

Charakterisierung der beiden Phytochrome FphA und FphB aus Aspergillus fumigatus sowie Untersuchungen zu dem intramolekularen Signalmechanismus und der dreidimensionalen Struktur des Phytochroms FphA aus Aspergillus nidulans

> Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.)

von der KIT-Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION

> von M.Sc. Kai Leister

Dekan: Prof. Dr. Martin Bastmeyer Referent: Prof. Dr. Reinhard Fischer Korreferent: Prof. Dr. Tilman Lamparter Tag der mündlichen Prüfung: 22.04.2024 *"Die Krumme' sin' all' net grad!"* ~ Karl Leister

Gewidmet meinen Großeltern.

Die Arbeiten im Rahmen dieser Dissertation wurden von Oktober 2019 bis Dezember 2023 am Institut für Angewandte Biowissenschaften des Karlsruher Institut für Technologie (KIT) durchgeführt. Die Arbeit wurde von Prof. Dr. Reinhard Fischer betreut.

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit eigenständig verfasst und keine anderen als die angegebenen Hilfsmittel oder Quellen verwendet habe. Die wörtlich oder inhaltlich übernommenen Stellen sind als solche kenntlich gemacht. Die Regeln zur Sicherung guter wissenschaftlicher Praxis am Karlsruher Institut für Technologie (KIT), in der gültigen Fassung vom 05.10.2021, wurden beachtet.

Publikationsliste

Leister, K., Ma, Y., Schreckenberger, B., Yu, Z., Lu, L. & Fischer, R. (2024). Phytochromes in *Aspergillus fumigatus* are involved in stress responses and attenuate pathogenicity. *Manuskript in Vorbereitung*.

Schuhmacher, L., Heck, S., Pitz, M., Mathey, E., Lamparter, T., Blumhofer, A., <u>Leister, K.</u> & Fischer, R. (2024). The LOV-domain blue-light receptor LreA of the fungus *Alternaria alternata* binds predominantly FAD as a chromophore and acts as light and temperature sensor. *J Biol Chem*, *in Druck*.

Yu, Z., Streng, C., Seibeld, R., Igbalajobi, O. A., <u>Leister, K.</u>, Ingelfinger, J. & Fischer R. (2021). Genome-wide analyses of light-regulated genes in *Aspergillus nidulans* reveals a complex interplay between different photoreceptors and novel photoreceptor functions. *PLoS Genet* **17**(10): e1009845.

Streng, C., Hartmann, J., <u>Leister, K.</u>, Krauß, N., Lamparter, T., Frankenberg-Dinkel, N., Weth, F., Bastmeyer, M., Yu, Z. & Fischer, R. (2021). Fungal phytochrome chromophore biosynthesis at mitochondria. *EMBO J* **40**:e108083

Yu, Z., Ali, A., Igbalajobi, O.A., Streng, C., <u>Leister, K.</u>, Krauß, N., Lamparter, T. & Fischer, R. (2019). Phytochrome as temperature sensor in *Aspergillus nidulans*. *Mol Microbiol* **112**, 1814-1830.

Tagungsbeitrag

Leister, K. & Fischer, R. (2022). Analysis of the two phytochromes AfFphA and AfFphB from the human pathogen *Aspergillus fumigatus*. 14. Symposium der VAAM-Fachgruppe "Biologie und Biotechnologie der Pilze", Kaiserslautern, 7.-9. September 2022

Inhaltsverzeichnis

Zusammenfassung						
Abstract						
1	Eil	Einleitung				
	1.1	Lichtwahrnehmung in filamentösen Pilzen	2			
	1.2	Photorezeptoren als Basis der pilzlichen Lichtwahrnehmung	5			
	Die	Die Familie der UV- und Blaulichtrezeptoren				
	Gri	Grünlichtperzeption				
	Dei	Rotlichtrezeptor Phytochrom	12			
	Die	Velvet-Proteinfamilie	21			
	Zie	dieser Arbeit	27			
2	Er	gebnisse	27			
	2.1 Charakterisierung von FphA und FphB aus <i>A. fumigatus</i>					
	Fpł	FphA aus A. fumigatus fungiert als Licht- und Temperatursensor				
	Die	Rolle von FphA und FphB in der Stressantwort	34			
	Fpł	A agiert als Repressor, FphB als Aktivator der Genexpression	41			
	Fpł	A reprimiert die Biogenese von Ribosomen	46			
	Fpł	B reguliert den Toxin-Metabolismus	49			
	Fpł	A und FphB lokalisieren und interagieren im Zellkern	52			
	Sal	SakA transloziert in den Zellkern				
	2.2	Der Signalmechanismus von FphA aus <i>A. nidulans</i>	57			
	Fpł	A aus <i>A. nidulans</i> nimmt auch blaues Licht wahr	57			
Ko		nformationsänderung und die Rolle der Histidinkinase	60			
	Die	3D-Struktur des photosensorischen Moduls von A. nidulans FphA	63			
3	Di	Diskussion				
	3.1	Charakterisierung beider Phytochrome aus <i>A. fumigatus</i>	66			
	3.2	Der Signalmechanismus von FphA aus A. nidulans und dessen				
		dreidimensionale Struktur	74			
4 Ma		iterial und Methoden	80			
	4.1	Material, Chemikalien und Geräte	80			

	4.2	Bioinformatische Methoden	84
	4.3	Mikrobiologische Methoden	
	4.4	Molekularbiologische Methoden	
	4.5	Biochemische Methoden	100
ł	5 Lit	teraturverzeichnis	110
(6 Da	anksagung	125
2	7 An	nhang	126

Zusammenfassung

Licht wird von vielen verschiedenen Organismen auf unterschiedliche Weise genutzt. Photosynthetisch aktive Organismen nutzen Licht zur Energiegewinnung. Filamentöse nutzen Licht zur Orientierung und auch um sich ändernde Pilze auf Umweltbedingungen vorzubereiten und die Folgen schädlicher Umwelteinflüsse zu kompensieren. Um auf diese Einflüsse möglichst differenziert reagieren zu können, entwickelten sich im Laufe der Evolution eine Vielzahl verschiedener Photorezeptoren, die auf unterschiedliche Wellenlängenbereiche spezialisiert sind. Die Wahrnehmung von rotem und dunkelrotem Licht erfolgt durch die Sensorhistidinkinase Phytochrom. FphA (*fungal phytochrome A*) aus Aspergillus nidulans (AnFphA) ist das am besten untersuchte pilzliche Phytochrom. Das Lichtsignal wird durch Phytochrom in den SakA-Signalweg integriert und führt zur differenziellen Regulation hunderter Gene. Neben der transkriptionellen Regulation vieler Gene über den SakA-spezifischen Transkriptionsfaktor AtfA, reguliert FphA auch die Chromatinstruktur. Während im Genom von A. nidulans lediglich ein Gen für ein Phytochrom kodiert, enthält das Genom seines humanpathogenen Verwandten Aspergillus fumigatus zwei Phytochrom-kodierende Sequenzen, fphA und fphB. A. fumigatus FphA (AfFphA) weist alle Charakteristiken eines kanonischen pilzlichen Phytochroms auf, wenn auch dessen Deletion in A. fumigatus keinen klaren Phänotyp hervorruft. Lichtregulierte Gene und Prozesse, welche durch AnFphA abhängig von Licht oder Temperatur kontrolliert werden, werden ebenfalls durch AfFphA in A. nidulans kontrolliert. Auch die lichtabhängige Aktivierung des SakA-Signalwegs durch AnFphA findet ebenfalls durch AfFphA statt. Ein Unterschied der beiden Phytochrome AnFphA und AfFphA liegt in deren Lokalisation. Während AnFphA hauptsächlich im Zytoplasma lokalisiert ist, konnte AfFphA in A. nidulans ausschließlich in den Zellkernen lokalisiert werden. FphB aus A. fumigatus hingegen besitzt nicht die Fähigkeit Licht oder Temperatur wahrzunehmen. FphB lokalisiert, wie AfFphA, ebenfalls in den Zellkernen und eine Interaktion mit AfFphA konnte nachgewiesen werden. Interessanterweise erfolgt die Aktivierung der SakA-Signalkaskade in Anwesenheit beider Phytochrome aus A. fumigatus sowohl im Licht, als auch im Dunkeln. In einem Galleria mellonella Infektionsmodell führte die Deletion von fphB zu einer gesteigerten Pathogenität. Durch Transkriptom-Analysen wurde gezeigt, dass FphB das nsc-Gencluster reguliert, womöglich gemeinsam mit dem Regulator VeA (velvet A). Das nsc-Gencluster kodiert für NscA-E und den Transkriptionsfaktor NscR, welche an der Produktion von Neosartoricin B beteiligt sind. Neosartoricin B hat eine antiproliferative Wirkung auf T-Zellen und gilt als Immunsuppressivum.

Darüber hinaus wurde die Rolle der Histidinkinase-Domäne von AnFphA in dessen Signalmechanismus adressiert. Nach der Absorption von rotem Licht kommt es zu Änderungen in der Konformation von FphA und zur Aktivierung des C-terminalen regulatorischen Moduls. Mittels Größenausschlusschromatographie wurde der Effekt einer Phosphorylierung von Histidin 770 in der Histidinkinase-Domäne von FphA auf die Konformationsänderung untersucht. Die Phosphorylierung hatte im Vergleich zu der unphosphorylierten Probe eine stärkere Konformationsänderung nach der Absorption von rotem Licht zur Folge. Nach der Absorption von rotem Licht wird zunächst lediglich die Histidinkinase-Domäne exponiert und zugänglich für Phosphorylierungsreaktionen. Erst durch die Phosphorylierung der Histidinkinase-Domäne wird die *response regulator* Domäne exponiert und zugänglich für nachgelagerte Phosphorylierungsreaktionen. Diese Arbeit liefert neue Erkenntnisse über die Rolle der Histidinkinase-Domäne sowie das erste dreidimensionale Volumenmodell des photosensorischen Moduls von AnFphA, ermittelt durch Kryo-Elektronenmikroskopie.

Abstract

Light is used by many different organisms in different ways. Photosynthetically active organisms use light to generate energy. Filamentous fungi use light for orientation and also to prepare themselves for changing environmental conditions and to compensate for the consequences of harmful environmental influences. To be able to react to these influences in a most differentiated way possible, many different photoreceptors have developed throughout evolution, which are specialized for different wavelength ranges. The perception of red and far-red light is carried out by the sensor histidine kinase phytochrome. FphA (fungal phytochrome A) from Aspergillus nidulans (AnFphA) is probably the best-studied fungal phytochrome. The light signal is integrated by phytochrome into the SakA signaling pathway and leads to the differential regulation of hundreds of genes. In addition to the transcriptional regulation of many genes via the SakA-specific transcription factor AtfA, FphA also regulates chromatin structure. While the genome of A. nidulans encodes only one phytochrome, the genome of its human pathogenic relative Aspergillus fumigatus contains two phytochrome-encoding sequences, fphA and fphB. A. fumigatus FphA (AfFphA) has all the characteristics of a canonical fungal phytochrome, although its deletion in A. fumigatus does not result in a clear phenotype. Light-regulated genes and processes, which are controlled by AnFphA depending on light or temperature, are also controlled by AfFphA in A. nidulans. The light-dependent activation of the SakA signaling pathway by AnFphA also takes place through AfFphA. One difference between the two phytochromes AnFphA and AfFphA lies in their localization. While AnFphA is mainly localized in the cytoplasm, AfFphA in A. nidulans could only be localized in the nuclei. FphB from A. fumigatus, on the other hand, does not have the ability to perceive light or temperature. FphB is also localized in the cell nuclei and an interaction with AfFphA has been demonstrated. Interestingly, activation of the SakA signaling cascade occurs in the presence of both phytochromes from A. fumigatus both in the light and in the dark. Deletion of fphB enhanced the pathogenicity of A. fumigatus in a Galleria mellonella infection model. Transcriptome analysis showed that FphB regulates the nsc gene cluster, possibly together with the regulator VeA (velvet A). The nsc gene cluster encodes NscA-E and the transcription factor NscR, which are involved in the production of neosartoricin B. Neosartoricin B has an antiproliferative effect on T-cells and is considered an immunosuppressive agent.

Furthermore, the role of the histidine kinase domain of AnFphA in its signaling mechanism was addressed. After absorption of red light, changes in the conformation of FphA and activation of the C-terminal regulatory module occur. Size exclusion chromatography was used to investigate the effect of phosphorylation of histidine 770 in the histidine kinase domain of FphA on the conformational change. Compared to the unphosphorylated sample, the phosphorylation resulted in a stronger conformational change after the absorption of red light. Only the histidine kinase domain is initially exposed after absorption of red light and accessible for phosphorylation reactions. Only when the histidine kinase domain is phosphorylated does the response regulator domain become exposed and accessible for downstream phosphorylation reactions. This work provides new insights into the role of the histidine kinase domain as well as the first three-dimensional volume model of the photosensory module of AnFphA, determined by cryo-electron microscopy.

1 Einleitung

Licht spielt auf der Erde für das Leben, so wie wir Menschen es kennen, eine Schlüsselrolle. So nutzen einige Lebewesen wie Pflanzen, Algen sowie phototrophe Bakterien oder Cyanobakterien Licht zur Energiegewinnung (Overmann & Garcia-Pichel, 2006). Andere wiederum nutzen Licht zur Orientierung oder sogar als Köder bei der Jagd durch Biolumineszenz (Young, 1983).

Licht kann aber auch als Informationsquelle dienen. Die Umweltbedingungen auf der Erde ändern sich zyklisch mit dem Wechsel von Tag und Nacht oder den Jahreszeiten, worauf sich jeder Organismus entsprechend anpassen muss. Bedingt durch den Tag-Nacht-Rhythmus herrschen teilweise erhebliche Temperaturschwankungen, womit in der Regel auch Schwankungen der Umgebungsfeuchtigkeit einhergehen. Auch werden über Tag durch die UV-Strahlung der Sonne vermehrt reaktive Sauerstoffspezies (ROS) gebildet, welche neutralisiert werden müssen, da sie sonst innerhalb der Zelle erheblichen Schaden anrichten können, beispielsweise in Form von DNA-Strangbrüchen. (Bayram & Bayram, 2023; Fischer et al., 2016; Fuller et al., 2015; Yu & Fischer, 2019)

Pilze besiedeln eine Vielzahl unterschiedlicher Habitate, von Extremen wie der Atacama Wüste (Santiago et al., 2018), der Antarktis (de Menezes et al., 2019), oder sogar der Internationalen Raumstation ISS (Knox et al., 2016), bis zu Habitaten in moderateren Zonen (Yu & Fischer, 2019). Nicht nur durch den Wechsel des Habitats, sondern auch oft innerhalb eines Habitats ändern sich die Bedingungen ständig und oft mit starken Schwankungen. So fallen Schwankungen des pH-Werts oder der Temperatur im Boden geringer aus, als an der Oberfläche. Für parasitär oder mutualistisch in Symbiose lebende Pilze ergeben sich weitere Situationen mit speziellen Anforderungen, wie beispielsweise die Konfrontation mit dem Immunsystem eines Wirtes oder begrenzte Sauerstoff- und Nährstoffverfügbarkeit (Abad et al., 2010; Yu & Fischer, 2019). Für viele der genannten Änderungen der Umweltbedingungen kann Licht als eine Art Frühwarnsignal oder Indikator dienen (Bayram & Bayram, 2023; Fuller et al., 2015; Tisch & Schmoll, 2010; Yu & Fischer, 2019). Um Licht wahrnehmen zu können, entwickelten filamentöse Pilze im Lauf der Evolution ein komplexes Netzwerk, dessen molekulare Grundlage im Nachfolgenden diskutiert wird (Bayram & Bayram, 2023; Fischer et al., 2016; Fuller et al., 2015; Yu & Fischer, 2019).

1.1 Lichtwahrnehmung in filamentösen Pilzen

Die meisten Pilze reagieren auf die eine oder andere Weise auf Licht und deren Photobiologie ist schon seit vielen Jahrzehnten Gegenstand der Forschung (Bjornsson, 1959; Lukens, 1963; Tan, 1974b). Dies brachte eine Vielzahl an unterschiedlichen morphologischen und physiologischen Prozessen ans Tageslicht, die unter anderem durch Licht reguliert werden (Abbildung 1). Am augenscheinlichsten sind wohl Prozesse der Photomorphogenese, wie beispielsweise die Regulation von sexueller und asexueller Entwicklung oder die Ausbildung von Fruchtkörpern und deren Wuchsrichtung (Phototropismus). Aber auch Prozesse wie Keimung, Wachstum und der Stoffwechsel werden durch unterschiedliche Lichtbedingungen gesteuert (Bayram & Bayram, 2023; Fischer *et al.*, 2016).

Dabei können bestimmte Wellenlängenbereiche oft unterschiedliche Effekte, nicht nur zwischen den verschiedenen Abteilungen im Reich der Pilze, sondern auch oft innerhalb einer Abteilung hervorrufen. So ist die Fruchtkörperentwicklung in den Basidiomyceten Coprinus macrorhizus und Cyathus stercoreus abhängig von Licht beziehungsweise von Licht-Dunkel Zyklen (Kües, 2000; Lu, 1965; Morimoto & Oda, 1973). In dem Ascomycet Neurospora crassa findet die Entwicklung der Fruchtkörper im Dunkeln statt und Licht wird benötigt um die maximale Anzahl Konidien zu bilden (Innocenti et al., 1983). Auch in anderen Ascomyceten wird durch Licht die sexuelle Entwicklung inhibiert und die asexuelle Entwicklung gefördert. Blaues Licht induziert die Bildung von Konidien in Trichoderma viride und Aspergillus nidulans (Gressel & Hartmann, 1968; Kumagai & Oda, 1969; Purschwitz et al., 2008). Die Konidienbildung wird in A. nidulans außerdem von rotem Licht induziert (Purschwitz et al., 2008). Auch in Botrytis cinerea und Alternaria alternata wird die Bildung von Konidien durch rotes Licht induziert, durch blaues Licht allerdings inhibiert (Igbalajobi et al., 2019; Tan, 1974a; Tan, 1974b). In Trichoderma reesei wird hingegen die sexuelle Entwicklung durch Licht induziert (Chen et al., 2012). In Zygomyceten wie Pilobolus crystallinus, Phycomyces blakesleeanus oder Mucor circinelloides ist die sexuelle Entwicklung durch Licht inhibiert (Corrochano & Cerda-Olmedo, 1992; Kubo & Mihara, 1986; Nicolás et al., 2008).

Die Gattung *Phycomyces* dient als Modellorganismus für Phototropismus, ein weiteres durch Licht gesteuertes Phänomen. Bei Licht wachsen die Fruchtkörper der Gattung *Phycomyces* in Richtung der Lichtquelle, wobei blaues Licht den stärksten Effekt hat und UV-Licht negativen Phototropismus verursacht. Auch *M. circinelloides*

und *Pilobolus* spp. zeigen positiven Phototropismus zu blauem Licht (und zu grünem Licht im Fall von *M. circinelloides*) (Corrochano & Garre, 2010; Fischer *et al.*, 2016). Dieses Phänomen wurde ebenfalls bei dem Ascomyceten *N. crassa* beobachtet, dessen Fruchtkörper unter blauem Licht einen positiven Phototropismus zeigen (Harding & Melles, 1983). In *N. crassa* wird die Konidienbildung nicht nur gefördert durch Licht, sondern unterliegt einer zirkadianen Regulation. Die Synchronisation dieser zirkadianen Rhythmik oder Uhr erfolgt ebenfalls durch Licht (Baker *et al.*, 2012; Merrow *et al.*, 2006).

Sowohl primäre, als auch sekundäre Stoffwechselwege unterliegen in Pilzen der Regulation durch Licht. Dies umschließt beispielsweise den Stoffwechsel von Polysacchariden und Kohlenhydraten, Fettsäuren, Nukleotiden und Nukleosiden, Aminosäuren, Stickstoff und Schwefel sowie diverse sekundäre Stoffwechselprodukte wie Pigmente, Mykotoxine oder Antibiotika (Fischer et al., 2016; Tisch & Schmoll, 2010). Die Biosynthese von verschiedenen Carotinoiden wird in den Zygomyceten P. blakesleeanus und M. circinelloides durch Licht aktiviert (Bejarano et al., 1991; Blasco et al., 2001; Velayos et al., 2000a; Velayos et al., 2000b). Auch in Ascomyceten konnte die Regulation von sekundären Stoffwechselwegen durch Licht nachgewiesen werden. In Fusarium fujikuroi und N. crassa wird ebenfalls die Biosynthese von Carotinoiden durch Licht positiv reguliert (Avalos & Schrott, 1990; Nelson et al., 1989; Schrott, 1980; Zalokar, 1954). In A. alternata wird die Produktion des Mykotoxins Alternariol durch blaues, rotes und grünes Licht aktiviert (Igbalajobi et al., 2019; Pruss et al., 2014). Auch in A. nidulans und Aspergillus fumigatus werden sekundäre Stoffwechselprozesse durch Licht reguliert (Atoui et al., 2010; Bayram et al., 2008b; Calvo, 2008; Fischer et al., 2016; Fuller et al., 2013; Kato et al., 2003; Purschwitz et al., 2008). So steht zum Beispiel die Produktion von Penicillin und der Aflatoxin-Vorstufe Sterigmatocystin unter der Kontrolle von Licht. Auch die Produktion von Aflatoxin, Averufin und Versicolorin A und C werden lichtabhängig in Aspergillus parasiticus reguliert (Bennett et al., 1981). Ein weiteres Beispiel für die lichtabhängige Produktion ist Cercosporin, von Toxinen produziert von Cercospora spp. In Cercospora kikuchii ist Licht essentiell für die Induktion der Biosynthese von Cercosporin (Ehrenshaft & Upchurch, 1991).

Lichtreaktion	Dunkelheit	Licht
Photomorphogenese Die Fruchtkörperentwicklung von Basidiomyceten hängt von Licht in verschiedenen Schritten ab.		
Bei <i>A. nidulans</i> löst Licht das Gleichgewicht zwischen sexueller und asexuellen Entwicklung. Die Einschübe zeigen junge, gelbe Fruchtkörper (Dunkelheit) und grüne Konidien (Licht).		
Sekundärstoffwechsel Die Biosynthese von Carotinoiden im Myzel von <i>N. crassa</i> erfordert Licht.		
Die Sterigmatocystin-Produktion in <i>A. nidulans</i> wird durch Licht unterdrückt. TLC-Analyse.	-	
Zirkadiane Uhr Rhythmische Sporenbildung in <i>N. crassa</i> wird durch Licht gesteuert.		
Phototropismus Sporangiophoren biegen sich in Richtung der Lichtquelle.		

Abbildung 1: Verschiedene Reaktionen von Pilzen auf Licht. In Pilzen werden viele morphologische und metabolische Prozesse durch Licht gesteuert. Übernommen und übersetzt aus Fischer *et al.*, 2016.

1.2 Photorezeptoren als Basis der pilzlichen Lichtwahrnehmung

Um solch eine Vielzahl an unterschiedlichen Prozessen auf eine so differenzierte Weise regulieren zu können, entwickelten sich im Laufe der Evolution verschiedene Klassen von Photorezeptoren, die auf bestimmte Wellenlängenbereiche des Lichts spezialisiert sind. Photorezeptoren sind Proteine, welche durch ein gebundenes organisches Molekül Licht bestimmter Wellenlängen absorbieren. Die absorbierte Energie löst in der Regel Änderungen der Proteinkonformation aus, welche die Aktivität des Proteins modulieren (Bayram & Bayram, 2023; Fischer *et al.*, 2016). Auf diese Weise wird das physikalische Signal Licht in ein chemisches Signal umgewandelt, welches zur Reaktion der Zelle beziehungsweise des Organismus führt. Während in Wirbeltieren nur eine Art Photorezeptoren vorkommen (Opsine beziehungsweise Rhodopsine), haben sich in Pilzen, Bakterien und Pflanzen mehrere Klassen von Photorezeptoren entwickelt (Bayram & Bayram, 2023; Fischer *et al.*, 2016; Yu & Fischer, 2019).

Die Familie der Photorezeptoren lässt sich in Flavin-bindende Blaulichtrezeptoren, Retinal-bindende Grünlichtrezeptoren und Rotlichtrezeptoren mit einem linearen Tetrapyrrol als Chromophor unterteilen (Abbildung 2) (Bayram & Bayram, 2023; Yu & Fischer, 2019). Die photosensorischen Systeme der beiden Modellorganismen N. crassa und A. nidulans sind am umfangreichsten erforscht. So sind die wohl am besten erforschtesten pilzlichen Photorezeptoren der Blaulichtrezeptor White Collar-1 (WC-1) aus N. crassa sowie der Rotlichtrezeptor FphA aus A. nidulans (fungal phytochrome A, AnFphA). Die zugrunde liegenden Mechanismen der Signalweiterleitung unterscheiden sich zum Teil grundlegend zwischen den Photorezeptoren. So agiert der Rotlichtrezeptor FphA in A. nidulans die beispielsweise als Hybrid-Histidinkinase und aktiviert nachstehende Signalkaskade (Yu et al., 2016). Die Absorption von blauem Licht bewirkt die Dimerisierung des white collar complex (WCC), der als transkriptioneller Regulator direkten Einfluss auf die Expression lichtregulierter Gene hat (He et al., 2002). Trotz der individuellen Mechanismen werden viele Prozesse oft durch mehrere Photorezeptoren gemeinsam oder auch entgegengesetzt reguliert (Hedtke et al., 2015; Igbalajobi et al., 2019; Purschwitz et al., 2008; Ruger-Herreros et al., 2011; Yu et al., 2021). Ein Beispiel hierfür ist die Konidienbildung in A. nidulans. Für die vollständige Induktion der Konidienbildung ist sowohl rotes als auch blaues Licht nötig. Kontrolliert

Abbildung 2: Photorezeptoren aus *A. nidulans* und *N. crassa*. Dargestellt ist die allgemeine Domänenorganisation der Photorezeptoren aus *A. nidulans* und *N. crassa*. Phytochrome können in einen N-terminalen sensorischen Teil und einen C-terminalen regulatorischen Teil unterteilt werden. Der sensorische Teil setzt sich aus einer PAS-, einer GAF- und einer PHY-Domäne zusammen. Der Chromophor, in Pilzen höchstwahrscheinlich Biliverdin IXa, ist kovalent an ein Cystein in der PAS-Domäne gebunden. Durch Absorption von rotem Licht untergeht Biliverdin IXa eine *Z/E*-Isomerisierung was zur Konformationsänderung des Proteins führt. Opsine sind Transmembranproteine mit Retinal als Chromophor. Absorption von grünem Licht führt zur *trans/cis*-Isomerisierung des Chromophors. Die Blaulichtrezeptoren WC-1 und VVD enthalten FAD als Chromophor. Im Dunkeln ist FAD nicht-kovalent an die LOV-Domäne assoziiert. Durch die Absorption von blauem Licht bildet sich eine kovalente Bindung zwischen FAD und einem konservierten Cystein in der LOV-Domäne aus. Weiter enthält WC-1 zwei PAS-Domänen als Interaktionsstellen, sowie eine Zink-Finger-Domäne. Cryptochrome binden ebenfalls FAD als Chromophor und enthalten zusätzlich 5,10-Methenyltetrahydrofolat (MTHF). Verändert nach Bayram & Bayram, 2023 und Yu & Fischer, 2019.

wird dieser Vorgang durch die Modifikation von Histon 3, reguliert durch die Interaktion zwischen WCC, FphA und Velvet A (VeA), einem Regulator der Lichtreaktion (Purschwitz *et al.*, 2008; Ruger-Herreros *et al.*, 2011). In *A. alternata* hingegen wird die Konidienbildung durch FphA und rotes Licht induziert, wohingegen LreA, dem WC-1 Ortholog, abhängig von blauem Licht die Konidienbildung inhibiert (Igbalajobi *et al.*, 2019).

Die Familie der UV- und Blaulichtrezeptoren

Blaulichtrezeptoren stellen die umfangreichste Klasse der Photorezeptoren dar. Als Chromophor zur Absorption von blauem Licht dienen Flavine (FMN oder FAD). Je nach Domäne, mit der der Chromophor assoziiert ist, unterscheidet man zwischen Proteinen mit einer LOV-Domäne (*light, oxygen, voltage*), BLUF-Proteine (*blue-light sensor using* <u>FAD</u>) sowie die Gruppe der Cryptochrome und Photolyasen (Yu & Fischer, 2019).

WC-1 aus N. crassa ist Mitglied der LOV-Domänen Proteine und der erste in Pilzen beschriebene Blaulichtrezeptor (Ballario et al., 1996). WC-1 enthält drei PAS-Domänen (PER-ARNT-SIM), wobei die erste PAS-Domäne der Unterkategorie der LOV-Domänen angehört, in die der Chromophor eingebettet ist (He et al., 2002). Am C-terminalen Ende ist eine Zink-Finger-Domäne für die direkte Bindung an DNA lokalisiert. Dadurch fungiert WC-1 als Blaulichtrezeptor mit Transkriptionsfaktor-Aktivität (Ballario et al., 1996; Froehlich et al., 2002). Die LOV-Domäne von WC-1 ist stark homolog zu der von Phototropinen in Pflanzen, wo der Photozyklus bislang am besten untersucht ist (Cheng et al., 2003; Yu & Fischer, 2019; Zayner & Sosnick, 2014). Im dunkel-adaptierten Zustand liegt der Flavin-Chromophor ungebunden in der Bindetasche. Durch die Absorption von blauem Licht formiert sich eine Thioetherbindung zwischen der Thiolgruppe eines konservierten Cysteins und einer Carbonylgruppe des Flavins. Diese Reaktion ist reversibel. Durch Inkubation im Dunkeln wird die kovalente Bindung wieder gespalten und das Protein kehrt zurück in seinen Grundzustand, wodurch der Photozyklus geschlossen wird (Crosson & Moffat, 2002; Pfeifer et al., 2009; Schleicher et al., 2004; Zayner & Sosnick, 2014). Die beiden weiteren PAS-Domänen dienen der Protein-Protein-Interaktion (Cheng et al., 2002; Froehlich et al., 2002; He & Liu, 2005). WC-1 liegt als Heterodimer mit WC-2 (white collar complex, WCC) vor. WC-2 ist ebenfalls essenziell für die Wahrnehmung von blauem Licht in N. crassa und strukturell eng mit WC-1 verwandt. Es weist ebenfalls eine PAS- und eine Zink-Finger-Domäne auf, jedoch fehlt die LOV- sowie eine PAS-

Domäne. Der WCC bindet bereits im Dunkeln an light response elements (LRE) von lichtregulierten Genen (dark white collar complex, D-WCC). Im dunkel-adaptierten Zustand reprimiert der D-WCC die Expression dieser Gene. Nach der Absorption von blauem Licht finden strukturelle Änderungen innerhalb des WCC statt, was zur Dimerisierung zweier WCC (light white collar complex, L-WCC) und zur Initiierung der Transkription führt. L-WCC interagiert mit der Histon-Acetyltransferase NGF-1 was zur Acetylierung von Histon H3 und zur Expression der sogenannten early light-responsive genes führt (Brenna et al., 2012; Grimaldi et al., 2006). Unter den exprimierten Genen dieser ersten Expressionsphase befinden sich verschiedene Transkriptionsfaktoren, unter anderem sub-1. Die Interaktion des WCC mit SUB-1 und FF-7 initiiert eine zweite Expressionsphase der sogenannten late light-responsive genes (Sancar et al., 2015; Smith et al., 2010; Wu et al., 2014). Neben diversen Transkriptionsfaktoren werden in der ersten Expressionsphase auch die beiden Proteine Vivid (VVD) und Frequency (FRQ) exprimiert. VVD ist ein kleines Protein mit einer LOV-Domäne und fungiert als negativer Regulator von blaulichtregulierten Genen in N. crassa. Durch direkte Interaktion mit dem WCC wird dessen Aktivität inhibiert. Durch diesen negativen Rückkopplungsmechanismus steuert VVD den Prozess der Photoadaption (Dasgupta et al., 2015; Heintzen et al., 2001; Lee et al., 2014; Schwerdtfeger & Linden, 2001; Schwerdtfeger & Linden, 2003; Vaidya et al., 2011). WCC ist Teil eines weiteren negativen Rückkopplungssystems. Diese negative Rückkopplung ist die Basis der zirkadianen Rhythmik, mit FRQ als negativen Regulator des WCC. Aktiviert durch Licht, initiiert der WCC die Expression von FRQ. FRQ und die assoziierten Kaseinkinasen CK1 und CK2 bewirken die Phosphorylierung des WCC, wodurch dessen Aktivität inhibiert wird (He et al., 2006; Liu et al., 2019; Wang et al., 2019). Die Expression wird weiter durch die Methylierung von Histon H3 inhibiert. Die Methylierung wird katalysiert durch die Methyltransferase DIM-5, zusammen mit SET-1 und HP-1 (Abbildung 3) (Brenna et al., 2012; Grimaldi et al., 2006; Raduwan et al., 2013; Ruesch et al., 2014).

In *N. crassa* werden lichtregulierte Gene vorallem durch blaues Licht über den WCC als zentrales Element reguliert. In *A. nidulans* hingegen überwiegt die Rotlichtantwort und die WC-1 und WC-2 Homologe LreA und LreB zeigen tatsächlich leichte Unterschiede in ihrem Mechanismus (Hedtke *et al.*, 2015; Purschwitz *et al.*, 2008). Im Dunkeln binden LreA, LreB und der Regulator VeA an die Promotorregion und reprimieren die Expression von lichtregulierten Genen durch die Regulierung der

Acetylierung von Histon 3. LreA inhibiert die Aktivität der Histon-Acetyltransferase GcnE und aktiviert die Histondeacetylase HdaA. Nach Lichtabsorption dissoziiert LreA-LreB von der Promotorregion und die Genexpression wird aktiviert.

Abbildung 3: Blaues Licht als Signalgeber in *N. crassa.* Bei Dunkelheit bilden WC-1 und WC-2 ein Heterodimer (D-WCC) und binden an die LRE von Lichtregulierten Genen. Durch die Absorption von blauem Licht dimerisieren zwei WCC (L-WCC). Durch Interaktion mit der Histon-Acetyltransferase NGF-1 kommt es zur Acetylierung der Nukleosomen und zur Initiation der Transkription früher lichtabhängiger Gene, darunter *sub-1, vvd* und *frq.* SUB-1 zusammen mit FF-7 initiieren eine zweite Expressionsphase und die Expression später lichtabhängiger Gene. VVD interagiert mit WC-1, wodurch die Wechselwirkung mit der DNA geschwächt wird. FRQ und die assoziierten Kaseinkinasen CK1 und CK2 bewirken die Phosphorylierung des WCC, wodurch dessen Aktivität inhibiert wird. Die Histon-Methyltransferase DIM-5, zusammen mit SET-1 und HP-1 katalysieren die Methylierung von Histon H3, wodurch die Transkription reprimiert wird. Verändert nach Bayram & Bayram, 2023. Erstellt mit BioRender.com

Eine weitere Gruppe der Blaulichtrezeptoren stellt die Überfamilie der Cryptochrome und Photolyasen dar. Sie sind am besten beschrieben in Pflanzen und Tieren. Cryptochrome haben sich höchstwahrscheinlich aus Photolyasen entwickelt, welche UV-induzierte Schäden in der DNA reparieren. Beide teilen sich eine gemeinsame Domänenstruktur (Lin & Todo, 2005; Michael et al., 2017). Am carboxyterminalen Ende ist eine α-helikale katalytische Domäne lokalisiert, mit der der FAD-Chromophor assoziiert ist. Am N-terminalen Ende ist eine α/β Domäne lokalisiert, die oft einen zweiten Chromophor (Antennenchromophor) wie 5,10-Methenyltetrahydrofolat (MTHF) enthält. Photolyasen sind DNA-Reparaturenzyme, die durch UV-Strahlung gebildete Pyrimidin-Dimere in der DNA spalten. Sie werden durch UVA-Strahlung aktiviert. Cryptochrome haben diese DNA-Reparaturfunktion verloren, dafür jedoch regulatorische Fähigkeiten entwickelt. Es hat sich jedoch eine weitere Gruppe entwickelt, die eine Art Übergangsform von Photolyasen und Cryptochromen darstellt: die Cry-DASH Familie. Cry-DASH Proteine zeigen sowohl Aktivität in der Genregulation, als auch DNA-Reperaturaktivität (Bayram & Bayram, 2023; Michael et al., 2017).

Das Cryptochrom CRY aus *N. crassa* zählt phylogenetisch zu der Cry-DASH Unterfamilie (Froehlich *et al.*, 2010). Die Expression von *cry* wird durch Blaulicht induziert und ist von WC-1 abhängig. Die Regulation erfolgt zirkadian, entgegengesetzt zu *frq*. CRY enthält FAD und MTHF als Chromophore und bindet *in vitro* DNA und RNA, einzel- und doppelsträngig. Bis auf eine leichte Phasenverschiebung im *entrainment* der zirkadianen Uhr hatte die Deletion von *cry* keinen Einfluss auf diese. Auch in Microarray Experimenten konnten keine signifikanten Änderungen des Transkriptoms nachgewiesen werden (Froehlich *et al.*, 2010). CRY wird eine Rolle in der Feinabstimmung der zirkadianen Uhr zugesprochen, auch wenn es nicht essenziell hierfür ist (Froehlich *et al.*, 2010; Nsa *et al.*, 2015).

CryA aus *A. nidulans* wird phylogenetisch den CPD Photolyasen Klasse I zugeordnet. CryA ist sensitiv für Licht des nahen UV- und blauen Spektralbereich und zeigt sowohl regulatorische, als auch DNA-Reparaturaktivität. Studien zeigten, dass CryA unter UVA die sexuelle Entwicklung reprimiert. In *Escherichia coli* konnte eine DNA-Reparaturaktivität von CryA nachgewiesen werden. (Bayram *et al.*, 2008a)

BLUF-Proteine sind in Bakterien sehr verbreitet, in Pilzen aber weitestgehend unerforscht (Losi & Gartner, 2012). Bioinformatische Analysen lassen aber auf deren Vorhandensein in einigen Pilzen schließen, wie *Ustilago maydis, Ustilago hordei,* Sporisorium reilianum, Pseudozyma sp. und Melanopsichium pennsylvanicum (Brych et al., 2016).

Grünlichtperzeption

Zur Wahrnehmung von Licht aus dem grünen Spektralbereich dienen sogenannte Rhodopsine beziehungsweise Opsine (Apoprotein). Opsine sind 7-Transmembranproteine, welche Retinal als Chromophor an ein Lysin in der siebten Transmembranhelix binden und sich in Tieren und vielen Mikroorganismen finden lassen (Bayram & Bayram, 2023; Rozenberg et al., 2021; Yu & Fischer, 2019). Während tierische Rhodopsine 11-cis-Retinal als Chromophor nutzen, binden mikrobielle Rhodopsine all-trans-Retinal. Auch in ihrem Photozyklus unterscheiden sich tierische und mikrobielle Rhodopsine. all-trans-Retinal in mikrobiellen Rhodopsinen isomerisiert nach Lichtabsorption zu 13-cis-Retinal, wodurch es zu strukturellen Änderungen innerhalb des Proteins kommt. Thermische Isomerisierung des Chromophors zurück zu all-trans-Retinal lässt das Protein in seinen Ausgangszustand zurückkehren und schließt den Photozyklus. In tierischen Rhodopsinen hingegen etabliert sich die photoaktivierte Form durch die Isomerisierung von 11-cis-Retinal zu all-trans-Retinal nach Lichtabsorption. all-trans-Retinal löst sich von dem Protein und wird enzymatisch zurück zu 11-cis-Retinal isomerisiert (Rozenberg *et al.*, 2021).

Pilzliche Opsine bilden eine hoch diverse Untergruppe von mikrobiellen Rhodopsinen und lassen sich grob in zwei Klassen unterteilen: retinal-bindende Proteine, welche den konservierten Lysinrest aufweisen und sogenannte opsin-related proteins ohne die Fähigkeit zur Bindung von Retinal (Rozenberg et al., 2021). Das erste entdeckte pilzliche Rhodopsin war NOP-1 aus N. crassa (Bieszke et al., 1999a; Bieszke et al., 1999b). NOP-1 bindet all-trans-Retinal und zeichnet sich durch einen langsamen Photozyklus, langlebige Intermediate und schwache Protonenpumpenaktivität aus. Die Deletion von *nop-1* führte zu keinen signifikanten Defekten in lichtregulierten Prozessen (Bieszke et al., 1999a; Bieszke et al., 1999b). Spätere Studien legten die Involvierung von NOP-1 in Entwicklungsprozessen nahe (Bieszke et al., 2007; Olmedo et al., 2010; Wang et al., 2018). Ein weiteres Retinalbindendes pilzliches Rhodopsin stellt Ops aus Leptosphaeria maculans dar. Anders

11

als NOP-1 weist Ops einen schnellen Photozyklus und starke Protonenpumpenaktivität auf (Idnurm & Howlett, 2001; Waschuk *et al.*, 2005).

Die Erforschung der Klasse der *opsin-related proteins* in filamentösen Pilzen steht noch weitestgehend am Anfang. Gene die für *opsin-like proteins* kodieren, konnten in den Genomen von *A. nidulans* und *Trichoderma atroviride* identifiziert werden (Fischer *et al.*, 2016; Rodriguez-Romero *et al.*, 2010).

Der Rotlichtrezeptor Phytochrom

Die Wahrnehmung von rotem Licht erfolgt durch die Familie der Phytochrome. Die Absorption von Licht aus dem roten Spektralbereich wird durch ein kovalent gebundenes lineares Tetrapyrrol, einem sogenannten Bilin, gewährleistet. Phytochrome wurden als erstes in Pflanzen entdeckt (Butler et al., 1959) und galten lange Zeit als spezifisch für höhere Pflanzen (Rodriguez-Romero et al., 2010). Die Entdeckung von Phytochromen in Bakterien (Davis et al., 1999) und Cyanobakterien (Hughes et al., 1997) legte eine wesentlich weitere Verbreitung offen. Phytochrome sind nahezu in allen Reichen des Lebens vertreten, darunter Grünalgen (Wu & Lagarias, 1997), Kieselalgen (De Riso et al., 2009), Cyanobakterien (Hughes et al., 1997), photosynthetische (Giraud et al., 2005) und nicht-photosynthetische Bakterien (Davis et al., 1999) sowie Pilze (Blumenstein et al., 2005; Froehlich et al., 2005). Das Genom der meisten Pilze, wie A. nidulans oder A. alternata, enthält lediglich eine Sequenz die für Phytochrom kodiert. Es gibt allerdings Ausnahmen, wie A. fumigatus und N. crassa, deren Genom für zwei Phytochrome, oder B. cinerea und Rhynchosporium commune, deren Genome für drei oder sogar vier Phytochrome kodieren (Schumacher, 2017).

Phytochrome weisen charakteristische spektroskopische Eigenschaften auf. Kanonische Phytochrome liegen in zwei unterschiedlichen Konformationen vor. In ihrem Grundzustand liegt der Chromophor Biliverdin IXα in seiner Z-Konformation vor und das Absorptionsmaximum liegt im roten Spektralbereich (Pr-Form). Die Bestrahlung mit rotem Licht bewirkt die Isomerisation von *15Z*-Biliverdin zu *15E*-Biliverding IXα, was zu einer Änderung der Proteinkonformation und der Etablierung der Pfr-Form führt. In der Pfr-Form erweitert sich das Absorptionsspektrum und die Absorption im langwelligeren dunkelroten Spektralbereich nimmt zu, während die Absorption im roten Spektralbereich abnimmt. Der Photozyklus wird entweder durch die Absorption von dunkelrotem Licht, oder durch eine thermische Reversion in den Grundzustand geschlossen (Yu & Fischer, 2019). Jüngere Studien weisen jedoch darauf hin, dass Phytochrom ebenfalls Funktionen im Dunkeln und unter dunkelrotem Licht hat (Yu *et al.*, 2021). Dies weist darauf hin, dass das Verhältnis von Pr- zu Pfr-Form von Phytochrom dessen genaue Wirkung determiniert (Rodriguez-Romero *et al.*, 2010; Yu *et al.*, 2021).

Alle Phytochrome lassen sich in zwei funktionale Bereiche unterteilen. Das Nterminale photosensorische Modul besteht aus je einer PAS-, einer GAF- (*cGMP-<u>a</u>denylyl cyclase-<u>F</u>hlA*) und einer PHY- (*phytochrome*) Domäne. Pflanzliche und pilzliche Phytochrome weißen zusätzlich variable N-terminale Verlängerungen (<u>*Nterminal extension,* NTE) auf. Sowohl für die pilzliche, als auch für die pflanzliche NTE konnten stabilisierende Effekte auf die Pfr-Form nachgewiesen werden, auch wenn sie nicht homolog zueinander sind (Brandt *et al.*, 2008; Cherry *et al.*, 1992). Das Cterminale regulatorische Modul hingegen unterscheidet sich zwischen den einzelnen Reichen. Es weisen jedoch alle eine Histidinkinase- (Histidinkinase A, HisKA) und eine HATPase-Domäne (ATPase) auf (Abbildung 4). Bakterielle, cyanobakterielle und pilzliche Phytochrome weisen hier die höchste Homologie auf (Karniol *et al.*, 2005).</u>

Abbildung 4: Vergleich der Domänenorganisation in Phytochromen verschiedener Reiche. Alle Phytochrome weisen ein N-terminales photosensorisches Modul auf, bestehend aus einer PAS-, einer GAF- und einer PHY-Domäne. Während in pilzlichen und bakteriellen Phytochromen der Chromophor an ein Cystein in der PAS-Domäne gebunden ist, ist der Chromophor in cyanobakteriellen und pflanzlichen Phytochromen an ein Cystein in der GAF-Domäne gebunden. Alle Phytochrome weisen in ihrem C-terminalen Teil eine Histidinkinase- (HK) und eine ATPase-Domäne (ATP) auf. Pflanzliche Phytochrome besitzen zwei zusätzliche C-terminale PAS-Domänen. Während in pilzlichen Phytochromen eine zusätzliche *response regulator receiver* Domäne (RR) vorhanden ist, liegt diese in Bakterien in der Regel als eigenständiges Protein vor.

Eine Besonderheit von pilzlichen Phytochromen ist die Anwesenheit einer *response regulator receiver* Domäne (im weiteren Verlauf als *response regulator* Domäne, RR, bezeichnet) innerhalb des Proteins, wohingegen in Bakterien diese meist Teil eines eigenständigen Proteins ist (Blumenstein *et al.*, 2005; Brandt *et al.*, 2008). Die dreidimensionalen Strukturen von pflanzlichen, bakteriellen und cyanobakteriellen Phytochromen sind mittlerweile bekannt, wenn auch meist lediglich das photosensorische Modul (Abbildung 5) (Essen *et al.*, 2008; Li *et al.*, 2022; Nagano *et al.*, 2016). Bis heute existiert kein Modell der 3D-Struktur eines pilzlichen Phytochroms.

Abbildung 5: Modelle der 3D-Strukturen pflanzlicher, bakterieller und cyanobakterieller Phytochrome. A: *Arabidopsis thaliana* PhyB (7RZW) als antiparalleles Homodimer (inklusive des regulatorischen Moduls). Phytochromobilin als Chromophor. B: *Agrobacterium fabrum* Agp1 photosensorisches Modul als paralleles Homodimer (6R26). Biliverdin IXα als Chromophor. C: *Synechocystis* 6803 Cph1 photosensorisches Modul als antiparalleles Homodimer (2VEA). Phycocyanobilin als Chromophor. Die einzelnen Domänen sind farblich gekennzeichnet: PAS (Rot), GAF (Grün), PHY (Blau), Histidinkinase und ATPase (Orange). Chromophore in Cyan.

Histidinkinase-Domänen haben typischerweise die Fähigkeit der ATPabhängigen Autophosphorylierung (Alvarez *et al.*, 2016). Phosphorylierte Histidinreste (Phosphohistidin) in Proteinen wurden das erste Mal 1962 von Boyer und Kollegen beschrieben und führte mit der Charakterisierung von *envZ* aus *E. coli* und dessen Genprodukt zur Entdeckung einer neuen Klasse von Proteinkinasen, die Histidinkinasen (Boyer *et al.*, 1962; Hérivaux *et al.*, 2016; Mizuno *et al.*, 1982). Mittlerweile ist bekannt, dass Histidinkinasen in Zellsignalsysteme involviert sind, in sogenannten Zwei-Komponenten Signalsystemen (*two-component signaling system*, TCS), wo sie in der Regel als sensorische Proteine externe Stimuli durch Phosphorylierungsprozesse in Signalkaskaden integrieren (Bourret *et al.*, 2021; Hérivaux *et al.*, 2016). Diese Art der Signaltransduktion konnte bisher in Bakterien (Mizuno *et al.*, 1982), Cyanobakterien (Kehoe & Grossman, 1996), Pflanzen (Chang *et al.*, 1993), Pilzen (Ota & Varshavsky, 1993), Archaeen (Rudolph & Oesterhelt, 1995) und Amöben (Schuster *et al.*, 1996) nachgewiesen werden. In Säugetieren konnten (Sensor-) Histidinkinasen noch nicht nachgewiesen werden, wodurch sie sehr interessant als möglicher Angriffspunkt für die Behandlung von Infektionen durch resistente Erreger sind (Attwood, 2013; Hérivaux *et al.*, 2016; Rosales-Hurtado *et al.*, 2020).

TCS sind am besten untersucht in Bakterien (Bourret et al., 2021). Die zwei Komponenten in einem klassischen bakteriellen TCS werden zum einen durch eine Sensorhistidinkinase, charakterisiert durch eine katalytische ATP-bindende Domäne (catalytical <u>ATP</u> binding, CA) und einer <u>Dimerisierungs-/Histidin-Phosphorylierungs-</u> domäne (DHp), zum anderen durch ein response regulator Protein mit einer receiver Domäne und einer output Domäne repräsentiert. Aktiviert durch einen spezifischen externen Stimulus, katalysiert die CA-Domäne die Phosphorylierung des konservierten Histidins der DHp-Domäne. Die Phosphorylgruppe wird auf das konservierte Aspartat in der receiver Domäne des response regulator Proteins übertragen und dadurch dessen *output* Domäne aktiviert (His \rightarrow Asp, Abbildung 6A) (Alvarez *et al.*, 2016; Bourret et al., 2021). Eine komplexere Variante stellen mehrstufige Phosphorelais-Systeme dar (Attwood, 2013). In Phosphorelais-Systemen wird die Phosphorylgruppe des Phosphohistidins der Sensorhistidinkinase zunächst auf das Aspartat einer receiver Domäne übertragen. Diese receiver Domäne entspricht der des response regulator Proteins, jedoch fehlt die output Domäne. Die Phosphorylgruppe wird weiter konserviertes Histidin eines Phosphotransfer-Proteins auf ein (histidine phosphotransfer, Hpt) übertragen. Das Hpt-Protein überträgt die Phosphorylgruppe weiter auf das konservierte Aspartat in der receiver Domäne des response regulator Proteins (His \rightarrow Asp \rightarrow His \rightarrow Asp, Abbildung 6B) (Alvarez *et al.*, 2016; Attwood, 2013; Bourret et al., 2021). Die Signaltransduktion in mehreren Stufen bietet nicht nur zusätzliche Punkte zur Regulation der Informationsverarbeitung, sondern bietet auch Möglichkeit, verschiedene Stimuli in einen Signalweg zu integrieren, die beziehungsweise die Information eines Stimulus auf mehrere Signalwege zu verteilen. Die Transferreaktion der Phosphorylgruppe, katalysiert durch Hpt-Proteine, ist bidirektional. Dadurch können Signalkaskaden in einem Phosphorelais-System durch umgekehrten Phosphotransfer ohne Phosphatasen abgebrochen werden (Bourret et al., 2021; Pena-Sandoval et al., 2005).

Die receiver Domäne und das Hpt-Protein können in einem mehrstufigen Phosphorelais entweder als eigenständige Proteine vorliegen, oder Teil der

15

Sensorhistidinkinase sein. Ist in der Sensorhistidinkinase ebenfalls eine *receiver* Domäne vorhanden, wird sie als Hybrid-Histidinkinase (HHK) bezeichnet. Enthält die HHK neben einer zusätzlichen *receiver* Domäne auch eine Hpt-Domäne, gilt sie als unorthodoxe Histidinkinase (Abbildung 6B) (Bourret *et al.*, 2021).

unorthodoxe Histidinkinase

Abbildung 6: Organisation bakterieller Zwei-Komponenten Signalsysteme. A: einfaches TCS. Reaktionen: Autophosphorylierung der Sensorhistidinkinase (1), Phosphotransfer von Histidin zu Aspartat (2) und Dephosphorylierung des *response regulator* Proteins (3). B: Mehrstufiges Phosphorelais. Reaktionen: Autophosphorylierung der Sensorhistidinkinase (1), Phosphotransfer von Histidin zu Aspartat (2, 4, 6), Phosphotransfer von Aspartat zu Histidin (3, 5) und Dephosphorylierung der *receiver* Domäne (7). CA: katalytische und ATP-bindende Domäne; DHp: Dimerisierungs- und Histidinphosphorylierungsdomäne; Hpt: Histidin-enthaltende Phosphotransferdomäne. Verändert nach Bourret *et al.*, 2021.

Sensorhistidinkinasen treten in Pilzen generell als Hybrid-Histidinkinasen auf und fungieren in Phosphorelais-Systemen (Alvarez *et al.*, 2016; Bourret *et al.*, 2021; Catlett *et al.*, 2003; Defosse *et al.*, 2015; Hérivaux *et al.*, 2016; Wuichet *et al.*, 2010). Das erste und am genausten beschriebene Phosphorelais-System in Pilzen ist das *osmosensing* TCS von *Saccharomyces cerevisiae* (Bourret *et al.*, 2021; Brewster & Gustin, 2014; Ota & Varshavsky, 1993; Posas *et al.*, 1996; Posas & Saito, 1997). Der Turgordruck wird in *S. cerevisiae* durch eine membrangebundene HHK, Sln1, detektiert. Sln1 besteht aus einer extrazellulären *input* Domäne und je einer intrazellulären Histidinkinase- und einer *receiver* Domäne. Bei normalem Turgordruck ist Sln1 aktiv und die Autophosphorylierung des konservierten Histidins der DHp-Domäne findet statt. Die Phosphorylgruppe wird intramolekular auf das konservierte Aspartat der receiver Domäne von SIn1 übertragen. Über das Hpt-Protein Ypd1 erfolgt der Transfer der Phosphorylgruppe auf die receiver Domäne des response regulator Proteins Ssk1. Ssk1 reguliert die Aktivität des high osmolarity glycerol (HOG) Signalwegs. Der HOG-Signalweg gehört zu der Familie der Mitogen-aktivierten Proteinkinase Signalwegen (MAP-Kinase-Signalweg) und besteht aus einer Kaskade aus der MAP-Kinase-Kinase-Kinase (MAPKKK) Pbs2, den MAP-Kinase-Kinasen (MAPKK) Ssk2 und Ssk22 und der MAP-Kinase (MAPK) Hog1. Die Phosphorylierung von Ssk1 inhibiert dessen Interaktion mit Ssk2 und Ssk22, wodurch die Aktivierung der MAPK-Signalkaskade ausbleibt. Osmotischer Stress führt zur Inaktivierung von SIn1 dessen Histidinkinaseaktivität und damit zur Akkumulation und von unphosphoryliertem Ssk1. Ohne Phosphorylierung interagiert Ssk1 mit Ssk2/Ssk22 und aktiviert dadurch die MAPK-Signalkaskade. Ssk2/Ssk22 aktivieren Pbs2 durch Phosphorylierung. Zwischen Pbs2 und Hog1 findet ein Transfer der Phosphorylgruppe statt, woraufhin phosphoryliertes Hog1 in den Zellkern transloziert und dort indirekt die Transkription von stressinduzierten Genen reguliert (Alvarez et al., 2016; Brewster & Gustin, 2014; Posas et al., 1996; Posas & Saito, 1997).

Pilzliche Phytochrome weisen alle strukturellen Elemente einer HHK auf. Bereits in den ersten Studien zu FphA aus *A. nidulans* konnte die Autophosphorylierung der Histidinkinase-Domäne in einem FphA-Homodimer und damit deren Funktionalität bestätigt werden (Blumenstein *et al.*, 2005; Brandt *et al.*, 2008). Die Transphosphorylierung war abhängig von rotem Licht und dem Vorhandensein eines Chromophors. Auch eine intermolekulare Transphosphorylierung von der Histidinkinase-Domäne auf die *response regulator* Domäne des Dimerisierungspartners konnte beobachtet werden. Diese war unabhängig vom Vorhandensein eines gebundenen Chromophors (Brandt *et al.*, 2008).

Der HOG-Signalweg aus *S. cerevisiae* ist hoch konserviert im Reich der Pilze (Bourret *et al.*, 2021) und Homologe der MAPK-Signalkaskade konnten auch in *Aspergillus* spp. identifiziert werden (Miskei *et al.*, 2009). Auch in *A. nidulans* ist das Hpt-Protein YpdA (Homolog zu *S. cerevisiae* Ypd1) der Initiator der Signalkaskade, die zur Phosphorylierung und Akkumulation von SakA (auch HogA, Homolog zu *S. cerevisiae* Hog1) im Zellkern führt und dort die Transkription von stressregulierten Genen steuert. Yu und Kollegen konnten 2016 die Aktivierung der SakA/HogA-Signalkaskade in *A. nidulans* durch FphA und rotes Licht aufzeigen (Abbildung 7) (Yu *et al.*, 2016). FphA kontrolliert den Phosphorylierungsstatus von YpdA und aktiviert

dadurch die nachgelagerte Signalkaskade. Azuma und Kollegen konnten 2007 einen rückwärts gerichteten Transfer der Phosphorylgruppe von der Hpt-Domäne von YpdA auf das konservierte Aspartat der *response regulator* Domäne von FphA *in vitro* nachweisen (Azuma *et al.*, 2007). Die Histidinkinase-Domäne von FphA war in diese Reaktion nicht involviert und deren genaue Rolle in der Signalgebung von FphA ist noch nicht geklärt. Allerdings ist sowohl das Aspartat der *response regulator* Domäne, als auch das Histidin der Histidinkinase-Domäne essenziell für die Phytochrom-vermittelte Reaktion *in vivo* (Hedtke *et al.*, 2015). Unter der Annahme, dass die Phosphorylierung des Histidins der Histidinkinase-Domäne Konformationsänderungen zur Folge hat, könnte diese für die vollständige Exposition der *response regulator* Domäne oder Interaktionsstellen von FphA notwendig sein (Yu & Fischer, 2019). Eine Besonderheit von FphA ist seine zweite Funktion als Temperatursensor (Yu *et al.*, 2019). Der HOG-Signalweg wird neben Licht unter anderem auch durch hohe Temperaturen aktiviert, ebenfalls vermittelt durch FphA.

Dass alle pilzlichen TCS als Phosphorelais fungieren, war lange Zeit die vorherrschende Meinung. Die Tatsache, dass Pilze oft für mehrere HHK kodieren (15 HHK in A. nidulans, 21 HHK in Cochliobolus heterostrophus), bisher aber nur ein Hpt-Protein identifiziert werden konnte, führt allerdings zu einem Paradoxon (Alvarez et al., 2016; Bourret et al., 2021; Catlett et al., 2003; De Souza et al., 2013; Vargas-Perez et al., 2007). Die bisher untersuchten pilzlichen HHK reagieren auf verschiedene externe Stimuli und regulieren differenziert verschiedene physiologische Prozesse. Wie können derart differenzierte Reaktionen hervorgerufen werden, wenn alle HHK in Pilzen ihre individuellen Stimuli über ein Hpt-Protein in Signalkaskaden integrieren und auch nur wenige response regulator Proteine vorhanden sind? Mehrere Erklärungsansätze wurden bereits diskutiert, dennoch bleiben abschließend einige Fragen offen (Alvarez et al., 2016; Bourret et al., 2021). Die Teilnahme von Adapterproteinen stellt eine Erklärung des Paradoxons dar. Adapterproteine können mehrere Komponenten eines Signalwegs binden. Dies isoliert diese zum einen von ungebundenen Komponenten, zum anderen erhöht dies aber auch die lokale Konzentration einzelner Komponenten wodurch eine Art Signalamplifikation erreicht werden kann. Eine naheliegende Erklärung besteht in der Annahme, dass nicht alle pilzlichen HHK mechanistisch an Phosphorelais gebunden sind, sondern das Signal in andere Signalwege integrieren. Im Gegensatz zu bakteriellen HK sind die meisten pilzlichen HHK nicht membrangebunden, sondern liegen in Lösung vor. Die

Translokation vom Zytosol in den Zellkern und *vice versa* ist demnach im Rahmen des Möglichen (Alvarez *et al.*, 2016; Bourret *et al.*, 2021).

FphA aus A. nidulans weist zwei Kernlokalisierungssignale (NLS) auf und Interaktionen mit LreB (Teil des WCC-Homolog LreA-LreB) und VeA im Zellkern konnten nachgewiesen werden (Purschwitz et al., 2008; Purschwitz et al., 2009). Später konnte gezeigt werden, dass die Transkription von lichtregulierten Genen durch die Modifikation von Histon H3, gesteuert durch FphA und WCC, kontrolliert wird (Abbildung 7) (Hedtke et al., 2015). Bei Dunkelheit sind LreA-LreB und VeA an die Promotoren der lichtregulierten Gene ccgA oder conJ gebunden. VeA ist für die Bindung von LreA essenziell (Hedtke et al., 2015). Dort interagiert LreA mit der Histondeacetylase HdaA und der Histon-Acetyltransferase GcnE. Durch Stimulation von HdaA und Hemmung von GcnE verbleibt Histon H3 im deacetylierten Zustand und die Genexpression ist reprimiert. Unter Lichteinwirkung löst sich LreA vom Promotor, während VeA verbleibt. Vermutlich aktivieren VeA und FphA gemeinsam die Acetylierung von Histon H3 durch Interaktion und Aktivierung von GcnE, wenn auch die Interaktion von FphA mit GcnE noch nicht verifiziert ist (Hedtke et al., 2015). Dies initiiert unter anderem die Expression der fluffy Gene flbA-C. Diese wiederum aktivieren die Expression von brlA, dessen Genprodukt als Hauptregulator der Konidienbildung gilt (Ruger-Herreros et al., 2011). Auf diese Weise kontrolliert FphA als Reaktion auf rotes Licht in A. nidulans den Großteil der durch Licht regulierten Gene, welche etwa 10% des gesamten Genoms entsprechen. Diese sind Teil von sowohl metabolischen Prozessen, wie etwa die Stickstoffaufnahme oder der Aminosäure-, Fettsäure- und Kohlenhydrat-Stoffwechsel, als auch andere regulatorische Komponenten, wie Transkriptionsfaktoren und andere Histidinkinasen. Interessanterweise inhibiert FphA die Ribosomen-Biogenese unter rotem Licht, womöglich um unnötigen Energieaufwand zur Umstellung des Metabolismus, ausgelöst durch lediglich kurzweilige Änderungen der Umgebungsbedingungen, zu vermeiden (Yu et al., 2021).

Während in *A. nidulans* FphA die Hauptrolle in der Regulation lichtregulierter Gene einnimmt, dominiert in *N. crassa* die Reaktion auf blaues Licht, mit dem WCC als zentrales Element. *N. crassa* ist aber auch einer der wenigen Ascomyceten, dessen Genom für mehr als ein Phytochrom kodiert, *phy-1* und *phy-2* (Froehlich *et al.*, 2005; Schumacher, 2017). Weder die Deletion von *phy-1*, noch von *phy-2* oder beiden Phytochromen resultierte in einem deutlichen Phänotyp. Transkriptomanalysen lassen

19

darauf schließen, dass PHY-2 die Aktivität des WCC moduliert und reprimierend auf die Expression mit der sexuellen Entwicklung assoziierter Gene wirkt. Die Funktion von PHY-1 ist weiterhin unklar (Froehlich *et al.*, 2005; Olmedo *et al.*, 2010; Wang *et al.*, 2016).

Abbildung 7: Signalgebung durch rotes Licht und FphA in *A. nidulans*. Links: Bei Dunkelheit sind VeA, LreA und LreB an die Promotorregionen der lichtregulierten Gene *ccgA* und *conJ* gebunden. LreA stimuliert HdaA, wodurch keine Acetylierung der Histone stattfindet und die Expression reprimiert wird. **Rechts:** Unter der Einwirkung von Licht dissoziiert LreA-LreB von den Promotoren. VeA verbleibt an der Promotorregion und aktiviert gemeinsam mit FphA GcnE, was zur Acetylierung der Histone und zur Aktivierung der Transkription führt. Verändert nach Yu & Fischer, 2019. Erstellt mit BioRender.com

Ein weiterer Vertreter der Ascomyceten mit zwei Phytochrom-kodierenden Sequenzen ist *A. fumigatus* (Chapeland-Leclerc *et al.*, 2015; Fuller *et al.*, 2013; Schumacher, 2017). *A. fumigatus* enthält ein Ortholog zu FphA aus *A. nidulans*, genannt AfFphA (<u>Aspergillus fumigatus FphA</u>). Im Dunkeln fördert AfFphA die Keimung der Konidien und fördert die Zellwand-Homöostase bei Licht (Fuller *et al.*, 2013; Fuller *et al.*, 2016). Das zweite potenzielle Phytochrom aus *A. fumigatus* war bisher noch nicht Gegenstand der Forschung.

Wie bereits erwähnt, kodieren die meisten Genome von Ascomyceten lediglich für ein Phytochrom. Hier bildet die Klasse der Leotiomyceten die Ausnahme. Bis auf *Pseudogymnoascus destructans* weisen auffällig viele Leotiomyceten zwei oder mehr Phytochrome auf, welche sehr wahrscheinlich durch Vervielfältigung des *phy-2* Gens entstanden sind. *B. cinerea* weist beispielsweise drei Phytochrome auf, BcPHY1-3 (Schumacher, 2017). Die Deletion von *Bcphy3* resultierte in langsameren vegetativem Wachstum, reduzierte Sklerotienzahl, einem gestörten Zellwandaufbau sowie reduzierter Pathogenität (Hu *et al.*, 2014). Interessanterweise fehlt das konservierte Histidin der Histidinkinase-Domäne von BcPHY3. Die Expression der drei Phytochrome aus *B. cinerea* ist lichtabhängig und wird reguliert durch BcWCL1 und BcWCL2 (Orthologe von *N. crassa* WC-1 und WC-2) (Schumacher, 2017). Zu der Funktion von BcPHY1 und BcPHY3 liegen bisher keine Daten vor.

Die Velvet-Proteinfamilie

Mit Hilfe von verschiedenen Photorezeptoren sind Pilze in der Lage einzelne Wellenlängenbereiche individuell wahrzunehmen. Deren individuelle Signalmechanismen ermöglichen spezifische Reaktionen des Organismus auf die Anforderungen seiner Umgebung. Mit Hilfe von bestimmten Regulatoren werden diese individuellen Mechanismen zu einem komplexen Netzwerk verflochten. Diese Regulatoren werden durch die Familie der Velvet-Proteine beschrieben (Abbildung 8).

Abbildung 8: Domänenorganisation der Velvet-Proteinfamilie und des globalen Regulators des Sekundärstoffwechsels LaeA in *A. nidulans*. Velvet: Velvet-Domäne; NLS: Kernlokalisierungssequenz; NES: Kernexportsequenz; PEST: Prolin (P), Glutamat (E), Serin (S) und Threonin (T) reiche Sequenz; TAD: Transaktivierungsdomäne; SAM: S-Adenosylmethionin-Bindestelle; MTD: Methyltransferase-Domäne. Verändert nach Bayram & Braus, 2012 und Gerke & Braus, 2014.

Die Velvet-Familie ist hoch konserviert in Asco- und Basidiomyceten (Bayram & Braus, 2012; Calvo et al., 2016; Moon et al., 2022; Ni & Yu, 2007). Begründet wurde diese Familie durch die Entdeckung von Velvet A (VeA) aus A. nidulans und dessen Punktmutation veA1 (Käfer, 1965). A. nidulans Wildtyp benötigt Licht zur Induktion der Konidienbildung, wohingegen Stämme, die die veA1 Mutation tragen, auch im Dunkeln Konidien bilden (Mooney & Yager, 1990). Mitglieder der Velvet-Proteinfamilie gelten als Regulatoren der pilzlichen Entwicklung und des Sekundärstoffwechsels und sind charakterisiert durch einen ca. 150-200 Aminosäure langen konservierten Abschnitt (Velvet-Domäne). Obgleich keine bekannten Motive identifiziert werden konnten, weisen Velvet-Domänen strukturelle Ähnlichkeiten mit der Rel homology-Domäne (RHD) des Transkriptionsfaktor NF-kB aus Säugetieren auf. Velvet-Domänen beinhalten einige konservierte Aminosäuren, welche die Bindung an Promotorregionen bestimmter Gene gewährleisten. Außerdem fungiert die Velvet-Domäne als Interaktionsstelle für die Bildung von Homo- und Heterodimeren (Ahmed et al., 2013). VeA enthält zusätzlich in seinem N-terminalen Teil eine zweiteilige Kernlokalisierungssequenz (NLS) sowie eine Kernexportsequenz (NES) (Ahmed et al., 2013; Stinnett et al., 2007). C-terminal weist VeA eine Prolin-reiche Region (PEST) auf, deren genaue Rolle jedoch noch nicht geklärt ist (Bayram et al., 2008b; Bayram & Braus, 2012; Kim et al., 2002). Vermutlich trägt sie zur Kontrolle der Proteinstabilität bei (Gerke & Braus, 2014). Die subzelluläre Lokalisation von VeA ist abhängig von Licht. Im Dunkeln ist VeA hauptsächlich im Zellkern lokalisiert, wohingegen unter Lichteinwirkung die Konzentration von VeA im Zytoplasma ansteigt (Stinnett et al., 2007). VeA1 hingegen ist unabhängig von Licht überwiegend im Zytoplasma lokalisiert. Das veA1 Allel trägt eine Punktmutation im Startcodon. Dadurch fehlen in VeA1 die ersten 36 Aminosäuren und die zweiteilige NLS ist nicht mehr funktional (Kim et al., 2002, Stinnett et al., 2007). Der Import von VeA erfolgt durch die Interaktion mit dem α-Importin KapA, welche durch die veA1 Punktmutation stark geschwächt ist (Stinnett et al., 2007).

Ein zweites Mitglied der Velvet-Proteinfamilie ist VelB (<u>velvet like B</u>). VelB ist das kürzeste Velvet-Protein und das einzige mit zwei Velvet-Domänen. Ohne NLS ist VelB für den Import in den Zellkern auf VeA angewiesen. VeA und VelB interagieren im Zytoplasma und formen ein Heterodimer, welches im Dunkeln durch das α-Importin KapA in den Zellkern importiert wird. Der Import wird durch Licht inhibiert (Bayram *et al.*, 2008b; Sarikaya Bayram *et al.*, 2010; Stinnett *et al.*, 2007). Im Zellkern ist VelB- VeA essenziell für die Regulation der Fruchtkörperbildung (Bayram *et al.*, 2008b; Sarikaya Bayram *et al.*, 2010). Außerdem interagiert VeA mit einem weiteren regulatorischen Protein, LaeA. VeA stellt auf diese Weise die Brücke zwischen VelB und LaeA dar und bilden gemeinsam ein Heterotrimer (Velvet-Komplex) (Bayram *et al.*, 2008b).

LaeA und VeA gelten als gegenseitige Antagonisten in der Regulation der pilzlichen Entwicklung und des Sekundärmetabolismus (Bayram & Braus, 2012). LaeA (*loss of <u>af</u>lR <u>expression A</u>) enthält keine Velvet-Domäne. Am N-terminalen Ende ist eine NLS lokalisiert, was zu der vorwiegenden Lokalisation im Zellkern führt. Die Aktivität von LaeA als globaler Regulator des Sekundärstoffwechsels wird durch eine <i>S*-Adenosylmethionin-abhängige (SAM) Methyltransferase-Domäne gewährleistet. Die SAM-Bindedomäne ist N-terminal der NLS lokalisiert (Bayram & Braus, 2012). Der Velvet-Komplex aus VelB-VeA-LaeA koordiniert den Sekundärstoffwechsel und die pilzliche Entwicklung im Dunkeln (Bayram *et al.*, 2008b).

VelB bildet gemeinsam mit einem weiteren Vertreter der Velvet-Proteinfamilie, VosA, ein weiteres Heterodimer. VosA (*viability of spores A*) weist wie VeA eine Nterminale Velvet-Domäne sowie eine NLS auf. C-terminal präsentiert VosA eine Transkriptionsaktivierungsdomäne (TAD). VosA ist im Zellkern lokalisiert, hat jedoch keinen Einfluss auf den Import von VelB. Das Heterodimer VosA-VelB liegt nur in der vegetativen Phase im Dunkeln vor und trägt durch die Aktivierung der Trehalose-Biogenese zur Lebensfähigkeit von sexuellen und asexuellen Sporen bei. Außerdem reprimiert VosA-VelB die asexuelle Entwicklung (Ahmed *et al.*, 2013; Ni & Yu, 2007; Sarikaya Bayram *et al.*, 2010).

Über das vierte Mitglied der Velvet-Familie, VelC (<u>ve</u>lvet <u>like</u> <u>C</u>), ist bisher nur wenig bekannt. VelC weist C-terminal eine Velvet-Domäne und eine PEST-Domäne auf und bildet mit VosA ein Heterodimer im Zellkern. In *A. nidulans* resultiert die Deletion von velC in einer gesteigerter Konidien- und gleichzeitiger reduzierter Fruchtkörperbildung. Auch die Expression von Genen zur Aktivierung der asexuellen Sporenbildung ist durch die Deletion von velC stark hochreguliert. Exprimiert in der frühen Phase der sexuellen Entwicklung fungiert VelC als positiver Regulator selbiger. (Park *et al.*, 2014)

In *A. nidulans* regulieren die Velvet-Proteine zusammen mit LaeA die sexuelle und asexuelle Entwicklung und verknüpfen diese mit dem Sekundärstoffwechsel. Licht reguliert die subzelluläre Lokalisation von VeA, wodurch das Signal Licht in diesen komplexen Prozess integriert wird. Höchstwahrscheinlich wird dieser Prozess unter anderem durch FphA vermittelt, dessen Deletion zu einer verstärkten Akkumulation von VeA im Zellkern führte (Purschwitz et al., 2008). Die subzelluläre Lokalisation von VeA wird zusätzlich von weiteren Faktoren bestimmt, wie beispielsweise durch die Interaktion mit der Methyltransferase LImF (LaeA-like methyltransferase F) (Palmer et al., 2013). LImF ist ein negativer Regulator der Produktion von Sterigmatocystin und der sexuellen Entwicklung. Durch die direkte Interaktion mit VeA inhibiert LImF den Import in den Zellkern und übt so seine inhibierende Funktion aus. VipC (velvet interacting protein C) ist eine weitere Methyltransferase die mit VeA interagiert (Sarikaya-Bayram et al., 2014). VipC ist Teil eines Heterotrimers mit der Methyltransferase VapB und dem FYVE-like Zink-Finger-Protein VapA. Der Komplex ist über VapA mit der Zellmembran assoziiert. Durch externe Signale löst sich das VipC-VapB Heterodimer und inhibiert den Import von VelB-VeA. Im Zellkern stimuliert VipC-VapB die asexuelle Entwicklung. Durch Interaktion mit VeA reprimiert VipC-VapB-VeA zusätzlich die sexuelle Entwicklung. Auf diese Weise werden neben Licht weitere Signale in die Regulation von Entwicklung und Sekundärstoffwechsel integriert.

Wie bereits erwähnt, kommt VeA aber auch eine essenzielle Rolle in den Signalmechanismen der Photorezeptoren FphA und LreA/LreB in *A. nidulans* zu. Im Dunkeln ist VeA an die Promotorregionen lichtregulierter Gene gebunden, vermittelt durch FphA. VeA wiederum koordiniert die Bindung von LreA-LreB an die Promotorregionen, wo es den Acetylierungsstatus von Histon H3 kontrolliert und so die Expression reprimiert. Durch Licht dissoziiert LreA-LreB vom Promotor und FphA wird aktiviert, wodurch die Expression der lichtregulierten Gene initiiert wird. (Hedtke *et al.*, 2015)

In diesem komplexen Netzwerk stellt VeA die Verzweigungsstelle und den Koordinator der lichtabhängigen Regulation von morphologischen und metabolischen Prozessen sowie der Regulation durch andere Stimuli dar (Abbildung 9). Dabei bestimmen posttranslationale Modifikationen und unterschiedliche Phosphorylierungsmuster die physiologische Rolle von VeA (Rauscher *et al.*, 2016; Sarikaya Bayram *et al.*, 2010).

Die Velvet-Proteinfamilie ist hoch konserviert in Ascomyceten und die meisten *Aspergillus* spp. kodieren für alle vier Velvet-Proteine, die in *A. nidulans* charakterisiert wurden (Calvo *et al.*, 2016; Moon *et al.*, 2022). In *A. fumigatus* sind bis auf VelC alle Velvet-Proteine für die korrekte asexuelle Entwicklung erforderlich. Die Deletion von

veA in *A. fumigatus* resultierte in einer gesteigerten Produktion von Konidiophoren und gehemmtem radialen Wachstum (Park *et al.*, 2012). Während VeA als negativer Regulator der Konidienbildung fungiert, nimmt er in der Regulation der Gliotoxinproduktion die Rolle des positiven Regulators ein (Dhingra *et al.*, 2013). *veA* aus *A. nidulans* komplementiert den Phänotyp von *A. fumigatus* ΔveA und interagiert mit VelB und LaeA (Velvet-Komplex), was auf eine größtenteils konservierte Funktion von VeA in *A. nidulans* und *A. fumigatus* schließen lässt (Park *et al.*, 2012).

LaeA kontrolliert in *A. fumigatus* bis zu 40% der Gene, welche mit der Biosynthese von Sekundärmetaboliten assoziiert sind, darunter ebenfalls Gliotoxin (Bok *et al.*, 2005; Perrin *et al.*, 2007). Die Deletion von *laeA* bewirkte eine starke Reduktion der Virulenz von *A. fumigatus* in einem Maus-Lungen-Modell (Bok *et al.*, 2005; Sugui *et al.*, 2007). Auch die Funktion des VosA-VelB Heterodimers ist konserviert in *A. fumigatus*. Gemeinsam tragen sie zur Lebensfähigkeit der Sporen bei und sind wie VeA negative Regulatoren der Konidienbildung (Park *et al.*, 2012).

Auch in *N. crassa* sind die Velvet-Proteine hoch konserviert und Orthologe zu allen vier Velvet-Proteinen und laeA aus A. nidulans konnten identifiziert werden (ve-1, ve-2, ve-3, vos-1 und lae-1) (Bayram et al., 2008c; Bayram et al., 2019; Cea-Sanchez et al., 2022; Ojeda-Lopez et al., 2018). VE-1, das Ortholog aus N. crassa zu VeA aus A. nidulans, wurde als erstes Velvet-Protein aus N. crassa charakterisiert. VE-1 fungiert als Repressor der asexuellen Konidienbildung und reguliert das vegetative Wachstum (Bayram et al., 2008c). Dabei reguliert VE-1 die Expression von über 15% des gesamten Genoms. Verschiedene Komplexe der Velvet-Proteine konnten identifiziert werden in N. crassa (Bayram et al., 2019). Das Heterodimer aus VE-1/VE-2 reguliert die Caroten-Produktion. VE-2/VOS-1 tragen zur Lebensfähigkeit der Sporen bei und reprimieren gemeinsam die asexuelle Konidienbildung. Das Heterotrimer aus VE-1/VE-2/LAE-1 (Velvet-Komplex) bilden gemeinsam einen positiven Regulator für die sexuelle Entwicklungsphase und reprimieren die asexuelle Sporenbildung. In A. nidulans komplementieren ve-1, ve-2, vos-1 und lae-1 aus N. crassa jeweils die Phänotypen, verursacht durch die entsprechenden Deletionen. Auch konnten VE-1 und VE-2 als Teil des Velvet-Komplexes in A. nidulans nachgewiesen werden (VelB/VE-1/LaeA und VE-2/VeA/LaeA). Interessanterweise ist die subzelluläre Lokalisation der Velvet-Proteine in N. crassa unabhängig von Licht. Heterolog exprimiert in A. nidulans variieren die subzellulären Lokalisationen der Velvet-Proteine aus N. crassa, sind aber ebenfalls unabhängig von Licht. VE-1 und VOS-1 sind
ausschließlich im Zellkern lokalisiert, wohingegen VE-2 und LAE-1 sowohl im Zellkern, als auch im Zytoplasma lokalisiert sind (Bayram *et al.*, 2019).

Abbildung 9: Velvet-Proteine und ihre Funktionen. Der Import des VelB-VeA Dimers erfolgt durch das α-Importin KapA im Dunkeln. Unter dem Einfluss von Licht wird der Import womöglich durch FphA inhibiert. Außerdem wird der Import durch das Heterodimer VipC-VapB und LImF-VeA inhibiert. Im Zellkern stimuliert VelB-VeA die sexuelle Entwicklung, wohingegen das Heterotrimer VipC-VapB-VeA die sexuelle Entwicklung inhibiert. VelB-VeA kann mit LaeA ein Heterotrimer bilden (Velvet-Komplex) und so den Sekundärstoffwechsel und die Entwicklung regulieren. Durch Interaktion mit FphA und LreA/LreB kontrolliert VeA die Expression lichtregulierter Gene. Weiter kann VelB als Homodimer die asexuelle Entwicklung stimulieren oder als Heterodimer mit VosA inhibieren. Ein VosA Homodimer wirkt inhibierend auf die asexuelle Entwicklung und stimuliert die Trehalose-Biogenese. VipC-VapB hingegen stimuliert die asexuelle Entwicklung. VosA interagiert außerdem mit VelC und stimuliert so die sexuelle Entwicklung. Erstellt mit BioRender.com

Ziel dieser Arbeit

Als saprotrophe Pilze spielen *Aspergillus* spp. eine wichtige Rolle im Kohlen- und Stickstoffkreislauf. Einige *Aspergillus*-Arten sind opportunistische Pathogene, wie *Aspergillus flavus*, *Aspergillus terreus*, *Aspergillus niger* und *A. fumigatus* (Dagenais & Keller, 2009). Dabei ist *A. fumigatus* der häufigste Erreger von invasiver Aspergillose mit Mortalitätsraten bis 90% in immunsupprimierten Patienten (Dagenais & Keller, 2009; Tong *et al.*, 2021). Die Erforschung dieser obligatorischen Humanpathogene ist deshalb von besonderer Bedeutung.

Histidinkinasen stellen einen vielversprechenden Angriffspunkt zur Behandlung pilzlicher Infektionen dar. Sie tragen oft zur Resistenz eines Erregers gegenüber verschiedenen Formen von Stress und Antimykotika bei und sind abwesend in Säugetieren (Defosse *et al.*, 2015). Phytochrome weisen alle strukturellen Elemente von Histidinkinasen auf. Während die meisten Ascomyceten nur eine Phytochrom-kodierende Sequenz in ihren Genomen aufweisen, enthält das Genom von *A. fumigatus* zwei Phytochrom-ähnliche Sequenzen, von deren Genprodukten bisher nur eines Gegenstand der Forschung war (Chapeland-Leclerc *et al.*, 2015; Fuller *et al.*, 2013). Ziel dieser Arbeit ist die Charakterisierung beider Phytochrome aus *A. fumigatus* hinsichtlich der biologischen Funktionen und biochemischen Eigenschaften.

Darüber hinaus wird die noch offene Frage nach der Rolle der Histidinkinase Domäne im Signalmechanismus von FphA aus A. nidulans adressiert. Durch die Einführung einer Punktmutation soll die Phosphorylierung nachgeahmt und deren Auswirkung auf die Proteinkonformation nach Absorption von rotem Licht untersucht Hilfe von Weiter mit Kryo-Elektronenmikroskopie die erste werden. soll dreidimensionale Struktur des photosensorischen Moduls eines pilzlichen Phytochroms bereitgestellt werden.

2 Ergebnisse

In filamentösen Pilzen werden zahlreiche Entwicklungsprozesse durch die Wahrnehmung von Licht reguliert. Dabei werden einzelne Wellenlängenbereiche durch verschiedene Photorezeptoren wahrgenommen. Die Wahrnehmung von rotem und dunkelrotem Licht erfolgt durch die Hybrid-Histidinkinase Phytochrom.

Die Deletion von *fphA* in *A. fumigatus* hatte keinen Einfluss auf dessen asexuellen Entwicklungsprozess. Bisher konnte AfFphA lediglich eine fördernde Wirkung auf die Keimung der Konidien im Dunkeln und eine fördernde Wirkung auf die Zellwand-Homöostase bei Licht zugeschrieben werden (Fuller *et al.*, 2013). *fphB* wurde bisher als redundantes Gen angesehen und wurde noch nicht weiter untersucht (Chapeland-Leclerc *et al.*, 2015; Fuller *et al.*, 2013). Die folgenden Studien befassen sich mit der weiteren Charakterisierung von FphA sowie erstmals mit FphB aus *A. fumigatus*.

2.1 Charakterisierung von FphA und FphB aus A. fumigatus

Um die Funktion von AfFphA und AfFphB *in vivo* zu untersuchen, wurden beide Phytochrome heterolog in einem *A. nidulans* ∆*fphA* Deletionsstamm exprimiert. Für die Charakterisierung *in vitro* wurden für *E. coli* Codon-optimierte synthetische Versionen beider Gene verwendet (Bio Basic Inc., Kanada).

FphA aus A. fumigatus fungiert als Licht- und Temperatursensor

A. fumigatus ist einer der wenigen Vertreter der Abteilung Ascomycota, dessen Genom für mehr als ein Protein mit Ähnlichkeiten zu Phytochromen kodiert, AFUA 4G02900 und AFUA 6G09260 (Chapeland-Leclerc et al., 2015; Schumacher, 2017, Fuller et al., 2013). Von Fuller und Kollegen wurde AFUA_4G02900 als FphA und AFUA_6G09260 als FphB benannt (Fuller et al., 2013). FphA besteht aus 1375 Aminosäuren mit einer Masse von 152,1 kDa, FphB besteht aus 1342 Aminosäuren und weist eine Masse von 148,7 kDa auf. Die Aminosäuresequenz von FphA aus A. fumigatus weist zu der von FphA aus A. nidulans eine prozentuale Übereinstimmung von 62,75% auf. FphB aus A. fumigatus hingegen weist zu FphA aus A. nidulans eine prozentuale Übereinstimmung von 40,58% auf. Zueinander stimmen FphA und FphB aus A. fumigatus zu 42,86% überein. Eine Analyse der Sequenzen der beiden Phytochrome hinsichtlich konservierter Domänen mit Hilfe von InterPro (EMBL-EBI, UK) ergab, dass FphA die für pilzliche Phytochrome typische Domänenorganisation, bestehend aus je einer PAS-, einer GAF- und einer PHY-Domäne in der N-terminalen Hälfte und je einer Histidinkinase/ATPase- und response regulator Domäne in der Cterminalen Hälfte aufweist. In der N-terminalen Hälfte von FphB hingegen konnten bestimmte Bereiche lediglich der PAS-, GAF- und PHY-like Domänen-Superfamilie FphA zugeordnet werden. Die C-terminale Hälfte weist wie je eine Histidinkinase/ATPase und response regulator Domäne auf. Die den Vorhersagen entsprechenden Bereiche wurden mit den Seguenzen anderer bekannten pilzlichen Phytochromen mit Hilfe von ClustalW abgeglichen. Die für Phytochrome typischen Domänen weisen konservierte Motive oder einzelne Reste auf, die charakteristisch oder sogar essenziell für die Funktion der jeweiligen Domäne sind. Der Vergleich der Sequenzen des N-terminalen photosensorischen Moduls beider Phytochrome aus A. fumigatus mit weiteren Phytochromen verschiedener Ascomyceten, ist in Abbildung 10 dargestellt. Charakteristisch für die PAS-Domäne ist ein konserviertes Cystein, über

Abbildung 10: Sequenzanalyse der Domänen des photosensorischen Moduls von AfFphA und AfFphB und weiterer verschiedener pilzlicher Phytochrome. Der Chromophor in pilzlichen Phytochromen ist an ein konserviertes Cystein in der PAS-Domäne gebunden (rote Kennzeichnung). Ein konserviertes Histidin in der GAF-Domäne ist für die korrekte Bindung des Chromophors essenziell (orange Kennzeichnung). Das konservierte *PRxSF*-Motiv der PHY-*tongue* (schwarze Kennzeichnung) tritt in Kontakt mit dem *DIP*-Motiv in der GAF-Domäne (grüne Kennzeichnung).

dessen Thiolgruppe die kovalente Bindung des Chromophors gewährleistet wird. Die GAF-Domäne weist zum einen ein konserviertes Histidin auf, dessen Rest für die korrekte Koordination des Chromophors notwendig ist (Brandt *et al.*, 2008), zum anderen stellt das sogenannte *DIP*-Motiv die Kontaktstelle für eine von der PHY-Domäne herausstehende Schleife, die sogenannte *PHY-tongue*, dar. Die *PHY-tongue* ist das zentrale Element der PHY-Domäne, deren *PRxSF*-Motiv mit dem DIP-Motiv der GAF-Domäne in Verbindung tritt und so über die Chromophorbindetasche spannt (Lamparter *et al.*, 2017). FphA weist alle genannten Motive und Reste auf. FphB hingegen weist weder das für die Bindung des Chromophors essenzielle Cystein, noch die anderen für die intramolekulare Signaltransduktion relevanten Motive und Reste auf. Das C-terminale regulatorische Modul besteht aus einer Histidinkinase Domäne mit einem konservierten Histidin als Phosphorylierungsstelle, einer ATPase mit zwei die ATP-Bindetasche flankierenden *GxG*-Motiven und einer *response regulator* Domäne mit einem konservierten Aspartat als Phosphorylierungsstelle. Sowohl FphA als auch FphB weisen alle genannten Reste und Motive auf (Abbildung 11).

		*			
HisKA	A. alternata AaFphA806A. nidulans AnFphA747B. cinerea BcPHY1815B. cinerea BcPHY2718B. cinerea BcPHY3680N. crassa NcPhy-1855N. crassa NcPhy-2687A. fumigatus AfFphA741A. fumigatus AfFphB746	VWRQK EAALQS SQLT RLLLAN SAH VWRQQEAALES SSLTK LLLAN SAH VWRQK EAALQS SQLTR LLLAN SAH I WRQK EST - GLNRMTR LLLKNT SH VWRQK EAI VQQNRMTR LLIRQACA VWRQK EAALRS SR LTR LLLAN SAH VWR EK ETAI NDTR LKR LLLHDA SHO VWRQK EAAMEN SQLTR LLAN SAH VWQK ETTMQS TQLMR LLLAN CAH	VRTPLNAIINYLEIALEG VRTPLNAIVNYLEIALEG VRTPLNAVVNYLEIALEG VRTPLNAVVNYLEIALEG VRNPLNAIIGYLEIALEG VRTPLNAIIGYLEIALEG VRTPLNAVINCLEIALEG FRTPLNAVINYLEIALEG	848 789 857 759 892 729 784 788	
		*		*	
HATPase	A. alternata AaFphA874A. nidulans AnFphA916B. cinerea BcPHY1982B. cinerea BcPHY2884B. cinerea BcPHY3847N. crassa NcPhy-11017N. crassa NcPhy-2854A. fumigatus AfFphA911A. fumigatus AfFphB915	EVAVSDTGVG MSQKKLDQLFYDLEC KIAVLDTGRGISSSTLELLFRELEC EIVVEDSGAGMSNQKLDTIFRDLEC SLTVQDVGIGMSESQLDELFQEFEC EMFFTDNGSGFTEPELDGIFQDFE DIVVQDSGQGMSNAQLDALFRELEC QMTVLDTGFGFSERELDDMFQEFEC QMTVLDTGSGMSQSTLEALFQELEC	V Q S E P T SML E DA L V P I V S G E D D S H Y Y G G S E E G E E V D G D P L F E D E I L D E T D H ST I V D D D I G S E S S D V P D E D F D E A T S V S T D D D N Y W F D P E D Q V S N K D Y I R S R G P Q R C D I	DK KQ I A EQG EK ST I G L G L A V SAP EAK A SK DK AV I G L G L A L - SN EK A L V DG NR T I G L G L A M KK P AQ P L I DV K ET L G I G L A V P S L DG EK A S I G L G L A V D D N SQ SG K A I G L G L A V K P H A V R D N V L R V G V G L A F T H P L D S C SQ DK R V I G L G L A L N V I T S D G S G S G N I L G L G L A L	1033 978 1035 938 898 1068 907 970 975
RR	A. alternata AaFphA 1327 A. nidulans AnFphA 1173 B. cinerea BcPHY1 1350 B. cinerea BcPHY2 1115 B. cinerea BcPHY3 1095 N. crassa NcPhy-1 1406 N. crassa NcPhy-2 1059 A. furnigatus AlFphA 1261 A. furnigatus AlFphB 1227	KDIDVVLMD MQMPIVDGLTŠTKMIR KQUDVVLMDIQMPILDGIESTKRIR KRFDVILMDMQMPIVDGLTSTKMIR NKVDVILMDLQMPLVDGTKATRMIR DGFDIVLMDIQMPIVDGLTSTKMIR STVDFVLMDLNMPVVDGFASIRMIR TKVDVVLMDIQMPIVDGTESTRMIR HSFDAVLMDIQMPIVDGMGSTKMIR	S F E K L H H D I - 1360 Q H E SQ 1202 S F E K T Y L D L - 1383 K F E R D N L E L - 1148 S F T T N T L P - 1127 A F E K T N R D G S 1440 D Q E Y S H P T P - 1092 Q F E Q E F Q P P - 1294 E Y E A L T A S P T 1261		

Abbildung 11: Sequenzanalyse der Domänen des regulatorischen Moduls von AfFphA und AfFphB und weiterer verschiedener pilzlicher Phytochrome. Die Autophosphorylierung von pilzlichen Phytochromen erfolgt an einem konservierten Histidin in der Histidinkinase-Domäne (rote Kennzeichnung). Katalysiert wird diese Reaktion durch die ATPase-Domäne, deren ATP-Bindetasche durch zwei *GxG*-Motive flankiert ist (grüne Kennzeichnung). Ein konserviertes Aspartat in der *response regulator* Domäne (schwarze Kennzeichnung) fungiert als Akzeptor in der Transphosphorylierungsreaktion sowie in der Phosphotransferreaktion zwischen FphA und YpdA.

Der Vergleich der Sequenzen der beiden Phytochrome FphA und FphB aus *A. fumigatus* mit Sequenzen anderer bereits untersuchten pilzlichen Phytochrome zeigte, dass FphA alle notwendigen Elemente zur Lichtwahrnehmung aufweist, FphB diese jedoch fehlen. Um zu untersuchen, inwiefern beide Proteine auf die Bestrahlung mit Licht reagieren, wurden die Codon-optimierten synthetischen kodierenden

Sequenzen (Bio Basic Inc., Kanada) mit Streptag®II (IBA Lifesciences, Göttingen) markiert und heterolog in *E. coli* exprimiert und isoliert. FphB konnte in seiner vollen Länge exprimiert und isoliert werden, wohingegen FphA in seiner vollen Länge nicht löslich war. Die Expression von FphA wurde deshalb auf dessen photosensorisches Modul reduziert (Aminosäuren 1-742). Zusätzlich wurde ein Derivat von FphB analysiert, in welchem durch eine Punktmutation das fehlende konservierte Cystein für die Bindung des Chromophors eingeführt wurde (Abbildung 12). UV/Vis Spektroskopie Mittels wurden die spektroskopischen Eigenschaften des dunkel

Abbildung 12: SDS-PAGE von FphA-NPGP, FphB und FphB-M203C aus *A. fumigatus.* M: PageRuler[™] *Prestained Protein Ladder.* 1: AfFphA-NPGP (83,7 kDa). 2: AfFphB (150,3 kDa). 3: AfFphB-M203C (150,3 kDa). Die eingesetzte Proteinmenge betrug jeweils 15 μg. 5% Sammelgel, 10% Trenngel. Färbung mit Coomassie Brilliant Blau.

adaptierten Zustands, nach der Bestrahlung mit rotem sowie mit dunkelrotem Licht analysiert. Die Bindung eines linearen Tetrapyrrols als Chromophor wurde durch Zinkinduzierte Fluoreszenz überprüft. Die Ergebnisse der spektroskopischen Experimente und der Zink-induzierten Fluoreszenz der isolierten und angereicherten Proteine sind in Abbildung 13 dargestellt. Das photosensorische Modul von FphA zeigte ein UV/Vis-Absorptionsspektrum eines kanonischen Phytochroms. Im dunkel adaptierten Grundzustand zeigt FphA Absorptionsmaxima der Q-Bande bei 702 nm und der Soret-Bande bei 395 nm. Nach Rotlichtabsorption nimmt die Absorption bei 702 nm ab und es entsteht ein zusätzliches Absorptionsmaximum bei 754 nm. Das Maximum der Soret-Bande verschiebt sich zu 404 nm (Abbildung 13A und Abbildung 13B). Nach Bestrahlung mit dunkelrotem Licht etabliert sich erneut der Grundzustand. FphB zeigte neben der Absorption bei 280 nm keine weiteren Absorptionsmaxima (Abbildung 13C). Zudem wurde getestet, ob die Substitution in der konservierten Region (M203) durch ein Cystein die Phytochrom-typischen spektroskopischen Eigenschaften und somit die Fähigkeit zur Photokonversion herstellt. Auch die Mutante FphB-M203C zeigte neben der Absorption bei 280 nm keine weiteren Absorptionsmaxima (Abbildung 13D).

Um die Bindung eines linearen Tetrapyrrols als Chromophor durch FphA, beziehungsweise die fehlende Bindung durch FphB und FphB-M203C zu verifizieren, wurden die Proteine mittels SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) getrennt. Alle verwendeten Tris-Puffer enthielten Zinkacetat. Zink-Ionen bilden mit linearen Tetrapyrrolen einen Komplex, welcher durch Anregung mit UV-Licht rot fluoresziert. FphA zeigte unter UV-Licht ein Signal, FphB und FphB-M203C hingegen nicht (Abbildung 13E).

Abbildung 13: Spektroskopische Eigenschaften und Zink-induzierte Fluoreszenz von AfFphA-NPGP, AfFphB sowie AfFphB-M203C. A: UV/Vis-Absorptionsspektrum von AfFphA-NPGP (2,7 mg/ml). B: Differenzspektrum von AfFphA-NPGP (Pr-Pfr). C: UV/Vis-Absorptionsspektrum von AfFphB (3 mg/ml). D: UV/Vis-Absorptionsspektrum von AfFphB-M203C (3 mg/ml). E: Western-Blot (links) und Zink-induzierte Fluoreszenz (rechts). M: PageRuler™ *Prestained Protein Ladder*. 1: AfFphA-NPGP. 2: AfFphB. 3: AfFphB-M203C. Die eingesetzte Proteinmenge betrug jeweils 20 µg. Die Acrylamidkonzetrationen betrugen 5% (Sammelgel) und 10% (Trenngel).

Ergebnisse Die der bioinformatischen und photobiochemischen Untersuchungen der beiden Phytochrome FphA und FphB aus A. fumigatus deuten darauf hin, dass FphA einem kanonischen pilzlichen Phytochrom gleichkommt, für FphB konnte jedoch keine Photoaktivität nachgewiesen werden. Es konnte bereits gezeigt werden, dass FphA aus A. nidulans sowohl als Rotlicht-, als auch als Temperatursensor agiert (Yu et al., 2019). Um zu überprüfen, wie die beiden Rollen als Rotlichtsensor und als Temperatursensor zwischen den zwei Phytochromen aus A. fumigatus verteilt sind, wurde zunächst ein A. nidulans ∆fphA-Deletionsstamm mit fphA (SKL2) oder fphB (SKL3) aus A. fumigatus komplementiert. Die Gene wurden an die Promotorregion von A. nidulans fphA fusioniert und ektopisch in das Genom integriert. Die erfolgreiche Integration wurde mittels PCR bestätigt (Daten nicht gezeigt) und die Transkription durch reverse transcriptase guantitative PCR (RTqPCR) überprüft (Abbildung 16). Als positiv Kontrolle diente ein mit A. nidulans fphA komplementierter Stamm (SJP22.1).

Die Überprüfung der Sensorfunktion wurde mittels RT-qPCR durchgeführt. Als Reportergene dienten die zwei durch Rotlicht und durch Temperatur kontrollierten Gene *ccgA* und *ccgB* (Ruger-Herreros *et al.*, 2011; Yu *et al.*, 2019). Zur Untersuchung

Abbildung 14: Relative Expressionen der licht- und temperaturinduzierbaren Gene *ccgA* und *ccgB*. A, B: relative Expressionen von *ccgA* (A) und *ccgB* (B) bei Dunkelheit und nach der Bestrahlung mit rotem Licht für 15 min. C, D: relative Expressionen von *ccgA* (C) und *ccgB* (D) nach der Inkubation bei 28°C und 42°C für 8 min. t-Test (zweiseitig, heteroskedastisch): *** $p \le 0,001$; ** $p \le 0,001$; ** $p \le 0,005$; n.s. (nicht signifikant) p > 0,05.

der Lichtsensorfunktion wurden die Proben vor der Extraktion der RNA entweder mit rotem Licht (700 nm) für 15 min bestrahlt, oder im Dunkeln gehalten. Die Temperatursensorfunktion wurde untersucht, in dem die Proben in vortemperiertes Medium (28°C und 42°C) überführt und für 8 min inkubiert wurden. Alle Proben wurden unter grünem Sicherheitslicht gehandhabt.

Sowohl der mit *A. nidulans fphA* als auch der mit *A. fumigatus fphA* komplementierte Stamm zeigten eine gesteigerte Expression der Gene *ccgA* und *ccgB* in Folge der Bestrahlung mit rotem Licht. Die Komplementation mit *A. fumigatus fphB* hingegen konnte die von Rotlicht induzierte Steigerung der Expression von *ccgA* und *ccgB* in Δ *fphA* nicht wiederherstellen (Abbildung 14A und Abbildung 14B).

Die Inkubation der Proben bei unterschiedlichen Temperaturen vor der RNA-Extraktion führte durch die Komplementation mit *A. nidulans* und *A. fumigatus fphA* zu der Induktion der Expression der Gene *ccgA* und *ccgB*. Die Komplementation mit *fphB* aus *A. fumigatus* hatte keinen Effekt auf die Expression der beiden Gene (Abbildung 14C und Abbildung 14D).

Die Rolle von FphA und FphB in der Stressantwort

Pilzliche Phytochrome spielen eine Hauptrolle in dem Wechsel zwischen asexueller und sexueller Entwicklung. Eine weitere Rolle nehmen sie in der Reaktion des Organismus auf verschiedene Stressfaktoren ein (Fischer *et al.*, 2016; Yu & Fischer, 2019).

Um die Rolle der beiden Phytochrome von *A. fumigatus* in der Stressantwort zu untersuchen, wurden neben *A. nidulans* Wildtyp und ∆*AnfphA*-Deletionsstamm die bereits in Kapitel "FphA aus *A. fumigatus* fungiert als Licht- und Temperatursensor" beschriebenen Stämme SKL2 (AfFphA) und SKL3 (FphB) sowie zwei Stämme welche AfFphA und AfFphB (SKL6) beziehungsweise AnFphA und AfFphB (SKL14) exprimieren, auf Minimalmedium kultiviert (Abbildung 15). Die Transkriptmengen der jeweiligen Phytochrome sind in Abbildung 16 dargestellt. *A. nidulans* Wildtyp zeigt ohne die Einwirkung von Licht eine leicht gelbliche Färbung. Lichteinwirkung hat eine gesteigerte Bildung von Konidien zur Folge. Aufgrund der grünen Pigmentierung der Konidien weist die Kolonie eine grünliche Färbung auf (Mooney & Yager, 1990). Ohne FphA fällt dieser farbliche Unterschied in weißem Licht weniger stark aus. Ohne den Einfluss von Stressfaktoren stellt FphA aus *A. fumigatus* diesen farblichen Unterschied

weitestgehend wieder her. Allerdings ist das radiale Wachstum von *A. nidulans* unter Licht durch AfFphA gehemmt. FphB bewirkt in *A. nidulans* eine starke grüne Färbung, unabhängig von Licht. Auch das radiale Wachstum wird durch FphB stimuliert. Durch die Kombination beider Phytochrome aus *A. fumigatus* bleibt die Inhibition des radialen Wachstums unter der Einwirkung von Licht aus. Die Kombination aus *A. nidulans* FphA und *A. fumigatus* FphB hingegen ruft schwere morphologische Defekte hervor.

Abbildung 15: Phänotypen des *A. nidulans* Wildtyps, *A. nidulans* ∆*fphA* sowie die komplementierten Stämme mit AffphA, AffphB, AffphA+AffphB und AnfphA+AffphB. Minimalmedium wurde mit je 500 Sporen der jeweiligen Stämme in 5 µl inokuliert und 92 h bei 37°C bei Licht (weiß, 5 µmol Photonen /m²s) oder im Dunkeln inkubiert.

Abbildung 16: Expression der jeweiligen Phytochrome in den mit den beiden Phytochromen aus *A. fumigatus* komplementierten Stämme von *A. nidulans.* Dargestellt ist die n-fache Änderung der Transkriptmenge relativ zu Wildtyp *AnfphA*. Die Proben wurden als Duplikate analysiert. Fehlerindikatoren repräsentieren die Standardabweichungen.

Um die Reaktion der Stämme auf unterschiedliche Formen von Stress zu untersuchen, wurden dem Minimalmedium verschiedene Stressfaktoren beigefügt. Zum Vergleich der einzelnen Stämme wurden die kolonisierten Flächen bestimmt.

Um auf die Zellwand ausübenden Stress zu verursachen, wurde dem Medium Kongorot (10 μ g/ml und 20 μ g/ml) oder Natriumdodecylsulfat (*sodium dodecyl sulfate*, SDS) (50 μ g/ml und 75 g/ml) zugegeben. Die Ergebnisse sind in Abbildung 17 dargestellt.

Abbildung 17: Phänotypen des *A. nidulans* Wildtyps, *A. nidulans* ∆*fphA* sowie die komplementierten Stämme mit AffphA, AffphB, AffphA+AffphB und AnfphA+AffphB unter dem Einfluss von Kongorot oder SDS. Minimalmedium mit den angegebenen Konzentration Kongorot oder SDS wurde mit je 500 Sporen der jeweiligen Stämme in 5 µl inokuliert und 92 h bei 37°C bei Licht (weiß, 5 µmol Photonen /m²s) oder im Dunkeln inkubiert. Oben: Anordnung der Stämme. Links: Phänotypen unter Einfluss von Kongorot. Rechts: Phänotypen unter dem Einfluss von SDS.

Als Maß für die Resistenz gegenüber den jeweiligen Stressfaktoren, wurde das prozentuale Verhältnis der kolonisierten Fläche unter Einfluss des Stressfaktors zur kolonisierten Fläche der unbehandelten Kontrolle bestimmt (Abbildung 18 und Abbildung 19). Das radiale Wachstum des *A. nidulans* $\Delta fphA$ -Deletionsstamms wird durch die Komplementation mit *A. fumigatus fphA* wieder hergestellt. Obwohl die Koloniegröße der mit Licht behandelten Probe kleiner ist, als die der im Dunkeln inkubierten Probe, zeigt die Normalisierung der mit Kongorot behandelten Proben auf die entsprechende unbehandelte Kontrolle, dass die Resistenz des Radialwachstums auf Kongorot bei niedrigeren Konzentrationen (10 µg/ml) unabhängig von Licht ist und bei höheren Konzentrationen (20 µg/ml) bei Licht durch AfFphA gefördert wird.

Abbildung 18: Quantifizierung des radialen Wachstums unter der Einwirkung von Kongorot. A, B: absolute kolonisierte Flächen der einzelnen Stämme. C, D: kolonisierte Flächen relativ zur jeweiligen unbehandelten Kontrolle. E, F: Vergleich der relativen kolonisierten Flächen aus C und D bei 10 µg/ml (E) und 20 µg/ml (F) Kongorot.

Die wachstumsfördernde Wirkung von AfFphB auf das Wachstum von A. nidulans auf Minimalmedium kann auch auf Medien die Kongorot enthalten im Dunkeln beobachtet werden. Dieser wachstumsfördernde Effekt wird durch Licht vermindert. A. nidulans, welcher beide Phytochrome von A. fumigatus exprimiert, Wachstumsveränderungen. AnFphA und AfFphB verursachen zusammen einen starken morphologischen Phänotyp mit verringerter Wachstumsrate. Die Normalisierung auf die entsprechende unbehandelte Kontrolle zeigt jedoch eine erhöhte Resistenz gegenüber Kongorot im Dunkeln im Vergleich zum Wildtyp, während die Resistenz bei Licht ähnlich die des Wildtyps ist.

Abbildung 19: Quantifizierung des radialen Wachstums unter der Einwirkung von SDS. A, B: absolute kolonisierte Flächen der einzelnen Stämme. C, D: kolonisierte Flächen relativ zur jeweiligen unbehandelten Kontrolle. E, F: Vergleich der relativen kolonisierten Flächen aus C und D bei 50 µg/ml (E) und 75 µg/ml (F) SDS.

Die Resistenz gegenüber SDS ist vergleichbar mit der gegenüber Kongorot. Allerdings ist die hemmende Wirkung von SDS auf das Koloniewachstum schwächer als die von Kongorot. Außerdem ist die Wirkung von Licht im Vergleich zu der mit Kongorot behandelten Proben weniger stark. Bei 50 µg/ml SDS stellt AfFphA die Resistenz gegenüber SDS im Dunkeln wieder her, während der Stamm bei Licht weniger resistent ist. Die abnehmende Wirkung von Licht auf die Resistenz ist bei 75 µg/ml SDS nicht mehr zu beobachten. Der *AffphB* exprimierende Stamm zeigt eine vergleichbare Resistenz gegenüber SDS wie der Wildtyp, die im Gegensatz zu der mit Kongorot behandelten Probe unabhängig von Licht ist. Die Resistenz des Stamms, der beide Phytochrome von *A. fumigatus* exprimiert, ist die gleiche wie bei AfFphA allein, während die Kombination von *A. nidulans* FphA und *A. fumigatus* FphB zu einer erhöhten Resistenz gegenüber SDS führt (Abbildung 19).

Die Resistenz gegenüber oxidativem Stress wurde auf Minimalmedium mit Menadion untersucht. Die Ergebnisse sind in Abbildung 20 dargestellt. Zum Vergleich der Stämme wurde erneut die kolonisierte Fläche bestimmt. Die Resistenz wurde anhand des prozentualen Verhältnisses der kolonisierten Fläche unter Einfluss von Menadion zur kolonisierten Fläche der unbehandelten Kontrolle ermittelt (Abbildung 21). Die Deletion von *fphA* in *A. nidulans* hat eine gesteigerte Resistenz gegenüber oxidativem Stress durch Menadion (50 µM) zur Folge. Bei einer höheren Konzentration (75 µM) ist der Effekt im Dunkeln ebenfalls zu beobachten, unter dem Einfluss von Licht ist das radiale Wachstum von *A. nidulans* Wildtyp und $\Delta fphA$ -Deletionsstamm identisch. Durch die Komplementation mit *fphA* aus *A. fumigatus* verringert sich im Dunkeln die Resistenz auf das Niveau des Wildtyps. Unter dem Einfluss von Licht wird die Resistenz gegenüber Menadion durch *A. fumigatus* FphA weiter reduziert. Die Komplementation mit *fphB* aus *A. fumigatus* hat keinen Effekt auf die Resistenz gegenüber Menadion bei einer Konzentration von 50 µM. Bei 75 µM Menadion ist die Resistenz vergleichbar mit der des *A. fumigatus* FphA exprimierenden Stammes.

Abbildung 20: Phänotypen des *A. nidulans* Wildtyps, *A. nidulans* $\Delta fphA$ sowie die komplementierten Stämme mit AffphA, AffphB, AffphA+AffphB und AnfphA+AffphB unter dem Einfluss von Menadion. Minimalmedium mit den angegebenen Konzentration Menadion wurde mit je 500 Sporen der jeweiligen Stämme in 5 µl inokuliert und 92 h bei 37°C bei Licht (weiß, 5 µmol Photonen /m²s) oder im Dunkeln inkubiert. Links: Phänotypen unter Einfluss von Kongorot. Rechts: Anordnung der Stämme.

Die Resistenz des Stamms welcher FphA und FphB aus *A. fumigatus* exprimiert, ist im Dunkeln mit der des *A. fumigatus* FphA exprimierenden Stamms vergleichbar. Unter dem Einfluss von Licht ist die Resistenz des Stamms welcher beide Phytochrome aus *A. fumigatus* exprimiert stärker. Die Kombination aus *A. nidulans* FphA und *A. fumigatus* FphB hingegen bewirkt eine ähnliche Resistenz wie $\Delta fphA$ und die Komplementation mit *A. fumigatus fphB*, unabhängig von Licht (50 µM). Dieser Effekt ist bei 75 µM Menadion nicht zu beobachten.

Abbildung 21: Quantifizierung des radialen Wachstums unter der Einwirkung von Menadion. A, B: absolute kolonisierte Flächen der einzelnen Stämme. C, D: kolonisierte Flächen relativ zur jeweiligen unbehandelten Kontrolle. E, F: Vergleich der relativen kolonisierten Flächen aus C und D bei 50 µM (E) und 75 µM (F) Menadion.

FphA agiert als Repressor, FphB als Aktivator der Genexpression

Phytochrome sind designierte Rotlichtrezeptoren. In *A. nidulans* fungiert FphA allerdings ebenfalls als Temperatursensor und spielt eine Rolle in der Blaulichtwahrnehmung, wodurch es eine entscheidende Rolle in der transkriptionellen Regulation von Genen spielt (Yu *et al.*, 2019, Yu *et al.*, 2021). So werden in *A. nidulans* über 1100 Gene lichtabhängig reguliert und ein Großteil abhängig von FphA (Yu *et al.*, 2021). Um die Wirkung der beiden Phytochrome FphA und FphB aus *A. fumigatus* auf

die transkriptionelle Regulation von Genen in *A. nidulans* zu untersuchen, wurde das Transkriptom von AfFphA oder AfFphB exprimierenden *A. nidulans* Stämmen sequenziert und mit dem des Wildtyps und des $\Delta fphA$ -Deletionsstamm verglichen. Drei biologische Replikate wurden vor der RNA-Extraktion entweder mit weißem Licht bestrahlt, oder im Dunkeln gehalten. Die Replikate jedes Stammes wurden kombiniert und ihr Transkriptom sequenziert.

Durch das *mapping* der sequenzierten Transkripte gegen das Referenzgenom von *A. nidulans* FGSC A4 konnten über 9000 Gene identifiziert werden. In Abbildung 22 ist der Vergleich der Transkriptome im Dunkeln und bei Licht in Form von Venn-Diagrammen dargestellt.

Abbildung 22: Vergleich der Transkriptome von *A. nidulans* Wildtyp, *∆AnfphA* und den mit *AffphA* und *AffphB* komplementierten Stämmen im Dunkeln und bei Licht. 3x10⁸ Sporen wurden auf der Oberfläche von 10 ml Minimalmedium inokuliert und 20 h bei 37°C inkubiert. Proben wurden entweder im Dunkeln gehalten, oder für 15 Minuten mit weißem Licht bestrahlt (2 µmol Photonen/m²s). Bis zur Extraktion der DNA wurden alle Proben unter grünem Sicherheitslicht gehandhabt.

Der Vergleich der Transkriptome der drei Stämme, welche die Phytochrome AnfphA, AffphA und AffphB exprimieren, mit dem des $\Delta AnfphA$ -Deletionsstamms, gibt Aufschluss über die Wirkung jedes Phytochroms auf transkriptioneller Ebene (differenziell exprimierte Gene, DEG). Eine Übersicht über das Verhältnis hoch- und herunterregulierter Gene in Abhängigkeit der Lichtverhältnisse ist in Abbildung 23A dargestellt. Im Dunkeln sind im *A. nidulans* Wildtyp 258 Gene hoch- und 94 Gene herunterreguliert im Vergleich zu dem $\Delta AnfphA$ -Deletionsstamm. Nach der Bestrahlung mit weißem Licht werden 749 Gene hoch- und 548 Gene herunterreguliert. Durch die Expression von FphA aus *A. fumigatus* sind im Dunkeln 104 Gene hoch- und 248 Gene herunterreguliert. Nach der Bestrahlung mit weißem Licht konnten 921 hoch- und 2869 herunterregulierte Gene identifiziert werden, welche im $\Delta AnfphA$ -Deletionsstamm nicht differenziell reguliert waren. Das Transkriptom des AfFphB exprimierenden Stamms weist im Dunkeln 935 hochregulierte und 355 herunterregulierte Gene auf. Nach der Bestrahlung mit weißem Licht konnten 930 hochregulierte und 302 herunterregulierte Gene identifiziert werden.

Abbildung 23: Transkriptionsreaktion des *A. nidulans* Wildtyp, *AffphA* und *AffphB* auf die Bestrahlung mit Licht. A: Statistischer Vergleich hoch- und herunterregulierter DEGs im Dunkeln und bei Licht. DEGs wurden durch den Vergleich mit $\Delta AnfphA$ bestimmt. B: Vergleich der DEGs jedes Stamms zwischen Dunkelheit und Lichtbedingungen. Kriterien zur Bestimmung der DEGs: *fold change* \geq 2 und *false discovery rate* (FDR) \leq 0,001.

Weiter wurden für jeden Phytochrom-exprimierenden Stamm die DEGs nach der Bestrahlung mit weißem Licht ermittelt und mit denen des $\Delta AnfphA$ -Deletionsstamms verglichen (Abbildung 23B). Hierdurch lassen sich die regulatorischen Unterschiede der drei Phytochrome bei Dunkelheit und Licht ermitteln. Im Wildtyp wurden insgesamt 991 Gene nach der Bestrahlung mit weißem Licht differenziell exprimiert, im $\Delta AnfphA$ -Deletionsstamm hingegen lediglich 64. Auch in Gegenwart von FphB aus *A. fumigatus* werden nach der Bestrahlung mit Licht nur 65 Gene differenziell exprimiert. Durch die Expression von *fphA* aus *A. fumigatus* werden nach der Bestrahlung mit weißem Licht insgesamt 3345 Gene differenziell exprimiert von denen 2443 in keinem der anderen drei Stämme differenziell exprimiert werden. Im Transkriptom von *A. nidulans* Wildtyp konnten 101 Gene identifiziert werden, welche ausschließlich im Wildtyp differenziell exprimiert werden. Das Transkriptom des *AffphB* exprimierenden Stamms weist 18, der $\Delta AnfphA$ -Deletionsstamm 14 Transkripte auf, welche in keinem der anderen Stämme identifiziert werden konnten.

Um die Funktion der differenziell exprimierten Gene zu untersuchen, wurde eine *Gene Ontology* (GO) Analyse durchgeführt. Diese ist in Form einer *Heatmap* in Abbildung 24 dargestellt.

							hoch		heru	herunter	
		AnzahlGene									
	۵.	4	2	5			Dunkel	Licht	Dunkel	Licht	
	0	55	500	ъ	50	500	Attonations	Fond Attond Attons	stond stond stone	on attornation art	
					ze	ellulärer Prozess					
					Stoff	wechselprozess					
						Lokalisation					
						Reizantwort					
					biologi	sche Regulation					
	Regulation biologischer Prozesse										
						Signalgebung					
	Entwicklungsprozess										
	positive Regulierung biologischer Prozesse										
		r	egative R	egulieru	ng biologi	ischer Prozesse					
piolog	gische					Reproduktion					
Proze	esse				Reproc	duktionsprozess					
				Mu	ulti-Organi	ismus Prozesse					
	Prozesse in vielzelligen Organismen					gen Organismen					
						Wachstum					
						Detoxifizierung					
					Kohler	stoffverwertung					
						Pigmentierung					
					Stick	stoffverwertung					
	Fortbewegung										
	Interspezies-Interaktion zwischen Organismen Intraspezies-Interaktion zwischen Organismen										
					Immuns	ystem Prozesse					
					biolog	gische Adhäsion					
					kata	lytische Aktivität					
						Bindung					
					Trar	nsporter Aktivität					
				Trans	kriptionsr	egulator Aktivität					
			I	Regulato	or moleku	larer Funktionen					
nole	kulare				antio	xidative Aktivität					
-unkt	tion		Akt	ivität nie	dermolek	ularer Sensoren					
					Struktur	molekül Aktivität					
				moleku	ulare Tran	nsducer-Aktivität					
				Tran	slationsre	egulator Aktivität					
				moleku	ulare Trar	sporter Aktivität					
				Cł	haperon z	ur Proteinfaltung	-				
zellul	äre			zell	uläre anat	tomische Einheit					
Komr	onen	te				intrazellulär					
Com	onen				proteinh	naltiger Komplex					

Abbildung 24: Gene Ontology Enrichment der differenziell exprimierten Gene in A. nidulans Wildtyp, AffphA und AffphB. Funktionale GO-Analyse wurde mit der Funktion phyper in R durchgeführt. FDR \leq 0,01.

Im Wildtyp ist unter den hochregulierten Genen im Dunkeln der am stärksten angereicherte *GO*-Term mit 146 Genen "katalytische Aktivität", gefolgt von "zelluläre anatomische Einheit" (136 Gene), "zellulärer Prozess" (101 Gene) und "Stoffwechselprozess" (100 Gene). Nach der Bestrahlung mit weißem Licht ist der *GO*- Term "zelluläre anatomische Einheit" mit 387 Genen am stärksten angereichert. "katalytische Aktivität" ist mit 358 hochregulierten Genen am zweitstärksten angereichert, gefolgt von "zellulärer Prozess" (273 Gene) und "Stoffwechselprozess" (248 Gene).

Durch die Expression von *AffphA* aus *A. fumigatus* ist im Dunkeln der am stärksten angereichert *GO*-Term "zelluläre anatomische Einheit" mit 63 Genen. Die *GO*-Terme "intrazellulär" (41 Gene), "Bindung" (40 Gene), "Stoffwechselprozess" (39 Gene) und "zellulärer Prozess" sind ähnlich stark angereichert. Die Bestrahlung mit Licht führt dazu, dass die Anreicherung des *GO*-Terms "zelluläre anatomische Einheit" auf 534 Gene ansteigt. Am zweitstärksten angereichert ist der *GO*-Term "katalytische Aktivität" mit 419 Genen, gefolgt von "zellulärer Prozess" (401 Gene). "Stoffwechselprozess" (330 Gene) und "intrazellulär" (319 Gene) sind ähnlich stark hochreguliert.

Im Dunkeln hat die Expression von fphB aus A. fumigatus zur Folge, dass der GO-Term "katalytische Aktivität" mit 490 Genen am stärksten hochreguliert ist, gefolgt "zelluläre anatomische Einheit" mit 476 Genen. Die GO-Terme von "Stoffwechselprozess" mit 305 Genen und "zellulärer Prozess" mit 292 Genen sind weniger stark hochreguliert. Die Bestrahlung mit weißem Licht hat nur geringe Auswirkungen auf die Anzahl hochregulierter Gene. So sind nach der Bestrahlung mit Licht 484 Gene aus dem GO-Term "katalytische Aktivität", 446 Gene aus "zelluläre anatomische Einheit", 293 Gene aus "Stoffwechselprozess" und 272 Gene aus "zellulärer Prozess" hochreguliert.

Unter den herunterregulierten Genen im Wildtyp ist im Dunkeln der GO-Term "zelluläre anatomische Einheit" mit 51 Genen am stärksten reguliert, gefolgt von "katalytische Aktivität" (31 Gene). Die GO-Terme "zellulärer Prozess". "Stoffwechselprozess" und "intrazellulär" sind mit je 21 Genen gleichermaßen herunterreguliert. Durch die Behandlung der Probe mit Licht steigt die Zahl herunterregulierter Gene im A. nidulans Wildtyp an. Bei Licht ist der GO-Term "zelluläre anatomische Einheit" mit 366 Genen am stärksten herunterreguliert, gefolgt von "zellulärer Prozess" mit 256 herunterregulierten Genen. Aus den GO-Termen "Bindung" "katalytische Aktivität" und sind jeweils 243 Gene. aus "Stoffwechselprozess" 229 Gene herunterreguliert.

In Anwesenheit von FphA aus *A. fumigatus* sind im Dunkeln die GO-Terme "katalytische Aktivität" (129 Gene) und "zelluläre anatomische Einheit" (127 Gene) am

45

stärksten herunterreguliert, gefolgt von "Bindung" mit 87 Genen. Aus dem *GO*-Term "Stoffwechselprozess" sind 78 Gene herunterreguliert, aus "zellulärer Prozess" 76 Gene. Unter Lichtbedingungen ist der *GO*-Term "zelluläre anatomische Einheit" mit 1834 Genen am stärksten herunterreguliert. Mit 1480 herunterregulierten Genen folgt "zellulärer Prozess", gefolgt von "katalytische Aktivität" (1328 Gene) und "Stoffwechselprozesse" (1301 Gene). Die *GO*-Terme "Bindung" (1278 Gene) und "intrazellulär" (1241 Gene) sind ebenfalls stark herunterreguliert in Anwesenheit von AfFphA bei Licht.

Durch die Expression von *AffphB* in *A. nidulans* sind im Dunkeln 204 Gene aus dem *GO*-Term "zelluläre anatomische Einheit" im Vergleich zu dem Δ *AnfphA*-Deletionsstamm herunterreguliert. Aus dem *GO*-Term "katalytische Aktivität" sind 139 Gene herunterreguliert, gefolgt von "zellulärer Prozess" (114 Gene), "Bindung" (102 Gene) und "Stoffwechselprozess" (93 Gene). Die Bestrahlung mit weißem Licht hat eine leichte Abnahme der herunterregulierten Gene der zuvor genannten *GO*-Terme zur Folge. Unter Lichtbedingungen sind 175 Gene aus dem *GO*-Term "zelluläre anatomische Einheit", aus "katalytische Aktivität" 124 Gene und aus "Bindung" 99 Gene herunterreguliert. Die *GO*-Terme "zellulärer Prozess" (98 Gene) und "Stoffwechselprozess" (78 Gene) sind bei Licht ebenfalls schwächer herunterreguliert als bei Dunkelheit.

FphA reprimiert die Biogenese von Ribosomen

Um nähere Rückschlüsse auf die Funktionen der beiden Phytochrome AfFphA und AfFphB ziehen zu können, wurden die Unterkategorien der angereicherten *GO*-Terme näher untersucht. Die Anreicherung jeder dieser Unterkategorien der *GO*-Terme "biologischer Prozess" (Abbildung 25) und "molekulare Funktion" (Abbildung 26) durch AfFphA in *A. nidulans* ist nachstehend graphisch dargestellt. Alle gelisteten Unterkategorien weisen einen korrigierten p-Wert \leq 0,05 auf.

Unter "biologische Prozesse" war die GO-Unterkategorie der "nichtkodierenden RNA-Stoffwechselprozesse" (ncRNA) am signifikantesten angereichert. Auch die nachfolgenden Unterkategorien stehen hauptsächlich im Zusammenhang mit der Translation oder Ribosomen (Abbildung 25).

Abbildung 25: *GO Enrichment* der Unterkategorien aus "biologische Prozesse" in *A. nidulans-AffphA* bei Licht. Der Anreicherungsfaktor beschreibt das Verhältnis aus der beobachteten Anzahl zu der erwarteten Anzahl Gene einer Kategorie. Rechts ist das Verhältnis von hoch- und herunterregulierten Genen jeder *GO*-Unterkategorie in Form einer *Heatmap* dargestellt. In die Analyse wurden nur angereicherte *GO*-Unterkategorien mit einem korrigierten p-Wert ≤ 0,05 einbezogen.

Unter der GO-Kategorie "molekulare Funktion" war die Unterkategorie "katalytische Aktivität, auf RNA wirkend" am signifikantesten angereichert. Diese Unterkategorie sowie alle nachfolgenden signifikant angereicherten Ontologie-Kategorien stehen ebenfalls im Zusammenhang mit der Translation beziehungsweise mit der Biogenese von Ribosomen (Abbildung 26).

Neben der Ontologie wurde zur weiteren Analyse die Anreicherung von Signalwegen (nach *KEGG*) untersucht. In die Analyse flossen nur jene angereicherten Signalwege ein, welche einen q-Wert ≤ 0,05 aufwiesen. Unter dem Einfluss von Licht ist der am signifikantesten angereicherte Signalweg "Ribosomen-Biogenese bei Eukaryoten". Auch die nachstehenden Signalwege, "RNA-Polymerase", "AminoacyltRNA-Biosynthese" und "DNA-Replikation" sind dem Prozess der Genexpression zuzuordnen (Abbildung 27).

Abbildung 26: *GO Enrichment* der Unterkategorien aus "molekulare Funktion" in *A. nidulans-AffphA* bei Licht. Der Anreicherungsfaktor beschreibt das Verhältnis aus der beobachteten Anzahl zu der erwarteten Anzahl Gene einer Kategorie. Rechts ist das Verhältnis von hoch- und herunterregulierten Genen jeder *GO*-Unterkategorie in Form einer *Heatmap* dargestellt. In die Analyse wurden nur angereicherte *GO*-Unterkategorien mit einem korrigierten p-Wert ≤ 0,05 einbezogen.

Abbildung 27: *KEGG Pathway Enrichment* in *A. nidulans-AffphA* bei Licht. Der Anreicherungsfaktor beschreibt das Verhältnis aus der Anzahl der DEG in einem Signalweg zu der Anzahl aller Gene in dem Signalweg. Rechts ist das Verhältnis von hoch- und herunterregulierten Genen des jeweiligen Signalwegs in Form einer *Heatmap* dargestellt. In die Analyse wurden nur *KEGG Pathways* mit einem q-Wert $\leq 0,05$ einbezogen.

FphB reguliert den Toxin-Metabolismus

Der Anreicherungsfaktor und die Regulation der angereicherten Unterkategorien (korrigierter p-Wert $\leq 0,05$) aus "biologische Prozesse" von AfFphB sind nachstehend in Form eines *Dot plots* und einer *Heatmap* dargestellt (Abbildung 28).

Neben Kategorien, die Bezug auf die Biosynthese und den Metabolismus von Sekundärmetaboliten nehmen, sind die Kategorien "Biosynthese von Toxinen" und "Toxin-Stoffwechsel" sowie "Mykotoxin-Stoffwechsel" und "Mykotoxin-Biosynthese" unter den signifikant angereicherten Unterkategorien zu finden.

Abbildung 28: GO Enrichment der Unterkategorien aus "biologische Prozesse" in A. nidulans-AffphB bei Dunkelheit. Der Anreicherungsfaktor beschreibt das Verhältnis aus der beobachteten Anzahl zu der erwarteten Anzahl Gene einer Kategorie. Rechts ist das Verhältnis von hoch- und herunterregulierten Genen jeder GO-Unterkategorie in Form einer Heatmap dargestellt. In die Analyse wurden nur angereicherte GO-Unterkategorien mit einem korrigierten p-Wert ≤ 0,05 einbezogen.

Die Regulation von diesen Prozessen lässt eine Rolle von AfFphB in der Pathogenität von *A. fumigatus* vermuten. Um dies zu überprüfen, wurde in Kooperation mit Prof. Dr. Ling Lu (*Nanjing Normal University*) und Yinyan Ma (*Nanjing Normal University*) die Auswirkungen der Deletion eines oder beider Phytochrome FphA und FphB auf die Pathogenität von *A. fumigatus* gegenüber Larven von *Galleria mellonella* untersucht (Abbildung 29).

Abbildung 29: Pathogenität von *A. fumigatus* WT sowie $\Delta fphA$, $\Delta fphB$ und $\Delta fphA \Delta fphB$ in einem *G. mellonella* Infektionsmodell. *G. mellonella* Larven wurden zunächst für 12 h bei 37°C kultiviert. Die Larven wurden mit je 10 µl einer Sporensuspension des jeweiligen Stamms (10⁸ Sporen/µl) infiziert und bei 37°C für 7 Tage inkubiert. Mortalitätsrate wurde täglich bestimmt. Larven der Kontrollgruppe wurde PBS injiziert.

Larven von *G. mellonella* infiziert mit *A. fumigatus* WT zeigen nach sieben Tagen eine Überlebensrate von 33%. Die Überlebensrate von Larven infiziert mit *A. fumigatus* $\Delta fphA$ weist keinen signifikanten Unterschied zur Infektion mit *A. fumigatus* WT auf. Die Infektion von *G. mellonella* Larven mit *A. fumigatus* $\Delta fphB$ sowie mit $\Delta fphA \Delta fphB$ führt zum Tod aller Larven nach fünf Tagen.

Zur Verifikation der Ergebnisse des *G. mellonella* Infektionsmodells, wurde das Transkriptom von *A. fumigatus* WT, $\Delta fphA$ und $\Delta fphB$ sequenziert. Die Anreicherung der *GO*-Unterkategorien aus "biologische Prozesse" ist in Abbildung 30 dargestellt.

Anreicherungsfaktor

Abbildung 30: GO Enrichment der Unterkategorien aus "biologische Prozesse" in A. fumigatus Δ fphB. Zur Analyse des Transkriptoms von A. fumigatus wurde Minimalmedium mit Sporen des entsprechenden Stammes inokuliert (10⁵ Sporen/ml) und bei 37°C für 24 h inkubiert. Der Anreicherungsfaktor beschreibt das Verhältnis aus der beobachteten Anzahl zu der erwarteten Anzahl Gene einer Kategorie. Rechts ist das Verhältnis von hoch- und herunterregulierten Genen jeder GO-Unterkategorie in Form einer *Heatmap* dargestellt. In die Analyse wurden nur angereicherte GO-Unterkategorien mit FDR \leq 0,05 einbezogen.

Auch die Deletion von fphB in A. fumigatus hat die Anreicherung der GO-Kategorien "Mykotoxin-Biosynthese", "Mykotoxin-Stoffwechsel", "Biosynthese von Toxinen" und "Toxin-Stoffwechsel" zur Folge (Anreicherungsfaktor = 0,12). Eine genauere Analyse der Regulation der Gene welche den genannten GO-Kategorien angehören ergab, dass die Deletion von fphB überwiegend eine Hochregulierung der Genexpression zur Folge hat. Die am stärksten hochregulierten Gene sind die nichtreduzierende Polyketidsynthase nscA (log₂(Fold Change) = 5,5) und die Prenyltransferase nscD (log₂(Fold Change) = 4,8). Die übrigen gelisteten Gene weißen eine Hochregulierung von $log_2(Fold Change) = 1,3-1,9$ auf. Die Atrochryson-Carbonsäure-Synthase tpcC ist als einziges Gen herunterreguliert (log₂(Fold Change) = 1,1). nscA und nscD sind Teil des sogenannten nsc-Genclusters. Bis auf *nscC* sind alle übrigen Gene des Clusters durch die Deletion von *fphB* ebenfalls hochreguliert (Abbildung 31).

Abbildung 31: Expression des *nsc*-Genclusters in *A. fumigatus* Δ *fphB* relativ zu *A. fumigatus* Wildtyp. Expressionsdaten ermittelt durch RNA-Sequenzierung (RNAseq).

FphA und FphB lokalisieren und interagieren im Zellkern

Abhängig von der ausgeübten Funktion ist Phytochrom in *A. nidulans* sowohl im Zytoplasma, als auch im Zellkern lokalisiert (Hedtke *et al.*, 2015, Purschwitz *et al.*, 2008; Yu *et al.*, 2016). Um die Lokalisation der beiden Phytochrome aus *A. fumigatus* zu überprüfen, wurden beide Proteine N-terminal mit GFP markiert und unter der Kontrolle des induzierbaren Promotors des Gens *alcA* in *A. nidulans* exprimiert (Anhang 1). Um eine eventuelle Lichtabhängigkeit der Lokalisation feststellen zu können, wurden die Proben entweder im Dunkeln gehalten, oder mit weißem Licht bestrahlt, bevor sie mit *p*-Formaldehyd (4%) fixiert wurden. Beide Proteine waren unabhängig von Licht in den Zellkernen lokalisiert (Abbildung 32).

Abbildung 32: Lokalisation der beiden mit GFP markierten Phytochrome aus *A. fumigatus* in *A. nidulans***.** Mikroskopiemedium (0,2% Glukose, 2% Glycerol) wurde mit Sporen von SKL16 (GFP-AfFphA, mit DsRed markierte Zellkerne, links) oder SKL17 (GFP-AfFphB, mit DsRed markierte Zellkerne, rechts) inokuliert und auf Deckgläsern 20 h bei 26°C inkubiert. Vor der Fixierung mit *p*-Formaldehyd (4%) wurden die Proben entweder mit weißem Licht bestrahlt (5 µmol Photonen/m²s) oder im Dunkeln gehalten. Maßstabsbalken entspricht 5 µm.

Zur Überprüfung, ob neben der übereinstimmenden Lokalisation der beiden Phytochrome auch eine physikalische Interaktion stattfindet, wurde FphA mit der C-terminalen Hälfte, FphB mit der N-terminalen Hälfte von YFP fusioniert und gemeinsam in *A. nidulans* exprimiert (Anhang 2). Die Proben wurden vor der Fixierung mit *p*-Formaldehyd (4%) ebenfalls mit weißem Licht bestrahlt, oder im Dunkeln gehalten. Sowohl nach der Bestrahlung mit Licht, als auch im Dunkeln konnten Signale in den Zellkernen detektiert werden (Abbildung 33).

Abbildung 33: Bimolekulare Fluoreszenzkomplementierung (BiFC) von YFP^c-AfFphA und YFP^N-AfFphB in *A. nidulans.* **Mikroskopiemedium (0,2% Glukose, 2% Glycerol) wurde mit Sporen von SKL18 (YFP^C-AfFphA und YFP^N-AfFphB, mit DsRed markierte Zellkerne) inokuliert und auf Deckgläsern 20 h bei 26°C inkubiert. Vor der Fixierung mit** *p***-Formaldehyd (4%) wurden die Proben entweder mit weißem Licht bestrahlt (5 µmol Photonen/m²s) oder im Dunkeln gehalten. Maßstabsbalken entspricht 5 µm.**

Bestätigung der Ergebnisse des BiFC-Experiments wurde Zur eine Co-Immunopräzipitation durchgeführt. Hierfür wurde FphB N-terminal mit GFP und FphA N-terminal mit 3xHA markiert (Anhang 3). Die Fusionsproteine wurden gemeinsam sowie einzeln heterolog in *A. nidulans* exprimiert. Die Co-Immunopräzipitation wurde mit a HA-Antikörpern konjugierten Agarose-beads durchgeführt (Abbildung 34). Sowohl 3xHA-AfFphA als auch GFP-AfFphB konnte durch die Immunopräzipitation mit aHA-Antikörpern konjugierten Agarose-beads nachgewiesen werden. Somit ist die in dem BiFC-Experiment beobachtete Interaktion bestätigt.

Abbildung 34: Co-Immunopräzipitation von 3xHA-FphA und GFP-FphB. Die DNA-Konstrukte wurden ektopisch in das Genom von *A. nidulans* integriert. Sporen der Stämme SKL25 (3xHA-AfFphA, GFP-AfFphB), SKL26 (3xHA-AfFphA) und SKL17 (GFP-AfFphB) wurden in Minimalmedium über Nacht bei 37°C und 180 rpm inkubiert. Für die Immunopräzipitation wurden mit αHA-Antikörpern konjugierte Agarose-*beads* verwendet.

SakA transloziert in den Zellkern

In *A. nidulans* und *A. alternata* führt die Absorption von rotem Licht durch Phytochrom zur Aktivierung des SakA (HogA) Signalwegs, wodurch SakA (HogA) phosphoryliert wird, vom Zytoplasma in den Zellkern eintritt und dort an der Regulation von Transkriptionsfaktoren beteiligt ist (Yu *et al.*, 2016; Igbalajobi *et al.*, 2019).

GFP-Fusionsproteine von FphA und FphB aus *A. fumigatus* konnten überwiegend in den Zellkernen lokalisiert werden (siehe Kapitel "FphA und FphB lokalisieren und interagieren im Zellkern"). Um zu überprüfen, inwiefern der SakA-Signalweg in *A. nidulans* durch FphA und FphB aus *A. fumigatus* aktiviert wird, wurden die beiden entweder AfFphA oder AfFphB exprimierenden Stämme, SKL2 und SKL3, mit *gfp::sakA* transformiert (Anhang 4). Zusätzlich wurden die Zellkerne mit DsRed markiert. Die Proben wurden entweder im Dunkeln gehalten, oder mit weißem Licht bestrahlt, bevor sie mit *p*-Formaldehyd (4%) fixiert wurden.

In Anwesenheit von FphA aus *A. fumigatus* ist nach der Behandlung der Probe mit weißem Licht ein GFP-Signal in den Zellkernen detektierbar. Wurde die Probe im Dunkeln gehalten, kann ein GFP-Signal im Zytoplasma detektiert werden. Die Proben, welche FphB und GFP-SakA exprimieren, zeigen unabhängig von dem Einfluss von Licht ein GFP-Signal im Zytoplasma (Abbildung 35).

AfFphA

Abbildung 35: Lichtabhängige Lokalisation von GFP-SakA in *A. nidulans* in Anwesenheit von FphA (A) und FphB (B) aus *A. fumigatus*. Mikroskopiemedium (0,2% Glukose, 2% Glycerol) wurde mit Sporen von SKL24 (AfFphB und GFP-SakA, mit DsRed markierte Zellkerne) inokuliert und auf Deckgläsern 20 h bei 26°C inkubiert. Vor der Fixierung mit *p*-Formaldehyd (4%) wurden die Proben entweder mit weißem Licht bestrahlt (5 µmol Photonen/m²s) oder im Dunkeln gehalten. Maßstabsbalken entspricht 5 µm.

Neben dem Effekt der beiden einzelnen Phytochrome aus *A. fumigatus* auf die Lokalisation von SakA, wurde ebenfalls der Effekt der Kombination aus beiden Phytochromen FphA und FphB (Abbildung 36A) sowie die Kombination aus *A. nidulans* FphA und *A. fumigatus* FphB untersucht (Abbildung 36B).

Sowohl die Kombination aus beiden Phytochromen FphA und FphB aus *A. fumigatus*, als auch die Kombination aus *A. nidulans* FphA und *A. fumigatus* FphB führt zu einem detektierbaren GFP-Signal in den Zellkernen, unabhängig von Licht. Allerdings ist im Falle der Kombination aus *A. nidulans* FphA und *A. fumigatus* FphB ohne den Einfluss von Licht neben dem akkumulierten Signal in den Zellkernen ebenfalls ein Signal im Zytoplasma detektierbar.

Abbildung 36: Lichtabhängige Lokalisation von GFP-SakA in *A. nidulans* in Anwesenheit von FphA (aus *A. nidulans* oder *A. fumigatus*) und FphB aus *A. fumigatus*. A: SKL23 (AfFphA und AfFphB mit GFP-SakA, DsRed markierte Zellkerne). B: SKL31 (AnFphA und AfFphB mit GFP-SakA, DsRed markierte Zellkerne). Mikroskopiemedium (0,2% Glukose, 2% Glycerol) wurde mit Sporen des entsprechenden Stamms inokuliert und auf Deckgläsern 20 h bei 26°C inkubiert. Vor der Fixierung mit *p*-Formaldehyd (4%) wurden die Proben entweder mit weißem Licht bestrahlt (5 µmol Photonen/m²s) oder im Dunkeln gehalten. Maßstabsbalken entspricht 5 µm.

Als Negativkontrolle wurde zusätzlich der *A. nidulans* ∆*fphA*-Deletionsstamm ebenfalls mit *gfp::sakA* transformiert und äquivalent zu den Proben zuvor analysiert. Die Ergebnisse sind in Abbildung 37 dargestellt. Sowohl bei Dunkelheit, als auch nach der Bestrahlung mit weißem Licht kann ein GFP-Signal ausschließlich im Zytoplasma detektiert werden.

Abbildung 37: Lichtabhängige Lokalisation von GFP-SakA in *A. nidulans* $\Delta fphA$. Mikroskopiemedium (0,2% Glukose, 2% Glycerol) wurde mit Sporen von SKL29 (GFP-SakA, $\Delta fphA$) inokuliert und auf Deckgläsern 20 h bei 26°C inkubiert. Vor der Fixierung mit *p*-Formaldehyd (4%) wurden die Proben entweder mit weißem Licht bestrahlt (5 µmol Photonen/m²s) oder im Dunkeln gehalten. Zellkerne gefärbt mit Hoechst 33342. Maßstabsbalken entspricht 5 µm.

2.2 Der Signalmechanismus von FphA aus A. nidulans

FphA aus A. nidulans nimmt auch blaues Licht wahr

Aus einer vorangegangenen Transkriptomanalyse, welche nicht direkt Gegenstand dieser Arbeit ist, ging hervor, dass Phytochrom neben seiner dominanten Rolle in der Rotlichtwahrnehmung (und seiner Funktion als Temperatursensor) von *A. nidulans,* ebenso eine Schlüsselrolle in dessen Blaulichtwahrnehmung einzunehmen scheint (Yu *et al.*, 2021).

Um dies zu überprüfen, wurde zunächst eine auf *E. coli* optimierte synthetische Version von FphA aus *A. nidulans* (Brandt *et al.*, 2008) heterolog in *E. coli* exprimiert

Abbildung 38: Photokonversion von AnFphA nach Absorption von blauem Licht. Absorptions- (A) und Differenzspektrum (B, Pr-Pfr) nach der Bestrahlung mit blauem Licht. AnFphA wurde heterolog in *E. coli* exprimiert und mit Hilfe eines Strep-tag®II (C-terminal) angereichert. Die Pfr-Form etablierte sich nach 30-minütiger Bestrahlung mit blauem Licht (450 nm, 6,6 µmol Photonen/m²s). Die Reversion in die Pr-Form wurde durch die Bestrahlung mit dunkelrotem Licht (4 Minuten, 760 nm, 3,3 µmol Photonen/m²s) erzielt.

und mit Hilfe eines Strep-tag®II (IBA Lifesciences, Göttingen) angereichert. Die spektralen Eigenschaften sind in Abbildung 38 dargestellt. Der Vergleich des UV/Vis-Absorptionsspektrums der Probe nach 30-minütiger Bestrahlung mit blauem Licht mit dem des Grundzustands zeigt eine Zunahme der Absorption bei 754 nm und eine Abnahme der Absorption bei 707 nm. Die durch Blaulicht angeregte Probe lässt sich durch dunkelrotes Licht zurück in den Grundzustand überführen.

Um die *in vitro* generierten Daten zu bestätigen, wurde die Expression verschiedener Gene mittels RT-qPCR überprüft. Verwendet wurden neben *A. nidulans* Wildtyp die $\Delta fphA$ -, $\Delta IreA$ - und $\Delta cryA$ -Deletionsstämme. Die Reportergene wurden anhand der Daten des RNA-Sequenzierungsexperiments ausgewählt. Die Probenbehandlung erfolgte nach Yu *et al.*, 2021. Die Ergebnisse der RT-qPCR sind in Abbildung 39 dargestellt.

Die Induktion der Reportergene durch Blaulicht blieb im $\Delta fphA$ -Deletionsstamm völlig aus. Die Deletion von *cryA* hatte eine starke Reduktion der Geninduktion zur Folge. Hingegen war die Geninduktion im $\Delta IreA$ -Deletionsstamm lediglich leicht verringert im Vergleich zum Wildtyp.

Neben der Geninduktion bei verschiedenen genotypischen Hintergründen wurde ebenfalls getestet, ob sich die Reversibilität der spektroskopischen Eigenschaften auch auf transkriptioneller Ebene widerspiegelt. Untersucht wurde neben dem Effekt von blauem und rotem Licht auch der Effekt von je einer der beiden Lichtqualitäten gefolgt von entweder Dunkelheit oder dunkelrotem Licht. Die Abfolge von blauem oder rotem Licht, gefolgt von Dunkelheit hatte keinen weiteren Einfluss auf die Geninduktion. Die relativen Expressionen waren gleich der Proben die nur mit blauem oder rotem Licht bestrahlt wurden. Die Kombination mit dunkelrotem Licht hingegen bewirkte sowohl mit blauem, als auch mit rotem Licht eine zusätzliche Steigerung der relativen Expression.

Abbildung 39: Änderungen der relativen Expression verschiedener lichtregulierter Gene nach der Bestrahlung mit blauem Licht (15 Minuten, 450 nm, 2 µmol Photonen/m²s), sowie nach der Bestrahlung mit Licht verschiedener Lichtqualitäten. Links: relative Expressionslevel der vermerkten Gene bei Dunkelheit und nach der Bestrahlung mit blauem Licht. Rechts: relative Expressionslevel der angegebenen Gene in *A. nidulans* FGSC A4 bei Dunkelheit (D), nach der Bestrahlung mit blauem Licht (B, 15 Minuten, 450 nm, 2 µmol Photonen/m²s), nach der Bestrahlung mit blauem Licht gefolgt von 15-minütiger Dunkelheit (B+D), nach der Bestrahlung mit blauem Licht (B+FR, je 15 Minuten, 450 nm, 2 µmol Photonen/m²s), nach der Bestrahlung mit rotem Licht (R, 15 Minuten, 700 nm, 2 µmol Photonen/m²s), nach der Bestrahlung mit rotem Licht (R, 15 Minuten, 700 nm, 2 µmol Photonen/m²s), nach der Bestrahlung mit rotem Licht (R+FR, je 15 Minuten, 700 nm, 2 µmol Photonen/m²s), nach der Bestrahlung mit rotem Licht (R+FR, je 15 Minuten, 700 nm, 2 µmol Photonen/m²s), nach der Bestrahlung mit rotem Licht (R+FR, je 15 Minuten, 700 nm, 2 µmol Photonen/m²s). Die Oberfläche von 10 ml ergänztem Minimalmedium wurde mit frischen Sporen (3x10⁸ Sporen) beimpft und für 20 Stunden im Dunkeln bei 37°C in Petrischalen inkubiert. Alle Proben wurden unter grünem Sicherheitslicht gehandhabt. t-Test (zweiseitig, heteroskedastisch): *** p ≤ 0,001; ** p ≤ 0,05; n.s. (nicht signifikant) p > 0,05.

Konformationsänderung und die Rolle der Histidinkinase

Pilzliche Phytochrome verfügen über eine response regulator Domäne innerhalb des Proteins (Blumenstein et al., 2005; Brandt et al., 2008). Azuma und Kollegen konnten zeigen, dass der konservierte Aspartat-Rest den Akzeptor in der Phosphotransferreaktion zwischen YpdA und FphA darstellt (Azuma et al., 2007). Die Rolle der N-terminal von der response regulator Domäne lokalisierten Histidinkinase-Domäne ist weitestgehend ungeklärt. Die Funktionalität der Histidinkinase-Domäne konnte bereits bestätigt werden. In einem FphA-Homodimer findet eine Autophosphorylierung von Histidin 770 in der Histidinkinase-Domäne statt (Blumenstein et al., 2005; Brandt et al., 2008). Die Phosphorylgruppe kann weiter auf das Aspartat 1181 in der response regulator Domäne übertragen werden (Brandt et al., 2008). Für die lichtabhängige Induktion der Expression lichtregulierter Gene ist die Histidinkinase-Domäne essenziell, da die Inaktivierung der Histidinkinase-Domäne durch die Substitution des Histidins mit Alanin zu einer ausbleibenden Induktion der Expression des lichtregulierten Gens *ccgA* führte (Hedtke *et al.*, 2015).

Zur Untersuchung des Effekts einer Phosphorylierung von H770 auf die Konformation von FphA *in vitro*, wurden drei Varianten von FphA aus *A. nidulans* heterolog in *E. coli* exprimiert. Die Phosphorylierung des Histidins wurde durch die Substitution mit Glutamat imitiert. Als Kontrollen dienten zum einen FphA-WT, zum anderen eine Mutante, bei der das Histidin 770 gegen Alanin substituiert wurde. Die mit Strep-tag®II markierten Proteine wurden angereichert und die aktive als Dimer vorliegende Fraktion mittels Größenausschlusschromtographie (SEC) (HiLoad® 16/600 Superdex® 200 pg, Cytiva) isoliert. Die angereicherten Proteinvarianten wurden jeweils in ihrem Pr- und Pfr-Zustand mittels SEC analysiert (Superdex® 200 Increase 10/300 GL, Cytiva). Die Etablierung des korrekten Zustands wurde unmittelbar vor und nach den Experimenten mittels UV/Vis-Spektroskopie überprüft (Daten nicht gezeigt). Zur Gewährleistung des Zustands während des Experiments wurden die Proben entweder vor Licht abgeschirmt (Pr) oder mit rotem Licht bestrahlt (Pfr). Die Chromatogramme der einzelnen Varianten in ihren beiden Zuständen sind in Abbildung 40 dargestellt und die Kenndaten in Tabelle 1 zusammengefasst.

Abbildung 40: SEC-Elutionsprofile von FphA-WT, -H770E und -H770A im Pr- (links) und Pfr-Zustand (rechts). Die Dimer enthaltenden Fraktionen sind durch Pfeile gekennzeichnet.
Droho	Zustand	Retentions-	scheinbare	rel. Zunahme nach
FIUDE	Zustanu	volumen [ml]	Masse [kDa]	Lichtabsorption
FphA-WT	Pr	10,14	412,16	33.4%
	Pfr	9.5	549,87	00,470
FphA-	Pr	10,18	404,8	87%
H770E	Pfr	8,79	757,11	0170
FphA-	Pr	10,10	419,65	37.1%
H770A	Pfr	9,4	575,21	07,170

Tabelle 1: Kenndaten der FphA Varianten analysiert via SEC

Zum Vergleich des Laufverhaltens der drei Proben wurde die Zunahme der scheinbaren Masse relativ zur Masse des Grundzustands (relative Zunahme der scheinbaren Masse) nach Bestrahlung mit rotem Licht ermittelt (Abbildung 41). Die native Version von FphA und FphA-H770A zeigen annährend die gleiche relative Zunahme der scheinbaren Masse. Nach der Absorption von rotem Licht nimmt FphA-WT um 33,4%, FphA-H770A um 37,1% in der scheinbaren Masse zu. Die Substitution des Histidins 770 durch Glutamat hat eine relative Zunahme der scheinbaren Masse um 87% zur Folge. Durch die Absorption von Licht finden innerhalb des Proteins Änderungen in der Konformation statt, wodurch die *response regulator* Domäne exponiert und zugänglich für die Phosphorylierungsreaktion wird. Dadurch erhöht sich der hydrodynamische Durchmesser, wodurch sich das Retentionsvolumen in einem SEC-Experiment verringert und sich die scheinbare Masse erhöht.

Abbildung 41: Relative Zunahme der scheinbaren Masse von FphA-WT, FphA-H770E und FphA-H770A nach der Absorption von rotem Licht. Die Proteine wurden heterolog in *E. coli* exprimiert und angereichert. Die scheinbaren Massen in den jeweiligen Pr- und Pfr-Zuständen wurden mittels Größenausschlusschromatographie ermittelt.

Die 3D-Struktur des photosensorischen Moduls von A. nidulans FphA

Das N-terminale photosensorische Modul ist hoch konserviert zwischen den einzelnen Reichen (Abbildung 4). Während von pflanzlichen und bakteriellen Phytochromen zahlreiche 3D-Modelle verfügbar sind, existiert bis heute keine dreidimensionale Struktur von pilzlichen Phytochromen. Die N-terminale Verlängerung stabilisiert die Pfr-Form und ist charakteristisch für pilzliche Phytochrome, weshalb ihre räumliche Anordnung von großem Interesse ist. Auch die Anwesenheit einer C-terminalen *response regulator* Domäne ist neben einigen bakteriellen Phytochromen hauptsächlich in pilzlichen Phytochromen zu finden. Zur Aufklärung der dreidimensionalen Struktur von FphA aus *A. nidulans* wurde in Zusammenarbeit mit Dr. Patrick Scheerer (Charité - Universitätsmedizin Berlin) und Dr. Luisa Herder (Charité - Universitätsmedizin Berlin) zum einen das N-terminale photosensorische Modul von FphA, zum anderen das vollständige Protein heterolog in *E. coli* exprimiert und angereichert. Nach weiteren Reinigungsprozessen wurden beide Varianten von FphA mittels Kryo-Elektronenmikroskopie (Kryo-EM) analysiert. Die Analyse des

Abbildung 42: Kryo-Elektronenmikroskopische 3D-Struktur von AnFphA-NPGP als Homodimer. A: Vorderansicht. B: Seitenansicht. C: Ansicht von oben. D: Ansicht von unten. Die lokale Auflösung ist farblich repräsentiert (Å). Daten wurden mit einem FEI Tecnai G2 Polara Kryo-Transmissionselektronenmikroskop (300 kV, ausgestattet mit einem Gatan K2 Summit Detektor) generiert.

vollständigen Proteins lieferte keine verwendbaren Daten. Ein Volumenmodell des photosensorischen Moduls von AnFphA mit einer globalen Auflösung von 4,01 Å ist in Abbildung 42 dargestellt. Die Parameter der Daten sowie *fourier shell correlation* (FSC) der prozessierten Daten sind in Abbildung 43 und Tabelle 2 aufgeführt.

Abbildung 43: Fourier Shell Correlation des Volumenmodells von AnFphA-NPGP. FSC-cutoff = 0,143.

Pixelgröße	0,625 Å
Anzahl Mikrographen	2.452
Partikel nach der Prozessierung	150.551
globale Auflösung	4,01 Å

Tabelle 2: Parameter des Volumenmodells von AnFphA-NPGP.

Zur Evaluierung des mittels Kryo-EM ermittelten Volumenmodells von AnFphA-NPGP wurde eine Vorhersage der dreidimensionalen Struktur von AnFphA in seiner gesamten Länge mit *AlphaFold* generiert (Abbildung 44A und B).

Zusätzlich wurde eine strukturelle Vorhersage der Interaktion zwischen FphA und YpdA mit Hilfe von *AlphaFold* generiert (Abbildung 44C-G). Die Vorhersage durch *AlphaFold* zeigt die Interaktion von YpdA mit der *response regulator* Domäne von FphA auf. Dabei beträgt der Abstand der in den Transfer der Phosphorylgruppe involvierten Reste 5,9 Å (Aspartat 1181 von FphA und Histidin 85 von YpdA).

Abbildung 44: Vorhersage der 3D-Struktur von AnFphA als Homodimer sowie der Interaktion zwischen AnFphA und YpdA mit AlphaFold. A: AnFphA (Homodimer), Vorderansicht. B: AnFphA (Homodimer), Seitenansicht. C: AnFphA Monomer. D: Vergrößerung des Bereichs der konservierten Reste Histidin 770 (Blau) und Aspartat 1181 (Rot). E, F: Die Interaktion zwischen AnFphA und YpdA (Magenta). Histidin 770 ist in Blau, Aspartat 1181 in Rot und Histidin 85 (YpdA) ist in Grün dargestellt. G: Vergrößerung des Bereichs der in den Transfer der Phosphorylgruppe involvierten Reste Aspartat 1181 (FphA, Rot) und Histidin 85 (YpdA, Grün). Die einzelnen Domänen sind farblich gekennzeichnet: PAS (Rot), GAF (Grün), PHY (Blau), Histidinkinase und ATPase (Orange), *response regulator* (Cyan). Der Abstand zwischen den beiden Resten beträgt 5,9 Å.

3 Diskussion

3.1 Die Charakterisierung beider Phytochrome aus *A. fumigatus*

Phytochrome weisen eine charakteristische Architektur von Domänen auf. So bestehen pilzliche Phytochrome aus einem N-terminalen photosensorischen Modul, bestehend aus einer PAS-, einer GAF- und einer PHY-Domäne. Der C-terminale Teil von pilzlichen Phytochromen besteht aus einer Histidinkinase/ATPase-Domäne sowie einer *response regulator* Domäne, die zusammen das sogenannte regulatorische Modul bilden. Diese Domänen wiederum weisen stark konservierte Bereiche und einzelne Reste auf, die mitunter essenziell für die Fähigkeit der Reizwahrnehmung und der Weiterleitung dessen sind (Blumenstein *et al.*, 2005; Brandt *et al.*, 2008; Lamparter *et al.*, 2017).

In der PAS-Domäne ist das konservierte Cystein lokalisiert, welches essenziell für die kovalente Bindung des Chromophors Biliverdin IXa ist (Blumenstein et al., 2005). Neben dem konservierten Cystein in der PAS-Domäne (C195) ist ein in der GAF-Domäne lokalisiertes Histidin (H504) ebenfalls ein zentrales Element in der korrekten Koordination des Chromophors (Blumenstein et al., 2005; Brandt et al., 2008). Durch die Absorption von rotem Licht erfolgt eine Z-E-Isomerisierung um die C15-C16-Doppelbindung von Biliverdin IXa (Brandt et al., 2008), was zu einer Reorganisation bestimmter Bereiche innerhalb des Proteins führt (Takala et al., 2014; Takala et al., 2016; Takala et al., 2018, Isaksson et al., 2021). Auf diese Weise wird das Signal vom photosensorischen Modul zum regulatorischen Modul geleitet. Dies wird mitunter durch eine Umfaltung der sogenannten PHY-tongue von einem β-Faltblatt zu einer α-Helix erreicht. Die PHY-tongue spannt über die Chromophorbindetasche und tritt über ein konserviertes, an der Spitze lokalisiertes PRxSF-Motiv mit der GAF-Domäne in Kontakt. Die Kontaktstelle in der GAF-Domäne ist durch ein konserviertes DIP-Motiv definiert (Lamparter et al., 2017; Takala et al., 2016).

In bioinformatischen Analysen konnten in FphA alle genannten Reste und Motive identifiziert werden. Die Sequenz von FphB hingegen wies keines der genannten Elemente auf (Abbildung 10). In den regulatorischen Modulen von FphA und FphB konnten alle konservierten Reste und Motive identifiziert werden (Abbildung 11). Dies weist darauf hin, dass FphA und FphB als Hybrid-Histidinkinasen fungieren, FphB jedoch nicht als Photosensor. Dies konnte durch die Analyse der spektralen Eigenschaften sowie durch Zink-induzierte Fluoreszenz bestätigt werden (Abbildung 13).

In *A. nidulans* und *A. alternata* ist FphA neben der Funktion als Photosensor ebenfalls in den Prozess der Temperaturwahrnehmung involviert (Schuhmacher *et al.*, 2024; Yu *et al.*, 2019). Dies legt die Hypothese nahe, dass FphB an dieser Stelle die Funktion als Temperatursensor wahrnimmt. Diese Hypothese konnte allerdings weder *in vivo* mittels RT-qPCR (Abbildung 14), noch *in vitro* durch die Analyse der spektralen Eigenschaften oder durch Zink-induzierte Fluoreszenz bestätigt werden (Abbildung 13). FphA hingegen weist alle Eigenschaften eines kanonischen pilzlichen Phytochroms auf. Sowohl die Photokonversion von der Pr- zur Pfr-Form durch die Absorption von rotem Licht als auch die Photoreversion von der Pfr- zur Pr-Form durch die Absorption von dunkelrotem Licht konnten mittels UV/Vis-Spektroskopie nachgewiesen werden (Abbildung 13). Zudem wird die Expression von licht- und temperaturregulierten Genen, welche in Abhängigkeit von *A. nidulans* FphA induziert werden, ebenfalls durch FphA aus *A. fumigatus* induziert (Abbildung 14).

In A. nidulans hat FphA Funktionen sowohl im Zellkern, als auch im Zytoplasma. Nach der Absorption von rotem Licht aktiviert FphA den SakA-Signalweg. Dies resultiert in der Phosphorylierung von SakA, welches wiederum in den Zellkern transloziert und dort die Aktivität von Transkriptionsfaktoren reguliert (Yu et al., 2016). Im Zellkern interagiert FphA mit dem Regulator VeA und dem Komplex aus LreA und LreB, den Homologen zu WC-1 und WC-2 aus N. crassa. Durch diese Interaktionen wird die Expression lichtregulierter Gene durch die Modifikation von Histonen gesteuert (Hedtke et al., 2015; Purschwitz et al., 2008). Die Phytochrome FphA und FphB aus A. fumigatus konnten in dieser Arbeit ausschließlich in den Zellkernen von A. nidulans lokalisiert werden (Abbildung 32). Zusätzlich konnte eine direkte Interaktion zwischen FphA und FphB in den Zellkernen nachgewiesen werden (Abbildung 33 und Abbildung 34). Dies deutet darauf hin, dass die Funktionen im Zellkern von FphA und FphB aus A. fumigatus im Vergleich zu denen im Zytoplasma überwiegen. Allerdings wird der SakA-Signalweg durch A. nidulans FphA im Zytoplasma aktiviert. Um die Aktivität des SakA-Signalwegs hinsichtlich der beiden Phytochrome zu untersuchen, wurde SakA mit GFP fusioniert und gemeinsam mit FphA und/oder FphB aus A. fumigatus heterolog in A. nidulans exprimiert. In

67

Gegenwart von AfFphA stimmte die Lokalisation von GFP-SakA mit der in Anwesenheit von AnFphA überein. Bei Dunkelheit ist SakA im Zytoplasma lokalisiert. Nach der Bestrahlung mit weißem Licht transloziert GFP-SakA in den Zellkern (Abbildung 35). AfFphB alleine scheint keine lichtabhängige Aktivierung des SakA-Signalwegs zu bewirken. Sowohl bei Dunkelheit, als auch bei Licht ist GFP-SakA im Zytoplasma lokalisiert (Abbildung 35). Die Kombination von entweder AnFphA oder AfFphA mit AfFphB führt zu einer dauerhaften Lokalisation von GFP-SakA im Zellkern, unabhängig von Licht, was auf eine Hyperaktivierung des Signalwegs hindeutet (Abbildung 36). Dies bedeutet wiederum, dass zumindest eine Fraktion der beiden Phytochrome aus *A. fumigatus* im Zytoplasma lokalisiert sein muss, da die Aktivierung des SakA-Signalwegs im Zytoplasma stattfindet (Yu *et al.*, 2016).

Fuller und Kollegen konnten 2013 zeigen, dass FphA in A. fumigatus in die Aufrechterhaltung der Zellwand-Homöostase unter Einwirkung von Kongorot involviert ist (Fuller et al., 2013). Jedoch blieb FphB in dieser Studie unberücksichtigt. In Kooperation mit Prof. Ling Lu (Nanjing Normal University) und Yinyan Ma (Nanjing Normal University) wurde im Rahmen dieser Arbeit ebenfalls der Effekt der Deletion von fphA und/oder fphB in A. fumigatus in Bezug auf die Sensitivität gegenüber verschiedenen Stressfaktoren untersucht. Die Experimente lieferten jedoch keine eindeutigen Phänotypen (Daten nicht aufgeführt). Deshalb wurden die phänotypischen Effekte einer Komplementation eines A. nidulans \(\Delta fphA-Deletionsstamms mit AffphA)\) und/oder AffphB aus A. fumigatus analysiert. Zusätzlich wurde AffphB aus A. fumigatus ektopisch in das Genom von A. nidulans FGSC A4 (Wildtyp) integriert, um den Effekt von AfFphB aus A. fumigatus im Zusammenspiel mit AnFphA aus A. nidulans zu untersuchen (Abbildung 15). Auf Kolonieebene komplementiert FphA aus A. fumigatus den Phänotyp des AnfphA-Deletionsstamms weitestgehend. Jedoch ist eine Inhibition des radialen Wachstums unter Einwirkung von Licht durch AfFphA zu beobachten. Interessanterweise verursacht die Überexpression von FphB im $\Delta AnfphA$ -Deletionsstamm eine Stimulation der asexuellen Konidienbildung auch im Dunkeln. Die Überexpression von FphB im A. nidulans WT verursacht einen Phänotyp mit starken morphologischen Defekten. Die Überexpression von FphA sowie FphB aus A. fumigatus im $\Delta AnfphA$ -Deletionsstamm hingegen ruft keine morphologischen Defekte hervor. sondern komplementiert ebenfalls den Phänotyp des Deletionsstamms. Ein gehemmtes radiales Wachstum kann nicht mehr beobachtet werden. Auch die Stimulation der Konidienbildung im Dunkeln durch FphB bleibt bei Anwesenheit von AfFphA aus. Dies weist auf eine Interaktion von FphB mit AfFphA sowie mit AnFphA hin. Die unterschiedlichen phänotypischen Effekte beider Kombinationen lassen sich womöglich mit den unterschiedlichen Konzentrationsverhältnissen von FphA aus *A. nidulans* und *A. fumigatus* zu FphB erklären. FphA aus *A. fumigatus* ist annährend gleich stark überexprimiert wie FphB (Abbildung 16). AnFphA hingegen liegt nicht überexprimiert vor, wodurch das Konzentrationsverhältnis zu Gunsten von FphB verschoben ist.

Auch in A. nidulans scheinen FphA und FphB aus A. fumigatus in die Aufrechterhaltung der Zellwand-Homöostase involviert zu sein (Abbildung 17, Abbildung 18 und Abbildung 19). Nach Fuller und Kollegen steigert die Deletion von fphA in A. fumigatus die Sensitivität gegenüber Kongorot unter Lichteinfluss. FphB war nicht deletiert und lag in diesem Experiment vor. Der äquivalente Stamm aus dieser Studie (SKL3) zeigt ebenfalls eine höhere Sensitivität gegenüber Kongorot unter dem Einfluss von Licht im Vergleich zu Dunkelheit, was auf die Interaktion mit anderen Lichtrezeptoren oder Komponenten von lichtregulierten Signalwegen hinweist. Interessanterweise bewirkt die Komplementation mit AffphA unter dem Einfluss von Licht eine gesteigerte Resistenz gegenüber höheren Konzentrationen Kongorot. Die Kombination von AfFphA und AfFphB im *AAnfphA*-Deletionsstamm hingegen hatte keinen signifikanten Einfluss auf dessen Resistenz gegenüber Kongorot. Die Expression von FphB im A. nidulans Wildtyp hingegen führte wie durch die Expression im *AnfphA*-Deletionsstamm zu einer gesteigerten Resistenz gegenüber Kongorot im Dunkeln, allerdings in größerem Maße. Diese Beobachtungen sowie die starken morphologischen Defekte des Stamms weisen darauf hin, dass FphB aus A. fumigatus entweder auf unterschiedliche Weise mit FphA aus A. fumigatus und A. nidulans agiert, oder das Konzentrationsverhältnis beider Phytochrome zueinander einen erheblichen Einfluss auf deren Wirkung hat. Eine Transkriptomanalyse von A. fumigatus ergab, dass FphA zu FphB in einem Verhältnis von 15:1 vorliegt (Daten nicht aufgeführt). Diese starken Unterschiede der Konzentrationsverhältnisse von FphA zu FphB in den in dieser Arbeit verwendeten Stämmen könnten die unterschiedlichen und zum Teil drastischen Effekte erklären. Die Effekte sind ebenfalls unter dem Einfluss von SDS zu beobachten, allerdings sind diese hier weniger ausgeprägt als unter dem Einfluss von Kongorot. Es wurde ebenfalls die Wirkung von oxidativem Stress durch Menadion (Abbildung 20 und Abbildung 21) untersucht. Jedoch lassen die hohen Standardabweichungen keine abschließende Aussage zu.

In A. nidulans werden etwa 10% des Genoms lichtabhängig reguliert, der größte Teil davon abhängig von Phytochrom (Yu et al., 2021). Diese Studie lieferte interessante neue Aspekte, die zeigen, dass FphA und der SakA-Signalweg verantwortlich für die Repression der **Ribosomen-Biogenese** und der Sickstoffassimilation in rotem und in blauem Licht sind. Analysen der Anreicherung von KEGG-Signalwegen durch FphA aus A. fumigatus in A. nidulans zeigen ebenfalls eine starke Repression der Ribosomen-Biogenese. Auch alle weiteren signifikant angereicherten KEGG-Signalwege stehen im Zusammenhang mit der Genexpression (Abbildung 27). Dies wird zusätzlich durch GO-Analysen bekräftigt, bei denen ebenfalls die Anreicherung verschiedener GO-Terme, welche der Translation oder Transkription zugeordnet werden können, beobachtet werden kann (Abbildung 25 und Abbildung 26). Die Repression der Stickstoffassimilation konnte in der vorliegenden Studie nicht beobachtet werden. Als Kriterium für die Selektion der Daten wurde der q-Wert beziehungsweise der korrigierte p-Wert (≤ 0,05) und nicht der p-Wert gewählt, wodurch der Signalweg der Stickstoffassimilation nicht mit in die Analyse einfloss. Die hohe Anzahl differenziell regulierter Gene durch die Komplementation von A. nidulans ∆*fphA* mit *A. fumigatus fphA* ist womöglich auf die Art der Integration zurückzuführen. A. fumigatus fphA wurde ektopisch in das Genom von A. nidulans integriert und wird 10-fach stärker exprimiert als A. nidulans fphA (Abbildung 16). Der Effekt einer Überexpression von FphA auf die Genexpression wurde noch nicht untersucht. Es wäre möglich, dass Gene welche nur sehr schwach durch Phytochrom reguliert werden, durch die Überexpression von fphA nun stark genug hochreguliert sind, um in der Analyse berücksichtigt zu werden.

Während FphA aus *A. fumigatus* in erster Linie Prozesse reguliert, welche im Zusammenhang mit Genexpression und Translation stehen, reguliert FphB hauptsächlich metabolische Prozesse. Die Analyse der Anreicherung von *GO*-Termen (korrigierter p-Wert $\leq 0,05$) durch AfFphB in *A. nidulans* weist auf die Involvierung von FphB in die Biosynthese und Stoffwechsel von Toxinen hin (Abbildung 28), was eine Rolle von FphB in der Pathogenität von *A. fumigatus* nahelegt. Die Hypothese konnte in einem *G. mellonella* Infektionsmodell bestätigt werden, wo die Deletion von *fphB* zu einer erhöhten Pathogenität von *A. fumigatus* führte (Abbildung 29). Auch die Deletion von *fphB* in *A. fumigatus* bewirkte eine Anreicherung der auf die Biosynthese oder den Metabolismus von Toxinen bezogenen *GO*-Terme (Abbildung 30). Hierbei sind die Gene *nscA* und *nscD* am stärksten hochreguliert. *nscA* und *nscD* sind Teil des *nsc*-

Genclusters, welches für die Synthese des Immunsuppressivums Neosartoricin B verantwortlich ist (Chooi et al., 2013, Yin et al., 2013). Recherchen zum Expressionsprofil des nsc-Genclusters in A. fumigatus unter unterschiedlichen Bedingungen zeigten eine vergleichbare Regulation durch die Deletion von veA (Anhang 5, Lind et al., 2015). Außerdem ist die Expression von fphB unter hypoxischen Bedingungen herunterreguliert (Anhang 6, Kowalski et al., 2019; Losada et al., 2014). Hypoxische Bedingungen treten beispielsweise während der Infektion eines Wirtes auf (Abad et al., 2010; Chun et al., 2007; Willger et al., 2009). VeA gilt als Verzweigungsstelle für die Regulation von Entwicklung und Metabolismus im Zellkern (Bayram & Braus, 2012). Die Mutation veA1 in A. nidulans bewirkt eine dauerhafte Lokalisation von VeA1 im Zytoplasma, wodurch die Konidienbildung auch im Dunkeln induziert wird (Kim et al., 2002; Stinnett et al., 2007). Auch die Komplementation von A. nidulans \(\Delta fphA\) mit fphB aus A. fumigatus stimuliert die Konidienbildung im Dunkeln (Abbildung 15). FphB ist in A. nidulans überwiegend im Zellkern lokalisiert (Abbildung 32) und eine Interaktion mit VeA ist im Bereich des Möglichen. VeA ist im Zellkern Teil des Velvet-Komplexes aus VelB-VeA-LaeA, welcher als Regulator des Sekundärstoffwechsels agiert (Bayram et al., 2008b; Bayram & Braus, 2012). Die Inhibition dieses Komplexes resultiert allerdings in einer verringerten Produktion von Sekundärmetaboliten, wohingegen die Deletion von veA eine Steigerung der Expression des nsc-Genclusters zur Folge hat (Lind et al., 2015). LaeA kontrolliert zwar bis zu 40% der mit dem Sekundärmetabolismus assoziierten Gene, das nsc-Gencluster wird allerdings nicht durch LaeA reguliert (Perrin et al., 2007). In A. nidulans wird die Produktion des Sekundärmetabolits Sterigmatocystin durch die Interaktion der Lichtrezeptoren FphA und LreA-LreB mit VeA reguliert (Purschwitz et al., 2008). Die Regulation der Produktion weiterer Sekundärmetabolite ist nicht ausgeschlossen und so könnte auch das nsc-Gencluster durch die oben genannten Lichtrezeptoren, VeA und FphB reguliert werden. Auch konnte eine direkte Interaktion von AfFphA und AfFphB in A. nidulans in den Zellkernen beobachtet werden. Allerdings konnte eine Beteiligung von FphA in der Pathogenität von A. fumigatus in einem G. mellonella Infektionsmodell nicht beobachtet werden (Abbildung 29). Somit kann die Interaktion zwischen FphA und FphB im Zellkern nicht der Rolle in der Pathogenität zugeordnet werden, was einen alternativen Signalweg von FphB und VeA nahelegt.

VeA übernimmt eine Vielzahl von Funktionen im Zellkern (siehe Abbildung 9). Die spezifischen Funktionen werden durch komplexe Phosphorylierungsmuster von VeA bestimmt (Rauscher *et al.*, 2016). Zwar konnte eine direkte Interaktion von VeA mit der Histidinkinase-Domäne von AnFphA beobachtet werden, eine von FphA abhängige Phosphorylierung von VeA konnte allerdings nicht nachgewiesen werden (Purschwitz *et al.*, 2009). Aufgrund der hohen Homologie der regulatorischen Module von pilzlichen Phytochromen, liegt die Interaktion von VeA und der Histidinkinase-Domäne von FphB nahe. Auch wenn die Phosphorylierung von VeA nicht durch FphA stattfindet, könnte dies dennoch durch FphB der Fall sein.

Während FphA aus *A. fumigatus* alle Eigenschaften eines kanonischen pilzlichen Phytochroms aufweist, existieren an dieser Stelle noch viele offene Fragen in Bezug auf die Funktion von FphB. Zwar scheint FphB in die Regulation von zumindest einem Mykotoxin (Neosartoricin B) und damit in die Pathogenität von *A. fumigatus* involviert zu sein, zu dem dahinterstehenden Mechanismus können an dieser Stelle allerdings nur Hypothesen aufgestellt werden. So ist die mögliche Interaktion von FphB mit VeA wohl der vielversprechendste Gegenstand zukünftiger Experimente. Ebenso muss die Frage nach vor- und nachgelagerten Prozessen für die vollständige Klärung der dahinterstehenden Mechanismen adressiert werden. Auch die Lokalisation von AfFphA und AfFphB sowie deren Interaktion im Zellkern muss in *A. fumigatus* verifiziert werden. Zudem wurde die Rolle des vermeintlichen N-terminalen sensorischen Moduls in der vorliegenden Arbeit nicht adressiert. Ein vorläufiges Modell zu den Signalmechanismen von FphA und FphB aus *A. fumigatus* ist in Abbildung 45 dargestellt.

Mit Hilfe des Basic Local Alignment Search Tool (BLAST) des National Center for Biology Information (NCBI) wurden die Proteome weiterer Vertreter der Gattung Aspergillus auf zu FphB aus A. fumigatus homologen Proteinen untersucht. Einige Vertreter konnten identifiziert werden, wie Aspergillus fischeri, Aspergillus lentulus, Aspergillus novofumigatus, Aspergillus viridinutans, Aspergillus udagawae und Aspergillus thermomutatus. Keines der identifizierten Proteine war bisher Gegenstand der Forschung. Dennoch ist auffällig, dass alle genannten Arten der Sektion Fumigati angehören und eng mit A. fumigatus verwandt sind (Samson et al., 2007). Außerdem sind einige von ihnen, wie A. fumigatus, opportunistische Humanpathogene (Rokas et al., 2020). Andere humanpathogene Aspergillus spp. wie Aspergillus flavus, Aspergillus niger oder Aspergillus terreus weisen kein Homolog zu A. fumigatus FphB auf. Womöglich ist FphB spezifisch für die Sektion Fumigati.

Abbildung 45: Modell zu den Signalmechanismen von FphA und FphB aus *A. fumigatus*. A: Bei Dunkelheit liegt FphA alleine inaktiv vor und der SakA-Signalweg ist inhibiert. FphA und FphB aktivieren den SakA-Signalweg auch im Dunkeln. B: Aktiviert durch Licht aktiviert FphA, sowie FphA und FphB den SakA-Signalweg. C: Bei atmosphärischer Sauerstoffkonzentration reprimieren FphB und VeA womöglich gemeinsam die Expression des *nsc*-Genclusters. Neosartoricin B wird nicht synthetisiert. D: Bei Sauerstoffmangel ist FphB womöglich herunterreguliert, wodurch die Expression des *nsc*-Genclusters induziert und Neosartoricin B synthetisiert wird. Erstellt mit BioRender.com

73

3.2 Der Signalmechanismus von FphA aus *A. nidulans* und dessen dreidimensionale Struktur

Seit der Entdeckung von FphA in A. nidulans (Mooney & Yager, 1990) eröffnet sich ein immer komplexeres regulatorisches Netzwerk verschiedener Lichtrezeptoren in Pilzen (Bayram & Bayram, 2023; Fischer et al., 2016). Auch für FphA konnte neben seiner Rolle als Rotlichtrezeptor bereits die prominenten Involvierung in die Temperaturwahrnehmung von A. nidulans und A. alternata nachgewiesen werden (Yu et al., 2019). Eine vorangegangene Transkriptomanalyse von A. nidulans, welche nicht direkt Gegenstand dieser Arbeit ist, lieferte Hinweise auf eine Involvierung von Phytochrom in die Blaulichtwahrnehmung von A. nidulans, unabhängig von dem vorrangigen Blaulichtrezeptor LreA (Yu et al., 2021). Auch die spektralen Eigenschaften von FphA legen dies nahe, wo doch neben der Absorption im roten Spektralbereich (Q-Bande) ebenfalls Absorption im blauen Spektralbereich (Soret-Bande) auftritt (Brandt et al., 2008). Ob die absorbierte Energie ausreichend für die Photokonversion ist, wurde in vitro an rekombinantem FphA aus A. nidulans durch die Analyse der spektralen Eigenschaften nach der Bestrahlung mit blauem Licht überprüft. Durch die Bestrahlung mit blauem Licht verstärkte sich die Absorption im dunkelroten Spektralbereich, wohingegen die Absorption im roten Spektralbereich abnahm (Abbildung 38). Die Absorptionsmaxima stimmen mit denen nach der Bestrahlung mit rotem Licht überein (Brandt et al., 2008). Dies deutet auf die Formierung der Pfr-Form hin, wenn auch die Kinetik langsamer zu sein scheint. Mittels RT-qPCR konnte nachgewiesen werden, dass die Expression bestimmter Gene in A. nidulans unter Blaulicht strikt von FphA abhängig ist. Die Deletion von LreA hatte keinen Einfluss auf die Genexpression. Interessanterweise war die Expression durch die Deletion des Cryptochroms cryA ebenfalls reduziert (Abbildung 39). Auch in A. thaliana scheinen die Phytochrome PHYA, PHYB und PHYD in die Regulation des Phototropismus durch blaues Licht involviert zu sein (Whippo & Hangarter, 2004). Außerdem konnte die Regulation verschiedener Entwicklungsprozesse von A. thaliana, wie die Entwicklung von Chloroplasten oder Deetiolierungsprozesse, auf ein Zusammenspiel von PHYA, PHYB und dem Cryptochrom CRY1 zurückgeführt werden (Neff & Chory, 1998; Usami et al., 2004). PHYB interagiert direkt mit CRY2 (Mas et al., 2000) und die Phosphorylierung von CRY1 ist abhängig von PHYA (Ahmad et al., 1998). Neben pflanzlichen Phytochromen konnte für das cyanobakterielle Phytochrome Cph2 bereits eine inhibierende Funktion auf die Phototaxis von

Synechocystis in blauem Licht nachgewiesen werden (Wilde et al., 2002). Auch In A. nidulans ist eine Interaktion der beiden Lichtrezeptoren denkbar, direkt oder indirekt. An dieser Stelle muss erwähnt werden, dass der von Röhrig und Kollegen verwendete Stamm (A. nidulans FGSCA1153) zur Erzeugung des ∆cryA Deletionsstamms SCK44 (Röhrig et al., 2013) auch die veA1 Mutation trägt (www.fgsc.net). Aus diesem Grund wurden die Experimente durch Alexander Landmark (Karlsruher Institut für Technologie) wiederholt. Im Gegensatz zu den hier präsentierten Daten, steigt die relative Expression des lichtregulierten Gens ccgA in einem $\Delta cryA$ Deletionsstamm (veA+), insbesondere bei der Verwendung von blauem und dunkelrotem Licht. An dieser Stelle muss allerdings erwähnt werden, dass die beiden Lichtqualitäten simultan verwendet wurden. In der vorliegenden Arbeit wurden die verschiedenen Lichtqualität nacheinander verwendet. Auch die direkte Interaktion von FphA und CryA konnte nachgewiesen werden. Inwiefern die Interaktion mit FphA die Phosphorylierung von CryA beeinflusst ist noch nicht bekannt. Die neuen Daten weisen darauf hin, dass CryA als negativer Lichtregulator und Antagonist von FphA auftritt (Alexander Landmark, persönliche Kommunikation). Dies stimmt mit Beobachtungen zu der Interaktion von PHYB und den Cryptochromen CRY1 und CRY2 aus A. thaliana überein (Guo et al., 1998; Mockler et al., 1999).

Die Fähigkeit der Photokonversion zwischen zwei konformationellen Zuständen von Phytochrom spiegelt sich zum einen in den spektralen Eigenschaften, zum anderen auf phänotypischer Ebene wider. In vitro zeichnet sich die Photokonversion vom Pr-Grundzustand zur aktiven Pfr-Form nach der Absorption von rotem Licht durch die Bildung eines neuen Absorptionsmaximums im dunkelroten Spektralbereich (754 nm) aus. Nach der Bestrahlung mit dunkelrotem Licht etabliert sich erneut der Grundzustand und das Absorptionsmaximum im dunkelroten Spektralbereich verschwindet (Brandt et al., 2008). Die Konidienbildung in A. nidulans lässt sich durch die Bestrahlung mit rotem Licht für 30 Minuten induzieren. Folgt der Bestrahlung mit rotem Licht eine 30-minütige Bestrahlung mit dunkelrotem Licht, ist die Konidienbildung reprimiert (Mooney & Yager, 1990). Die Keimung der Konidien hingegen wird im Dunkeln stimuliert und durch rotes, blaues und dunkelrotes Licht reprimiert. Dunkelrotes Licht hatte in diesem Fall die stärkste inhibierende Wirkung (Röhrig et al., 2013). Dies lässt auf unterschiedliche Funktionen von Phytochrom im Dunkeln, bei rotem und bei dunkelrotem Licht schließen. Dies konnte durch jüngere Transkriptomanalysen nochmals bekräftigt werden (Yu et al., 2021). Inwiefern sich dieser Effekt in der Transkription verschiedener lichtregulierter Gene widerspiegelt, wurde in der vorliegenden Arbeit mittels RT-qPCR untersucht. Die transkriptionelle Reaktion von *A. nidulans* Wildtyp wurde nach der Bestrahlung mit blauem, rotem sowie blauem oder rotem Licht, gefolgt von dunkelrotem Licht oder Dunkelheit untersucht. Die durch rotes oder blaues Licht verursachte Induktion der Gene *ccgA*, *AN11314* und *AN1754* wird durch dunkelrotes Licht weiter gesteigert. Die Inkubation im Dunkeln nach der Bestrahlung mit rotem oder blauem Licht hingegen hatte keinen Einfluss (Abbildung 39). Dies deutet ebenfalls darauf hin, dass FphA unterschiedliche Funktionen im Dunkeln und unter dunkelrotem Licht hat. Allerdings lassen sich die Beobachtungen durch Mooney und Yager hierdurch nicht erklären (Mooney & Yager, 1990). Als mögliche Erklärung könnten hier die unterschiedlichen Zeitpunkte der beobachteten Phänomene dienen. Die Konidienbildung tritt erst nach 24 Stunden ein, wohingegen die relativen Expressionen bereits nach 15-minütiger Bestrahlung ermittelt wurden (Yu *et al.*, 2021).

Welche Rollen die einzelnen Elemente des regulatorischen Moduls (HisKA, ATPase, RR) in der Transduktion des physikalischen Signals Licht in ein chemisches Signal und der daraus resultierenden Aktivierung der Signalkaskade einnehmen, ist eine der großen noch offenen Fragen im Signalmechanismus von pilzlichen Phytochromen. Bereits in den frühen Arbeiten zu FphA aus A. nidulans konnte eine Autophosphorylierung der Histidinkinase-Domäne sowie die Transphosphorylierung der response regulator Domäne in einem FphA-Homodimer nachgewiesen werden (Blumenstein et al., 2005; Brandt et al., 2008). Darüber hinaus konnten Azuma und Kollegen 2007 das Aspartat 1181 der response regulator Domäne als Akzeptor des Phosphattransfers zwischen FphA und YpdA identifizieren (Azuma et al., 2007). Jedoch konnte in dieser Studie die Auto- und Transphosphorylierung nicht reproduziert werden. Außerdem ist zu beachten, dass in diesen Studien lediglich das C-terminale regulatorische Modul von FphA verwendet wurde. Die Histidinkinase scheint in diese Reaktion nicht involviert zu sein und somit bleibt die Frage nach deren Rolle offen. Die Signaltransduktion in bakteriellen Phytochromen ist am besten an dem Phytochrom von Deinococcus radiodurans (DrBphP) untersucht (Bjorling et al., 2016; Isaksson et al., 2021; Takala et al., 2014; Takala et al., 2015; Takala et al., 2016; Takala et al., 2018). Nach der Lichtabsorption und Isomerisierung des Chromophors kommt es zur Reorganisation bestimmter Bereiche und zu einem Kippen und Verdrehen der PHY-Domäne. Dadurch wird in einem DrBphP-Dimer die Verbindungsstelle der Histidinkinase-Domäne unterbrochen und diese exponiert. Durch diese Exposition wäre die Histidinkinase-Domäne zugänglich für Phosphorylierungsreaktionen. Pilzliche und bakterielle Phytochrome weisen eine hohe Homologie auf (Karniol et al., 2005) und ein ähnlicher Effekt wäre naheliegend. Dies sollte in der vorliegenden Arbeit mittels Größenauschlusschromatographie hinsichtlich Änderungen in der Konformation nach Lichtabsorption überprüft werden. Weiter wurde der Effekt einer Phosphorylierung des Histidins 770 untersucht. Die Phosphorylierung wurde durch die Substitution des Histidins mit Glutamat (H770E) nachgeahmt und die scheinbare Masse mit der von FphA-WT verglichen. Die Etablierung der Pr- und Pfr-Form wurde photometrische unmittelbar vor und nach den SEC-Experimenten überprüft. FphA-WT und FphA-H770E zeigten eine Zunahme in ihrer scheinbaren Masse nach der Bestrahlung mit rotem Licht. Die nachgeahmte Phosphorylierung bewirkte eine Zunahme der scheinbaren Masse um mehr als das Doppelte im Vergleich zu FphA-WT (Abbildung 40, Abbildung 41, Tabelle 1). Auffällig ist, dass die Elutionsvolumina der Pfr-Formen sich mit denen der Tetramere decken. Die Dimerisierung zweier Dimere nach der Absorption von rotem Licht konnte durch die photometrische Überprüfung der Photokonvertibilität durch Absorption von rotem beziehungsweise dunkelrotem Licht ausgeschlossen werden. FphA-Tetramere zeigen zwar das charakteristische UV/Vis-Spektrum der Pr-Form, dies lässt sich jedoch nicht durch die Bestrahlung mit dunkelrotem Licht in die Pfr-Form konvertieren (Daten nicht aufgeführt). Nach der Absorption von rotem Licht ereignen sich offensichtlich Änderungen in der Konformation, welche durch die Phosphorylierung von H770 von größerem Ausmaß zu sein scheinen.

Der größte Unterschied zwischen pilzlichen und bakteriellen Phytochrome liegt in der response regulator Domäne. Während in Bakterien die response regulator Domäne in der Regel Teil eines eigenständiges Protein ist, ist diese fester Bestandteil von pilzlichen Phytochromen (Blumenstein et al., 2005; Brandt et al., 2008). Zwischen der Absorption von rotem Licht und der Exposition der response regulator Domäne könnte die Phosphorylierung der Histidinkinase-Domäne stehen. Die durch FphA bewirkten Adaptionen an die sich ändernden Umweltbedingungen sind mit einem nicht unerheblichen Energieaufwand verbunden. Die Autophosphorylierung der Histidinkinase-Domäne vor der Exposition der response regulator Domäne könnte als eine Art Vorsichtsmaßnahme interpretiert werden, die den Organismus in Zeiten von Energiemangel davor bewahrt, zu viel Energie aufzuwenden. Ist die intrazelluläre ATP-

Konzentration zu niedrig, erfolgt keine beziehungsweise eine verminderte Phosphorylierung von H770, wodurch die Exposition der *response regulator* Domäne verhindert beziehungsweise vermindert wird. Diese Reaktionsfolge ist in Abbildung 46 schematisch dargestellt.

Abbildung 46: Schematische Darstellung des Signalmechanismus von FphA nach der Absorption von Licht. Im Dunkeln ist sowohl das Histidin in der Histidinkinase-Domäne, als auch das Aspartat in der *response regulator* Domäne nicht zugänglich. Nach der Absorption von Licht kommt es zu strukturellen Änderungen, wodurch das Histidin in der Histidinkinase-Domäne zugänglich für Phosphorylierungsreaktionen wird. Durch die Phosphorylierung des Histidins in der Histidinkinase-Domäne kommt es zu weiteren strukturellen Änderungen, wodurch das Aspartat in der *response regulator* Domäne exponiert wird und damit zugänglich für die Phosphattransferreaktion mit YpdA ist. Rot: PAS-Domäne; Grün: GAF-Domäne; Dunkelblau: PHY-Domäne; Orange: Histidinkinase/ATPase-Domäne; Hellblau: *response regulator* Domäne; Magenta: YpdA.

Um diese Hypothese zu überprüfen, sollte die Phosphattransferreaktion zwischen YpdA und FphA, äguivalent zu der von Azuma und Kollegen angewandten Methodik, durchgeführt werden (Azuma et al., 2007). Modifikationen wurden in Form von der Verwendung von SuperSep™ Phos-tag™ (Wako Chemicals USA, Inc.) Polyacrylamidgelen anstelle von radioaktivem ³²P-*labeling* sowie die Verwendung des gesamten Proteins, inklusive des photosensorischen Moduls, vorgenommen. Trifft die oben genannte Hypothese zu, dürfte nur bei FphA-H770E ein Transfer der Phosphorylgruppe von YpdA zu FphA stattfinden. Bei FphA-WT und bei der loss-offunction Mutante FphA-H770A wäre die response regulator Domäne nicht exponiert, da die Histidinkinase-Domäne unabhängig von Licht unphosphoryliert vorliegt. Diese Phosphorylierung ist bei FphA-H770E durch die Substitution mit Glutamat nachgeahmt. Folglich ist auch die response regulator Domäne nach Lichtabsorption exponiert. Auch ein Transfer der Phosphorylgruppe ohne die vorherige Bestrahlung mit rotem Licht wäre denkbar, abhängig davon, welches Ausmaß die Änderungen in der Konformation bedingt durch die Phosphorylierung von H770 haben. Zu Beginn erfolgte die Präparation von phosphoryliertem YpdA (YpdA-P). YpdA wurde heterolog in E. coli exprimiert, angereichert und mittels SEC von Kontaminanten befreit. Im Zuge dieser Arbeit war es nicht möglich YpdA zu phosphorylieren, beziehungsweise dies nachzuweisen (Daten nicht aufgeführt). Die oben genannte Hypothese kann somit nicht abschließend bestätigt werden. Als Phosphoramidat ist Phosphohistidin generell instabiler als Phosphorester wie beispielsweise Phosphothreonin oder Phosphotyrosin (Attwood *et al.*, 2007). Womöglich sind die Bedingungen während der SuperSep™ Probenvorbereitung für die Verwendung von Phos-tag™ Polyacrylamidgelen nicht geeignet für den Nachweis von Phosphorylierungen an Histidinresten. An dieser Stelle ist eine Modifizierung der Phosphorylierungsbedingungen sowie womöglich ein Wechsel des Analysesystems notwendig.

Neben dem genauen Mechanismus der Signalweiterleitung ist die Frage nach der Tertiärstruktur und der genauen Domänenorganisation ein weiteres offenes Kapitel hinsichtlich pilzlicher Phytochrome. Bioinformatische Analysen zeigen starke Ähnlichkeiten zu bakteriellen Phytochromen (Blumenstein et al., 2005; Brandt et al., 2008; Karniol et al., 2005). Dennoch unterscheiden sich pilzliche Phytochrome und bakterielle Phytochrome beispielsweise in der Länge der N-terminalen Verlängerung. Auch das Vorhandensein einer response regulator Domäne innerhalb desselben Proteins ist bis auf wenige Ausnahmen ein grundlegender Unterschied zwischen pilzlichen und bakteriellen Phytochromen. Bjorling, Takala und Isaksson konnten in dem bakteriellen Phytochrom DrBphP aus D. radiodurans die Signaltransduktion nach Lichtabsorption und Isomerisation des Bilinchromophors auf die Reorganisation von drei strukturellen Elementen zurückführen: light-sensing knot, helical spine und PHYtongue (Bjorling et al., 2016; Isaksson et al., 2021; Takala et al., 2014; Takala et al., 2015; Takala et al., 2016; Takala et al., 2018). Aufgrund der hohen Homologie von bakteriellen und pilzlichen Phytochromen, könnten Rückschlüsse auf den Mechanismus der intramolekularen Signaltransduktion gezogen werden. Allerdings existiert bis heute noch keine 3D-Struktur des photosensorischen Moduls eines pilzlichen Phytochroms. Ohne die Bestätigung einer ähnlichen Organisation der homologen Bereiche lassen sich die oben erwähnten Rückschlüsse nicht ziehen. Aus diesem Grund wurde in Kooperation mit Dr. Patrick Scheerer (Charité - Universitätsmedizin Berlin) und Dr. Luisa Herder (Charité -Universitätsmedizin Berlin) die dreidimensionale Struktur des heterolog exprimierten photosensorischen Moduls von A. nidulans FphA (FphA-NPGP) mittels KryoElektronenmikroskopie ermittelt (Abbildung 42). Im Rahmen dieser Arbeit konnte eine maximale Auflösung von 4 Å erreicht werden. AnFphA-NPGP liegt als paralleles Dimer vor. Es ist eine starke Ähnlichkeit zu dem photosensorischen Modul des bakteriellen Phytochroms Agp1 aus *A. fabrum* zu erkennen (Abbildung 5 und Abbildung 42). Auch ist die *helical spine* zwischen der GAF- und der PHY-Domäne zu erkennen. Die Auflösung von 4 Å ist allerdings nicht ausreichend um detaillierte Strukturen wie *light sensing knot* und *PHY-tongue* erkennen zu können.

Mit Hilfe von *AlphaFold* wurde zusätzlich die 3D-Struktur von FphA in seiner vollen Länge sowie die Interaktion von FphA und YpdA strukturell vorhergesagt. Prognostiziert wurde die Interaktion von YpdA mit der *response regulator* Domäne von FphA. Die in den Transfer der Phosphorylgruppe involvierten Reste, Aspartat 1181 von FphA und Histidin 85 von YpdA, zeigen sich in dem vorhergesagten Modell in einer gegenüberliegenden Position, in einem Abstand von 5,9 Å.

4 Material und Methoden

4.1 Material, Chemikalien und Geräte

Chemikalien

Alle in dieser Arbeite verwendeten Chemikalien wurden von Roth (Karlsruhe), Sigma (Taufkirchen), Invitrogen (Karlsruhe), Roche (Mannheim), Applichem (Darmstadt), IBA (Göttingen) und Serva Feinbiochemica (Heidelberg) bezogen, sofern nicht anders angegeben. Enzyme sowie DNA- und Proteinmarker wurden von New England Biolabs (NEB, Ipswich, USA), Thermo Scientific (Waltham, Massachusetts, USA) und Fermentas (St-Leon-Rot) bereitgestellt.

Kits und Verbrauchmaterial

Alle verwendeten Kits und Verbrauchsmaterialien sind in Tabelle 3 aufgeführt.

Tabelle 3: Kits und Verbrauchsmaterial

NucleoSpin® Plasmid EasyPure	Macherey-Nagel, Düren, Deutschland	
FastGene Gel/PCR Extraction Kit	NIPPON Genetics EUROPE GmbH,	
	Düren, Deutschland	
NEBuilder® HiFi DNA Assembly	New England Biolabs, Ipswich, USA	
Zentrifugalkonzentratoren Vivaspin 6,	Sartorius AG, Göttingen, Deutschland	
10000, 30000 MWCO		
Zentrifugalkonzentratoren Vivaspin		
20, 10000, 30000 MWCO		
Gelfiltrationsmarker-Kit für Proteine	Sigma-Aldrich, St. Louis, USA	
mit Molekülmassen von 29.000 bis		
700.000 Da		
E.Z.N.A.® Fungal RNA Mini Kit	Omega Bio-Tek Inc., Nocross, USA	
Invitrogen™ TURBO DNA-free™ Kit	Thermo Fisher Scientific, Waltham, USA	
SuperSep™ Phos-tag™ (50µmol/L),	FUJIFILM Wako Pure Chemical	
10%, 17 well	Corporation, Osaka, Japan	
Pierce™ Anti-HA Agarose	Thermo Fisher Scientific, Waltham, USA	
SensiFAST™ SYBR® No-ROX One-	Meridian Bioscience Inc., Cincinnati,	
Step Kit	USA	

Geräte

Alle in dieser Arbeit verwendeten Geräte sind in Tabelle 4 aufgeführt.

Tabelle 4: Geräte

	Sorvall LYNX 4000 Superspeed-Zentrifuge	Thermo Fisher Scientific, Waltham, USA
Zentrifugen	Microcentrifuge 5415	Eppendorf SE, Hamburg, Deutschland
	Spectrafuge™ 24D Mikrozentrifuge	Labnet International Inc., Edison, USA

	Misso Oten 47	VWR International	
	Micro Star 17	GmbH, Darmstadt,	
	Mikrozentrifuge	Deutschland	
	ÄKTApure		
FPLC	ÄLTApure micro		
	ÄKTAstart		
	StrepTrap XT, 5 ml		
	StrepTrap HP, 5 ml		
	HisTrap HP, 1 ml	Cytiva,	
	Superdex 200 Increase	Marlborough, USA	
Chromatographiesäulen	10/300 GL		
	Superdex 200 Increase		
	3.2/300		
	HiLoad 16/600 Superdex		
	200 pg		
	FastGene® FAS-V Imaging	NIPPON Genetics	
		EUROPE GmbH,	
Detektionssysteme	System	Düren, Deutschland	
	CHEMI-SMART 5100	Peqlab, Erlangen,	
	UV Transilluminator	Deutschland	
		JASCO Corporation,	
		Tokyo, Japan	
Photometer	Ultrospec III	Pharmacia	
		Thermo Fisher	
	NanoDrop ND- 1000	Scientific, Waltham,	
		USA	
	Invitrogen™ Qubit	Thermo Fisher	
Fluorometer	Fluorometer 1.0	Scientific, Waltham,	
		USA	
SDS-PAGE und Western	Power Pac 3000		
Blot Stromversorgung		Bio-Rad. München.	
SDS-PAGE and Blotting	Mini-PROTEAN Tetra	Deutschland	
Apparatur	Vertical Electrophoresis		
12 12 22 22 22 22 22 22 22 22 22 22 22 2	Cell		

	Mini Trans-Blot® Cell	
Thermocycler	Labcycler	SensoQuest GmbH, Göttingen, Deutschland
	CFX Connect Real-Time	Bio-Rad, München,
	PCR Detection System	Deutschland
		Edmund Bühler
	HT Infors Minitron	GmbH,
		Bodelshausen,
		Deutschland
		Thermo Fisher
Inkubatoron	MaxQ™ 6000	Scientific, Waltham,
IIIKubatoren		US
	Thormo P20	Heraeus, Hanau,
		Deutschland
		Memmert GmbH,
	B40	Schwabach,
		Deutschland
Hochdruckhomogenisator	EmulsiElex-C3	Avestin, Inc.,
nocharacknomogenisator		Ottawa, Kanada
		Eppendorf SE,
Bioreaktor	BioFlo®/CelliGen® 115	Hamburg,
		Deutschland
Kühlaggregat	Fisons F3-CH	Haake
	lup Air 6 15	Gast Manufactoring,
Kompressor	Jun-All 6-15	Benton harbor, USA
		Biozym Scientific
Agarose-		GmbH, Hessisch
Agalose-	Mupid One Gelkammer	Oldendorf,
Gelelektrophorese		Deutschland
Krvo-	FEI Tecnai G2 Polara Kryo-	Thermo Fisher
Elektronenmikroskop	Transmissionselektronenmik	Scientific, Waltham,
	roskop (300 kV)	USA

4.2 Bioinformatische Methoden

DNA- sowie Aminosäuresequenzen wurden von FungiDB (fungidb.org) bezogen. Homologien wurden mit dem *Basic Local Alignment Search Tool* (BLAST, NCBI) ermittelt. Die Identifikation von konservierten Bereichen erfolgte mit Hilfe von *InterPro* (Paysan-Lafosse *et al.*, 2023) und *Pfam* (Mistry *et al.*, 2021). Sequenzalignments wurden mit *ClustalW* (Madeira *et al.*, 2022) erstellt. Die Bearbeitung von DNA-Sequenzen erfolgte in *ApE* (*A Plasmid Editor*). Strukturelle Vorhersagen von Proteinstrukturen wurden mit *AlphaFold* (Version 2.3.1) erstellt. Die Darstellung von Proteinstrukturen erfolgte mit Hilfe von *Pymol*.

4.3 Mikrobiologische Methoden

Organismen und deren Kultivierung

Es wurden Standard Klonierungstechniken und Standard Transformationsprotokolle für *A. nidulans* (Yelton *et al.*, 1984) und *E. coli* verwendet (Pope & Kent, 1996). Q5 *High-Fidelity*-DNA-Polymerase von NEB wurde zur Amplifikation von DNA verwendet. Chemisch kompetente *E. coli* Top10 wurden für die Amplifikation von Plasmiden und deren Erhaltung verwendet. Die heterologe Proteinexpression wurde in *E. coli* BL21 (DE3) durchgeführt. Die in dieser Arbeit verwendeten Stämme und deren Genotypen sind in Tabelle 5 aufgelistet.

Tabelle 5:	Die in d	lieser Arbeit	verwendeten	Stämme

Stamm	Genotyp	Referenz
EGSC M	wild type	Fungal Genetics
FG3C A4	wild type	Stock Center
S IP1	pyrG89; ∆argB::trpCDB; pyroA4;	Purschwitz et al.,
JJF I	∆fphA::argB; veA+	2008

A. nidulans

SJP22.1	SJP1 komplementiert mit	Purschwitz et al.,	
	AnfphA(p)::AnfphA; pyr4	2008	
SKV16		Vienken, K. (nicht	
	ΔargB; ΔργιοΑ4, veA+	publiziert)	
SKV(102		Vienken & Fischer,	
387103	<i>ругооэ, ругодч, чед</i> +	2006	
SCKAA	yA1, pabaA1; argB2; pyroA4, nkuA::bar,	Röbrig et al. 2013	
001144	cryA::ptrA		
	AnfphA(p)::AffphA; ∆argB::trpCDB;		
SKL2	pyroA4; ∆fphA::argB; veA+ (SJP1	diese Arbeit	
	transformiert mit pKL32)		
	AnfphA(p)::AffphB; Δ argB::trpCDB;		
SKL3	<i>pyroA4; ∆fphA::argB; veA</i> + (SJP1	diese Arbeit	
	transformiert mit pKL33)		
	AnfphA(p)::AffphA; AnfphA(p)::AffphB;		
SKL6.10	Δ argB::trpCDB; Δ fphA::argB; pyroA;	diese Arbeit	
	<i>veA</i> + (SKL2 transformiert mit pKL48)		
SKI 1/	AnfphA(p)::AffphB, pyroA4; veA+ (WT	diese Arbeit	
SILLIA	SKV103 transformiert mit pKL33)	diese Aibeit	
SKI 15	alcA(p)::DsRed(T4)::stuA(NLS);	diese Arbeit	
UNE 10	veA+	diese Aibeit	
	alcA(p)::gfp::AffphA;		
SKI 16	alcA(p)::DsRed(T4)::stuA(NLS);	diese Arbeit	
ORETO	<i>veA</i> + (SKV103 transformiert mit pKL60		
	und pJW18)		
	alcA(p)::gfp::AffphB;		
SKI 17	alcA(p)::DsRed(T4)::stuA(NLS);	diese Arbeit	
SILLI	<i>veA</i> + (SKV103 transformiert mit pKL62		
	und pJW18)		
	alcA(p)::yfp-N::AffphB; alcA(p)::yfp-		
	C::AffphA;	diese Arbeit	
SKL18	alcA(p)::DsRed(T4)::stuA(NLS);		
	(SKV103 transformiert mit pKL65,		
	pKL66 und pJW18)		

	AnfphA(p)::AffphA; AnfphA(p)::AffphB;		
	alcA(p)::gfp::sakA;		
	alcA(p)::DsRed(T4)::stuA(NLS);	diago Arboit	
SKL23	∆argB::trpCDB; ∆fphA::argB; pyroA;	diese Arbeit	
	veA+ (SJP1 transformiert mit pKL32,		
	pKL48, pKL71 und pJW18)		
	AnfphA(p)::AffphB; alcA(p)::gfp::sakA;		
SKI 24	alcA(p)::DsRed(T4)::stuA(NLS);	diago Arboit	
SKL24	<i>veA</i> + (SKL15 transformiert mit pKL48	diese Arbeit	
	und pKL71)		
	alcA(p)::gfp::AffphB;		
SVI 25	alcA(p)::3xha::AffphA; ∆argB::trpCDB;	diago Arboit	
SKL25	<i>∆fphA::argB; veA</i> + (SJP1 transformiert	diese Arbeit	
	mit pKL62 und pKL74)		
	alcA(p)::3xha::AffphA; ∆argB::trpCDB;		
SKL26	<i>pyroA4; ∆fphA::argB; veA</i> + (SJP1	diese Arbeit	
	transformiert mit pKL74)		
-	alcA(p)::gfp::sakA;		
SKL29	∆argB::trpCDB; ∆fphA::argB; veA+	diese Arbeit	
	(SJP1 transformiert mit pKL76)		
	AnfphA(p)::AffphA; alcA(p)::gfp::sakA;		
	alcA(p)::DsRed(T4)::stuA(NLS);		
SKL30	∆argB::trpCDB; ∆fphA::argB; veA+	diese Arbeit	
	(SKL2 transformiert mit pKL76 und		
	pJW18)		
	AnfphA(p)::AffphB; alcA(p)::gfp::sakA;		
	alcA(p)::DsRed(T4)::stuA(NLS);		
SKL31	∆argB::trpCDB; ∆fphA::argB; veA+	diese Arbeit	
	(SKL3 transformiert mit pKL76 und		
	pJW18)		
A. fumigatus			
CEA17 ΔakuB ^{ĸ∪80}	$\Delta ku 80 \text{ pvrG}^+$	da Silva Ferreira <i>et</i>	
	Δκάου, μγια	<i>al.</i> , 2006	

E. coli

Stamm	Genotyp	Referenz
<i>E. coli</i> TOP10	F- <i>mcrA</i> cr <i>mrr-hsd</i> RMS- <i>mcr</i> BC) Φ 0/acZac hsd /acX74 recA1 araD139 sd araleu)7697 galU galK rpsL (StrR) endA1 nupG	New England Biolabs, Ipswich, USA
<i>E. coli</i> BL21(DE3)	$F^- ompT hsdS_B (r_B^- m_B^-) gal dcm$ (DE3)	New England Biolabs, Ipswich, USA
DAC903/pIA001- ArcB	Δ <i>lac169 araD rpsL relA thiA flbB</i> <i>arcB::Cm^R</i> transformiert mit Plasmid pIA001 (<i>arcB</i> , wildtype)	Azuma <i>et al.</i> , 2007
DAC903/pINIII	Δ <i>lac169 araD rpsL relA thiA flbB</i> <i>arcB::Cm^R</i> (ArcB Negativkontrolle)	Azuma <i>et al.</i> , 2007

Sofern nicht anders angegeben, wurde für die Kultivierung von *A. nidulans* ergänztes Minimalmedium verwendet (Käfer, 1965; Pontecorvo *et al.*, 1953) (Tabelle 6). *E. coli* Stämme wurden in LB-Medium (Tabelle 6) bei 37°C und 180 rpm kultiviert.

Die Zusammensetzung verwendeten Nährmedien sowie die Zusätze und deren Arbeitskonzentrationen sind in Tabelle 6 gelistet.

Medium	Zusammensetzung
	Trypton 1% (w/v)
IR	Hefeextrakt 0,5% (w/v)
LD	NaCl 1% (w/v)
	pH 7,5
SOC	Trypton/Pepton 2% (w/v)
	Hefeextrakt 0,5% (w/v)
	KCI 2,5 mM
	NaCl 10 mM
	MgSO4 10 mM
SOC	NaCl 1% (w/v) pH 7,5 Trypton/Pepton 2% (w/v) Hefeextrakt 0,5% (w/v) KCl 2,5 mM NaCl 10 mM MgSO4 10 mM

	MgCl2 10 mM
	Glukose 20 mM
	Zusätze
Ampicillin	100 µg/ml
Chloramphenicol	30 g/ml
Kanamycin	30 g/ml
Sorbitol	100 mM
Betain	2,5 mM
Agar-Agar	1,5% (w/v)
Medium	Zusammensetzung
	Salzstammlösung 5% (v/v)
	Spurenelemente 0,1% (v/v)
Minimalmedium	Glukose 20 g/l
	рН 6,5
	(Agar-Agar 6 g/l)
	Salzstammlösung 5% (v/v)
	Spurenelemente 0,1% (v/v)
	Saccharose 342 g/l
	Glukose 20 g/l
	рН 6,8
	Agar-Agar 6 g/l
	Salzstammlösung 5% (v/v)
	Spurenelemente 0,1%
MMR top	Saccharose 342 g/l
	pH 6,8
	pH 6,8 Agar-Agar 1,6 g/l
	pH 6,8 Agar-Agar 1,6 g/l Salzstammlösung 5% (v/v)
	pH 6,8 Agar-Agar 1,6 g/l Salzstammlösung 5% (v/v) Spurenelemente 0,1% (v/v)
Mikroskoniomodium	pH 6,8 Agar-Agar 1,6 g/l Salzstammlösung 5% (v/v) Spurenelemente 0,1% (v/v) Vitaminlösung 0,1% (v/v)
Mikroskopiemedium	pH 6,8 Agar-Agar 1,6 g/l Salzstammlösung 5% (v/v) Spurenelemente 0,1% (v/v) Vitaminlösung 0,1% (v/v) Glycerol 2% (v/v)
Mikroskopiemedium	pH 6,8 Agar-Agar 1,6 g/l Salzstammlösung 5% (v/v) Spurenelemente 0,1% (v/v) Vitaminlösung 0,1% (v/v) Glycerol 2% (v/v) Glukose 2 g/l
Mikroskopiemedium	pH 6,8 Agar-Agar 1,6 g/l Salzstammlösung 5% (v/v) Spurenelemente 0,1% (v/v) Vitaminlösung 0,1% (v/v) Glycerol 2% (v/v) Glukose 2 g/l pH 6,5

	KCI 10,4 g/I
	MgSO ₄ x 7 H ₂ O 10,4 g/l
	KH ₂ PO ₄ 30,4 g/l
	ZnSO ₄ x 7 H ₂ O 22 g/l
	H ₃ BO ₃ 11 g/l
	MnCl ₂ x 4 H ₂ O 5 g/l
	FeSO ₄ x 7 H ₂ O 5 g/l
Spurenelemente	CoCl ₂ x 6 H ₂ O 1,6 g/l
	CuSO ₄ x 5 H ₂ O 1,6 g/l
	(NH ₄) ₆ Mo ₇ O ₂₄ x 4 H ₂ O 1,1 g/l
	EDTA-Na ₂ x 2 H ₂ O 50 g/l
	рН 6,5
	Biotin 0,1 g/l
	Pyridoxin 0,1 g/l
Vitaminlösung	Thiamin 0,1 g/l
vitaminiosung	Riboflavin 0,1 g/l
	<i>p</i> -Aminobenzoesäure 0,1 g/l
	Nikotinsäure 0,1 g/l
	Zusätze
Uridin	1 g/l
Uracil	1 g/l
Pyridoxin	1 mg/l

Bestimmung der Sporendichte

Die Dichte der angefertigten Sporensuspensionen wurde mit Hilfe einer Neubauer Zellzählkammer bestimmt.

4.4 Molekularbiologische Methoden

Plasmide und Oligonukleotide

Eine Übersicht über die in dieser Studie verwendeten Plasmide ist in Tabelle 7 enthalten.

Tabelle	7:	Die	in	dieser	Arbeit	verwendeten	Plasmide

Plasmid	Beschreibung	Referenz
pASK_FphAsyn	tet(p)::AnfphAsyn::strep-tag; ampR	Brandt <i>et al.</i> , 2008
	(Codon-optimierte Sequenz von	
	AnfphA in pASK-iba3)	
pAA7	tet(p)::AnfphA-H770E::strep-tag;	A. Ali
	ampR (Codon-optimierte Sequenz	
	von <i>AnfphA-H770E</i> in pASK-iba3)	
pAA8	tet(p)::AnfphA-NPGP::strep-tag;	Brandt <i>et al.</i> , 2008
	ampR (AnfphA-NPGP in pASK-iba3)	
pAA9	tet(p)::AnfphA-H770A::strep-tag;	A. Ali
	ampR (Codon-optimierte Sequenz	
	von <i>AnfphA-H770A</i> in pASK-iba3)	
pACYCDuet-1_bphO	lac(p)::bphO	Yu <i>et al.</i> , 2019
	(bphO aus Pseudomonas aeruginosa	
	(PA4116) in pACYCDuet-1); CmR	
pJW18	alcA(p)::DsRed(T4)::stuA(NLS); argB	Toews <i>et al.</i> , 2004
pMCB17apx	alcA(p)::gfp; pyr4; ampR	Veith <i>et al.</i> , 2005
pKL09	tet(p)::AffphB::strep-tag; ampR	diese Arbeit
	(<i>AffphB</i> in pASK-iba3)	
pKL10	tet(p)::AffphAs-npgp::strep-tag; ampR	diese Arbeit
	(Codon-optimierte Sequenze des	
	photosensorischen Moduls von	
	AffphA in pASK-iba3)	
pKL32	AnfphA(p)::AffphA; pyr4; ampR	diese Arbeit
	(pMCB17apx Derivat)	
pKL33	AnfphA(p)::AffphB; pyr4; ampR	diese Arbeit
	(pMCB17apx Derivat)	

pKL48	AnfphA(p)::AffphB; pyroA; ampR	diese Arbeit
	(pMCB17apx Derivat)	
pKL60	alcA(p)::gfp::AffphA; pyr4; ampR (in	diese Arbeit
	pMCB17apx)	
pKL62	alcA(p)::gfp::AffphB; pyroA; ampR	diese Arbeit
	(pMCB17apx Derivat)	
pKL65	alcA(p)::yfp ^N ::AffphB; pyroA; ampR	diese Arbeit
	(pMCB17apx Derivat)	
pKL66	alcA(p)::yfp ^c ::AffphA; pyr4; ampR	diese Arbeit
	(pMCB17apx Derivat)	
pKL71	alcA(p)::gfp::sakA; pyr4; ampR (in	diese Arbeit
	pMCB17apx)	
pKL74	alcA(p)::3xha::AffphA; pyr4; ampR	diese Arbeit
	(pMCB17apx Derivat)	
pKL75	T7(p)::6xHis::ypdAs; kanR (Codon-	diese Arbeit
	optimierte Sequenz von <i>ypdA</i> aus	
	<i>A. nidulans</i> in pET28a)	
pKL76	alcA(p)::gfp::sakA; pyroA; ampR	diese Arbeit
	(pMCB17apx Derivat)	

Oligonukleotide, welche für die Amplifikation von DNA-Fragmenten, die Überprüfung einer erfolgreichen Transformation oder für RT-qPCR sind in Tabelle 8 gelistet.

 Tabelle 8: Verwendete Oligonukleotide

Oligonukleotid	Sequenz (5'-3')
	GTGAAATGAATAGTTCGACAAAAATCTAGAAATAATTTTGT
AffphA/B fwd	TTAACTTTAAGAAGG
AffphA-NPGP rv	AACTTTAATGAATTTCCCATAAACCAGAC
AffphB rv	GGGTGGCTCCAAGCGCTGAGACCATGGTCGCTTTC
	ACCG
AnfphA(p) + EcoRI fw	GTAAAACGACGGCCAGTgaattcCTTGGTTGTTGCGG
	CAATGT

AnfphA(p) rv	GCTCGACAAGGAAGAGCAAG
AffphA + AnFphA(p) fw	CTTGCTCTTCCTTGTCGAGCATGGCGTCAAGAGCCA ATGCC
AffphA + BamHI rv	CAGGTCGACTCTAGAGGATCCTCAGAGCTCCCCATG
	GTGTT
AffphB + AnFphA(p) fw	CTTGCTCTTCCTTGTCGAGCATGAGAAGCAACAGAA
	TATTG
AffphB + BamHI rv	CAGGTCGACTCTAGAGGATCCTTAGCTCTCACCTCC
	CTTATCG
ypdA + Ndel fw	CGGCAGCcatatgGCATCAACTACGACAACCAA
ypdA + TAA + Xhol rv	GTGGTGctcgagTTAAGCTTTAGCGTCTTTTTTGACT
	C
AffphA + AscI fw	CGCTggcgcgccAGCGTCAAGAGCCAATGCCT
AffphA+PacI rv	TCTAGAGGATCCttaattaaTCAGAGCTCCCCATGGTGT
	Т
AffphB + AscI fw	CGCTggcgcgccAAGAAGCAACAGAATATTGAGATCTC
	GAAAAC
AffphB + Pacl rv	TCTAGAGGATCCttaattaaTTAGCTCTCACCTCCCTTAT
	CG
sakA + AscI fw	ATGGATGAACTATACAAAggcgcgccATGGCGGAATTTG
	TACGTGCC
sakA + PacI rv	CTCAACCAGCAAGGTTTCCAATAAttaattaaGGATCCT
	CTAGAGTC
RT_AN_ccgA_100bp fw	CGCTTCCCTCACTTCTCGT
RT_AN_ccgA_100bp rv	TTCTTAGCGGCCTCCTTGTG
RT_AN_h2b_100bp fw	GAAGAAGCGCGGAAAGACC
RT_AN_h2b_100bp rv	TAGACATAGCACGGGTGGAG
RT_AN_ccgB_100bp fw	ATAACGCCGACCTGACTACG
RT_AN_ccgB_100bp rv	TTGGCGGCTTCCTTGTAAAC
RT_AN11314_100bp fw	GCCTACTGAGTCGCAGACAA
RT_AN11314_100bp rv	GTAGATTGTATCGGCAGGGC
RT_AN1754_100bp fw	CTATTTTCGCGGAGTTGCCA
RT_AN1754_100bp rv	AATGAAAGTCCTGCGAGCTG

Polymerasekettenreaktion

Polymerasekettenreaktionen (PCR) wurden in Form einer *touch down* PCR durchgeführt. Das Thermocycler-Protokoll ist in Tabelle 9 beschrieben.

Schritt	Temperatur	Zeit
Initiale Denaturierung	98°C	3 Minuten
	63°C (5 Zyklen)	
Annealing	61°C (5 Zyklen)	30 Sekunden
	59°C (30 Zyklen)	
Amplifikation	72°C	30 Sekunden/kb
Finale Strangsynthese	72°C	5 Minuten

Tabelle 9: Thermocycler-Protokoll für die PCR

Restriktionsverdau

Die DNA-Restriktion wurde in einem Endvolumen von 20 µL durchgeführt. Die Puffer und Enzymkonzentrationen wurden gemäß den Anweisungen des Herstellers verwendet. Die Restriktion wurde bei 37°C für 1 h durchgeführt. Die Inaktivierung der Restriktionsenzyme erfolgte entweder durch Hitzeinaktivierung gemäß den Herstellerangaben oder durch Agarosegel-Elektrophorese, wie in 0 beschrieben.

Ligation von DNA-Fragmenten

Die Ligation von DNA-Fragmenten wurde entweder mittels *Gibson Assembly* mit Hilfe des NEBuilder® *HiFi DNA Assembly* Kits (NEB), oder mittels T4-DNA-Ligase (NEB) durchgeführt. Die Addition von komplementären Überhängen an die DNA-Fragmente wurde mittels PCR (0) vorgenommen.

Präparation genomischer DNA aus A. nidulans

Sporen des jeweiligen Stammes wurden auf der Oberfläche von 10 ml ergänztem Minimalmedium inokuliert und für 20 h bei 37°C inkubiert. Das Myzel wurde getrocknet und mit Hilfe eines Mörsers zerkleinert. Das zerkleinerte Myzel wurde in ein Reaktionsgefäß überführt, in 750 µl gDNA-Extraktionspuffer (Tabelle 10) suspendiert

und für 45 Minuten bei 68°C schüttelnd inkubiert. Das Myzel wurde durch Zentrifugation bei 13000 rpm für 5 Minuten abgetrennt. Dem Überstand wurden 350 µl Kaliumacetat-Lösung (Tabelle 10) zugegeben und für 5 Minuten auf Eis inkubiert. Die Probe wurde für 5 Minuten bei 13000 rpm zentrifugiert und 500 µl des Überstands mit 500 µl Isopropanol vermengt. Der Ansatz wurde für 20 min bei -20°C inkubiert. Die gefällte DNA wurde durch Zentrifugation für 10 Minuten bei 13000 rpm und 4°C pelletiert und mit Ethanol (70%) gewaschen. Nach erneutem Zentrifugieren für 5 Minuten bei 13000 rpm und 4°C wurde die DNA in 50 µl ddH₂O aufgenommen.

Puffer	Zusammensetzung
dDNA-Extraktionspuffer	0,2% SDS
gera i Extra di di circipano i	50 mM EDTA
Kaliumacetat-Lösung	29,4% Kaliumacetat (w/v)
ranamaootat 200ang	11,4% Essigsäure

Tabelle 10: Für die Extraktion von gDNA aus A. nidulans verwendete Puffer

Präparation von Plasmid-DNA

Plasmid-DNA aus *E. coli* wurde mit dem Kit *NucleoSpin® Plasmid EasyPure* von Macherey-Nagel präpariert. Die Präparation wurde gemäß den Anweisungen des Herstellers durchgeführt. Die DNA wurde in 50 µL ddH₂O eluiert.

Agarose-Gelelektrophorese und Reinigung von DNA-Fragmenten

Die Agarose-Gelelektrophorese wurde in 0,5 x TAE-Puffer durchgeführt (Tabelle 11). Die Gele wurden durch Auflösen von 1 % (w/v) Agarose in TAE-Puffer hergestellt. Zur weiteren Visualisierung der DNA-Banden wurde der flüssigen Agarose-Lösung 0,002 % (v/v) Midori Green Advance (NIPPON Genetics EUROPE GmbH) zugesetzt. Die Gele wurden bei 100 V für eine angemessene Zeit elektrophoretisch separiert. Die Visualisierung und Dokumentation erfolgte mit einem FastGene® FAS-V *Imaging System* (NIPPON Genetics EUROPE GmbH). Es wurde ein 1kb DNA-Größenstandard (NEB) verwendet.

Lösung	Zusammensetzung
50x TAE-Puffer	40 mM Tris-Acetate
	1 mM EDTA
	0,25% (w/v) Bromphenolblau
6x DNA Loading Dye	0,25% (w/v) Xylencyanol FF
	15% (w/v) Ficoll® 400

Tabelle 11: Für die Agarose-Gelelektrophorese Verwendeten Lösungen

PCR-Fragmente oder Restriktionsansätze wurden durch Agarose-Gelelektrophorese gereinigt. Die Elution der DNA aus dem Agarosegel wurde mit dem *FastGene Gel/PCR Extraction* Kit (NIPPON Genetics EUROPE GmbH) durchgeführt. Die DNA wurde in 25 µl ddH₂O eluiert.

Bestimmung der Nukleinsäurekonzentration

Die DNA-Konzentrationen wurden durch Messung der Absorption bei 260 nm mit dem NanoDrop[™] 1000 Spektrophotometer bestimmt. Die Reinheit wurde durch Berechnung der Verhältnisse A₂₆₀/A₂₃₀ und A₂₆₀/A₂₃₀ bewertet.

Sequenzierung

Alle Sequenzierungsreaktionen wurden von Eurofins Genomics (Deutschland) durchgeführt. Die Proben wurden gemäß den Anweisungen des Herstellers vorbereitet.

Transformation chemisch kompetenter E. coli Zellen

Chemisch kompetente *E. coli* wurden mit der zu transformierenden DNA vermengt und 2 Minuten auf Eis inkubiert. Der Hitzeschock erfolgte bei 42°C für 60 Sekunden, gefolgt von einer 2-minütigen Inkubation auf Eis. Die Zellen wurden in 500 µl SOC-Medium (Tabelle 6) bei 37°C und 180 rpm für 60 Minuten inkubiert. 100 µl des Transformationsansatzes wurden auf LB-Nährboden mit entsprechenden Antibiotika ausgebracht und über Nacht bei 37°C inkubiert.

Protoplastierung von A. nidulans

Zur Herstellung von Protoplasten von *A. nidulans* wurden 300 ml Minimalmedium mit den entsprechenden Ergänzungen mit Sporen des jeweiligen Stammes inokuliert und über Nacht bei 30°C und 180 rpm inkubiert. Das Myzel wurde durch Filtration vom Medium getrennt und mit Lösung I gewaschen (Tabelle 12). 1 g das gewaschenen Myzels wurden in 5 ml Lösung II (Tabelle 12) suspendiert, 180 mg Glucanex (VinoTaste® Pro, Novozymes, Bagsværd, Dänemark) in 1 ml ddH₂O gelöst zugegeben und 5 Minuten auf Eis inkubiert. Anschließend wurden 10 mg Rinderalbumin (BSA) zugegeben und 1,5 h bei 30°C und 70 rpm inkubiert. Der erfolgreiche Verdau der Zellwand wurde unter dem Lichtmikroskop überprüft.

Die Protoplastensuspension wurde mit 10 ml Lösung III (Tabelle 12) überschichtet und für 18 min bei 5000 rpm und 4°C zentrifugiert. Die Interphase wurde entnommen und mit 10 ml Lösung IV (Tabelle 12) vermengt. Es folgte eine erneute Zentrifugation für 18 min bei 5000 rpm und 4°C. Der Überstand wurde verworfen und die Protoplasten in einem möglichst geringen Volumen Lösung IV resuspendiert.

Lösung	Zusammensetzung
Lösung I	0,6 M MgSO ₄
	0,2 M NaH ₂ PO ₄ , pH 5,5
Lösung II	0,2 M Na ₂ HPO ₄
	1,2 M MgSO ₄
l ösung III	0,1 M Tris, pH 7,0
	0,6 M Sorbitol
	10 mM Tris, pH 7,5
Lösung IV	10 mM CaCl ₂
	1,2 M Sorbitol

Tabelle 12: Zur Herstellung von Protoplasten von A. nidulans verwendete Lösungen

Transformation von A. nidulans

Etwa 10 µg DNA (maximal 10 µl) wurden mit Lösung IV (Tabelle 12) zu einem Endvolumen von 50 µl vermengt. Nach der Zugabe von 50 µl Lösung V (Tabelle 13) wurden 200 µl der Protoplastensuspension (siehe "Protoplastierung von *A. nidulans*") mit dem Ansatz vermengt und für 20 Minuten auf Eis inkubiert.

Nach der Zugabe von 1 ml Lösung V wurde der Ansatz 5 Minuten bei Raumtemperatur inkubiert und 4 ml Lösung IV hinzugefügt. Der Reaktionsanstz wurde mit MMR-Top (Tabelle 6) auf ein Volumen von 30 ml aufgefüllt und gleichmäßig auf drei MMR-Nährböden (Tabelle 6) verteilt. Die Inkubation erfolgte über Nacht bei 28°C, gefolgt von 37°C bis die Kolonien ein für die Isolation geeignetes Stadium erreicht hatten.

Lösung	Zusammensetzung
Lösung V	10 mM Tris, pH 7,5
	10 mM CaCl ₂
	60% PEG4000

Tabelle 13: Zur Transformation von A. nidulans verwendete Lösung

Isolation von RNA und RT-qPCR

Die Oberfläche von 10 ml ergänztem Minimalmedium wurden mit frischen Sporen (3x10⁸ Sporen) beimpft und für 20 Stunden im Dunkeln bei 37°C in Petrischalen (60x15 mm) inkubiert. Die lichtabhängige Geninduktion wurde untersucht, indem die Proben entweder im Dunkeln gehalten (Dunkelkontrolle) oder für 15 Minuten mit rotem Licht (700 nm. 2 umol Photonen/m²s) bestrahlt. Für Untersuchung der temperaturabhängigen Geninduktion wurden die Myzelien in vorgewärmtes Minimalmedium bei 28°C beziehungsweise 42°C überführt. Die Proben wurden für 8 Minuten inkubiert. Nach der Behandlung wurden die Myzelien unter grünem Sicherheitslicht vom Medium getrennt, getrocknet und in flüssigem Stickstoff gefroren. Die gefrorenen Myzelien wurden in flüssigem Stickstoff in einem Mörser zerkleinert und die RNA mit Hilfe des "E.Z.N.A.® Fungal RNA Mini Kit" (Omega Bio-tek Inc.) nach Herstellerangaben extrahiert. Die Proben wurden mit DNase behandelt (TURBO DNAfree Kit, Invitrogen, Thermo Fisher Scientific). Die Genexpression wurde mittels quantitativer PCR mit reverser Transkriptase (SensiFAST™ SYBR® No-ROX One-Step Kit, Bioline) analysiert. Die Expressionswerte wurden zu denen von h2b normalisiert. Die verwendeten Primer sind Tabelle 8 zu entnehmen.
Isolation von RNA und RNA-Sequenzierung (RNAseq)

Sporen von *A. nidulans* (3x10⁶) wurden auf der Oberfläche von 10 ml Miminalmedium mit Uridin/Uracil und Pyridoxin in einer Petrischale (60x15 mm) bei 37°C für 20 h inkubiert. Die Proben wurden entweder mit weißem Licht (2 µmol Photonen/m²s) für 15 Minuten bestrahlt, oder bis zu Isolation des Myzels im Dunkeln gehalten.

Das Myzel wurde entnommen und zwischen Papiertüchern getrocknet bevor es in flüssigem Stickstoff gefroren wurde und in einem Mörser zermahlen. Das zermahlene Myzel wurde in ein 15 ml Zentrifugenröhrchen überführt und pro 50-100 mg Myzel 1 ml TRI-Reagenz® (Sigma-Aldrich) hinzugegeben und vollständig durchmischt. Der Suspension wurde ein Volumen entsprechend 20 mg Myzel entnommen und mit TRI-Reagenz® auf ein Volumen von 1 ml verdünnt. Der Ansatz wurde für 5 Minuten bei Raumtemperatur inkubiert und mit 200 µl Chloroform gemischt. Nach 3-minütiger Inkubation bei Raumtemperatur wurde die Probe für 15 Minuten bei 13000 rpm und 4°C zentrifugiert. 400 µl der wässrigen Phase wurden mit 500 µl Isopropanol vermengt und für 20 Minuten bei 4°C inkubiert und für 10 Minuten bei 13000 rpm und 4°C zentrifugiert. Der Überstand wurde verworfen und die pelletierte RNA in 1 ml Ethanol (70%) resuspendiert und durch 5-minütige Zentrifugation bei 13000 rpm und 4°C erneut pelletiert. Das RNA-Pellet wurde bei Raumtemperatur getrocknet und in 50 µl RNase-freiem Wasser aufgenommen.

Abschließend wurde ein DNase Verdau mit dem *TURBO DNA-free* Kit (Invitrogen, Thermo Fisher Scientific) nach Herstellerangaben durchgeführt.

Die Qualität der präparierten RNA wurde mit Hilfe des Agilent 2100 *Bioanalyzer* (Agilent RNA 6000 Nano Kit) überprüft. Die Reinheit der Proben wurde mit Hilfe des NanoDrop™ überprüft. Für die Konstruktion der mRNA-Bibliothek, wurden pro Stamm und Bedingung je drei Replikate zu gleichen Teilen vereinigt.

Die mRNA-Bibliothek wurde von BGI Genomics Co., Ltd. (Shenzhen, China) erstellt. Die mRNA wurde mit Hilfe von oligo(dT)-*beads* angereichert, fragmentiert und revers-transkribiert. Die doppelsträngige cDNA wurde mit zufälligen Hexanukleotiden (*random N6 primer*) synthetisiert. Die synthetisierte cDNA wurde einer *end-repair* unterzogen, 3'-adenyliert und mit Adaptern ligiert. PCR-Amplifikation wurde genutzt, um die cDNA-Matrizen weiter anzureichern. Die PCR-Produkte wurden denaturiert und mittels Splint-Ligation zyklisiert. Für die Sequenzierung wurde die *DNBSEQ* Plattform und die DNA-*nanoball* Technologie genutzt.

Nachdem die auf rRNAs gemappten reads entfernt wurden, wurden die Rohdaten mit der BGI-internen Software SOAPnuke (Version v1.5.6, https://github.com/BGI-flexlab/SOAPnuke) von reads mit Adaptern, reads mit unbekannten Basen (>0,1%) und reads von schlechter Qualität gefiltert. Die gefilterten reads wurden auf das Referenzgenom von A. nidulans FGSC A4 (NCBI RefSeg Assembly GCF 000011425.1) mit Hilfe der Software HISAT2 (Version v2.0.4, http://www.ccb.jhu.edu/software/hisat). Die Genexpressionsniveaus wurden mit dem Softwarepaket RSEM (Version v1.3.3) und Bowtie2 (Version v2.2.5, http://bowtiebio.sourceforge.net/Bowtie2/index.shtml) kalkuliert. Differentially expressed genes wurden mit dem *PossionDis* Algorithmus (*Fold Change* \geq 2,00 und *FDR* \leq 0,001), basierend auf der Possion-Verteilung, ermittelt. Hierarchische Clusteranalyse wurde mit der Funktion pheatmap in R durchgeführt. DEGs wurden gemäß KEGG klassifiziert. Funktionale Gen-Ontologie sowie KEGG pathway Analyse wurde mit der Funktion *phyper* in *R* vorgenommen. Potenzielle Protein-Protein-Interaktionen (PPI) wurden mit dem Programm DIAMOND (Version v0.8.31) und der STRING-Datenbank (Version v10) ermittelt. Pathogen-Wirt-Interaktionen wurden mit Hilfe von BLAST+ (Version v2.5.9; https://blast.ncbi.nlm.nih.gov/) oder DIAMOND (Version v0.8.31, https://github.com/bbuchfink/diamond) und der PHI-base Datenbank untersucht. Heatmaps wurden mit der Funktion ggplot2 in R erstellt.

Mikroskopie und Bimolekulare Fluoreszenzkomplementation (BiFC)

Zur Markierung von Proteinen mit GFP wurde das GFP-Fusionsplasmid pMCB17apx verwendet. Für die Fusion von Proteinen mit entweder der N-terminalen oder der C-terminalen Hälfte von YFP wurde ebenfalls das Plasmid pMCB17apx verwendet. Die für GFP kodierende Sequenz wurde durch den entsprechenden Teil der für YFP kodierenden Sequenz ersetzt.

Konidien der entsprechenden Stämme wurden in 0,5 ml Mikroskopie-Medium (Tabelle 6) auf der Oberfläche von Deckgläsern suspendiert und 20 h bei 26°C im Dunkeln inkubiert. Die Proben wurden entweder mit weißem Licht (5 µmol Photonen/m^{2s}) für 5 Minuten bestrahlt oder im Dunkeln gehalten. Anschließend wurden die Proben für 15 Minuten in Fixierlösung (Tabelle 14) fixiert und mit 0,5 ml PBS (Tabelle 19) gewaschen. Alle Arbeiten fanden in grünem Sicherheitslicht statt. Die Aufnahmen erfolgten an einem Zeiss Axio Imager Z1 Fluoreszenzmikroskop.

Fixierlösung	PIPES 50 mM
	EGTA 25 mM
	MgSO ₄ 5 mM
	5% DMSO
	4% <i>p</i> -Formaldehyd

Tabelle 14: Zusammensetzung der für die Mikroskopie verwendeten Fixierlösung

G. mellonella Infektionsmodell

G. mellonella Larven wurden für 12h bei 37°C inkubiert. Je 20 Larven mit einem Gewicht von ca. 0,3 g wurden mit Sporen des jeweiligen Stammes infiziert. Die Infektion wurde mit je 10 µl mit 10⁸ Sporen in PBS des entsprechenden Stammes, durch die Injektion in die vorletzten Bauchfüße der Larven gewährleistet. Das Experiment wurde von Yinyan Ma (*Nanjing Normal University*) durchgeführt.

4.5 Biochemische Methoden

Heterologe Expression von *A. fumigatus* FphA und FphB sowie FphA aus *A. nidulans* in *E. coli*

Für die heterologe Expression von FphA (NPGP) und FphB aus *A. fumigatus* sowie FphA aus *A. nidulans* und dessen Derivate wurden für die *codon usage* von *E. coli* K12 optimierte synthetische Versionen der Gene verwendet (Bio Basic Inc., Kanada). Als Expressionssystem diente der Vektor pASK-iba3 (IBA, Göttingen). Die Gene standen hierbei unter der Kontrolle eines durch Anhydrotetracyclin-induzierbaren Promotors und wurden C-terminal mit Strep-tag®II markiert.

Die Produktion der Proteine erfolgte in *E. coli* BL21 (DE3) (New England Biolabs, USA). Hierfür wurden chemisch kompetente Zellen mit dem jeweiligen Phytochrom-Expressionsplasmid (pKL09 oder pKL10, Tabelle 7) zusammen mit dem Plasmid pACYC-bphO (Tabelle 7) transformiert (siehe "Transformation chemisch kompetenter *E. coli* Zellen"). Eine Vorkultur aus 50-100 ml LB mit Ampicillin und Chloramphenicol (Tabelle 6) wurde bei 37°C und 180 rpm über Nacht inkubiert.

Abhängig von der erforderten Proteinmenge, wurden die Zellen in der entsprechenden Anzahl an Ansätzen in je 500 ml LB-Medium mit Ampicillin und Chloramphenicol sowie Sorbitol und Betain (Tabelle 6) bei 37°C und 180 rpm inkubiert. Bei Erreichen einer OD_{600} von 0,6 wurde zu den Ansätzen je 250 µM IPTG zugegeben um die Expression der Hämoxygenase BphO aus *P. aeruginosa* zu induzieren. Die Kulturen wurden für eine weitere Stunde bei 37°C und 180 rpm inkubiert. Anschließend wurden die Kulturen im Falle von FphA-NPGP und FphB aus *A. fumigatus* auf 20°C, im Falle von FphA aus *A. nidulans* auf 15°C gekühlt und die Expression des jeweiligen Phytochroms durch die Zugabe von je 0,2 µg/ml Anhydrotetracyclin induziert. Die Inkubation erfolgte über Nacht bei 180 rpm im Dunkeln.

Die Zellen wurden durch 10-minütiges Zentrifugieren bei 9000 rpm pelletiert. Verbleibendes Medium und andere Verunreinigungen wurden durch Resuspendieren des Pellets in 100 ml Puffer A (Tabelle 15) und erneutes Zentrifugieren für 10 Minuten bei 9000 rpm und 4°C entfernt. Zur Herstellung des Lysats wurde das Pellet pro 1 l Expressionskultur in 20 ml Puffer А resuspendiert, der zusätzlich Phenylmethylsulfonylfluorid (PMSF, 1 mM), Dithiothreitol (DTT, 2 mM), enthielt. Die Zellen wurden mit einem Hochdruckhomogenisator (Tabelle 4) bei 1200 bar aufgeschlossen und anschließend für 30 Minuten bei 18000 rpm und 4°C zentrifugiert. Der Überstand wurde dekantiert und mit 40 µg/ml Avidin (IBA Lifesciences, Göttingen) für 15 Minuten auf Eis inkubiert und anschließend filtriert.

Die Anreicherung der mit Strep-tag®II markierten Proteine erfolgte über FPLC (Tabelle 4) mit Hilfe einer StrepTrap[™] XT (5 ml) Chromatographiesäule nach Herstellerangaben. Die Elution erfolgte mit 100 mM Biotin in Puffer E bei einer Flussgeschwindigkeit von 2 ml/min. Der Probe wurde Tris(2-carboxyethyl)phosphin (TCEP, 2mM) zugegeben und bei 4°C beziehungsweise -80°C bis zur weiteren Verwendung gelagert. Alle Arbeiten fanden unter grünem Sicherheitslicht statt.

Für die Präparation der Proben zur Analyse mittel Kryo-EM, wurde der Bioreaktor BioFlo®/CelliGen® 115 (Eppendorf SE, Hamburg) mit einem Kulturvolumen von 5 I verwendet. Die Kultivierung, Expression und Reinigung erfolgten wie oben beschrieben.

Puffer	Zusammensetzung	
Puffer A	50 mM Tris, pH 7,8	
	300 mM NaCl	
	10% Glycerol	
	0,05% Tween20	
Puffer E	Puffer A	
	100 mM Biotin	

Tabelle 15: Für die heterologe Expression und Reinigung der verschiedenen Phytochrome und deren Varianten verwendete Puffer

Heterologe Expression von YpdA aus A. nidulans in E. coli

Für die heterologe Expression von YpdA aus *A. nidulans* in *E. coli* wurde eine für die *codon usage* von *E. coli* K12 optimierte synthetische Version der kodierenden Sequenz verwendet (*ypdAs*, Sangon Biotech, Shanghai, China). Für die Kontrolle der Expression wurde das Plasmid pET28a verwendet (Tabelle 7). Hierbei wurde *ypdAs* N-terminal mit 6x His markiert und unter der Kontrolle des T7 *lac* Promotors exprimiert.

Das Expressionsprotokoll basierte auf Azuma *et al.*, 2007. Hierfür wurden chemisch kompetente *E. coli* BL21 (DE3) (Tabelle 5) mit dem Expressionsplasmid pKL750 transformiert (siehe "Transformation chemisch kompetenter *E. coli* Zellen") und anschließend eine Vorkultur aus 50 ml LB-Medium mit Kanamycin (Tabelle 6) bei 37°C und 180 rpm über Nacht inkubiert. 2x 500 ml LB-Medium mit Kanamycin wurden mit der Vorkultur zu einer OD₆₀₀ von 0,05 inokuliert und bei 37°C und 180 rpm inkubiert. Bei Erreichen einer OD₆₀₀ von 0,5 wurden die Kulturen bis auf 15°C gekühlt und die Expression mit je 1 mM IPTG induziert. Die Inkubation erfolgte über Nach bei 15°C und 180 rpm.

Die Zellen wurden durch Zentrifugation bei 9000 rpm und 4°C für 10 Minuten vom Medium getrennt. Durch Resuspendieren in 50 ml Puffer S (Tabelle 16) und erneute Zentrifugation bei 9000 rpm und 4°C für 10 Minuten wurden Medienreste und Verunreinigungen entfernt. Die Zellen wurden in 20 ml Puffer S mit 1 mM PMSF und 1 mM DTT aufgenommen und mit Hilfe eines Hochdruckhomogenisators (Tabelle 4) aufgeschlossen. Das Lysat wurde durch Zentrifugation bei 18000 rpm und 4°C geklärt.

Mit 6xHis markiertes YpdA wurde mittels FPLC (Tabelle 4) und einer HisTrap™ HP Chromatographiesäule nach Herstellerangaben isoliert. Die Elution erfolgte in Puffer S mit 250 mM Imidazol und 1 mM DTT.

Tabelle 16: Für die Präparation von YpdA verwendeter Puffer S

50 mM Tris-HCl, pH 7,5

Puffer S

50 mM NaCl 1 mM Ethylendiamintetraessigsäure (EDTA)

Präparation von mit ArcB angereicherter Membranfraktion aus E. coli

Die Präparation mit ArcB angereicherter Zytoplasmamembran aus *E. coli* wurde nach Azuma *et al.*, 2007 durchgeführt.

Hierfür wurde der ArcB überexprimierende Stamm DAC903/pIA001-ArcB sowie der Stamm DAC903/pINIII als negativ Kontrolle in 50 ml LB (Tabelle 6) mit Ampicillin (50 µg/ml) bei 37°C und 180 rpm über Nacht inkubiert. Für die Kultivierung des ArcB überexprimierenden Stamms DAC903/pIA001-ArcB wurden 2 l LB mit Ampicillin (50 µg/ml) mit der Vorkultur zu einer OD₆₀₀ = 0,05 beimpft. Für die Kultivierung der negativ Kontrolle DAC903/pINIII wurden 500 ml LB mit Ampicillin (50 µg/ml) mit der entsprechenden Vorkultur zu einer OD₆₀₀ = 0,05 inokuliert. Die Kulturen wurden bis zu einer OD₆₀₀ = 0,5 kultiviert. Die Expression wurde durch die Zugabe von 1 mM IPTG induziert und die Kultur für weitere 2 h bei 37°C und 180 rpm inkubiert.

Das Medium wurde mittels Zentrifugation für 10 Minuten bei 9000 rpm und 4°C abgetrennt. Die Zellen wurden in Puffer S (Tabelle 16) resuspendiert und erneut für 10 Minuten bei 9000 rpm und 4°C zentrifugiert. Die Zellen wurden in 35,4 ml dH₂O (negativ Kontrolle in 8,85 ml dH₂O) resuspendiert. Der Suspension wurden 20 ml einer 18 ml 2 M 0.1 M Tris-Acetat-Puffers (pH 7.8). Saccharose. 3.4 ml Ethylendiamintetraessigsäure (EDTA, 1%) und 3,4 ml einer Lysozymlösung (5 mg/ml in 10 mM Tris, pH 8,0) zugegeben. Die Negativ Kontrolle wurde entsprechend in 8,85 ml dH₂O resuspendiert und 5 ml Tris-Acetat-Puffer (pH 7,8), 4,5 ml Saccharose (2 M), 0,85 ml EDTA (1%) und 0,85 ml Lysozymlösung (5 mg/ml in 10 mM Tris, pH 8,0) zugegeben. Die Ansätze wurden 30 Minuten auf Eis inkubiert.

Zu den Ansätzen wurde je 1 mg DNase gegeben und die Sphäroplasten im Hochdruckhomogenisator (EmulsiFlex-C3, Avestin, Inc., Canada) aufgeschlossen. Das Lysat wurde für 15 Minuten bei 11400 x g (Änderung, nach Azuma *et al.*, 2007 Zentrifugation bei 8000 x g) und 4°C zentrifugiert. Der Überstand wurde entnommen und für 2 h bei 4°C, 150000 x g unter Vakuum zentrifugiert. Der Überstand wurde verworfen und das Pellet in 2 ml TDG-Puffer (Tabelle 17) resuspendiert und erneut bei 150000 x g und 4°C unter Vakuum für 30 Minuten zentrifugiert. Der Überstand wurde erneut verworfen und das Pellet in A10G-Puffer (Tabelle 17) mit Urea (740 mg/ml) resuspendiert. Nach erneuter Zentrifugation bei 150000 x g und 4°C für 30 Minuten unter Vakuum und Verwerfen des Überstandes wurde das Pellet in 2 ml TDG-Puffer aufgenommen, erneut unter den oben beschriebenen Bedingungen zentrifugiert und in einem möglichst kleinen Volumen TDG-Puffer resuspendiert. Die isolierte mit ArcB angereicherte Zytoplasmamembran wurde bis zur Verwendung bei -80°C gelagert.

Lösung	Zusammensetzung		
	50 mM Tris-HCl, pH 7,8		
TDG-Puffer	10% Glycerin		
	2 mM DTT		
A10G-Puffer	50 mM Tris-HCl, pH 7,8		
	250 mM Saccharose		
	10% Glycerin		
	1 mM DTT		

Tabelle 17: Für die Präparation von mit ArcB angereicherter Zytoplasmamembran aus *E. coli*

SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) und Zink-induzierte rote Fluoreszenz

Die Analyse der gereinigten Proteine erfolgte durch SDS-PAGE unter Verwendung von 5% Sammel- und 10% beziehungsweise 7,5% Trenngelen nach Laemmli, 1970. Die Proben wurden mit 5x SDS-Probenpuffer (Tabelle 18) verdünnt und vor dem Auftragen 5 Minuten bei 95°C erhitzt. *PageRuler™ Prestained Protein Ladder* (10-180 kDa, Thermo Scientific[™]) wurde als Referenz verwendet. Die Auftrennung erfolgte für 15 Minuten bei 80 V gefolgt von 120 V bis die Lauffront das untere Ende des Gels erreicht hat in Tris-Glycin-Puffer (Tabelle 18). Die Proteine wurden mit *Roti*®-*Blue quick* (Roth) gemäß den Anweisungen des Herstellers oder mittels Coomassie® Brillant Blau R250 (SERVA Electrophoresis GmbH, Deutschland) visualisiert. Hierfür wurden die Gele für 45 Minuten in Coomassie-Färbelösung (Tabelle 18) schüttelnd bei Raumtemperatur inkubiert. Anschließend erfolgte die Inkubation in Coomassie Entfärbelösung (Tabelle 18).

Zum Nachweis der Bindung eines linearen Tetrapyrrols wurde dem Tris-Glycin-Puffer sowie dem Sammel- und Trenngel 1 mM Zinkacetat zugegeben. Die Visualisierung erfolgte unter UV-Licht.

Lösung/Puffer	Zusammensetzung		
	25 mM Tris		
Tris-Glycin-Puffer	192 mM Glycin		
	0,1% (w/v) SDS		
	250 mM Tris-HCl, pH 6,8		
	10% SDS (w/v)		
5x SDS-Probenpuffer	30% (v/v) Glycerin		
	0,05% (w/v) Bromophenolblau		
	10 mM DTT		
	3,4 ml ddH ₂ O		
	0,83 ml Acrylamid-Mix (30%)		
Sammalaal (5%)	0,63 ml Tris (0,5 M), pH 6,8		
Sammeiger (376)	50 μl SDS (10%)		
	50 μΙ APS (10%)		
	7 μl TEMED		
	4,825 ml ddH ₂ O		
	2,475 ml Acrylamid-Mix (30%)		
Trenngel (7.5%)	2,5 ml Tris (1,5 M), pH 8,8		
	100 μl SDS (10%)		
	100 μl APS (10%)		
	10 μI TEMED		
	4 ml ddH ₂ O		
	3,3 ml Acrylamid-Mix (30%)		
Trenngel (10%)	2,5 ml Tris (1,5 M), pH 8,8		
Treninger (1078)	100 μl SDS (10%)		
	100 μl APS (10%)		
	10 μl TEMED		
Trenngel (12.5%)	3,175 ml ddH₂O		
	4,125 ml Acrylamid-Mix (30%)		
	•		

Tabelle 18: Puffer und Lösungen für die SDS-PAGE und Zink-induzierte rote Fluoreszenz

	2,5 ml Tris (1,5 M), pH 8,8
	100 μl SDS (10%)
	100 μI APS (10%)
	10 µI TEMED
	Brilliant Blau R 250 0,1% (w/v)
Coomassie Färbelösung	ddH ₂ O 45% (v/v)
	Methanol 45% (v/v)
	Essigsäure 10% (v/v)
	ddH ₂ O 50% (v/v)
Coomassie Entfärbelösung	Methanol 40% (v/v)
	Essigsäure 10% (v/v)

Bestimmung der Proteinkonzentration

Die Gesamtproteinkonzentration wurde mit dem Qubit[™] Protein Broad Range (BR) Assay-Kit und dem Qubit[™] Fluorometer (Thermo Fisher Scientific, USA) gemäß den Anweisungen des Herstellers bestimmt.

Western Blot

Die Identität der gereinigten Proteine wurde durch Immunodetektion (Western Blot) überprüft. Im Anschluss an die SDS-PAGE wurden die Proteine mit dem Tank-Blot-System Mini Trans-Blot® (Bio-Rad, München) auf eine Nitrocellulosemembran übertragen. Der Transfer erfolgte bei 100 V für 2 Stunden bei 4°Cin Towbin Puffer (Tabelle 19). Die Membran wurde durch Inkubation mit PBS-*Blocking* Puffer (Tabelle 19) für 1 Stunde rotierend bei Raumtemperatur blockiert. Die blockierte Membran wurde dreimal mit 20 mL PBS-T-Puffer (Tabelle 19) gewaschen. Die jeweiligen primären Antikörper wurden entsprechend den Herstellerangaben in 10 ml PBS-T mit 1% BSA verdünnt und zusammen mit der Membran über Nacht bei 4°C rotierend inkubiert. Die Membran wurde dreimal mit PBS-T gewaschen und mit dem entsprechenden sekundären Antikörper, verdünnt nach Herstellerangaben in PBS-T mit 1% BSA, für 1 Stunde bei Raumtemperatur rotierend inkubiert.

Zur Visualisierung der immobilisierten Proteine wurde die Membran mit 1 ml Luminollösung (Tabelle 19), 100 μ l *p*-Coumarinsäure (Tabelle 19) und 0,5 μ l H₂O₂ (30%) für 2 Minuten inkubiert.

Puffer/Lösung	Zusammensetzung		
	25 mM TRIS		
Towhip Duffor	192 mM Glycin		
	0,1% SDS (w/v)		
	20% Methanol (v/v)		
	4 mM KH ₂ PO ₄ , pH 7.4		
PBS	16 mM Na ₂ HPO ₄		
	115 mM NaCl		
	PBS		
	0,1% Tween 20 (v/v)		
	PBS		
PBS- <i>Blocking</i> Puffer	3% Rinderserumalbumin (BSA)		
	(w/v)		
	0,05% Tween 20 (v/v)		
	0,1 M Tris-HCI		
Laminonooung	2,1 mM Luminol Natriumsalz		
<i>p</i> -Coumarinsäurelösung	DMSO		
pecamamodarologung	6,7 mM <i>p</i> -Hydroxycoumarinsäure		

Tabelle 19: Puffer und Lösungen für Western Blot und Immundetektion

Co-Immunopräzipitation

Für die Co-Immunopräzipitation von mit 3xHA markiertem FphA und mit GFP markiertem FphB aus *A. fumigatus* wurden die Stämme SKL25 (HA-FphA und GFP-FphB), SKL26 (HA-FphA) und SKL17 (GFP-FphB) in je 300 ml Minimalmedium (Tabelle 6; 2% Threonin, 0,2% Glukose, Uridin/Uracil und Pyridoxin) bei 37°C und 180 rpm über Nacht inkubiert. Das Medium wurde durch Filtration abgetrennt und das Myzel mit PBS (Tabelle 19) gewaschen. Das Myzel wurde zwischen Papiertüchern getrocknet und in flüssigem Stickstoff mit Hilfe eines Mörsers zerkleinert. Das zerkleinerte Myzel wurde in 3 ml Protein-Extraktionspuffer suspendiert und für

45 Minuten auf Eis inkubiert. Das Myzel wurde durch zweimalige Zentrifugation für 15 Minuten bei 13000 rpm und 4°C abgetrennt. Die Proteinkonzentration des Überstandes wurde gemäß Kapitel "Bestimmung der Proteinkonzentration" bestimmt.

Für die Immunopräzipitation der präparierten Proben wurden je 80 µl einer mit αHA-Antikörper konjugierten Agaroseperlen (50% Suspension) 3-mal mit je 500 µl Protein-Extraktionspuffer gewaschen (Zentrifugation bei 5000 rpm und 4°C für 30 Sekunden). Es wurden je 12 mg Gesamtprotein der einzelnen Proben mit den gewaschen Agaroseperlen vermengt und für 3 h bei 4°C auf einer drehenden Vorrichtung inkubiert.

Im Anschluss wurden die Agaroseperlen durch Zentrifugation bei 5000 rpm und 4°C für 30 Sekunden abgetrennt und wie bereits beschrieben 5-mal gewaschen. Es wurden je 40 µl 2x SDS-Probenpuffer zugegeben und die Proben für 5 Minuten bei 95°C erhitzt. Es folgte eine SDS-PAGE gemäß Kapitel ..SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) und Zink-induzierte rote Fluoreszenz" in doppelter Ausführung. Verwendet wurden zwei 1,5 mm dicke Polyacrylamidgele (7,5% Trenngel und 5% Sammelgel). Die Western Blot Analyse wurde gemäß Kapitel "Western Blot" durchgeführt.

Protein-Extraktionspuffer	100 mM Tris-HCl, pH 8,0		
	150 mM NaCl		
	0,05% Tween20		
	1 mM PMSF		
	Pierce [™] Protease Inhibitor Tablets		
	(Thermo Fisher Scientific)		

Tabelle	20: Für	die Co-	-Immunopr	azipitation	verwendeter	Puffer
rasene			anopi	ampreation	101110110101	

Größenausschlusschromatographie (SEC)

Größenausschlusschromatographie (<u>size exclusion chromatography</u>, SEC) wurde zum einen angewandt, um zuvor über Affinitätschromatographie isolierte Proteine weiter zu reinigen, zum anderen um Änderungen der Proteinkonformation zu untersuchen. Verwendet wurde entweder die Superdex[™] 200 Increase 10/300 GL oder HiLoad[™] 16/600 Superdex[™] 200 pg Chromatographiesäule, betrieben mit dem Chromatographie System ÄKTApure[™] von Cytiva (Marlborough, USA). Die Chromatographiesäulen wurden gemäß den Vorgaben des Herstellers betrieben. Trennung mit Superdex[™] 200 Increase 10/300 GL wurden bei einer Flussrate von 0,05 ml/min vorgenommen. HiLoad[™] 16/600 Superdex[™] 200 pg wurde bei einer Flussrate von 0,126 ml/min betrieben.

Als Größenstandard wurde das Gelfiltrationsmarker-Kit (Sigma-Aldrich, Taufkirchen) verwendet.

UV/Vis Spektroskopie

Alle Spektren wurden mit einem JASCO V-750 Spektralphotometer generiert. Alle Experimente wurden in grünem Sicherheitslicht durchgeführt. Die Bestrahlung der Proben erfolgte manuell entweder mit speziellen Beleuchtungsvorrichtungen für rotes Licht (642 nm, 16 µmol Photonen/m²s) und dunkelrotes Licht (790 nm, 1831 µmol Photonen/m²s), oder mit Hilfe von Lichtboxen (450 nm, 700 nm und 760 nm; Intensität variabel).

Kryo-Elektronenmikroskopie

Für die Analyse von AnFphA-NPGP mittels Kryo-EM wurde die Probe erneut mittels SEC gereinigt (ÄKTApure micro, Superdex 200 Increase 3.2/300, 0,15 ml/min, 12,5 mM Tris pH 7,8). Die gereinigte Probe wurde auf einen *Cryo-Grid* aufgetragen und mittels Vitrobot geforen. Die Experimente wurden von Dr. Luisa Herder ((Charité – Universitätsmedizin Berlin).

5 Literaturverzeichnis

Abad, A., Fernandez-Molina, J. V., Bikandi, J., Ramirez, A., Margareto, J., Sendino, J., Hernando, F. L., Ponton, J., Garaizar, J., Rementeria, A. (2010). What makes *Aspergillus fumigatus* a successful pathogen? Genes and molecules involved in invasive aspergillosis. *Rev Iberoam Micol* **27**, 155-182.

Ahmad, M., Jarillo, J. A., Smirnova, O., Cashmore, A. R. (1998). The CRY1 blue light photoreceptor of *Arabidopsis* interacts with phytochrome A *in vitro*. *Mol Cell* **1**, 939-948.

Ahmed, Y. L., Gerke, J., Park, H. S., Bayram, O., Neumann, P., Ni, M., Dickmanns, A., Kim, S. C., Yu, J. H., Braus, G. H., Ficner, R. (2013). The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. *PLoS Biol* **11**, e1001750.

Alvarez, A. F., Barba-Ostria, C., Silva-Jimenez, H., Georgellis, D. (2016). Organization and mode of action of two component system signaling circuits from the various kingdoms of life. *Environ Microbiol* **18**, 3210-3226.

Atoui, A., Kastner, C., Larey, C. M., Thokala, R., Etxebeste, O., Espeso, E. A., Fischer, R., Calvo, A. M. (2010). Cross-talk between light and glucose regulation controls toxin production and morphogenesis in *Aspergillus nidulans*. *Fungal Genet Biol* **47**, 962-972.

Attwood, P. V., Piggott, M. J., Zu, X. L., Besant, P. G. (2007). Focus on phosphohistidine. *Amino Acids* 32, 145-156.

Attwood, P. V. (2013). Histidine kinases from bacteria to humans. *Biochem Soc Trans* 41, 1023-1028.

Avalos, J., Schrott, E. L. (1990). Photoinduction of carotenoid biosynthesis in *Gibberella fujikuroi. FEMS Microbiol Lett* 66, 295-298.

Azuma, N., Kanamaru, K., Matsushika, A., Yamashino, T., Mizuno, T., Kato, M., Kobayashi, T. (2007). In vitro analysis of His-Asp phosphorelays in *Aspergillus nidulans*: the first direct biochemical evidence for the existence of His-Asp phosphotransfer systems in filamentous fungi. *Biosci Biotechnol Biochem* **71**, 2493-2502.

Baker, C. L., Loros, J. J., Dunlap, J. C. (2012). The circadian clock of *Neurospora* crassa. *FEMS Microbiol Rev* **36**, 95-110.

Ballario, P., Vittorioso, P., Magrelli, A., Talora, C., Cabibbo, A., Macino, G. (1996). White collar-1, a central regulator of blue light responses in *Neurospora*, is a zinc finger protein. *EMBO J* **15**, 1650-1657.

Bayram, O., Biesemann, C., Krappmann, S., Galland, P., Braus, G. H. (2008a). More than a repair enzyme: *Aspergillus nidulans* photolyase-like CryA is a regulator of sexual development. *Mol Biol Cell* **19**, 3254-3262. Bayram, O., Krappmann, S., Ni, M., Bok, J. W., Helmstaedt, K., Valerius, O., Braus-Stromeyer, S., Kwon, N. J., Keller, N. P., Yu, J. H., Braus, G. H. (2008b). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. *Science* **320**, 1504-1506.

Bayram, O., Krappmann, S., Seiler, S., Vogt, N., Braus, G. H. (2008c). *Neurospora* crassa ve-1 affects asexual conidiation. *Fungal Genet Biol* **45**, 127-138.

Bayram, O., Braus, G. H. (2012). Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. *FEMS Microbiol Rev* **36**, 1-24.

Bayram, O. S., Dettmann, A., Karahoda, B., Moloney, N. M., Ormsby, T., McGowan, J., Cea-Sanchez, S., Miralles-Duran, A., Brancini, G. T. P., Luque, E. M., Fitzpatrick, D. A., Canovas, D., Corrochano, L. M., Doyle, S., Selker, E. U., Seiler, S., Bayram, O. (2019). Control of development, secondary metabolism and light-dependent carotenoid biosynthesis by the Velvet complex of *Neurospora crassa*. *Genetics* **212**, 691-710.

Bayram, O. S., Bayram, O. (2023). An anatomy of fungal eye: fungal photoreceptors and signalling mechanisms. *J Fungi (Basel)* **9**.

Bejarano, E. R., Avalos, J., Lipson, E. D., Cerda-Olmedo, E. (1991). Photoinduced accumulation of carotene in *Phycomyces*. *Planta* **183**, 1-9.

Bennett, J. W., Dunn, J. J., Goldsman, C. I. (1981). Influence of white light on production of aflatoxins and anthraquinones in *Aspergillus parasiticus*. *Appl Environ Microbiol* **41**, 488-491.

Bieszke, J. A., Braun, E. L., Bean, L. E., Kang, S., Natvig, D. O., Borkovich, K. A. (1999a). The *nop-1* gene of *Neurospora crassa* encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. *Proc Natl Acad Sci U S A* 96, 8034-8039.

Bieszke, J. A., Spudich, E. N., Scott, K. L., Borkovich, K. A., Spudich, J. L. (1999b). A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. *Biochemistry* **38**, 14138-14145.

Bieszke, J. A., Li, L., Borkovich, K. A. (2007). The fungal opsin gene *nop-1* is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in *Neurospora crassa*. *Curr Genet* **52**, 149-157.

Bjorling, A., Berntsson, O., Lehtivuori, H., Takala, H., Hughes, A. J., Panman, M., Hoernke, M., Niebling, S., Henry, L., Henning, R., Kosheleva, I., Chukharev, V., Tkachenko, N. V., Menzel, A., Newby, G., Khakhulin, D., Wulff, M., Ihalainen, J. A., Westenhoff, S. (2016). Structural photoactivation of a full-length bacterial phytochrome. *Sci Adv* 2, e1600920.

Bjornsson, I. P. (1959). Responses of certain fungi, particularly *Trichoderma* sp., to light. *J Wash Acad Sci* **49**, 317-323.

Blasco, J. L., Roeßink, D., Itturiaga, E. A., Eslava, A. P., Galland, P. (2001). Photocarotenogenesis in *Phycomyces*: expression of the carB gene encoding phytoene dehydrogenase. *J Plant Res* **114**, 25-31.

Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg-Dinkel, N., Fischer, R. (2005). The *Aspergillus nidulans* phytochrome FphA represses sexual development in red light. *Curr Biol* **15**, 1833-1838.

Bok, J. W., Balajee, S. A., Marr, K. A., Andes, D., Nielsen, K. F., Frisvad, J. C., Keller, N. P. (2005). LaeA, a regulator of morphogenetic fungal virulence factors. *Eukaryot Cell* **4**, 1574-1582.

Bourret, R. B., Kennedy, E. N., Foster, C. A., Sepulveda, V. E., Goldman, W. E. (2021). A radical reimagining of fungal two-component regulatory systems. *Trends Microbiol* **29**, 883-893.

Boyer, P. D., Deluca, M., Ebner, K. E., Hultquist, D. E., Peter, J. B. (1962). Identification of phosphohistidine in digests from a probable intermediate of oxidative phosphorylation. *J Biol Chem* **237**, PC3306-PC3308.

Brandt, S., von Stetten, D., Gunther, M., Hildebrandt, P., Frankenberg-Dinkel, N. (2008). The fungal phytochrome FphA from *Aspergillus nidulans*. *J Biol Chem* 283, 34605-34614.

Brenna, A., Grimaldi, B., Filetici, P., Ballario, P. (2012). Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in *Neurospora crassa*. *Mol Biol Cell* **23**, 3863-3872.

Brewster, J. L., Gustin, M. C. (2014). Hog1: 20 years of discovery and impact. *Sci Signal* **7**, re7.

Brych, A., Mascarenhas, J., Jaeger, E., Charkiewicz, E., Pokorny, R., Bolker, M., Doehlemann, G., Batschauer, A. (2016). White collar 1-induced photolyase expression contributes to UV-tolerance of *Ustilago maydis*. *Microbiologyopen* **5**, 224-243.

Butler, W. L., Norris, K. H., Siegelman, H. W., Hendricks, S. B. (1959). Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. *Proc Natl Acad Sci U S A* **45**, 1703-1708.

Calvo, A. M. (2008). The VeA regulatory system and its role in morphological and chemical development in fungi. *Fungal Genet Biol* **45**, 1053-1061.

Calvo, A. M., Lohmar, J. M., Ibarra, B., Satterlee, T. Velvet regulation of fungal development. In: Wendland, J. (editor). *Growth, Differentiation and Sexuality The Mycota*. Cham: Springer; 2016. pp. 475-497.

Catlett, N. L., Yoder, O. C., Turgeon, B. G. (2003). Whole-genome analysis of twocomponent signal transduction genes in fungal pathogens. *Eukaryot Cell* 2, 1151-1161.

Cea-Sanchez, S., Corrochano-Luque, M., Gutierrez, G., Glass, N. L., Canovas, D., Corrochano, L. M. (2022). Transcriptional regulation by the Velvet protein VE-1 during asexual development in the fungus *Neurospora crassa. mBio* **13**, e0150522. Chang, C., Kwok, S. F., Bleecker, A. B., Meyerowitz, E. M. (1993). *Arabidopsis* ethylene-response gene ETR1: similarity of product to two-component regulators. *Science* **262**, 539-544.

Chapeland-Leclerc, F., Dilmaghani, A., Ez-Zaki, L., Boisnard, S., Da Silva, B., Gaslonde, T., Poree, F. H., Ruprich-Robert, G. (2015). Systematic gene deletion and functional characterization of histidine kinase phosphorelay receptors (HKRs) in the human pathogenic fungus *Aspergillus fumigatus*. *Fungal Genet Biol* **84**, 1-11.

Chen, C. L., Kuo, H. C., Tung, S. Y., Hsu, P. W., Wang, C. L., Seibel, C., Schmoll, M., Chen, R. S., Wang, T. F. (2012). Blue light acts as a double-edged sword in regulating sexual development of *Hypocrea jecorina* (*Trichoderma reesei*). *PLoS One* 7, e44969.

Cheng, P., Yang, Y., Gardner, K. H., Liu, Y. (2002). PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of *Neurospora*. *Mol Cell Biol* **22**, 517-524.

Cheng, P., He, Q., Yang, Y., Wang, L., Liu, Y. (2003). Functional conservation of light, oxygen, or voltage domains in light sensing. *Proc Natl Acad Sci U S A* **100**, 5938-5943.

Cherry, J. R., Hondred, D., Walker, J. M., Vierstra, R. D. (1992). Phytochrome requires the 6-kDa N-terminal domain for full biological activity. *Proc Natl Acad Sci U S A* **89**, 5039-5043.

Chooi, Y. H., Fang, J., Liu, H., Filler, S. G., Wang, P., Tang, Y. (2013). Genome mining of a prenylated and immunosuppressive polyketide from pathogenic fungi. *Org Lett* **15**, 780-783.

Chun, C. D., Liu, O. W., Madhani, H. D. (2007). A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen *Cryptococcus neoformans*. *PLoS Pathog* **3**, e22.

Corrochano, L. M., Cerda-Olmedo, E. (1992). Sex, light and carotenes: the development of *Phycomyces*. *Trends Genet* **8**, 268-274.

Corrochano, L. M., Garre, V. (2010). Photobiology in the *Zygomycota*: multiple photoreceptor genes for complex responses to light. *Fungal Genet Biol* **47**, 893-899.

Crosson, S., Moffat, K. (2002). Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. *Plant Cell* **14**, 1067-1075.

da Silva Ferreira, M. E., Kress, M. R., Savoldi, M., Goldman, M. H., Hartl, A., Heinekamp, T., Brakhage, A. A., Goldman, G. H. (2006). The akuB^{KU80} mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in *Aspergillus fumigatus*. *Eukaryot Cell* **5**, 207-211.

Dagenais, T. R., Keller, N. P. (2009). Pathogenesis of *Aspergillus fumigatus* in invasive aspergillosis. *Clin Microbiol Rev* **22**, 447-465.

Dasgupta, A., Chen, C. H., Lee, C., Gladfelter, A. S., Dunlap, J. C., Loros, J. J. (2015). Biological significance of photoreceptor photocycle length: VIVID photocycle

governs the dynamic VIVID-White Collar Complex pool mediating photo-adaptation and response to changes in light intensity. *PLoS Genet* **11**, e1005215.

Davis, S. J., Vener, A. V., Vierstra, R. D. (1999). Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. *Science* **286**, 2517-2520.

de Menezes, G. C. A., Amorim, S. S., Goncalves, V. N., Godinho, V. M., Simoes, J. C., Rosa, C. A., Rosa, L. H. (2019). Diversity, distribution, and ecology of fungi in the seasonal snow of antarctica. *Microorganisms* **7**.

De Riso, V., Raniello, R., Maumus, F., Rogato, A., Bowler, C., Falciatore, A. (2009). Gene silencing in the marine diatom *Phaeodactylum tricornutum*. *Nucleic Acids Res* **37**, e96.

De Souza, C. P., Hashmi, S. B., Osmani, A. H., Andrews, P., Ringelberg, C. S., Dunlap, J. C., Osmani, S. A. (2013). Functional analysis of the *Aspergillus nidulans* kinome. *PLoS One* **8**, e58008.

Defosse, T. A., Sharma, A., Mondal, A. K., Duge de Bernonville, T., Latge, J. P., Calderone, R., Giglioli-Guivarc'h, N., Courdavault, V., Clastre, M., Papon, N. (2015). Hybrid histidine kinases in pathogenic fungi. *Mol Microbiol* **95**, 914-924.

Dhingra, S., Lind, A. L., Lin, H. C., Tang, Y., Rokas, A., Calvo, A. M. (2013). The fumagillin gene cluster, an example of hundreds of genes under *veA* control in *Aspergillus fumigatus*. *PLoS One* **8**, e77147.

Ehrenshaft, M., Upchurch, R. G. (1991). Isolation of light-enhanced cDNAs of *Cercospora kikuchii. Appl Environ Microbiol* 57, 2671-2676.

Essen, L. O., Mailliet, J., Hughes, J. (2008). The structure of a complete phytochrome sensory module in the Pr ground state. *Proc Natl Acad Sci U S A* **105**, 14709-14714.

Fischer, R., Aguirre, J., Herrera-Estrella, A., Corrochano, L. M. (2016). The complexity of fungal vision. *Microbiol Spectr* **4**.

Froehlich, A. C., Liu, Y., Loros, J. J., Dunlap, J. C. (2002). White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. *Science* **297**, 815-819.

Froehlich, A. C., Noh, B., Vierstra, R. D., Loros, J., Dunlap, J. C. (2005). Genetic and molecular analysis of phytochromes from the filamentous fungus *Neurospora crassa*. *Eukaryot Cell* **4**, 2140-2152.

Froehlich, A. C., Chen, C. H., Belden, W. J., Madeti, C., Roenneberg, T., Merrow, M., Loros, J. J., Dunlap, J. C. (2010). Genetic and molecular characterization of a cryptochrome from the filamentous fungus *Neurospora crassa*. *Eukaryot Cell* **9**, 738-750.

Fuller, K. K., Ringelberg, C. S., Loros, J. J., Dunlap, J. C. (2013). The fungal pathogen *Aspergillus fumigatus* regulates growth, metabolism, and stress resistance in response to light. *mBio* **4**, e00142-00113.

Fuller, K. K., Loros, J. J., Dunlap, J. C. (2015). Fungal photobiology: visible light as a signal for stress, space and time. *Curr Genet* **61**, 275-288.

Fuller, K. K., Cramer, R. A., Zegans, M. E., Dunlap, J. C., Loros, J. J. (2016). *Aspergillus fumigatus* photobiology illuminates the marked heterogeneity between isolates. *mBio* **7**.

Gerke, J., Braus, G. H. (2014). Manipulation of fungal development as source of novel secondary metabolites for biotechnology. *Appl Microbiol Biotechnol* **98**, 8443-8455.

Giraud, E., Zappa, S., Vuillet, L., Adriano, J. M., Hannibal, L., Fardoux, J., Berthomieu, C., Bouyer, P., Pignol, D., Vermeglio, A. (2005). A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in *Rhodopseudomonas palustris*. *J Biol Chem* **280**, 32389-32397.

Gressel, J. B., Hartmann, K. M. (1968). Morphogenesis in *Trichoderma*: action spectrum of photoinduced sporulation. *Planta* **79**, 271-274.

Grimaldi, B., Coiro, P., Filetici, P., Berge, E., Dobosy, J. R., Freitag, M., Selker, E. U., Ballario, P. (2006). The *Neurospora crassa* White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. *Mol Biol Cell* **17**, 4576-4583.

Guo, H., Yang, H., Mockler, T. C., Lin, C. (1998). Regulation of flowering time by *Arabidopsis* photoreceptors. *Science* **279**, 1360-1363.

Harding, R. W., Melles, S. (1983). Genetic analysis of phototropism of *Neurospora crassa* perithecial beaks using white collar and albino mutants. *Plant Physiol* **72**, 996-1000.

He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K. H., Liu, Y. (2002). White collar-1, a DNA binding transcription factor and a light sensor. *Science* **297**, 840-843.

He, Q., Liu, Y. (2005). Molecular mechanism of light responses in *Neurospora*: from light-induced transcription to photoadaptation. *Genes Dev* **19**, 2888-2899.

He, Q., Cha, J., He, Q., Lee, H. C., Yang, Y., Liu, Y. (2006). CKI and CKII mediate the Frequency-dependent phosphorylation of the White Collar complex to close the *Neurospora* circadian negative feedback loop. *Genes Dev* 20, 2552-2565.

Hedtke, M., Rauscher, S., Rohrig, J., Rodriguez-Romero, J., Yu, Z., Fischer, R. (2015). Light-dependent gene activation in *Aspergillus nidulans* is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. *Mol Microbiol* **97**, 733-745.

Heintzen, C., Loros, J. J., Dunlap, J. C. (2001). The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. *Cell* **104**, 453-464.

Hérivaux, A., So, Y. S., Gastebois, A., Latge, J. P., Bouchara, J. P., Bahn, Y. S., Papon, N. (2016). Major sensing proteins in pathogenic fungi: the hybrid histidine kinase family. *PLoS Pathog* **12**, e1005683.

Hu, Y., He, J., Wang, Y., Zhu, P., Zhang, C., Lu, R., Xu, L. (2014). Disruption of a phytochrome-like histidine kinase gene by homologous recombination leads to a significant reduction in vegetative growth, sclerotia production, and the pathogenicity of *Botrytis cinerea*. *Physiol Mol Plant Pathol* **85**, 25-33.

Hughes, J., Lamparter, T., Mittmann, F., Hartmann, E., Gartner, W., Wilde, A., Borner, T. (1997). A prokaryotic phytochrome. *Nature* **386**, 663.

Idnurm, A., Howlett, B. J. (2001). Characterization of an opsin gene from the ascomycete *Leptosphaeria maculans*. *Genome* **44**, 167-171.

Igbalajobi, O., Yu, Z., Fischer, R. (2019). Red- and blue-light sensing in the plant pathogen *Alternaria alternata* depends on phytochrome and the white-collar protein LreA. *mBio* **10**.

Innocenti, F. D., Pohl, U., Russo, V. E. (1983). Photoinduction of protoperithecia in *Neurospora crassa* by blue light. *Photochem Photobiol* **37**, 49-51.

Isaksson, L., Gustavsson, E., Persson, C., Brath, U., Vrhovac, L., Karlsson, G., Orekhov, V., Westenhoff, S. (2021). Signaling mechanism of phytochromes in solution. *Structure* **29**, 151-160 e153.

Käfer, E. (1965). Origins of translocations in *Aspergillus nidulans*. *Genetics* **52**, 217-232.

Karniol, B., Wagner, J. R., Walker, J. M., Vierstra, R. D. (2005). Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. *Biochem J* **392**, 103-116.

Kato, N., Brooks, W., Calvo, A. M. (2003). The expression of sterigmatocystin and penicillin genes in *Aspergillus nidulans* is controlled by *veA*, a gene required for sexual development. *Eukaryot Cell* **2**, 1178-1186.

Kehoe, D. M., Grossman, A. R. (1996). Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. *Science* **273**, 1409-1412.

Kim, H., Han, K., Kim, K., Han, D., Jahng, K., Chae, K. (2002). The veA gene activates sexual development in *Aspergillus nidulans*. *Fungal Genet Biol* **37**, 72-80.

Knox, B. P., Blachowicz, A., Palmer, J. M., Romsdahl, J., Huttenlocher, A., Wang, C. C., Keller, N. P., Venkateswaran, K. (2016). Characterization of *Aspergillus fumigatus* isolates from air and surfaces of the International Space Station. *mSphere* 1.

Kowalski, C. H., Kerkaert, J. D., Liu, K. W., Bond, M. C., Hartmann, R., Nadell, C. D., Stajich, J. E., Cramer, R. A. (2019). Fungal biofilm morphology impacts hypoxia fitness and disease progression. *Nat Microbiol* **4**, 2430-2441.

Kubo, H., Mihara, H. (1986). Effects of light and temperature on sporangiophore initiation in *Pilobolus crystallinus* (Wiggers) Tode. *Planta* **168**, 337-339.

Kües, U. (2000). Life history and developmental processes in the basidiomycete *Coprinus cinereus*. *Microbiol Mol Biol Rev* **64**, 316-353.

Kumagai, T., Oda, Y. (1969). An action spectrum for photoinduced sporulation in the fungus *Trichoderma viride*. *Plant Cell Physiol* **10**, 387-392.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227, 680-685.

Lamparter, T., Krauss, N., Scheerer, P. (2017). Phytochromes from Agrobacterium fabrum. Photochem Photobiol 93, 642-655.

Lee, C. T., Malzahn, E., Brunner, M., Mayer, M. P. (2014). Light-induced differences in conformational dynamics of the circadian clock regulator VIVID. *J Mol Biol* **426**, 601-610.

Li, H., Burgie, E. S., Gannam, Z. T. K., Li, H., Vierstra, R. D. (2022). Plant phytochrome B is an asymmetric dimer with unique signalling potential. *Nature* **604**, 127-133.

Lin, C., Todo, T. (2005). The cryptochromes. Genome Biol 6, 220.

Lind, A. L., Wisecaver, J. H., Smith, T. D., Feng, X., Calvo, A. M., Rokas, A. (2015). Examining the evolution of the regulatory circuit controlling secondary metabolism and development in the fungal genus *Aspergillus*. *PLoS Genet* **11**, e1005096.

Liu, X., Chen, A., Caicedo-Casso, A., Cui, G., Du, M., He, Q., Lim, S., Kim, H. J., Hong, C. I., Liu, Y. (2019). FRQ-CK1 interaction determines the period of circadian rhythms in *Neurospora*. *Nat Commun* **10**, 4352.

Losada, L., Barker, B. M., Pakala, S., Pakala, S., Joardar, V., Zafar, N., Mounaud, S., Fedorova, N., Nierman, W. C., Cramer, R. A. (2014). Large-scale transcriptional response to hypoxia in *Aspergillus fumigatus* observed using RNAseq identifies a novel hypoxia regulated ncRNA. *Mycopathologia* **178**, 331-339.

Losi, A., Gartner, W. (2012). The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. *Annu Rev Plant Biol* **63**, 49-72.

Lu, B. C. (1965). The role of light in fructification of the basidiomycete *Cyathus* stercoreus. *Am J Bot* **52**, 432-437.

Lukens, R. J. (1963). Photo-inhibition of sporulation in *Alternaria solani*. *Am J Bot* **50**, 720-724.

Madeira, F., Pearce, M., Tivey, A. R. N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. *Nucleic Acids Res* **50**, W276-W279.

Mas, P., Devlin, P. F., Panda, S., Kay, S. A. (2000). Functional interaction of phytochrome B and cryptochrome 2. *Nature* **408**, 207-211.

Merrow, M., Boesl, C., Ricken, J., Messerschmitt, M., Goedel, M., Roenneberg, T. (2006). Entrainment of the *Neurospora* circadian clock. *Chronobiol Int* **23**, 71-80.

Michael, A. K., Fribourgh, J. L., Van Gelder, R. N., Partch, C. L. (2017). Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond. *Photochem Photobiol* **93**, 128-140.

Miskei, M., Karanyi, Z., Pocsi, I. (2009). Annotation of stress-response proteins in the aspergilli. *Fungal Genet Biol* **46 Suppl 1**, S105-120.

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., Bateman, A. (2021). Pfam: The protein families database in 2021. *Nucleic Acids Res* **49**, D412-D419.

Mizuno, T., Wurtzel, E. T., Inouye, M. (1982). Osmoregulation of gene expression. II. DNA sequence of the *envZ* gene of the *ompB* operon of *Escherichia coli* and characterization of its gene product. *J Biol Chem* **257**, 13692-13698.

Mockler, T. C., Guo, H., Yang, H., Duong, H., Lin, C. (1999). Antagonistic actions of *Arabidopsis* cryptochromes and phytochrome B in the regulation of floral induction. *Development* **126**, 2073-2082.

Moon, H., Han, K. H., Yu, J. H. (2022). Upstream regulation of development and secondary metabolism in *Aspergillus* species. *Cells* 12.

Mooney, J. L., Yager, L. N. (1990). Light is required for conidiation in *Aspergillus nidulans*. *Genes Dev* **4**, 1473-1482.

Morimoto, N., Oda, Y. (1973). Effects of light on fruit-body formation in a basidiomycete, *Coprinus macrorhizus*. *Plant Cell Physiol* 14, 217-225.

Nagano, S., Scheerer, P., Zubow, K., Michael, N., Inomata, K., Lamparter, T., Krauss, N. (2016). The Crystal structures of the N-terminal photosensory core module of *Agrobacterium* phytochrome Agp1 as parallel and anti-parallel dimers. *J Biol Chem* 291, 20674-20691.

Neff, M. M., Chory, J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during *Arabidopsis* development. *Plant Physiol* **118**, 27-35.

Nelson, M. A., Morelli, G., Carattoli, A., Romano, N., Macino, G. (1989). Molecular cloning of a *Neurospora crassa* carotenoid biosynthetic gene (*albino-3*) regulated by blue light and the products of the white collar genes. *Mol Cell Biol* **9**, 1271-1276.

Ni, M., Yu, J. H. (2007). A novel regulator couples sporogenesis and trehalose biogenesis in *Aspergillus nidulans*. *PLoS One* **2**, e970.

Nicolás, F. E., Calo, S., Murcia-Flores, L., Garre, V., Ruiz-Vazquez, R. M., Torres-Martinez, S. (2008). A RING-finger photocarotenogenic repressor involved in asexual sporulation in *Mucor circinelloides*. *FEMS Microbiol Lett* **280**, 81-88.

Nsa, I. Y., Karunarathna, N., Liu, X., Huang, H., Boetteger, B., Bell-Pedersen, D. (2015). A novel cryptochrome-dependent oscillator in *Neurospora crassa*. *Genetics* 199, 233-245.

Ojeda-Lopez, M., Chen, W., Eagle, C. E., Gutierrez, G., Jia, W. L., Swilaiman, S. S., Huang, Z., Park, H. S., Yu, J. H., Canovas, D., Dyer, P. S. (2018). Evolution of asexual and sexual reproduction in the aspergilli. *Stud Mycol* **91**, 37-59.

Olmedo, M., Ruger-Herreros, C., Luque, E. M., Corrochano, L. M. (2010). A complex photoreceptor system mediates the regulation by light of the conidiation genes *con-10* and *con-6* in *Neurospora crassa*. *Fungal Genet Biol* **47**, 352-363.

Ota, I. M., Varshavsky, A. (1993). A yeast protein similar to bacterial two-component regulators. *Science* **262**, 566-569.

Overmann, J., Garcia-Pichel, F. The phototrophic way of life. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (editors). *The Prokaryotes* : Springer; 2006. pp. 32-85.

Palmer, J. M., Theisen, J. M., Duran, R. M., Grayburn, W. S., Calvo, A. M., Keller, N. P. (2013). Secondary metabolism and development is mediated by LImF control of VeA subcellular localization in *Aspergillus nidulans*. *PLoS Genet* **9**, e1003193.

Park, H. S., Bayram, O., Braus, G. H., Kim, S. C., Yu, J. H. (2012). Characterization of the velvet regulators in *Aspergillus fumigatus*. *Mol Microbiol* **86**, 937-953.

Park, H. S., Nam, T. Y., Han, K. H., Kim, S. C., Yu, J. H. (2014). VelC positively controls sexual development in *Aspergillus nidulans*. *PLoS One* **9**, e89883.

Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunic, I., Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., Sigrist, C. J. A., Sillitoe, I., Thanki, N., Thomas, P. D., Tosatto, S. C. E., Wu, C. H., Bateman, A. (2023). InterPro in 2022. *Nucleic Acids Res* 51, D418-D427.

Pena-Sandoval, G. R., Kwon, O., Georgellis, D. (2005). Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA *in vivo*. *J Bacteriol* **187**, 3267-3272.

Perrin, R. M., Fedorova, N. D., Bok, J. W., Cramer, R. A., Wortman, J. R., Kim, H. S., Nierman, W. C., Keller, N. P. (2007). Transcriptional regulation of chemical diversity in *Aspergillus fumigatus* by LaeA. *PLoS Pathog* **3**, e50.

Pfeifer, A., Majerus, T., Zikihara, K., Matsuoka, D., Tokutomi, S., Heberle, J., Kottke, T. (2009). Time-resolved Fourier transform infrared study on photoadduct formation and secondary structural changes within the phototropin LOV domain. *Biophys J* 96, 1462-1470.

Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D., Bufton, A. W. (1953). The genetics of *Aspergillus nidulans*. *Adv Genet* 5, 141-238.

Pope, B., Kent, H. M. (1996). High efficiency 5 min transformation of *Escherichia coli*. *Nucleic Acids Res* **24**, 536-537.

Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C., Saito, H. (1996). Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. *Cell* **86**, 865-875.

Posas, F., Saito, H. (1997). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. *Science* **276**, 1702-1705.

Pruss, S., Fetzner, R., Seither, K., Herr, A., Pfeiffer, E., Metzler, M., Lawrence, C. B., Fischer, R. (2014). Role of the *Alternaria alternata* blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism. *Appl Environ Microbiol* **80**, 2582-2591.

Purschwitz, J., Muller, S., Kastner, C., Schoser, M., Haas, H., Espeso, E. A., Atoui, A., Calvo, A. M., Fischer, R. (2008). Functional and physical interaction of blue- and red-light sensors in *Aspergillus nidulans*. *Curr Biol* **18**, 255-259.

Purschwitz, J., Muller, S., Fischer, R. (2009). Mapping the interaction sites of *Aspergillus nidulans* phytochrome FphA with the global regulator VeA and the White Collar protein LreB. *Mol Genet Genomics* **281**, 35-42.

Raduwan, H., Isola, A. L., Belden, W. J. (2013). Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression. *J Biol Chem* 288, 8380-8390.

Rauscher, S., Pacher, S., Hedtke, M., Kniemeyer, O., Fischer, R. (2016). A phosphorylation code of the *Aspergillus nidulans* global regulator VelvetA (VeA) determines specific functions. *Mol Microbiol* **99**, 909-924.

Rodriguez-Romero, J., Hedtke, M., Kastner, C., Muller, S., Fischer, R. (2010). Fungi, hidden in soil or up in the air: light makes a difference. *Annu Rev Microbiol* **64**, 585-610.

Röhrig, J., Kastner, C., Fischer, R. (2013). Light inhibits spore germination through phytochrome in *Aspergillus nidulans*. *Curr Genet* **59**, 55-62.

Rokas, A., Mead, M. E., Steenwyk, J. L., Oberlies, N. H., Goldman, G. H. (2020). Evolving moldy murderers: *Aspergillus* section *Fumigati* as a model for studying the repeated evolution of fungal pathogenicity. *PLoS Pathog* **16**, e1008315.

Rosales-Hurtado, M., Meffre, P., Szurmant, H., Benfodda, Z. (2020). Synthesis of histidine kinase inhibitors and their biological properties. *Med Res Rev* 40, 1440-1495.

Rozenberg, A., Inoue, K., Kandori, H., Beja, O. (2021). Microbial rhodopsins: the last two decades. *Annu Rev Microbiol* **75**, 427-447.

Rudolph, J., Oesterhelt, D. (1995). Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon *Halobacterium salinarium*. *EMBO J* 14, 667-673.

Ruesch, C. E., Ramakrishnan, M., Park, J., Li, N., Chong, H. S., Zaman, R., Joska, T. M., Belden, W. J. (2014). The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression. *G3 (Bethesda)* 5, 93-101.

Ruger-Herreros, C., Rodriguez-Romero, J., Fernandez-Barranco, R., Olmedo, M., Fischer, R., Corrochano, L. M., Canovas, D. (2011). Regulation of conidiation by light in *Aspergillus nidulans*. *Genetics* **188**, 809-822.

Samson, R. A., Hong, S., Peterson, S. W., Frisvad, J. C., Varga, J. (2007). Polyphasic taxonomy of *Aspergillus* section *Fumigati* and its teleomorph *Neosartorya*. *Stud Mycol* **59**, 147-203.

Sancar, C., Ha, N., Yilmaz, R., Tesorero, R., Fisher, T., Brunner, M., Sancar, G. (2015). Combinatorial control of light induced chromatin remodeling and gene activation in *Neurospora*. *PLoS Genet* **11**, e1005105.

Santiago, I. F., Goncalves, V. N., Gomez-Silva, B., Galetovic, A., Rosa, L. H. (2018). Fungal diversity in the Atacama Desert. *Antonie Van Leeuwenhoek* **111**, 1345-1360.

Sarikaya Bayram, O., Bayram, O., Valerius, O., Park, H. S., Irniger, S., Gerke, J., Ni, M., Han, K. H., Yu, J. H., Braus, G. H. (2010). LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. *PLoS Genet* **6**, e1001226.

Sarikaya-Bayram, O., Bayram, O., Feussner, K., Kim, J. H., Kim, H. S., Kaever, A., Feussner, I., Chae, K. S., Han, D. M., Han, K. H., Braus, G. H. (2014). Membranebound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. *Dev Cell* **29**, 406-420.

Schleicher, E., Kowalczyk, R. M., Kay, C. W., Hegemann, P., Bacher, A., Fischer, M., Bittl, R., Richter, G., Weber, S. (2004). On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. *J Am Chem Soc* **126**, 11067-11076.

Schrott, E. L. (1980). Fluence response relationship of carotenogenesis in *Neurospora crassa. Planta* **150**, 174-179.

Schuhmacher, L., Heck, S., Pitz, M., Mathey, E., Lamparter, T., Blumhofer, A., Leister, K., Fischer, R. (2024). The LOV-domain blue-light receptor LreA of the fungus *Alternaria alternata* binds predominantly FAD as a chromophor and acts as light and temperature sensor. *J Biol Chem, in Druck*.

Schumacher, J. (2017). How light affects the life of *Botrytis*. *Fungal Genet Biol* **106**, 26-41.

Schuster, S. C., Noegel, A. A., Oehme, F., Gerisch, G., Simon, M. I. (1996). The hybrid histidine kinase DokA is part of the osmotic response system of *Dictyostelium*. *EMBO J* **15**, 3880-3889.

Schwerdtfeger, C., Linden, H. (2001). Blue light adaptation and desensitization of light signal transduction in *Neurospora crassa*. *Mol Microbiol* **39**, 1080-1087.

Schwerdtfeger, C., Linden, H. (2003). VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. *EMBO J* 22, 4846-4855.

Smith, K. M., Sancar, G., Dekhang, R., Sullivan, C. M., Li, S., Tag, A. G., Sancar, C., Bredeweg, E. L., Priest, H. D., McCormick, R. F., Thomas, T. L., Carrington, J. C., Stajich, J. E., Bell-Pedersen, D., Brunner, M., Freitag, M. (2010). Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for *Neurospora* White Collar Complex. *Eukaryot Cell* **9**, 1549-1556.

Stinnett, S. M., Espeso, E. A., Cobeno, L., Araujo-Bazan, L., Calvo, A. M. (2007). *Aspergillus nidulans* VeA subcellular localization is dependent on the importin α carrier and on light. *Mol Microbiol* **63**, 242-255.

Sugui, J. A., Pardo, J., Chang, Y. C., Mullbacher, A., Zarember, K. A., Galvez, E. M., Brinster, L., Zerfas, P., Gallin, J. I., Simon, M. M., Kwon-Chung, K. J. (2007). Role of *laeA* in the regulation of *alb1*, *gliP*, conidial morphology, and virulence in *Aspergillus fumigatus*. *Eukaryot Cell* **6**, 1552-1561.

Takala, H., Bjorling, A., Berntsson, O., Lehtivuori, H., Niebling, S., Hoernke, M., Kosheleva, I., Henning, R., Menzel, A., Ihalainen, J. A., Westenhoff, S. (2014). Signal amplification and transduction in phytochrome photosensors. *Nature* **509**, 245-248.

Takala, H., Bjorling, A., Linna, M., Westenhoff, S., Ihalainen, J. A. (2015). Lightinduced changes in the dimerization interface of bacteriophytochromes. *J Biol Chem* **290**, 16383-16392.

Takala, H., Niebling, S., Berntsson, O., Bjorling, A., Lehtivuori, H., Hakkanen, H., Panman, M., Gustavsson, E., Hoernke, M., Newby, G., Zontone, F., Wulff, M., Menzel, A., Ihalainen, J. A., Westenhoff, S. (2016). Light-induced structural changes in a monomeric bacteriophytochrome. *Struct Dyn* **3**, 054701.

Takala, H., Lehtivuori, H. K., Berntsson, O., Hughes, A., Nanekar, R., Niebling, S., Panman, M., Henry, L., Menzel, A., Westenhoff, S., Ihalainen, J. A. (2018). On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome. *J Biol Chem* **293**, 8161-8172.

Tan, K. K. (1974a). Red-far-red reversible photoreaction in the recovery from blue-light inhibition of sporulation in *Botrytis cinerea*. *J Gen Microbiol* **82**, 201-202.

Tan, K. K. (1974b). Blue-light inhibition of sporulation in *Botrytis cinerea*. J Gen Microbiol 82, 191-200.

Tisch, D., Schmoll, M. (2010). Light regulation of metabolic pathways in fungi. *Appl Microbiol Biotechnol* **85**, 1259-1277.

Toews, M. W., Warmbold, J., Konzack, S., Rischitor, P., Veith, D., Vienken, K., Vinuesa, C., Wei, H., Fischer, R. (2004). Establishment of mRFP1 as a fluorescent marker in *Aspergillus nidulans* and construction of expression vectors for high-throughput protein tagging using recombination *in vitro* (GATEWAY). *Curr Genet* **45**, 383-389.

Tong, X., Liu, T., Jiang, K., Wang, D., Liu, S., Wang, Y., Fan, H. (2021). Clinical characteristics and prognostic risk factors of patients with proven invasive pulmonary aspergillosis: a single-institution retrospective study. *Front Med (Lausanne)* **8**, 756237.

Usami, T., Mochizuki, N., Kondo, M., Nishimura, M., Nagatani, A. (2004). Cryptochromes and phytochromes synergistically regulate *Arabidopsis* root greening under blue light. *Plant Cell Physiol* **45**, 1798-1808.

Vaidya, A. T., Chen, C. H., Dunlap, J. C., Loros, J. J., Crane, B. R. (2011). Structure of a light-activated LOV protein dimer that regulates transcription. *Sci Signal* **4**, ra50.

Vargas-Perez, I., Sanchez, O., Kawasaki, L., Georgellis, D., Aguirre, J. (2007). Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in *Aspergillus nidulans*. *Eukaryot Cell* **6**, 1570-1583.

Veith, D., Scherr, N., Efimov, V. P., Fischer, R. (2005). Role of the spindle-pole-body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in *Aspergillus nidulans*. *J Cell Sci* **118**, 3705-3716.

Velayos, A., Blasco, J. L., Alvarez, M. I., Iturriaga, E. A., Eslava, A. P. (2000a). Bluelight regulation of phytoene dehydrogenase (*carB*) gene expression in *Mucor circinelloides*. *Planta* **210**, 938-946.

Velayos, A., Eslava, A. P., Iturriaga, E. A. (2000b). A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the *carRP* gene of *Mucor circinelloides*. *Eur J Biochem* **267**, 5509-5519.

Vienken, K., Fischer, R. (2006). The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in *Aspergillus nidulans*. *Mol Microbiol* **61**, 544-554.

Wang, B., Kettenbach, A. N., Zhou, X., Loros, J. J., Dunlap, J. C. (2019). The phospho-code determining circadian feedback loop closure and output in *Neurospora*. *Mol Cell* **74**, 771-784 e773.

Wang, Z., Li, N., Li, J., Dunlap, J. C., Trail, F., Townsend, J. P. (2016). The fastevolving *phy-2* gene modulates sexual development in response to light in the model fungus *Neurospora crassa. mBio* **7**, e02148.

Wang, Z., Wang, J., Li, N., Li, J., Trail, F., Dunlap, J. C., Townsend, J. P. (2018). Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. *Mol Ecol* **27**, 216-232.

Waschuk, S. A., Bezerra, A. G., Jr., Shi, L., Brown, L. S. (2005). *Leptosphaeria* rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. *Proc Natl Acad Sci U S A* **102**, 6879-6883.

Whippo, C. W., Hangarter, R. P. (2004). Phytochrome modulation of blue-lightinduced phototropism. *Plant Cell Environ* 27, 1223-1228.

Wilde, A., Fiedler, B., Borner, T. (2002). The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. *Mol Microbiol* **44**, 981-988.

Willger, S. D., Grahl, N., Cramer, R. A., Jr. (2009). *Aspergillus fumigatus* metabolism: clues to mechanisms of *in vivo* fungal growth and virulence. *Med Mycol* **47 Suppl 1**, S72-79.

Wu, C., Yang, F., Smith, K. M., Peterson, M., Dekhang, R., Zhang, Y., Zucker, J., Bredeweg, E. L., Mallappa, C., Zhou, X., Lyubetskaya, A., Townsend, J. P., Galagan, J. E., Freitag, M., Dunlap, J. C., Bell-Pedersen, D., Sachs, M. S. (2014). Genome-wide characterization of light-regulated genes in *Neurospora crassa*. *G3* (*Bethesda*) **4**, 1731-1745.

Wu, S.-H., Lagarias, J. C. (1997). The phytochrome photoreceptor in the green alga *Mesotaenium caldariorum*: implication for a conserved mechanism of phytochrome action. *Plant Cell Environ* **20**, 691-699.

Wuichet, K., Cantwell, B. J., Zhulin, I. B. (2010). Evolution and phyletic distribution of two-component signal transduction systems. *Curr Opin Microbiol* **13**, 219-225.

Yelton, M. M., Hamer, J. E., Timberlake, W. E. (1984). Transformation of Aspergillus nidulans by using a *trpC* plasmid. *Proc Natl Acad Sci U S A* **81**, 1470-1474.

Yin, W. B., Chooi, Y. H., Smith, A. R., Cacho, R. A., Hu, Y., White, T. C., Tang, Y. (2013). Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in *Aspergillus nidulans*. ACS Synth Biol **2**, 629-634.

Young, R. E. (1983). Oceanic bioluminescence: an overview of general functions. *Bull Mar Sci* 33, 829-845.

Yu, Z., Armant, O., Fischer, R. (2016). Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. *Nat Microbiol* **1**, 16019.

Yu, Z., Ali, A., Igbalajobi, O. A., Streng, C., Leister, K., Krauss, N., Lamparter, T., Fischer, R. (2019). Two hybrid histidine kinases, TcsB and the phytochrome FphA, are involved in temperature sensing in *Aspergillus nidulans*. *Mol Microbiol* **112**, 1814-1830.

Yu, Z., Fischer, R. (2019). Light sensing and responses in fungi. *Nat Rev Microbiol* **17**, 25-36.

Yu, Z., Streng, C., Seibeld, R. F., Igbalajobi, O. A., Leister, K., Ingelfinger, J., Fischer, R. (2021). Genome-wide analyses of light-regulated genes in *Aspergillus nidulans* reveal a complex interplay between different photoreceptors and novel photoreceptor functions. *PLoS Genet* **17**, e1009845.

Zalokar, M. (1954). Studies on biosynthesis of carotenoids in *Neurospora crassa*. *Arch Biochem Biophys* **50**, 71-80.

Zayner, J. P., Sosnick, T. R. (2014). Factors that control the chemistry of the LOV domain photocycle. *PLoS One* 9, e87074.

6 Danksagung

An erster Stelle möchte ich Prof. Dr. Reinhard Fischer für die Möglichkeit danken, an diesem spannenden Thema arbeiten zu können. Er stand mir mit seiner Erfahrung immer zur Seite und hatte ein offenes Ohr für meine Ideen.

Mein zweiter Dank gilt Prof. Dr. Tilman Lamparter für die Übernahme des Zweitgutachtens. Seine fachliche Expertise half mir sehr bei der Interpretation der strukturbiologischen und biochemischen Daten.

Auch möchte ich meinen Kooperationspartnern Dr. Patrick Scheerer und Dr. Luisa Herder sowie Prof. Dr. Ling Lu und Yinyan Ma für die tolle Zusammenarbeit danken.

Ich bin immer gerne zur Arbeit gegangen, die sich nie als solche anfühlte. Dies lag nicht zuletzt an meinen Kollegen in der AG Fischer. Danke für fünf tolle Jahre! Mein besonderer Dank gilt hier Dr. Jennifer Emser, Lars Schuhmacher und Alexander Landmark für die Korrektur meiner Dissertation. Auch Dr. Maria Stroe, Michael Pitz, Ramon Seibeld und Gero Kaeser sollen hier nicht unerwähnt bleiben, die sich immer die Zeit nahmen, Probleme gemeinsam zu diskutieren und eine Lösung zu finden. Ebenfalls danken möchte ich Dr. Christian Streng, von dem ich vieles lernen konnte und der mich bestmöglich auf die Promotion vorbereitet hat. Für die technische Hilfe möchte ich Birgit Schreckenberger, Süheyla Eroğlu-Kayıkçı und Michel Pfeiffer meinen Dank aussprechen. Ich habe immer gerne mit euch zusammengearbeitet!

Mein größter Dank gilt meinen Eltern, die mich stets unterstützten und an mich glaubten. Ohne eure Unterstützung wäre ich nicht hier. Danke! Nicht zuletzt möchte ich Kathi Schirp und Tom Hook danken, die ebenso wie meine Eltern darauf achteten, dass ich mich auch in stressigen Zeiten vernünftig ernährte.

7 Anhang

Anhang 1: Schemata der für die Transformation mit *gfp::AffphA* und *gfp::AffphB* verwendeten Vektoren. Links: *gfp::AffphA*. Rechts: *gfp::AffphB*. Die DNA-Konstrukte wurden ektopisch in das Genom von *A. nidulans* integriert.

Anhang 2: Schemata der für die Transformation mit *yfp^c::AffphA* und *yfp^N::AffphB* verwendeten Vektoren. Links: *yfp^C::AffphA*. Rechts: *yfp^N::AffphB*. Die DNA-Konstrukte wurden ektopisch in das Genom von *A. nidulans* integriert.

Anhang 3: Schemata der für die Transformation mit 3xHA::AffphA und gfp::AffphB verwendeten Vektoren. Links: 3xHA::AffphA. Rechts: gfp::AffphB. Die DNA-Konstrukte wurden ektopisch in das Genom von A. nidulans integriert.

Anhang 4: Schemata der für die Transformation mit *gfp::sakA* verwendeten Vektoren. Links: *gfp::sakA*, *pyr4*. Rechts: *gfp::sakA*, *pyroA*. Die DNA-Konstrukte wurden ektopisch in das Genom von *A. nidulans* integriert.

Anhang 5: Expression des *nsc*-Genclusters in *A. fumigatus \DeltaveA* relativ zu *A. fumigatus* Wildtyp. Lind *et al.*, 2015

Anhang 6: Expression des *nsc*-Genclusters und *fphB* unter hypoxischen Bedingungen, relativ zu normoxischen Bedingungen. Kowalski *et al.*, 2019