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Abstract

The widespread adoption of internet-connected and remotely controllable solar plants and energy storages renders coordinated cyber-
physical attacks against distributed energy resources (DERs) an emerging risk for power systems. Effective incident response can be
facilitated by online DER monitoring providing real-time information on event root causes and physical impacts. Such online event
identification is challenged by the lack of historical attack observations, and emergence of new attack strategies. The Cyber-Physical
Event Reasoning System CyPhERS provides real-time information on both known and unknown attack types in form of informative
and interpretable event signatures, without need to be trained on historical attack samples. To date, CyPhERS has only been demon-
strated on a laboratory water distribution testbed of limited complexity, considering human evaluation of event signatures. This work
methodologically adapts CyPhERS to specificities of DER operation such as weather and consumer-induced volatility, and introduces an
automated signature evaluation system. The feasibility of applying CyPhERS for automated DER monitoring is investigated on a dataset
recorded from a real photovoltaic-battery system targeted by several cyber and cyber-physical attack types. The results demonstrate
that the proposed methodological adaptations and signature evaluation system enable the application of CyPhERS for automated online

identification of different attack types targeting DERs, while greatly reducing the false positive rate.
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1. Introduction

The transformation towards widespread use of sustainable en-
ergy sources is driven by decentralization and electrification. Both
the replacement of centralized fossil power plants with renew-
able generation, as well as the electrification of the mobility and
heating sectors are boosting the deployment of distributed energy
resources (DERs) such as solar plants, electric vehicles, battery
storages and heat pumps. The large-scale adoption of DERs pro-
vides benefits beyond decarbonizing energy consumption, includ-
ing lower transmission costs and improved grid stability through
provision of ancillary services [1]. Harnessing this potential re-
quires integration with information and communication technol-
ogy (ICT) for continuous coordination and management of numer-
ous geographically distributed devices. However, the associated
connection to public networks and remote control capability, com-
bined with often low security standards [2], render DERs promis-
ing targets for cyber criminals. Incidents such as the Mirai botnet
attack have demonstrated that a fleet of internet of things (IoT) de-
vices can be simultaneously seized [3]. Malicious control of mul-
tiple DERs can provoke grid instability by switching the devices
simultaneously on or off, rendering coordinated attacks on DERs
a serious threat for power system operation [4]. In this context,
the increasing number of attacks on critical infrastructure under-
lines the need to support the large-scale deployment of DERs with
adequate security mechanisms [5, 6].

Attack detection is among the most frequently suggested se-
curity measures for DERs [5, 7]. Once an attack is detected
and identified, affected systems and network zones can be iso-
lated, and incident response mechanisms activated. In the light
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of cyber-physical attacks, timely and appropriate counteractions
require real-time information on both root causes and physical im-
pact. Most existing detection concepts exclusively monitor either
cyber network traffic or physical process data [7]. While cyber
network attack detection potentially allows to distinguish several
attack types, physical impacts are not identified. In contrast, phys-
ical attack detection can determine the attack impact, but not the
underlying attack vector. Consequently, some works propose the
combined evaluation of operational technology (OT) network traf-
fic and process data [7], and demonstrate the superior performance
of such cyber-physical attack identification concepts applying su-
pervised machine learning (ML) [8]. However, due to the depen-
dency on historical samples of typically rarely occurring attacks,
supervised methods lack practical relevance [9, 10]. In [11], the
authors introduce CyPhERS, a Cyber-Physical Event Reasoning
System which exploits advantages of cyber-physical monitoring
while being independent of historical attack observations. So far,
CyPhERS has only been demonstrated on a laboratory water distri-
bution testbed exhibiting simple repeating process patterns. More-
over, the demonstrated version of the concept requires active in-
volvement of human operators. In the context of DER monitoring,
the problem is more complicated due to the pronounced volatility
and randomness resulting from dependency on weather and con-
sumer behavior [10]. Moreover, especially for small scale DERs,
active operator participation is impractical. Thus, this work ad-
dresses the following research question: How can real-time in-
formation about cyber(-physical) attacks against DERs such as
occurrence, type, victim devices, attacker location, and physical
impact be provided in an automated fashion, while being indepen-
dent of historical attack observations?

For this purpose, the present study methodologically adapts
CyPhERS to the specificities of DER operation, and introduces
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an automated signature evaluation system. Key features of the
adaptation comprise switching from deterministic to probabilistic
models and detection rules as well as considering and monitor-
ing functional, behavioral and abstracting physical target features
of a DER. The effectiveness of the adaptations and the automated
signature evaluation system is demonstrated on a dataset derived
from a real photovoltaic (PV)-battery system targeted by various
cyber(-physical) attack types, and is supported by a quantitative
performance comparison to the original version of CyPhERS.

1.1. Related work

An exhaustive review of literature related to CyPhERS, as well
as a conceptual comparison and performance benchmarking with
other event identification concepts is provided in [11]. This sec-
tion specifically reviews works on attack detection and identifi-
cation methods for DERs and other power system applications.
These can be broadly divided into methods monitoring the cyber
network, physical process or both.

1.1.1. Physical attack detection and identification

Many works propose attack detection applying physics-based
models [12-16]. The models are used to emulate a DER under nor-
mal condition. By evaluating the residual between the model and
actual measurements against a threshold, attacks can be detected
[17]. An advantage of this approach is the independency from
attack samples [9]. However, accurate modeling might be chal-
lenging for DERs with complex architectures (e.g., hybrid power
plants) leading to imprecise detection. Moreover, the restriction to
a binary detection problem (normal vs. abnormal operation) omits
insights on root causes and physical impacts. Data-driven methods
constitute another widely considered approach for physical attack
detection and identification [7]. One argument is generalizabil-
ity as process representations are automatically learned from data,
avoiding expensive manual model development. The majority of
works considers supervised approaches such as binary [18, 19] and
multi-class classification [10, 20-23]. The explicit learning from
attack samples, on the one hand, allows to detect and differentiate
various cyber-physical attack types based on their physical impact.
On the other hand, it renders supervised methods impractical due
to the natural scarcity of such data. Other works apply regression
or autoencoder models to learn the normal behavior of a DER, and
detect attacks by comparing the model with the actual measure-
ments [24-26]. Similar to the approaches applying physics-based
models, the restriction to a binary detection problem makes them
of limited use for incident response.

1.1.2. Cyber network attack detection and identification

Among the classical approaches for monitoring DER network
data are signature-based intrusion detection systems applying
tools such as Snort [27]. These can detect and differentiate at-
tacks in case of known attack signatures. Related but newer ap-
proaches include supervised detection of attack patterns, for ex-
ample, firmware modifications in inverter-based microgrids [28].
Neither the traditional signature-based nor the newer supervised
ML-based methods can detect new attack strategies. Furthermore,
they do not provide any information about the physical impact of
an attack on the operation of a DER. Another approach is the de-
tection of anomalies in network traffic, known as behavior-based
intrusion detection [7]. In the recent years, an increasing focus is

on ML-based normal behavior reference models, which are com-
pared to actual traffic, allowing to detect anomalies [29-31]. Al-
though such approaches can potentially detect both known and un-
known types of attacks, they do not provide any information other
than the occurrence of abnormal network behavior.

1.1.3. Cyber-physical attack detection and identification

As concepts which exclusively monitor either a DER’s cyber or
physical domain neither can identify both the attack root cause and
physical impact nor accurately differentiate between cyber attacks,
cyber-physical attacks, network failures, and process faults, many
works suggest investigation of cyber-physical detection [7, 8, 32].
Nevertheless, literature on the combined evaluation of process and
network data of a DER or other power system applications is rare.
The authors of [33] propose joint evaluation of synchrophasor
measurements and properties of network traffic applying a multi-
class decision tree classifier. In [34], unsupervised anomaly detec-
tion is applied to both network traffic and physical process features
of a DER. A comparison of cyber, physical and cyber-physical de-
tection in power systems is conducted in [35] by applying both su-
pervised and unsupervised methods for the binary detection prob-
lem (normal vs. abnormal operation). The listed works all indi-
cate that the joint monitoring of cyber and physical DER data im-
proves detection performance. However, none of them combines
root cause and physical impact identification with independence of
historical attack samples. The authors in [11] propose the cyber-
physical event reasoning system CyPhERS (see Fig. 1) to close
this gap. CyPhERS utilizes a two-stage process to deduce event
information, including the occurrence, type, location, and physical
impact, from joint processing of network traffic and physical pro-
cess data in real-time. The first stage generates informative event
signatures for both unknown and known types of cyber attacks and
physical faults. This is achieved through a combination of several
methods including cyber-physical data fusion, unsupervised mul-
tivariate time series anomaly detection, and anomaly type differ-
entiation. In the second stage, the event signatures are evaluated
either through automated matching with a database of known event
signatures or through manual interpretation by the operator. While
the authors claim that the evaluation of event signatures can be au-
tomated, only manual interpretation is realized to date. Moreover,
the concept demonstration is conducted on a simple laboratory wa-
ter distribution system. Thus, applicability for DER monitoring
first needs to be demonstrated.

CyPhERS (Cyber-physical event reasoning system) [ ] |
Network traffic — Online event Event Manual or auto- I_._ =ventl .J
signature creation | signatures atedislanatey m;v;rene;s
Process data —— 9 evaluation 4 — ol
Stage 1 Stage 2 " J

Figure 1: Schematic representation of CyPhERS adapted from [11].

1.2. Contribution and paper structure

The main contributions of this work are as follows:

e Methodological adaptation of CyPhERS to the operation of
DERs, including switching to probabilistic models and de-
tection rules, as well as monitoring of functional, behavioral,
and abstracting target features.



e Introduction and realization of an automated event signature
evaluation system in CyPhERS’ Stage 2.

o Feasibility demonstration of applying the adapted version
of CyPhERS for automated online identification of cyber(-
physical) attacks targeting DERs on data of a real PV-battery
system, including a quantitative performance comparison to
the original version.

The remainder of the paper is structured as follows: In
Section 2, CyPhERS is conceptually summarized. Section 3
presents the real PV-battery system, attack scenarios and recorded
dataset which serve as demonstration case. The methodology of
CyPhERS and its adaptation to DER monitoring is detailed in Sec-
tion 4 together with the implementation for the considered PV-
battery system case. In Section 5, results of applying the adapted
version of CyPhERS to the demonstration case are presented, in-
cluding a performance comparison to the original version. Finally,
key findings of the demonstration are discussed in Section 6, fol-
lowed by a conclusion in Section 7.

2. Introduction of the CyPhERS concept

This section provides a summary of the detailed conceptual in-
troduction of CyPhERS included in [11]. The concept of the
online event signature creation (Stage 1) is summarized in Sec-
tion 2.1. Thereafter, Section 2.2 provides a conceptual overview
of the signature evaluation (Stage 2). Methodological details of
Stage 1 and 2 follow in Section 4.

2.1. Online event signature creation (Stage 1)

CyPhERS’ Stage 1 (see Fig. 2) combines a range of concepts
to produce informative and human-readable event signatures for
known and unknown types of attacks and failures in an online
fashion. The signatures encompass information including event
occurrence, type, location, and physical impact. The applied con-
cepts are introduced in the following.

2.1.1. Fusion of cyber and physical information

A key feature of Stage 1 is the joint monitoring and evaluation of
physical process and cyber network data (see Fig. 2). The intention
is to describe possible interactions between physical and network
processes during detected events by means of the generated event
signatures to facilitate the differentiation of cyber attacks, cyber-
physical attacks, and physical failures in the subsequent signature
evaluation (Stage 2).

2.1.2. Feature-level monitoring

The second concept is the individual monitoring and evalua-
tion of multiple system variables of a DER and the representa-
tion of their potentially abnormal behavior in the event signatures.
These cover both variables of multiple process or network com-
ponents of a DER and multiple variables of the same component,
as illustrated in Fig. 2. While the former allows to indicate af-
fected DER components in a generated event signature, the lat-
ter further specifies abnormal behavior of the concerned device.
The monitored variables are derived from sensor readings and
OT network traffic, and in the following denoted target features,
where 7 and J represent the physical and network feature sub-
set, respectively. For a target feature c, its time series is given
as X. = {x{,x5,.,xy | x{ € RVi}. The extraction of target
features and the related proposed methodological adaptations for
DER monitoring are further detailed in Section 4.1.

2.1.3. Unsupervised time series anomaly detection using covari-
ates

The third conceptual element of Stage 1 is the utilization of
covariate-based unsupervised time series anomaly detection for
monitoring the set of physical and network target features within
the signature extraction system (see Fig. 2). First, a normal behav-
ior reference model is derived for each target feature. Their predic-
tions are then compared to actual observations to detect abnormal
behavior of individual target features. The key argument for ap-
plying unsupervised anomaly detection is the independence of his-
torical event observations, which allows to indicate occurrence of
both known and unknown event types in the event signatures. The
benefit of monitoring target features as time series is the detection
of deviations from normal behavior which are only abnormal in a
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Figure 2: Conceptual overview of CyPhERS’ online event signature creation (Stage 1) based on [11].

3



specific temporal context (local anomalies) [36]. Additionally, co-
variates are used to provide the normal behavior reference models
with further DER internal or external information, allowing detec-
tion of situational anomalies which are only abnormal in the con-
text of the provided covariates (e.g., detecting abnormal PV feed
in context of irradiation). A covariate time series associated with a
target feature c is formally denoted Z. = {z{, 25, ..., 23, | z; € R Vi}
in the following. A detailed description of the applied anomaly de-
tection methodology, including the proposed adaptation for DER
monitoring, is provided in Section 4.2.

2.1.4. Differentiation of anomaly types

The fourth key feature of Stage 1 pertains to the differentiation
of multiple anomaly types and their representation in the event
signatures. Once an anomaly is detected for a target feature c, it
is further classified using characteristics such as the direction of
the deviation (e.g., abnormally low PV feed). The anomaly types
are represented within the generated event signatures by different
colors, enabling simple recognition and differentiation by humans
(see Fig. 2). This distinction of anomaly types facilitates identifi-
cation of event root causes and physical impacts in the subsequent
signature evaluation (Stage 2). The series of anomaly flags pro-
duced by the signature extraction system for a target feature c is
represented as v, = {{, V5, ..., vy, | V{ € Z Vi}. The methodology of
the anomaly type differentiation is further specified in Section 4.2.

2.1.5. Anomaly flags organization as readable event signatures

The fifth conceptual feature of Stage 1 is the joint visualization
of the detection results of all target features as event signatures
which can be easily interpreted by humans to identify included
information. As previously described, Stage 1 takes multiple do-
mains, system variables, and anomaly types into account to pro-
vide dense event information in form of anomaly flag series of a
set of target features. To ease readability and information extrac-
tion, these flag series are re-organized by grouping them for each
system zone of a DER (see Fig. 2). A system zone is defined as
a collection of process and network components that are function-
ally linked (e.g., a battery stack and the associated smart battery in-
verter). Their logical relation facilitates associating anomaly flags
of different target features. Consequently, Stage 1 of CyPhERS
generates event signatures that are both rich in information and
easily interpretable by humans.

2.2. Signature evaluation (Stage 2)

Fig. 3 illustrates the concept of CyPhERS’ Stage 2. Stage 2
is concerned with the evaluation of event signatures provided by
Stage 1, which can be performed by human operators or automated
evaluation systems. The signatures are distinguishable and spe-
cific to event types. For known attack or fault vectors, they can
be pre-defined and stored in a database. Once Stage 1 detects an
event, the provided signature can be compared to the database. If
a match is found, information such as the type of event, the af-
fected components, the attacker location, and the physical impact
can be retrieved to form a hypothesis about the event. Matching
of signatures can be done by visual comparison or an automated
evaluation system. One automation approach is the transformation
of a pre-defined signature into a set of rules in the following form:
flagging of anomaly type 1 in target feature X and type 2 in tar-
get feature Y indicates device A being targeted by attack type B
causing physical impact C.

Importantly, signatures can also be defined for unknown event
types based on partial knowledge, for example, flagging of
anomaly type 1 in target feature X indicates device A failure [type
unknown] causing physical impact B. Consequently, even without
the expert knowledge required to pre-define and recognize signa-
tures of specific event types, or in case of new attack vectors, basic
event information such as the occurrence, affected devices, and
physical impact can be provided.
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Figure 3: Conceptual overview of CyPhERS’ signature evaluation (Stage 2)
adapted from [11].
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3. Demonstration case description

This section introduces the demonstration case considered for
evaluating the effectiveness of the proposed methodological adap-
tations and automated signature evaluation system for applying
CyPhERS for automated online DER monitoring. The demon-
stration case is based on cyber attack experiments on a real DER
system, allowing to evaluate CyPhERS under realistic condi-
tions and without assumptions and simplifications associated with
simulation-based studies for the first time. The real PV-battery
system which builds the foundation of the demonstration case is
detailed in Section 3.1. Thereafter, Section 3.2 describes the con-
sidered attack scenarios. Finally, Section 3.3 details the realization
of the attack experiments on the real PV-battery system, and the re-
sulting dataset on which the CyPhERS demonstration in Section 5
is based.

3.1. PV-battery system

The cyber-physical structure of the considered real PV-battery
system is schematically depicted in Fig. 4. The system is located at
the Karlsruhe Institute of Technology (KIT), Germany. The sys-
tem comprises four PV inverters, each with four dedicated solar
panel strings (PV1-4), four battery stacks with associated battery
inverters (BAT1-4), four energy meters (M1-4), a data manager
(DM), and a data server (DS). The communication is based on
modbus (MB), transmission control protocol (TCP), address res-
olution protocol (ARP), and user datagram protocol (UDP). Each
battery stack has a capacity of 10.24kWh and a maximum dis-
/charge power of 5kW. The connected solar panel strings of each
inverter have a peak power between 15.50kW, and 16.74 kW,
While PV1-4 are connected to all phases (L1-L3), BAT1-4 are
linked to individual lines (see Fig. 4). The three phases are mea-
sured individually by M1-3. In addition, M4 measures all three
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Figure 4: Illustration of the real PV-battery system considered for demonstrating
the application of CyPhERS for DER monitoring.

phases and thus provides measurement redundancy. The PV and
battery inverters are connected to the same grid connection point
(GCP) as the building load. The load is characterized by typical
office building patterns (higher load during working hours, lower
on weekends). An additional characteristic are periodic load peaks
due to activation of an air compressor. The control objective of the
system is to minimize active power exchange with the grid. Con-
sequently, batteries are charged if PV production exceeds the load,
and discharged in the opposite case, provided an appropriate state
of charge (SOC). As BAT1-4 are connected to individual phases,
power flows P-!-PL3 are controlled separately by a dedicated bat-
tery. An exception is P“!, which is connected to BAT1 and BAT4.
In case that batteries reach its maximum dis-/charging power, the
offset on the respective phase is compensated by the other batter-
ies on their phase, which is coordinated by communication among
BAT1-4. Fig. 5 illustrates the operation of the batteries on the ex-
ample of BAT3 for a representative day. At ~09:30, P-* changes
from grid import to export due to the increasing PV feed. Con-
sequently, BAT3 starts charging to minimize the grid exchange.
Between ~11:00 and ~17:00, the maximum charging power and
SOC of BAT3 are reached, resulting in a deviation of PL3 from
zero. At ~17:00, P*3 changes back from export to import due to
the decreasing PV feed. As a result, BAT3 discharges to minimize
the grid exchange until it is fully depleted at ~20:00.
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Figure 5: Illustration of the operation of the batteries on the example of BAT3.

The battery controllers receive the required measurements of
P“1-P3 through subscription to the UDP multicast of the respec-
tive energy meter (M1, M2 or M3). The DM collects measure-
ments from solar panels and batteries such as panel and cell tem-
peratures. The DS hosts a custom data visualization software for
users and builds the interface to the external network.

3.2. Attack scenarios

For the demonstration case, a threat scenario is assumed in
which the attacker gained virtual access to the local DER network
by hijacking the DS (see Fig. 4). From there she/he launches sev-
eral cyber and cyber-physical attacks targeting different devices of
the PV-battery system. The considered attack types are among
the most relevant ones for DERs [10, 37, 38]. The cyber attacks
comprise synchronize (SYN) scans and hypertext transfer protocol
secure (HTTPS) requests, falling under the category of reconnais-
sance activities, as well as ARP spoofing used for eavesdropping,
which belongs to data collection activities [39]. Among the cyber-
physical attacks are false data injection attacks (FDIAs), false
command injection attacks (FCIAs), and replay attacks, which all
intent to alter the power output of the PV-battery system, as illus-
trated in Fig 6. In case of the FDIAs, false active power readings
are injected in the name of the respective meter, causing an abrupt
dis-/charging process of the batteries. The FCIAs comprise shut-
down of either PV or battery inverters. For the replay attacks, the
attacker repeats valid active power readings of the energy meters,
which multiplies the control error and thus results in oscillation
of the batteries. Given a simultaneous manipulation of multiple
DERs, the considered cyber-physical attacks could provoke a sud-
den static (FDIA and FCIA) or dynamic (replay attack) load alter-
ing in the power system, which can cause congestion as well as
voltage and frequency stability issues [40]. Attacks with the intent
to create power quality disturbances on a millisecond or waveform
scale are outside the scope of this work as those cannot be captured
with the given data resolution of the considered real PV-battery
system (see Section 3.3).
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Figure 6: Physical impact of the considered cyber-physical attacks.

3.3. Attack experiments and dataset

The experiments have been conducted in October 2022. After
recording the system under normal operation for approximately
two weeks, 15 attacks were launched within one day between
10:00 and 17:00 local time (see Table 1).

The data was recorded using port mirroring in form of a passive
packet capture of the local network. Both physical process and
network traffic features are extracted from the resulting pcap file.
The set of considered raw features is listed in Table 2. The physi-
cal data have a resolution between one second and one minute, de-
pending on the respective feature. Network data on average com-
prise 7539 packets per minute.

4. Methodological adaptation and implementation of CyPhERS

This section details the methodology of CyPhERS with a par-
ticular focus on the proposed adaptation for DER monitoring and



Table 1: Schedule of the attack experiments.

No. Attack type Victim Start End
1 FDIA M3 10:01 10:17
2 ARP spoof PV3/DM 10:31 10:48
3 HTTPS request BAT1 11:06 11:06
4 SYN Scan PV3 11:22 11:34
5 FCIA PV2 11:47 12:01
6 FDIA M1 12:14 12:32
7 HTTPS request DM 12:47 12:47
8 Replay attack Ml 13:05 13:07
9 FCIA BAT3 13:26 13:39
10 FCIA PV1 13:56 14:09
11 ARP spoof PV4/DM 14:30 14:44
12 FCIA BAT4 15:00 15:19
13 FDIA M2 15:39 15:48
14 SYN Scan PVv4 16:04 16:08
15 Replay attack M2 16:20 16:23

automated signature evaluation system. First, the online event sig-
nature creation (Stage 1) is addressed, which includes a descrip-
tion of target feature and covariate extraction (Section 4.1), as well
as the signature extraction system (Section 4.2). In this context,
the central adaptations are presented which comprise 1) the switch
from deterministic to probabilistic models and detection rules, 2)
the consideration and differentiation of functional and behavioral
physical target features, and 3) the use of abstracting physical tar-
get features. Thereafter, the signature evaluation (Stage 2) is ex-
plained in Section 4.3, which involves introduction of the proposed
automated signature evaluation system. Along the methodological
description of Stage 1 and 2, details on the implementation to the
PV-battery system demonstration case are provided.

4.1. Target feature and covariate extraction

In this section, the extraction of target features and covariates
from raw data of a DER is presented. Physical and network target
features are addressed sequentially in the Sections 4.1.1 and 4.1.2.

4.1.1. Physical target features

According to [11], physical target features are monitored to
identify both true physical events and manipulations of process-
relevant data. The former requires features which represent the
operation of all physical components of the system in question in
order to localize the affected ones, and derive the physical impact
on them. The latter necessitates monitoring of sensor readings
used for process control. Therefore, this work considers physical
target features which 1) represent the physical operation of PV1-4,
BAT1-4, and M1-3, and 2) monitor the multicasted active power
readings required for controlling the batteries. A specificity of
DEREs is that attacks can directly target the functionality of a com-
ponent (e.g., switch battery off) or exploit the normal functionality
to achieve an abnormal behavior (e.g., control battery to create
load oscillation). Thus, this work suggests to extend the original
CyPhERS methodology by considering and differentiating both
target features that represent either the technical functionality or

Table 2: Raw network and process features considered in the demonstration case.

No. Physical features No. Network features
1  Timestamp 1 Timestamp
2 Solar irradiation Ir 2-3 Internet protocol (IP) address

3-14  Act. power PPVI-4 pBATI-4 " pMi-4 4 5 Media access control (MAC) address
15-18 Battery state of charge SOCBAT!* 6 Protocol

19-22 Battery voltage VBATI# 7 TCP flags

23-26 Battery temperature 7 BAT!-4 8 MB function code

e Ir sensor
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Figure 7: Comparison of functionality- and behavior-describing target features on
the example of a physical "attack” where PV panels are covered.

behavior of DER components. Whether a target feature is func-
tional or behavioral depends on the model inputs (target feature
lags and covariates). More precisely, even a model of the same
feature can represent either the functionality or behavior depend-
ing on the input, as demonstrated in Fig. 7. In the depicted exam-
ple, the attacker wants to create a sudden change of the PV feed.
Instead of directly damaging the plant, the attacker uses the normal
functionality (reduced feed if less sun) to launch the attack. The
functionality model uses the local /r measurement as input and
predicts the expected feed reduction. Thus, no functional anomaly
is flagged. The behavior model uses an external /r measurement
which results in a deviation between the predicted and actual feed.
As a result, a behavioral anomaly is flagged. In case of only mon-
itoring the functionality, the attack impact would not be detected.
On the contrary, when solely monitoring the behavior, it could not
be determined whether the anomaly stems from device disfunction
or misuse.

Table 3 lists the extracted physical target features and associated
model inputs for the PV-battery system demonstration case.! The
average active load Pgmean 1S selected as target feature represent-
ing the functionality of PV1-4, BAT1-4, and M1-3. In these cases,
model inputs exclusively stem from the component’s variables and
immediate inputs, or data of a redundant device. The behavior of
the batteries is represented by PEAT which is the average active
load of the i-th battery modeled based on the time of the day and
PV feed. Consequently, anomalies in PPAl indicate abnormal
battery behavior given the current time and PV feed. For the en-
ergy meters, the absolute sum of the active load readings |PM: |
modeled based on P?r’gean is considered as behavioral feature. As
the meters multicast on constant frequency, a sum/mean-mismatch
can be a sign for abnormally many or few multicasts, potentially
indicating misuse.

The battery operation in the given PV-battery system is influ-
enced by weather and consumer behavior. The associated volatil-
ity and randomness potentially complicate the detection of anoma-
lies. For such cases, this work proposes to extend the origi-
nal CyPhERS methodology by extracting additional features that

"Note the restriction to features which can indicate load-altering events on a
seconds to minutes scale due to the given resolution of the evaluated real data.
Sophisticated attackers may also create sub-second power quality disturbances by
modifying inverter output waveforms through firmware manipulation. Identifying
the physical impact of such attacks would require extracting target features from
high-frequency readings, such as the total harmonic distortion.



break down a component’s complex behavior to simpler abstrac-
tions such as the on/off state. Two such abstracting features are
considered for the demonstration case. PEAT describes how much
power changes the i-th battery conducts in a 15s period. An unusu-
ally high value can be an indicator for abnormal load oscillation.
Finally, S BAT? describes the on/off state of a battery modeled under
use of the current time of the day and PV feed. This target feature
is supposed to indicate whether a battery is activated during times

and PV feeds where it usually is deactivated and vice versa.

4.1.2. Network target features

Following the descriptions in [11], the purpose of traffic moni-
toring is twofold: 1) localization of compromised network devices,
and 2) determination of attack vectors. To achieve the former, the
traffic of each network device should be monitored individually.
The latter necessitates extracting several informative features per
device. Consequently, this work considers multiple network fea-
tures for the PV and battery inverters, energy meters, DM, and
DS (see Table 4). The features comprise counts of packets with
specific protocols, TCP flags and MB function codes for periods
of 15s. Within the local network of the considered PV-battery sys-
tem, a variety of protocols are used, which enable certain function-
alities, such as communicating process-relevant data (UDP pack-
ets from energy meters) or sending control commands (MB pack-
ets to battery inverters). Thus, unusual deviations in the packet
count of certain protocols can point to specific attack types. Ab-
normal numbers of packets with SYN flags can be an indicator for
adverse connection attempts and is thus taken into account. Fi-
nally, packets with function code 4 (read registers) and 16 (write
registers) are counted. In particular, abnormal high numbers of
packets with function code 16 can be a sign for adverse control
commands. In all cases, network target features are modelled us-
ing lag values and the time of day as model input. Time of day is
an important covariate in OT networks, as certain processes often
are regularly conducted at specific times, e.g. every full hour.

Note that a broad spectrum of further useful features can be ex-
tracted. For example, the number of ports used within a certain
period would provide information to identify port scans. Other
features could be derived, among others, from IP/MAC addresses,
packet sizes or checksums. However, for the sake of comprehensi-

bility of the results in Section 5, only features which are considered
most relevant are taken into account. Due to the same reason, only
packets sent fo a device are taken into consideration in most cases.
Exceptions are M1-3 and the DS. As the meters M1-3 multicast
process-relevant data, monitoring UDP packets send from them is
of importance. Moreover, as the DS is available for users and thus
directly connected to the external network, it constitutes a likely
target for attackers. Thus, both packets send to and from the DS
are monitored.

4.2. Signature extraction system

The signature extraction system generates anomaly flags for the
set of target features, which eventually form the event signatures
(see Fig. 2). The authors of CyPhERS argue for using individ-
ual models for each target feature [11]. Consequently, the sig-
nature extraction system comprises a set of individual anomaly
detection and classification pipelines. Among the reasons is the
independent selection of covariates, which becomes particularly
relevant in context of the previously introduced differentiation be-
tween functionality- and behavior-describing target features.

The methodology of the anomaly detection and classification
pipelines is explained in Section 4.2.1 with a particular focus
on the transformation from deterministic to probabilistic models
and detection rules as proposed in this work. After that, Sec-
tion 4.2.2 addresses the time series models which are used within
the pipelines. Finally, the procedure for automated implementa-
tion of the signature extraction system and its realization for the
given demonstration case is detailed in Section 4.2.3.

4.2.1. Anomaly detection and classification pipelines

As explained in [11], a pipeline comprises a target feature model
and consecutive anomaly detector (see Fig. 8). While the model
predicts the normal behavior of the respective target feature, the
detector compares the predictions with the ground truth obser-
vations to decide whether to flag an anomaly. In the original
version of CyPhERS, both the predictions and the detector’s de-
cision function are deterministic [11]. Due to the weather- and
consumer-induced randomness and variability of DER operation,
modeling of some features is subject to pronounced uncertainties,
rendering anomaly detection more challenging. Thus, this work

Table 3: Overview of physical target features extracted for the PV-battery system demonstration case.

Target feature Model input Type Description
For every 60s time step 74, the mean value is determined as average over the N data packets carrying PPV
PVi : i : PVi w pPVi iaq in pPVi o : : ;
Pl Ir (local) Functional ~ within T accor'dm.g 0 Phocanr, = Zp;‘l Pp,"'[Nz,. Anomalies in P can indicate disfunction of the i-th solar
panel string or its inverter.
PMi GO CBATI For every 7, the mean value is determined as average over the N, data packets carrying PBATI within 7,, ac-
BATi an> an> : : BATi  _ w pBATI iaq i PBATI o di : : ;
P V‘é‘g‘T‘} 7B AT Functional cor.dmg to APmea,’,:Tﬁ“ = Zp;l P, [Nz, Anomalies in Py - can indicate a disfunction of the i-th battery stack
mean> = mean or its associated inverter.
MI1-3 Redundant meas- . For every 5s time step 75 the mean value is determined as average over the N, data packets carrying PM! within
N Functional . Mi . oMi . . . L .
fmean urement of M4 75 according to P, - = 2, ) P /[Nr,. Anomalies can indicate a disfunction of the i-th meter.
»Ts p=1"p s .
. For every 15s time step 7,; the absolute sum of power changes is calculated according to PBAT! =
PBATi PRATI g values  Dopavioral 3158 | pBATI — PBATI | \where 7 is the start time of 7,;. Anomalies in PPAT can indicate oscillation of
osc osc g i (Abstracting) “f=0s'" mean7+f+1s mean,F+f 15 osc
the i-th battery.
BATi PVId . Behavioral ~ For every 7, the on-off state (SBAT € [0, 1]) is determined. Anomalies may indicate that BATi is unexpectedly
S Prean > time of day @

(Abstracting) online/offline given the current time of day and PV feed.

For every 7, the mean value is determined as average over the Ny, data packets carrying PPAT! within 7, accord-

. . 1 1 i N
Eggn PPYL4, time of day Behavioral — ing to PBAT! =% ool
day and PV feed.
|PMI-3) pMi Behavioral

sum

For every 75 the absolute sum is determined as |P;
mean of the i-th meter given the current PN, (sending abnormally many or few packets carrying PMY).

P?ATi /Nz, . Anomalies can indicate abnormal behavior of BATi given the current time of

Mi

N, i . - .
sam,z; | = Zp:l Pi‘,’l’ . Anomalies can indicate abnormal behavior
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Figure 8: Schematic representation of the anomaly detection pipeline of a target feature ¢ based on [11].

Table 4: Overview of network target features extracted for the PV-battery system
demonstration case. Indices s and d refer to source and destination, respectively.
Packets are counted for 15s periods.

Target feature Description

nPVi  ,BATi DM DS Mi DS UDP packets send to/from
uDPy’ ""uDPy* "*UDP,;> UDP;> ""UDPs? UDPs  the device

nPVi  ,BATi DM DS DS TCP packets send to/from
TCPy* "'TCPy> "TCPy* "'TCP, > "'TCP the device

PVi BATi ,DM DS DS MB packets send to/from
MB,* ""MB, * ""™MBg* "MB, > "'MB, the device

nPVi  BATi DM DS DS ARP packets send to/from
ARPy’ "'ARPy* "'ARP, "TARPy* "' ARP the device

PVi _BATI .DM DS Transport layer security (TLS)

nPVi  pBATE pDM DS g .

TLSq> "TLSq” "'TLSq* "TLSq” "TLSs packets send to/from the device
Packets with SYN flag send
to/from the device

Packets with write register

PVi  BATi ,DM DS DS
SYNg* "'sYNg* ISYNg> 'sYNg» T'syNg

7PVi BATI
164 164 code send to the device

JPVi BATi Packets with read register
44 > T4 code send to the device

proposes to apply probabilistic time series prediction and deci-
sion functions when using CyPhERS for DER monitoring. In
this way, the detection sensitivity is dynamically adjusted to the
model’s current confidence level, which potentially reduces the
number of false positives during times of low confidence, and
improves the detection of actual events at periods where model
confidence is high. For that purpose, the lower quantile g, me-
dian gy, and upper quantile gy are predicted for each target fea-
ture. Given X, = {x{,x5,...x5 | x{ € RVi} and Z.,,...,Zc,, =
(ST ST TRRE AN NS F A ...,zfl’N}IzjyiERV(j, i)} of a target
feature ¢, the expected quantile £/ at time 7 is predicted using

C C 1 C C 1
lag values x;_,,, ..., x| and covariates z{ , ..., z, , according to

€= O (16 X1 [25 o 25,0) . Y € {qLa gy qul. (D)

where n is the number of covariates, and w the length of the history
window. Note that, depending on the target feature, x;_, ..., X;_,
and z{ , ..., 7, are only partially used (see Section 4.1). A model
is trained to predict XY by minimizing the quantile loss function
[41]

Ly(%], x7) = max [q(x; — £), (g — D(xj — £)] )

over a training set Xt = X0, X5, xf\,mi“ | x{ € RVi}.

The quantile predictions of the target feature are forwarded to
the anomaly detector. In the original version of CyPhERS, the
detector decides whether to flag an anomaly based on the dis-
tance between ground truth observations and deterministic predic-
tions [11]. The present work proposes to extend to the distance
between the ground truth and the probabilistic prediction interval
(PD) [x2-¢, X90°]. In this way, the dynamical adaption of the detec-
tion sensitivity to the current model’s confidence is realized. When
a model is certain about its predictions, even small deviations are
accounted for. On the other hand, low model confidence (larger

PI) will reduce the calculated distance. The distances are averaged
over the last [ observations according to

=1 c ~4qu,C : C ~qu,C

X =% if x> X

~qL,C c : c 2qL,C

: C—x . ifxf < 3T

=T —j —j t—j
& = 3)

[

For the PV-battery system demonstration case, [ = 5, g, = 0.01,
and gy = 0.99 is selected Yc € 7 and J. Based on &f and further
characteristics of the current target feature observation, different
anomaly types are distinguished, which is expressed by the deci-
sion function

b b b
2 i > 1), (> £9) and (¥ = 0)
10 (s > 70, (6 > 27 and (& # 0)
i (e > 70, (<A™ and (€ £0) (4
=2 if (&8 > 1), (x¢ < M) and (x¢ = 0)

0 otherwise,

Detection Direction

with 7. being a target feature-specific threshold. The anomaly
types are further explained in Table 5. Both the direction of an
abnormally large deviation and the information about a target fea-
ture being zero provides valuable information for identification
of event root causes and physical impact. For example, an ab-
normally high number of UDP packets send by an energy meter
may indicate a FDIA, while a PV feed of zero during daytime may
points towards a switched off inverter.

Table 5: Definition of considered anomaly types.

Flagv Anomaly type Description Schematic
) Positive Target feature abnormally
Zero high and zero. N | J
1 Positive Target feature abnormally
non-zero high and non-zero. N\

1 Negative Target feature abnormally  |——" 7\
B non-zero low and non-zero.
i Target feature ab all -
) Negative arget feature abnormally | —T T~
Zero low and zero.
0 No anomaly No abnormal behavior. Q

4.2.2. Time series models

The authors of CyPhERS suggest the use of specific models for
different target feature classes, which includes the use of long-
short term memory (LSTM) networks for network traffic features.
However, given the computational limitations of small DERs, the
use of resource intensive models is impractical. Thus, this work
proposes to apply gradient-boosted decision trees (GBDT) [42]



for predicting the quantiles Vc € 7 and J. GBDT is a frequently
applied ML technique, popular for high accuracy and efficiency,
which renders them a good fit for the given problem [43]. GBDT
consists of a set of simple decision trees, which are connected in
series. Thus, each of them minimizes the prediction error of the
preceding tree. For a detailed explanation, the reader is referred to
[42].

4.2.3. Automated model and detector tuning procedure

In [11], the authors of CyPhERS suggest an automated imple-
mentation procedure for the signature extraction system, which
comprises independent tuning of the individual detection and clas-
sification pipelines (see Fig. 9). First step is the training and hyper-
parameter selection of the GBDT models of all target features. For
the PV-battery system demonstration case, selection of hyperpa-
rameters is conducted on 75 % of the two-week normal operation
data. The tuned hyperparameters and associated search spaces are
summarized in Table 6.

Table 6: Hyperparameters and search spaces of the GBDT models.

No. Hyperparameter Search space
1 w? [0....,60]
2 Max. depth of a tree [3,...,21]
3 Number of decision trees [100,...,1000]
4 Learning rate [0.001,...,0.3]

40nly for target features considering lag values.

Next, the anomaly detectors of all pipelines are tuned. For that
purpose, the fitted models are used to predict the remaining 25 %
of normal operation data. Based on the predictions, the distances
Eq = {€], €5 '"’85\1‘5“ | £ € R Vi} are calculated according to (3),
Ve € 1 and 9. From Ef and a threshold factor f, the feature-
specific thresholds are determined according to

7. = f-max (ELg), 5)

where the threshold factor is selected as f = 1.1 in this work.
Therefore, an anomaly within a target feature c at time ¢ is flagged
if & exceeds the largest distance during normal operation by at
least 10 %. Before the anomaly detection pipelines are applied for
online flagging of new observations, the models are retrained on
the entire set of historical normal operation data (see Fig. 9).

Finally, the resulting anomaly flag series provided by the in-
dividual pipelines are grouped for each system zone to obtain
human-readable event signatures as output of CyPhERS’ Stage 1.
For the PV-battery system demonstration case, the defined system
zones comprise PV1-4, BAT1-4, M1-3, DM, and DS.

4.3. Signature evaluation (Stage 2)

This section details the methodology of CyPhERS’ signature
evaluation with a focus on the realization of an automated signa-
ture evaluation system, and describes its implementation for the
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T 1 1
| ®© T 11 L
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Figure 9: Procedure for tuning the anomaly detection pipelines based on [11].

PV-battery system demonstration case. First, the definition of a
signature database is addressed in Section 4.3.1, followed by an
explanation of the proposed automated signature evaluation sys-
tem in Section 4.3.2.

4.3.1. Signature database

Signature evaluation in CyPhERS is based on manually or auto-
matically matching the organized anomaly flags of the set of target
features provided by Stage 1 with a database of known event sig-
natures [11]. The signatures of the attack types included in the
demonstration case are depicted in Fig. 10 on the example of se-
lected victim devices and physical impacts. The associated sig-
nature descriptions are provided in Table 7. For the sake of con-
ciseness, target features of the same kind are jointly represented in
one row in Fig. 10. More precisely, for individual system zones,
the various protocol count flags are combined in v, , and flags in
counts of different MB function codes (v,,,, and vy, ) in vy, . Sig-
natures can also be defined for unknown event types, which then
carry reduced information such as indication of affected system
zones. For the sake of clarity, however, these are not included in
Fig. 10.

4.3.2. Automated signature evaluation

The demonstration of the original version of CyPhERS in [11]
includes manual recognition and evaluation of the event signatures
provided by Stage 1. In case of larger plants, such as medium
voltage level-connected wind and solar parks, visual recognition
of event signatures in control rooms may be feasible. However,
for smaller resources such as residential PV-battery systems, man-
ual evaluation is impractical. For the sake of proving feasibility
of automated signature evaluation, this work formulates and ap-
plies a rule-based signature evaluation system which jointly eval-
uates the most recent flags of all target features within a moving
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Figure 10: Event signatures of the attack types included in the demonstration case.
The signatures are depicted for selected victim devices and physical impacts.



Table 7: Description of the event signatures of the attack types included in the demonstration case (see Fig. 10).

Attack

Event signature description

Scan

A device (e.g., PV inverter) receives an abnormally large number of TCP packets (VnTcp =1) with connection request (vugyy, = 1) over a longer period.
Simultaneously, another device (e.g., DS) sends unusually many TCP packets (viycp, = 1) w1th connection request (vygyy = 1). Together, this points towards
scanning of a victim device (here, the PV inverter), where the attacker is located on a local device (here, the DS). The lack of anomaly flags in physical target
features indicates a pure cyber attack without physical impact.

A device (e.g., battery inverter) receives abnormally many TLS packets (vnTLS = 1) over short period, pointing towards a web service call (HTTPS request).

HTTPS Simultaneously, another device (e.g., DS) sends more TLS packets than usual’ (Vnyp g, = 1), which suggests the attacker being located on this device. Parallel
requestincrease of TCP packets (VnTcp =1) and packets with SYN flags (v,lSYN =1) due to connection establishment between attacker and victim device. The

ARP
spoof

FCIA

FDIA

absence of anomaly flags in phyqlcal target features indicates a cyber attack without any physical impact.

Two devices (e.g., PV inverter and DM) receive abnormally many ARP packets (v,,,zp = 1), while another (e.g., DS) sends more than expected (v, ARP; = 1).
This points towards ARP spoofing where the attacker is located on a local device (here, the DS). The two victim devices receive less (or no) UDP packets
(% nUDR, = —1or-2), while the device occupied by the attacker receives more (anDP =1), which suggests that the communication between the victims is
successfully redirected via the occupied device®. Lack of flags in physical features 1mply eavesdropping instead of manipulation of process-relevant data.

A device (e.g., PV inverter) receives an abnormally large number of MB packets (v, = 1) with write register function code 16 (an(, =1). In parallel,
another device (e.g., DS) sends more MB packets than usual (vu, =1). Together, this indicates an attacker sending false control commands to a victim
device (here, the PV inverter) from the occupied local device (here, the DS). Parallel increase of TCP packets and packets with SYN flags because of
connection establishment between occupied and victim device. Abnormally low and zero PV feed (vp;, ., = —2) indicate that the attacker switched off the
PV inverter®.

An energy meter Mi sends unusually many UDP packets® (vy,p = 1) while the absolute sum of its active power readings is too high (vjp,,,|=1). Together
this points towards unusual frequent broadcasting of active power readings. The parallel abnormally low mean (vp; .. =—1) indicates false PM? injection
imitating grid exports. For the battery which uses Mi readings, an unusually low mean active power given the current time and PV feed (vp ..=~-1)
suggests reaction with charging®. Absence of anomalies in PBAT‘ underlines that the battery accepts the false data and reacts to them in an expected way.

An energy meter Mi sends abnormally high numbers of UDP packets (Vaypp, = 1), and the absolute sum of its active power measurements is higher than

Replay expected (vjp,,,|= 1). Together this indicates unusually frequent broadcasting of active power readings. As the mean is normal (vp, = 0), no false data is
attack injected, and instead, a replay of valid PM! readings is likely. Abnormally high power changes (vp,. = 1) of one or more batteries indicates load oscillation

due to multiplication of the control error through replaying PM values.

#Parallel network anomalies for other devices which communicate with the victims possible as victim functionality can be affected by the attack.
bPhysical impact depends on the malicious control command/injected false data, and the victim device.
CParallel network anomalies for other devices possible due to UDP traffic overloading of those.

time window Ty, of five minutes. A simplified representation
is provided in Algorithm 1. In case that no anomaly is detected
(i.e., v.=0, Yc € I and ) within Ty, the system predicts nor-
mal operation. Given that the flags within 7.y, match with one
of the pre-defined event signatures, the associated event descrip-
tion forms the prediction, for example, FCIA against PVI from
DS with physical impact ”PV1 switched off”. In case that anomaly
flags provided by Stage 1 do not match any of the defined rules,
the evaluation system predicts Unknown abnormal behavior. In
contrast to the simplified representation in Algorithm 1, additional
rules for different variations of specific attack types are defined.
For example, Replay attack against meter M1 with physical im-
pact "oscillation” on BATI can be with or without parallel traffic
overloading of other devices. Further rules predict affected sys-
tem zones in case of unknown event types, for example, Unknown
network anomaly affecting PV2 and DS. Finally, some rules ad-
ditionally take previous predictions into account. For example, in
case of predicting a battery being switched off by a FCIA, informa-
tion about the injected false command is stored over a time period
larger than Ty, in order to avoid switching to prediction of a pure
physical failure after five minutes.

5. Demonstration of CyPhERS for DER monitoring

This section first demonstrates results from applying the
adapted version of CyPhERS to the experimentally derived dataset
of a real PV-battery system, as introduced in Section 3. The in-
cluded attack types are successively evaluated in Sections 5.1-5.6.
Thereafter, a quantitative performance comparison to the original
version of CyPhERS [11] is conducted in Section 5.7 to assess the
impact of the proposed methodological adaptations. The binary
(normal vs. abnormal operation) detection performance is com-
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pared based on the true and false positive rate according to

N,
and FPR = —%

p M’

Nrp
TPR = ©6)
where Ntp, Npp, Np, and Ny are the number of true positive, false
positive, actual positive, and actual negative observations, respec-
tively. The binary anomaly flags are created following

1 (abnormal operation)

ifvi#0, IceeJUurs
otherwise.

binary _
. =

)

0 (normal operation)

Observations within a 5-minute window after each attack event are
excluded from the FPR calculation to avoid considering positive
anomaly flags (V)" = 1) during recovery of the attacked system
as false positives, which would bias the performance assessment.
The identification performance is evaluated for each attack type
a based on the identification rate according to
Nidentiﬁed

IR, = ———,

N ®)

with N, being the total number of event instances of attack type
a and Nidentified the corresponding subset of correctly identified in-
stances.

5.1. Scanning attacks

The event signatures provided by CyPhERS’ Stage 1 during the
two scanning attacks are depicted in Fig. 11 together with the pre-
dictions of the rule-based signature evaluation system (Stage 2).
Note that system zones without flagged anomalies are not depicted
in the following. In both cases the provided signatures corre-
spond to the signature of scanning attacks (see Fig. 10). Thus, vi-
sual recognition of the signature allows identifying the attack type



(scan), victim (PV3 or PV4, respectively), and attacker location
(DS) manually. The same predictions are provided by the rule-
based system without human interaction. During the first scan,
the rule for predicting a scan is not immediately fulfilled, since
flagging v, ps = 1 is delayed. Therefore, the rule-based system ini-
tially predlcts an unknown network traffic anomaly for PV3 and
DS, based on the occurrence of flags in the associated network
target features.

Fig. 12 exemplifies the advantage of modeling target features
with time series models. Since n?éP exhibits normal peaks at
full hours, the increase during scanning of PV4 only constitutes
a local anomaly which cannot be detected by static thresholds not
taking temporal information into account. In contrast, the applied
GBDT model allows to detect the scanning-induced local anomaly

by learning that peaks should only occur at full hours.
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Figure 11: Event signatures provided by CyPhERS’ Stage 1 and predictions of the
rule-based signature evaluation system (Stage 2) during the scan attacks.

| = Ground truth nycp, = Prediction fitcp, = Flag vp;cp.

-~ 220 I ScanPV4 1 1
~ 1

ot I

O [ —
<§ I -~
= 200 ! : 0 #
g ' ' e
tcm l [ i§
py

;[_J 180 : : -1

16:00 16:05 16:10
Time

Flgure 12: Ground truth, prediction (98 % PI and median) and anomaly flag for
nTCP during scan of PV4.

5.2. HTTPS request attacks

The provided event signatures and rule-based predictions for the
two HTTPS requests are depicted in Fig. 13. Due to a match with
the signature of HTTPS requests (see Fig. 10), the attack type can
be identified together with the victims (BAT1 and DM, respec-
tively), and attacker location (DS), both through visual signature
recognition and the rule-based system.

5.3. ARP spoofing attacks

Fig. 14 depicts the provided event signatures and predictions of
the rule-based system for both ARP spoofing attacks. The signa-
tures match the one for ARP spoofing (see Fig. 10). Since the
associated rules are fulfilled, Stage 2 predicts ARP spoofing at-
tacks from an attacker located on the DS against PV3|DM, and
PV4|DM, respectively. As the attacks distract the DM, its UDP
communication pattern to non-victim devices is also affected, re-
sulting in parallel network anomaly flags for BAT1 during the first
ARP spoof and PV3 during the second. As this behavior is consid-
ered as a sub-case of the ARP spoofing signature, and integrated
as such in the rule-based system, predictions switch between ARP
spoofing with and without parallel traffic distraction of other de-
vices (see Fig. 14).

Algorithm 1 Simplified representation of the proposed rule-based signature evaluation system.

Teval < Last 5 minutes
if all flags in Ty, are zero then
prediction < Normal operation

else if vnTCP 1, vfsw =1, vnTCP 1, and Vnsm =1 within Teyy then
predlctlon — Scan of device X from device Y

else if vnT[S = 1 vaCP _1 VHSYN _1 V"TIS _1 V"TCP _1 vnTCP
prediction « HTTPS request of device X from dev1ce Y
e X _ 1 X = Y

elseif vy, =1,vy  =Lvi  =Lv,  =-lor —2v
predictlon — ARP spoof against devices X,Y from device Z

elseif vi =Ly =Lvi =1Ly =Lv =Lv =1

=1, and v

=-lor —2,and v*
UDI

Bs

=1 within 7%, then

NSYNg

b, = 1 within 7y, then

= 1 v”SYN

1, and vﬁfmmu = —2 within Teyy then

predlctlon — FCIA agalnst device X from device Y with physical impact A (here, switch X off)

elseif v =1,vM

UDPy |Pourm| =1, va

- X
1,and v Poncan

~=—1 within Ty then
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Figure 13: Event signatures provided by CyPhERS’ Stage 1 and predictions of the
rule-based signature evaluation (Stage 2) during the HTTPS requests.

Another event is detected shortly before the second ARP spoof.
As the provided anomaly flags do not match with the signature of
a known attack, reduced event information (occurrence, affected
network device, no physical impact) is provided by Stage 2. This
example demonstrates that CyPhERS can automatically provide
information such as event occurrence and affected devices also for
unknown event types.

To illustrate the prediction and flagging process of the underly-
ing anomaly detection and classification pipelines, some examples
are provided in Fig. 15. Fig. 15 (a) represents njp, during the sec-
ond ARP spoofing attack. It can be noticed that the spoofs result in
pronounced global anomalies which are immediately detected. As
ARP packets during normal operation occur non-deterministically,
the small peaks cannot be learned by the GBDT model. Instead,
it puts the PI on a constant level to capture those peaks, which il-
lustrates that the GBDT model approximates a static but accurate
threshold in cases without learnable pattern. Fig. 15 (b) shows
nUDP during the first ARP spoof. As the DM maintains UDP com-
munication with non-victim devices, the oscillation pattern per-
sists, however, on a lower level. The level decrease is detected by
the underlying pipeline. Fig. 15 (c) depicts an excerpt of the UDP
traffic distraction of BAT1 during the first ARP spoof. It can be
seen that the distraction only expresses as a local and short pattern
interruption without specific traffic increase or decrease.

5.4. False command injection attacks

Fig. 16 depicts the event signatures of Stage 1 and predictions
of Stage 2 during the four FCIAs. In all cases, the provided signa-
tures match the FCIA signature (see Fig. 10), allowing to identify
the attack type, victims, attacker location, and physical impact, as
the rule-based predictions indicate. Fig. 17 illustrates the detec-
tion of false commands on the example of ”11\)/15135 during the FCIA
against PV1. The underlying GBDT model successfully learned
the normal peaks at full hours. Moreover, it understands that small
positive peaks are usually followed by negative ones. As the in-
jection of false commands is not followed by a negative peak, the
larger distance between prediction and ground truth results in an
anomaly flag.
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The yellow or orange flags (v= — 2 or 2) in the physical target
features indicate that the attacker switched off the respective vic-
tim device. The detection of the physical impact is exemplified
on the FCIAs against PV1 and BAT3? in Fig. 18. It can be no-
ticed that modeling of physical target features is subject to larger
uncertainties compared to network traffic modeling. As a result,
smaller physical impacts may be missed by some features as, for
example, the case for VT and Vppats during the FCIA against
BAT4. Note that, on the ‘abstraction level of the battery state S,
the switch-off is detected, which highlights the importance of such
abstracting target features for applying CyPhERS for DER moni-
toring, as proposed in this work.

2Note that the predicted sudden change from charging to discharging in Fig. 18
(b) results from the compressor load peak that the battery would compensate if not
switched off.
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Figure 14: Event signatures provided by CyPhERS’ Stage 1 and predictions of the
rule-based signature evaluation system (Stage 2) during the ARP spoofs.
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5.5. False data injection attacks

Fig. 19 depicts the provided event signatures of Stage 1 and
predictions of the rule-based system (Stage 2) during the FDIAs.
As the signatures during all three attacks correspond to the ones
of FDIAs (see Fig. 10), attack type, victim device, and physical
impact can be derived through visual signature recognition or au-
tomated rule-based predictions. Since the batteries accept the in-
jected false data and react to them in an expected way, no dis-
functionality is flagged (vpgngn=0). At the same time, anomaly
flags in VppaTi indicate untypical battery behavior given the cur-
rent time of the day and PV feed®. While blue flags (vp, . = — 1)
indicate abnormal charging, red flags (vp,, .= 1) point towards un-
usual discharging. This example underlines the importance of con-
sidering both functional and behavioral target features for identifi-
cation of the physical attack impact in case of DER monitoring, as
suggested in this work.

5.6. Replay attacks

The event signatures of Stage 1 and predictions of Stage 2 dur-
ing the two replay attacks are depicted in Fig. 20. During both
attacks, anomalies are flagged in almost all system zones as the
network devices are distracted by processing the large number

3Note that VSBAT3 =
by the attack.

1 during the first FDIA indicates that BAT3 was first activated
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of replayed energy meter multicasts. In this case, visual recog-
nition of specific attack patterns is challenging. In contrast, the
rule-based system quickly identifies the signature as the associated
rules are still fulfilled. Since parallel traffic flooding is integrated
into the rule-based system as a sub-case of the replay attack signa-
ture, Stage 2 predicts the attack type, victim device, and physical
impact along with network flooding. The correct identification of
affected batteries and the physical impact on them is the result of
incorporating abstracting target features, as proposed in this work
(load oscillation of BAT: indicated by vpsari= 1).

The batteries which are controlled based on the replayed power
readings oscillate between full charging and discharging power.
Since they reach their maximum power limits, the other batteries
take over, as explained in Section 3.1, and thus, begin to oscil-
late as well. However, since BAT1 and BAT4 are fully discharged
during the second attack, no oscillation is indicated for them.

Towards the end of the second replay attack, the inverter in
PV3 crashes since it cannot process the large number of packets
as pointed out by the yellow flags in the network target features.
Shortly after, Vppvs = — 2 indicates that also the feed of the associ-
ated solar panel string is interrupted.

5.7. Performance impact of the methodological adaptations

Table 8 provides a performance comparison of applying the
original and adapted version of CyPhERS to the dataset of the
considered PV-battery system demonstration case. The adapted
version achieves a significantly lower false positive rate. This im-
provement is mainly caused by the switch to probabilistic mod-
els and detection rules, which enable automatic reduction of the
detection sensitivity at times of low confidence of the prediction
model due to randomness and volatility in DER operation, thus,
reducing false positives. From the identification rates in Table 8, it
can be further seen that the identification of cyber attacks without
physical impact (Scan, HTTPS, and ARP spoof) can be achieved
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Figure 19: Event signatures provided by CyPhERS’ Stage 1 and predictions of the
rule-based signature evaluation system (Stage 2) during the FDIAs.

based on the event signatures of both CyPhERS versions with
comparable performance. However, the original CyPhERS fails to
provide informative signatures for the identification of the cyber-
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physical attacks (FCIA, FDIA, and replay attack) in most cases.
The FCIAs against BAT3 and BAT4 cannot be identified as the
abnormal battery operation is not detected and described in the
provided signatures, which is due to two reasons: 1) The lower
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sensitivity of the deterministic detection approach at times of high
model confidence, and 2) the lack of abstracting physical target
features that break down modeling complexity of the battery oper-
ation, such as the on/off state of a battery. Finally, the FDIAs and
replay attacks cannot be identified by evaluating the event signa-
tures of the original CyPhERS version due to the lack of behav-
ioral target features which indicate misuse of the normal battery
functionality, for example, oscillation during replay attacks.

Table 8: Comparison of the original [11] and adapted version of CyPhERS.

Version | TPR FPR| IRscan IRuTTPs IRspoot IRpcia IRFpiA  IRReplay
Original {0.86 0.15(1/2  2/2 2/2 2/4 0/3 0/2
Adapted | 0.98 0.02 |2/2  2/2 2/2 4/4 3/3 2/2

6. Discussion

In this section, the results of applying CyPhERS for DER mon-
itoring are discussed and put into a wider perspective.

6.1. Applicability of CyPhERS for monitoring of DERs and other
power system applications

The results in Section 5 demonstrate that the proposed method-
ological adaptations and realization of an automated signature
evaluation system enable application of CyPhERS for automated
online DER monitoring. During all considered attacks, CyPhERS’
Stage 1 provides event signatures which are automatically associ-
ated with the correct attack type, victim device, attacker location,
and physical impact in Stage 2. In particular, the significant reduc-
tion of false positives and increased identification rate for cyber-
physical attacks compared to the original version of CyPhERS (see
Table 8) demonstrate the effectiveness of the proposed method-
ological adaptations, namely the 1) application of probabilistic
models and detection rules, 2) differentiation of functionality- and
behavior-describing physical target features, and 3) consideration
of abstracting target features such as the on/off state of batteries.
Given the complexity of the considered PV-battery system demon-
stration case, applying CyPhERS to other power system applica-
tions, including substations and energy communities, is considered
possible. A potentially limiting factor for resource-constrained
systems is the linear dependency between the number of models
and target features. Thus, careful selection of monitored features
is of high relevance for minimizing the computational burden of
CyPhERS.

6.2. The role of ML in CyPhERS

In CyPhERS, ML is used to model target features and eventu-
ally provide the indicator for deciding whether an observation is
normal or abnormal. The results in Section 5 demonstrate that ML
allows to detect complex local anomalies which are only abnor-
mal in a specific temporal or situational context (see, for example,
Fig. 17). In case of some target features, similar detection results
could be achieved with simpler methods. For example, the global
anomaly in narp, during ARP spoofs (see Fig. 15 (a)) could be de-
tected with a pre-defined static threshold. However, ML allows to
generalize and automate modeling of target features and definition
of detection rules. Thus, even in cases where simpler methods can
achieve the same performance, ML is advantageous as it avoids
manual effort, which is particularly relevant for larger numbers of
target features. Furthermore, through regular retraining, the mod-
els automatically adapt to changes such as new consumer behavior.



6.3. Uniqueness of event signatures

For the sake of conciseness and readability, the number of tar-
get features (in particular network features) is limited in this work.
Many other relevant features which are, for example, based on port
numbers or MAC and IP addresses are neglected. Moreover, other
information sources are fully excluded. These include human in-
teractions with the system (e.g., maintenance activities), and sys-
tem logs. Consequently, some of the event signatures may be ex-
plainable by other incidents as well. For example, the pattern of a
FCIA may also result from the rare event of switching off invert-
ers for maintenance. If models are informed about such activities,
these events can be distinguished. Thus, for implementation out-
side an academic environment, all relevant target features should
be taken into account, in order to guarantee uniqueness of the event
signatures.

6.4. Integration into a distributed attack detection system

The steadily growing number of solar plants, battery stor-
ages, and electric vehicles makes coordinated malicious control
of DER fleets an emerging opportunity for large-scale attacks
against power systems. CyPhERS could provide the foundation of
a bottom-up security architecture for power systems, which iden-
tifies such threats in a timely and reliable manner. Attack reports
of multiple distributed CyPhERS systems could be aggregated
and jointly evaluated by a cyber security incident response team
(CSIRT). The CSIRT could then inform affected transmission or
distribution system operators about cyber incidents in their area,
including information on location, capacity and type of affected
energy resources, to enable incident response such as isolation of
affected DERs.

7. Conclusion

This work adapts and evaluates the Cyber-Physical Event
Reasoning System CyPhERS for automated online DER monitor-
ing. CyPhERS is a two-stage process, where Stage 1 generates
informative and interpretable signatures from an online evalua-
tion of physical process and network traffic data, which are eval-
vated in Stage 2 to conclude on event root causes and physical
impacts. Among the key strengths are the independence of his-
torical event observations, and capability to provide information
on cyber, physical and cyber-physical event types. To enable ap-
plicability of CyPhERS for DER monitoring, this work proposes
and realizes several methodological adaptations for Stage 1, in-
cluding 1) switching to probabilistic models and detection rules,
2) differentiating functional and behavioral target features, and 3)
describing complex DER behavior via abstracting target features.
Moreover, a rule-based system is formulated and implemented to
automate signature evaluation in Stage 2. The applicability of the
adapted version of CyPhERS for DER monitoring is evaluated on
a dataset which describes several cyber and cyber-physical attack
types targeting a real PV-battery system. The results demonstrate
that the proposed methodological adaptations and rule-based sig-
nature evaluation system enable CyPhERS to automatically in-
fer attack occurrence, type, victim devices, attacker location, and
physical impact in all considered attack scenarios. The effective-
ness of the methodological adaptations is particularly evident in
significantly higher identification rates for cyber-physical attacks,
and a reduction of the false positive rate from FPR = 0.15 to 0.02.
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