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A B S T R A C T

We investigate the drag-reduction achieved by suppressing the Very-Large-Scale Motion (VLSM) that is typical
of turbulent Couette flows. A weak Coriolis force is used for this purpose, as pioneered by Komminaho et al.
(1996). The main advantage of this strategy is that it only suppresses the VLSM without suppressing other
motions of similar scale. The suppression effect is though progressive with the intensity of the Coriolis force,
and direct effects of the forcing on the small scales are hard to isolate, albeit marginal. At the highest Reynolds
number investigated, we observe a 13% drag reduction at constant flow rate, suggesting that significant savings
can be achieved by controlling large scales when they are particularly intense (at high Reynolds numbers).
Performance gains yielded by the suppression of the VLSM are partially compensated by a higher-than-expected
contribution to the skin friction from smaller (yet not necessarily small) scales, as measured using the Constant
Power Input (CPI) framework (Gatti et al., 2018) . The analysis of energy spectra suggests that these unexpected
expenses are caused by the energisation of outer-scaled eddies residing near the centreline of the channel. We
also argue that the CPI framework is better suited than the FIK identity to measure the skin friction contribution
of small and large scales. Finally, we discuss the analogy between the currently used Coriolis force and other
feedback control strategies.
. Introduction

The energy spectrum of turbulent flows is notoriously continuous,
eaning that turbulence comprises eddies of virtually any size (David-

on, 2015). However, in the buffer layer of a wall-bounded flow (that
s, at a distance of roughly 10 𝛿𝑣 from the wall, where 𝛿𝑣 is the viscous
r inner length) one is most likely to observe turbulent features with
spanwise spacing of roughly 100 𝛿𝑣 (Kline et al., 1967; Kim et al.,

987). These are commonly referred to as small scales and their energy
s known to scale with the friction velocity 𝑢𝜏 =

√

𝜏𝑤∕𝜌 (𝜏𝑤 being
he wall shear stress and 𝜌 the density; see Hoyas and Jiménez, 2006;
arusic et al., 2010). Additionally, small scales are known to self-

ustain through the near-wall cycle (Jiménez and Moin, 1991; Jiménez
nd Pinelli, 1999; Panton, 2001). On the other hand, one is most
ikely to encounter larger flow features in the outer-layer as long
s the Reynolds number is sufficiently high (Kim and Adrian, 1999;
utchins and Marusic, 2007a; Lee and Moser, 2018). The size of these
uter-layer motions is flow dependent and scales with some outer
ariables (for instance, the half channel height ℎ in a channel flow).
uter-scaled motions are usually further categorised into Large- (LSMs)
nd Very-Large-Scale Motions (VLSMs) depending on their streamwise
xtent (Kim and Adrian, 1999); in the following, the term ‘‘large’’ is

∗ Corresponding author.
E-mail address: a.andreolli@kit.edu (A. Andreolli).

used to indicate an outer-scaled motion (which could be a LSM or a
VLSM), whereas the acronyms are used to indicate the two separate
categories. LSMs typically have an extent of 2 − 3ℎ (Kim and Adrian,
1999; Balakumar and Adrian, 2007; Monty et al., 2009), where ℎ could
represent the channel half-height (as in the present paper), the pipe ra-
dius or the boundary layer thickness depending on the considered flow.
VLSMs instead are defined as having a longer (> 3ℎ, see Balakumar
and Adrian, 2007) streamwise extent. It has also been proposed that
LSMs would ensue from the agglomeration of hairpin vortices (Kim and
Adrian, 1999; Zhou et al., 1999), whereas VLSMs would result from the
coherent alignment of LSMs (Kim and Adrian, 1999). Nevertheless, the
mechanism through which ℎ-scaled motions originate and self-sustain
is still object of research (Iwamoto et al., 2004; Toh and Itano, 2005;
Del Álamo and Jiménez, 2006; Hwang and Cossu, 2010; de Giovanetti
et al., 2017; Lee and Moser, 2019; Illingworth, 2020; Zhou et al., 2022).
In spite of this dichotomy between outer- and inner-scaled features, a
considerable share of the energy of a turbulent flow is contained by
vortices of intermediate size extending from the wall up to a given
wall-normal height, the so-called attached eddies (Marusic and Perry,
1995; Hwang, 2015; Baars and Marusic, 2020; Puccioni et al., 2023).
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Notice that the size of attached eddies can actually overlap with that
of outer-scaled motions.

The presence of all these vortices of different sizes contributes to
momentum mixing, which in turn results in an increase (with respect
to a laminar flow) of the drag force felt at the wall — the so-called
turbulent skin-friction drag. Many strategies have been proposed to
achieve turbulent skin friction reduction by either controlling small or
large features of wall-bounded turbulent flows; so far, targeting small
scales has been the more successful and better understood strategy (for
instance, Walsh et al., 1989; Karniadakis and Choi, 2003; Quadrio and
Ricco, 2004; Quadrio et al., 2009; Kasagi et al., 2009). However, this
approach loses performance with increasing Reynolds number (though
a substantial drag reduction should be achievable also at Reynolds
numbers of practical interests; see Iwamoto et al., 2005; Gatti and
Quadrio, 2016). Most crucially, it requires miniaturisation of the con-
trolling actuators as the size of near-wall eddies becomes smaller with
increasing Reynolds number, hindering practical feasibility; examples
of the miniaturisation effort can be found in the review by Kasagi et al.
(2009).

In light of the two above issues, large-scale control has become
of interest. The first approach in chronological order has been to
numerically superpose large-scaled vortices to near-wall turbulence; the
original work by Schoppa and Hussain (1998) has been followed by a
series of studies (Canton et al., 2016a,b; Yao et al., 2017) highlighting
(and proposing solutions to) a loss of performance with increasing
Reynolds number. More recently, large-scale control has been exper-
imentally pursued through strategies originally developed for small
scales, namely spanwise oscillations of the wall (Marusic et al., 2021)
and opposition control (Abbassi et al., 2017; Ibrahim et al., 2020). The
latter scheme was originally proposed by Choi et al. (1994) and consists
in sensing large-scale ejection and (or) sweep events at the wall and
opposing them through suction and (or) blowing respectively.

Alongside these experimental approaches, which to the authors’
knowledge only lead to a modest reduction of the spectral energy of
the large structures, it has also been attempted to numerically quantify
the impact of large scales on the skin friction, and consequently the
drag reduction potentially achievable through their complete removal.
For instance, one can analyse some turbulent flow in presence of
large scales; identities such as the FIK (Fukagata et al., 2002) and the
Renard–Deck (RD, Renard and Deck, 2016) ones can be used to link
turbulent fluctuations to the wall shear stress. Then, turbulent fluctua-
tions can be decomposed into their large- and small-scale contributions
through low-pass filtering. The result of the process is the share of skin
friction caused by large scales. This approach has been pursued, for
example, by Deck et al. (2014), de Giovanetti et al. (2016) and Agostini
and Leschziner (2018). Using a similar procedure, we have shown in a
previous work (Andreolli et al., 2021) that large scales tend to induce
energy waste (closely related to drag) in the form of deviations of the
mean flow from its ideal profile, rather than in the form of turbulent
dissipation. However, the whole procedure described above suffers
from arbitrariness in the choice of filter and decomposition (FIK or RD);
in particular, results are not robust to the choice of the latter (Agostini
and Leschziner, 2019). Additionally, the so-calculated share of skin
friction contributed by large scales is not necessarily representative of
the drag reduction arising from their removal, as nonlinearities can
alter the observed change in skin friction.

To account for non-linear effects, one can then numerically suppress
the large scales and measure the obtained drag reduction. Fukagata
et al. (2010) used modal damping to suppress large-scale wall-normal
fluctuations, obtaining indeed drag reduction, but also observing an
increase of the small-scale contribution to skin friction. Similarly, de
Giovanetti et al. (2016) compared the drag reduction obtained by arti-
ficially removing large scales from a channel flow and the one predicted
by the FIK identity by excluding the large-scale Reynolds shear stress
contribution in the original flow; they found that the predicted drag
2

reduction exceeds the measured one, attributing this discrepancy to c
non-linear scale interactions that arise when large scales are physically
removed. The latter authors also resorted to modal damping for the
removal of large structures; additionally, following Hwang (2013), they
removed the structures by restricting the spanwise simulation domain.
By doing so, large scales are aliased on a spanwise-invariant mode, so
that an additional correction term is needed for their complete removal
(as reported by the authors).

Wall-bounded turbulent flows are known to be sensitive to a weak
spanwise rotation of the reference frame, which can either stabilise
or destabilise the flow — meaning that the fluctuation intensities and
turbulent production are either decreased or increased, as well as the
wall-layer streak bursting rate (Johnston et al., 1972). The effect of
the rotation is determined by the ratio 𝑆(𝑦) = −2𝛺∕(d𝑈∕d𝑦) between
he angular velocity 𝛺 of the reference frame and the spanwise flow
orticity 𝜔̄𝑧 = −d𝑈∕d𝑦, where 𝑈 is the mean streamwise velocity and 𝑦
he wall-normal coordinate (Johnston et al., 1972). A cyclonic rotation
f the reference frame – that is, one where 𝛺 and 𝜔̄𝑧 have the same
ign, hence 𝑆 > 0 – always locally stabilises the flow. An anticyclonic
otation (when 𝛺 and 𝜔̄𝑧 have the same sign, 𝑆 < 0) is instead locally
estabilising as long as |𝑆| < 1.

The (de-)stabilising action is mainly provided by the Coriolis force
n a similar way to how a temperature (or density) gradient can stabilise
r destabilise a buoyancy-driven flow (Lezius and Johnston, 1976;
ritton, 1992; Komminaho et al., 1996). The effects of the Coriolis
orce are most easily observed in a plane Couette flow, where the
orticity 𝜔̄𝑧 has the same sign across the channel height, meaning that
he Coriolis force has a stabilising or destabilising effect across the
ntire channel. By contrast, a plane Poiseuille (or, simply, channel)
low has different signs of the vorticity at the two walls, meaning
hat one side of the channel is stabilised by rotation, whereas the
ther is destabilised (Kristoffersen and Andersson, 1993). Rotating
lane Couette flows have been studied (Bech and Andersson, 1996;
illmark and Alfredsson, 1996; Kawata and Alfredsson, 2016, 2019)

n both stabilising and destabilising configurations; a comprehensive
escription of the flow regimes obtained with varying Reynolds number
nd angular velocity is provided by Tsukahara et al. (2010). The desta-
ilised configuration has been more thoroughly investigated owing to
he counter-rotating roll cells that can be observed in such conditions.
uch roll cells closely resemble, but differ from Tsukahara et al. (2010)
he naturally occurring rolling motion (Pirozzoli et al., 2014; Lee and
oser, 2018) that can be observed in Couette flows without rotation.

or clarity’s sake, we will refer to the latter, naturally occurring rolling
otion as ‘‘the VLSM’’: its streamwise extent (20 − 100ℎ and more,

ee Lee and Moser, 2018; Gandía-Barberá et al., 2018) far exceeds
he typical threshold of 3ℎ (Balakumar and Adrian, 2007) used to
iscriminate LSMs and VLSMs.

The less investigated stabilising regime of the Coriolis force is of in-
erest for this study: it has been shown both experimentally (Tsukahara
t al., 2010) and numerically (Komminaho et al., 1996) that a weak
tabilising Coriolis force can remove the VLSM from the flow. The latter
uthors went on to compare a natural Couette flow with one where the
LSM is suppressed; since the small-scales are minimally affected, they
ere able to estimate the contribution of the VLSM to the turbulent
inetic energy. Yet, this was done at an almost transitional Reynolds
umber, and a parametric study on the intensity of the Coriolis force
eeded to yield a satisfactory suppression of the VLSM with minimal
ntrusiveness is missing.

In this paper, we revisit the VLSM-suppressing technique of Kommi-
aho et al. (1996) as a flow control strategy in Couette flows at higher
eynolds numbers and with changing intensity of the Coriolis force. As
xplained above, previous studies (e.g., Fukagata et al., 2010; de Gio-
anetti et al., 2016) have highlighted that the removal of large scales
esults in non-trivial nonlinear effects, which we investigate using the
onstant Power Input framework (CPI, see Gatti et al., 2018; Andreolli
t al., 2021). In Section 2 we present our numerical methods and flow

onfiguration; in Section 3.1 we discuss the degree of suppression of the
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𝑢

Fig. 1. A schematic representation of the considered flow.

VLSM with increasing control intensity as well as the intrusiveness on
small scales. In Section 3.2 we briefly discuss the CPI framework and
how it differs from the FIK identity; we then use it in Section 3.3 to
assess the impact of the Coriolis force on the flow. A discussion of the
obtained drag reduction is also provided. In Section 4 we discuss how
the Coriolis force achieves the suppression; we argue that it works in a
similar way to the feedback control of Fukagata et al. (2005). Finally,
Section 5 presents a concluding remark.

2. Problem description and numerical details

We perform direct numerical simulations of turbulent plane Couette
flows using the solver described in Luchini and Quadrio (2006). The
flow is schematically depicted in Fig. 1. The two parallel indefinite
walls of the channel move in opposite directions at the same speed 𝑈𝑤.
The 𝑥̂ unit vector indicates the streamwise direction and is defined so
that the bottom wall has a negative velocity. The 𝑦̂ one is oriented in the
wall-normal direction and 𝑧̂ is consequently defined to be the spanwise
one. Axes are denoted by the same letters without hat; the bottom wall
is located at 𝑦 = 0.

The system is subject to the Coriolis body force 𝑓𝑐 that would be
given by a rotation of the reference system about the spanwise axis:

𝑓𝑐 = −2𝜌𝛺𝑧̂ × 𝑢, (1)

where 𝜌 is the uniform density of the fluid. The direction of rotation
is cyclonic, meaning that the angular velocity 𝛺 has the same sign of
the mean vorticity 𝜔̄𝑧 of the flow (𝛺 < 0 as 𝜔̄𝑧 < 0). Notice that the
Coriolis force is orthogonal to the velocity field 𝑢 by definition; hence
it cannot provide nor subtract energy to the flow.

After making them dimensionless with the channel half height ℎ and
the speed of the walls 𝑈𝑤, which defines a Reynolds number 𝑅𝑒𝑤 =
ℎ𝑈𝑤∕𝜈 (𝜈 being the kinematic viscosity), the governing equations read:

∇𝑜 ⋅ 𝑢𝑜 = 0 (2)
𝜕𝑢𝑜
𝜕𝑡𝑜

+ (𝑢𝑜 ⋅ ∇𝑜) 𝑢𝑜 + ∇𝑜𝑃𝑜 =
1

𝑅𝑒𝑤
∇2
𝑜 𝑢𝑜 − 2𝛺ℎ

𝑈𝑤
⏟⏟⏟

𝑅𝑜

𝑧̂ × 𝑢𝑜 (3)

where the (⋅)𝑜 subscript indicates quantities made dimensionless with
outer units (ℎ, 𝑈𝑤), 𝑢 is the velocity vector with its streamwise, wall-
normal and spanwise components (𝑢, 𝑣,𝑤) and P the pressure; × indi-
cates a vector product. In addition to the Reynolds number, a second
dimensionless group appears in the equations, that is, the rotation
number 𝑅𝑜 = 2𝛺ℎ∕𝑈𝑤 (Lezius and Johnston, 1976) governing the
relative intensity of the Coriolis force.

The control intensity 𝑅𝑜 is progressively increased as the Reynolds
number 𝑅𝑒𝑤 is kept constant; this is equivalent to performing a para-
metric analysis at constant flow rate (CFR), since 𝑅𝑒𝑤 represents an
analogue of the bulk Reynolds number in a Couette flow (Andreolli
3

Table 1
Numerical details for the present numerical dataset. Here, 𝑁𝑓 represents the number
of snapshots acquired at a statistically steady state for the calculation of statistics; the
spacing between snapshots is of roughly 1ℎ∕𝑢𝜏 (except for the simulations at 𝑅𝑜 = 0,
which are taken from Andreolli et al., 2021). 𝐿𝑥 and 𝐿𝑧 represent the simulation
domain length in the stream- and span-wise directions respectively; the grid spacing is
uniform in these directions and is represented by 𝛥𝑥 and 𝛥𝑧. As for the wall-normal
direction, 𝛥𝑦𝑤 and 𝛥𝑦𝑐 represent the spacing at the wall and centreline respectively.
𝑅𝑒𝑤 𝑅𝑜 𝑅𝑒𝜏 𝑁𝑓 𝐿𝑥∕ℎ 𝐿𝑧∕ℎ 𝛥𝑥+ 𝛥𝑧+ 𝛥𝑦+𝑤 𝛥𝑦+𝑐
1667 0 101.7 408 12𝜋 4𝜋 10.0 5.0 0.5 2.6
1667 −2 ⋅ 10−3 100.8 250 12𝜋 4𝜋 9.9 4.9 0.5 2.6
1667 −5 ⋅ 10−3 99.5 250 12𝜋 4𝜋 9.8 4.9 0.5 2.6
1667 −1 ⋅ 10−2 97.3 250 12𝜋 4𝜋 9.6 4.8 0.5 2.5
1667 −2 ⋅ 10−2 92.5 250 12𝜋 4𝜋 9.1 4.5 0.4 2.4
1667 −3 ⋅ 10−2 86.5 250 12𝜋 4𝜋 8.5 4.2 0.4 2.2
10 133 0 507.1 223 16𝜋 8𝜋 12.5 6.2 1.0 7.2
10 133 −5 ⋅ 10−3 473.4 150 16𝜋 8𝜋 11.6 5.8 0.9 6.8
10 133 −1 ⋅ 10−2 457.8 150 16𝜋 8𝜋 11.2 5.6 0.9 6.5
10 133 −2 ⋅ 10−2 435.1 150 16𝜋 8𝜋 10.7 5.3 0.8 6.2

et al., 2021). This is done at a low and at a moderate Reynolds number,
corresponding to a friction Reynolds number 𝑅𝑒𝜏 = ℎ𝑢𝜏∕𝜈 of roughly
100 and 500 respectively when no control is applied. Data for uncon-
trolled Couette flows are taken from simulations of Andreolli et al.
(2021), who used a wide enough box size to accommodate the VLSM
and a standard resolution. The same mesh is used for the controlled
cases; this choice is suited as the suppression of the VLSM and the
consequent drag reduction relieve the constraints on both the box size
and the resolution. A summary of the numerical details is provided in
Table 1.

As for the notation used in this manuscript, a (⋅)+ superscript indi-
cates quantities made dimensionless with inner units (𝛿𝑣, 𝑢𝜏 ). Averaging
in time and in the spatial homogeneous directions is indicated by ⟨⋅⟩.
Such an averaging operator can be used to define the usual Reynolds
decomposition of the velocity 𝑢 (and similarly of other flow quantities):

⃗ =
⟨

𝑢
⟩

+ 𝑢 ′, (4)

where
⟨

𝑢
⟩

= 𝑈𝑥̂ is the mean velocity and only has a non-zero
streamwise component 𝑈 . The remaining term 𝑢 ′ indicates velocity
fluctuations instead.

3. Results

3.1. Mean velocity, spectra and VLSM suppression

In this section, we show basic flow statistics and discuss how the
VLSM is suppressed with increasing rotation number; effects on small
scales are also discussed. First off, we inspect how the Coriolis force
affects the mean velocity profile in Fig. 2 for all available simulations.
Notice that Fig. 2 compensates for the fact that both walls have a
non-zero velocity in our numerical setup. The usual collapse of the
inner-scaled velocity profile is seen in the near-wall region, indicating
that the control force does not substantially alter the near-wall dynam-
ics. Deviations of the mean velocity profiles from the uncontrolled case
are seen only towards the centreline: there, larger absolute values of
the rotation number 𝑅𝑜 are associated to larger values of the inner-
scaled velocity. This could be a symptom of drag reduction; a thorough
discussion of the matter will be given in Section 3.3.

The presence of the VLSM in Couette flows is usually revealed by
analysing velocity spectra or visually inspecting flow snapshots (Lee
and Moser, 2018). The VLSM is indeed easily observable without fur-
ther postprocessing of the acquired data, although a short-time average
or a long-exposure picture may help (see, for instance, Tsukahara et al.,
2010). We begin by comparing two flow snapshots at 𝑅𝑒𝜏 ≈ 500: one
from an uncontrolled simulation and one subject to the Coriolis force
with a given value of the rotation number (𝑅𝑜 = −10−2). This is done to
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Fig. 2. Inner-scaled mean velocity profile 𝑈+(𝑦+) +𝑈+
𝑤 for all available simulations (see Table 1), adjusting for the velocity of the bottom wall. The dashed lines indicate 𝑅𝑜 = 0;

otherwise, darker shades of grey indicate a larger absolute value of 𝑅𝑜. (a) 𝑅𝑒𝜏 ≈ 100; (b) 𝑅𝑒𝜏 ≈ 500.
Fig. 3. Instantaneous visualisations of the streamwise velocity 𝑢 at the centreline (𝑦∕ℎ = 1); 𝑅𝑒𝜏 ≈ 500, 𝑅𝑜 = 0 (a) and 𝑅𝑜 = −10−2 (b). Cross-sectional view of the streamwise- and
time-averaged velocity field (c); 𝑅𝑒𝜏 ≈ 500, 𝑅𝑜 = 0. The colour indicates the streamwise component 𝑢̃; the two remaining components are represented as vectors. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
show both the appearance of the VLSM and the effects of the Coriolis
force in physical space; a more thorough discussion of the VLSM-
suppression is presented later. Fig. 3(a–b) shows the instantaneous
distribution of streamwise velocity at the midplane for the two selected
flow cases. In the uncontrolled one, streamwise-coherent regions of
low and high momentum can be clearly distinguished; they repeat
themselves quasi-periodically in the spanwise direction with a period
of roughly 5ℎ. These high- and low-momentum streaks are the most
easily indentifiable feature of the VLSM (Pirozzoli et al., 2014; Lee
and Moser, 2018); they disappear when the Coriolis force is applied,
suggesting that the VLSM is being suppressed. Following Lee and Moser
(2018), an averaged visualisation of the VLSM can be produced by
exploiting its extended streamwise and time coherence. We average
the velocity field of the uncontrolled simulation in the streamwise
direction as well as in time (using all saved snapshots, which span a
time window of 2220ℎ∕𝑈𝑤). The result is shown in Fig. 3(c), revealing
the presence of quasi-periodically repeating pairs of counter-rotating
vortices extending from one wall to the other. Neighbouring vortices
induce regions of upwelling and downwelling motion where low- and
high-momentum fluid is pulled away from the bottom and top walls
respectively, so that the streaks seen in Fig. 3(a) are formed.

To better investigate the VLSM-suppression, we analyse the spectra
of both controlled and uncontrolled flows. Fig. 4 shows the spanwise
4

(co-)spectra for each of the nonzero Reynolds stresses for the uncon-
trolled and a selected controlled Couette flow at 𝑅𝑒𝜏 ≈ 500. The
remaining cases are not shown for conciseness and return the same
qualitative picture described here. The uncontrolled case features a
spectral peak around a spanwise wavelength of 𝜆𝑧∕ℎ = 5 for each
component of the Reynolds stress tensor. This is the spectral repre-
sentation of the streaky structure seen in Fig. 3(a); it has also been
observed, for instance, by Lee and Moser (2018). The main effect of
the applied forcing is the disappearance of this spectral peak for all
components of the Reynolds stress tensor; otherwise, all (co-)spectra
maintain the qualitative structure of the uncontrolled case. The only
other noticeable difference is a moderate increase in the fluctuation
energy at the centreline; this is particularly relevant for the Reynolds
shear stress, which receives at 𝑦∕ℎ ≈ 1 an increased contribution from
motions that are outer-scaled (𝜆𝑧∕ℎ ≈ 2), yet smaller than the VLSM.

This shows that the main effect of the application of a weak Coriolis
force to a Couette flow is the suppression of the VLSM, accompanied
by a modest increase in the energy of large, non-VLSM eddies; further
effects on the remaining scales of motion will be discussed at the end
of this section. One advantage of the Coriolis force approach with
respect to modal damping or spanwise domain restriction (used, for
instance, by de Giovanetti et al., 2016) is that the former does not
suppress the large-scaled motions (possibly attached eddies) coexisting
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Fig. 4. Premultiplied one-dimensional spanwise (co-)spectra 𝜅𝑧𝛷𝑢𝑢, 𝜅𝑧𝛷𝑣𝑣, 𝜅𝑧𝛷𝑤𝑤, −𝜅𝑧𝑒
(

𝛷𝑢𝑣
)

(𝑒 indicating the real part of a complex number) of the non-zero Reynolds stress
tensor components; streamwise, wall-normal and spanwise normal stresses and shear stress respectively. (a-d) 𝑅𝑒𝜏 ≈ 500, 𝑅𝑜 = 0; (e-h) 𝑅𝑒𝜏 ≈ 500, 𝑅𝑜 = −10−2. The dashed lines in
panels (a), (e) indicate the inner-layer wall-normal position (𝑦+ = 12) at which the spectrum is re-analysed in Fig. 7.
Fig. 5. Premultiplied one-dimensional spanwise spectrum 𝜅𝑧𝛷𝑢𝑢 of the streamwise fluctuations for changing value of the control intensity |𝑅𝑜| at the midplane (𝑦∕ℎ = 1); (a)
𝑅𝑒𝜏 ≈ 100 and (b) 𝑅𝑒𝜏 ≈ 500. The dashed lines indicate 𝑅𝑜 = 0; as for the solid lines, darker shades indicate an increasing magnitude of 𝑅𝑜. Values of 𝑅𝑜 as of Table 1. The dotted
lines indicate the critical value of the spanwise wavelength used to determine whether the VLSM is fully suppressed.
with the VLSM at the same spanwise wavelengths. Indeed, spectral
energy content is still observable in the (co)-spectra at 𝜆𝑧∕ℎ = 5 after
the suppression of the VLSM, ensuring smoothness of the spectra. This
would not be the case if modal damping were used, as all energy at
large wavelengths would be removed yielding a discontinuous spec-
trum; similarly, if one were to restrict the spanwise simulation domain,
large wavelengths would be unrepresentable (see de Giovanetti et al.,
2016).

The spectrum 𝛷𝑢𝑢 of streamwise fluctuations of Fig. 4(a,e) is re-
analysed in the outer layer (at 𝑦∕ℎ = 1, more precisely) for all available
simulations in Fig. 5. The peak associated to the VLSM is sharp, indicat-
ing that the VLSM is rather monochrome — meaning that its spectral
representation mainly involves one or two Fourier modes only. By
comparing the spectra of uncontrolled simulations (dashed lines) at low
and high Reynolds number (panels a and b respectively), the Reynolds
number dependence of the patterns of high- and low-speed streaks
composing the VLSM can be appreciated. Even when scaling it in outer
units, the energy associated to the pattern significantly increases with
Reynolds number; moreover, its characteristic spanwise wavelength
shifts from 𝜆𝑧∕ℎ ≈ 3−4 to a larger value of 𝜆𝑧∕ℎ ≈ 5, meaning that the
pattern becomes larger in physical terms. This behaviour is expected
and can also be observed in the data of Lee and Moser (2018).
5

As for the dependence on the rotation number at constant flow rate,
the sharp spectral peak associated to the VLSM disappears already at
the lowest value of 𝑅𝑜 tested here — as far as the high-𝑅𝑒 dataset is con-
cerned (Fig. 5b). We interpret this as the VLSM being suppressed. The
VLSM-peak is replaced by a weaker, smooth one, which shrinks in size
and intensity as 𝑅𝑜 further increases. At the lower Reynolds number
(Fig. 5a), instead, the sharp energy peak progressively shrinks in size
and intensity until it becomes smooth; determining the critical value of
𝑅𝑜 for which the VLSM is fully suppressed is thus an arbitrary process,
as no clear saturation effect is seen. This arbitrarity constitutes the main
drawback of using the Coriolis force instead of other VLSM-suppressing
strategies.

The critical value of 𝑅𝑜 could be defined, for instance, as the one of
minimum absolute value for which no sharp spectral peak is observed;
the underlying argument would be that the VLSM is associated to a
sharp spectral peak, as discussed before, whereas the spectral contri-
butions of non-VLSM large scales are instead broadband. Alternatively,
one can analyse the 𝜆𝑧-position of the large-scaled outer-layer spectral
peak seen in Fig. 5(a–b). The critical value of the rotation number could
be defined as the one of minimum absolute value for which the outer-
layer maximum of the power spectral density of 𝑢-fluctuations falls at
a wavelength that is smaller than a given threshold. In Andreolli et al.
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Fig. 6. Premultiplied one-dimensional streamwise spectrum 𝜅𝑥𝛷𝑢𝑢 of the streamwise fluctuations for changing value of the control intensity |𝑅𝑜| at the midplane (𝑦∕ℎ = 1). Line
styles as of Fig. 5; (a) 𝑅𝑒𝜏 ≈ 100, (b) 𝑅𝑒𝜏 ≈ 500. To the right of each panel, the value of the spectrum at 𝜆𝑥 → ∞ is shown; such a value is premultiplied with the Fourier resolution
𝛥𝜅𝑥 of our simulations. Two vertical dotted lines indicate the expected streamwise periodicity of LSMs (𝜆𝑥∕ℎ = 3) and the approximate wavelength (𝜆𝑥∕ℎ ≈ 6) at which a maximum
of the spectrum is seen for most of the present simulations.
(2021), we chose 𝜆𝑧∕ℎ ≥ 𝜋 as a suited criterion to discriminate the
VLSM from the remaining scales of motions; owing to the discrete mesh
used, this can be rewritten as 𝜆𝑧∕ℎ > 0.889𝜋 and 𝜆𝑧∕ℎ > 0.941𝜋 for the
simulations at the low and high Reynolds numbers respectively. These
values are used in this paper as the threshold defining the VLSM, and
are shown in Fig. 5(a–b) as dotted lines.

These two methods both return the same value 𝑅𝑜 = −0.01 for
the low-𝑅𝑒 dataset. As previously discussed, at high Reynolds number
we consider the VLSM to be suppressed already at the lowest tested
value of the rotation number (𝑅𝑜 = −0.005), although analysing the
wavelength of maximum outer-layer spectral energy suggests a critical
value of 𝑅𝑜 = −0.01. The previous estimate based on visual inspection
is deemed more credible, as the spectrum is substantially changed by
increasing the magnitude of the rotation number from 𝑅𝑜 = 0 to
𝑅𝑜 = −0.005, whereas a further increase to 𝑅𝑜 = −0.01 only leads to
marginal changes. In other words, it seems that most of the VLSM-
suppression has already taken place at 𝑅𝑜 = −0.005 at high Reynolds
number.

It appears, then, that the critical value of 𝑅𝑜 at which the VLSM
is fully suppressed decreases with Reynolds number. This is unsurpris-
ing. The rotation number is equal to (twice) the angular velocity 𝛺
scaled in outer units, and it multiplies the flow velocity to yield the
Coriolis acceleration. The magnitude of large-scale velocity fluctuations
increases with 𝑅𝑒 even if scaling in outer units (see Fig. 5a,b; notice
the different scale for the y-axis). Hence, the magnitude of the Coriolis
force acting on large scales will increase with 𝑅𝑒 even if one keeps the
angular velocity constant in outer units (that is, 𝑅𝑜 = 𝑐𝑜𝑛𝑠𝑡.). In other
words, it is reasonable to expect the same value of 𝑅𝑜 to produce larger
effects at a larger Reynolds number, as is here observed. Nonetheless,
the data produced for this study is rather limited for a discussion of
Reynolds number effects; further investigation is needed.

So far, we have only scrutinised spanwise velocity spectra. While
these clearly identify the VLSM, they do not contain information about
the streamwise extent of the turbulent structures. To recover this kind
of information, Fig. 6 shows the premultiplied streamwise spectra of
streamwise fluctuations for all available simulations. Data is shown at
the centreline, where the Coriolis force has its strongest effects. Next
to each panel, the value of the spectrum for 𝜆𝑥 → ∞ (where 𝜆𝑥 is the
streamwise wavelength) is shown; notice that the Fourier resolution
𝛥𝜅𝑥 of the simulations is used for premultiplication in this case, as
using the wavenumber 𝜅𝑥 = 2𝜋∕𝜆𝑥 = 0 would hide the energy content
of the spectrum. Such a value of the spectrum represents the energy
contained in all streamwise-invariant Fourier modes or, in other words,
the energy held by streamwise-invariant vortices. Although it is usually
not shown, the energy of streamwise-invariant vortices is surprisingly
high in the uncontrolled simulations of the present dataset, both at
the lower (a) and especially at the higher (b) Reynolds number. We
interpret this observation as follows. Despite being sufficiently wide in
the spanwise direction, the simulation box used for the present study
6

is too short in the streamwise one to correctly capture the extent of
the VLSM: the latter is thus misrepresented as a streamwise-invariant
vortex. In other words, most of the energy of the VLSM is contained
on streamwise-invariant Fourier modes. Unlike in spanwise spectra
(Fig. 5), no particularly pronounced sharp spectral peak is observed for
finite values of the streamwise wavelength 𝜆𝑥 in Fig. 6, which reinforces
our interpretation. Similar conclusions were drawn by Lee and Moser
(2018) upon inspecting streamwise spectra in a much longer domain
at 𝑅𝑒𝜏 ≈ 500; the authors also note that the streamwise coherence
length of the VLSM at 𝑅𝑒𝜏 ≈ 500 exceeds 310ℎ. Correctly capturing
the streamwise extent of such a long structure in a direct numerical
simulation is prohibitively expensive.

What is also surprising about the streamwise spectra of Fig. 6 is
the lack of an expected feature. Typically, a spectral peak associated
to LSMs is observed at 𝜆𝑥∕ℎ = 3; it is observed in channel, pipe and
boundary layer flows (Monty et al., 2009). We do not observe it here
in any of our simulations, including the uncontrolled ones. At the lower
Reynolds number (Fig. 6a), a spectral peak is seen at around 𝜆𝑥∕ℎ ≈ 6
in the uncontrolled simulation; at the higher one (b), the peak is seen
around 𝜆𝑥∕ℎ ≈ 20. Perhaps, all outer-scaled eddies have a larger extent
in Couette flows as they have in other wall-bounded flows; following
this interpretation, then, the spectral peaks seen at 𝜆𝑥∕ℎ ≈ 6 and
𝜆𝑥∕ℎ ≈ 20 at 𝑅𝑒𝜏 ≈ 100 and 𝑅𝑒𝜏 ≈ 500 respectively would represent the
LSMs of the considered Couette flows. The typical rolling motion, which
is much larger in extent and is represented as streamwise-invariant in
our simulation, would instead constitute the very-large-scale motion of
a Couette flow, consistently with the nomenclature used in this paper.
It is also possible, however, that such a categorisation of outer-scaled
motions into LSMs and VLSMs simply does not apply to Couette flows.
An in-depth discussion of the matter is out of the scope of the present
paper and is left for future work.

As for the effects of the Coriolis force on streamwise spectra, larger
absolute values of the rotation number |𝑅𝑜| are associated to a reduc-
tion of the energy of streamwise-invariant vortices. This reinforces the
idea that most of the energy of the VLSM is contained on streamwise-
invariant Fourier modes, and that the VLSM is getting suppressed. A
reduction of spectral content is also seen for the largest wavelengths
represented in our simulations (𝜆𝑥 ≈ 50). Instead, motions of wave-
length 𝜆𝑥∕ℎ ≈ 6 are energised by applying the Coriolis force both at
the lower and higher Reynolds numbers. By combining this information
with the one provided by spanwise spectra (see Figs. 4 and 5), we
conclude that the control force considered here energises outer-scaled
motions that are shorter and narrower than the suppressed VLSM.

While we observe that the main effect of a weak Coriolis force is to
suppress the VLSM and energise some other outer-scaled eddies, effects
on small scales cannot be excluded a-priori. Indeed, it is known that a
strong enough rotation can also suppress small-scale turbulence (Tsuka-
hara et al., 2010). Kline et al. (1967) suggested that the rotation might
prevent small-scale low-speed streaks from being lifted up from the
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Fig. 7. Inner-scaled premultiplied one-dimensional spanwise spectrum 𝜅𝑧𝛷𝑢𝑢 of the streamwise fluctuations for changing value of the control intensity |𝑅𝑜| at 𝑦+ = 12; (a) 𝑅𝑒𝜏 ≈ 100
and (b) 𝑅𝑒𝜏 ≈ 500. Line styles as of Fig. 5.
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wall, halting turbulence-producing events. Therefore, we discuss the
effects of the Coriolis force on small scales by analysing the spectrum
𝛷𝑢𝑢 of streamwise fluctuations in the near-wall region at 𝑦+ = 12. This is
done in Fig. 7, once again for all available simulations. The wall-normal
position is chosen to match the one at which the maximum of the near-
wall fluctuation energy is seen. The near-wall footprint of the VLSM is
clearly observable both at low (a) and high (b) Reynolds number in the
uncontrolled setting (dashed line). As the control intensity increases,
the footprint gradually vanishes as expected. As for the small-scale
peak at 𝜆+𝑧 ≈ 100, its inner-scaled intensity and the wavelength at
which it occurs are unaltered by the Coriolis force at high Reynolds
number, as seen in panel (b). This observation matches the expected
universal scaling in viscous units of the small-scale peak (Marusic et al.,
2010), suggesting that the effect of a weak Coriolis force on the small
scales is negligible. On the contrary, at the lower Reynolds number,
the spectra of the controlled cases do not collapse on the one of the
uncontrolled simulation, not even for small values of 𝜆+𝑧 . A separate
nalysis, not shown for brevity, indicates that the streak spacing (as
easured by the 𝜆𝑧-position of the small-scale spectral maximum; this

s conceptually similar to, but differs slightly from, using the minimum
f the velocity autocorrelation for this estimate, as done in Kim et al.,
987) decreases, whereas the peak intensity is increased. At the critical
alue of 𝑅𝑜 previously determined (𝑅𝑜 = −0.01), the maximum small-
cale value of the 𝛷𝑢𝑢 spectrum is 8% larger than in the reference case,
nd the streak spacing is reduced by 3.5%.

Owing to the nonlinearity of turbulent phenomena, the observed
ncrease in small-scale energy at low 𝑅𝑒 could be linked to distortions
n nonlinear large-small interactions that arise as large scales are sup-
ressed (de Giovanetti et al., 2016). High-𝑅𝑒 data indicates instead that
mall-scales are only minimally affected by the Coriolis force for the
eak rotations here investigated. We conjecture that this difference is
ue to scale separation: at the lower Reynolds number (Fig. 7a), the
mall- and large-scale spectral peaks are much closer together than they
re at high-𝑅𝑒 (b).

.2. The CPI framework and the FIK identity

A framework for the analysis of flow control strategies based on
ntegral energy budgets was first introduced by Gatti et al. (2018).
ater, it was generalised in Andreolli et al. (2021) to be applicable to
ouette flows and to discriminate turbulent eddies of different scales.

n the following, the more general formulation provided in the latter
ublication will be used; the framework will be referred to as the CPI
ramework (shorthand for Constant Power Input). It will be briefly re-
iscussed in this section and later used in Section 3.3 to analyse the
resent dataset. Notice that, although the CPI framework was indeed
eveloped to assess the effect of different control strategies on flows
haring the same input power, it will be here applied to a dataset of
imulations carried out at a Constant Flow Rate (CFR). This application
s valid as the framework will not be used to measure drag reduction,
7

ut rather to gain physical insights on the processes through which drag
eduction is achieved.

According to the CPI framework, the input power (per unit wet area)
𝑡 provided to a turbulent plane Couette or Poiseuille of a given flow

rate flow is either spent as laminar dissipation 𝛷𝐿 (corresponding to
the theoretic minimum power per unit wet area needed to achieve such
a flow rate) or as an overhead expense 𝐿 caused by the presence of
turbulence:

𝛱𝑡 = 𝛷𝐿 + 𝐿. (5)

Keep in mind that the power input 𝛱𝑡 is the product of the wall shear
stress and some characteristic velocity, that is 𝛱𝑡 = 𝜏𝑤 𝑈𝑤 in a Couette
flow and 𝛱𝑡 = 𝜏𝑤 𝑈𝑏 in a Poiseuille one, 𝑈𝑏 being the bulk velocity. The
energy fluxes 𝛷𝐿 and 𝐿 are defined as

𝛷𝐿 = ∫

ℎ

0
𝜇
(

d𝑈𝐿

d𝑦

)2
d𝑦, (6)

𝐿 = ∫

ℎ

0
−𝜌

⟨

𝑢′𝑣′
⟩ d𝑈𝐿

d𝑦 d𝑦, (7)

where 𝜇 is the dynamic viscosity and 𝑈𝐿 is the laminar velocity profile
that achieves the same flow rate as the considered turbulent flow (see
Gatti et al., 2018). If a Poiseuille flow is considered and Eq. (5) is made
non-dimensional with 1

2𝜌𝑈
3
𝑏 , the FIK identity (Fukagata et al., 2002) is

btained:

𝜏𝑤𝑈𝑏

𝜌𝑈3
𝑏 ∕2

= 1
𝜌𝑈3

𝑏 ∕2
∫

ℎ

0
𝜇
(

d𝑈𝐿

d𝑦

)2
d𝑦

+ 1
𝜌𝑈3

𝑏 ∕2
∫

ℎ

0
−𝜌

⟨

𝑢′𝑣′
⟩ d𝑈𝐿

d𝑦 d𝑦 (8)

𝐶𝑓 = 6
𝜌ℎ𝑈𝑏∕𝜇

+ 6∫

1

0
−
⟨𝑢′𝑣′⟩
𝑈2
𝑏

(

1 −
𝑦
ℎ

)

d
( 𝑦
ℎ

)

(9)

where 𝐶𝑓 = 2𝜏𝑤∕(𝜌𝑈2
𝑏 ). That is, Eq. (5) is exactly the same as the

FIK identity, except for a factor; indeed, it represents an expression
for the non-dimensional input power, whereas the FIK identity is an
expression for the non-dimensional wall-shear stress. In particular, 𝐿

is the direct analogous of the integral of the Reynolds shear stress
appearing in the FIK identity (Eq. (9)). The CPI framework differs
from the FIK identity in that the turbulent overhead 𝐿 is further
decomposed into an expense 𝜖 (turbulent dissipation) directly caused by
turbulent fluctuations and an expense 𝛷𝛥 (deviation dissipation) which
is indirectly caused by turbulence by inducing distortions of the mean
velocity profile,

𝐿 = 𝛷𝛥 + 𝜖. (10)

As discussed in Section 1, the FIK identity has been used to estimate
the share of skin friction for which the large scales are responsible.

Usually de Giovanetti et al. (2016) and Agostini and Leschziner (2018),
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he Reynolds shear stress ⟨𝑢′𝑣′⟩ is split into its small-scale and large-
cale contributions, ⟨𝑢′𝑣′⟩ = ⟨𝑢′𝑣′⟩𝑠 + ⟨𝑢′𝑣′⟩𝓁 . This enables then to

calculate the contribution of small and large scales to 𝐶𝑓 through
the integral term in Eq. (9). Owing to the previous discussion, this
procedure is exactly equivalent to calculating a small- and large-scale
contribution to the turbulent overhead 𝐿 (𝐿

𝑠 and 𝐿
𝓁 respectively) as

done in Andreolli et al. (2021). However, 𝐿
𝑠 and 𝐿

𝓁 do not exactly
correspond to the energy losses caused by small and large fluctuations.
In the following, we will motivate this statement with the help of the
energy box introduced by Quadrio (2011) and later reworwked by Gatti
et al. (2018) and Andreolli et al. (2021) to distinguish small and large
fluctuations.

The energy box graphically represents how the input power 𝛱𝑡 is
redistributed among the mean flow, small-scale fluctuations and large-
scale ones. As an example, Fig. 8 shows the energy box for two flows
considered in this paper, with and without Coriolis force. Notice that
the Coriolis force does not exchange work with the flow (see Section 2),
so that no power input associated to the control force needs to be added
to the energy box. Although it is already clear from Fig. 8 that the
Coriolis force disproportionately affects energy fluxes to and from large
scales, a thorough discussion of its effect is given later in Section 3.3.
The power input 𝛱𝑡 is supplied to the mean flow by some external
agent; the mean flow is represented by the left part of the box, whereas
the large and small fluctuations are represented to the right. Part of 𝛱𝑡
is directly dissipated by the mean flow as 𝛷𝐿, whereas the remaining
part is passed to the small- and large-scale fluctuations through 𝐿

𝑠
and 𝐿

𝓁 respectively. Small- and large-scale fluctuations then exchange
power through the cross-talk term 𝑇 . Alternatively, they dissipate the
8

received power either directly as turbulent dissipation (𝜖 = 𝜖𝑠 + 𝜖𝓁)
or indirectly by feeding it back to the mean flow through the deviation
production (𝛥 = 𝛥

𝑠 +
𝛥
𝓁 ; notice that 𝛥 < 0). The entirety of deviation

production is then lost as deviation dissipation, 𝛷𝛥 = −𝛥. Hence,
mall- and large-scale contributions to 𝛥 can be regarded as small-
nd large-scale contributions to the deviation dissipation 𝛷𝛥, which we
efine as follows:
𝛥
𝑠 = −𝛥

𝑠 , 𝛷𝛥
𝓁 = −𝛥

𝓁 .

sing this notation, the integral turbulent kinetic energy balance for
mall- and large-scale fluctuations depicted in Fig. 8 can be written as:
𝐿
𝑠 = 𝛷𝛥

𝑠 + 𝜖𝑠 + 𝑇 , (11)
𝐿
𝓁 = 𝛷𝛥

𝓁 + 𝜖𝓁 − 𝑇 . (12)

t is clear from the above equation that 𝐿
𝓁 does not exactly represent

he total dissipation 𝛷𝛥
𝓁 + 𝜖𝓁 caused by large scales, as it needs to be

corrected by considering the inter-scale power transfer 𝑇 . Similarly,
the large-scale contribution to the integral term of Eq. (9) (which
directly corresponds to 𝐿

𝓁 ) does not exactly quantify the large-scale
contribution to the wall shear stress. The magnitude of the cross-talk
term 𝑇 is usually one order of magnitude smaller than the one of 𝐿

𝓁
and has a positive sign at low Reynolds number, meaning that a net
power transfer from small to large scales is globally seen. By using 𝐿

𝓁
instead of 𝛷𝛥

𝓁 + 𝜖𝓁 , then, the share of power wasted by large scales (or,
equivalently, the large-scale contribution to 𝜏𝑤 if using the FIK method)
is underestimated. As the Reynolds number increases, 𝑇 changes in sign

(meaning that an usual energy cascade from large to small scales is
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Table 2
Share of the total power input 𝛱𝑡 that is dissipated by large scales in absence of control
𝑅𝑜 = 0), quantified either using 𝛷𝛥

𝓁 + 𝜖𝓁 (exact method) or 𝐿
𝓁 . The second method

is equivalent to calculating the effect of the large scales on the skin friction using the
large-scale contribution to the integral term of the FIK identity (see Eq. (9)).
Source: Data from Andreolli et al. (2021).

Using 𝛷𝛥
𝓁 + 𝜖𝓁 Using 𝐿

𝓁
(exact) (equivalent to FIK)

𝑅𝑒𝜏 ≈ 100 24.5% 23.5%
𝑅𝑒𝜏 ≈ 500 38% 43.2%

Fig. 9. Percentage drag reduction (% 𝐷.𝑅.) obtained by applying the Coriolis force
associated to a rotation number 𝑅𝑜 at CFR; 𝑅𝑒𝜏 ≈ 100 (black, ×) and 𝑅𝑒𝜏 ≈ 500 (red,
+). The black, dashed line indicates a linear fit for the low-𝑅𝑒 data.

seen) and increases in magnitude, so that using 𝐿
𝓁 might result in a

modest overestimation of the effect of large scales.
As an example, the data of Andreolli et al. (2021) is used to compare

these two different ways of accounting for the power dissipated by large
scales; results are shown in Table 2. Owing to the analogy with the FIK
identity, these values also represent the contribution of large scales to
the skin friction; they can also be interpreted as an upper bound for the
drag-reduction achievable by the suppression of large scales.

3.3. Drag reduction

The drag reduction obtained by applying a Coriolis force with a
given rotation number 𝑅𝑜 at constant flow rate (CFR, 𝑅𝑒𝑤 = 𝑐𝑜𝑛𝑠𝑡.) is
calculated using the friction Reynolds number 𝑅𝑒𝜏 (𝑅𝑜;𝑅𝑒𝑤) observed
at that rotation number:

𝐷.𝑅. (𝑅𝑜;𝑅𝑒𝑤) = 1 −
𝑅𝑒2𝜏 (𝑅𝑜;𝑅𝑒𝑤)
𝑅𝑒2𝜏 (0;𝑅𝑒𝑤)

. (13)

esults are shown in Fig. 9 for both the lower and higher Reynolds
umber datasets. For the low-𝑅𝑒 dataset, the obtained drag reduction
ncreases linearly with the control intensity (−𝑅𝑜); the same cannot be
aid at high Reynolds number. While no saturation effect is seen at low-
𝑒, high-𝑅𝑒 data reveals that the gains in performance obtained by an

ncrease of |𝑅𝑜| decrease with |𝑅𝑜| itself. We interpret this behaviour
as follows: for small absolute values of the rotation number, the VLSM
is progressively suppressed, so that a slight increase of |𝑅𝑜| yields a
significant increase in performance owing to the suppression. As the
rotation number approaches larger magnitudes, most of the VLSM-
energy has already been removed; any increase in performance mostly
stems from the effect of the Coriolis force on the remaining scales of
motion, hence the reduced improvements over an increase of |𝑅𝑜|. This
s confirmed by the trends of CPI-fluxes shown in Fig. 10, which are
iscussed below, and matches the observations made on the energy
pectra (Section 3.1).

Although the process is imperfect, it was shown in Section 3.1 that
he suppression of the VLSM is satisfactory for 𝑅𝑜 = −0.01 and 𝑅𝑜 =
0.005 at the lower and higher Reynolds numbers respectively. These
alues of 𝑅𝑜 correspond to 8.44% drag reduction at low-𝑅𝑒 (starting
rom a reference friction Reynolds number 𝑅𝑒𝜏 ≈ 100) and 12.8% at
igh-𝑅𝑒 (𝑅𝑒 ≈ 500). We consider these values of drag reduction to be
9

𝜏 i
a sensible estimate of the drag reduction achievable by suppressing the
VLSM: the control force might be too intrusive for larger magnitudes
of 𝑅𝑜, whereas for lower ones the VLSM is not fully suppressed. Both
values lie well below the theoretical maximum drag reduction given in
Table 2. One obvious reason for the mismatch is that the values given in
Table 2 estimate the drag reduction achievable by removing all motions
whose spanwise wavelength is larger than a given threshold, including
the VLSM; the Coriolis force instead only suppresses the VLSM. More-
over, a similar mismatch in the predicted and observed drag reduction
was reported by both Fukagata et al. (2010) and de Giovanetti et al.
(2016). Both authors found the reason for the mismatch in an increased
small-scale contribution to skin friction, which in turn they attribute
to different causes. The former argued that a decrease in pressure
fluctuations causes the energisation of small scales; the latter attributed
it to altered scale interactions. While both authors resorted to the FIK
identity for their theoretical predictions, which possibly over-estimates
the contribution of large scales to the skin friction (see Section 3.2),
we expect the error introduced in doing so to be rather small at the
Reynolds numbers considered. We further investigate the matter with
the help of the CPI framework.

Owing to the discussion in Section 3.2, an expression for the skin
friction coefficient is given by:

𝐶𝑓 = 2
𝜌𝑈3

𝑤

(

𝛷𝐿 + 𝜖 +𝛷𝛥) . (14)

As the laminar dissipation 𝛷𝐿 is constant at CFR by definition, only
a reduction of the turbulent or deviation dissipation (𝜖 and 𝛷𝛥 re-
spectively) can yield a reduction of skin friction. Both these terms, as
well as their small- and large-scale contributions (which have been
calculated using a spanwise threshold wavelength of 𝜆𝑧,𝑐 = 𝜋 as in

ndreolli et al., 2021), are plotted in Fig. 10 for both the high and
ow Reynolds number datasets for increasing magnitude of 𝑅𝑜. These
nergy fluxes are scaled with 1

2𝜌𝑈
3
𝑤, since the velocity 𝑈𝑤 of the walls

remains constant as the simulations are carried out at CFR. Doing so,
a decrease of a non-dimensional flux is associated to a decrease of
its dimensional value. Moreover, the so-scaled energy fluxes can be
interpreted as contributions to the skin friction as of Eq. (14).

A decrease of both the total turbulent and deviation dissipation
is observed. Since the VLSM is known to primarily contribute to the
deviation dissipation 𝛷𝛥 (Andreolli et al., 2021), substantial savings
in terms of the large-scaled contribution 𝛷𝛥

𝓁 are expected. These are
indeed seen at both low and high Reynolds number (c,d), as the
value of 𝛷𝛥

𝓁 approaches zero with increasing magnitude of 𝑅𝑜. At the
higher Reynolds number, the value of 𝛷𝛥

𝓁 saturates fast towards a zero-
value, coherently with the idea that the VLSM is already satisfactorily
suppressed at 𝑅𝑜 = −0.005 (see Section 3.1). This might also explain
why the trend of drag reduction deviates from a linear one at high
Reynolds number (see Fig. 9), as previously discussed. Savings in 𝛷𝛥

𝓁
are partially compensated by an increase of the contribution 𝛷𝛥

𝑠 of
maller scales to deviation dissipation; this holds for all the considered
alues of 𝑅𝑜 at high Reynolds number, and only for low magnitudes of
𝑜 at low Reynolds number.

As for the turbulent dissipation, its large-scale contribution 𝜖𝓁 is
xpectedly marginal in absence of control and is only slightly decreased
y the Coriolis force. The latter causes a significant decrease of the
mall-scale dissipation 𝜖𝑠 instead. Such a decrease is expected, and
an be interpreted as an indirect effect of the removal of the VLSM:
ts suppression indeed triggers a reduction of the wall shear stress,
hich is well known to govern the scaling of the small scales. Hence,
decrease of small scale activity is expected, including a decrease of

heir contribution 𝜖𝑠 to dissipation; this further reduces the wall shear
tress. Despite their absolute reduction, though, the observed values of
𝑠 are higher than expected. It is indeed known (see Abe and Antonia,
016) that the turbulent dissipation 𝜖 scales as 𝜌𝑢3𝜏 log (𝑅𝑒𝜏 ); the trend
hat would result if such a scaling were to hold when the Coriolis force

s applied is shown in Fig. 10. As can be seen, the observed values of
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Fig. 10. Turbulence-induced dissipation terms scaled in outer units for changing control intensity −𝑅𝑜 at CFR; turbulent dissipation 𝜖 (a,b) and deviation dissipation 𝛷𝛥 (c,d)
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exceed the expected ones. The excess dissipation can be attributed to
𝑠, as the magnitude of 𝜖𝓁 is negligible.

Both the trends of 𝛷𝛥
𝑠 and 𝜖𝑠 highlight that the drag reduction

chieved by suppressing large scales is mitigated by a higher-than-
xpected contribution to skin friction from smaller scales. Notice that
he threshold wavelength 𝜆𝑧,𝑐 = 𝜋 used to separate large- and small-
cale energy fluxes effectively separates the extremely large VLSM from
he remaining scales of motion; in other words, 𝛷𝛥

𝑠 and 𝜖𝑠 receive
ontributions not only from inner-scaled eddies, but also from large,
uter-scaled ones that are still smaller than the VLSM. The latter are,
or instance, eddies whose spanwise wavelength falls in the range 1 ≤
𝑧∕ℎ ≤ 𝜋; likely, they are responsible for the unexpectedly high values
f 𝛷𝛥

𝑠 and 𝜖𝑠. Indeed, the analysis of Section 3.1 has revealed that
nner-scaled eddies hold the usual, viscous-scaling amount of energy
ven after the VLSM is suppressed. Instead, some outer-scaled motions
ocated at the centreline (satisfying 1 ≤ 𝜆𝑧∕ℎ ≤ 𝜋) are energised by the
oriolis force, and this energisation possibly leads to increased values
f the skin friction.

. Discussion: the Coriolis force as a feedback control

We have so far shown that applying a Coriolis force to the flow
chieves drag reduction by suppressing the VLSM. In this section, we
rgue that the Coriolis force functions in a way that resembles the
eedback control proposed by Fukagata et al. (2005).

The Coriolis force 𝑓𝑐 can be Reynolds-decomposed to yield its mean
𝑓𝑐
⟩

and fluctuating 𝑓 ′
𝑐 parts:

𝑐⃗ = −2𝜌𝛺𝑧̂ × 𝑢 = −2𝜌𝛺𝑧̂ × 𝑈𝑥̂
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=
⟨

𝑓𝑐
⟩

+−2𝜌𝛺𝑧̂ × 𝑢 ′

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=𝑓 ′

𝑐

. (15)

s 𝑈 only depends on the wall normal coordinate 𝑦, so does the mean
oriolis force

⟨

𝑓𝑐
⟩

; moreover, the only non-zero component of
⟨

𝑓𝑐
⟩

is
he one in the wall-normal direction. Such a force field can be trivially
hown to be conservative; as a consequence, its effect on the flow field
s null, as it simply gets balanced by a static pressure gradient in the
all-normal direction. For the same reason, the Coriolis force has no

mpact on laminar flows (see Hide, 1977, sec. 2, lemma iv).
Hence, the VLSM-suppressing action must be provided by the fluc-

uating part 𝑓 ′
𝑐 of the force, which operates in the wall-normal and

treamwise directions with magnitudes:
′
𝑐,𝑥 = 𝑓 ′

𝑐 ⋅ 𝑥̂ = −2𝜌|𝛺|𝑣′ (16)
′
𝑐,𝑦 = 𝑓 ′

𝑐 ⋅ 𝑦̂ = 2𝜌|𝛺|𝑢′ (17)

here the angular velocity has been rewritten as 𝛺 = −|𝛺| for ease
f reading; indeed, we only consider cyclonic rotations (𝛺 < 0). To
llustrate the action of the fluctuating part of the Coriolis force, we re-
ort to the displaced-particle analysis shown in Tritton (1992). Consider
10
fluid particle at some wall-normal distance where the value of the
ean velocity is 𝑈1; 𝑈1 is also the expected value of the streamwise

elocity of the fluid particle. The particle is then displaced upwards
y 𝜉 → 0, 𝜉 > 0 over a time frame 𝛥𝑡 → 0 as an effect of an upwards
elocity fluctuation, 𝑣′∗ > 0, where 𝑣′∗ = 𝜉∕𝛥𝑡. As this happens, the fluid
article is slowed down by the Coriolis force to reach a velocity 𝑈∗ in
ts displaced position:

∗ = 𝑈1 + ∫

𝛥𝑡

0

𝑓 ′
𝑐,𝑥

𝜌
d𝑡 = 𝑈1 + ∫

𝛥𝑡

0
−2|𝛺|𝑣′∗ d𝑡 (18)

≈ 𝑈1 − 2|𝛺|𝜉. (19)

t this new wall-normal position, the expected value of the velocity is
2 ≈ 𝑈1 + (𝑑𝑈∕𝑑𝑦) 𝜉, with 𝑈2 > 𝑈1 owing to the positive velocity gra-
ient. Even in absence of a Coriolis force, the displaced particle would
hen induce a negative velocity fluctuation −(𝑑𝑈∕𝑑𝑦) 𝜉; this can explain
he negative sign of the Reynolds shear stress ⟨𝑢′𝑣′⟩. Additionally, the
oriolis force slows down the displaced particle as illustrated before,
o that the observed velocity fluctuation 𝑢′∗ reads:

𝑢′∗ = 𝑈∗ − 𝑈2 ≈ −
(

2|𝛺| + d𝑈
d𝑦

)

𝜉. (20)

In other words, the streamwise component of the Coriolis force tends
to increase the magnitude of the streamwise velocity fluctuations; this
is however at odds with the observed stabilisation associated to the
suppression of the VLSM. The stabilising effect is instead given by the
wall-normal component of the Coriolis force fluctuation,

𝑓 ′
𝑐,𝑦 ∗ = 2𝜌|𝛺|𝑢′∗ ≈ −2𝜌|𝛺|𝜉

(

2|𝛺| + d𝑈
d𝑦

)

< 0, (21)

which is negative, hence it tends to return the displaced particle to its
original position. The Coriolis force, then, interferes with the mecha-
nism that produces the anti-correlation of 𝑢′ and 𝑣′ fluctuations — that
is, it hinders the formation of a negative Reynolds shear stress.

The displaced particle analysis then indicates that the Coriolis force
functions in a similar way to the feedback control of Fukagata et al.
(2005), which is designed to directly weaken the Reynolds shear stress.
Such a feedback control is exactly equivalent to the present Corio-
lis force deprived of its streamwise component, so that the control
force only acts in the wall-normal direction with an intensity that is
proportional to streamwise velocity fluctuations (see Eq. (17); notice
that Fukagata et al., 2005, use a cylindrical coordinate system where
the wall-normal axis points towards the wall, leading to an opposite
sign of the control force with respect to the present manuscript).
Streamwise velocity fluctuations are statistically associated to wall-
normal fluctuations of opposite sign; the latter are opposed by both the
Coriolis force and the feedback control of Fukagata et al. (2005), which
deliver a wall-normal acceleration of the same sign as streamwise
fluctuations. In this sense, both control strategies are analogous to an

opposition control scheme; the obvious difference is that the sensing
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Fig. 11. Premultiplied one-dimensional spanwise spectrum 𝜅𝑧𝛷𝑢𝑢 of the streamwise
fluctuations at 𝑦∕ℎ = 1 for the low Reynolds number dataset (𝑅𝑒𝜏 ≈ 100). The black
dashed lines indicates the uncontrolled simulation (𝑅𝑜 = 0); the solid magenta line
epresents data with the usual Coriolis force and 𝑅𝑜 = −0.01. For the green, dashed
ine, only the wall-normal component of the Coriolis force (𝑅𝑜 = −0.01) is retained;
oreover, the stream- and span-wise average of the force is removed from it. (For

nterpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

nd the actuation for an opposition control is usually performed at
he wall (eg. Abbassi et al., 2017), whereas the Coriolis force and the
eedback control act at each point in the fluid domain.

To provide evidence in favour of the proposed analogy, we carry
ut an additional simulation at low Reynolds number and 𝑅𝑜 = −0.01,
here the streamwise and spanwise average of the Coriolis force as
ell as its streamwise component are removed. In other words, only

he fluctuating part of the wall-normal component of the Coriolis force
s retained, so as to effectively mimic the feedback control of Fuka-
ata et al. (2005). Results are shown in Fig. 11, that compares the
o-obtained one-dimensional spanwise spectrum of the streamwise fluc-
uations at 𝑦∕ℎ = 1 with the one of the corresponding simulations
ith and without Coriolis force. The modified Coriolis force is able

o suppress the spectral peak associated to the VLSM and to closely
eplicate the velocity spectrum yielded by the standard Coriolis force,
onfirming our hypothesis.

Following Fukagata et al. (2005), we now proceed to show how the
oriolis force changes the budget equation of the Reynolds shear stress,
s this may hint at why the force selectively suppresses the VLSM. To
e precise, we inspect the co-spectrum 𝛷𝑢𝑣 of the Reynolds shear stress.
ts real part 𝑒

(

𝛷𝑢𝑣
)

represents the contribution of each Fourier mode
f wavenumber 𝜅𝑧 to ⟨𝑢′𝑣′⟩: it can be trivially shown (following e.g.
avidson, 2015, chapter 8) that

𝑢′𝑣′
⟩

= ∫

∞

−∞
𝑒

(

𝛷𝑢𝑣
)

d𝜅𝑧. (22)

budget equation for 𝛷𝑢𝑣 is provided by Lee and Moser (2019); by
dding the contribution of the Coriolis force and taking the real part of
oth sides of the equation, it can be written as:
𝜕
𝜕𝑡

𝑒
(

𝛷𝑢𝑣
)

⏟⏞⏞⏟⏞⏞⏟
typically< 0

= 𝑒 (RHS) − 2|𝛺|𝛷𝑣𝑣
⏟⏞⏞⏞⏟⏞⏞⏞⏟
cont. of 𝑓 ′

𝑐,𝑥

+ 2|𝛺|𝛷𝑢𝑢
⏟⏞⏟⏞⏟

cont. of 𝑓 ′
𝑐,𝑦

(23)

where RHS indicates all the terms normally appearing in the budget
equation (not shown for brevity). The real part 𝑒

(

𝛷𝑢𝑣
)

of the co-
spectrum is typically negative, as is the Reynolds shear stress. The
contributions of the streamwise and wall-normal components 𝑓 ′

𝑐,𝑥 and
𝑓 ′
𝑐,𝑦 of the Coriolis force are proportional to the spectra 𝛷𝑣𝑣 and 𝛷𝑢𝑢

of the streamwise and wall-normal normal Reynolds stresses respec-
tively; both 𝛷𝑣𝑣 and 𝛷𝑢𝑢 are real, positive numbers and the latter is
typically larger by roughly an order of magnitude (see Fig. 4). Hence
the contribution of the Coriolis force to the right hand side of Eq. (23)
is dominated by the wall-normal component 𝑓 ′

𝑐,𝑦 (as expected from
the above analysis) and has a positive sign. That is, the Coriolis force

( )
11

results in a sink term for the budget of 𝑒 𝛷𝑢𝑣 (as this last quantity
is negative). We have once again shown that the Coriolis force acts
to directly destroy the Reynolds shear stress like the feedback control
of Fukagata et al. (2005) does.

Eq. (23) has further implications. In an uncontrolled setting, the
spectrum 𝛷𝑢𝑢 is maximum at the scale (i.e. wavenumber, or wave-
length) of the VLSM, as shown by the spectrum of Fig. 4 (notice that the
spectrum is premultiplied; values of the spectrum seen at large scales
are effectively larger with respect to the ones at small scales than it
appears from Fig. 4). Consequently, the application of a Coriolis force
would primarily target the Reynolds shear stress at the scale of the
VLSM. While the destruction of Reynolds shear stress clearly explains
the observed drag reduction (as implied by Eq. (9)), explaining how
energy at the VLSM-scale is removed from the normal Reynolds stresses
is not as straightforward. Indeed, the direct effect of the Coriolis force
on the streamwise and wall-normal spectra 𝛷𝑢𝑢 and 𝛷𝑣𝑣 is to transfer
energy from the wall-normal to the streamwise one, as can be shown
by writing a budget equation analogous to Eq. (23) (not shown for
brevity). This is consistent with the fact that the Coriolis force does
not exchange work with the flow (see Section 2). Most importantly, this
direct effect cannot explain the destruction of energy at the VLSM-scale
seen in Fig. 4.

Instead, the destruction of VLSM-energy must happen through an
indirect mechanism. We have already argued that the Coriolis force
directly suppresses the Reynolds shear stress at the VLSM-scale. The
Reynolds shear stress is the intermediary through which ⟨𝑢′𝑢′⟩ receives
energy from the mean flow (production of turbulent kinetic energy,
see Davidson, 2015); a reduction of the shear stress at the VLSM-scale
would likely result in a reduction of ⟨𝑢′𝑢′⟩-stresses at the same scale.
The remaining contributions ⟨𝑣′𝑣′⟩ and ⟨𝑤′𝑤′

⟩ to the kinetic energy
do not receive energy from the mean flow in the present geometrical
configuration; instead, the energy fed to streamwise fluctuations is re-
distributed to the remaining components by the pressure-rate-of-strain
correlation (Davidson, 2015, chapter 4.4.1). It is then conceivable that
the lack of ⟨𝑢′𝑢′⟩-energy at the VLSM-scale would result in lacking
energy at the same scale on the other velocity components.

The mechanism described above is summarised in Fig. 12 and might
explain how the VLSM is selectively suppressed by the Coriolis force.
It has however its own limitations. For instance, once the VLSM is
removed, the small scales would become the dominant feature of the
𝛷𝑢𝑢 spectrum (at least in the near-wall region). Owing to the above
discussion, then, the Coriolis force would proceed to destroy 𝛷𝑢𝑣 at
these scales — which does not happen for the limited values of 𝑅𝑜
considered in this paper. Likely, the degree of suppression is determined
by the relative magnitude of the contributions of the Coriolis force with
respect to the terms labelled RHS in Eq. (23). Also, an alternative way of
discussing the selective suppression of the VLSM would be to consider
linear transient growth mechanisms. These lead to the amplification
of flow structures that are comparable in size and topology to the
small and outer-layer scales of wall turbulence (for instance, Del Álamo
and Jiménez, 2006); it has been argued (Lozano-Durán et al., 2021)
that the existence of these mechanisms is a sufficient condition for
the formation of the typically observed structures. Perhaps, adding a
Coriolis force to the flow selectively hinders the mechanisms leading
to the amplification of outer-scaled motions, without much affecting
smaller-scale mechanisms. The verification of this hypothesis is left for
future research.

5. Conclusions

We have shown that a feedback control that exchanges no power
with the flow is able to suppress the streamwise-elongated, outer-
scaled rolling motion (the VLSM) typical of a turbulent Couette flow
at a low to moderate Reynolds number using DNS. We argue that the
control force works by directly suppressing the Reynolds shear stress
⟨𝑢′𝑣′⟩ at selected scales; in this sense, it resembles the feedback control
of Fukagata et al. (2005).
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Using the CPI framework, which we have shown to be an extended
nd rescaled version of the FIK identity, the VLSM can be associated to
ostly distortions of the mean velocity profile (Andreolli et al., 2021);
he share of power wasted in this way is referred to as deviation
issipation 𝛷𝛥. While large-scale contributions to 𝛷𝛥 are greatly re-
uced by suppressing the VLSM (corroborating the previous statement),
hese gains in performance are hindered by a higher-than-expected
ontribution to 𝛷𝛥 and to the turbulent dissipation 𝜖 by smaller (but
ot necessarily small) scales. This observation is coherent with previous
imilar works (Fukagata et al., 2010; de Giovanetti et al., 2016) and we
ttribute the unexpected skin friction contributions to the energisation
f outer-scaled eddies that is observed as the VLSM is suppressed.

While the approach used here yields a progressive suppression of
he VLSM, making it complicated to determine when the suppression
s complete, a sensible estimate of the drag reduction achievable by
argeting the VLSM is in the order of 8% starting from a reference
riction Reynolds number 𝑅𝑒𝜏 ≈ 100 and 13% for 𝑅𝑒𝜏 ≈ 500. The latter
alue is higher than the drag reduction reported by de Giovanetti et al.
2016), who also performed a numerical experiment that suppressed
uter-scaled motions in a channel flow. This discrepancy can be ex-
lained by differences in the suppressing strategy; most importantly,
he above authors were considering a flow in which outer-scaled mo-
ions are weaker than in the Couette one considered here. However,
ince large scales are known to get more intense with the Reynolds
umber (Hutchins and Marusic, 2007b), higher values of drag reduction
an be expected also in channel and boundary layer flows at a high
eynolds number. This is encouraging, as high Reynolds numbers are
sually encountered in applications of industrial interest.
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