [7]. It maintains a set of currently best solution candidates,
i.e., the beam, which it iteratively updates. The number of solution candidates
in the beam is a user parameter, i.e., the beam width w ∈ N. We outline one
way to implement it in Algorithms 2 and 3, which we refer to as Beam Search
in the following. It is an adapted version of the beam-search implementation in
the Python package pysubgroup [57].

First, the algorithm Beam Search initializes the beam by creating w unre-
stricted subgroups (Lines 1–5). Further, it stores the quality of each of these
subgroups. Additionally, it records which subgroups changed in the previous
iteration (Lines 6–15) of the search. In particular, it stops once all subgroups
in the beam remain unchanged (Line 6). Subsequently, it returns the best sub-
group from the beam (Lines 16–21). As for PRIM (cf. Algorithm 1), we replace
all non-excluding bounds with infinity as a post-processing step.

The main loop (Lines 6–15) updates the beam. In particular, for each sub-
group that changed in the previous iteration, the algorithm creates new solu-
tion candidates by attempting to update the bounds of each feature separately
(Lines 11–13). There are different options for this update step. Algorithm 3 out-
lines the update procedure for Beam Search, while Best Interval uses a slightly
different one (cf. Algorithm 4). For Beam Search, the procedure tries to refine
the lower bound (Lines 1–8) and the upper bound (Lines 9–16) for a given Fea-
ture j separately by replacing it with another feature value from data objects in
the subgroup. In particular, it iterates over all these unique feature values. Each
solution candidate that improves upon the minimum subgroup quality from the
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Algorithm 2: Generic beam search for subgroup discovery.

Input: Dataset X ∈ Rm×n,
Prediction target y ∈ {0, 1}m,
Subgroup-quality function Q(lb, ub, X, y),
Beam width w ∈ N

Output: Subgroup bounds lb, ub ∈ {R ∪ {−∞,+∞}}n

1 for l← 1 to w do // Initialize beam

2 for j ← 1 to n do

3 (lb
(beam, l)
j , ub

(beam, l)
j )← (−∞,+∞) // Unrestricted

4 cand has changed (l) ← true // Subgroup should be updated

5 Q(l) ← Q(lb(beam, l), ub(beam, l), X, y)

6 while
(∑w

l=1 cand has changed (l)
)
> 0 do // Beam has changed

7 prev cand changed idxs ← {l | cand has changed (l)}
8 for l← 1 to w do // Create temporary solution candidates

9 (lb(cand, l), ub(cand, l))← (lb(beam, l), ub(beam, l))

10 cand has changed (l) ← false

11 for l ∈ prev cand changed idxs do // Prepare beam updates

12 for j ∈ get permissible feature idxs(. . . ) do
13 evaluate subgroup updates(. . . ) // Algorithm 3 or 4

14 for l← 1 to w do // Update beam

15 (lb(beam, l), ub(beam, l))← (lb(cand, l), ub(cand, l))

16 l← argmaxl∈{1,...,w} Q
(l) // Select best subgroup from beam

17 (lb, ub)← (lb(beam, l), ub(beam, l))
18 for j ← 1 to n do // Reset non-excluding bounds

19 if lbj = mini∈{1,...,m} Xij then lbj ← −∞
20 if ubj = maxi∈{1,...,m} Xij then ubj ← +∞
21 return lb, ub
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Algorithm 3: evaluate subgroup updates(. . . ) for Beam Search

Input: Parameters and variables from Algorithm 2
Output: None; modifies variables from Algorithm 2 in-place

1 (lb, ub)← (lb(beam, l), lb(beam, l)) // Next, update lower bound

2 for b ∈ sort(unique(get feature values(X·j, lb
(beam, l), ub(beam, l)))) do

3 lbj ← b

4 if
(
Q(lb, ub, X, y) > minl∈{1,...,w} Q

(l)
)
and

(lb, ub) /∈ {(lb(cand, l), ub(cand, l)) | l ∈ {1, . . . , w}} then
5 l← argminl∈{1,...,w} Q

(l) // Replace worst candidate

6 (lb(cand, l), ub(cand, l))← (lb, ub)

7 cand has changed (l) ← true

8 Q(l) ← Q(lb, ub, X, y)

9 (lb, ub)← (lb(beam, l), lb(beam, l)) // Next, update upper bound

10 for b ∈ sort(unique(get feature values(X·j, lb
(beam, l), ub(beam, l)))) do

11 ubj ← b

12 if
(
Q(lb, ub, X, y) > minl∈{1,...,w} Q

(l)
)
and

(lb, ub) /∈ {(lb(cand, l), ub(cand, l)) | l ∈ {1, . . . , w}} then
13 l← argminl∈{1,...,w} Q

(l) // Replace worst candidate

14 (lb(cand, l), ub(cand, l))← (lb, ub)

15 cand has changed (l) ← true

16 Q(l) ← Q(lb, ub, X, y)

beam replaces the corresponding subgroup, unless it already is part of the beam
due to another update action (Lines 4–8 and 12–16).

Best Interval Best Interval [65] offers an update procedure for subgroups
(cf. Algorithm 4) that is tailored towards WRAcc (cf. Equation 1) as the
subgroup-quality function. This update procedure can be used within a generic
beam-search strategy (cf. Algorithm 2). As before, the best new solution can-
didate from an update step becomes part of the beam if it improves upon the
worst subgroup quality there and is not a duplicate (Lines 17–21).

However, solution candidates are generated differently than in the update
procedure of Beam Search (cf. Algorithm 3). In particular, Best Interval up-
dates lower and upper bounds for a given Feature j simultaneously rather than
separately (Lines 1–16). Thus, this procedure optimizes over all potential com-
binations of lower and upper bounds. However, it still only requires one pass
over the unique values of Feature j rather than quadratic cost, due to theoretical
properties of the WRAcc function [65].
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Algorithm 4: evaluate subgroup updates(. . . ) for Best Interval

Input: Parameters and variables from Algorithm 2
Output: None; modifies variables from Algorithm 2 in-place

1 (lb, ub)← (lb(beam, l), lb(beam, l)) // Value at index j will change

2 (lbopt, ubopt)← (lb(beam, l), lb(beam, l)) // (l, r) in [65]

3 Qopt ← Q(lbopt, ubopt, X, y) // WRAccmax in [65]

4 Qtemp ← −∞ // hmax in [65]

5 lbtemp
j ← −∞ // tmax in [65]

6 for b ∈ sort(unique(get feature values(X·j, lb
(beam, l), ub(beam, l)))) do

7 lbj ← b

8 ubj ← ub
(beam, l)
j

9 if Q(lb, ub, X, y) > Qtemp then

10 lbtemp
j ← b

11 Qtemp ← Q(lb, ub, X, y)

12 lbj ← lbtemp
j

13 ubj ← b
14 if Q(lb, ub, X, y) > Qopt then
15 (lbopt, ubopt)← (lb, ub)
16 Qopt ← Q(lb, ub, X, y)

17 if
(
Q(lbopt, ubopt, X, y) > minl∈{1,...,w} Q

(l)
)
and

(lbopt, ubopt) /∈ {(lb(cand, l), ub(cand, l)) | l ∈ {1, . . . , w}} then
18 l← argminl∈{1,...,w} Q

(l) // Replace worst candidate

19 (lb(cand, l), ub(cand, l))← (lbopt, ubopt)

20 cand has changed (l) ← true

21 Q(l) ← Q(lbopt, ubopt, X, y)

3 Baselines

In this section, we propose and analyze two baselines for subgroup discovery,
MORS (cf. Section 3.1) and Random Search (cf. Section 3.2). They are con-
ceptually simpler than the heuristic search methods (cf. Section 2.2) and serve
as further reference points in our experiments. While they technically also are
heuristics, we use the term baselines to refer to these two methods specifically.

3.1 MORS

This baseline builds on the following definition:

Definition 3 (Minimal Optimal-Recall Subgroup (MORS)). Given a dataset
X ∈ Rm×n with prediction target y ∈ {0, 1}m, the Minimal Optimal-Recall
Subgroup (MORS) is the subgroup (cf. Definition 1) whose lower and upper
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Algorithm 5: MORS for subgroup discovery.

Input: Dataset X ∈ Rm×n,
Prediction target y ∈ {0, 1}m

Output: Subgroup bounds lb, ub ∈ {R ∪ {−∞,+∞}}n

1 for j ← 1 to n do
2 lbj ← min

i∈{1,...,m}
yi=1

Xij

3 ubj ← max
i∈{1,...,m}

yi=1

Xij

4 if lbj = mini∈{1,...,m} Xij then lbj ← −∞
5 if ubj = maxi∈{1,...,m} Xij then ubj ← +∞
6 for j /∈ get permissible feature idxs(. . . ) do
7 (lbj , ubj)← (−∞,+∞)

8 return lb, ub

bounds of each feature correspond to the minimum and maximum value of that
feature over all positive data objects (i.e., with yi = 1) from the dataset X.

The definition ensures that all positive data objects are contained in the
subgroup. Thus, the evaluation metric recall, i.e., the fraction of positive data
objects becoming subgroup members, reaches its optimum of 1. At the same
time, raising the lower bounds or lowering the upper bounds would exclude posi-
tive data objects from the subgroup. In this sense, the bounds are minimal. The
corresponding subgroup description is unique and implicitly solves the following
variant of the subgroup-discovery problem:

Definition 4 (Minimal-optimal-recall-subgroup discovery). Given a dataset
X ∈ Rm×n with prediction target y ∈ {0, 1}m, minimal-optimal-recall-subgroup
discovery is the problem of finding a subgroup (cf. Definition 1) that contains
as few negative data objects (i.e., with yi = 0) as possible but all positive data
objects (i.e., with yi = 1) from the dataset X.

I.e., the problem targets at minimizing the number of false positives subject
to producing no false negatives. With the constraint on the positive data objects,
minimizing the number of false positives is equivalent to maximizing the number
of true negatives, i.e., negative data objects excluded from the subgroup.

Algorithm 5 outlines the procedure to determine theMORS bounds. Slightly
deviating from Definition 3, but consistent to PRIM (cf. Algorithm 1), MORS
replaces all non-excluding bounds with infinity (Lines 11–13). Further, if only
certain features are permissible, as we discuss later, we reset the bounds of the
remaining features (Lines 6–7).

Since MORS only needs to iterate over all data objects and features once
to determine the minima and maxima, the computational complexity of this
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algorithm is O(n · m). This places minimal-optimal-recall-subgroup discovery
in complexity class P:

Proposition 1 (Complexity of minimal-optimal-recall-subgroup discovery). The
problem of minimal-optimal-recall-subgroup discovery (cf. Definition 4) can be
solved in O(m · n).

For complexity proofs later in our article, we define another variant of the
subgroup-discovery problem based on another particular type of subgroups [68]:

Definition 5 (Perfect subgroup). Given a dataset X ∈ Rm×n with prediction
target y ∈ {0, 1}m, a perfect subgroup is a subgroup (cf. Definition 1) that
contains all positive data objects (i.e., with yi = 1) but zero negative data
objects (i.e., with yi = 0) from the dataset X.

Perfect subgroups reach the theoretical maximum WRAcc for a dataset
(cf. Equation 2). Next, we define a corresponding search problem:

Definition 6 (Perfect-subgroup discovery). Given a dataset X ∈ Rm×n with
prediction target y ∈ {0, 1}m, perfect-subgroup discovery is the problem of find-
ing a perfect subgroup (cf. Definition 5) if it exists or determining that it does
not exist.

Since MORS solves this problem in O(n ·m) as well, we obtain the following
complexity result:

Proposition 2 (Complexity of perfect-subgroup discovery). The problem of
perfect-subgroup discovery (cf. Definition 6) can be solved in O(m · n).

In particular, after MORS (cf. Algorithm 5) has found a subgroup, one only
needs to check whether the subgroup contains any negative data objects. If the
found subgroup does not contain negative data objects, then it is perfect. If it
does, then no perfect subgroup exists. In particular, the bounds found byMORS
cannot be made tighter to exclude negative data objects from the subgroup
without also excluding positive data objects, thereby violating perfection.

3.2 Random Search

Algorithm 6 outlines a randomized search procedure that constitutes the sec-
ond baseline. Random Search generates and evaluates subgroups for a fixed
number of iterations, which the user controls with the parameter n iters ∈ N.
Hereby, subgroup generation samples a lower bound and an upper bound uni-
formly random from the unique values for each permissible feature, leaving the
remaining features unrestricted (Lines 3–6). The algorithm tracks the best gen-
erated subgroup so far over the iterations (Lines 7–10) and finally returns the
subgroup with the highest quality. As for PRIM (cf. Algorithm 1), Random
Search replaces all non-excluding bounds with infinity (Lines 11–13).
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Algorithm 6: Random Search for subgroup discovery.

Input: Dataset X ∈ Rm×n,
Prediction target y ∈ {0, 1}m,
Subgroup-quality function Q(lb, ub, X, y),
Number of iterations n iters ∈ N

Output: Subgroup bounds lb, ub ∈ {R ∪ {−∞,+∞}}n

1 Qopt ← −∞
2 for iters← 1 to n iters do
3 for j ← 1 to n do
4 (lbj , ubj)← (−∞,+∞)

5 for j ∈ get permissible feature idxs(. . . ) do
6 (lbj , ubj)← sample uniformly(unique(X·j))

7 if Q(lb, ub, X, y) > Qopt then
8 Qopt ← Q(lb, ub, X, y)

9 lbopt ← lb

10 ubopt ← ub

11 for j ← 1 to n do
12 if lbj = mini∈{1,...,m} Xij then lbj ← −∞
13 if ubj = maxi∈{1,...,m} Xij then ubj ← +∞
14 return lb, ub

4 Constrained Subgroup Discovery

In this section, we discuss subgroup discovery with constraints. First, we frame
subgroup discovery as an SMT optimization problem (cf. Section 4.1). Second,
we give a brief overview of potential constraint types (cf. Section 4.2). Third, we
formalize and analyze feature-cardinality constraints (cf. Section 4.3). Fourth,
we formalize and analyze alternative subgroup descriptions (cf. Section 4.4).

4.1 SMT Encoding of Subgroup Discovery

To find optimal subgroups exactly, one can encode subgroup discovery as a
white-box optimization problem and employ a solver. Here, we propose a Satis-
fiability Modulo Theories (SMT) [13] encoding, which is straightforward given
the problem definition (cf. Definition 2). SMT allows expressions in first-order
logic with particular interpretations, e.g., arrays, arithmetic, or bit vectors [13].
Our encoding of subgroup discovery uses linear real arithmetic (LRA). Comple-
menting this SMT encoding, Appendix A.1 describes further encodings: SMT
for categorical features (cf. Section A.1.1), mixed-integer linear programming
(cf. Section A.1.2), and maximum satisfiability (cf. Section A.1.3).

The optimization problem consists of an objective function and constraints.
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Objective function As the objective function, we use WRAcc, which should
be maximized. In the formula for WRACC (cf. Equation 1), m and m+ are
constants, while mb and m+

b depend on the decision variables. The previously
provided formula seems to be non-linear in the decision variables since mb ap-
pears in the numerator and denominator. However, one can reformulate the
expression by multiplying its two factors, obtaining the following expression:

WRACC =
m+

b

m
− mb ·m+

m2
=

m+
b ·m−mb ·m+

m2
(4)

In this new expression, the denominators are constant, and the factor m+ in
the numerator is constant as well. Thus, the whole expression is linear in m+

b

and mb. We define these two quantities as linear expressions from binary deci-
sion variables b ∈ {0, 1}m that denote subgroup membership. I.e., bi expresses
whether the i-th data object is in the subgroup or not:

mb :=

m∑
i=1

bi

m+
b :=

∑
i∈{1,...,m}

yi=1

bi
(5)

Since the values of the target variable y are fixed, the expression for m+
b only

sums over the positive data objects. Further, one may define m+
b and mb as

separate integer variables or directly insert their expressions into Equation 4.
We chose the latter formulation in our implementation and therefore wrote :=
in Equation 5 instead of using a proper propositional operator like ↔.

The formula for nWRAcc (cf. Equation 3) is linear as well, having the same
enumerator as Equation 4 and a different constant in the denominator.

Constraints The subgroup membership bi of a data object depends on the
bounds of the subgroup (cf. Definition 1). Thus, we define real-valued decision
variables lb, ub ∈ {R ∪ {−∞,+∞}}n for the latter. In particular, there is one
lower bound and one upper bound for each of the n features. The upper bounds
naturally need to be at least as high as the lower bounds:

∀j ∈ {1, . . . , n} : lbj ≤ ubj (6)

A data object is a member of the subgroup if all its feature values are contained
within the bounds:

∀i ∈ {1, . . . ,m} : bi ↔
∧

j∈{1,...,n}

((Xij ≥ lbj) ∧ (Xij ≤ ubj)) (7)

Instead of defining separate decision variables bi and binding them to the bounds
with an equivalence constraint, one could also insert the Boolean expression into
the right-hand-side of Equation 5 directly. In particular, lbj and ubj are the only
decision variables strictly necessary for the optimization problem. However, for
formulating some constraint types on subgroups (cf. Section 4.2), it is helpful
to be able to refer to bi.
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Complete optimization problem Combining all prior definitions of deci-
sion variables, constraints, and the objective function, we obtain the following
SMT optimization problem:

max QWRAcc =
m+

b

m
− mb ·m+

m2

s.t.: mb :=

m∑
i=1

bi

m+
b :=

∑
i∈{1,...,m}

yi=1

bi

∀i ∈ {1, . . . ,m} bi ↔
∧

j∈{1,...,n}

((Xij ≥ lbj) ∧ (Xij ≤ ubj))

∀j ∈ {1, . . . , n} lbj ≤ ubj

b ∈ {0, 1}m

lb, ub ∈ {R ∪ {−∞,+∞}}n

(8)

We refer to this optimization problem as unconstrained subgroup discovery
in the following since it only contains constraints that are technically necessary
to define subgroup discovery properly but no additional user constraints.

Post-processing In our implementation, we add a small post-processing step.
In particular, we do not use the solver-determined values of the variables lbj
and ubj when evaluating subgroup quality. Instead, we set the lower and upper
bounds to the minimum and maximum feature values of all data objects in the
subgroup (i.e., with bi = 1). Thus, we ensure that the bounds correspond to
actual feature values. This guarantee is not formally necessary but consistent
with the subgroup descriptions returned by heuristic search methods and base-
lines. Also, we avoid potential minor numeric issues caused by extracting the
values of real variables from the solver. Finally, if the subgroup does not contain
any data objects, we use invalid bounds (i.e., ubj = −∞ <∞ = lbj) to ensure
that the subgroup remains empty even for arbitrary new data objects.

4.2 Overview of Constraint Types

A white-box formulation of subgroup discovery, like our SMT encoding, sup-
ports directly integrating a variety of constraint types in a declarative manner.
In contrast, algorithmic search methods for subgroups need to explicitly check
constraints or implicitly ensure that generated solution candidates satisfy con-
straints. Such implicit guarantees may only hold for particular constraint types
or may require adapting the search method accordingly.

Domain knowledge Constraints can express firm knowledge or hypotheses
from the domain that solutions of machine-learning techniques should adhere
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to [12]. Since the definition of such constraints depends on the use case, we
do not give domain-specific examples here. [5, 7, 8] provide a taxonomy and
examples for knowledge-based constraint types in subgroup discovery. In a
white-box formulation of subgroup discovery, such constraints may restrict the
values of decision variables, e.g., lower and upper bounds, subgroup member-
ship (cf. Equation 8), or selected features (cf. Equation 9). For example, certain
bound values or feature combinations used in the subgroup description may con-
tradict domain knowledge and should therefore be prevented with constraints.
In our formulation of subgroup discovery as an SMT problem with linear real
arithmetic (cf. Section 4.1), one can employ propositional logic, basic arithmetic
operators, and inequalities to express constraints over the decision variables [13].

Secondary objectives Various notions of subgroup quality can serve as an
objective in subgroup discovery [3, 41]. If one wants to consider several quality
metrics simultaneously, one option is multi-objective optimization. However,
the latter typically requires using different search methods than single-objective
optimization. Also, there may be not one but a set of Pareto-optimal solutions,
or users may need to define trade-offs between objectives manually. Alterna-
tively, one can keep a single primary objective and add the other objectives as
inequality constraints, e.g., enforcing that their values are below or above user-
defined thresholds. According to [69], such lower bounds on subgroup quality
are a common constraint type in subgroup discovery. Without constraints, one
may prune the set of discovered subgroups as a post-processing step [3]. Fi-
nally, quality-based pruning can also reduce the search space during subgroup
discovery, e.g., using optimistic estimates in exhaustive search [3, 4, 35]. How-
ever, such automatically determined bounds on subgroup quality relate to the
primary optimization objective rather than being user-provided constraints.

Regularization Regularization aims to control the complexity of machine-
learning models, preventing overfitting and increasing interpretability. In sub-
group discovery, we see three directions for regularization: the data objects via
subgroup membership, the feature values via the subgroup’s bounds, and the
features via the subgroup’s feature selection.

Regarding subgroup membership, one can introduce lower or upper bounds
on the number of data objects in the subgroup, using the decision variables bi
(cf. Equation 7). Such constraints are particularly useful for notions of sub-
group quality that incentivize including all data objects in the subgroup, like
recall, or including very few data objects, like precision. In contrast, WRAcc
(cf. Equation 1) automatically considers the number of data objects in the sub-
group. According to [69], lower bounds on subgroup membership are a common
constraint type in subgroup discovery.

Regarding bounds, one can define minimum or maximum values for the range
of a feature in the subgroup, i.e., the difference between lower and upper bound,
using the decision variables lbj and ubj . Such constraints can prevent choosing
ranges that are too small or too large for user needs. If the features are nor-
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malized, one can also constrain the volume of the subgroup, i.e., the product
of all ranges, or the density, i.e., the number of data objects per volume. Gen-
erally, however, a feature’s bounded value range need not indicate how many
data objects are excluded from the subgroup. Alternatively, one can constrain
the subgroup membership implied by individual features’ bounds, e.g., enforc-
ing that selected features exclude at least a certain fraction of data objects.
The latter constraint type may prevent setting oversensitive bounds that only
exclude few data objects and do not generalize to unseen data.

Regarding features selection, one can limit the number of features used in the
subgroup description, which is a common constraint type [69] and also a metric
for subgroup complexity [40, 41, 88], already proposed in the article introducing
PRIM [28]. Section 4.3 discusses such feature-cardinality constraints in detail.
Instead of using this constraint type, one may also post-process subgroups to
eliminate irrelevant features after search [28]. Further, instead of limiting the
total number of used features, one may also introduce constraints to remove
individual irrelevant features based on the number of data objects they represent
correctly in absolute terms or relative to other features [52].

Alternatives As for regularization, constraints for alternatives may relate to
data objects, features, or feature values. We see two major notions of alterna-
tives, which we call alternative subgroups and alternative subgroup descriptions.

Alternative subgroups aim to contain different sets of data objects. Since
subgroups only intend to cover specific regions of the data, it is natural to
search for multiple subgroups to cover multiple regions; see [3] for an overview
of subgroup-set selection. One can search for multiple subgroups sequentially
or simultaneously. The ‘covering’ approach allows sequential search for any
subgroup-discovery method by removing all data objects contained in previ-
ous subgroups and repeating subgroup discovery [28]. Alternatively, one may
reweight [32, 53] or resample [84] data objects based on their subgroup mem-
bership. In contrast, simultaneous search requires subgroup-discovery methods
that specifically target at multiple solutions [54, 55, 58, 64, 80]. E.g., a heuris-
tic search may retain multiple solution candidates at each step. The notion
of subgroup quality typically becomes broader: Besides measures for predic-
tive quality like WRAcc, the diversity of subgroups [14, 54, 55, 64], e.g., to
which extent they contain different data objects, and their number [40, 41,
88] may also serve as metrics. One may also filter redundant subgroups as a
post-processing step [19, 34, 42, 55]. In a white-box formulation of subgroup
discovery, one can enforce diversity with appropriate constraints on subgroup
membership (cf. Equation 7), e.g., limiting the number of data objects that can
be members of two subgroups simultaneously.

In contrast, alternative subgroup descriptions explicitly aim to contain a sim-
ilar set of data objects but use different subgroup descriptions, e.g., a different
feature selection. Section 4.4 discusses this constraint type in detail. Related
to this concept, [17] introduces the notion of equivalent subgroup descriptions
of minimal length, which cover exactly the same set of data objects.
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4.3 Feature-Cardinality Constraints

In this section, we discuss feature-cardinality constraints for subgroup discov-
ery. First, we motivate and formalize them (cf. Section 4.3.1). Next, we de-
scribe how to integrate them into our SMT encoding of subgroup discovery
(cf. Section 4.3.2), heuristic search methods (cf. Section 4.3.3), and baselines
(cf. Section 4.3.4). Finally, we analyze the computational complexity of sub-
group discovery with this constraint type (cf. Section 4.3.5).

4.3.1 Concept

Feature-cardinality constraints are a constraint type that regularizes subgroup
descriptions (cf. Section 4.2). In particular, this constraint type limits the num-
ber of features used in the subgroup description, rendering the latter less com-
plex and easier to interpret [69]. To formalize this constraint type, we define
feature selection [39, 60] in the context of subgroup discovery as follows:

Definition 7 (Feature selection in subgroups). Given a dataset X ∈ Rm×n and
a subgroup (cf. Definition 1) with bounds lb, ub ∈ {R∪{−∞,+∞}}n, Feature j
is selected if the bounds exclude at least one data object ofX from the subgroup,
i.e., ∃i ∈ {1, . . . ,m} : (Xij < lbj) ∨ (Xij > ubj).

The bounds of unselected features can be considered infinite, effectively re-
moving these features from the subgroup description. The feature cardinality
of the subgroup is the number of selected features. Related work also uses the
terms depth [69] or length [3, 40], though partly referring to the number of con-
ditions in the subgroup description rather than selected features. I.e., if there is
a lower and an upper bound for a feature, some related work counts this feature
twice instead of once.

To formulate a feature-cardinality constraint, users provide an upper bound
on the number of selected features:

Definition 8 (Feature-cardinality constraint). Given a cardinality threshold
k ∈ N, a feature-cardinality constraint for a subgroup (cf. Definition 1) requires
the subgroup to have at most k features selected (cf. Definition 7).

In practice, less than k features may be selected if selecting more features
does not improve the subgroup quality.

4.3.2 SMT Encoding

We first need to encode whether a feature is selected or not. Thus, we introduce
binary decision variables s, slb, sub ∈ {0, 1}n. A feature is selected if its bounds
exclude at least one data object from the subgroup (cf. Definition 7), i.e., the
lower bound is higher than the minimum feature value or the upper bound is
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lower than the maximum feature value:

∀j : slbj ↔
(
lbj > min

i∈{1,...,m}
Xij

)
∀j : subj ↔

(
ubj < max

i∈{1,...,m}
Xij

)
∀j : sj ↔

(
slbj ∨ subj

)
with index: j ∈ {1, . . . , n}

(9)

In this equation, minimum and maximum feature values are constants that can
be determined before formulating the optimization problem.

Given the definition of sj , setting an upper bound on the number of selected
features (cf. Definition 8) is straightforward:

n∑
j=1

sj ≤ k (10)

Instead of explicitly defining the decision variables sj , s
lb
j , and subj , one could

also insert the corresponding expressions into Equation 10 directly. However,
we will also use sj for alternative subgroup descriptions (cf. Section 4.4.2), so
we define corresponding variables in our implementation.

The overall SMT encoding of subgroup discovery with a feature-cardinality
constraint is the SMT encoding of unconstrained subgroup discovery (cf. Equa-
tion 8) supplemented by the variables and constraints from Equations 9 and 10.

In our implementation, we also add a post-processing step that sets non-
excluding lower bounds (i.e., with slbj = 0) to −∞ and non-excluding upper

bounds (i.e., with subj = 0) to +∞. This step is consistent with the heuristic
search methods and baselines (e.g., cf. Lines 21–23 in Algorithm 1).

4.3.3 Integration into Heuristic Search Methods

The chosen feature-cardinality constraint (cf. Definition 8) is antimonotonic [76]
in the feature selection: If a set of selected features satisfies the constraint, all its
subsets also satisfy it. Vice versa, if a feature set violates the constraint, all its
supersets also violate it. This property allows to easily integrate the constraint
into the three presented heuristic search methods, i.e., PRIM (cf. Algorithm 1),
Beam Search (cf. Algorithms 2 and 3), and Best Interval (cf. Algorithms 2
and 4), which all iteratively enlarge the set of selected features. In particular,
these search methods start with unrestricted subgroup bounds, i.e., an empty
feature set, which satisfies the constraint for any k ≥ 0. Each iteration may
either add bounds on one further feature or refine the bounds on an already
selected feature. Thus, one can prevent generation of invalid solution candi-
dates by defining the function get permissible feature idxs(. . . ) (cf. Line 7 in
Algorithm 1 and Line 12 in Algorithm 2) as follows: If already k features are
selected, then only these features are permissible, i.e., may be refined. Due
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to antimonotonicity, all feature supersets that could be formed in future iter-
ations are invalid as well. If less than k features are selected, all features are
permissible, as in the unconstrained search.

4.3.4 Integration into Baselines

MORS MORS calls the function get permissible feature idxs(. . . ) in Line 6
of Algorithm 5. To instantiate this function, we employ a univariate, quality-
based heuristic for feature selection: For each feature, we evaluate what would
happen if only this feature was restricted according to MORS (cf. Definition 3).
In particular, we determine the number of false positives, i.e., negative data
objects in the subgroup, defined by each feature’s MORS bounds (Lines 2–3).
We select the k features with the lowest number of false positives.

This heuristic is equivalent to selecting the features with the highest WRAcc
for univariate MORS bounds: Due to MORS, not only m and m+ are constant
in Equation 1 but also the number of positive data objects in the subgroup m+

b ,
which equals m+. In particular, one can rephrase Equation 1 as follows:

WRACCMORS =
m+

b

m
− mb ·m+

m2
=

m+

m
− mb ·m+

m2
=

m+

m
·
(
1− mb

m

)
(11)

Thus, maximizing WRAcc corresponds to minimizing mb/m, i.e., the relative
frequency of the data objects in the subgroup. Since the number of positive
data objects in the subgroup is fixed, this objective amounts to including as few
negative data objects as possible in the subgroup, i.e., minimizing the number
of false positives, which is what our univariate heuristic does as well.

The proposed heuristic only entails a linear runtime in the number of fea-
tures, like the unconstrained MORS, since it evaluates each feature indepen-
dently. With quadratic runtime, one can also consider interactions between
features and thereby potentially increase subgroup quality. In particular, one
could select features sequentially instead of simultaneously. In each iteration,
one would select the feature whose MORS bounds, combined with the MORS
bounds of all features selected in previous iterations, yield the lowest number
of false positives. This sequential procedure mimics an existing greedy heuristic
for the Maximum Coverage problem [22] (cf. Sections A.2.1 and A.2.2).

Random Search Random Search calls get permissible feature idxs(. . . ) in
Line 5 of Algorithm 6). For feature cardinality k, we simply sample k out of n
features uniformly random without replacement. The bounds for these features
will be restricted in the next step of the algorithm, while all remaining features
remain unrestricted.

4.3.5 Computational Complexity

We analyze three aspects of computational complexity: the size of the search
space for exhaustive search, parameterized complexity, and NP-hardness.
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Exhaustive search Before addressing feature-cardinality constraints, we an-
alyze the unconstrained case. In general, the search space of subgroup discovery
depends on the number of relevant candidate values for lower and upper bounds.
With m data objects, each real-valued feature may have up to m unique values.
It suffices to treat these unique values as bound candidates since any bounds be-
tween feature values or outside the feature’s range do not change the subgroup
membership during optimization, though the prediction on a test set with fur-
ther data objects may vary. Thus, there are O(m2) relevant lower-upper-bound
combinations per feature. Since we need to combine bounds over all n features,
the size of the search space is O(m2n):

Proposition 3 (Complexity of exhaustive search for subgroup discovery). A
naive exhaustive search for subgroup discovery (cf. Definition 2) needs to eval-
uate O(m2n) subgroups.

For each of these candidate subgroups, the cost of evaluating a quality func-
tion like WRAcc (cf. Equation 1) typically is O(m · n), i.e., requires a constant
number of passes over the dataset and therefore has linear complexity in the
dataset size. Additionally, the number of potential subgroups should be seen as
an upper bound: More efficient exhaustive search methods employ quality-based
pruning to not explicitly evaluate all solution candidates while still implicitly
covering the full search space [3].

Next, we adapt the result from Proposition 3 to feature-cardinality con-
straints. Instead of combining bounds from all n features, there are

(
n
k

)
≤ nk

feature sets of size k with O(m2k) bound candidates each:

Proposition 4 (Complexity of exhaustive search for subgroup discovery with
feature-cardinality constraint). A naive exhaustive search for subgroup discovery
(cf. Definition 2) with a feature-cardinality constraint (cf. Definition 8) needs
to evaluate O(nk ·m2k) subgroups.

For the special case k = 1, the size of the search space becomes O(n ·m2),
which is leveraged by heuristic search methods that only consider updating the
bounds of each feature separately instead of jointly (cf. Section 2.2). With the
update procedure of Best Interval (cf. Algorithm 4), the cost for k = 1 even
reduces to O(n ·m) since it only requires one pass over the unique values of each
feature to evaluate all lower-upper-bound combinations for WRAcc implicitly.
The update procedure of Beam Search (cf. Algorithm 3) also requires O(n ·m),
by only checking updates of either lower or upper bound.

Parameterized complexity For unconstrained subgroup discovery, the com-
plexity term from Proposition 3 is polynomial in m if we consider n to be a small
constant. In particular, the term takes the form O(f(n) ·mg(n)) with parame-
ter n and polynomial functions f(·) and g(·) [25]. Thus, the problem of subgroup
discovery belongs to the parameterized complexity class XP:
Proposition 5 (Parameterized complexity of subgroup discovery). The problem
of subgroup discovery (cf. Definition 2) resides in the parameterized complexity
class XP for the parameter n.
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Due to the exponent 2n in Proposition 3, an exhaustive search may be
infeasible in practice, even for a small, constant n. Further, the complexity
remains exponential in n if m is fixed. I.e., the number of features has an
exponential impact on the size of the search space, while the number of data
objects has a polynomial impact.

With a feature-cardinality constraint, the problem retains XP membership.
Considering Proposition 4, the parameter is k instead of n now:

Proposition 6 (Parameterized complexity of subgroup discovery with feature–
cardinality constraint). The problem of subgroup discovery (cf. Definition 2)
with a feature-cardinality constraint (cf. Definition 8) resides in the parameter-
ized complexity class XP for the parameter k.

NP-Hardness [17] showed that it is an NP-hard problem to find a subgroup
description with minimum feature cardinality that induces exactly the same
subgroup membership as a given subgroup. We transfer this result to optimizing
subgroup quality under a feature-cardinality constraint. First, we tackle the
search problem for perfect subgroups (cf. Appendix A.2.1 for the proof):

Proposition 7 (Complexity of perfect-subgroup discovery with feature-cardi-
nality constraint). The problem of perfect-subgroup discovery (cf. Definition 6)
with a feature-cardinality constraint (cf. Definition 8) is NP-complete.

This hardness results under a feature-cardinality constraint contrasts with
the polynomial runtime of unconstrained perfect-subgroup discovery (cf. Propo-
sition 2), which corresponds to a cardinality constraint with k = n.

Generalizing Proposition 7, the optimization problem of subgroup discovery
with a feature-cardinality constraint is NP-complete under a reasonable as-
sumption on the notion of subgroup quality (cf. Appendix A.2.2 for the proof):

Proposition 8 (Complexity of subgroup discovery with feature-cardinality con-
straint). Assuming a subgroup-quality function Q(lb, ub, X, y) for which only
perfect subgroups (cf. Definition 5) reach its maximal value, the problem of sub-
group discovery (cf. Definition 2) with a feature-cardinality constraint (cf. Def-
inition 8) is NP-complete.

WRAcc as the subgroup-quality function satisfies this assumption since only
perfect subgroups yield the theoretical maximum WRAcc (cf. Equation 2).

4.4 Alternative Subgroup Descriptions

In this section, we propose the optimization problem of discovering alternative
subgroup descriptions. First, we motivate and formalize the problem (cf. Sec-
tion 4.4.1). Next, we describe how to phrase it within our SMT encoding of sub-
group discovery (cf. Section 4.4.2), heuristic search methods (cf. Section 4.4.3),
and baselines (cf. Section 4.4.4). Finally, we analyze the computational com-
plexity of this problem (cf. Section 4.4.5).
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4.4.1 Concept

Overview For alternative subgroup descriptions, we assume to have an orig-
inal subgroup given, with subgroup membership b(0) ∈ {0, 1}m of data objects
and with feature selection s(0) ∈ {0, 1}n. When searching alternatives, we do
not optimize subgroup quality but the similarity to the original subgroup. We
express this similarity in terms of subgroup membership. If this similarity is
very high, then the subgroup quality should also be similar since evaluation
metrics for subgroup quality typically base on subgroup membership.

Additionally, we constrain the new subgroup description to be alternative
enough. We express this dissimilarity in terms of the subgroups’ feature se-
lection. The user chooses a dissimilarity threshold τ ∈ R≥0 and can thereby
control alternatives. Further, we recommend employing a feature-cardinality
constraint (cf. Definition 8) when determining the original subgroup, so there
are sufficiently many features left for the alternative description. The alternative
may be feature-cardinality-constrained as well, to increase its interpretability.

In a nutshell, alternative subgroup descriptions should produce similar pre-
dictions as the original subgroup but use different features.

Sequential search One can search for multiple alternative subgroup descrip-
tions sequentially. After determining the original subgroup, each iteration yields
one further alternative. The user may prescribe a number of alternatives a ∈ N
a priori or interrupt the procedure whenever the alternatives are not interesting
anymore, e.g., too dissimilar to the original subgroup. Each alternative should
have a similar subgroup membership as the original subgroup but a dissimilar
feature selection compared to all existing subgroups, i.e., subgroups found in
prior iterations. The following definition captures this optimization problem:

Definition 9 (Alternative-subgroup-description discovery). Given

• a dataset X ∈ Rm×n with prediction target y ∈ {0, 1}m,
• a − 1 ∈ N existing subgroups with subgroup membership b(l) ∈ {0, 1}m
and feature selection s(l) ∈ {0, 1}n for l ∈ {0, . . . , a− 1},

• a similarity measure sim(·) for subgroup-membership vectors,
• a dissimilarity measure dis(·) for feature-selection vectors of subgroups,
• and a dissimilarity threshold τ ∈ R≥0,

alternative-subgroup-description discovery is the problem of finding a subgroup
(cf. Definition 1) with membership b(a) ∈ {0, 1}m and feature selection s(a) ∈
{0, 1}n that maximizes the subgroup-membership similarity sim(b(a), b(0)) to the
original subgroup while being dissimilar to all existing subgroups regarding the
feature selection, i.e., ∀l ∈ {0, . . . , a− 1} : dis(s(a), s(l)) ≥ τ .

In the following, we discuss our choice of sim(·) and dis(·).

Similarity in objective function There are various options to quantify the
similarity of subgroup membership, i.e., between two binary vectors. For ex-
ample, the Hamming distance counts how many vector entries differ [23]. We
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turn this distance into a similarity measure by counting identical vector en-
tries. Further, we normalize the similarity with the vector length, i.e., number
of data objects m, to obtain the following normalized Hamming similarity for
two subgroup-membership vectors b′, b′′ ∈ {0, 1}m:

simnHamm(b
′, b′′) =

1

m
·

m∑
i=1

(b′i = b′′i ) (12)

If either b′ or b′′ is constant, then this similarity measure is linear in its remaining
argument, as discussed later (cf. Equation 15). Further, if one considers one
vector to be a prediction and the other to be the ground truth, Equation 12
equals prediction accuracy for classification.

Another popular similarity measure for sets or binary vectors is the Jaccard
index [23], which relates the overlap of positive vector entries to their union:

simJacc(b
′, b′′) =

∑m
i=1(b

′
i ∧ b′′i )∑m

i=1(b
′
i ∨ b′′i )

(13)

However, this similarity measure is not linear in b′ and b′′, which prevents its use
in certain white-box solvers. Thus, we use the normalized Hamming similarity
as the objective function.

Dissimilarity in constraints There are various options to quantify the dis-
similarity between feature-selection vectors. We employ the following deselection
dissimilarity in combination with an adapted dissimilarity threshold:

disdes(s
new, sold) =

n∑
j=1

(¬snewj ∧ soldj ) ≥ min
(
τabs, kold

)
(14)

This dissimilarity counts how many of the previously selected features are not
selected in the new subgroup description. These features may either be re-
placed by other features, or the total number of selected features may be re-
duced. The constraint ensures that at least τabs ∈ N features are deselected
but never more than there were selected before (kold), which would be infeasi-
ble. For maximum dissimilarity, none of the previously selected features may
be selected again. Note that this dissimilarity measure is asymmetric, i.e.,
disdes(s

new, sold) ̸= disdes(s
old, snew). While this property would be an issue in a

simultaneous search for multiple alternatives, i.e., without an explicit ordering,
it is acceptable for sequential search, where ‘old’ and ‘new’ are well-defined.

Conceptually, one could also employ a more common dissimilarity measure
like the Jaccard distance or the Dice dissimilarity [23]. The latter two are even
symmetric and normalized to [0, 1]. However, our deselection dissimilarity has
two advantages: First, if sold is constant, the dissimilarity is linear in snew, as it
amounts to a simple sum, even if the exact number of newly selected features is
unknown yet. This property is useful for solver-based search (cf. Section 4.4.2).
In contrast, Jaccard distance and Dice dissimilarity involve a ratio and are there-
fore non-linear. Second, the constraint from Equation 14 is antimonotonic in
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the new feature selection, which is useful for heuristic search (cf. Section 4.4.3).
Using the Jaccard distance or Dice dissimilarity in the constraint violates this
property. In particular, these dissimilarities can increase by selecting features
that were not selected in the existing subgroup, i.e., an invalid feature set can
become valid instead of remaining invalid by selecting further features.

4.4.2 SMT Encoding

We only need to reformulate Equation 12 slightly to obtain a linear objective
function regarding the alternative subgroup-membership vector b(a):

simnHamm(b
(a), b(0)) =

1

m
·

m∑
i=1

(
b
(a)
i ↔ b

(0)
i

)

=
1

m
·

 ∑
i∈{1,...,m}

b
(0)
i =1

b
(a)
i +

∑
i∈{1,...,m}

b
(0)
i =0

¬b(a)i


(15)

In particular, since b(0) is known and therefore constant, we employ the ex-
pression from the second line, i.e., without the logical equivalence operator.
Instead, we compute two sums, one for data objects that are members of the

original subgroup and one for non-members. The negated expression ¬b(a)i may

be expressed as 1− b
(a)
i .

To formulate the dissimilarity constraints, we leverage that the feature-
selection vector s(l) and the corresponding number of selected features k(l) are
known for all existing subgroups as well. Thus, we instantiate and adapt Equa-
tion 14 as follows:

∀l ∈ {0, . . . , a− 1} : disdes(s
(a), s(l)) =

∑
j∈{1,...,n}

s
(l)
j =1

¬s(a)j ≥ min
(
τabs, k(l)

)
(16)

In particular, we only sum over features that were selected in the existing sub-

group and check whether they are deselected now. To tie the variables s
(a)
j

to the subgroup’s bounds, we use Equation 9, which we already employed for
feature cardinality constraints.

Finally, the overall SMT encoding of alternative-subgroup-description dis-
covery (cf. Definition 9) combines the similarity objective (cf. Equation 15) and
dissimilarity constraints (cf. Equation 16) for alternatives with the previously
introduced variables and constraints for bounds (cf. Equation 6), subgroup mem-
bership (cf. Equation 7), and feature selection (cf. Equation 9). Optionally, one
may add a feature-cardinality constraint (cf. Equation 10).

4.4.3 Integration into Heuristic Search Methods

The situation here is similar to integrating feature-cardinality constraints into
heuristic search methods (cf. Section 4.3.3). In particular, the constraint for
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alternatives based on the deselection dissimilarity (cf. Equation 14) is antimono-
tonic. I.e., the dissimilarity constraint is satisfied for an empty set of selected
features, and once it is violated for a feature set, it remains violated for any
superset. Thus, the constraint type is suitable for heuristic search that itera-
tively enlarges the set of selected features, like PRIM (cf. Algorithm 1), Beam
Search (cf. Algorithms 2 and 3), and Best Interval (cf. Algorithms 2 and 4).
We only need to adapt the function get permissible feature idxs(. . . ) (cf. Line 7
in Algorithm 1 and Line 12 in Algorithm 2) to check the constraint. I.e., the
function should return the indices of all features that may be selected into the
subgroup without violating the dissimilarity constraint (cf. Equation 14). In
particular, once k(l)− τabs features from an existing subgroup with k(l) features
are selected again, no further features from this subgroup may be selected.

4.4.4 Integration into Baselines

Adapting our two baselines to alternative subgroup descriptions is less straight-
forward than to feature-cardinality constraints (cf. Section 4.3.4) since the op-
timization objective changes and the search space under the dissimilarity con-
straint (cf. Equation 14) is harder to describe. Thus, we did not implement and
evaluate concrete adaptations but still discuss possible ideas in the following.

MORS A major issue for adapting MORS (cf. Algorithm 5) is that MORS
is tailored to a particular objective, i.e., perfect subgroup quality in terms of
recall. In contrast, alternative subgroup descriptions should optimize subgroup-
membership similarity to an original subgroup. Also, the normalized Hamming
similarity (cf. Equation 12) for alternatives measures accuracy rather than recall,
i.e., it considers all data objects rather than only the positive ones.

For the dissimilarity constraint, we would like to enforce a valid feature
set by implementing the function get permissible feature idxs(. . . ) in Line 6 of
Algorithm 5 appropriately. The univariate, quality-based selection heuristic we
proposed for feature-cardinality constraints (cf. Section 4.3.4) may produce an
invalid solution. To alleviate this issue, we could adapt this heuristic as follows:
Still order the features by their univariate quality and iteratively select them in
this order, but check the dissimilarity constraint in each iteration and skip over
features that violate it.

Random Search For Random Search (cf. Algorithm 6), changing the opti-
mization objective from subgroup quality to subgroup-membership similarity is
not an issue since the objective is treated as a black-box function for evaluating
randomly generated subgroups (cf. Line 7 of Algorithm 6). For the dissimilar-
ity constraint, we would like to implement get permissible feature idxs(. . . ) in
Line 5 of Algorithm 6) by uniformly sampling from the constrained search space.
In general, uniform sampling from a constrained space is a computationally hard
problem [27], though it may be feasible for the particular constraint type. We
could also sample from the unconstrained space and then check the dissimilarity
constraint, repeating sampling till a valid feature set is found. However, this
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strategy may produce a high fraction of invalid solution candidates, depending
on how strong the constraint is for the particular dataset and user parame-
ters. Another option is to switch to non-uniform sampling, e.g., only sample
features not selected in any existing subgroup. This guarantees constraint sat-
isfaction but does not cover the entire constrained search space since it ignores
the feature-set overlap allowed by the dissimilarity threshold τ .

4.4.5 Computational Complexity

As for the feature-cardinality constraint (cf. Section 4.3.5), we analyze three
aspects of computational complexity: the size of the search space for exhaustive
search, parameterized complexity, and NP-hardness.

Exhaustive search The search for an alternative subgroup description can
iterate over the same solution candidates as the search for an original subgroup
description, i.e., all combinations of bound values over features. Thus, the
results from Propositions 3 and 4 remain valid:

Proposition 9 (Complexity of exhaustive search for alternative-subgroup-de-
scription discovery). A naive exhaustive search for alternative-subgroup-descrip-
tion discovery (cf. Definition 9) needs to evaluate O(m2n) subgroups for each
alternative in general or O(nk ·m2k) subgroups for each alternative if a feature-
cardinality constraint (cf. Definition 8) is employed.

The evaluation of solution candidates differs from the original subgroup de-
scriptions but has a similar complexity, i.e., O(m ·n+ a ·n) instead of O(m ·n).
In particular, evaluating the subgroup-membership-similarity-based objective
function (e.g., Equation 12) should typically have a cost of O(m · n), like
subgroup-quality functions have. Unlike the unconstrained case, some solu-
tion candidates violate the dissimilarity constraint (e.g., Equation 14) and need
not be evaluated. The corresponding constraint check requires determining the
selected features and computing the dissimilarity. The former (cf. Definition 7)
runs in O(n) if the minimum and maximum feature values of the dataset are
precomputed. The latter should typically entail a cost of O(n) per existing
subgroup description for reasonably simple dissimilarity functions.

Parameterized complexity Due to the similar search space as for origi-
nal subgroup descriptions, the parameterized-complexity results from Proposi-
tions 5 and 6 apply to alternative subgroup descriptions as well:

Proposition 10 (Parameterized complexity of alternative-subgroup-descrip-
tion discovery). The problem of alternative-subgroup-description discovery (cf.
Definition 9) resides in the parameterized complexity class XP for the param-
eter n in general and for the parameter k if a feature-cardinality constraint
(cf. Definition 8) is employed.
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NP-Hardness We prove NP-completeness for a special case of alternative-
subgroup-description discovery (cf. Definition 9) first. To this end, we introduce
the following definition:

Definition 10 (Perfect alternative subgroup description). Given

• a dataset X ∈ Rm×n with prediction target y ∈ {0, 1}m,
• an original subgroup with subgroup membership b(0) ∈ {0, 1}m and feature
selection s(0) ∈ {0, 1}n,

• a dissimilarity measure dis(·) for feature-selection vectors of subgroups,
• and a dissimilarity threshold τ ∈ R≥0,

a perfect alternative subgroup description defines a subgroup (cf. Definition 1)
with membership b(a) ∈ {0, 1}m and feature selection s(a) ∈ {0, 1}n that exactly
replicates the subgroup membership of the original subgroup, i.e., b(a) = b(0),
while being dissimilar regarding the feature selection, i.e., dis(s(a), s(0)) ≥ τ .

In particular, the value of the subgroup-membership similarity is fixed here
rather than an optimization objective. Similar to perfect subgroups (cf. Defi-
nition 5), perfect alternative subgroup descriptions only exist in some datasets.
Next, we define a corresponding search problem:

Definition 11 (Perfect-alternative-subgroup-description discovery). Given

• a dataset X ∈ Rm×n with prediction target y ∈ {0, 1}m,
• an original subgroup with subgroup membership b(0) ∈ {0, 1}m and feature
selection s(0) ∈ {0, 1}n,

• a dissimilarity measure dis(·) for feature-selection vectors of subgroups,
• and a dissimilarity threshold τ ∈ R≥0,

perfect-alternative-subgroup-description discovery is the problem of finding a
perfect alternative subgroup description (cf. Definition 10) if it exists or deter-
mining that it does not exist.

Next, we prove the following hardness result for this search problem with a
perfect original subgroup and under a reasonable assumption on the notion of
feature-selection dissimilarity (cf. Appendix A.2.3 for the proof):

Proposition 11 (Complexity of perfect-alternative-subgroup-description dis-
covery with feature-cardinality constraint and perfect original subgroup). As-
suming

• a combination of a dissimilarity measure dis(·) and a dissimilarity thresh-
old τ ∈ R≥0 that prevents selecting any selected feature from the original
subgroup description again, and

• the original subgroup being perfect (cf. Definition 5),

the problem of perfect-alternative-subgroup-description discovery (cf. Definition
11) with a feature-cardinality constraint (cf. Definition 8) is NP-complete.
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Our deselection dissimilarity (cf. Equation 14) as dis(·) satisfies the dissim-
ilarity assumption if we choose a dissimilarity threshold τabs ≥ kold. Other
dissimilarity measures should typically also have such a threshold value that
enforces zero overlap between the sets of selected features.

The problem naturally remains NP-complete when dropping the assump-
tions in Proposition 11. Nevertheless, we explicitly extend this result to imper-
fect original subgroups (cf. Appendix A.2.4 for the proof):

Proposition 12 (Complexity of perfect-alternative-subgroup-description dis-
covery with feature-cardinality constraint and imperfect original subgroup). As-
suming

• a combination of a dissimilarity measure dis(·) and a dissimilarity thresh-
old τ ∈ R≥0 that prevents selecting any selected feature from the original
subgroup description again, and

• the original subgroup not being perfect (cf. Definition 5),

the problem of perfect-alternative-subgroup-description discovery (cf. Definition
11) with a feature-cardinality constraint (cf. Definition 8) is NP-complete.

Finally, we switch from the search problem for perfect alternatives to the op-
timization problem of alternative-subgroup-description discovery. We establish
NP-completeness under a reasonable assumption on the notion of subgroup-
membership similarity (cf. Appendix A.2.5 for the proof):

Proposition 13 (Complexity of alternative-subgroup-description discovery with
feature-cardinality constraint). Assuming

• a combination of a dissimilarity measure dis(·) and a dissimilarity thresh-
old τ ∈ R≥0 that prevents selecting any selected feature from the original
subgroup description again, and

• a similarity measure sim(·) for which only perfect alternative subgroup de-
scriptions (cf. Definition 10) reach its maximal value regarding the original
subgroup,

the problem of alternative-subgroup-description discovery (cf. Definition 9) with
a feature-cardinality constraint (cf. Definition 8) is NP-complete.

Normalized Hamming similarity (cf. Equation 12) as sim(·) satisfies the sim-
ilarity assumption since only perfect alternative subgroup descriptions yield the
theoretical maximum similarity of 1 to the original subgroup description.

5 Experimental Design

In this section, we introduce our experimental design. After a brief overview
of its components (cf. Section 5.1), we describe subgroup-discovery methods
(cf. Section 5.2), experimental scenarios (cf. Section 5.3), evaluation metrics
(cf. Section 5.4), and datasets (cf. Section 5.5). Finally, we shortly outline our
implementation (cf. Section 5.6).
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5.1 Overview

In our experiments, we evaluate six subgroup-discovery methods on 27 binary-
classification datasets. We measure the subgroup quality in terms of nWRAcc
and also record the methods’ runtime. We analyze four experimental scenarios:
First, we compare all subgroup-discovery methods without constraints. Second,
we vary the timeout in solver-based search. Third, we compare all subgroup-
discovery methods with a feature-cardinality constraint, varying the cardinality
threshold k. Fourth, we search for alternative subgroup descriptions with one
solver-based and one heuristic search method. We vary the number of alterna-
tives a and the dissimilarity threshold τabs.

5.2 Subgroup-Discovery Methods

We employ six subgroup-discovery methods: A solver-based one using our SMT
encoding (cf. Section 4.1), three heuristic search methods from related work
(cf. Section 2.2), and our two baselines (cf. Section 3).

Solver-based search For solver-based search, denoted as SMT, we employ
the solver Z3 [16, 24] with our SMT encoding of subgroup discovery (cf. Equa-
tion 8). Unlike the other five subgroup-discovery methods, this method is ex-
haustive, i.e., it finds the global optimum, if granted sufficient time. In practice,
however, we set solver timeouts to control the runtime (cf. Section 5.3).

Heuristic search We evaluate three heuristic search methods from related
work: PRIM (cf. Algorithm 1), Beam Search (cf. Algorithms 2 and 3), subse-
quently called Beam, and Best Interval (cf. Algorithms 2 and 4), subsequently
called BI. In all three methods, we use WRAcc (cf. Equation 1) as the subgroup-
quality function Q(lb, ub, X, y) for search. We set the peeling fraction of PRIM
to α = 0.05, consistent with other implementations [1, 49] and within the rec-
ommended value range proposed by the original authors [28]. Further, we set
the support threshold to β0 = 0, so the subgroup’s shrinking is solely limited by
WRAcc and not the subgroup’s size. For Beam and BI, we choose a beam width
of w = 10, falling between default values used in other implementations [1, 57].

Baselines We also include baselines that are simpler than the heuristic search
methods. In particular, we employ our own methods MORS (cf. Algorithm 5)
and Random Search (cf. Algorithm 6, subsequently called Random). MORS is
parameter-free. For Random, we set the number of iterations n iters = 1000 and
use WRAcc (cf. Equation 1) as the subgroup-quality function Q(lb, ub, X, y).

5.3 Experimental Scenarios

We evaluate the subgroup-discovery methods in four experimental scenarios.
Two of the scenarios do not involve all subgroup-discovery methods.
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Unconstrained subgroup discovery Our first experimental scenario (cf.
Section 6.1 for results) compares all six subgroup-discovery methods without
constraints. This comparison allows us to assess the effectiveness of the solver-
based search method SMT for ‘conventional’ subgroup discovery and serves as
a reference point for subsequent experiments with constraints.

Solver timeouts Our second experimental scenario (cf. Section 6.2 for re-
sults) takes a deeper dive into SMT as the subgroup-discovery method. In
particular, we analyze whether setting solver timeouts enables finding solutions
with reasonable quality in a shorter time frame. If the solver does not finish
optimization within a given timeout, we record the currently best solution at
this time, which may be suboptimal. Note that the timeout only applies to the
optimization procedure, while our runtime measurements also include the time
for formulating the optimization problem upfront.

We evaluate twelve exponentially scaled timeout values, i.e., {1 s, 2 s, 4 s,
. . . , 2048 s}. In the three other experimental scenarios, we employ the maximum
timeout of 2048 s for SMT. Since the heuristic search methods and baselines are
significantly faster, we do not conduct a timeout analysis for them.

Feature-cardinality constraints Our third experimental scenario (cf. Sec-
tion 6.3 for results) analyzes feature-cardinality constraints (cf. Section 4.3) for
all six subgroup-discovery methods. In particular, we evaluate k ∈ {1, 2, 3, 4, 5}
selected features. These values of k are upper bounds (cf. Equation 10), i.e.,
the subgroup-discovery methods may select fewer features if selecting more does
not improve subgroup quality.

Alternative subgroup descriptions Our fourth experimental scenario (cf.
Section 6.4 for results) studies alternative subgroup descriptions (cf. Section 4.4)
for SMT and Beam, i.e., one solver-based and one heuristic search method. We
limit the number of selected features to k = 3, which yields reasonably high
subgroup quality (cf. Section 6.3). We search for a = 5 alternative subgroup
descriptions with a dissimilarity threshold τabs ∈ {1, 2, 3}. Since each dataset
has n ≥ 20 features (cf. Section 5.5), our choices of a, k, and τ ensure that there
always is a valid alternative.

5.4 Evaluation Metrics

Subgroup quality We use nWRAcc (cf. Equation 3) to report subgroup qual-
ity. To analyze how well the subgroup-discovery methods generalize, we conduct
a stratified five-fold cross-validation. In particular, each run of a subgroup-
discovery method uses only 80% of a dataset’s data objects as training data,
while the remaining data objects serve as test data. Based on the bounds of
each found subgroup, we determine subgroup membership for all data objects
and compute training-set nWRAcc and test-set nWRAcc on the corresponding
part of the data separately, using the true class labels y.
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Subgroup similarity For evaluating alternative subgroup descriptions, we
consider not only their quality but also their induced subgroup’s similarity to
the original subgroup. To this end, we use normalized Hamming similarity
(cf. Equation 12) and Jaccard similarity (cf. Equation 13) to compare subgroup
membership of data objects between the original and the alternative.

Runtime As runtime, we report the training time of the subgroup-discovery
methods. In particular, we measure how long the search for each subgroup
takes. For solver-based search, we also record whether the solver timed out.

5.5 Datasets

We use binary-classification datasets from the Penn Machine Learning Bench-
marks (PMLB) [77, 82]. If the classes occur with different frequencies, we encode
the minority class as the class of interest, i.e., assign 1 as its class label. To avoid
prediction scenarios that may be too easy or do not have enough features for
alternative subgroup descriptions, we only select datasets with at least 100 data
objects and 20 features. Next, we exclude one dataset with 1000 features, which
has a significantly higher dimensionality than all remaining datasets. Finally,
we manually exclude datasets that seem duplicated or modified versions of other
datasets in our experiments.

Based on these criteria, we obtain 27 datasets with 106 to 9822 data objects
and 20 to 168 features (cf. Table 1). The datasets do not contain any missing
values. Further, PMLB encodes categorical features ordinally by default.

5.6 Implementation and Execution

We implemented all subgroup-discovery methods, experiments, and evaluations
in Python 3.8. A requirements file in our repository3 specifies the versions of
all dependencies. Further, we organized the subgroup-discovery methods and
some evaluation metrics as a Python package to ease reuse.

Our experimental pipeline parallelizes over datasets, cross-validation folds,
and subgroup-discovery methods, while each of these experimental tasks runs
single-threaded. We ran the pipeline on a server with 160 GB RAM and an
AMD EPYC 7551 CPU, having 32 physical cores and a base clock of 2.0 GHz.
With this hardware, the parallelized pipeline run took approximately 34 hours.

6 Evaluation

In this section, we evaluate our experiments. In particular, we cover our four
experimental scenarios, i.e., unconstrained subgroup discovery (cf. Section 6.1),
solver timeouts (cf. Section 6.2), feature-cardinality constraints (cf. Section 6.3),
and alternative subgroup descriptions (cf. Section 6.4). Finally, we summarize
key experimental results (cf. Section 6.5).

3https://github.com/Jakob-Bach/Constrained-Subgroup-Discovery
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Dataset m n
Timeouts

Max k Any k

backache 180 32 No No
chess 3196 36 No No
churn 5000 20 Yes Yes
clean1 476 168 No No
clean2 6598 168 No No
coil2000 9822 85 Yes Yes
credit g 1000 20 Yes Yes
dis 3772 29 No No
GE 2 Way 20atts 0.1H EDM 1 1 1600 20 Yes Yes
GE 2 Way 20atts 0.4H EDM 1 1 1600 20 No No
GE 3 Way 20atts 0.2H EDM 1 1 1600 20 Yes Yes
GH 20atts 1600 Het 0.4 0.2 50 EDM 2 001 1600 20 Yes Yes
GH 20atts 1600 Het 0.4 0.2 75 EDM 2 001 1600 20 Yes Yes
Hill Valley with noise 1212 100 Yes Yes
horse colic 368 22 No No
hypothyroid 3163 25 No No
ionosphere 351 34 No No
molecular biology promoters 106 57 No No
mushroom 8124 22 No No
ring 7400 20 Yes Yes
sonar 208 60 No Yes
spambase 4601 57 No Yes
spect 267 22 No No
spectf 349 44 No Yes
tokyo1 959 44 No Yes
twonorm 7400 20 Yes Yes
wdbc 569 30 No No

Table 1: Datasets from PMLB used in our experiments. m denotes the num-
ber of data objects and n the number of features. In dataset names, we re-
placed GAMETES Epistasis with GE and GAMETES Heterogeneity with GH
to reduce the table’s width. Timeouts indicates whether at least one timeout
occurred with SMT as the subgroup-discovery method and the highest time-
out setting (2048 s), optimizing the original subgroup without cardinality con-
straints (Max k) or in any cardinality setting (Any k).
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(b) Datasets without SMT timeouts.

Figure 2: Distribution of subgroup quality over datasets and cross-validation
folds, by subgroup-discovery method. Results from the unconstrained experi-
mental scenario.

6.1 Unconstrained Subgroup Discovery

In this section, we compare all six subgroup-discovery methods in the exper-
imental scenario without constraints. SMT uses its default maximum solver
timeout of 2048 s.

Subgroup quality Figure 2a compares subgroup quality on the training set
and test set for the six subgroup-discovery methods. On the training set, the
two heuristic search methods Beam and BI have roughly the same median
nWRAcc as the solver-based search method SMT. In particular, the heuristics
are even better than SMT on some datasets but worse on others. The former
can only happen because SMT may run into timeouts and, therefore, not yield
the exact optimum, as we analyze later (cf. Section 6.2). However, even if we
limit our analysis to the datasets without SMT timeouts, Beam and BI are still
remarkably close to the optimum quality (cf. Figure 2b). Note that this result is
not specific to SMT but also holds for any other exhaustive search method. On
the test set, Beam and BI are even better than SMT on median, also excluding
timeout datasets, since their training-test nWRAcc difference is smaller. This
result indicates that Beam and BI are less susceptible to overfitting, so their
solutions generalize better. In detail, the average difference between training-set
nWRAcc and test-set nWRAcc is 0.122 for SMT, 0.101 for BI, 0.095 for Beam,
0.094 for MORS, 0.068 for PRIM, and 0.001 for Random.

The heuristic search method PRIM yields slightly worse subgroup quality
than Beam and BI. Although it follows an iterative subgroup-refinement pro-
cedure like the latter two methods, its refinement options are more limited. In
particular, PRIM always has to remove a fixed fraction α of data objects from
the subgroup, while Beam and BI can remove more or less data objects. On
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Aggregate BI Beam MORS PRIM Random SMT

Mean 34.95 s 30.47 s 0.01 s 1.26 s 0.91 s 849.02 s
Standard dev. 103.61 s 85.69 s 0.00 s 1.51 s 0.95 s 929.60 s
Median 2.60 s 2.95 s 0.01 s 0.66 s 0.51 s 254.21 s

(a) All datasets.

Aggregate BI Beam MORS PRIM Random SMT

Mean 12.40 s 11.77 s 0.01 s 1.29 s 0.82 s 168.13 s
Standard dev. 21.17 s 20.47 s 0.00 s 1.62 s 0.89 s 243.11 s
Median 2.60 s 2.95 s 0.01 s 0.80 s 0.56 s 57.23 s

(b) Datasets without SMT timeouts.

Table 2: Aggregated runtime over datasets and cross-validation folds, by
subgroup-discovery method. Results from the unconstrained experimental sce-
nario.

the test, PRIM yields a median nWRAcc only slightly worse than SMT, on all
datasets and after excluding timeout datasets.

All three heuristic search methods clearly beat the two baselines MORS and
Random. While Random yields the same quality as not restricting the subgroup
at all, i.e., an nWRACC of 0, MORS is considerably better and, therefore, a
suitable baseline for future studies comparing subgroup-discovery methods.

Runtime Table 2 summarizes the runtimes of the subgroup-discovery meth-
ods. On average, SMT is an order of magnitude slower than Beam and BI,
which are an order of magnitude slower than PRIM and the baseline Random.
The baseline MORS runs in negligible time and, therefore, is a good tool for
instantaneously obtaining a lower bound on subgroup quality. Taking subgroup
quality into consideration, the heuristic search methods offer a reasonable qual-
ity in a reasonable time, while SMT incurs a high cost for its optimal solutions.
Among the three heuristics, PRIM is the fastest but yields the lowest subgroup
quality, so users should decide which runtime is acceptable.

For SMT, the overall runtime not only comprises optimization but also for-
mulating the optimization problem. Since the latter depends on the dataset size,
e.g., involves O(m) constraints with length O(n) each to define the subgroup-
membership variables bi (cf. Equation 7), the preparation time can become
considerable for large datasets. In our experiments, formulating the SMT prob-
lem took 45 s on average, with a maximum of 379 s. This average preparation
time is already greater than the average total runtime of the heuristics.

To determine which factors influence runtime, we analyze the Spearman cor-
relation between runtime and four simple metrics for dataset size. In particular,
Table 3 considers the number of data objects m, the number of features n, the
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Method Σnu m · n m n

BI 0.95 0.51 0.32 0.67
Beam 0.96 0.49 0.30 0.66
MORS 0.27 0.57 0.51 0.26
PRIM 0.84 0.56 0.29 0.76
Random 0.58 0.69 0.42 0.77
SMT 0.39 0.73 0.70 0.23

Table 3: Spearman correlation between runtime and metrics for dataset size,
over datasets and cross-validation folds, by subgroup-discovery method. Re-
sults from the unconstrained experimental scenario, using datasets without SMT
timeouts.
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Figure 3: Impact of solver timeouts for SMT as the subgroup-discovery method.
Results from the search for original subgroups.

product of these two quantities m · n, and the number of unique values per
feature summed over the features Σnu. For the three heuristic search methods,
the latter metric shows a high correlation to runtime, while SMT exhibits the
highest runtime correlation to m · n.

6.2 Solver Timeouts

In this section, we evaluate the impact of solver timeouts for SMT search.

Finished tasks Figure 3a displays how many of the SMT optimization tasks
for original subgroups finished within the evaluated solver timeouts. Besides the
unconstrained tasks, we also consider tasks with different feature-cardinality
thresholds, though the overall trend is the same. In particular, the number
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of finished tasks only increases slowly over time, and some tasks take orders of
magnitude longer than others. E.g., in the unconstrained experimental scenario,
21.5% of the SMT tasks finished within 4 s, 24.4% within 16 s, 37.0% within
64 s, 54.8% within 256 s, and 62.2% within 1024 s. For the maximum timeout
setting of 2048 s, 67.4% of the SMT tasks finished, and 17 out of 27 datasets
did not encounter timeouts (cf. Table 1).

Subgroup quality Figure 3b visualizes the subgroup quality over solver time-
outs for unconstrained SMT search. This plot shows the quality of the optimal
solution for finished tasks and of the currently best solution for unfinished tasks.
As for the number of finished tasks (cf. Figure 3a), the largest gains occur in the
first minute. E.g., the mean test-set nWRAcc over datasets and cross-validation
folds is 0.10 for 1 s, 0.19 for 4 s, 0.24 for 16 s, 0.32 for 64 s, and 0.39 for the
maximum solver timeout of 2024 s. The main cause for this trend is that if
a task finishes within a specific solver timeout, its quality cannot improve for
higher thresholds, and many tasks finish relatively early indeed (cf. Figure 3a).
In contrast, if we only consider the tasks where the solver did not finish even
within the maximum solver timeout, the quality increase of the currently best
solution over time is marginal.

Further, even SMT with a timeout does not compare favorably to fast heuris-
tic search methods. E.g., with a solver timeout of 64 s, corresponding to an
average overall runtime of 88 s, SMT achieves a mean training-set nWRAcc of
0.43, compared to 0.56 for Beam with an average runtime of 30 s (cf. Table 2a).

Finally, note that setting a lower solver timeout decreases overfitting, i.e.,
the difference between training-set nWRAcc and test-set nWRAcc increases
over time (cf. Figure 3b). However, since the test-set nWRAcc still increases
with the timeout as well, choosing lower timeouts does not help quality-wise.

6.3 Feature-Cardinality Constraints

In this section, we compare all six subgroup-discovery methods in the experimen-
tal scenario with feature-cardinality constraints. SMT uses its default maximum
solver timeout of 2048 s.

Subgroup quality Figure 4 displays the mean subgroup quality, averaging
over datasets and cross-validation folds, for different values of the feature-
cardinality threshold k. For most subgroup-discovery methods, mean training-
set nWRACC (cf. Figure 4a) increases with k, though the marginal utility de-
creases. In particular, even with k = 1, the mean nWRAcc is already clearly
above 50% of the nWRAcc achieved with all features. Further, the quality
increase between k = 1 and k = 2 is usually the largest. On the test set (cf. Fig-
ure 4b), the benefit of setting a larger k is even smaller. E.g., the mean test-set
nWRAcc of Beam, BI, and SMT barely improves beyond k = 2. These results
indicate that sparse subgroup descriptions already yield a high subgroup quality.

The baseline Random differs from the other subgroup-discovery methods
since its subgroup quality clearly decreases over k. This behavior results from
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Figure 4: Mean subgroup quality with 95% confidence intervals based on
datasets and cross-validation folds, over feature-cardinality threshold k, by
subgroup-discovery method. Results from the search for original subgroups.

Random’s design (cf. Algorithm 6). In particular, it randomly samples bounds
independently for each feature. Thus, each feature excludes a certain frac-
tion of data objects from the subgroup. The more features are used in the
subgroup description, the smaller the expected number of data objects in the
subgroup becomes. Since the number of subgroup members is one factor in
WRAcc (cf. Equation 1), quality naturally decreases for smaller subgroups.

Figure 4 also reveals that the heuristic search methods Beam and BI still
yield higher average subgroup quality than the solver-based search SMT due
to timeouts, for any feature-cardinality setting. Further, the heuristic PRIM
exhibits a larger increase of subgroup quality over k than Beam and BI, thereby
narrowing the quality gap to the latter. The baseline MORS displays the least
effect of k on mean test-set nWRAcc, showing very stable subgroup quality.

Finally, the results indicate that limiting k reduces overfitting. For example,
for Beam, the mean difference between training-set and test-set nWRAcc is 0.095
without a feature-cardinality constraint, 0.073 for k = 3, and 0.045 for k = 1.
The increasing tendency to overfit with larger k explains why mean training-set
nWRAcc increases more than mean test-set nWRAcc over k in Figure 4. PRIM
shows the smallest increase of overfitting over k, MORS and SMT the largest.

Runtime As Table 4 displays, the heuristic search methods Beam, BI, and
PRIM become faster the smaller k is. The baseline Random shows a similar
trend, though less prominent, while MORS yields results instantaneously in any
case. In contrast, the picture for the solver-based search method SMT is less
clear. While its average runtime clearly increases over k till k = 3, it roughly
remains constant for k ∈ {4, 5} and even decreases without a feature-cardinality
constraint, only remaining higher than for k = 1.
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k BI Beam MORS PRIM Random SMT

1 7.81 s 6.81 s 0.01 s 0.08 s 0.63 s 648.16 s
2 11.74 s 10.06 s 0.01 s 0.17 s 0.64 s 911.28 s
3 14.20 s 12.78 s 0.01 s 0.26 s 0.65 s 1091.75 s
4 16.68 s 14.65 s 0.01 s 0.35 s 0.66 s 1113.40 s
5 18.66 s 16.12 s 0.01 s 0.46 s 0.66 s 1117.39 s
no 34.95 s 30.47 s 0.01 s 1.26 s 0.91 s 849.02 s

Table 4: Mean runtime over datasets and cross-validation folds, by subgroup-
discovery method and feature-cardinality threshold k. Results from the search
for original subgroups.
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Figure 5: Mean subgroup similarity of alternative subgroup descriptions to the
original subgroup with 95% confidence intervals based on datasets and cross-
validation folds, over the number of alternatives, by subgroup-discovery method
and dissimilarity threshold τabs.

6.4 Alternative Subgroup Descriptions

In this section, we analyze alternative subgroup descriptions for the subgroup-
discovery methods Beam and SMT. Both employ a feature-cardinality threshold
of k = 3. SMT uses its default maximum solver timeout of 2048 s.

Subgroup similarity Figure 5 visualizes the average similarity between the
original subgroup and the subgroups induced by alternative subgroup descrip-
tions. As one would expect, the subgroup-membership similarity decreases the
more alternatives one desires and the more the selected features in subgroup
descriptions should differ. Further, the decrease is strongest from the original
subgroup, i.e., the zeroth alternative, to the first alternative but smaller beyond.
This observation indicates that one may find several alternative subgroup de-
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Figure 6: Mean subgroup quality of alternative subgroup descriptions with
95% confidence intervals based on datasets and cross-validation folds, over the
number of alternatives, by subgroup-discovery method and dissimilarity thresh-
old τabs.

scriptions of comparable similarity to the original.
These trends holds for both similarity measures, i.e., the normalized Ham-

ming similarity we use as optimization objective (cf. Equation 12 and Figure 5a)
as well as the Jaccard similarity (cf. Equation 13 and Figure 5b). The lat-
ter yields lower similarity values than the former since it ignores data objects
that are not contained in either of the two compared subgroups. Further, the
observed trends exist for the solver-based search method SMT as well as the
heuristic search method Beam. SMT yields clearly more similar subgroups than
Beam for the Jaccard similarity, while the normalized Hamming similarity does
not show a clear winner.

Subgroup quality The average subgroup quality of alternative subgroup de-
scriptions (cf. Figure 6) shows similar trends as subgroup similarity (cf. Fig-
ure 5). In particular, quality decreases over the dissimilarity threshold τabs and
over the number of alternatives a, with the largest decrease to the first alterna-
tive. For the highest dissimilarity threshold τabs = 3, Beam consistently yields
higher average quality than SMT for the original subgroup and each alterna-
tive, while the other two values of the dissimilarity threshold do not clearly favor
either subgroup-discovery method. The observed trends on the test set (cf. Fig-
ure 6b) are very similar to those on the training set (cf. Figure 6a). For both
subgroup-discovery methods, overfitting, as measured by the train-test differ-
ence in nWRAcc, is lower for the alternative subgroup descriptions than for the
original subgroups. This phenomenon may result from the alternative subgroup
descriptions not directly optimizing subgroup quality.
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Method τabs
Number of alternative

0 1 2 3 4 5

Beam 1 12.8 s 8.0 s 7.6 s 7.3 s 7.3 s 7.3 s
2 12.8 s 7.7 s 7.4 s 7.2 s 7.0 s 6.8 s
3 12.8 s 5.8 s 5.1 s 4.7 s 4.1 s 3.5 s

SMT 1 1091.7 s 166.0 s 221.5 s 239.6 s 258.1 s 277.9 s
2 1105.2 s 377.5 s 463.5 s 537.5 s 599.4 s 658.3 s
3 1107.4 s 869.1 s 670.8 s 597.6 s 588.1 s 557.6 s

Table 5: Mean runtime over datasets and cross-validation folds, by subgroup-
discovery method, dissimilarity threshold τabs, and number of alternative. Re-
sults from the search for alternative subgroup descriptions.

Runtime Table 5 displays the average runtime for searching original sub-
groups and alternative subgroup descriptions. The search for alternatives is
faster for both analyzed search methods, i.e., Beam and SMT. As for the original
subgroups, Beam search for alternative subgroup descriptions is one to two or-
ders of magnitude faster than the solver-based SMT search. For Beam, runtime
tends to decrease over the number of alternatives, while SMT shows a less clear
behavior. In particular, its runtime increases over alternatives for τabs ∈ {1, 2},
i.e., settings that allow reusing features from previous subgroup descriptions.
In contrast, runtime decreases over alternatives for τabs = k = 3, which forbids
selecting any feature used in a previous subgroup description. Finally, the num-
ber of SMT tasks finished within the solver timeout shows trends corresponding
to the runtime. In particular, there are more finished tasks when searching for
alternative subgroup descriptions than for original subgroups.

6.5 Summary

Unconstrained subgroup discovery (cf. Section 6.1) We recommend
using heuristic search methods rather than solver-based search. In particular,
Beam and BI were an order of magnitude faster than SMT and still yielded
higher test-set subgroup quality since they were less prone to overfitting. The
latter result not only impedes SMT but exhaustive algorithmic search methods
as well. PRIM was faster than Beam and BI but yielded lower subgroup qual-
ity. The same insights applied even more to our novel baseline MORS, which
provided instantaneous, non-trivial lower bounds for subgroup quality.

Solver timeouts (cf. Section 6.2) Setting larger solver timeouts showed
a decreasing marginal utility regarding the number of finished SMT tasks and
subgroup quality, i.e., most gains occurred within the first few seconds or dozens
of seconds. About half the SMT tasks that finished at all finished in under a
minute. However, the average subgroup quality for this solver timeout was lower
than for heuristic search methods with even lower runtime.
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Feature-cardinality constraints (cf. Section 6.3) Using more features in
subgroup descriptions showed a decreasing marginal utility regarding subgroup
quality. For Beam, BI, and SMT, test-set subgroup quality was already close to
the unconstrained scenario at k = 2, while PRIM benefited more from larger k.
A smaller k made the heuristic search methods faster and generally reduced
overfitting. The baseline MORS showed stable test-set subgroup quality re-
garding k, while Random even increased subgroup quality with smaller k.

Alternative subgroup descriptions (cf. Section 6.4) The heuristic Beam
was one to two orders of magnitude faster than solver-based SMT when search-
ing for alternative subgroup descriptions, while both search methods found al-
ternatives faster than original subgroups. The quality and similarity of alter-
native subgroup descriptions strongly depended on two user parameters, i.e.,
the number of alternatives a and the dissimilarity threshold on feature selec-
tion τabs. The difference in quality and similarity between the original and the
first alternative was higher than among the first few alternatives.

7 Related Work

In this section, we review related work. Next to the literature on subgroup
discovery (cf. Section 7.1), we also discuss relevant work from the adjacent field
of feature selection (cf. Section 7.2) and other related areas (cf. Section 7.3).

7.1 Subgroup Discovery

In this section, we present related work from the field of subgroup discovery.
First, we discuss algorithmic search methods (cf. Section 7.1.1) as well as white-
box formulations (cf. Section 7.1.2) for this problem. Second, we cover con-
strained subgroup discovery in general (cf. Section 7.1.3) and for the two con-
straint types we focus on, i.e., feature-cardinality constraints (cf. Section 7.1.4)
and alternative subgroup descriptions (cf. Section 7.1.5).

7.1.1 Algorithmic Search Methods

Nearly all existing subgroup-discovery methods are algorithmic. In particular,
there are heuristic search methods like PRIM [28] and Best Interval [65] as well
as exhaustive search methods, like SD-Map [4, 6], MergeSD [35], and BSD [56,
58]. See [3, 40, 41, 88] for surveys of subgroup-discovery methods. To the best
of our knowledge, optimizing subgroup discovery with an SMT solver is novel.
There are a few other white-box formulations of particular variants of subgroup
discovery, which differ from our work in several aspects, as we discuss next.

7.1.2 White-Box Formulations

Maximum box problem [26] formulates an integer program for the Maxi-
mum Box problem, which is about finding a hyperrectangle containing as many
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positive data objects as possible but no negative data objects, i.e., no false pos-
itives. This problem is an intermediate between subgroup discovery (cf. Defini-
tion 2), which allows false positives and false negatives, and perfect-subgroup
discovery (cf. Definition 6), which allows neither. Also, the problem defines a
kind of inverse scenario to minimal-optimal-recall-subgroup discovery (cf. Defi-
nition 4), which is about finding a subgroup with as few negative data objects
as possible but all positive data objects. While the latter problem is in P
(cf. Proposition 1), [26] proves NP-hardness of the Maximum Box problem
by reduction from the Maximum Independent Set [87] problem. In their
evaluation, the authors only use a customized branch-and-bound algorithm but
neither solver-based nor heuristic search methods. Further, they consider nei-
ther feature-cardinality constraints nor alternative descriptions.

Maximum α-pattern problem [18] investigates the Maximum α-Pattern
problem. This problem is similar to the Maximum Box problem but involves
a binary dataset and requires a user-selected data object α to be a subgroup
member. Again, cardinality constraints or alternative descriptions are not con-
sidered. The authors formulate two integer programs as well as two heuristics.
They evaluate their approaches, but no existing subgroup-discovery methods,
on generated and benchmark datasets, comparing subgroup quality as well as
runtime. Similar to us, they find that heuristics may reach a subgroup quality
similar to a solver-based search with orders of magnitude less runtime.

Box search problem [63] proposes two integer-programming formulations
for the Box Search problem, which is about finding a hyperrectangle that
optimizes the sum of the target variable of all contained data objects. In par-
ticular, the target variable is continuous rather than binary, and the chosen
objective differs from ours. Further, there are no constraints on feature cardi-
nality or for alternative descriptions. In their evaluation, the authors compare
solver-based search to multiple versions of a new branch-and-bound approach
but not heuristic search methods. They use synthetically generated datasets
rather than typical machine-learning benchmark datasets.

Discriminative itemset mining problem Besides three related problems,
[48] formulates Closed Discriminative Itemset Mining and Relevant
Subgroup Discovery with the constraint-specification language Essence [29].
Both these formulations are close to frequent itemset mining, where items cor-
respond to binary features and itemsets to subgroup descriptions. There is no
optimization objective but constraints on the frequency of itemsets and their rel-
evance, excluding dominated solutions. The authors propose a transformation of
their problem specification to enable using standard propositional-satisfiability
(SAT) or constraint-programming (CP) solvers. Their evaluation exclusively
analyzes solver runtime rather than subgroup quality and does not compare
against heuristic search methods. Finally, they do not search for alternative
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descriptions. Instead of feature-cardinality constraints, they randomly generate
costs and values for items and corresponding bounds for itemsets.

[37] also provides a constraint-programming formulation of Discriminative
Itemset Mining. The authors compare two configurations of a constraint
solver against existing itemset-mining algorithms. They evaluate runtime but
not quality, as they enumerate all non-redundant itemsets, and do not include
constraints for feature cardinality or alternative descriptions.

7.1.3 Constrained Subgroup Discovery

Section 4.2 has already discussed various constraint types in subgroup discov-
ery. Typically, constraints are not formulated declaratively for solver-based op-
timization but integrated into algorithmic search methods. [8] expresses domain
knowledge with the logic programming language Prolog, creating a knowledge
base composed of facts and rules. However, the authors do not use a solver
to optimize subgroup discovery. In the following, we discuss particular related
work for the two constraint types we analyze in detail.

7.1.4 Feature-Cardinality Constraints

Formulation Feature cardinality is a common constraint type [69] and a well-
known metric for subgroup complexity [40, 41, 88]. However, our SMT formu-
lation of this constraint type is novel. [61] formulates a quadratic program to
select non-redundant features for subgroups, but this is only a subroutine within
an algorithmic search for subgroups. Also, the authors define a continuous op-
timization problem with real-valued feature weights as decision variables, while
feature selection within our SMT formulation is discrete (cf. Equation 9).

Empirical studies While several articles on subgroup discovery use a feature-
cardinality constraint in their experiments [2, 65, 52, 54, 55], there is a lack of
studies that analyze the impact of different feature-cardinality thresholds on
different subgroup-discovery methods broadly and systematically. [28] analyzes
the subgroup quality over eliminating a different number of redundant features
as a post-processing step, but only for PRIM and one dataset. [58] evaluates
different search depths for their algorithm BSD but only regarding runtime and
number of subgroups after quality-based pruning, not subgroup quality. [80]
compares multiple search depths for their algorithm SSD++, which returns a
list of multiple subgroups, regarding an information-theoretic quality measure.
[40] compares five subgroup-discovery methods with categorical datasets and
also evaluates feature cardinality but does not systematically constrain the latter
to different values. [69] evaluates three subgroup-discovery methods, including
a beam search and an exhaustive search. The authors use feature-cardinality
constraints with k ∈ {1, 2, 3, 4} but mainly focus their evaluation on compar-
ing strategies for handling numeric data. Also, they only use six classification
datasets, five of them with at most ten numeric features, while we employ more
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and higher-dimensional datasets. Additionally, we compare subgroup discovery
with feature-cardinality constraints to an unconstrained setting.

7.1.5 Alternative Subgroup Descriptions

To the best of our knowledge, alternative subgroup descriptions in the sense
of this paper are a novel concept. In particular, we aim to maximize the set
similarity of contained data objects relative to an original subgroup while us-
ing a different subgroup description (cf. Definition 9). In contrast, there are
various existing approaches striving for alternatives in the sense of diverse or
non-redundant sets of subgroups, which aim to minimize rather than maximize
the overlap of contained data objects [3] (cf. Section 4.2). In the following, we
discuss approaches that focus on subgroup descriptions.

Description-based diverse subgroup set selection [54] introduces six
strategies to foster diversity while searching for multiple subgroups simultane-
ously. Besides strategies assessing the subgroup members and the information-
theoretic compression achieved by subgroups, two strategies refer to subgroup
descriptions. The first excludes subgroup descriptions that have the same qual-
ity and differ in only one condition from an existing subgroup description. The
second uses a global upper bound on how often a feature may be selected in a
set of subgroup descriptions rather than controlling pairwise dissimilarity. Both
these strategies give users less control over the overlap of subgroup descriptions
than our dissimilarity parameter τ does. Further, [54] targets at simultane-
ous beam search, optimizing subgroup quality and using the diversity strategies
only to prune certain solution candidates. In contrast, we search for alterna-
tive descriptions sequentially, optimize similarity to the original subgroup, and
consider a solved-based search method in addition to heuristic search.

Diverse top-k characteristics lists [62] introduces the notion of diverse top-
k characteristic lists, which is a set of lists, each containing multiple patterns,
e.g., subgroups. Within each list, the subgroups should be alternative to each
other in terms of data objects contained. Between lists, subgroup descriptions
should be diverse. However, the latter goal is implemented with a very simple
notion of diversity, i.e., exactly the same subgroup description must not appear
in two lists, but any other overlap is allowed.

Equivalent subgroup descriptions of minimal length [17] introduces the
notion of equivalent subgroup descriptions of minimal length, which is stricter
than our notion of alternative subgroup descriptions. In particular, the former
descriptions need to cover exactly the same set of data objects, like our notion
of perfect alternative subgroup descriptions (cf. Definition 10), instead of max-
imizing similarity. Further, the original feature set should be minimized, i.e., a
subset be found, instead of using a different feature set subject to a dissimilar-
ity constraint. The authors prove NP-hardness and propose two algorithms for
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their problem but do not pursue a solver-based search. We adapt their hardness
proof to the perfect-subgroup-discovery problem with a feature-cardinality con-
straint (cf. Proposition 7), based on which we derive further proofs for problems
with feature-cardinality constraints and alternative subgroup descriptions.

Redescription mining Redescription mining aims to find pairs or sets of
descriptions that cover exactly or approximately the same data objects [30, 81].
Our notion of alternative subgroup descriptions pursues a similar goal. How-
ever, we search for alternative descriptions sequentially instead of simultane-
ously. Also, our original subgroup description usually optimizes subgroup qual-
ity, while redescription mining has no target variable, i.e., is unsupervised [81].
Further, redescription mining works with different dissimilarity criteria than we
do, e.g., having features pre-partitioned into non-overlapping sets [30, 31, 70] or
requiring only one arbitrary part of the description to differ [78]. In contrast,
we allow users to control the overlap between feature sets with the parameter τ .
Also, the language for redescriptions may be more complex than for subgroups,
e.g., also involve logical negation (¬) and disjunction (∨) [30, 31], while sub-
group descriptions only use the logical AND (∧) over features. Finally, most
existing approaches for redescription mining are algorithmic rather than using
white-box optimization [30, 70], though [38] provides a constraint-programming
formulation of this problem and other pattern-set mining problems. Several for-
mulations and parametrizations of the redescription-mining problem are NP-
hard; see [70] for a detailed analysis.

7.2 Feature Selection

Both constraint types we analyze, i.e., feature-cardinality constraints and al-
ternative subgroup descriptions, relate to the features used in the subgroup
description. In the field of feature selection [39, 60], constraints are a topic
as well [10, 11, 12]. While limiting feature-set cardinality is very common in
feature-selection methods, [10, 11] are unique since they propose a white-box
formulation of alternative feature selection. Similar to Equation 16, they use a
threshold-based dissimilarity constraint on feature selection, though with a dif-
ferent dissimilarity measure. Besides a sequential search for alternatives, which
we use as well, they also analyze simultaneous search.

Despite the similarities, traditional feature selection generally tackles a dif-
ferent optimization problem than subgroup discovery. In particular, the former
problem ‘only’ concerns selecting the features instead of also determining bounds
on them. The selected features do not form a prediction model per se but are
used in another machine-learning model afterward. For feature selection itself,
a notion of feature-set quality serves as the objective function. The latter de-
pends on the feature-selection method but typically assesses features globally,
while subgroups describe a particular region in the data.

47



7.3 Other Fields

Classification There are white-box formulations for various types of classi-
fication models [43]. E.g., there are formulations in propositional logic (SAT)
for optimal decision trees, decision sets, and decision lists [75, 85, 90]. Sim-
ilar to subgroup descriptions, these three model types also use conjunctions
of conditions to form decision rules. Creating sparse models to reduce model
complexity, as we do with feature-cardinality constraints, is an issue for such
models as well [90]. However, these model types use multiple rules to classify
data globally, while subgroup discovery employs one rule to describe an inter-
esting region. Further, some of these particular white-box formulations target
at perfect predictions rather than optimizing prediction quality.

Constrained data mining [33] provides a broad survey on constraints in
various fields of data mining, i.e., classification, clustering, and pattern mining.

Counterfactual explanations Searching for counterfactual explanations is
an explainable-AI paradigm that targets at data objects with feature values as
similar as possible to a given data object but with a different prediction of a
given classifier [36]. Thus, counterfactuals provide alternative explanations on
the local level, i.e., for individual data objects. In contrast, alternative subgroup
descriptions aim to reproduce subgroup membership globally, striving for a sim-
ilar prediction but a different feature selection. Approaches yielding multiple
counterfactuals often foster diversity, e.g., by extending the optimization objec-
tive [74] or introducing constraints [44, 71, 83]. However, only some approaches
have a user-friendly parameter to control the diversity of solutions actively. In
particular, [71] offers a dissimilarity threshold comparable to our parameter τ
for alternative subgroup descriptions.

8 Conclusions and Future Work

In this section, we recap our article (cf. Section 8.1) and propose directions for
future work (cf. Section 8.2).

8.1 Conclusions

Subgroup-discovery methods constitute an important category of interpretable
machine-learning models. In this article, we analyzed constrained subgroup
discovery as another step to improve interpretability. First, we formalized sub-
group discovery as an SMT optimization problem. This formulation supports
a variety of user constraints and enables a solver-based search for subgroups.
In particular, we studied two constraint types, i.e., limiting the number of fea-
tures used in subgroups and searching for alternative subgroup descriptions. For
the latter constraint type, we let users control the number of alternatives and
a dissimilarity threshold. We showed how to integrate these constraint types
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into our SMT formulation as well as existing heuristic search methods for sub-
group discovery. Further, we proved NP-hardness of the optimization problem
with constraints. Finally, we evaluated heuristic and solver-based search with
27 binary-classification datasets. In particular, we analyzed four experimen-
tal scenarios: unconstrained subgroup discovery, our two constraint types, and
timeouts for solver-based search.

8.2 Future Work

Datasets Our evaluation used over two dozen generic benchmark datasets
(cf. Section 5.5). While such an evaluation shows general trends, the impact of
constraints naturally depends on the dataset. Thus, our results may not transfer
to each particular scenario. This caveat calls for domain-specific case studies.
In such studies, one could also interpret alternative subgroup descriptions qual-
itatively, i.e., from the domain perspective.

Constraint types We formalized, analyzed, and evaluated two constraint
types, i.e., feature-cardinality constraints (cf. Sections 4.3 and 6.3) and alter-
native subgroup descriptions (cf. Sections 4.4 and 6.4). As mentioned in Sec-
tion 4.2, there are further constraint types one could investigate, e.g., domain-
specific constraints, secondary objectives, or alternatives in the sense of covering
different data objects rather than covering the same data objects differently.

For alternative subgroup descriptions, one could analyze other dissimilari-
ties, e.g., symmetric ones rather than the asymmetric deselection dissimilarity
we used (cf. Equation 14). While the SMT encoding of subgroup discovery is
relatively flexible regarding dissimilarities, integrating them into heuristic search
methods may be challenging, e.g., if the dissimilarity is not antimonotonic.

Formalization In the solver-based search for subgroups, we used an SMT
encoding (cf. Section 4.1) and one particular solver. Different white-box encod-
ings or solvers may speed up the search and lead to fewer timeouts, potentially
improving the subgroup quality. We already proposed MILP and MaxSAT en-
codings (cf. Appendices A.1.2 and A.1.3), though without evaluation.

In our article, two assumptions for subgroup discovery were numerical fea-
tures and a binary target (cf. Section 2.1). One could adapt the SMT encoding
to multi-valued categorical features (cf. Appendix A.1.1) and continuous targets.

Computational complexity We established NP-hardness for subgroup dis-
covery with a feature-cardinality constraint (cf. Propositions 7 and 8). While
the search problem for perfect subgroups admits a polynomial-time algorithm
without such constraints (cf. Proposition 2), we did not analyze the general
unconstrained optimization problem, i.e., including imperfect subgroups.

Further, we showed NP-hardness for finding alternative subgroup descrip-
tions for perfect and imperfect subgroups (cf. Propositions 11 and 12). In both
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cases, we first tackled the search problem for perfect alternatives (cf. Defini-
tion 10), i.e., alternative descriptions that entail exactly the same subgroup
membership of data objects as the original subgroup. While we generalized
NP-hardness to the optimization problem (cf. Definition 9), which also in-
cludes imperfect alternatives as solutions (cf. Proposition 13), one could try to
prove hardness for imperfect alternatives explicitly. Also, our proofs focused on
scenarios where all originally selected features must not be selected in the alter-
native subgroup description, i.e., a specific value of the dissimilarity threshold τ .
One could analyze scenarios with overlapping feature sets explicitly.

For parameterized complexity, we established membership in the relatively
broad complexity class XP for the unconstrained scenario, feature-cardinality
constraints, and alternative subgroup descriptions (cf. Propositions 5, 6, and 10).
One may attempt to tighten these results.

Finally, while we described how one can integrate feature-cardinality con-
straints and alternative subgroup descriptions into heuristic search methods
(cf. Sections 4.3.3 and 4.4.3), we did not provide quality guarantees relative to
the exact optimum. In that regard, one could seek an approximation complex-
ity result, e.g., membership in the complexity class APX , as established for the
problem of finding equivalent subgroup descriptions of minimal length [17].

A Appendix

In this section, we provide supplementary materials. Appendix A.1 describes
further problem encodings of subgroup discovery, complementing Section 4.1.
Appendix A.2 contains proofs for propositions from Section 4.

A.1 Further Problem Encodings of Subgroup Discovery

In this section, we provide additional white-box encodings of subgroup discovery
beyond the SMT encoding from Section 4.1. First, we describe how to encode
categorical features within the SMT formulation (cf. Section A.1.1). Next, we
discuss encodings as a mixed-integer linear program (cf. Section A.1.2) and a
maximum-satisfiability problem (cf. Section A.1.3).

A.1.1 Handling Categorical Features in the SMT Encoding

In general, there are many different options to encode categorical data in ma-
chine learning numerically [67]. Similarly, there are also multiple options for
considering categorical features in an SMT formulation of subgroup discovery.
We present three of them in the following.

Two variables per categorical feature As a straightforward option, one
may map all categories, i.e., unique values, of each categorical feature to distinct
integers before instantiating the optimization problem. One can directly apply
our existing SMT formulation (cf. Equation 8) to such an ordinally encoded
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dataset, at least technically. In particular, there would be two integer-valued
bound variables for each encoded categorical feature. However, the ordering of
categories should be semantically meaningful since it influences which categories
may jointly be included in the subgroup. In particular, only sets of categories
that form contiguous integer ranges in the ordinal encoding may define subgroup
membership. I.e., the subgroup may comprise the encoded categories {3, 4, 5},
but not only {3, 5} since it needs to include all values between a lower and an
upper bound. Thus, if there is no meaningful ordering of categories, one should
choose a different encoding.

Two variables per categorical feature value One can achieve more flex-
ibility by introducing separate bound variables for each category of a feature
rather than only for each feature. This approach corresponds to a one-hot en-
coding of the dataset, which creates one new binary feature for each category.
Thus, the bound variables are effectively binary as well. By default, our SMT
encoding uses a logical AND (∧) over the binary features, i.e., categories. The
interpretation of bound values for one binary Feature j is as follows:

(Case 1) lbj = ubj = 1 means that data objects that assume the correspond-
ing category for Feature j are members of the subgroup. In practice, this case
may apply to at most one category of each feature. Otherwise, the AND (∧)
operator would require each data object to assume multiple categories for one
feature, which is unsatisfiable. Thus, this encoding cannot directly express that
a set of categories is included in the subgroup.

(Case 2) lbj = ubj = 0 means that data objects that do not assume the
corresponding category for Feature j are members of the subgroup. I.e., data
objects assuming the corresponding category are not subgroup members. Other
than Case 1, this case can apply to multiple categories of each feature, i.e., the
subgroup may explicitly exclude multiple categories. Further, if one category
is actively included in the subgroup (Case 1), then Case-2 bounds on other
categories are redundant since they are implied by the former.

(Case 3) lbj = 0, ubj = 1 explicitly deselects a binary feature, i.e., both
binary values do not restrict subgroup membership.

(Case 4) lbj = 1, ubj = 0 cannot occur since it violates the bound constraints
(cf. Equation 6).

Finally, note that binary features allow us to slightly simplify the subgroup-
membership expression (cf. Equation 7). In general, we need to check the lower
and upper bound for a feature. However, if a binary feature assumes the value 0
for a data object, checking the upper bound is unnecessary since it is always
satisfied. Similarly, if a binary feature assumes the value 1 for a data object,
checking the lower bound is unnecessary since it is always satisfied. Both these
simplifications assume that the bounds are explicitly defined as binary or at least
in [0, 1], which can be enforced with straightforward constraints. Otherwise, the
bounds may theoretically be placed outside the feature’s range and exclude all
data objects, producing an empty subgroup.
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One variable per categorical feature value In some scenarios, it does not
make sense to include the absence of a category in the subgroup, i.e., to permit
lbj = ubj = 0. In particular, some existing subgroup-discovery methods for cat-
egorical data assume that only the presence of categories is interesting [3]. In this
case, introducing one instead of two bound variable(s) for each category suffices.

Assume the categorical Feature j has |cj | ∈ N different categories {c1j , . . . , c
|cj |
j }.

Let cbj ∈ {0, 1}|cj | denote the corresponding bound variables, which denote
whether a category is included in the subgroup. The ordering of categories in
this vector is arbitrary but fixed.

As a difference to previously described encodings, the subgroup-membership
expression (cf. Equation 7) should still use a logical AND (∧) over features but
not over categories belonging to the same feature. Otherwise, the expression
would be unsatisfiable since each data object only assumes one category for each
feature. Instead, we replace the numeric bound check (Xij ≥ lbj)∧ (Xij ≤ ubj)
for Feature j with the following OR (∨) expression:∨

l∈{1,...,|cj |}

(
cblj ∧

(
Xij = clj

))
(17)

Since the equality holds for exactly one category, all conjunctions except one

are false, and the expression simplifies to one variable cbl
′

j , where l
′ is the index

of the category Xij . I.e., for each categorical feature, a data object can only be
a subgroup member if the variable belonging to its category is 1.

In general, multiple cblj for Feature j may be 1, representing multiple cate-
gories included in the subgroup, which is an advantage over the previous encod-
ing. If all categories are in the subgroup, the feature becomes deselected. Thus,
for a categorical Feature j, Equation 9 for feature selection becomes:

sj ↔ ¬
∧

l∈{1,...,|cj |}

cblj (18)

One can also constrain the number of categories in the subgroup, e.g., to ei-
ther include one category of Feature j in the subgroup or deselect the feature
altogether by including all categories: |cj |∑

l=1

cblj

 = 1

 ∨
 |cj |∑

l=1

cblj

 = |cj |

 (19)

A.1.2 Mixed-Integer Linear Programming (MILP)

We start from the SMT formulation and introduce additional variables and
constraints to linearize certain logical expressions.

Unconstrained subgroup discovery From the corresponding SMT formu-
lation (cf. Equation 8), we can keep all decision variables: the binary variables bi
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for subgroup membership and the real-valued bound variables lbj and ubj . The
bound constraints (cf. Equation 6) remain unchanged as well. Further, we retain
the optimization objective, which already is linear in bi (cf. Equations 4 and 5).
However, we need to linearize the logical AND operators (∧) in the definition
of subgroup membership bi (cf. Equation 7) by introducing auxiliary variables
and further constraints. In particular, we supplement the variables b ∈ {0, 1}m
by blb ∈ {0, 1}m×n and bub ∈ {0, 1}m×n. These new binary variables indicate
whether a particular data object satisfies the lower respectively upper bound
for a particular feature. Using linearization techniques for constraint satisfac-
tion and AND operators from [73], we obtain the following set of constraints to
replace Equation 7:

∀i ∀j : Xij +mj · blbij ≤ lbj − εj

∀i ∀j : lbj ≤ Xij +Mj ·
(
1− blbij

)
∀i ∀j : ubj +mj · bubij ≤ Xij − εj

∀i ∀j : Xij ≤ ubj +Mj ·
(
1− bubij

)
∀i ∀j : bi ≤ blbij

∀i ∀j : bi ≤ bubij

∀i :
n∑

j=1

(
blbij + bubij

)
≤ bi + 2n− 1

with indices: i ∈ {1, . . . ,m}
j ∈ {1, . . . , n}

(20)

The first two inequalities ensure that blbij = 1 if and only if lbj ≤ Xij . The

following two inequalities perform a corresponding check for bubij . The values εj ∈
R>0 are small constants that turn strict inequalities into non-strict inequalities
since a MILP solver may only be able to handle the latter. One possible choice,
which we used in a demo implementation, is sorting all unique feature values and
taking the minimum difference between two consecutive values in that order.

The values Mj ∈ R>0 and mj ∈ R<0 are large positive and negative con-
stants, respectively. They allow us to express logical implications between real-
valued and binary-valued expressions, compensating the latter’s smaller range.
One choice for Mj is a value larger than the difference between the feature’s
minimum and maximum, which can be pre-computed before optimization:

∀j ∈ {1, . . . , n} Mj := 2 ·
(

max
i∈{1,...,m}

Xij − min
i∈{1,...,m}

Xij

)
∀j ∈ {1, . . . , n} mj := 2 ·

(
min

i∈{1,...,m}
Xij − max

i∈{1,...,m}
Xij

) (21)

In particular, the difference between the subgroup’s bounds and arbitrary fea-
ture values must be smaller than Mj and larger than mj , unless the bounds are
placed outside the feature’s value range. Since the latter does not improve the
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subgroup’s quality in any case, we prevent it with additional constraints on the
bound variables lbj and ubj :

∀j ∈ {1, . . . , n} min
i∈{1,...,m}

Xij ≤ lbj ≤ max
i∈{1,...,m}

Xij

∀j ∈ {1, . . . , n} min
i∈{1,...,m}

Xij ≤ ubj ≤ max
i∈{1,...,m}

Xij

(22)

Finally, the last three inequalities in Equation 20 tie blbij and bubij to bi and
linearize the logical AND operators (∧) from Equation 7. In particular, these
constraints ensure that a data object is a member of the subgroup, i.e., bi = 1,
if and only if all feature values of the data object observe the lower and upper
bounds, i.e., all corresponding blbij = 1 and bubij = 1.

Feature-cardinality constraints The feature-cardinality constraint of the
SMT formulation (cf. Equation 10) already is a linear expression in the feature-
selection variables sj , so we can keep it as-is. However, the constraints defin-
ing sj (cf. Equation 9) contain a logical OR (∨) operator and comparison (<)
expressions. We linearize these constraints as follows:

∀i ∀j : 1− blbij ≤ slbj

∀i ∀j : 1− bubij ≤ subj

∀j : slbj ≤ sj

∀j : subj ≤ sj

∀j : sj ≤ 2m−
m∑
i=1

(
blbij + bubij

)
with indices: i ∈ {1, . . . ,m}

j ∈ {1, . . . , n}

(23)

The first four inequalities ensure that a feature is selected, i.e., sj = 1, if any
data object’s feature value lies outside the subgroup’s bounds, i.e., any blbij = 0 or

bubij = 0. The last inequality covers the other direction of the logical equivalence,
i.e., if a feature is selected, then at least one data object’s feature value lies
outside the subgroup’s bounds.

Alternative subgroup descriptions The objective function for alternative
subgroup descriptions in the SMT formulation (cf. Equation 15) is already linear.
We only need to replace the logical negation operators (¬):

simnHamm(b
(a), b(0)) =

1

m
·

 ∑
i∈{1,...,m}

b
(0)
i =1

b
(a)
i +

∑
i∈{1,...,m}

b
(0)
i =0

(
1− b

(a)
i

) (24)
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The same replacement also applies to the dissimilarity constraints (cf. Equa-
tion 16), which now look as follows:

∀l ∈ {0, . . . , a− 1} : disdes(s
(a), s(l)) =

∑
j∈{1,...,n}

s
(l)
j =1

(
1− s

(a)
j

)
≥ min

(
τabs, k(l)

)
(25)

Otherwise, this expression is linear as well, so no further auxiliary variables or
constraints are necessary.

Implementation Our published code contains a MILP implementation for
unconstrained and feature-cardinality-constrained subgroup discovery. We use
the package OR-Tools [79] with SCIP [15] as the optimizer. However, in pre-
liminary experiments, this implementation was (on average) slower than the
SMT implementation or yielded worse subgroup quality in the same runtime.
Further, it sometimes finished considerably after the prescribed timeout or ran
out of memory after consuming dozens of gigabytes. Thus, we stuck to the SMT
implementation for our main experiments (cf. Section 5.2).

A.1.3 Maximum Satisfiability (MaxSAT)

Our SMT formulation of subgroup discovery with and without constraints uses a
combination of propositional logic and linear arithmetic. However, if all feature
values are binary or binarized, i.e., X ∈ {0, 1}m×n, we can also define a partial
weighted MaxSAT problem [9, 59]. This formulation involves hard constraints
in propositional logic and an objective function containing weighted clauses, i.e.,
OR terms. In our case, it even is a Max One [46] problem since the ‘clauses’
in the objective are plain binary variables.

Unconstrained subgroup discovery For binary feature values, the bound
variables lbj and ubj become binary rather than real-valued as well. The sub-
group membership variables bi were binary already (cf. Equation 8). In the hard
constraints, all less-or-equal inequalities (≤) become logical implications (→).
Thus, the bound constraints (cf. Equation 6) become:

∀j ∈ {1, . . . , n} : lbj → ubj (26)

I.e., if the lower bound is 1, then the upper bound also needs to be 1; otherwise,
the upper bound may be 0 or 1.

The subgroup-membership expressions (cf. Equation 7) turn into:

∀i ∈ {1, . . . ,m} : bi ↔
∧

j∈{1,...,n}

((lbj → Xij) ∧ (Xij → ubj)) (27)

Since all values Xij are known, we can remove and simplify terms in the defini-
tion of bi. In particular, if Xij = 1, then lbj → Xij is a tautology, which we can
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remove, and Xij → ubj becomes ubj . Vice, versa, if Xij = 0, then Xij → ubj
is a tautology and lbj → Xij becomes ¬lbj .

Further, having determined the bound values, the final subgroup description
can be expressed as a plain conjunction of propositional literals, e.g., bi ↔
(Xi2 ∧ ¬Xi5 ∧Xi6). In particular, there are four cases: (1) If lbj = 0 and
ubj = 1, then the feature’s value does not restrict subgroup membership and
therefore does not need to be checked in the final subgroup description. (2) If
lbj = ubj = 0, then only Xij = 0 is in the subgroup, i.e., a negative literal
becomes part of the final subgroup description. (3) If lbj = ubj = 1, then only
Xij = 1 is in the subgroup, i.e., a positive literal becomes part of the final
subgroup description. (4) The combination lbj = 1 and ubj = 0 violates the
bound constraints and will therefore not appear in a valid solution.

Finally, the objective function is already a weighted sum of the subgroup-
membership variables bi, which form the soft constraints for the problem. In
particular, we can re-formulate Equation 4 as follows:

WRACC =
1

m
·

∑
i∈{1,...,m}

yi=1

bi −
m+

m2
·

m∑
i=1

bi (28)

Thus, for negative data objects, i.e., with yi = 0, the weight is −m+/m2. For
positive data objects, i.e., with yi = 1, the weight is (m−m+)/m2. Since m is
a constant, we can also multiply with m2 to obtain integer-valued weights.

Feature-cardinality constraints For binary features, the definition of the
feature selection variables sj (cf. Equation 9), which are binary by default,
amounts to:

∀j : slbj ↔

lbj ∧ ¬

 ∧
i∈{1,...,m}

Xij


∀j : subj ↔

¬ubj ∧
 ∨

i∈{1,...,m}

Xij


∀j : sj ↔

(
slbj ∨ subj

)
with index: j ∈ {1, . . . , n}

(29)

I.e., a feature is selected regarding its lower bound if the lower bound is set to 1
and at least one feature value is 0, i.e., at least one feature value is excluded
from the subgroup. Vice versa, a feature is selected regarding its upper bound if
the upper bound is set to 0 and and at least one feature value is 1, i.e., at least
one feature value is excluded from the subgroup. Since all values Xij are known,
we can evaluate the corresponding AND and OR terms before optimization. If
a feature is 0 and 1 for at least one data object each, which should usually be
the case, Equation 29 becomes a much simpler expression:

sj ↔ (lbj ∨ ¬ubj) (30)
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To transform the actual feature-cardinality constraint (cf. Equation 10),
which sums up the variables sj and compares them to a user-defined k, into
propositional logic, we can use a cardinality encoding from the literature [86].

Alternative subgroup descriptions The objective function for alterna-
tive subgroup descriptions (cf. Equation 15) already is a weighted sum of the

subgroup-membership variables b
(a)
i . In particular, for negative data objects,

i.e., with yi = 0, the weight of the literal ¬b(a)i is 1/m. For positive data ob-

jects, i.e., with yi = 1, the weight of the literal b
(a)
i is 1/m. Sincem is a constant,

we can also use 1 as the weight.
We can encode the dissimilarity constraint on the feature selection (cf. Equa-

tion 16) with a cardinality encoding from the literature [86].

Non-binary features While we discussed binary features up to now, we can
also encode multi-valued features in a way suitable for a MaxSAT formulation.
In Section A.1.1, we already addressed how categorical features may be repre-
sented binarily. For numeric features, we can introduce two binary variables
for each numeric value: Let the numeric Feature j have |vj | ∈ N distinct val-

ues {v1j , . . . , v
|vj |
j }, with higher superscripts denoting higher values. Next, let

lbj ∈ {0, 1}|vj | and ubj ∈ {0, 1}|vj | denote the corresponding binary bound vari-
ables. I.e., instead of two bound variables per feature, there are two bound
variables for each unique feature value now. lblj indicates whether the l-th

unique value of Feature j is the lower bound. Vice versa, ublj indicates whether
the l-th unique value of Feature j is the upper bound. If this encoding gener-
ates too many variables, one may discretize the feature first, e.g., by binning its
values and representing each bin by one value, e.g., the bin’s mean.

The bound constraints (cf. Equations 6 and 26) take the following form:

∀j :
|vj |∑
l=1

lblj = 1

∀j :
|vj |∑
l=1

ublj = 1

∀j ∀l1 ∈ {1, . . . , |vj |} : ubl1j →
∨

l2∈{1,...,l1}

lbl2j

with index: j ∈ {1, . . . , n}

(31)

The first two constraints ensure that exactly one value of Feature j is cho-
sen as the lower bound and upper bound, respectively. These constraints can
be encoded into propositional logic with a cardinality encoding from the litera-
ture [86]. The third constraint enforces that the value chosen as the lower bound
is less than or equal to the value chosen as the upper bound. Alternatively, one
could also formulate that the value chosen as the upper bound is greater than
or equal to the value chosen as the lower bound.
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We formulate the subgroup-membership expressions (cf. Equations 7 and 27)
as follows:

∀i ∈ {1, . . . ,m} : bi ↔
∧

j∈{1,...,n}


 ∨

l∈{1,...,l̄}
Xij=vl̄

lblj

 ∧
 ∨

l∈{l̄,...,|vj |}
Xij=vl̄

ublj


 (32)

In particular, for a data object to be a subgroup member, each feature’s lower
bound needs to be lower or equal to the actual value Xij , while the upper bound

needs to be higher or equal. For the binary lower-bound variables lblj , this means
that any of the bound variables representing values lower or equal to Xij needs
to be 1; vice versa for the upper bounds.

Finally, for feature-cardinality constraints, we define the feature-selection
variables sj (cf. Equations 9 and 29) as follows:

∀j ∈ {1, . . . , n} : sj ↔
(
¬lb1j ∨ ¬ub

|vj |
j

)
(33)

In particular, we check whether the lower bound is not the minimum or the upper
bound is not the maximum value of that feature, which indicates whether the
bounds exclude at least one data object from the subgroup or not. The actual
feature-cardinality constraint (cf. Equation 10) does not need to be specifically
adapted for non-binary features in MaxSAT. The same goes for the definition
of alternative subgroup descriptions (cf. Equations 15 and Equation 16), which
only uses the original binary decision variables by default.

A.2 Proofs

In this section, we provide proofs for propositions from Section 4, particularly
for the complexity results for subgroup discovery with a feature-cardinality con-
straint and for searching alternative subgroup descriptions.

A.2.1 Proof of Proposition 7

Proof. Let an arbitrary problem instance I of the decision problem Set Cov-
ering [45] be given. I consists of a set of elements E = {e1, . . . , em}, a set of
sets S = {S1, . . . , Sn} with E =

⋃
S∈S S, and a cardinality k ∈ N. The decision

problem Set Covering asks whether a subset C ⊆ S exists with |C| ≤ k and
E =

⋃
S∈C S, i.e., a subset of S which contains (= covers) each element in at

least one set and consist of at most k sets.
We transform I into a problem instance I ′ of the perfect-subgroup-discovery

problem (cf. Definition 6) with a feature-cardinality constraint (cf. Definition 8).
To this end, we define a binary dataset X ∈ {0, 1}(m+1)×n, prediction target y ∈
{0, 1}m+1, and retain the set cardinality k ∈ N as feature cardinality k. In
particular, data objects represent elements from E, and features represent sets
from S. I.e., Xij denotes ei ∈ Sj , i.e., membership of Element i in Set j. The
additional index i = m + 1 represents a dummy element that is not part of
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any set, so all feature values Xij are set to 0. Further, we define the prediction
target y ∈ {0, 1}m+1 as ym+1 = 1 and yi = 0 for all other indices i ∈ {1, . . . ,m}.
This prediction target represents whether an element should not be covered by
the set of sets C ⊆ S. In particular, all actual elements from E should be covered
but not the new dummy element. This ‘inverted’ definition of the prediction
target stems from the different nature of set covers and subgroup descriptions:
Set covers include elements from selected sets, with the empty cover C = ∅
containing no elements. There is a logical OR (∨) respectively set union over
the selected sets. In contrast, subgroup descriptions exclude data objects based
on bounds for their selected features, with the unrestricted subgroup containing
all data objects. There is a logical AND (∧) over the features’ bounds.

A perfect subgroup (cf. Definition 5) exactly replicates the prediction target
as subgroup membership. Here, it only contains the data object representing the
dummy element but zero data objects representing actual elements. Further, as
all feature values of this dummy data object are 0, the subgroup description only
consists of the bounds lbj = ubj = 0 for selected features and lbj = 0 < 1 = ubj
for unselected features. Therefore, the data objects described by the selected
features represent elements not contained in any of the selected sets, which only
applies to the dummy element. Vice versa, all remaining data objects represent
elements that are part of at least one selected set, which applies to all actual
elements from E. Further, the feature-cardinality constraint (cf. Definition 8)
ensures that at most k features are selected, which means that at most k sets
are selected. Thus, if the feature-cardinality constraint is satisfied in the perfect
subgroup, the selected features represent sets forming a valid set cover C.

In contrast, if no feature set of the desired size k can describe a perfect
subgroup, then at least one data object with prediction target yj = 0 has to be
part of the subgroup. Thus, at least one element is not contained in any set
forming the set cover, so no valid set cover of size k exists.

Overall, a solution to the instance I ′ of the perfect-subgroup discovery prob-
lem (cf. Definition 6) with a feature-cardinality constraint (cf. Definition 8) also
solves the instance I of the decision problem Set Covering [45] with neg-
ligible computational overhead. In particular, an efficient solution algorithm
for the former would also efficiently solve the latter. However, since the latter
problem is NP-hard [45], the former is as well. To be more precise, the perfect-
subgroup-discovery problem with feature-cardinality constraint resides in the
complexity class NP and therefore is NP-complete. In particular, checking
a solution induces a polynomial cost of O(m · n), requiring one pass over the
dataset to determine subgroup membership and feature selection.

This proof is an adaptation of the proof of [17] for minimizing the feature
cardinality of a given subgroup description. The latter proof reduces from the
optimization problem Minimum Set Cover, while we use the decision prob-
lem Set Covering since perfect-subgroup discovery (cf. Definition 6) is not an
optimization problem. Further, we replace the notion of a given subgroup de-
scription [17] with the notion of a perfect subgroup. Also, we employ inequalities
with lower and upper bounds in the subgroup description, while [17] uses ‘fea-
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ture=value’ conditions. However, this difference is irrelevant for binary datasets,
where selected features have lbj = ubj bounds and thereby implicitly select a
feature value instead of a range. The hardness result naturally extends to real-
valued datasets, which generalize binary datasets.

Note that the hardness reduction does not work for the special case k = n.
For Set Covering, this case allows all sets to be selected, which leads to a
trivial solution since the complete set of sets S contains all elements from E by
definition. Vice versa, being able to use all features in the subgroup description
leads to the unconstrained problem of perfect-subgroup discovery (cf. Defini-
tion 6), which admits a polynomial-time solution (cf. Proposition 2).

A.2.2 Proof of Proposition 8

Proof. Let an arbitrary problem instance I of the perfect-subgroup-discovery
problem (cf. Definition 6) with a feature-cardinality constraint (cf. Definition 8)
be given. We transform I into a problem instance I ′ of the subgroup-discovery
problem (cf. Definition 2) with the same constraint. In particular, we define the
objective as optimizing a subgroup-quality function Q(lb, ub, X, y) rather than
searching for a perfect subgroup (cf. Definition 5) that may or may not exist.
The other inputs of the problem instance (X, y, and k) remain the same.

Based on the assumption we made on Q(lb, ub, X, y) in Proposition 8, the
optimal solution for I ′ is a perfect subgroup if the latter exists. Thus, if the
optimal subgroup for I ′ is not perfect, then a perfect subgroup does not exist
at all. Checking whether a subgroup is perfect entails a cost of O(n ·m), i.e.,
computing subgroup membership and checking for false positives and false neg-
atives. Overall, an algorithm for subgroup discovery (cf. Definition 2) with a
feature-cardinality constraint (cf. Definition 8) solves perfect-subgroup discov-
ery (cf. Definition 6) with the same constraint with negligible overhead. Since
the latter problem is NP-complete (cf. Proposition 7) and the former resides in
the complexity class NP, the former is NP-complete as well.

As an alternative proof, one could reduce from the optimization problem
Maximum Coverage [22] instead of the search problem of perfect-subgroup
discovery (cf. Definition 6) with a feature-cardinality constraint (cf. Defini-
tion 8). This proof idea is strongly related to the proof for Proposition 7
(cf. Section A.2.1), which reduces from the decision problem Set Covering [45]
to perfect-subgroup discovery (cf. Definition 6) with a feature-cardinality con-
straint (cf. Definition 8). In contrast to Set Covering, the k ∈ N selected
subsets in Maximum Coverage need not cover all elements but should cover
as many elements as possible. In the terminology of subgroup discovery, the
latter objective corresponds to a particular notion of subgroup quality: maxi-
mizing the number of true negatives or minimizing the number of false positives,
i.e., excluding as many negative data objects from the subgroup as possible. We
introduced this problem as minimal-optimal-recall-subgroup discovery (cf. Defi-
nition 4), which resides in P without a feature-cardinality constraint (cf. Propo-
sition 1) due to the baseline MORS (cf. Algorithm 5). When equipping MORS
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with feature-cardinality constraints (cf. Section 4.3.4), existing heuristics for the
Maximum Coverage problem may provide approximation guarantees.

However, minimizing the number of false positives is a simpler objective than
WRAcc (cf. Equation 1), which we focus on in this article. Our proof approach
chosen above is more general regarding the notion of subgroup quality but more
narrow in the sense that it reduces from a search problem, assuming a particular
value of the objective function, instead of an optimization problem.

A.2.3 Proof of Proposition 11

Proof. Let an arbitrary problem instance I of the perfect-subgroup-discovery
problem (cf. Definition 6) with a feature-cardinality constraint (cf. Definition 8)
be given. We transform I into a problem instance I ′ of the perfect-alternative-
subgroup-description-discovery problem (cf. Definition 11) with the same con-
straint. In particular, we retain the prediction target y ∈ {0, 1}m and the
feature-cardinality threshold k ∈ N. We will slightly modify the dataset X ∈
Rm×n, as explained later.

Based on the assumptions we made in Proposition 11, we define the original
subgroup for I ′ to be perfect (cf. Definition 5), i.e., having subgroup member-
ship b(0) = y. Also, we choose the dissimilarity threshold τ ∈ R≥0 high enough
that the alternative subgroup description may not select any features that were
selected in the original subgroup description. This choice of τ depends on the
choice of the dissimilarity measure dis(·) for feature-selection vectors. E.g., we
can choose the deselection dissimilarity used in our article (cf. Equation 14)
and τabs = k. Note that we do not even need to explicitly define the actual
feature selection for the original subgroup description since we must not select
these features in the alternative subgroup description anyway. For the sake of
completeness, we can define dataset X ′ ∈ Rm×(n+k) of problem instance I ′ as
dataset X ∈ Rm×n of problem instance I with k extra perfect features added.
In particular, we define the Features n+1, . . . , n+k to be identical to the binary
prediction target y. Choosing the bounds lbj = ubj = 1 on any of these extra
features produces the desired original subgroup membership b(0) = y. We fur-
ther assume that all extra features were selected in the original subgroup descrip-

tion but none of the actual features from X was, i.e., ∀j ∈ {1, . . . , n} : s
(0)
j = 0

and ∀j ∈ {n+ 1, . . . , n+ k} : s
(0)
j = 1.

A solution for problem instance I ′ also is a solution for problem instance I.
In particular, the perfect alternative subgroup description (cf. Definition 10)
defines a perfect subgroup since it perfectly replicates the original subgroup
membership, which constitutes a perfect subgroup. I.e., b(a) = b(0) = y. Due
to the dissimilarity constraint, the alternative subgroup description only selects
features from dataset X, not those newly added to create X ′. Finally, both I
and I ′ use a feature-cardinality constraint with threshold k. Thus, if a perfect
alternative subgroup description for I ′ exists, it also solves I. If it does not
exist, then there also is no other perfect subgroup for I.

Thus, an efficient solution algorithm for the perfect-alternative-subgroup-
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description-discovery problem (cf. Definition 11) with a feature-cardinality con-
straint (cf. Definition 8) would also efficiently solve perfect-subgroup discovery
(cf. Definition 6) with the same constraint. However, we already established that
the latter problem is NP-complete (cf. Proposition 7). Further, evaluating a
solution for the former problem entails a polynomial cost of O(m·n) for checking
subgroup membership, the bound constraints, the feature-cardinality constraint,
and the dissimilarity constraint, placing the problem in complexity class NP.
Thus, perfect-alternative-subgroup-description discovery (cf. Definition 11) with
a feature-cardinality constraint (cf. Definition 8) is NP-complete.

A.2.4 Proof of Proposition 12

Proof. Let an arbitrary problem instance I of the perfect-alternative-subgroup-
description-discovery problem (cf. Definition 11) with a feature-cardinality con-
straint (cf. Definition 8) and a perfect original subgroup (cf. Definition 5) be
given. We transform I into a problem instance I ′ of the same problem but
with an imperfect original subgroup. In particular, we retain all inputs of the
problem as-is except defining dataset X ′ ∈ R(m+1)×n of problem instance I ′

as dataset X ∈ Rm×n of problem instance I plus an additional imperfect data
object. This special data object has the label ym+1 = 0 but exactly the same
feature values as an arbitrary existing data object Xi· with yi = 1. In particular,
such a data object makes it impossible to find a perfect subgroup. However, we

assume this data object to be a member of the original subgroup, i.e., b
(0)
m+1 = 1,

while subgroup membership of all other data objects corresponds to their pre-

diction target, i.e., ∀i ∈ {1, . . . ,m} : b
(0)
i = yi.

If there is a solution for problem instance I ′, we can easily transform it to a
solution for I. In particular, since the solution is a perfect alternative subgroup
description (cf. Definition 10), it replicates b(0), i.e., assigns all positive data
objects of I to the alternative subgroup and places all negative data objects of I
outside the subgroup. The additional imperfect data object is also a member of
the alternative subgroup in I ′ but does not exist in I. Thus, the solution is a
perfect subgroup for I. On the other hand, if no solution for problem instance I ′

exists, then there is also no solution for I.
Overall, an efficient solution algorithm for the problem of perfect-alternative-

subgroup-description discovery (cf. Definition 11) with a feature-cardinality con-
straint (cf. Definition 8) and an imperfect original subgroup (cf. Definition 5)
could also be used to efficiently solve this problem for a perfect original subgroup.
However, we proved that the latter problem isNP-complete (cf. Proposition 11),
making the former, which resides in NP as well, also NP-complete.

A.2.5 Proof of Proposition 13

The following proof is similar to the proof of Proposition 8 (cf. Section A.2.2),
which reduced the search problem of perfect-subgroup discovery with a feature-
cardinality constraint (cf. Definitions 6 and 8) to the optimization problem of
subgroup discovery (cf. Definition 2) with the same constraint.
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Proof. Let an arbitrary problem instance I of the perfect-alternative-subgroup-
description-discovery problem (cf. Definition 11) with a feature-cardinality con-
straint (cf. Definition 8) be given. We transform I into a problem instance I ′ of
the alternative-subgroup-description-discovery problem (cf. Definition 9) with
the same constraint. In particular, we define the objective as optimizing the
subgroup-membership similarity sim(·) rather than asking for a perfect alterna-
tive subgroup description (cf. Definition 10) that may or may not exist. The
other inputs of the problem instance remain the same.

Based on the assumption we made on sim(·) in Proposition 13, the optimal
solution for I ′ is a perfect alternative subgroup description if the latter exists.
Thus, if the optimal alternative subgroup description for I ′ is not a perfect alter-
native, then a perfect alternative subgroup description does not exist. Overall,
an algorithm for alternative-subgroup-description discovery (cf. Definition 9)
with a feature-cardinality constraint (cf. Definition 8) solves perfect-alternative-
subgroup-description discovery (cf. Definition 11) with the same constraint with
negligible overhead. Since the latter problem is NP-complete (cf. Proposi-
tions 11 and 12) and the former resides in NP, the former is NP-complete.
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evance Criterion For More Concise Supervised Pattern Discovery”. In: Proc.
KDD. Beijing, China, 2012, pp. 1442–1450. doi: 10.1145/2339530.2339756.
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