
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 238 (2024) 623–630

1877-0509 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Conference Program Chairs
10.1016/j.procs.2024.06.070

10.1016/j.procs.2024.06.070 1877-0509

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Conference Program Chairs

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2024) 000–000
www.elsevier.com/locate/procedia

The 7th International Conference on Emerging Data and Industry (EDI40),
April 23-25, 2024, Hasselt, Belgium

Validation of Digital Twins in Labor-Intensive Manufacturing:
Significance and Challenges

Ashkan Zarea,∗, Sanja Lazarova-Molnarb,a

aThe Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
bInstitute of Applied Informatics and Formal Description Methods, Karlsruhe Institute of Technology, Kaiserstr. 89, Karlsruhe, 76133, Germany

Abstract

Digital Twins allow for designing, operating, and optimizing running systems by replicating the operations of the physical compo-
nents in a digital environment. Interconnectivity between Digital Twin models and corresponding real-world counterparts facilitates
continuous examining of the actual system, resulting in nearly real-time analysis and decision-making support. Validation is an inte-
gral part of Digital Twins as underlying models must accurately reflect the corresponding physical systems according to predefined
objectives. The near real-time nature of Digital Twins demands a continuous validation process to ensure models’ accuracy. Labor-
intensive manufacturing, where humans are at the heart of manufacturing processes, is a sector that encompasses a wide range
of industries, from toys and apparel to medical devices and automotive components. This sector continues to play a vital role in
emerging economies, offering employment opportunities that mitigate poverty and enhance social stability. Enabling Digital Twins
for labor-intensive manufacturing systems opens many opportunities towards humancentricity and improvement of well-being of
human operators. In these systems, however, human data must also be considered for Digital Twin development and the corre-
sponding validation processes. Handling human data further complicates the creation and validation of Digital Twins. To the best
of our knowledge, there has not been a comprehensive study on the validation of Digital Twins in labor-intensive manufacturing. In
this paper, we review Digital Twin validation in manufacturing, focusing on systems that feature data from human operations. As a
result, we outline the current challenges of validation of Digital Twins in labor-intensive manufacturing environments and suggest
future research directions.
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1. Introduction

The never-ending development of new technologies has led to increased gathering of data and information. This
information can be used in industry to assist in decision making and optimization. Utilizing data and technology
in moving toward smart manufacturing is one of the main pillars of the fourth industrial revolution. One powerful
technology employed in industry, in line with achieving smart manufacturing, is simulation, providing insights by
modeling real-life systems and analyzing their behavior.

Since 2003, the concept of Digital Twin (DT) as a digital equivalent to a physical product has been introduced and
defined [7]. Simply put, DTs can be regarded as more complex and detailed simulation models that evolve with their
physical counterparts. In their most basic characterization, DTs consist of a physical entity, a virtual mirror replication
of the physical model, and the connection and communication between the two objects [34]. DT capabilities can
be utilized in manufacturing to ensure reliable, optimized, and productive processes. They can be used in what-if
analysis and cross-validation checks [19], validation of manufacturing systems from design to operation [1], as well
as optimizing production with manufacturing testing and product validation [12].

Despite the advancements in technology and the move toward automation, humans still play an important role
in manufacturing. Labor-intensive manufacturing continues to be a major part of global manufacturing especially
in developing countries like Indonesia, where most manufacturing relies on human labor [8]. Moreover, UNIDO’s
report on the impact of the recent pandemic on labor-intensive manufacturing industries such as apparel, textiles, and
furniture attests to the fact that human operators are indispensable in many industries [25]. Integration and reflection
of both humans and machines in implementation of DTs can aid monitor production activities, enhance machine
efficiency, and more importantly achieve operation safety and enhance the health and safety of involved humans [13].

Fig. 1. Digital Twin development of labor-intensive manufacturing system with continuous validation.

Realizing the full potential of DTs and implementing them in manufacturing is dependent on having a high-fidelity
DT, which is achieved through rigorous validation processes. DT validation is a challenging problem to address as
the nature of DTs demands an ongoing validation process to enable nearly real-time virtual mirroring of the system.
In labor-intensive and human-centric manufacturing, human operators and their well-being are an essential part of
the manufacturing process. Validating human related data and DT models based on humans and their inherent un-
certainties poses a significant challenge. Figure 1 shows a general DT modeling process with integrated continuous
validation, tailored at labor-intensive manufacturing systems (LIMSs). Data from both human operators and machines
is continuously collected and validated. We denote by human related data, data that can be collected from or generated
by human operators. This data can be obtained non-intrusively through IoT devices or voluntarily through operators.
Human activity and productivity metrics, health and safety, and behavioral data are instances of human related data.
Machine data refers to data collected from machines in manufacturing processes, for instance, production data, ma-
chine performance, and maintenance data. Both human and machine data are used for both model extraction and
calibration. The model validation process continuously checks for discrepancies between the DT model and data from
the real system, and in case of discrepancies, the DT model is updated to mirror the latest state of the actual system.
Although many studies on validation of traditional simulation models are available, focused research on continuous
validation of DTs, more specifically in manufacturing, have been limited. In this paper, we review the current litera-
ture and draw attention to the challenges of validating DTs in LIMSs, where humans are integral in the manufacturing
processes. Human operators’ unpredictability and flexibility adds another layer of complexity and uncertainty, both in
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model extraction and validation process of DTs [9]. Privacy concerns need to be considered adequately too. This paper
serves as a starting point for future research and discussion on the critical topic of continuous validation in LIMSs.

The paper is organized as follows. In Section 2, we review the background and the related work on validation of
DTs in manufacturing. We identify the main challenges with validation of DT in labor-intensive manufacturing in
Section 3. Finally, we conclude our findings and provide future research directions.

2. Background and Related Work

In this section, we describe labor-intensive manufacturing, provide an overview of validation of traditional simula-
tion models, define and describe DTs, and provide a review of the current literature in validation of DTs. Finally, we
highlight the discovered research gaps.

2.1. Labor-intensive Manufacturing

Labor-intensive manufacturing relies heavily on human labor with minimal machine involvement in the produc-
tion process. It is the opposite of capital-intensive manufacturing, where the production process is mostly performed
by machines with minor human involvement [33]. Many industries, such as apparel, footwear, pottery, wood, and
textiles, as well as manufacturers in developing countries, depend on manual human labor [17]. In industries like
jewelry manufacturing, human labor is indispensable and cannot simply be replaced by automation [18]. Moreover,
from an efficiency standpoint, replacing human labor with automation may not always be the most optimized option
considering cost and time. Labor-intensive manufacturing allows for more flexibility as humans are more tolerant of
change. Humans, unlike machines, are a more flexible resource. Depending on the task at hand, human operators can
be trained or substituted. Even though human adaptability is advantageous, the unpredictability and sentient nature of
humans makes them a challenging resource to monitor. Therefore, capturing and analyzing human behavior and input
is vital in optimizing production as they are the main contributor in labor-intensive manufacturing.

2.2. Validation of Traditional Simulation Models

Schlesinger et al. define simulation model validation as “substantiation that a computerized model within its domain
of applicability possesses a satisfactory range of accuracy consistent with the intended application of the model”
[30]. In other words, a model is deemed valid if, according to the model’s purpose, it mirrors the characteristics and
processes of its real-life counterpart to an acceptable degree of accuracy. According to Sargent [29], conceptual model
validation and operational validation are part of a modeling process with data validity as the central core ensuring
the model is built and validated based on robust data. Conceptual model validation deals with the correctness of
assumptions while operational validation focuses on accuracy of the model output compared to the real system.

Sargent describes several validation techniques used in model validation. The methods are implemented either
subjectively or objectively. Subjective validation can be done by the model development team in the development
process, stakeholders, model users, with knowledge of the real-world system, or an independent third-party validation
team while objective validation refers to statistical approaches and tests. In the following, we name and briefly describe
some of these techniques:

• Animation: An animated representation of the model is presented. By visualizing the simulation run, behavior
of the model and its changes through time are easier to understand and detect.
• Event validity: Significant occurrences are compared in similarity to the events in the real system.
• Face validity: Human expert knowledge is used to check the validity of the model. People with knowledge about

the domain review the model and give verdict on its validation.
• Historical data validation: Data collected over time from the real system can help validate the model if the

model is able to reproduce the same output as the data recorded.
• Sensitivity analysis: This technique helps in finding the significance of input parameters. By changing the value

of input parameters, the effects of the change on the output of the model are tested and analyzed.
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• Predictive validation: In this technique, instead of reproducing the output of the system, the model predicts
system’s behavior and if the predicted output is the same as the eventual system output the model is considered
valid.
• Turing tests: The discrepancy between the model output and the system output is measured by expert knowledge.

If the experts are unable to distinguish between the outputs, the model is considered valid.

Traditional validation techniques are limited in their ability to provide near real-time responses. Subjective val-
idation implies a delay in evaluation as the validation process relies heavily on human intervention with restricted
automation while objective approaches depend on availability of sufficient historical data. Moreover, as traditional
modeling is static, validation is a one-time process during or after the development and does not consider the changes
to the system. DTs strive for near real-time replication, which requires more dynamic approaches in ensuring a timely
and accurate validation.

2.3. Digital Twins

DTs are extensions of simulation models, aimed at dealing with more complex and sophisticated systems as are
common at present. A DT model is a replica of a real-world system in the virtual world mirroring the modules
and processes of the physical object. Depending on the integration level between the physical object and its virtual
counterpart, a DT can be further classified as a digital model, digital shadow, or a digital twin [16], detailed as follows:

• A digital model has no automated data flow between the physical and virtual objects.
• A digital shadow has a one-way data flow between the physical and virtual objects.
• A digital twin has a fully automated two-way data flow between the physical and virtual objects.

In this paper, we focus on digital twins, where the data flow is fully integrated between the objects, meaning a
change in the physical object affects the virtual object. In other words, the DT is continuously updated to reflect the
actual state of its physical entity. Internet of Things (IoT) and sensor technology are key enablers of real-time data
transmission between the physical and the virtual object paving the way for developing a DT model and close to
real-time analysis and decision-making support.

In the context of manufacturing, a DT model can be utilized to monitor and control operations and enhance produc-
tivity, maintenance, and reliability. ISO 23247 provides a four-part generic framework (general principles, reference
architecture, digital representation, and information exchange), for developing case-specific DTs in manufacturing,
applying IoT devices in data collection and transmission [31]. The standard provides guidelines for developing DTs;
however, it lacks focus on validation of DTs. Developing a DT is objective specific, and its validation is also depen-
dent on these objectives as a complete representation of a physical system is not feasible. For example, developing a
DT to address human well-being requires its own relevant data and development process compared to a DT for energy
efficiency or production optimization. Therefore, validation for these cases would need different data and different
performance measures.

2.4. Validation of Digital Twins

It is essential that DTs represent the physical system accurately over time. To confirm that a DT model is built right
and conforms to the actual system with sufficient accuracy, the model must go through a validation process. Different
validation methods have been proposed in literature. However, most validation methods are applicable to traditional
simulation models where the resulting data are available only after the simulation run which means by the time the
data are analyzed, the presented outcome might not reflect the current state of the real-life system [11]. DTs, on the
other hand, highly depend on an ongoing validation process to continuously reflect the system and provide close to
real-time resulting data. Thus, the validation is not a choice, but a strong enabler and prerequisite for DTs.

The need for constant communication and data transmission between the physical object and its DT model makes
the validation process an integral part in developing a DT. By definition, a DT without a continuous validation pro-
cess would become a digital model. Hua et al. proposed a framework for ongoing validation using real system data
collected from IoT devices combined with human expert knowledge [11]. A two-step validation method in which the
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initial model is validated using traditional validation techniques, and in the second phase the output of the model is
compared with the output of the system based on data streams to ensure ongoing validation of the model is proposed
by Friederich and Lazarova-Molnar [5]. Lugaresi et al. also utilized data gathered from IoT devices for online val-
idation of DTs. By treating the gathered data as sequences in a time-series format, they were able to compare the
sequences of data captured from the system and its DT to obtain the similarity level of the two to validate the DT
even with a limited dataset [21]. A workflow is presented by Mertens and Denil using approximation function and
comparing real system data with the simulated data to continuously validate DTs [23]. Assuming a validated initial
DT exists, a three-step approach to periodically validate DTs is proposed by Henrique dos Santos et al.; K-nearest
neighbor classifier and p-control chart are integrated to assess validity of digital models based on defined evaluation
variables [28]. Overbeck et al. [26] also proposed a periodic validation method by automatically measuring and com-
paring key performance indicators (KPIs) such as normalized root mean squared error of the outputs of the DT and the
real system. Particle filtering is another approach for continuous calibration as Ward et al. [35] have used this method-
ology in tracking changing parameter values and calibrating the DT accordingly. While other studies, such as [22]
and [10], can also be extended and applied to DT validation, to the best of our knowledge, publications on the study
of continuous validation of DTs in manufacturing are limited to the noted literature. Table 1 provides a comparison of
the reviewed literature in validation of DTs in manufacturing.

As we noted in Subsection 2.2, data validation is critical for model validation since validating a model based on
invalid data would yield an inaccurate model, and most methodologies from the literature that we reviewed assumed
availability of perfect data. Moreover, most of the reviewed methods aim at complete automation of the validation
process with minimal human expert knowledge integration, ignoring a valuable information source that can be highly
beneficial for both data and model validation.

Table 1. Comparison of previous work on digital twin validation.

Work Data validation Automation/Human-input Type of validation

Validation of Digital Twins: Challenges and
Opportunities [11]

Data are validated before model
validation process

Semi-automated/Expert
knowledge input

Face validity – Historical
data validation

A Framework for Validating Data-Driven
Discrete-Event Simulation Models of Cyber-
Physical Production Systems [5]

Perfect data are assumed Semi-automated/Expert
knowledge input

Face validity – Historical
data validation – Predic-
tive validation

Online validation of digital twins for manu-
facturing systems [21]

Perfect data are assumed Complete automation/No
human input

Event validity

Digital-twin Co-evolution using Continuous
Validation [23]

Availability of validated data is con-
sidered

Complete automation/No
human input

Predictive validation

Digital Twin simulation models: a validation
method based on machine learning and con-
trol charts [28]

Validated data are assumed Complete automation/No
human input

Predictive validation

Development and analysis of digital twins of
production systems [26]

High-quality validated data is as-
sumed

Complete automation/No
human input

Event validity – Historical
data validation

Continuous calibration of a digital twin:
Comparison of particle filter and Bayesian
calibration approaches [35]

Perfect data are needed as the
method does not respond well to
noisy data

Complete automation/No
human input

Sensitivity analysis –
Novel particle filtering
approach

Validation is a critical element of the DT framework. As humans play a significant role in labor-intensive manu-
facturing, their roles, operations, and expert knowledge need to be considered in DT validation. Existing literature,
however, lacks focus on the impact of human operators on DT development and validation.

3. Challenges in Validation of Digital Twins for Labor-intensive Manufacturing Systems

Human operators are a fundamental element of labor-intensive manufacturing. DTs of LIMSs must accurately
reflect humans as well as the machines involved in the manufacturing process. However, the coexistence, cooperation,
and collaboration between human operators and machines in human-centric and LIMSs bring about a set of societal
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and technological challenges [20]. In this section, we detail the challenges in validating DTs in labor-intensive and
human-centric manufacturing.

3.1. Data Availability

Developing and validating DTs hinge upon data [36]. The more data from a system is available, the more the pos-
sibility of an accurate DT of the system. Validation of DTs can be accomplished by comparison of the data collected
from the real system to the output of the DT [15]. If data from the actual system is insufficient and unavailable, the
comparison and validation evaluation of the two entities cannot take place. The challenge in the case of LIMSs is
gathering data as the data may be unavailable or hard to obtain since capturing data generated by human operators
is accompanied with legal and privacy concerns as well as variability and complexity of humans in general. Further-
more, each human operator may have its own specific characteristics, unlike machines, where all machines of a same
type exhibit same or similar performance characteristics. For example, different human operators may have different
performance levels on an identical task depending on their age, physical ability, and even their attitude [14]. There-
fore, data gathered from each human operator is unique and makes data accumulation difficult. Moreover, continuous
flow of data is hindered by availability of human operators which makes the on-going validation process of the DT
challenging. Although IoT devices and sensors can aid in data gathering from humans, health, privacy, and safety
concerns must be addressed.

3.2. Data Validation

Data of good quality is essential in DTs as a DT can only be as good and valid as the data it is based on [3]. In a
continuous validation process, the DT model is continuously (or with a high frequency) compared to the real-world
system for discrepancies, based on predefined key performance measures. If the comparison is based on corrupt data,
the DT itself can become compromised and invalid which could lead to decision support that is damaging to the
performance of the physical system. In LIMSs, where human safety is critical, making decisions based on DTs with
invalid underlying models may lead to safety hazards and accidents. Hence, the correlation between data validation
and DT validation must always be considered.

Current literature on DT validation treats these two processes as two separate units, and because of the cost and
time-consuming nature of data validation process, presence of validated data is already assumed. The challenge is to
incorporate data validation in the DT continuous validation process making sure model validity is determined based
on robust data [29]. For example, a DT can still be deemed valid if its output data conforms to the collected data it
is compared to. However, if the collected data itself is unvalidated, the DT, though valid by comparison, may not be
a correct reflection of its real-world counterpart. In LIMSs, in addition to IoT devices and sensors, human operators
are also generating data through their operations. Overcoming data validity issues such as noise and missing values in
sensor data as well as quantifying and validating human data and behavior continuously are of utmost importance in
ensuring the DT’s accurate reflection of the system.

3.3. Data Privacy

Availability of sufficient data is a necessity for continuous validation of DTs. However, humans’ trust in the system
and their willingness to cooperate makes collecting data from humans challenging. A way to build trust is to ensure
the privacy of the data collected from humans [32]. The relationship between humans and the system must be trans-
parent. Humans need to know what the system needs from them, and most importantly how the system gathers and
processes the data provided by humans [6]. It is, furthermore, essential to differentiate between privacy and security.
For example, a system may be protected against threats but may still leak personal and sensitive data [24].

Therefore, the challenge arising from the need for privacy is to find data privacy methods that can extensively pro-
tect sensitive data while maintaining data integrity and model validity. Redaction processes, such as data anonymiza-
tion may increase the privacy level, as well as present new challenges for validation. For instance, the HuMAN privacy
and trust framework [27] provides guidelines on data privacy. However, following the guidelines may impact the model
validation process as all traces of a data element can be deleted. Increasing privacy, while maintaining validity, aids in
growing the trust between humans and machines which results in more data collection and ultimately an accurate DT.
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3.4. Human Automation Balance

Automation is an inseparable part of industry. It enables a consistent, robust, and intelligent manufacturing per-
formance. However, in LIMSs where automation is overshadowed by human labor, the input from the experts is
invaluable and cannot be neglected. In the context of DT validation in labor-intensive and human-centric manufactur-
ing, human knowledge must be integrated with automation in the DT validation process. Aligned with the goals of
Industry 5.0, the aim is to find the right balance between automation and human input [2].

Although existing literature on DT validation is focused mostly on fully automated validation approaches, expert
knowledge of procedures in the manufacturing process may facilitate the validation more than an extensive automated
analysis. Since data in LIMSs is typically scarce, integrating expert knowledge is especially valuable in the validation
process. Instead of striving for complete automation, we should preserve the human knowledge, as proposed as the first
step validation in the two-phase validation framework [5], and use data visualization and other data representation aids
to assist humans in their judgment and decision-making on validation [4]. Effectively and systematically integrating
human input and expert knowledge along with automation in finding optimized validation methods is the challenge
that must be met.

4. Summary and Outlook

Digital Twins enable mirroring real-life systems in a virtual world. The dynamic nature of Digital Twins reflects the
characteristics and properties of a system in near real-time. More specifically, in a manufacturing environment, the live
communication capability opens the door for optimization, decision support, evaluating different production setups,
and enhancement of human well-being. However, taking advantage of these opportunities relies on having a validated
Digital Twin. In addition, human labor is still an indispensable resource in many industries and is the main driving
force of manufacturing in developing countries, but also in specific industries worldwide. Validating Digital Twins in
labor-intensive environments, where manufacturing processes are dependent on humans, is an extremely challenging
process. Human’s knowledge, input, and generated data must be precisely considered when developing and validating
Digital Twins. While studies on validation of Digital Twins in manufacturing have been recently published, it is safe
to say that the literature on validation of Digital Twins in a labor-intensive manufacturing environment is scarce.

In this paper, we reviewed the current literature on validation of Digital Twins in manufacturing comparing them
in three main categories: data validation, automation, and type of validation. The comparison showed that proposed
methodologies assumed data validity with little or no focus on human input and expert knowledge. Based on our find-
ings, we identified four key challenges in validation of Digital Twins in labor-intensive manufacturing: data availabil-
ity, data validation, data privacy, and human automation balance. Addressing challenges concerning data and human
input in validation of Digital Twins helps in general adoption of Digital Twins in labor-intensive and human-centric
manufacturing especially in small manufacturing enterprises and is in line with the objective of Industry 5.0.
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