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A B S T R A C T

The widespread adoption of internet-connected and remotely controllable solar plants and energy storages
renders coordinated cyber–physical attacks against distributed energy resources (DERs) an emerging risk for
power systems. Effective incident response can be facilitated by online DER monitoring providing real-time
information on event root causes and physical impacts. Such online event identification is challenged by
the lack of historical attack observations, and emergence of new attack strategies. The Cyber-Physical Event
Reasoning System CyPhERS provides real-time information on both known and unknown attack types in form
of informative and interpretable event signatures, without need to be trained on historical attack samples. To
date, CyPhERS has only been demonstrated on a laboratory water distribution testbed of limited complexity,
considering human evaluation of event signatures. This work methodologically adapts CyPhERS to specificities
of DER operation such as weather and consumer-induced volatility, and introduces an automated signature
evaluation system. The feasibility of applying CyPhERS for automated DER monitoring is investigated on a
dataset recorded from a real photovoltaic-battery system targeted by several cyber and cyber–physical attack
types. The results demonstrate that the proposed methodological adaptations and signature evaluation system
enable the application of CyPhERS for automated online identification of different attack types targeting DERs,
while greatly reducing the false positive rate.
1. Introduction

The transformation towards widespread use of sustainable energy
sources is driven by decentralization and electrification. Both the re-
placement of centralized fossil power plants with renewable generation,
as well as the electrification of the mobility and heating sectors are
boosting the deployment of distributed energy resources (DERs) such
as solar plants, electric vehicles, battery storages and heat pumps. The
large-scale adoption of DERs provides benefits beyond decarbonizing
energy consumption, including lower transmission costs and improved
grid stability through provision of ancillary services [1]. Harnessing
this potential requires integration with information and communica-
tion technology (ICT) for continuous coordination and management of
numerous geographically distributed devices. However, the associated
connection to public networks and remote control capability, combined
with often low security standards [2], render DERs promising targets
for cyber criminals. Incidents such as the Mirai botnet attack have
demonstrated that a fleet of internet of things (IoT) devices can be
simultaneously seized [3]. Malicious control of multiple DERs can
provoke grid instability by switching the devices simultaneously on or
off, rendering coordinated attacks on DERs a serious threat for power
system operation [4]. In this context, the increasing number of attacks
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on critical infrastructure underlines the need to support the large-scale
deployment of DERs with adequate security mechanisms [5,6].

Attack detection is among the most frequently suggested security
measures for DERs [5,7]. Once an attack is detected and identified,
affected systems and network zones can be isolated, and incident
response mechanisms activated. In the light of cyber–physical attacks,
timely and appropriate counteractions require real-time information on
both root causes and physical impact. Most existing detection concepts
exclusively monitor either cyber network traffic or physical process
data [7]. While cyber network attack detection potentially allows to
distinguish several attack types, physical impacts are not identified. In
contrast, physical attack detection can determine the attack impact, but
not the underlying attack vector. Consequently, some works propose
the combined evaluation of operational technology (OT) network traffic
and process data [7], and demonstrate the superior performance of such
cyber–physical attack identification concepts applying supervised ma-
chine learning (ML) [8]. However, due to the dependency on historical
samples of typically rarely occurring attacks, supervised methods lack
practical relevance [9,10]. In [11], the authors introduce CyPhERS,
a Cyber-Physical Event Reasoning System which exploits advantages
of cyber–physical monitoring while being independent of historical
vailable online 29 April 2024
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attack observations. So far, CyPhERS has only been demonstrated on
a laboratory water distribution testbed exhibiting simple repeating
process patterns. Moreover, the demonstrated version of the concept
requires active involvement of human operators. In the context of DER
monitoring, the problem is more complicated due to the pronounced
volatility and randomness resulting from dependency on weather and
consumer behavior [10]. Moreover, especially for small scale DERs,
active operator participation is impractical. Thus, this work addresses
the following research question: How can real-time information about
yber(-physical) attacks against DERs such as occurrence, type, victim
evices, attacker location, and physical impact be provided in an automated
ashion, while being independent of historical attack observations?

For this purpose, the present study methodologically adapts
yPhERS to the specificities of DER operation, and introduces an
utomated signature evaluation system. Key features of the adapta-
ion comprise switching from deterministic to probabilistic models
nd detection rules as well as considering and monitoring functional,
ehavioral and abstracting physical target features of a DER. The
ffectiveness of the adaptations and the automated signature evaluation
ystem is demonstrated on a dataset derived from a real photovoltaic
PV)-battery system targeted by various cyber(-physical) attack types,
nd is supported by a quantitative performance comparison to the
riginal version of CyPhERS.

.1. Related work

An exhaustive review of literature related to CyPhERS, as well as
conceptual comparison and performance benchmarking with other

vent identification concepts is provided in [11]. This section specif-
cally reviews works on attack detection and identification methods
or DERs and other power system applications. These can be broadly
ivided into methods monitoring the cyber network, physical process
r both.

.1.1. Physical attack detection and identification
Many works propose attack detection applying physics-based mod-

ls [12–16]. The models are used to emulate a DER under normal
ondition. By evaluating the residual between the model and actual
easurements against a threshold, attacks can be detected [17]. An ad-

antage of this approach is the independency from attack samples [9].
owever, accurate modeling might be challenging for DERs with com-
lex architectures (e.g., hybrid power plants) leading to imprecise
etection. Moreover, the restriction to a binary detection problem
normal vs. abnormal operation) omits insights on root causes and physi-

cal impacts. Data-driven methods constitute another widely considered
approach for physical attack detection and identification [7]. One ar-
gument is generalizability as process representations are automatically
learned from data, avoiding expensive manual model development.
The majority of works considers supervised approaches such as bi-
nary [18,19] and multi-class classification [10,20–23]. The explicit
learning from attack samples, on the one hand, allows to detect and
differentiate various cyber–physical attack types based on their physical
impact. On the other hand, it renders supervised methods impractical
due to the natural scarcity of such data. Other works apply regression or
autoencoder models to learn the normal behavior of a DER, and detect
attacks by comparing the model with the actual measurements [24–
26]. Similar to the approaches applying physics-based models, the
restriction to a binary detection problem makes them of limited use
for incident response.

1.1.2. Cyber network attack detection and identification
Among the classical approaches for monitoring DER network data

are signature-based intrusion detection systems applying tools such
as Snort [27]. These can detect and differentiate attacks in case of
known attack signatures. Related but newer approaches include super-
vised detection of attack patterns, for example, firmware modifications
2

in inverter-based microgrids [28]. Neither the traditional signature-
based nor the newer supervised ML-based methods can detect new
attack strategies. Furthermore, they do not provide any information
about the physical impact of an attack on the operation of a DER.
Another approach is the detection of anomalies in network traffic,
known as behavior-based intrusion detection [7]. In the recent years,
an increasing focus is on ML-based normal behavior reference models,
which are compared to actual traffic, allowing to detect anomalies [29–
31]. Although such approaches can potentially detect both known and
unknown types of attacks, they do not provide any information other
than the occurrence of abnormal network behavior.

1.1.3. Cyber–physical attack detection and identification
As concepts which exclusively monitor either a DER’s cyber or phys-

ical domain neither can identify both the attack root cause and physi-
cal impact nor accurately differentiate between cyber attacks, cyber–
physical attacks, network failures, and process faults, many works
suggest investigation of cyber–physical detection [7,8,32]. Neverthe-
less, literature on the combined evaluation of process and network data
of a DER or other power system applications is rare. The authors of [33]
propose joint evaluation of synchrophasor measurements and proper-
ties of network traffic applying a multi-class decision tree classifier.
In [34], unsupervised anomaly detection is applied to both network
traffic and physical process features of a DER. A comparison of cyber,
physical and cyber–physical detection in power systems is conducted
in [35] by applying both supervised and unsupervised methods for the
binary detection problem (normal vs. abnormal operation). The listed
works all indicate that the joint monitoring of cyber and physical DER
data improves detection performance. However, none of them com-
bines root cause and physical impact identification with independence
of historical attack samples. The authors in [11] propose the cyber–
physical event reasoning system CyPhERS (see Fig. 1) to close this
gap. CyPhERS utilizes a two-stage process to deduce event information,
including the occurrence, type, location, and physical impact, from
joint processing of network traffic and physical process data in real-
time. The first stage generates informative event signatures for both
unknown and known types of cyber attacks and physical faults. This is
achieved through a combination of several methods including cyber–
physical data fusion, unsupervised multivariate time series anomaly
detection, and anomaly type differentiation. In the second stage, the
event signatures are evaluated either through automated matching with
a database of known event signatures or through manual interpretation
by the operator. While the authors claim that the evaluation of event
signatures can be automated, only manual interpretation is realized
to date. Moreover, the concept demonstration is conducted on a sim-
ple laboratory water distribution system. Thus, applicability for DER
monitoring first needs to be demonstrated.

Fig. 1. Schematic representation of CyPhERS based on [11].

1.2. Contribution and paper structure

The main contributions of this work are as follows:

• Methodological adaptation of CyPhERS to the operation of DERs,
including switching to probabilistic models and detection rules,
as well as monitoring of functional, behavioral, and abstracting
target features.

• Introduction and realization of an automated event signature
evaluation system in CyPhERS’ Stage 2.
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• Feasibility demonstration of applying the adapted version of
CyPhERS for automated online identification of cyber(-physical)
attacks targeting DERs on data of a real PV-battery system,
including a quantitative performance comparison to the original
version.

The remainder of the paper is structured as follows: In Section 2,
yPhERS is conceptually summarized. Section 3 presents the real PV-
attery system, attack scenarios and recorded dataset which serve as
emonstration case. The methodology of CyPhERS and its adaptation
o DER monitoring is detailed in Section 4 together with the implemen-
ation for the considered PV-battery system case. In Section 5, results of
pplying the adapted version of CyPhERS to the demonstration case are
resented, including a performance comparison to the original version.
inally, key findings of the demonstration are discussed in Section 6,
ollowed by a conclusion in Section 7.

. Introduction of the CyPhERS concept

This section provides a summary of the detailed conceptual intro-
uction of CyPhERS included in [11]. The concept of the online event
ignature creation (Stage 1) is summarized in Section 2.1. Thereafter,
ection 2.2 provides a conceptual overview of the signature evaluation
Stage 2). Methodological details of Stage 1 and 2 follow in Section 4.

.1. Online event signature creation (Stage 1)

CyPhERS’ Stage 1 (see Fig. 2) combines a range of concepts to
roduce informative and human-readable event signatures for known
nd unknown types of attacks and failures in an online fashion. The
ignatures encompass information including event occurrence, type,
ocation, and physical impact. The applied concepts are introduced in
he following.

.1.1. Fusion of cyber and physical information
A key feature of Stage 1 is the joint monitoring and evaluation of

hysical process and cyber network data (see Fig. 2). The intention is to
escribe possible interactions between physical and network processes
uring detected events by means of the generated event signatures to
acilitate the differentiation of cyber attacks, cyber–physical attacks,
3

nd physical failures in the subsequent signature evaluation (Stage 2).
2.1.2. Feature-level monitoring
The second concept is the individual monitoring and evaluation

of multiple system variables of a DER and the representation of their
potentially abnormal behavior in the event signatures. These cover both
variables of multiple process or network components of a DER and
multiple variables of the same component, as illustrated in Fig. 2. While
the former allows to indicate affected DER components in a generated
event signature, the latter further specifies abnormal behavior of the
concerned device. The monitored variables are derived from sensor
readings and OT network traffic, and in the following denoted target
features, where  and  represent the physical and network feature
subset, respectively. For a target feature 𝑐, its time series is given as
𝑋𝑐 = {𝑥𝑐1, 𝑥

𝑐
2,… , 𝑥𝑐𝑁 | 𝑥𝑐𝑖 ∈ R ∀𝑖}. The extraction of target features and

the related proposed methodological adaptations for DER monitoring
are further detailed in Section 4.1.

2.1.3. Unsupervised time series anomaly detection using covariates
The third conceptual element of Stage 1 is the utilization of

covariate-based unsupervised time series anomaly detection for mon-
itoring the set of physical and network target features within the
signature extraction system (see Fig. 2). First, a normal behavior
reference model is derived for each target feature. Their predictions are
then compared to actual observations to detect abnormal behavior of
individual target features. The key argument for applying unsupervised
anomaly detection is the independence of historical event observations,
which allows to indicate occurrence of both known and unknown event
types in the event signatures. The benefit of monitoring target features
as time series is the detection of deviations from normal behavior which
are only abnormal in a specific temporal context (local anomalies) [36].
Additionally, covariates are used to provide the normal behavior ref-
erence models with further DER internal or external information,
allowing detection of situational anomalies which are only abnormal
in the context of the provided covariates (e.g., detecting abnormal PV
feed in context of irradiation). A covariate time series associated with a
target feature 𝑐 is formally denoted 𝑍𝑐 = {𝑧𝑐1, 𝑧

𝑐
2,… , 𝑧𝑐𝑁 | 𝑧𝑐𝑖 ∈ R ∀𝑖} in

the following. A detailed description of the applied anomaly detection
methodology, including the proposed adaptation for DER monitoring,
is provided in Section 4.2.

2.1.4. Differentiation of anomaly types
The fourth key feature of Stage 1 pertains to the differentiation of

multiple anomaly types and their representation in the event signa-
tures. Once an anomaly is detected for a target feature 𝑐, it is further
classified using characteristics such as the direction of the deviation
(e.g., abnormally low PV feed). The anomaly types are represented

within the generated event signatures by different colors, enabling
Fig. 2. Conceptual overview of CyPhERS’ online event signature creation (Stage 1) based on [11].
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simple recognition and differentiation by humans (see Fig. 2). This dis-
tinction of anomaly types facilitates identification of event root causes
and physical impacts in the subsequent signature evaluation (Stage 2).
The series of anomaly flags produced by the signature extraction system
for a target feature 𝑐 is represented as 𝑣𝑐 = {𝑣𝑐1, 𝑣

𝑐
2,… , 𝑣𝑐𝑁 | 𝑣𝑐𝑖 ∈

Z ∀𝑖}. The methodology of the anomaly type differentiation is further
specified in Section 4.2.

2.1.5. Anomaly flags organization as readable event signatures
The fifth conceptual feature of Stage 1 is the joint visualization of

the detection results of all target features as event signatures which can
be easily interpreted by humans to identify included information. As
previously described, Stage 1 takes multiple domains, system variables,
and anomaly types into account to provide dense event information in
form of anomaly flag series of a set of target features. To ease read-
ability and information extraction, these flag series are re-organized by
grouping them for each system zone of a DER (see Fig. 2). A system
zone is defined as a collection of process and network components that
are functionally linked (e.g., a battery stack and the associated smart
battery inverter). Their logical relation facilitates associating anomaly
flags of different target features. Consequently, Stage 1 of CyPhERS
generates event signatures that are both rich in information and easily
interpretable by humans.

2.2. Signature evaluation (Stage 2)

Fig. 3 illustrates the concept of CyPhERS’ Stage 2. Stage 2 is con-
cerned with the evaluation of event signatures provided by Stage 1,
which can be performed by human operators or automated evaluation
systems. The signatures are distinguishable and specific to event types.
For known attack or fault vectors, they can be pre-defined and stored in
a database. Once Stage 1 detects an event, the provided signature can
be compared to the database. If a match is found, information such
as the type of event, the affected components, the attacker location,
and the physical impact can be retrieved to form a hypothesis about
the event. Matching of signatures can be done by visual comparison
or an automated evaluation system. One automation approach is the
transformation of a pre-defined signature into a set of rules in the
following form: flagging of anomaly type 1 in target feature X and type
2 in target feature Y indicates device A being targeted by attack type B
causing physical impact C.

Fig. 3. Conceptual overview of CyPhERS’ signature evaluation (Stage 2) based on [11].
Importantly, signatures can also be defined for unknown event types

ased on partial knowledge, for example, flagging of anomaly type 1
in target feature X indicates device A failure [type unknown] causing
hysical impact B. Consequently, even without the expert knowledge
equired to pre-define and recognize signatures of specific event types,
r in case of new attack vectors, basic event information such as the
ccurrence, affected devices, and physical impact can be provided.
4

3. Demonstration case description

This section introduces the demonstration case considered for eval-
uating the effectiveness of the proposed methodological adaptations
and automated signature evaluation system for applying CyPhERS for
automated online DER monitoring. The demonstration case is based
on cyber attack experiments on a real DER system, allowing to evalu-
ate CyPhERS under realistic conditions and without assumptions and
simplifications associated with simulation-based studies for the first
time. The real PV-battery system which builds the foundation of the
demonstration case is detailed in Section 3.1. Thereafter, Section 3.2
describes the considered attack scenarios. Finally, Section 3.3 details
the realization of the attack experiments on the real PV-battery system,
and the resulting dataset on which the CyPhERS demonstration in
Section 5 is based.

3.1. PV-battery system

The cyber–physical structure of the considered real PV-battery sys-
tem is schematically depicted in Fig. 4. The system is located at
the Karlsruhe Institute of Technology (KIT), Germany. The system
comprises four PV inverters, each with four dedicated solar panel
strings (PV1-4), four battery stacks with associated battery invert-
ers (BAT1-4), four energy meters (M1-4), a data manager (DM), and
a data server (DS). The communication is based on modbus (MB),
transmission control protocol (TCP), address resolution protocol (ARP),
and user datagram protocol (UDP). Each battery stack has a capac-
ity of 10.24 kWh and a maximum dis-/charge power of 5 kW. The
connected solar panel strings of each inverter have a peak power
between 15.50 kWp and 16.74 kWp. While PV1-4 are connected to all
phases (L1-L3), BAT1-4 are linked to individual lines (see Fig. 4).
The three phases are measured individually by M1-3. In addition, M4
measures all three phases and thus provides measurement redundancy.
The PV and battery inverters are connected to the same grid connection
point (GCP) as the building load. The load is characterized by typical
office building patterns (higher load during working hours, lower on
weekends). An additional characteristic are periodic load peaks due to
activation of an air compressor. The control objective of the system
is to minimize active power exchange with the grid. Consequently,
batteries are charged if PV production exceeds the load, and discharged
in the opposite case, provided an appropriate state of charge (SOC).
As BAT1-4 are connected to individual phases, power flows 𝑃 L1-𝑃 L3

are controlled separately by a dedicated battery. An exception is 𝑃 L1,
which is connected to BAT1 and BAT4. In case that batteries reach its
maximum dis-/charging power, the offset on the respective phase is
compensated by the other batteries on their phase, which is coordinated
by communication among BAT1-4. Fig. 5 illustrates the operation of the
batteries on the example of BAT3 for a representative day. At ∼09:30,
𝑃 L3 changes from grid import to export due to the increasing PV feed.
Consequently, BAT3 starts charging to minimize the grid exchange.
Between ∼11:00 and ∼17:00, the maximum charging power and SOC of
BAT3 are reached, resulting in a deviation of 𝑃 L3 from zero. At ∼17:00,

Fig. 4. Illustration of the real PV-battery system considered for demonstrating the
application of CyPhERS for DER monitoring.
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𝑃 L3 changes back from export to import due to the decreasing PV feed.
As a result, BAT3 discharges to minimize the grid exchange until it is
fully depleted at ∼20:00.

Fig. 5. Illustration of the operation of the batteries on the example of BAT3.

The battery controllers receive the required measurements of 𝑃 L1-
L3 through subscription to the UDP multicast of the respective energy
eter (M1, M2 or M3). The DM collects measurements from solar
anels and batteries such as panel and cell temperatures. The DS hosts
custom data visualization software for users and builds the interface

o the external network.

.2. Attack scenarios

For the demonstration case, a threat scenario is assumed in which
he attacker gained virtual access to the local DER network by hijacking
he DS (see Fig. 4). From there she/he launches several cyber and
yber–physical attacks targeting different devices of the PV-battery
ystem. The considered attack types are among the most relevant
nes for DERs [10,37,38]. The cyber attacks comprise synchronize
SYN) scans and hypertext transfer protocol secure (HTTPS) requests,
alling under the category of reconnaissance activities, as well as ARP
poofing used for eavesdropping, which belongs to data collection ac-
ivities [39]. Among the cyber–physical attacks are false data injection
ttacks (FDIAs), false command injection attacks (FCIAs), and replay
ttacks, which all intent to alter the power output of the PV-battery
ystem, as illustrated in Fig. 6. In case of the FDIAs, false active power
eadings are injected in the name of the respective meter, causing
n abrupt dis-/charging process of the batteries. The FCIAs comprise
hut-down of either PV or battery inverters. For the replay attacks,
he attacker repeats valid active power readings of the energy meters,
hich multiplies the control error and thus results in oscillation of

he batteries. Given a simultaneous manipulation of multiple DERs,
he considered cyber–physical attacks could provoke a sudden static
FDIA and FCIA) or dynamic (replay attack) load altering in the power
ystem, which can cause congestion as well as voltage and frequency
tability issues [40]. Attacks with the intent to create power quality
isturbances on a millisecond or waveform scale are outside the scope
f this work as those cannot be captured with the given data resolution
f the considered real PV-battery system (see Section 3.3).
5

Fig. 6. Physical impact of the considered cyber–physical attacks.
3.3. Attack experiments and dataset

The experiments have been conducted in October 2022. After
recording the system under normal operation for approximately two
weeks, 15 attacks were launched within one day between 10:00 and
17:00 local time (see Table 1).
Table 1
Schedule of the attack experiments.

No. Attack type Victim Start End

1 FDIA M3 10:01 10:17
2 ARP spoof PV3/DM 10:31 10:48
3 HTTPS request BAT1 11:06 11:06
4 SYN Scan PV3 11:22 11:34
5 FCIA PV2 11:47 12:01
6 FDIA M1 12:14 12:32
7 HTTPS request DM 12:47 12:47
8 Replay attack M1 13:05 13:07
9 FCIA BAT3 13:26 13:39
10 FCIA PV1 13:56 14:09
11 ARP spoof PV4/DM 14:30 14:44
12 FCIA BAT4 15:00 15:19
13 FDIA M2 15:39 15:48
14 SYN Scan PV4 16:04 16:08
15 Replay attack M2 16:20 16:23

The data was recorded using port mirroring in form of a passive
packet capture of the local network. Both physical process and network
traffic features are extracted from the resulting pcap file. The set of
considered raw features is listed in Table 2. The physical data have
a resolution between one second and one minute, depending on the
respective feature. Network data on average comprise 7539 packets per
minute.
Table 2
Raw physical and network features considered in the demonstration case.

No. Physical features No. Network features

1 Timestamp 1 Timestamp
2 Solar irradiation Ir 2–3 Internet protocol (IP) address
3–14 Act. power 𝑃 PV1-4, 𝑃 BAT1-4, 𝑃M1-4 4–5 Media access control (MAC) address
15–18 Battery state of charge 𝑆𝑂𝐶BAT1-4 6 Protocol
19–22 Battery voltage 𝑉 BAT1-4 7 TCP flags
23–26 Battery temperature 𝑇 BAT1-4 8 MB function code

4. Methodological adaptation and implementation of CyPhERS

This section details the methodology of CyPhERS with a particular
focus on the proposed adaptation for DER monitoring and automated
signature evaluation system. First, the online event signature creation
(Stage 1) is addressed, which includes a description of target feature
and covariate extraction (Section 4.1), as well as the signature ex-
traction system (Section 4.2). In this context, the central adaptations
are presented which comprise (1) the switch from deterministic to
probabilistic models and detection rules, (2) the consideration and
differentiation of functional and behavioral physical target features,
and (3) the use of abstracting physical target features. Thereafter,
the signature evaluation (Stage 2) is explained in Section 4.3, which
involves introduction of the proposed automated signature evaluation
system. Along the methodological description of Stage 1 and 2, details
on the implementation to the PV-battery system demonstration case are
provided.

4.1. Target feature and covariate extraction

In this section, the extraction of target features and covariates from
raw data of a DER is presented. Physical and network target features
are addressed sequentially in Sections 4.1.1 and 4.1.2.
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4.1.1. Physical target features
According to [11], physical target features are monitored to identify

both true physical events and manipulations of process-relevant data.
The former requires features which represent the operation of all
physical components of the system in question in order to localize
the affected ones, and derive the physical impact on them. The latter
necessitates monitoring of sensor readings used for process control.
Therefore, this work considers physical target features which (1) rep-
resent the physical operation of PV1-4, BAT1-4, and M1-3, and (2)
monitor the multicasted active power readings required for controlling
the batteries. A specificity of DERs is that attacks can directly target
the functionality of a component (e.g., switch battery off) or exploit
the normal functionality to achieve an abnormal behavior (e.g., control
battery to create load oscillation). Thus, this work suggests to extend
the original CyPhERS methodology by considering and differentiating
both target features that represent either the technical functionality or
behavior of DER components. Whether a target feature is functional
or behavioral depends on the model inputs (target feature lags and
covariates). More precisely, even a model of the same feature can
represent either the functionality or behavior depending on the input,
as demonstrated in Fig. 7. In the depicted example, the attacker wants
to create a sudden change of the PV feed. Instead of directly damaging
the plant, the attacker uses the normal functionality (reduced feed if
less sun) to launch the attack. The functionality model uses the local Ir

easurement as input and predicts the expected feed reduction. Thus,
o functional anomaly is flagged. The behavior model uses an external
r measurement which results in a deviation between the predicted and
ctual feed. As a result, a behavioral anomaly is flagged. In case of only
onitoring the functionality, the attack impact would not be detected.
n the contrary, when solely monitoring the behavior, it could not
e determined whether the anomaly stems from device dysfunction or
isuse.

Table 3 lists the extracted physical target features and associated
odel inputs for the PV-battery system demonstration case.1 The av-

rage active load 𝑃fmean is selected as target feature representing the

1 Note the restriction to features which can indicate load-altering events
n a seconds to minutes scale due to the given resolution of the evaluated
eal data. Sophisticated attackers may also create sub-second power qual-
ty disturbances by modifying inverter output waveforms through firmware
anipulation. Identifying the physical impact of such attacks would require

xtracting target features from high-frequency readings, such as the total
armonic distortion.
6

Fig. 7. Comparison of functionality- and behavior-describing target features on the
example of a physical ‘‘attack’’ where PV panels are covered.

functionality of PV1-4, BAT1-4, and M1-3. In these cases, model inputs
exclusively stem from the component’s variables and immediate inputs,
or data of a redundant device. The behavior of the batteries is repre-
sented by 𝑃 BAT𝑖

bmean, which is the average active load of the 𝑖th battery
modeled based on the time of the day and PV feed. Consequently,
anomalies in 𝑃 BAT𝑖

bmean indicate abnormal battery behavior given the
current time and PV feed. For the energy meters, the absolute sum of
the active load readings |𝑃M𝑖

sum| modeled based on 𝑃M𝑖
fmean is considered

s behavioral feature. As the meters multicast on constant frequency,
sum/mean-mismatch can be a sign for abnormally many or few
ulticasts, potentially indicating misuse.

The battery operation in the given PV-battery system is influenced
y weather and consumer behavior. The associated volatility and ran-
omness potentially complicate the detection of anomalies. For such
ases, this work proposes to extend the original CyPhERS methodology
y extracting additional features that break down a component’s com-
lex behavior to simpler abstractions such as the on/off state. Two such
bstracting features are considered for the demonstration case. 𝑃 BAT𝑖

osc
escribes how much power changes the 𝑖th battery conducts in a 15
period. An unusually high value can be an indicator for abnormal

oad oscillation. Finally, 𝑆BAT𝑖 describes the on/off state of a battery
odeled under use of the current time of the day and PV feed. This

arget feature is supposed to indicate whether a battery is activated
uring times and PV feeds where it usually is deactivated and vice
ersa.
Table 3
Overview of physical target features extracted for the PV-battery system demonstration case.

Target feature Model input Type Description

𝑃 PV𝑖
fmean Ir (local) Functional For every 60 s time step 𝜏60 the mean value is determined as average over the 𝑁𝜏60

data packets carrying 𝑃 PV𝑖 within 𝜏60

according to 𝑃 PV𝑖
mean,𝜏60

=
∑𝑁𝜏60

𝑝=1 𝑃 PV𝑖
𝑝 ∕𝑁𝜏60

. Anomalies in 𝑃 PV𝑖
fmean can indicate dysfunction of the 𝑖th solar panel string or its

inverter.

𝑃 BAT𝑖
fmean 𝑃M𝑖

mean, 𝑆𝑂𝐶BAT𝑖
mean,

𝑉 BAT𝑖
mean , 𝑇 BAT𝑖

mean

Functional For every 𝜏60 the mean value is determined as average over the 𝑁𝜏60
data packets carrying 𝑃 BAT𝑖 within 𝜏60 according to

𝑃 BAT𝑖
mean,𝜏60

=
∑𝑁𝜏60

𝑝=1 𝑃 BAT𝑖
𝑝 ∕𝑁𝜏60

. Anomalies in 𝑃 BAT𝑖
fmean can indicate a dysfunction of the 𝑖th battery stack or its associated inverter.

𝑃M1-3
fmean Redundant

reading of M4
Functional For every 5 s time step 𝜏5 the mean value is determined as average over the 𝑁𝜏5

data packets carrying 𝑃M𝑖 within 𝜏5

according to 𝑃M𝑖
mean,𝜏5

=
∑𝑁𝜏5

𝑝=1 𝑃
M𝑖
𝑝 ∕𝑁𝜏5

. Anomalies can indicate a dysfunction of the 𝑖th meter.

𝑃 BAT𝑖
osc 𝑃 BAT𝑖

osc lag values Behavioral
(Abstracting)

For every 15 s time step 𝜏15 the absolute sum of power changes is calculated according to 𝑃 BAT𝑖
osc,𝜏15

= ∑15 s
𝑓=0 s|𝑃

BAT𝑖
mean,𝜏+𝑓+1 s −

𝑃 BAT𝑖
mean,𝜏+𝑓 |, where 𝜏 is the start time of 𝜏15. Anomalies in 𝑃 BAT𝑖

osc can indicate oscillation of the 𝑖th battery.

𝑆BAT𝑖 𝑃 PV1-4
mean , time of

the day
Behavioral
(Abstracting)

For every 𝜏60 the on-off state (𝑆BAT𝑖
𝜏60

∈ [0, 1]) is determined. Anomalies may indicate that BAT𝑖 is unexpectedly online/offline
given the current time of day and PV feed.

𝑃 BAT𝑖
bmean 𝑃 PV1-4

mean , time of
the day

Behavioral For every 𝜏60 the mean value is determined as average over the 𝑁𝜏60
data packets carrying 𝑃 BAT𝑖 within 𝜏60 according to

𝑃 BAT𝑖
mean,𝜏60

=
∑𝑁𝜏60

𝑝=1 𝑃 BAT𝑖
𝑝 ∕𝑁𝜏60

. Anomalies can indicate abnormal behavior of BAT𝑖 given the current time of day and PV feed.

|𝑃M1-3
sum | 𝑃M𝑖

mean Behavioral For every 𝜏5 the absolute sum is determined as |𝑃M𝑖
sum,𝜏5

| =
∑𝑁𝜏5

𝑝=1 𝑃
M𝑖
𝑝 . Anomalies can indicate abnormal behavior of the 𝑖th

meter given the current 𝑃M𝑖
mean (sending abnormally many or few packets carrying 𝑃M𝑖).
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4.1.2. Network target features
Following the descriptions in [11], the purpose of traffic moni-

toring is twofold: (1) localization of compromised network devices,
and (2) determination of attack vectors. To achieve the former, the
traffic of each network device should be monitored individually. The
latter necessitates extracting several informative features per device.
Consequently, this work considers multiple network features for the PV
and battery inverters, energy meters, DM, and DS (see Table 4). The
features comprise counts of packets with specific protocols, TCP flags
and MB function codes for periods of 15 s. Within the local network
of the considered PV-battery system, a variety of protocols are used,
which enable certain functionalities, such as communicating process-
relevant data (UDP packets from energy meters) or sending control
commands (MB packets to battery inverters). Thus, unusual deviations
in the packet count of certain protocols can point to specific attack
types. Abnormal numbers of packets with SYN flags can be an indicator
for adverse connection attempts and is thus taken into account. Finally,
packets with function code 4 (read registers) and 16 (write registers)
are counted. In particular, abnormal high numbers of packets with
function code 16 can be a sign for adverse control commands. In all
cases, network target features are modeled using lag values and the
time of day as model input. Time of day is an important covariate in OT
networks, as certain processes often are regularly conducted at specific
times, e.g. every full hour.
Table 4
Overview of network target features extracted for the PV-battery system demonstration
case. Indices s and d refer to source and destination, respectively. Packets are counted
for 15 s periods.

Target feature Description

𝑛PV𝑖
UDPd

, 𝑛BAT𝑖
UDPd

, 𝑛DM
UDPd

, 𝑛DS
UDPd

, 𝑛M𝑖
UDPs

, 𝑛DS
UDPs

UDP packets sent to/from the device.

𝑛PV𝑖
TCPd

, 𝑛BAT𝑖
TCPd

, 𝑛DM
TCPd

, 𝑛DS
TCPd

, 𝑛DS
TCPs

TCP packets sent to/from the device.

𝑛PV𝑖
MBd

, 𝑛BAT𝑖
MBd

, 𝑛DM
MBd

, 𝑛DS
MBd

, 𝑛DS
MBs

MB packets sent to/from the device.

𝑛PV𝑖
ARPd

, 𝑛BAT𝑖
ARPd

, 𝑛DM
ARPd

, 𝑛DS
ARPd

, 𝑛DS
ARPs

ARP packets sent to/from the device.

𝑛PV𝑖
TLSd

, 𝑛BAT𝑖
TLSd

, 𝑛DM
TLSd

, 𝑛DS
TLSd

, 𝑛DS
TLSs

Transport layer security (TLS) packets sent
to/from the device.

𝑛PV𝑖
SYNd

, 𝑛BAT𝑖
SYNd

, 𝑛DM
SYNd

, 𝑛DS
SYNd

, 𝑛DS
SYNs

Packets with SYN flag sent to/from device.

𝑛PV𝑖
16d

, 𝑛BAT𝑖
16d

Packets with write register code sent to the
device.

𝑛PV𝑖
4d

, 𝑛BAT𝑖
4d

Packets with read register code sent to
device.

Note that a broad spectrum of further useful features can be ex-
racted. For example, the number of ports used within a certain period
ould provide information to identify port scans. Other features could
e derived, among others, from IP/MAC addresses, packet sizes or
hecksums. However, for the sake of comprehensibility of the results in
ection 5, only features which are considered most relevant are taken
nto account. Due to the same reason, only packets sent to a device

are taken into consideration in most cases. Exceptions are M1-3 and
the DS. As the meters M1-3 multicast process-relevant data, monitoring
UDP packets sent from them is of importance. Moreover, as the DS is
available for users and thus directly connected to the external network,
it constitutes a likely target for attackers. Thus, both packets sent to and
from the DS are monitored.
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4.2. Signature extraction system

The signature extraction system generates anomaly flags for the
set of target features, which eventually form the event signatures (see
Fig. 2). The authors of CyPhERS argue for using individual models for
each target feature [11]. Consequently, the signature extraction system
comprises a set of individual anomaly detection and classification
pipelines. Among the reasons is the independent selection of covariates,
which becomes particularly relevant in context of the previously intro-
duced differentiation between functionality- and behavior-describing
target features.

The methodology of the anomaly detection and classification
pipelines is explained in Section 4.2.1 with a particular focus on the
transformation from deterministic to probabilistic models and detection
rules as proposed in this work. After that, Section 4.2.2 addresses the
time series models which are used within the pipelines. Finally, the
procedure for automated implementation of the signature extraction
system and its realization for the given demonstration case is detailed
in Section 4.2.3.

4.2.1. Anomaly detection and classification pipelines
As explained in [11], a pipeline comprises a target feature model

and consecutive anomaly detector (see Fig. 8). While the model predicts
the normal behavior of the respective target feature, the detector
compares the predictions with the ground truth observations to decide
whether to flag an anomaly. In the original version of CyPhERS,
both the predictions and the detector’s decision function are deter-
ministic [11]. Due to the weather- and consumer-induced random-
ness and variability of DER operation, modeling of some features
is subject to pronounced uncertainties, rendering anomaly detection
more challenging. Thus, this work proposes to apply probabilistic
time series prediction and decision functions when using CyPhERS for
DER monitoring. In this way, the detection sensitivity is dynamically
adjusted to the model’s current confidence level, which potentially
reduces the number of false positives during times of low confi-
dence, and improves the detection of actual events at periods where
model confidence is high. For that purpose, the lower quantile 𝑞L,
median 𝑞M, and upper quantile 𝑞U are predicted for each target fea-
ture. Given 𝑋𝑐 = {𝑥𝑐1, 𝑥

𝑐
2,… , 𝑥𝑐𝑁 | 𝑥𝑐𝑖 ∈ R ∀𝑖} and 𝑍𝑐,1,… , 𝑍𝑐,𝑛 =

{{𝑧𝑐1,1, 𝑧
𝑐
1,2,… , 𝑧𝑐1,𝑁},… , {𝑧𝑐𝑛,1, 𝑧

𝑐
𝑛,2,… , 𝑧𝑐𝑛,𝑁}|𝑧𝑐𝑗,𝑖 ∈R∀(𝑗, 𝑖)} of a target

feature 𝑐, the expected quantile 𝑥̂𝑞,𝑐𝑡 at time 𝑡 is predicted using lag
values 𝑥𝑐𝑡−𝑤,… , 𝑥𝑐𝑡−1 and covariates 𝑧𝑐1,𝑡,… , 𝑧𝑐𝑛,𝑡 according to

̂𝑞,𝑐𝑡 = 𝛷
(

[𝑥𝑐𝑡−𝑤,… , 𝑥𝑐𝑡−1], [𝑧
𝑐
1,𝑡,… , 𝑧𝑐𝑛,𝑡]

)

,∀𝑞 ∈ {𝑞L, 𝑞M, 𝑞U}, (1)

where 𝑛 is the number of covariates, and 𝑤 the length of the history
window. Note that, depending on the target feature, 𝑥𝑐𝑡−𝑤,… , 𝑥𝑐𝑡−1 and
𝑧𝑐1,𝑡,… , 𝑧𝑐𝑛,𝑡 are only partially used (see Section 4.1). A model is trained
to predict 𝑥̂𝑞,𝑐 by minimizing the quantile loss function [41]

𝐿𝑞(𝑥̂𝑐𝑖 , 𝑥
𝑐
𝑖 ) = max

[

𝑞(𝑥𝑐𝑖 − 𝑥̂𝑐𝑖 ), (𝑞 − 1)(𝑥𝑐𝑖 − 𝑥̂𝑐𝑖 )
]

(2)

over a training set 𝑋𝑐
train = {𝑥𝑐1, 𝑥

𝑐
2,… , 𝑥𝑐𝑁train

| 𝑥𝑐𝑖 ∈ R ∀𝑖}.
The quantile predictions of the target feature are forwarded to the

anomaly detector. In the original version of CyPhERS, the detector de-
cides whether to flag an anomaly based on the distance between ground
truth observations and deterministic predictions [11]. The present work
proposes to extend to the distance between the ground truth and
Fig. 8. Schematic representation of the anomaly detection pipeline of a target feature 𝑐 based on [11].
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the probabilistic prediction interval (PI) [𝑥̂𝑞L ,𝑐 , 𝑥̂𝑞U ,𝑐 ]. In this way, the
dynamical adaption of the detection sensitivity to the current model’s
confidence is realized. When a model is certain about its predictions,
even small deviations are accounted for. On the other hand, low model
confidence (larger PI) will reduce the calculated distance. The distances
are averaged over the last 𝑙 observations according to

𝜀𝑐𝑡 =

𝑙−1
∑

𝑗=0

⎧

⎪

⎨

⎪

⎩

𝑥𝑐𝑡−𝑗 − 𝑥̂𝑞U ,𝑐
𝑡−𝑗 if 𝑥𝑐𝑡−𝑗 > 𝑥̂𝑞U ,𝑐

𝑡−𝑗

𝑥̂𝑞L ,𝑐
𝑡−𝑗 − 𝑥𝑐𝑡−𝑗 if 𝑥𝑐𝑡−𝑗 < 𝑥̂𝑞L ,𝑐

𝑡−𝑗

𝑙
. (3)

For the PV-battery system demonstration case, 𝑙 = 5, 𝑞L = 0.01, and 𝑞U =
.99 is selected ∀𝑐 ∈  and  . Based on 𝜀𝑐𝑡 and further characteristics
f the current target feature observation, different anomaly types are
istinguished, which is expressed by the decision function

𝑐
𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2 if (

Detection
⏞⏞⏞
𝜀𝑐𝑡 > 𝜏𝑐 ), (

Direction
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑥𝑐𝑡 > 𝑥𝑡

𝑞M ,𝑐 ) and (

Is zero
⏞⏞⏞
𝑥𝑐𝑡 = 0)

1 if (𝜀𝑐𝑡 > 𝜏𝑐 ), (𝑥𝑐𝑡 > 𝑥̂𝑞M ,𝑐
𝑡 ) and (𝑥𝑐𝑡 ≠ 0)

−1 if (𝜀𝑐𝑡 > 𝜏𝑐 ), (𝑥𝑐𝑡 < 𝑥̂𝑞M ,𝑐
𝑡 ) and (𝑥𝑐𝑡 ≠ 0)

−2 if (𝜀𝑐𝑡 > 𝜏𝑐 ), (𝑥𝑐𝑡 < 𝑥̂𝑞M ,𝑐
𝑡 ) and (𝑥𝑐𝑡 = 0)

0 otherwise,

(4)

with 𝜏𝑐 being a target feature-specific threshold. The anomaly types
are further explained in Table 5. Both the direction of an abnormally
large deviation and the information about a target feature being zero
provides valuable information for identification of event root causes
and physical impact. For example, an abnormally high number of UDP
packets sent by an energy meter may indicate a FDIA, while a PV feed
of zero during daytime may points towards a switched off inverter.
Table 5
Definition of considered anomaly types.

Flag 𝑣 Anomaly type Description Schematic

2 Positive zero Target feature abnormally high
and zero.

1 Positive non-zero Target feature abnormally high
and non-zero.

−1 Negative non-zero Target feature abnormally low
and non-zero.

−2 Negative zero Target feature abnormally low
and zero.

0 No anomaly No abnormal behavior.

4.2.2. Time series models
The authors of CyPhERS suggest the use of specific models for

different target feature classes, which includes the use of long-short
term memory (LSTM) networks for network traffic features. However,
given the computational limitations of small DERs, the use of resource
intensive models is impractical. Thus, this work proposes to apply
gradient-boosted decision trees (GBDT) [42] for predicting the quan-
tiles ∀𝑐 ∈  and  . GBDT is a frequently applied ML technique, popular
for high accuracy and efficiency, which renders them a good fit for
the given problem [43]. GBDT consists of a set of simple decision
trees, which are connected in series. Thus, each of them minimizes the
prediction error of the preceding tree. For a detailed explanation, the
reader is referred to [42].
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4.2.3. Automated model and detector tuning procedure
In [11], the authors of CyPhERS suggest an automated imple-

mentation procedure for the signature extraction system, which com-
prises independent tuning of the individual detection and classification
pipelines (see Fig. 9). First step is the training and hyperparameter
selection of the GBDT models of all target features. For the PV-battery
system demonstration case, selection of hyperparameters is conducted
on 75% of the two-week normal operation data. The tuned hyper-
parameters and associated search spaces are summarized in Table 6.

Fig. 9. Procedure for tuning the anomaly detection pipelines based on [11].

Next, the anomaly detectors of all pipelines are tuned. For that
purpose, the fitted models are used to predict the remaining 25% of
normal operation data. Based on the predictions, the distances 𝐸𝑐

test =
{𝜀𝑐1, 𝜀

𝑐
2,… , 𝜀𝑐𝑁test

| 𝜀𝑐𝑖 ∈ R ∀𝑖} are calculated according to (3), ∀𝑐 ∈  and
 . From 𝐸𝑐

test and a threshold factor 𝑓 , the feature-specific thresholds
are determined according to

𝜏𝑐 = 𝑓 ⋅max
(

𝐸𝑐
test

)

, (5)

where the threshold factor is selected as 𝑓 = 1.1 in this work. Therefore,
an anomaly within a target feature 𝑐 at time 𝑡 is flagged if 𝜀𝑐𝑡 exceeds
the largest distance during normal operation by at least 10%. Before
the anomaly detection pipelines are applied for online flagging of new
observations, the models are retrained on the entire set of historical
normal operation data (see Fig. 9).
Table 6
Hyperparameters and search spaces of the GBDT models.

No. Hyperparameter Search space

1 𝑤a [0, . . . , 60]
2 Max. depth of a tree [3, . . . , 21]
3 Number of decision trees [100, . . . , 1000]
4 Learning rate [0.001, . . . , 0.3]

a Only for target features considering lag values.

Finally, the resulting anomaly flag series provided by the individual
pipelines are grouped for each system zone to obtain human-readable
event signatures as output of CyPhERS’ Stage 1. For the PV-battery
system demonstration case, the defined system zones comprise PV1-4,
BAT1-4, M1-3, DM, and DS.

4.3. Signature evaluation (Stage 2)

This section details the methodology of CyPhERS’ signature evalua-
tion with a focus on the realization of an automated signature evalua-
tion system, and describes its implementation for the PV-battery system
demonstration case. First, the definition of a signature database is
addressed in Section 4.3.1, followed by an explanation of the proposed
automated signature evaluation system in Section 4.3.2.

4.3.1. Signature database
Signature evaluation in CyPhERS is based on manually or automati-

cally matching the organized anomaly flags of the set of target features
provided by Stage 1 with a database of known event signatures [11].
The signatures of the attack types included in the demonstration case
are depicted in Fig. 10 on the example of selected victim devices and
physical impacts. The associated signature descriptions are provided

in Table 7. For the sake of conciseness, target features of the same
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Fig. 10. Event signatures of the attack types included in the demonstration case. The
ignatures are depicted for selected victim devices and physical impacts.

ind are jointly represented in one row in Fig. 10. More precisely, for
ndividual system zones, the various protocol count flags are combined
n 𝑣𝑛proto , and flags in counts of different MB function codes (𝑣𝑛16d

and
𝑣 ) in 𝑣 . Signatures can also be defined for unknown event types,
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𝑛4d 𝑛fcode
which then carry reduced information such as indication of affected
system zones. For the sake of clarity, however, these are not included
in Fig. 10.

4.3.2. Automated signature evaluation
The demonstration of the original version of CyPhERS in [11]

includes manual recognition and evaluation of the event signatures
provided by Stage 1. In case of larger plants, such as medium volt-
age level-connected wind and solar parks, visual recognition of event
signatures in control rooms may be feasible. However, for smaller
resources such as residential PV-battery systems, manual evaluation is
impractical. For the sake of proving feasibility of automated signature
evaluation, this work formulates and applies a rule-based signature
evaluation system which jointly evaluates the most recent flags of all
target features within a moving time window 𝑇eval of five minutes.
A simplified representation is provided in Algorithm 1. In case that
no anomaly is detected (i.e., 𝑣𝑐 =0, ∀𝑐 ∈  and  ) within 𝑇eval, the
system predicts normal operation. Given that the flags within 𝑇eval
match with one of the pre-defined event signatures, the associated
event description forms the prediction, for example, FCIA against PV1
from DS with physical impact ‘‘PV1 switched off’’. In case that anomaly
flags provided by Stage 1 do not match any of the defined rules,
the evaluation system predicts Unknown abnormal behavior. In contrast
to the simplified representation in Algorithm 1, additional rules for
different variations of specific attack types are defined. For example,
Replay attack against meter M1 with physical impact ‘‘oscillation’’ on BAT1
can be with or without parallel traffic overloading of other devices. Further
rules predict affected system zones in case of unknown event types, for
example, Unknown network anomaly affecting PV2 and DS. Finally, some
rules additionally take previous predictions into account. For example,
in case of predicting a battery being switched off by a FCIA, information
about the injected false command is stored over a time period larger
than 𝑇eval in order to avoid switching to prediction of a pure physical
failure after five minutes.
Table 7
Description of the event signatures of the attack types included in the demonstration case (see Fig. 10).

Attack Event signature description

Scan A device (e.g., PV inverter) receives an abnormally large number of TCP packets (𝑣𝑛TCPd
= 1) with connection request (𝑣𝑛SYNd

= 1) over a longer period. Simultaneously,
another device (e.g., DS) sends unusually many TCP packets (𝑣𝑛TCPs

= 1) with connection request (𝑣𝑛SYNs
= 1). Together, this points towards scanning of a victim device

(here, the PV inverter), where the attacker is located on a local device (here, the DS). The lack of anomaly flags in physical target features indicates a pure cyber
attack without physical impact.

HTTPS
request

A device (e.g., battery inverter) receives abnormally many TLS packets (𝑣𝑛TLSd
= 1) over short period, pointing towards a web service call (HTTPS request).

Simultaneously, another device (e.g., DS) sends more TLS packets than usual (𝑣𝑛TLSs
= 1), which suggests the attacker being located on this device. Parallel increase of

TCP packets (𝑣𝑛TCPd
= 1) and packets with SYN flags (𝑣𝑛SYNd

= 1) due to connection establishment between attacker and victim device. The absence of anomaly flags
in physical target features indicates a cyber attack without any physical impact.

ARP
spoof

Two devices (e.g., PV inverter and DM) receive abnormally many ARP packets (𝑣𝑛ARPd
= 1), while another (e.g., DS) sends more than expected (𝑣𝑛ARPs

= 1). This points
towards ARP spoofing where the attacker is located on a local device (here, the DS). The two victim devices receive less (or no) UDP packets (𝑣𝑛UDPd

= −1 or −2),
while the device occupied by the attacker receives more (𝑣𝑛UDPd

= 1), which suggests that the communication between the victims is successfully redirected via the
occupied devicea. Lack of flags in physical features imply eavesdropping instead of manipulation of process-relevant data.

FCIA A device (e.g., PV inverter) receives an abnormally large number of MB packets (𝑣𝑛MBd
= 1) with write register function code 16 (𝑣𝑛16d

= 1). In parallel, another device
(e.g., DS) sends more MB packets than usual (𝑣𝑛MBs

= 1). Together, this indicates an attacker sending false control commands to a victim device (here, the PV inverter)
from the occupied local device (here, the DS). Parallel increase of TCP packets and packets with SYN flags because of connection establishment between occupied
and victim device. Abnormally low and zero PV feed (𝑣𝑃fmean

= −2) indicate that the attacker switched off the PV inverterb.

FDIA An energy meter M𝑖 sends unusually many UDP packetsc (𝑣𝑛UDPs
= 1) while the absolute sum of its active power readings is too high (𝑣

|𝑃sum |

= 1). Together this points
towards unusual frequent broadcasting of active power readings. The parallel abnormally low mean (𝑣𝑃fmean

= −1) indicates false 𝑃M𝑖 injection imitating grid exports.
For the battery which uses M𝑖 readings, an unusually low mean active power given the current time and PV feed (𝑣𝑃bmean

= −1) suggests reaction with chargingb.
Absence of anomalies in 𝑃 BAT𝑖

fmean underlines that the battery accepts the false data and reacts to them in an expected way.

Replay
attack

An energy meter M𝑖 sends abnormally high numbers of UDP packetsc (𝑣𝑛UDPs
= 1), and the absolute sum of its active power measurements is higher than expected

(𝑣
|𝑃sum |

= 1). Together this indicates unusually frequent broadcasting of active power readings. As the mean is normal (𝑣𝑃fmean
= 0), no false data is injected, and instead,

a replay of valid 𝑃M𝑖 readings is likely. Abnormally high power changes (𝑣𝑃osc
= 1) of one or more batteries indicates load oscillation due to multiplication of the

control error through replaying 𝑃M𝑖 values.

a Parallel network anomalies for other devices which communicate with the victims possible as victim functionality can be affected by the attack.
b Physical impact depends on the malicious control command/injected false data, and the victim device.
c Parallel network anomalies for other devices possible due to UDP traffic overloading of those.
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Algorithm 1 Simplified representation of the proposed rule-based signature evaluation system.
𝑇eval ← Last 5 minutes

if all flags in 𝑇eval are zero then
prediction ← Normal operation

else if 𝑣𝑋𝑛TCPd
= 1, 𝑣𝑋𝑛SYNd

= 1, 𝑣𝑌𝑛TCPs
= 1, and 𝑣𝑌𝑛SYNs

= 1 within 𝑇eval then
prediction ← Scan of device 𝑋 from device 𝑌

else if 𝑣𝑋𝑛TLSd
= 1, 𝑣𝑋𝑛TCPd

= 1, 𝑣𝑋𝑛SYNd
= 1, 𝑣𝑌𝑛TLSs

= 1, 𝑣𝑌𝑛TCPd
= 1, 𝑣𝑌𝑛TCPs

= 1, and 𝑣𝑌𝑛SYNs
= 1 within 𝑇eval then

prediction ← HTTPS request of device 𝑋 from device 𝑌

else if 𝑣𝑋𝑛ARPd
= 1, 𝑣𝑌𝑛ARPd

= 1, 𝑣𝑍𝑛ARPs
= 1, 𝑣𝑋𝑛UDPd

=−1 or − 2, 𝑣𝑌𝑛UDPd
=−1 or − 2, and 𝑣𝑍𝑛UDPd

= 1 within 𝑇eval then
prediction ← ARP spoof against devices 𝑋,𝑌 from device 𝑍

else if 𝑣𝑋𝑛TCPd
= 1, 𝑣𝑋𝑛MBd

= 1, 𝑣𝑋𝑛SYNd
= 1, 𝑣𝑋𝑛16d

= 1, 𝑣𝑌𝑛TCPs
= 1, 𝑣𝑌𝑛MBd

= 1, 𝑣𝑌𝑛MBs
= 1, 𝑣𝑌𝑛SYNs

= 1, and 𝑣𝑋𝑃fmean
=−2 within 𝑇eval then

prediction ← FCIA against device 𝑋 from device 𝑌 with physical impact 𝐴 (here, switch 𝑋 off)

else if 𝑣𝑀𝑛UDPs
= 1, 𝑣𝑀

|𝑃sum|

= 1, 𝑣𝑀𝑃fmean
=−1, and 𝑣𝑋𝑃bmean

=−1 within 𝑇eval then
prediction ← FDIA against meter 𝑀 with physical impact 𝐴 on device 𝑋 (here, battery charging)

else if 𝑣𝑀𝑛UDPs
= 1, 𝑣𝑀

|𝑃sum|

= 1, 𝑣𝑀𝑃fmean
= 0, and 𝑣𝑋𝑃osc

= 1 within 𝑇eval then
prediction ← Replay attack against meter 𝑀 with physical impact 𝐴 on device 𝑋 (here, battery oscillation)

else
prediction ← Unknown abnormal behavior
5. Demonstration of CyPhERS for DER monitoring

This section first demonstrates results from applying the adapted
version of CyPhERS to the experimentally derived dataset of a real PV-
battery system, as introduced in Section 3. The included attack types
are successively evaluated in Sections 5.1–5.6. Thereafter, a quantita-
tive performance comparison to the original version of CyPhERS [11]
is conducted in Section 5.7 to assess the impact of the proposed
methodological adaptations. The binary (normal vs. abnormal operation)
etection performance is compared based on the true and false positive
ate according to

PR =
𝑁TP
𝑁P

and FPR =
𝑁FP
𝑁N

, (6)

here 𝑁TP, 𝑁FP, 𝑁P, and 𝑁N are the number of true positive, false
ositive, actual positive, and actual negative observations, respectively.
he binary anomaly flags are created following

binary
𝑡 =

{

1 (𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) if 𝑣𝑐𝑡 ≠ 0, ∃𝑐 ∈  ∪ 
0 (𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) otherwise.

(7)

bservations within a 5-min window after each attack event are ex-
luded from the FPR calculation to avoid considering positive anomaly
lags (𝑣binary

𝑡 = 1) during recovery of the attacked system as false
ositives, which would bias the performance assessment.

The identification performance is evaluated for each attack type 𝑎
ased on the identification rate according to

R𝑎 =
𝑁 identified

𝑎
𝑁𝑎

, (8)

ith 𝑁𝑎 being the total number of event instances of attack type 𝑎 and
identified
𝑎 the corresponding subset of correctly identified instances.

.1. Scanning attacks

The event signatures provided by CyPhERS’ Stage 1 during the two
canning attacks are depicted in Fig. 11 together with the predictions of
he rule-based signature evaluation system (Stage 2). Note that system
ones without flagged anomalies are not depicted in the following.
n both cases the provided signatures correspond to the signature of
canning attacks (see Fig. 10). Thus, visual recognition of the signature
10
Fig. 11. Event signatures provided by CyPhERS’ Stage 1 and predictions of the
rule-based signature evaluation system (Stage 2) during the scanning attacks.

allows identifying the attack type (scan), victim (PV3 or PV4, respec-
tively), and attacker location (DS) manually. The same predictions are
provided by the rule-based system without human interaction. During
the first scan, the rule for predicting a scan is not immediately fulfilled,
since flagging 𝑣𝑛DS

TCPs
=1 is delayed. Therefore, the rule-based system

initially predicts an unknown network traffic anomaly for PV3 and
DS, based on the occurrence of flags in the associated network target
features.

Fig. 12 exemplifies the advantage of modeling target features with
time series models. Since 𝑛DS

TCPs
exhibits normal peaks at full hours, the

increase during scanning of PV4 only constitutes a local anomaly which
cannot be detected by static thresholds not taking temporal information
into account. In contrast, the applied GBDT model allows to detect
the scanning-induced local anomaly by learning that peaks should only
occur at full hours.
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Fig. 12. Ground truth, prediction (98% PI and median) and anomaly flag for 𝑛DS
TCPs

during scan of PV4.

5.2. HTTPS request attacks

The provided event signatures and rule-based predictions for the
two HTTPS requests are depicted in Fig. 13. Due to a match with
the signature of HTTPS requests (see Fig. 10), the attack type can be
identified together with the victims (BAT1 and DM, respectively), and
attacker location (DS), both through visual signature recognition and
the rule-based system.

Fig. 13. Event signatures provided by CyPhERS’ Stage 1 and predictions of the
ule-based signature evaluation (Stage 2) during the HTTPS requests.

.3. ARP spoofing attacks

Fig. 14 depicts the provided event signatures and predictions of
he rule-based system for both ARP spoofing attacks. The signatures
atch the one for ARP spoofing (see Fig. 10). Since the associated rules

re fulfilled, Stage 2 predicts ARP spoofing attacks from an attacker
ocated on the DS against PV3|DM, and PV4|DM, respectively. As the

attacks distract the DM, its UDP communication pattern to non-victim
devices is also affected, resulting in parallel network anomaly flags for
BAT1 during the first ARP spoof and PV3 during the second. As this
behavior is considered as a sub-case of the ARP spoofing signature,
and integrated as such in the rule-based system, predictions switch
between ARP spoofing with and without parallel traffic distraction of
other devices (see Fig. 14).

Another event is detected shortly before the second ARP spoof.
As the provided anomaly flags do not match with the signature of a
known attack, reduced event information (occurrence, affected network
device, no physical impact) is provided by Stage 2. This example
11

s

Fig. 14. Event signatures provided by CyPhERS’ Stage 1 and predictions of the
rule-based signature evaluation system (Stage 2) during the ARP spoofs.

demonstrates that CyPhERS can automatically provide information
such as event occurrence and affected devices also for unknown event
types.

To illustrate the prediction and flagging process of the underlying
anomaly detection and classification pipelines, some examples are pro-
vided in Fig. 15. Fig. 15(a) represents 𝑛PV4

ARPd
during the second ARP

poofing attack. It can be noticed that the spoofs result in pronounced
lobal anomalies which are immediately detected. As ARP packets
uring normal operation occur non-deterministically, the small peaks
annot be learned by the GBDT model. Instead, it puts the PI on a
onstant level to capture those peaks, which illustrates that the GBDT
odel approximates a static but accurate threshold in cases without

earnable pattern. Fig. 15(b) shows 𝑛DM
UDPd

during the first ARP spoof.
s the DM maintains UDP communication with non-victim devices,

he oscillation pattern persists, however, on a lower level. The level
ecrease is detected by the underlying pipeline. Fig. 15(c) depicts an
xcerpt of the UDP traffic distraction of BAT1 during the first ARP
poof. It can be seen that the distraction only expresses as a local and
hort pattern interruption without specific traffic increase or decrease.
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Fig. 15. Ground truth, prediction (98% PI and median), and anomaly flag for (a) 𝑛PV4
ARPd

during second ARP spoof, (b) 𝑛DM
UDPd

during first ARP spoof, and (c) 𝑛BAT1
UDPd

during first
ARP spoof.

5.4. False command injection attacks

Fig. 16 depicts the event signatures of Stage 1 and predictions of
Stage 2 during the four FCIAs. In all cases, the provided signatures
match the FCIA signature (see Fig. 10), allowing to identify the attack
type, victims, attacker location, and physical impact, as the rule-based
predictions indicate. Fig. 17 illustrates the detection of false commands
on the example of 𝑛DS

MBs
during the FCIA against PV1. The underlying

GBDT model successfully learned the normal peaks at full hours. More-
over, it understands that small positive peaks are usually followed by
negative ones. As the injection of false commands is not followed by a
negative peak, the larger distance between prediction and ground truth
results in an anomaly flag.

The yellow or orange flags (𝑣= − 2 or 2) in the physical target
features indicate that the attacker switched off the respective victim
device. The detection of the physical impact is exemplified on the FCIAs
against PV1 and BAT32 in Fig. 18. It can be noticed that modeling of
physical target features is subject to larger uncertainties compared to
network traffic modeling. As a result, smaller physical impacts may be
missed by some features as, for example, the case for 𝑣𝑃BAT4

fmean
and 𝑣𝑃BAT4

bmean
during the FCIA against BAT4. Note that, on the abstraction level of
the battery state 𝑆, the switch-off is detected, which highlights the

2 Note that the predicted sudden change from charging to discharging
in Fig. 18(b) results from the compressor load peak that the battery would
compensate if not switched off.
12
Fig. 16. Event signatures provided by CyPhERS’ Stage 1 and predictions of the
rule-based signature evaluation system (Stage 2) during the FCIAs.

Fig. 17. Ground truth, prediction (98% PI and median) and anomaly flag for 𝑛DS
MBs

during FCIA against PV1.

importance of such abstracting target features for applying CyPhERS

for DER monitoring, as proposed in this work.
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Fig. 18. Ground truth, prediction (98% PI and median) and anomaly flag for (a) 𝑃 PV1
fmean

uring FCIA against PV1, and (b) 𝑃 BAT3
fmean during FCIA against BAT3.

5.5. False data injection attacks

Fig. 19 depicts the provided event signatures of Stage 1 and pre-
dictions of the rule-based system (Stage 2) during the FDIAs. As the
signatures during all three attacks correspond to the ones of FDIAs
(see Fig. 10), attack type, victim device, and physical impact can be
derived through visual signature recognition or automated rule-based
predictions. Since the batteries accept the injected false data and react
to them in an expected way, no disfunctionality is flagged (𝑣𝑃BAT𝑖

fmean
=0).

At the same time, anomaly flags in 𝑣𝑃BAT𝑖
bmean

indicate untypical battery
behavior given the current time of the day and PV feed.3 While blue
flags (𝑣𝑃bmean= − 1) indicate abnormal charging, red flags (𝑣𝑃bmean=1)
point toward unusual discharging. This example underlines the impor-
tance of considering both functional and behavioral target features for
identification of the physical attack impact in case of DER monitoring,
as suggested in this work.

5.6. Replay attacks

The event signatures of Stage 1 and predictions of Stage 2 during
the two replay attacks are depicted in Fig. 20. During both attacks,
anomalies are flagged in almost all system zones as the network devices
are distracted by processing the large number of replayed energy meter
multicasts. In this case, visual recognition of specific attack patterns
is challenging. In contrast, the rule-based system quickly identifies
the signature as the associated rules are still fulfilled. Since parallel
traffic flooding is integrated into the rule-based system as a sub-case
of the replay attack signature, Stage 2 predicts the attack type, victim
device, and physical impact along with network flooding. The correct
identification of affected batteries and the physical impact on them is
the result of incorporating abstracting target features, as proposed in
this work (load oscillation of BAT𝑖 indicated by 𝑣𝑃BAT𝑖

osc
=1).

3 Note that 𝑣BAT3
𝑆 =1 during the first FDIA indicates that BAT3 was first

ctivated by the attack.
13
Fig. 19. Event signatures provided by CyPhERS’ Stage 1 and predictions of the
rule-based signature evaluation system (Stage 2) during the FDIAs.

The batteries which are controlled based on the replayed power
readings oscillate between full charging and discharging power. Since

they reach their maximum power limits, the other batteries take over,
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Fig. 20. Event signatures provided by CyPhERS’ Stage 1 and predictions of the
ule-based signature evaluation system (Stage 2) during the replay attacks.
14
as explained in Section 3.1, and thus, begin to oscillate as well. How-
ever, since BAT1 and BAT4 are fully discharged during the second
attack, no oscillation is indicated for them.

Toward the end of the second replay attack, the inverter in PV3
crashes since it cannot process the large number of packets as pointed
out by the yellow flags in the network target features. Shortly after,
𝑣𝑃 PV3

fmean
= − 2 indicates that also the feed of the associated solar panel

string is interrupted.

5.7. Performance impact of the methodological adaptations

Table 8 provides a performance comparison of applying the original
and adapted version of CyPhERS to the dataset of the considered
PV-battery system demonstration case. The adapted version achieves
a significantly lower false positive rate. This improvement is mainly
caused by the switch to probabilistic models and detection rules, which
enable automatic reduction of the detection sensitivity at times of low
confidence of the prediction model due to randomness and volatility in
DER operation, thus, reducing false positives. From the identification
rates in Table 8, it can be further seen that the identification of
cyber attacks without physical impact (Scan, HTTPS request, and ARP
spoof) can be achieved based on the event signatures of both CyPhERS
versions with comparable performance. However, the original CyPhERS
fails to provide informative signatures for the identification of the
cyber–physical attacks (FCIA, FDIA, and replay attack) in most cases.
The FCIAs against BAT3 and BAT4 cannot be identified as the abnor-
mal battery operation is not detected and described in the provided
signatures, which is due to two reasons: (1) The lower sensitivity of
the deterministic detection approach at times of high model confidence,
and (2) the lack of abstracting physical target features that break down
modeling complexity of the battery operation, such as the on/off state
of a battery. Finally, the FDIAs and replay attacks cannot be identified
by evaluating the event signatures of the original CyPhERS version
due to the lack of behavioral target features which indicate misuse of
the normal battery functionality, for example, oscillation during replay
attacks.
Table 8
Comparison of the original [11] and adapted version of CyPhERS.

Version TPR FPR IRScan IRHTTPS IRSpoof IRFCIA IRFDIA IRReplay

Original 0.86 0.15 1∕2 2∕2 2∕2 2∕4 0∕3 0∕2
Adapted 0.98 0.02 2∕2 2∕2 2∕2 4∕4 3∕3 2∕2

6. Discussion

In this section, the results of applying CyPhERS for DER monitoring
are discussed and put into a wider perspective.

6.1. Applicability of CyPhERS for monitoring of DERs and other power
system applications

The results in Section 5 demonstrate that the proposed methodolog-
ical adaptations and realization of an automated signature evaluation
system enable application of CyPhERS for automated online DER mon-
itoring. During all considered attacks, CyPhERS’ Stage 1 provides event
signatures which are automatically associated with the correct attack
type, victim device, attacker location, and physical impact in Stage 2.
In particular, the significant reduction of false positives and increased
identification rate for cyber–physical attacks compared to the origi-
nal version of CyPhERS (see Table 8) demonstrate the effectiveness
of the proposed methodological adaptations, namely the (1) applica-
tion of probabilistic models and detection rules, (2) differentiation of
functionality- and behavior-describing physical target features, and (3)
consideration of abstracting target features such as the on/off state of
batteries. Given the complexity of the considered PV-battery system
demonstration case, applying CyPhERS to other power system appli-

cations, including substations and energy communities, is considered
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possible. A potentially limiting factor for resource-constrained systems
is the linear dependency between the number of models and target fea-
tures. Thus, careful selection of monitored features is of high relevance
for minimizing the computational burden of CyPhERS.

6.2. The role of ML in CyPhERS

In CyPhERS, ML is used to model target features and eventually
provide the indicator for deciding whether an observation is normal
or abnormal. The results in Section 5 demonstrate that ML allows to
detect complex local anomalies which are only abnormal in a specific
temporal or situational context (see, for example, Fig. 17). In case of
some target features, similar detection results could be achieved with
simpler methods. For example, the global anomaly in 𝑛ARPd during
ARP spoofs (see Fig. 15(a)) could be detected with a pre-defined static
threshold. However, ML allows to generalize and automate modeling
of target features and definition of detection rules. Thus, even in cases
where simpler methods can achieve the same performance, ML is
advantageous as it avoids manual effort, which is particularly relevant
for larger numbers of target features. Furthermore, through regular
retraining, the models automatically adapt to changes such as new
consumer behavior.

6.3. Uniqueness of event signatures

For the sake of conciseness and readability, the number of target
features (in particular network features) is limited in this work. Many
other relevant features which are, for example, based on port numbers
or MAC and IP addresses are neglected. Moreover, other information
sources are fully excluded. These include human interactions with the
system (e.g., maintenance activities), and system logs. Consequently,
some of the event signatures may be explainable by other incidents as
well. For example, the pattern of a FCIA may also result from the rare
event of switching off inverters for maintenance. If models are informed
about such activities, these events can be distinguished. Thus, for
implementation outside an academic environment, all relevant target
features should be taken into account, in order to guarantee uniqueness
of the event signatures.

6.4. Integration into a distributed attack detection system

The steadily growing number of solar plants, battery storages, and
electric vehicles makes coordinated malicious control of DER fleets an
emerging opportunity for large-scale attacks against power systems.
CyPhERS could provide the foundation of a bottom-up security archi-
tecture for power systems, which identifies such threats in a timely
and reliable manner. Attack reports of multiple distributed CyPhERS
systems could be aggregated and jointly evaluated by a cyber security
incident response team (CSIRT). The CSIRT could then inform affected
transmission or distribution system operators about cyber incidents in
their area, including information on location, capacity and type of
affected energy resources, to enable incident response such as isolation
of affected DERs.

7. Conclusion

This work adapts and evaluates the Cyber-Physical Event Reasoning
System CyPhERS for automated online DER monitoring. CyPhERS is
a two-stage process, where Stage 1 generates informative and inter-
pretable signatures from an online evaluation of physical process and
network traffic data, which are evaluated in Stage 2 to conclude on
event root causes and physical impacts. Among the key strengths
are the independence of historical event observations, and capability
to provide information on cyber, physical and cyber–physical event
types. To enable applicability of CyPhERS for DER monitoring, this
15

work proposes and realizes several methodological adaptations for
Stage 1, including (1) switching to probabilistic models and detection
rules, (2) differentiating functional and behavioral target features, and
(3) describing complex DER behavior via abstracting target features.
Moreover, a rule-based system is formulated and implemented to auto-
mate signature evaluation in Stage 2. The applicability of the adapted
version of CyPhERS for DER monitoring is evaluated on a dataset
which describes several cyber and cyber–physical attack types targeting
a real PV-battery system. The results demonstrate that the proposed
methodological adaptations and rule-based signature evaluation system
enable CyPhERS to automatically infer attack occurrence, type, vic-
tim devices, attacker location, and physical impact in all considered
attack scenarios. The effectiveness of the methodological adaptations
is particularly evident in significantly higher identification rates for
cyber–physical attacks, and a reduction of the false positive rate from
FPR = 0.15 to 0.02.
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