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Quantum state engineering by steering in the presence of errors
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Quantum state engineering plays a vital role in various applications in the field of quantum information.
Different strategies, including drive-and-dissipation, adiabatic cooling, and measurement-based steering, have
been proposed for state generation and manipulation, each with its upsides and downsides. Here, we address
a class of measurement-based state engineering protocols where a sequence of generalized measurements
is employed to steer a quantum system toward a desired (pure or mixed) target state. Previously studied
measurement-based protocols relied on idealized procedures and avoided exploration of the effects of various
errors stemming from imperfections of experimental realizations and external noise. We employ the quantum
trajectory formalism to provide a detailed analysis of the robustness of these steering protocols against multiple
classes of errors. We study a set of realistic errors that can be classified as dynamic or static, depending on
whether they remain unchanged while running the protocol. More specifically, we investigate the impact of
the erroneous choice of detector-system coupling, erroneous re-initialization of the detector state following a
measurement step, fluctuating steering directions, and environmentally induced errors in the detector-system
interaction. We show that the protocol remains fully robust against the erroneous choice of detector-system
coupling parameters and presents reasonable robustness against other types of errors. Our analysis employs
various quantifiers such as fidelity, trace distance, and linear entropy to characterize the protocol’s robustness
and provide analytical results for these quantifiers against various errors. We introduce averaging hierarchies of
stochastic equations describing individual quantum trajectories associated with detector readouts. Subsequently,
we demonstrate the commutation between the classical expectation value and the time-ordering operator of the
exponential of a Hamiltonian with multiplicative white noise, as well as the commutation of the expectation
value and the partial trace with respect to detector outcomes. Our ideas are implemented and demonstrated for a
specific class of steering platforms, addressing a single qubit.
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I. INTRODUCTION

The field of quantum information processing and quan-
tum simulations has progressed rapidly in the past few years,
from theoretical studies to experimental setups where toy sys-
tems perform simple but practical tasks. Preparing a quantum
system in a specific state is essential in most such tasks.
Broad schemes for quantum state engineering include the
application of feedback following a projective measurement,
a thermalization process where the quantum system is cooled
down to its ground state by coupling it to a cold reservoir,
and the so-called quantum annealing. These approaches have
challenges in the following sense: The first involves a feed-
back step that increases the circuit complexity. The second
scheme requires a reservoir placed at nearly zero temperature
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to reduce thermal excitations, which is challenging, especially
for larger systems. Quantum annealing calls for modifying
a trivial Hamiltonian (for which the ground state is trivial
and easy to prepare) adiabatically to a nontrivial Hamiltonian
whose ground state could be used as a resource for quan-
tum information protocols. In this context, we note that the
performance of this approach is determined by the smallest
gap encountered during the evolution. Indeed, some of the
avoiding crossing gaps in its many-body spectrum were shown
to be exponentially small [1–5].

Recently introduced measurement-based quantum-state
engineering protocols [6–11] overcome the challenges men-
tioned above (see also Refs. [12–15] for early related ideas).
These steering1 protocols employ a sequence of general-
ized measurements to “steer” a quantum system toward the

1Throughout this paper, we use the word steering as the name of
a process that leads the quantum system starting from an arbitrary
initial state to the predesignated target state. This should not be
confused with steering from the theory of quantum measurements
and quantum information, which defines a special kind of nonlocal
correlations (see, e.g., Refs. [16,17]).
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predesignated target state. A generalized measurement com-
prises two steps [18–20]: (i) coupling the quantum system
to an ancillary quantum system (also referred to as a de-
tector) by means of an interaction Hamiltonian, resulting in
the unitary evolution of the joint state of the system and the
detector, and (ii) a projective measurement of the detector,
which disentangles the joint state and induces a measurement
backaction to the system state. Usually, measurement-induced
backaction is considered an undesired effect, as the primary
purpose of quantum measurement is to extract information
about the quantum state. Following a contrarian paradigm, the
measurement-induced state engineering protocols utilize this
measurement backaction in a controlled manner to guide the
system toward the desired target state. Note that the conver-
gence to the target state in the measurement-induced steering
protocols is achieved by the measurement only, as compared
with the drive-and-dissipation protocols [21–33], where the
relaxation is due to an uncontrolled dissipative environment.

Apart from the built-in challenges of circuit complexity
and controlled dissipative environments, there are external
noises arising from the imperfect isolation of a quantum sys-
tem from its surroundings: quantum information processors
are susceptible to such noisy environments. As long as these
sources of imperfection remain uncontrolled, as is the current
state of technological development, it is vital to understand
the dynamics of quantum systems in the presence of ex-
ternal noises. This brought to life the concept of the noisy
intermediate-scale quantum (NISQ) era [34,35], which refers
to quantum technologies based on devices composed of hun-
dreds of noisy qubits. Moreover, within the NISQ paradigm,
inevitable noise can be employed to achieve particular goals
in quantum device functionality. Thus, analyzing the effects
of noise and associated errors in quantum state engineering is
one of the most pressing issues of the NISQ era.

Looking beyond the perspective of the NISQ era, one may
design an appropriate quantum error correction scheme to pro-
tect a quantum state against environmentally induced errors.
The quantum error correction strategy is to encode quantum
information in a larger Hilbert space redundantly. This will
ensure that the logical qubits experience a significantly lower
error rate than what the physical qubits do [36,37]. Various
attempts in different experimental setups to implement error
correction procedures have been discussed in the literature,
e.g., liquid [38–40] and solid-state NMR [41] trapped ions
[42,43], photon modes [44], superconducting qubits [45–47],
and NV centers in diamond [48,49]. In general, it is instructive
to understand the error mechanism as much as possible for
practical applications before designing any error correction
scheme.

Our work investigates the impact of the different classes of
errors that may affect a measurement-based state steering pro-
tocol by various experimental imperfections. We distinguish
between two types of error, static and dynamic, depending
on whether they change during the runtime of the protocol.
For most of this paper, we base our analysis on the quan-
tum trajectory formalism [19,50,51] instead of describing the
influence of the errors on the steered states via completely
positive trace-preserving (CPTP) maps [19]. The motivation
behind implementing stochastic quantum trajectories lies in

the amount of information about the system, which is lost once
averages are performed. This information is important, for
example, for observables that are nonlinear in the system den-
sity matrix. In particular, measurement-induced entanglement
entropy transitions are captured by keeping the individual
quantum trajectories and are invisible upon an ensemble av-
erage [52,53]. Furthermore, the trajectory-resolved evolution
is the cornerstone for active-decision steering protocols [9],
where the measurement outcomes are used to navigate the
system toward the target state. Thus, although we eventually
average over quantum trajectories, our formalism paves the
way for the above-mentioned applications.

With this at hand, we derive novel stochastic differential
equations that govern the system dynamics in the presence
of errors. We employ several quantifiers: fidelity, trace dis-
tance, and linear entropy, to characterize the robustness of the
state engineering protocols against errors. To demonstrate the
applicability of this approach, we address here the simplest
example: steering a single qubit to a predesignated target
state. We provide analytical results for the robustness quan-
tifiers and show excellent agreement between the analytical
expressions and the numerical results obtained from simulat-
ing stochastic quantum trajectories.

Specifically, we analyze the robustness of a steering proto-
col against errors due to erroneously chosen detector-system
coupling, wrongly prepared detectors, fluctuating steering
directions, environmentally induced errors in the detector-
system interaction Hamiltonian, and fluctuating measurement
directions. Our analysis of environmentally induced fluctu-
ations in the detector-system interaction Hamiltonian can
mimic errors due to a fluctuating background field in an
experimental setup and generalizes the Langevin stochas-
tic Schrödinger equation [cf. Eq. (127)]. Consequently, we
demonstrate the nonobvious fact that the average detector
outcomes and stochastic white noise commute. This argument
is based on the commonly used yet not formally proven fact
of the commutativity of the time-ordering operator with the
average over stochastic noise (or average over noise real-
izations). These observations (proven in Appendixes F and
G) facilitate the derivation of three novel stochastic master
equations, alluding to different hierarchies of averaging over
stochastic processes of different origin [cf. Eqs. (66), (77), and
(86)].

We thus derive stochastic differential equations govern-
ing the system’s dynamics in specific scenarios. From this
perspective, this part of our analysis generalizes the model
of repeated interactions of a system with a set of detectors
[54,55] by including error and noise-induced stochasticity.
We show further that the steering protocol remains fully ro-
bust against errors due to erroneously chosen detector-system
coupling parameters and erroneously chosen measurement di-
rections. Compared with these errors, robustness against other
errors is more moderate.

The paper is organized as follows: In Sec. II, we revisit
the theme of state engineering protocol introduced in Ref. [6],
ignoring any errors (“ideal steering”). We provide a detailed
description of the measurement model and derive the stochas-
tic master equation that describes the individual quantum
trajectories followed by the steered system. Next, starting with
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FIG. 1. Steering step of a single qubit toward the target state ρ⊕ = |↑〉 〈↑|. In step (i), at time t , the total system is formed by two
noninteracting qubits: the detector (black Bloch vector), initialized in the state ρd = |↑〉 〈↑|, and the steered system represented by the state
ρs(t ) (red Bloch vector). In step (ii), from time t to t + δt , the two subsystems interact via the Hamiltonian Hds = J (σ+ ⊗ σ− + H.c.) [cf.
Eq. (1)] and become correlated, which is represented by the blue wiggly line. The joint state is then ρds(t + δt ) = U (δt )ρd ⊗ ρs(t )U †(δt ) with
U (δt ) = exp(−iHdsδt ). Step (iii) occurs at time t + δt + �t where a local projective measurement is performed over the detector to get one of
the two observables of σ z ⊗ Is. The wiggly yellow line represents this measurement. If the detector outcome gives |↑〉 (a no-click), the vector
of the steered system gets a nudge that continuously evolved from the previous state (dashed red Bloch vector), giving ωs,0(t + δt + �t ).
Instead, if the detector state gives |↓〉 (a click), we find that the system jumped toward the target state (the north pole of the Bloch sphere). It
is assumed that the time it takes to perform the projective measurement �t vanishes. These steps are repeated several times, and an unbiased
average over multiple protocol runs (a blind measurement) is performed.

the paradigm of blind measurement2 procedure, we derive
the Lindblad master equation describing the evolution of the
steered state in the continuum time limit. We introduce the
errors and their quantifiers to be studied throughout this paper
in Sec. III. The analysis of static errors is presented in Sec. IV,
where we discuss two types of such errors: one is caused
by an incorrect choice of the interaction strength between
the detector-system Hamiltonian (Sec. IV A), and the other
is caused by an error in the preparation of detector states
(Sec. IV B). A discussion of dynamic errors is presented in
Sec. V. We deal with four types of such errors. The first
concerns fluctuating steering directions in the sense that the
direction in which the protocol steers the system is stochas-
tically altered following each protocol step (Sec. V A); the
second refers to temporally fluctuating detector-system cou-
pling strength (Sec. V B); the third concerns errors in the
steering Hamiltonian itself (Sec. V C); and the last dynamic
error involves errors in the direction the detector is projected
(Sec. V D). We provide conclusions and prospects in Sec. VI.

2The term blind measurement refers to a measurement where the
final state of the detector (the readout) is traced out, discarding the
acquirement of information through the measurement process but
accounting for measurement backaction.

II. IDEAL PROTOCOL

In this section, we briefly describe the quantum steering
protocol introduced in Ref. [6], which we call the “ideal proto-
col” (i.e., the protocol without any errors), applied to a single
spin-1/2 system (or qubit). We present the protocol within
the formalism of quantum trajectories, where the steered sys-
tem follows a stochastic quantum evolution depending on
the detector readouts. This inherently discrete-time evolution
becomes a continuous stochastic process after adopting the
weak-measurement (WM) limit, which requires an appropri-
ate rescaling of the detector-system coupling constant [6].
When the detector readouts are discarded (i.e., traced out),
a procedure we denote as blind measurement, the system
follows dissipative dynamics, and its evolution is governed by
the Lindblad equation (LE) in the WM limit.

A. Steps of measurement-based steering

The ideal protocol involves implementing the following
iterative steps to steer the quantum state of a system ρs(t )
toward the predesignated target state ρ⊕ (see Fig. 1):

(i) At given fixed time t ′, a quantum system is described
by the state ρs(t ′) and a quantum detector is prepared in state
ρd = |�d〉 〈�d |. In what follows, we focus on the case of the
simplest detector—a qubit—with a two-dimensional Hilbert
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space. The detector-system state is represented by ρds(t ′) =
ρd ⊗ ρs(t ′), as the subsystems are assumed not to interact.

(ii) To perform the measurement, the system is coupled to
the detector using the Hamiltonian

Hds := J |�⊥
d 〉 〈�d | ⊗ A + H.c., (1)

where “H.c.” stands for the Hermitian conjugate, J is the cou-
pling constant, the detector state |�⊥

d 〉 is orthogonal to |�d〉,
and A is an operator satisfying A |�⊕〉 = 0 and AA† |�⊕〉 =
|�⊕〉.

(iii) Subsequently, at time t ′ + δt + �t , the detector is
measured projectively using the observable

Sd := |�d〉 〈�d | − |�⊥
d 〉 〈�⊥

d | . (2)

This local projective measurement disentangles the joint
detector-system state and creates a measurement backaction
on the system state (see below).

Let |0〉 := |�d〉 and |1〉 := |�⊥
d 〉. After measuring the

detector—a process that takes a �t time—the resultant
detector-system state is given by

ρds,α (t ′ + δt + �t ) = |α〉 〈α| ⊗ ωs,α (t ′ + δt + �t ),

where

ωs,α (t ′ + δt + �t ) = Mα (δt )ρs(t ′)M†
α (δt )

P(α)
(3)

is the updated steered state and α ∈ {0, 1}. In the preceding
equation,

Mα (δt ) := 〈α| exp (−iHdsδt ) |�d〉 (4)

is the generalized measurement operator (or Kraus operator)
[19,56,57] representing the obtained measurement outcome,
occurring with probability P(α). Note that the probability
conservation condition

∑
α P(α) = 1 imposes a constraint on

the Kraus operators such that
∑

α M†
αMα = Is. Should α = 1,

we define that the detector measurement showed a “click”
result. On the other hand, α = 0 corresponds to a “no-click”
readout.

Henceforth, following the axioms of quantum mechanics
[58], we assume that the time it takes to perform the measure-
ment �t vanishes.

(iv) The detector is reset to its initial state ρd , and steps
(i)–(iii) are repeated for the subsequent measurement.

When formulating the ideal protocol, we have assumed
that the energy scale Jd of the detector Hamiltonian is way
smaller than the measurement strength, i.e., Jd/(J2δt ) � 1, so
we can waive the influence of the detector’s Hamiltonian. The
system Hamiltonian is trivially added to any stochastic master
equation and thus to the corresponding Lindblad equation, but
the detector Hamiltonian enters in a nontrivial way when one
performs averages. For the sake of simplicity, we also ignore
the self-evolution of the steered system assuming Jsδt � 1
as we focus on the derivation and structure of stochastic and
dissipative terms in the master equations. Js is the energy scale
of the system Hamiltonian.

Steps (i)–(iv) can be conveniently gathered in the following
discrete-time stochastic master equation (SME):

δωs(t ) =
∑

α=0,1

Mα (δt )ωs(t )M†
α (δt )

〈M†
α (δt )Mα (δt )〉δt

δNα (t ) − ρs(t ), (5)

where t � t ′, δωs(t ) := ωs(t + δt ) − ωs(t ), ωs(t ′) = ρs(t ),
δNα (t ), for fixed α, is an indicator function appearing with
probability

P(α) = 〈M†
α (δt )Mα (δt )〉δt .

As an example, the steps (i)–(iii) are illustrated schemat-
ically in Fig. 1, where the system’s target state is the north
pole of the Bloch sphere |�⊕〉 = |↑〉 (with σ z |↑〉 = |↑〉),
the detector is prepared in the state |↑〉, and the interaction
Hamiltonian is

Hds = J (σ+ ⊗ σ− + H.c.), (6)

where σ+ = |↑〉 〈↓|, σ− = |↓〉 〈↑|, and σ z |↓〉 = − |↓〉. A
click measurement immediately projects the system to the
pure state in this situation. In the example illustrated in Fig. 1,
the resulting state is the desired target state–the north pole of
the Bloch sphere. When a no-click measurement is obtained,
the system is shown to have evolved continuously and irre-
versibly toward the target state. We elaborate further about
these two types of evolution in Sec. II B.

For the blind measurement, we discard the individual out-
comes by taking the partial trace over the detector degrees
of freedom, and therefore, the system state evolution can be
written as

ρs(t
′ + δt ) :=

∑
α=0,1

P(α)ωs,α (t ′ + δt ) (7a)

=
∑

α=0,1

Mα (δt )ρs(t
′)M†

α (δt ). (7b)

Taking the partial trace over the detector’s Hilbert space is a
nonselective measurement; that is, the results of the detector
are not read. Clearly, taking the average over the two possible
outcomes in Eq. (5), given the prior state ρs(t ′), coincides with
Eq. (7).

Under certain conditions (see Sec. II B), the updated state
under a blind measurement, Eq. (7), given the prior state
ρs(t ′), is

ρs(t
′ + δt ) = ρs(t

′) + Lρs(t
′)δt + O(δt ′2),

where L is the superoperator generating dissipative Marko-
vian dynamics, and Eq. (5) acquires the form of the
well-known stochastic master equation of jump type [cf.
Eq. (12)].

B. Weak-measurement limit

Depending on the form of the detector-system Hamilto-
nian, Eq. (1), there might be scenarios in which performing
local projective measurements on the detectors leads to local
measurement operators [see Eq. (4)] acting either as projectors
or other quantum operations such as bit-flips and reflections.
For example, performing a blind measurement [cf Eq. (7)]
fails to steer a prior state toward a state closer to the target state
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when the product Jδt in Eq. (4) is a multiple of π . To see this,
let us express the measurement operators in Eq. (4) with re-
spect to the orthonormal basis (ONB) B⊕ := {|�⊕〉 , |�⊥

⊕〉} =
{|↑〉 , |↓〉}:

M0(δt ) =
(

1 0
0 cos (Jδt )

)
, (8)

M1(δt ) =
(

0 sin (Jδt )
0 0

)
. (9)

If Jδt/π ∈ Z, we would be either implementing a quantum
operation on the steered state equivalent to a σ z gate [37], i.e.,
M0(δt ) = σ z and M1(δt ) = 0, or an identity, i.e., M0(δt ) = Is

and M1(δt ) = 0, so no steering occurs.
On the other hand, if Jδt/(π/2) ∈ Z/2Z, one of the mea-

surement operators becomes a projector M0(δt ) = |↑〉 〈↑|,
and the other a raising operator M1(δt ) = σ+ = |↑〉 〈↓|. We
refer to the latter condition on Jδt as a strong-measurement
limit. Regardless of the click result, the target state ρ⊕ =
|↑〉 〈↑| is always reached in a single measurement step.

Although a qubit may reach the target state within the
strong-measurement limit, fine-tuning of the product Jδt is
required, which is a significant disadvantage. When steering
a many-body system toward an entangled state using the
ideal protocol described here, numerous detectors acting on
different parts of the system are needed, and the Hamiltoni-
ans associated with those local steering operations may be
noncommuting. In the fine-tuned protocol where each mea-
surement is a strong one, a given measurement may, therefore,
undermine the steering efficiency of a subsequent step; that
is, different effective projective measurements on different
regions of the system may undermine the propagation of en-
tanglement that might be needed if the target state has a given
degree of entanglement.

To overcome possible problems of this sort, we present
the scenario in which both the interaction strength J and
frequency of measurements 1/δt of a qubit interacting with
a given chain of detectors grow such that the product J2δt
remains constant as δt tends to zero. This measurement regime
is known as the weak-measurement (WM) limit [6], and, as we
see in brief, it avoids the fine-tuning and probabilistic issues
encountered before, ensuring successful steering in a finite
time.

Let measurement strength (or coupling strength) be

J =
√

γ

δt
, (10)

where γ > 0 will have a meaning of the measurement or
channel strength (see below). Now, the WM limit amounts to
setting the value of measurement time-step small enough such
that Jδt = √

γ δt � 1. In addition, the following condition is
assumed:

lim
δt→0

J2δt = γ = const. (11)

After performing a series expansion in δt and setting it as a
true differential, the discrete-time SME in Eq. (5) becomes the

continuous-time SME of the jump type [19,50,55,56,59,60]:

dωs(t ) = −γ

2
{A†A − Trs[A

†Aωs(t )], ωs(t )}dt

+
(

Aωs(t )A†

Trs[A†Aωs(t )]
− ωs(t )

)
dN (t ), (12)

where {•, •} denotes the anticommutator, dωs(t ) = ωs(t +
dt ) − ωs(t ), and dN (t ) is an increment of an inhomogeneous
counting process with the expectation value (mean) given by3

E[dN (t )] = γ Trs[A
†Aωs(t )]dt . (13)

When there is a click, the increment dN (t ) is equal to unity,
and from Eq. (12), we see a jump toward the target state—set,
for example, A = σ+. It follows from Eq. (13) that a click
readout rarely occurs as its mean value is proportional to dt .
When there is no click, dN (t ) = 0 and Eq. (12) describes a
“nudge” the prior state receives from the backaction of the
local measurement. In other words, the system’s state evolved
continuously irreversibly from ωs(t ) to ωs(t + dt ).

The rescaling of J according to Eqs. (10) and (11) is a
sufficient condition to implement the WM limit and to obtain
a nontrivial evolution in the averaged dynamics [55].

In addition, we note that the WM limit does not necessarily
imply that the detector-system coupling is in any sense weak
(in particular, in the setting where the full Hamiltonian con-
sists of a single term Hds, there is no other energy scale for
J to compare with). In fact, this coupling is related to the
singular coupling limit one encounters when deriving the LE
of a system strongly coupled with a delta-correlated reservoir
[56,61]. Thus, from the SME (12), the “weak” in the WM limit
stands for the small perturbation that affects the system after
a projective measurement is performed on the detector and a
no-click result is observed. When a click is observed, the state
receives a “kick,” and it jumps to the target state, which is
by no means weak (however, such jumps are rare in the WM
limit).

Turning to the blind measurement step (i.e., when no se-
lection over the detector readouts is performed), an average
over all the trajectories (or readouts) must be taken in the
SME, resulting in the WM limit, in that the system dynamics
is governed by the LE [19,56]

∂tρs(t ) = γD(A)ρs(t ) (14a)

= γ Aρs(t )A† − γ

2
{A†A, ρs(t )}, (14b)

where

ρs(t ) := E[ωs(t )] (15)

denotes the average over realizations (runs of the mea-
surement protocol). We refer to the superoperator D(A)
interchangeably as dissipator or simple generator of dis-
sipative dynamics [62,63]. By construction of the steering
protocol, this dissipator annihilates the target state, i.e.,

3Taking the mean of an inhomogeneous Poissonian increment in
the context of stochastic master equations is rather delicate, as the
average must be first taken in the future and then in the past. This is
thoroughly discussed in Ref. [50].
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D(A)ρ⊕ = 0, which, in turn, implies that this state is the
stationary-state solution of the above LE,

ρ∞ = lim
t→∞ ρs(t ) = lim

t→∞ exp (Lt )ρs(0) = ρ⊕, (16)

where ρs(0) is the initial state of the system. Note that ρs(t ) =
exp(Lt )ρs(0) is the formal solution of Eq. (14) with L =
γD(A) acting as the Lindbladian superoperator.

III. CLASSIFICATION
AND QUANTIFICATION OF ERRORS

In this section, we introduce some errors that can adversely
affect the ideal protocol and steer the system toward an erro-
neous target state rather than the desired one. For simplicity
and for the sake of clarity, we assume throughout this paper
that a single error occurs at any given time. As we shall see,
each error may induce both dissipative and unitary channels
in the LE governing the fully averaged dynamics, yet certain
errors only induce one type of channel. Thus, the considera-
tion of several errors acting simultaneously only requires the
addition of the corresponding channels (see Appendix K). We
implement two distance measures that compare the steered
state with an ideal target state. These measures are fidelity and
trace distance. Using these measures will enable us to gauge
the impact of steering errors on the protocol. We also employ
linear entropy to determine the degree of “mixedness” of the
steered state when errors occur. The robustness analysis aims
to understand how steering errors can affect the reliability and
accuracy of the protocol.

A. Quantifying the errors

Let S (Hs) be the set of density matrices defined on the
system Hilbert space Hs, and let ρ, ω ∈ S (Hs). To study how
errors alter the protocol, we use three quantifiers: fidelity

F (ρ, ω) = (Tr
√√

ρω
√

ρ )2, (17)

trace distance

D1(ρ, ω) = 1
2 Tr[

√
(ρ − ω)2], (18)

and the linear entropy (also called “impurity” as describing
the deviation from a pure quantum state)

L(ρ) := 1 − Trρ2, (19)

to compare a steered state with the ideal pure target state
ρ⊕ whose linear entropy is unity. Unless explicitly stated, we
always set the ideal target state as ρ⊕ = |↑〉 〈↑|, the erroneous
one as ρ̃⊕ and, in the same basis, we write the steered state of
interest as

ρs(t ) =
(

ζ (t ) χ (t )
χ (t )∗ 1 − ζ (t )

)
. (20)

Thus, if we compare ρs(t ) with ρ⊕, the fidelity and the trace
distance become

F (t ) := F (ρ⊕, ρs(t )) = ζ (t ), (21)

D1(t ) := D1(ρ⊕, ρs(t )) =
√

[1 − ζ (t )]2 + |χ (t )|2. (22)

We denote the above two quantifiers together with the
impurity in the stationary regime as D1,∞, F∞, and L∞, cor-
respondingly. With the quantifiers at hand, we determine the
robustness of the protocol by performing a series expansion
with respect to selected steering parameters, e.g., angles de-
fined on the Bloch sphere, channel strengths, probabilities.

B. Types of errors: Static and dynamic

In this paper, we discuss two types of errors: static and dy-
namic. Static errors refer to the parameters that do not change
during the steering protocol. In contrast with static errors, the
parameters of the model for dynamic errors fluctuate during
each steering step or from step to step.

We examine the following two types of static errors:
(1) Erroneous detector-system coupling parameter. As we

saw in Sec. II B, there are certain values the product Jδt can
take on that prevent steering from occurring. Therefore, we
define this as our first static error (Sec. IV A).

(2) Erroneously prepared detectors. The steering proto-
col requires preparing the detectors in a specific state after
each measurement step. Then, it is natural to discuss the
case where, because of any external perturbation, we are only
capable of preparing the detectors in a state ρ̃d that is not the
desired one (i.e., ρ̃d �= ρd ), and see how the steering protocol
with erroneously prepared detectors yields a “spoiled” target
state (Sec. IV B).

Dynamic errors are subdivided into two categories: time-
dependent and quenched. If the detector-system Hamiltonian
changes in time within one step (between two measurements
of the detector), we call the dynamical error time-dependent.
If the parameters of the protocol within the step are constant
in time but change from step to step, we call the dynamic error
quenched. In this work, we discuss four types of dynamic
errors:

(i) Fluctuating steering direction. This error is exclusively
quenched and describes the scenario where different steering
directions appear at each measurement step. These steering
directions can be discrete or continuous (Sec. V A).

(ii) Fluctuating detector-system interaction strength. This
error becomes quenched if the coupling constant is drawn
from a probability distribution at each steering step. Alter-
natively, the coupling constant can become a multiplicative
white noise (during a single measurement step), making this
error time-dependent (Sec. V B).

(iii) Environmentally induced perturbation. A perturba-
tion operator with multiplicative white noise is added to
the steering Hamiltonian to represent the interaction of the
detector-system with a noisy environment (Sec. V C).

(iv) Erroneous measurement direction. After each steering
step, the basis of the local observable measured on the detector
may change, making this dynamic error quenched (Sec. V D).

IV. STATIC ERRORS

In this section, we start by addressing the first static error.
We examine how the system’s Bloch vector is affected when
Jδt is a multiple of π or an odd multiple of π/2 and define
what we refer to as a valid coupling parameter. We further
analyze the effect of the second static error, which occurs
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when the detector state is prepared incorrectly. In this case, the
erroneous preparation of the detector state leads to additional
effective Hamiltonian dynamics and modifies the dissipative
dynamics observed in the ideal steering protocol. These addi-
tional contributions to the steering dynamics will disrupt the
target state.

A. Erroneous coupling parameter

Alluding to the discussion after Eqs. (8) and (9), let us
suppose we want to steer the state ρs(t ) toward the north pole
of the Bloch sphere represented by the state ρ⊕ = |↑〉 〈↑|. The
detectors are prepared in the state ρd = |↑〉 〈↑|. With the given
target and detector states, the interaction Hamiltonian Hds is
given by Eq. (6), and the associated measurement operators
are the same as in Eqs. (8) and (9). For a given prior state in
the Bloch representation

r(t ) = (x(t ), y(t ), z(t )) = Trs[ρs(t )σ], (23)

where σ = (σ x, σ y, σ z ) is a vector of Pauli matrices, the up-
dated steered state is then

r(t + δt ) =

⎛
⎜⎝ cos (Jδt )x(t )

cos (Jδt )y(t )
1 − cos2 (Jδt )[1 − z(t )]

⎞
⎟⎠. (24)

There is no distinction between column and row vectors in
our analysis. Clearly, from Eq. (24), if Jδt/π ∈ Z, the x
and y components of r(t + δt ) get either reflected or remain
invariant so that the state does not get closer to the target state
represented by the Bloch vector

r⊕ = Trs[ρ⊕σ] = (0, 0, 1).

If Jδt/(π/2) ∈ Z/2Z, then the state of the system will jump
toward the target state after the measurement, represented by
r(t + δt ) = r⊕. However, it is not possible to describe the evo-
lution of ρs(t ) using Lindbladian dynamics for these specific
values of Jδt . Therefore, the coupling strength is erroneous if
Jδt is an integer multiple of π or an odd integer multiple of
π/2. If this is not the case, we consider the coupling strength
valid. In later sections, we explore the consequences of this
error when it becomes dynamic.

Henceforth, unless explicitly stated, we adopt the WM
limit.

B. Errors in the detector state initialization

After each measurement step, the measurement evolution
requires freshly prepared (in a specific state) detectors. Since
the detector is also a quantum object, it may interact with the
environment so that its state may change from the desired one.
The unwanted detector-environment interaction can be cast
in the form of Kraus operators {Ki}, leading to the following
detector’s averaged density matrix [57]:

ρ̃d := E[ρd ] =
∑

i

Kiρd K†
i , (25)

where the sum runs over a finite index set. We could, of
course, consider the quenched version of this error where (see
Appendix A), at each interaction, the detector state is ran-
domly chosen from an ensemble, e.g., the detector states are

|�i
d〉 = cos(θi/2) |�d〉 + eiϕi sin(θi/2) |�⊥

d 〉, and appear with
probability p(i) such that ρ̃d = ∑

i p(i) |�i
d〉 〈�i

d |, but focus
only on the static version of this error.

Without considering any specific set of Ki, let us assume
that their action transforms, in the ONB Bd := {|�d〉 , |�⊥

d 〉},
the ideal detector state to the state

ρ̃d =
(

a |b| exp (iφ)

|b| exp (−iφ) 1 − a

)
, (26)

which is different from the desired detector state ρd =
|�d〉 〈�d |. When a = 1, which automatically forces b = 0,
we recover ρd .

1. Dynamics of the steered density matrix

Although we are mainly interested in the stationary state
of ρs(t ), understanding how the steered system reaches the
stationary is essential, as reaching it might be an impossible
task because of experimental limitations in the measurement
rate and the interaction time, among other issues.

With the detector-system interaction given by Eq. (1) and
the detector state ρ̃d , the blind measurement evolution in
the WM limit leads to the Lindbladian dynamics (see Ap-
pendix A):

∂tρs(t ) = [−iκad
(
h̃
) + γ+D(A) + γ−D

(
A†)]ρs(t ), (27)

where γ+ := aγ , γ− := (1 − a)γ and

ad(h̃)ρs(t ) := [h̃, ρs(t )] (28)

is the adjoint action of

h̃ := exp (iφ)A + H.c. (29)

The coherences of the detector state induce the effective
Hamiltonian

H = κ h̃, (30)

whose strength is given by

κ := lim
δt→0

J|b|. (31)

This scaling should be chosen so that κ remains constant as
we go to the continuum-time limit; otherwise, H would have
infinite strength.

There are three generators of the dynamic semigroup gov-
erning the dynamics of ρs(t ) [62,63]: the dissipator D(A)
whose stationary state is the ideal target state ρ⊕ [see
Eq. (14)]; the additional dissipator D(A†) annihilating ρ⊥

⊕
[Trs(ρ⊕ρ⊥

⊕ ) = 0]; and the unitary generator ad(h̃). Without
loss of generality, let us set |�d〉 = |↑〉 and |�⊕〉 = |↑〉. Thus,
A = σ+ and the Lindbladian in Eq. (27) becomes

L = −iκad(exp (iφ)σ+ + H.c.) + γ+D(σ+) + γ−D(σ−).

(32)

By adopting the Bloch representation

ρs(t ) = 1
2 [Is + r(t ) · σ],

the effective dimensionless Hamiltonian in the Lindbla-
dian (32) can be rewritten as h̃ = n · σ, where n =
(cos φ,− sin φ, 0). Hence, the unitary channel in L induces
Rabi oscillations around the unit vector n with a Rabi fre-
quency of κ/2.
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From the Bloch representation of ρs(t ), we get the set of
coupled ordinary differential equations for the Bloch compo-
nents:

ẋ(t ) = −γ x(t )

2
− 2κz(t ) sin φ, (33)

ẏ(t ) = −γ y(t )

2
− 2κz(t ) cos φ, (34)

ż(t ) = γ (2a − 1) − γ z(t ) + 2κy(t ) cos φ + 2κx(t ) sin φ.

(35)

For κ �= γ /8, the solutions of Eqs. (33)–(35) read

x(t ) = 1

κ
[cos (φ)g(t ) + sin (φ) f (t )], (36)

y(t ) = 1

κ
[cos (φ) f (t ) − sin (φ)g(t )], (37)

z(t ) = 2[C1 exp (�+t ) + C2 exp (�−t ) + λ] − 1, (38)

where

f (t ) = C1(�+ + γ ) exp (�+t )

+ C2(�− + γ ) exp (�−t ) + γ (λ − a), (39)

g(t ) = C3 exp
(
−γ

2
t
)
, (40)

the integration constants Ci (i = 1, 2, 3) depend on the initial
state and the protocol parameters, and

λ := γ 2a + 4κ2

γ 2 + 8κ2
, (41)

�± := ±
√(

γ

4

)2

− (2κ )2 − 3γ

4
. (42)

As can be seen from Eqs. (36)–(42), for κ �= γ /8, the
dynamics of r(t ) is mainly controlled by �±, and it may
exhibit one of the following two regimes: underdamped when
κ > γ /8, and overdamped when κ < γ /8. Clearly, the so-
lution corresponding to the ideal protocol (i.e., when ρ̃d =
ρd ) belongs to the overdamped regime in the limit κ → 0,
yielding

x(t ) = x(0) exp

(
−γ

2
t

)
, (43)

y(t ) = y(0) exp

(
−γ

2
t

)
, (44)

z(t ) = 1 − [1 − z(0)] exp (−γ t ), (45)

where the approach to the target state is exponential in time
with the rate γ given by Eq. (11). The critically damped
regime occurs when κ = γ /8 and the solution is obtained
directly from Eqs. (33)–(35):

x(t ) = 4(1 − 2a)

9
sin φ + exp

(
−3γ

4
t

)
Cx(t ), (46)

y(t ) = 4(1 − 2a)

9
cos φ + exp

(
−3γ

4
t

)
Cy(t ), (47)

z(t ) = 8(1 − 2a)

9
+ exp

(
−3γ

4
t

)
Cz(t ), (48)

with

Cx(t ) = 1

4
(γ t + 4)[x(0) sin φ + y(0) cos φ] sin φ +

[
4

9
(2a − 1) + γ t

(
1

3
(2a − 1) − 1

4
z(0)

)]
sin φ

+ exp

(
γ

4
t

)
[x(0) cos φ − y(0) sin φ] cos φ, (49)

Cy(t ) = 1

4
(γ t + 4)[x(0) sin φ + y(0) cos φ] cos φ +

[
4

9
(2a − 1) + γ t

(
1

3
(2a − 1) − 1

4
z(0)

)]
cos φ

+ exp

(
γ

4
t

)
[y(0) sin φ − x(0) cos φ] sin φ, (50)

Cz(t ) = 1

4
γ t[x(0) sin φ + y(0) cos φ] + γ t

[
1

3
(2a − 1) − 1

4
z(0)

]
+ z(0) − 8

9
(2a − 1). (51)

Results for the three dynamical regimes exposed above are
compared with those of the ideal steering in Fig. 2 for partic-
ular values of κ/γ . By recalling that ρs(t ) = [Is + r(t ) · σ]/2,
in the ideal steering protocol [Eqs. (43)–(45)] the real and
imaginary parts of the off-diagonal elements of ρs(t ) rapidly
go to zero, and

[ρs(t )]11 = 1
2 [1 + z(t )]

goes to unity twice as fast. This situation no longer holds for
erroneously prepared detectors, as shown in Figs. 2(a)–2(c).
Furthermore, Figs. 2(d) and 2(e) show that when κ/γ = 2,
which corresponds to the underdamped regime, the impurity

and trace distance are the lowest until they intersect with the
ideal steering curves. In the stationary state, the steered state
in the underdamped regime becomes the least pure and is the
furthest from the ideal target state compared with the ideal
steering and both the overdamped (κ/γ = 0.01) and critically
damped (κ/γ = 1/8) regimes. The latter two regimes have a
stationary-state impurity close to 0.3 from above. However,
the stationary-state value of the trace distance corresponding
to the overdamped regime is smaller than for the critically
damped regime. It is worth noting that if we adopted an
active-decision steering protocol such as the one in Ref. [9]
while considering erroneously prepared detectors leading to
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FIG. 2. Steering of a single qubit via continuous time evolution toward the ideal target state |�⊕〉 = |↑〉 with the ideal parameters
(black) [Eqs. (43)–(45)] and with erroneously prepared detectors [Eq. (26)] in three different dynamic regimes: underdamped, κ/γ = 2 (red);
overdamped, κ/γ = 0.01 (blue) [Eqs. (36)–(38) for κ/γ �= 1/8]; and critically damped [Eq. (46)–(48)], κ/γ = 1/8 (green). Entries of ρs(t )
in the three dynamic regimes: (a) [ρs(t )]11 = [1 + z(t )]/2. Panels (b) and (c) respectively show the real and the negative imaginary parts of
[ρs(t )]12 = [x(t ) − iy(t )]/2. In panel (b), all the curves coincide. (d) Trace distance, given by Eq. (22), between the steered state (erroneous
or not) and the ideal target state. (e) Linear entropy [Eq. (19)]. In all cases, a = 0.8 and φ = 0 in Eq. (26), and the initial Bloch vector is
r(0) = (1, 1, −1)/

√
3.

the underdamped regime dynamics of ρs(t ), it would be
reasonable to stop the steering protocol at the precise mo-
ment the trace distance reaches the undershoot since this is
the closest point to the ideal target state. This would not
apply in the other two regimes because it takes more time for
the trace distance to reach its minimum value. On the other
hand, it is possible to combine the current protocol in the
underdamped regime (which would no longer be considered
erroneous) with a very strong unitary channel to quickly reach
the undershoot as close as possible to the target state and then
implement purely dissipative steering. Combining these two
steering protocols and potentially other optimization schemes
may improve the overall performance of the steering protocol.
An example of an optimized protocol of this kind is explored
in Ref. [8].

2. Stationary-state analysis

Next, we conduct a stationary-state analysis of Eq. (27)
to understand how the steering parameters P = {γ , κ, a, φ}
influence the target state ρ̃⊕. By using the same orthonormal
basis that led to the Lindbladian (32) we find its stationary
state

ρ̃⊕ =
⎛
⎝ 1

2 + γ 2(2a−1)
2(γ 2+8κ2 )

i2eiφγ κ (1−2a)
γ 2+8κ2

− i2e−iφγ κ (1−2a)
γ 2+8κ2

1
2 − γ 2(2a−1)

2(γ 2+8κ2 )

⎞
⎠, (52)

where a clear dependence on the channel strengths can be
seen. By turning to the Bloch representation of ρ̃⊕, we can
conveniently observe the allowed stationary regions in the
Bloch ball with the aid of the Bloch vector

r∞ =

⎛
⎜⎝x∞

y∞
z∞

⎞
⎟⎠ = (2a − 1)γ

γ 2 + 8κ2

⎛
⎜⎝−4κ sin φ

−4κ cos φ

γ

⎞
⎟⎠. (53)

The regions are the following ones: the origin of the Bloch
sphere ‖r∞‖ = 0 is attained when a = 1/2, which in turn
implies that the two dissipators in L [Eq. (32)] have the same
decay rate. This point, which is the maximally mixed state, is
accessible regardless of the presence of the unitary generator
in L. In this specific case, F∞ = D1,∞ = 1/2 [Eq. (21)].

The second stationary region is the z axis of the Bloch ball.
Regardless of the value of a, having b = 0 forces κ = 0, so
that there is no unitary generator in L and the Bloch vector is
r∞ = (0, 0, 2a − 1). This result is a consequence of the com-
petition between the dissipators D(σ+) and D(σ−), where the
former dissipator steers toward ρ⊕ and the latter toward ρ⊥

⊕ .
The trace distance and fidelity in this case are D1,∞ = |1 − a|
and F∞ = a, respectively.

The third stationary region is a stationary ellipsoid. These
are notable features in dissipative quantum dynamics and op-
timal control of two-level systems [8,64–67]. Let κ ∈ [0,∞),
a ∈ (0, 1/2) ∪ (1/2, 1), φ ∈ [0, 2π ), and γ ∈ (0,∞). For γ
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FIG. 3. Stationary ellipsoid representing Eq. (54) with steering
parameters (a) γ = 5, κ ∈ (0, ∞), a = 0.8, and (b) γ = 5, κ ∈
(0, ∞), a = 0.2. Each point on the ellipsoids represents a stationary
state ρ̃⊕ [Eq. (52)] for a specific choice of ρ̃d . In panel (b), it is
evident that the coordinate origin is not contained in the ellipsoid.

and a fixed, one can demonstrate that the vector components
in Eq. (53) satisfy the relation4

x2
∞ + y2

∞
2(a − 1/2)2 + [z∞ − (a − 1/2)]2

(a − 1/2)2 = 1, (54)

which is an oblate ellipsoid. However, these ellipsoids are
punctured: for any ellipsoid, the endpoint of its minor axis that
would coincide with the origin of the Bloch sphere is removed
from Eq. (54). Also, the other end of the minor axis does
not intersect the Bloch sphere. This is shown in Appendix B.
We denote these punctured ellipsoids by C, and provide two
examples in Fig. 3 for γ = 5, a = 0.8, and a = 0.2.

The faulty protocol discussed here exhibits multiple sta-
tionary states for a single target state. This means that a
specific target state can be reached using different ρ̃d . In other
words, multiple intersecting ellipsoids exist for different val-
ues of ρ̃d . Additionally, in contrast with the steering ellipsoids
shown in Ref. [8], any ellipsoid C corresponding to Eq. (54)
does depend on the steering parameters, it is punctured, and
does not intersect the Bloch sphere.

In summary, the allowed regions for the protocol con-
sidered in this section are either the points representing the
pure states ρ⊕ or ρ⊥

⊕ ; a line joining ρ⊕ and ρ⊥
⊕ , i.e., ρ̃⊕ =

aρ⊕ + (1 − a)ρ⊥
⊕ ; or a punctured ellipsoid with the minor axis

parallel to the line joining ρ⊕ and ρ⊥
⊕ .

3. Small-error approximation

Despite having ρ̃⊕ �= ρ⊕ unless ρ̃d = ρd , a close-to-ideal
experimental realization of the protocol would require the
errors to be considerably small. Taking this into consideration,
in what follows, we provide a series expansion of the distance
measures in the stationary-state regime as a function of the
steering parameters. This will determine the robustness of the
protocol to this error.

The stationary-state fidelity [Eq. (21)] and trace distance
[Eq. (22)] between ρ⊕ and ρ̃⊕ together with the linear entropy

4The same surface is obtained if κ is fixed and if γ varies in ∈
(0, ∞).

[Eq. (19)] of ρ̃⊕, respectively are

F∞ = 1

2
+ γ 2(2a − 1)

2(γ 2 + 8κ2)
, (55)

D1,∞ =
√

[(1 − a)γ 2 + 4κ2]2 + 4γ 2κ2(2a − 1)2

γ 2 + 8κ2
, (56)

L∞ = 1 − γ 2(γ 2 + 16κ2)[1 + 2(a − 1)a] + 32κ4

(γ 2 + 8κ2)2
.

(57)

Since an error is considered small if κ → 0 and a → 1,
we expand the above expressions first in κ and then in a
approaching unity from the left. We thus obtain

F∞ = a − 4

γ 2
(2a − 1)κ2 + O(κ4), (58)

D1,∞ = 1 − a + 2

γ 2

2a − 1

1 − a
κ2 + O(κ4), (59)

L∞ = 2a(1 − a) + 32

γ 4
(1 − 2a)2κ4 + O(κ6). (60)

In light of these series expansions, we conclude that the
population (ρ̃d )11 in Eq. (26) dominates the steering at first
order in a without any involvement of the ideal decay rate γ

and the strength of the unitary channel κ . This situation no
longer holds when higher-order terms are considered. Natu-
rally, D1,∞ tends to zero as κ goes to zero faster than a to unity,
since no coherence must exist in Eq. (26) when ρ̃d = ρd .

V. DYNAMIC ERRORS

We now proceed to discuss how dynamic errors affect the
steering protocol. In particular, we investigate the following
dynamic errors: (i) fluctuating steering directions, (ii) imper-
fect control over detector-system interaction coupling, (iii)
environmentally induced perturbation in the desired steering
Hamiltonian, and (iv) fluctuating directions at which the de-
tectors are projected (i.e., projectively measured).

Error (i) is exclusively quenched and originates from
the fact that different steering directions can appear at
different steps of the steering dynamics due to an erro-
neous detector-system interaction. The directions might be
continuously or discretely distributed. For the latter case,
we show three novel stochastic master equations (SMEs),
Eqs. (66), (77), and (86), that exhibit different averaging hi-
erarchies. One of these SMEs [see Eq. (66)] describes the full
stochasticity of the problem, i.e., the stochasticity due to
fluctuating steering directions, as well as due to the quantum-
mechanical randomness of the outcomes of the measurements
for a particular observable. However, we can opt to average
out either the measurement stochasticity [see Eq. (86)] or the
steering directions stochasticity [see Eq. (77)], which leads to
the remaining SMEs. Once both stochasticities are averaged
out, all three SMEs lead to the same Lindblad master equa-
tion [see Eq. (73)], as the averages over the two stochastic
processes commute. As we see, the unraveled LE is purely
dissipative and has as many dissipation channels as steering
directions. Turning to a stationary-state analysis, we compare
the ideal target state with the stationary state obtained when
two steering directions (or states) appear. These states are
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symmetrically located on the Bloch sphere relative to the ideal
target state.

Error (ii) becomes quenched if the detector-system cou-
pling strength is drawn from a probability distribution at each
steering step. Alternatively, the coupling constant can experi-
ence a random time-dependent external perturbation during
the measurement steps, e.g., a multiplicative white noise,
making this error time-dependent. As we shall see, the LE
describing the system dynamics with this particular error will
have the same dissipative channel as the one with the ideal
steering protocol [cf. Eqs. (99), (101), and (107)]. However, it
will have an effective channel strength influenced by the noise.

Considering error (iii), we examine the LE describing the
system dynamics [Eq. (124)] using two approaches: in the first
approach, we obtain a novel SME [Eq. (127)] that includes
both measurement and noise stochasticities. In the second
approach, we average the reduced dynamics of the system
directly. The resulting LE contains the ideal dissipator (i.e.,
the one that steers the system toward the desired target state)
and other dissipative channels caused by the error.

Since the blind measurement is independent of the detec-
tor’s basis, the steering protocol remains fully robust against
error (iv). It will be shown, however, that by varying the basis
for measuring the detectors, it is possible to obtain an SME
[Eq. (147)] including contributions from both jump-type and
diffusive-type measurements [50].

A. Error in the steering direction

Suppose we want to steer a qubit toward the ideal target
state ρ⊕, with detectors prepared in the state ρd = |�d〉 〈�d |.
At each steering step, the local observable Sd [see Eq. (2)] is
measured, and, as the steering direction fluctuates, the system
gets steered toward an erroneous target state ωi (such that
Trsω

2
i = 1) with probability p(i). Let us denote the set of

target states and their associated probabilities as

R := {ωi; p(i)}i∈I, (61)

where I = {1, . . . , n} is an index set. Note that ρ⊕ ∈ R is not
a requirement. Furthermore, the set of discrete probabilities
{p(i)}i∈I may become a continuous probability distribution.

The dimensionless detector-system interaction Hamilto-
nian that steers the system toward ωi can be written as [cf.
Eq. (1)]

h(i)
0 = |�⊥

d 〉 〈�d | ⊗ Ai + H.c., (62)

where, for every i ∈ I,

Ai = A(θi, ϕi ) := R(θi, ϕi )AR†(θi, ϕi ) (63)

is the operator A rotated toward the ith direction under the
action of the rotation operator

R(θi, ϕi ) := exp

(
−i

ϕi

2
σ z

)
exp

(
−i

θi

2
σ y

)
, (64)

and so Aiωi = 0. The unitary operator evolving the detector-
system state corresponding to Eq. (62) is denoted as

Ui(δt ) = exp
(−i

√
γ δth(i)

0

)
, (65)

where the scaling relation J = √
γ /δt , which leads to the WM

limit, has been set. By taking advantage of the rotation angles

in Eq. (63), we denote the states ωi by their associated angles
(θi, ϕi ). Hence, Eq. (61) can be conveniently written as R =
{(θi, ϕi ); p(i)}i∈I .

We proceed to describe the dynamics of the steered system
via SMEs portraying different averaging hierarchies for the
derivation of the LE. Specifically, we analyze three cases:
(a) direct (simultaneous) averaging of the SME over both
the quantum-mechanical stochasticity introduced by random
measurement readouts and the classical stochasticity intro-
duced by choice of the measurement direction at each step;
(b) averaging first over the steering directions, keeping a
particular sequence of readouts, followed by averaging over
readouts at the later stage; (c) averaging first over detector
readouts for a given sequence of steering directions, followed
by averaging over these directions. A summary of the upcom-
ing SMEs and their averages is illustrated in Fig. 4.

An important question regarding these averaging hierar-
chies concerns the commutativity of the averaging procedures
(b) and (c). Indeed, in the fully stochastic consideration
based on quantum trajectories, the detector readouts (click
or no-click) are conditioned to the given steering direction.
However, within the hierarchy (b), the first averaging is per-
formed over all possible steering directions for a fixed (say,
click) measurement outcome, whose probability may strongly
depend on the steering direction. Note that one might think
that such averaging violates the conditional relation between
detector outcomes and directions. Nevertheless, as shown
below, the resulting LEs for all three averaging hierarchies
coincide.

At the same time, the SMEs for the partially averaged
density matrices are different in the three cases of averaging
hierarchies. Each of them bears important information on
the dynamics of the system, in particular, on the statistics
of quantum trajectories, which can be experimentally probed
in a finite number of protocol runs. For example, hierarchy
(b) is relevant to the situation when the fluctuations of the
steering direction are uncontrolled, while each protocol run
yields a definite sequence of readouts. Hierarchy (c) can be ex-
perimentally realized by performing multiple runs for a fixed
sequence of steering directions intentionally chosen to test the
robustness of the protocol. The information extracted from the
corresponding SMEs can also be employed for active-decision
strategies [9], particularly in a termination policy determining
the optimum number of steering steps.

1. Stochastic steering directions and detector outcomes

Following the quantum trajectory formalism described in
Sec. II [cf. Eq. (12)], an SME that simultaneously describes
the erroneous steering and measurement stochasticities takes
the form (see Fig. 4)

dωs(t ) =
∑
i∈I

χi(t )

[
γD(Ai )ωs(t )dt +

(
Aiωs(t )A†

i

〈A†
i Ai〉t

− ωs(t )

)

× (dNi(t ) − γ 〈A†
i Ai〉t dt )

]
. (66)

The derivation of the above SME is shown in Appendix C.
This equation can be understood as follows: Between t and
t + dt , only one of the stochastic variables (or indicators), say,
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⊗ ( ) †

Eq. 

(66)

Figs. 

5a, 5f

⊗

Eq. (77)

Figs. 5b, 5g 

Eq. (86)

Figs. 5c, 5h

Eq. 

(73)

Figs. 

5d, 5i

Classical average = , Quantum average = ,  Full average = = ∘ = ∘ .

FIG. 4. Illustration of the averaging hierarchies for measurements with randomly chosen measurement directions at each protocol step.
After detector and system jointly evolve under the unitary operator Ui(δt ) := exp(−i

√
γ δth(i)

0 ), which is induced by h(i)
0 given by Eq. (62),

the observable Sd ⊗ Is, with Sd = |�d 〉 〈�d | − |�⊥
d 〉 〈�⊥

d |, is measured. The detector-system interaction h(i)
0 for the measurement direction i

appears randomly with a probability p(i). The stochastic master equation describing the system outcomes once Sd ⊗ Is is measured is given
by Eq. (66). An example of a trajectory corresponding to this stochastic master equation is shown in Fig. 5(a) where the steering directions
R are given by Eq. (72). If no selection of the steering directions is made, Eq. (66) must be averaged with respect to the directions. This
classical average is denoted by Ei. Upon taking the classical average, the resulting stochastic master equation is given by Eq. (77), and a
particular trajectory is shown in Fig. 5(b) for the same R as before. Averaging Eq. (77) with respect to the detector outcomes, which is
a quantum-mechanical average denoted by Eα , unravels the Lindblad master equation (73). Returning to Eq. (66), one can first take the
quantum average and get Eq. (86). A particular trajectory of this SME is shown in Fig. 5(c) with the same R as before. Averaging the latter
equation over the steering directions (i.e., taking the classical average) also gives the LE. (73). The overall procedure shows that the order in
which the averages are taken is immaterial to obtain the same LE. Hence, the total average is E = Eα ◦ Ei = Ei ◦ Eα , implying that Eq. (73)
can be directly unraveled from Eq. (66). Figure 5(d) shows a trajectory (i.e., a solution) of the former equation, representing the fully averaged
dynamics with the same steering directions treated above.

χi(t ), equals unity, and the rest are zero. This occurs randomly
with a probability

E[χi(t )] = p(i) ∀ i ∈ I, (67)

where E denotes the trajectory average. At the same time, the
Poissonian increment dNi(t ) describes a jump [dNi(t ) = 1] or
the lack of it [dNi(t ) = 0] corresponding to the ith steering
direction for which χi(t ) = 1. The strength of each counting
process is given by the mean

E[dNi(t )] = γ 〈A†
i Ai〉t dt = γ Tr[A†

i Aiωs(t )]dt, (68)

given that the trajectory ωs(t ) has been realized. To be more
precise, in the context of the dynamics described by Eq. (66),
we must consider the product of each indicator with its corre-
spondent counting process; that is,

E[χi(t )dNi(t )] = p(i)γ 〈A†
i Ai〉t dt . (69)

We note that a direct consequence of Eq. (66) is that if
ω2

s (t ) = ωs(t ), then ω2
s (t + dt ) = ωs(t + dt ), i.e., the evolu-

tion of a pure state remains pure. Therefore, Eq. (66) with

ωs(t ) = |ψs(t )〉 〈ψs(t )|
is equivalent to the stochastic Schrödinger equation

d |ψs(t )〉 = −1

2

∑
i∈I

(γ A†
i Ai − γ 〈A†

i Ai〉t ) |ψs(t )〉χi(t )dt

+
∑
i∈I

⎛
⎜⎝ Ai√

〈A†
i Ai〉t

− Is

⎞
⎟⎠ |ψs(t )〉 χi(t )dNi(t ),

(70)

where

〈A†
i Ai〉t = 〈ψs(t )| A†

i Ai|ψs(t )〉. (71)

Interestingly, if we set χi(t ) = 1 for all i ∈ I in Eq. (70), we
would obtain a standard stochastic Schrödinger equation of
the jump type describing the continuous monitoring of a quan-
tum system by n detectors [19,50,56,59,60] instead of a chain
of monitoring detectors.

In Fig. 5(a), we show a solution (i.e., a trajectory) of
Eq. (66) in the Bloch representation with the steering direc-
tions and their probabilities [cf. Eq. (61)] given by

R = {(π/3, 0; 0.5), (π/3, π ; 0.5)}, (72)

a decay γ = 0.1, δt = 0.1, and with an initial pure state
r(0) = (1, 0,−1)/

√
2. It can be observed in Fig. 5(a) that the

evolved state is always pure and, at random, either evolves
continuously or jumps to one of the states in R. A transverse
cross section of the Bloch sphere from Fig. 5(a) is shown
in Fig. 5(f). In this figure, the straight lines represent the
jumps. A lack of a stationary state can be observed due to the
never-ending jumps and continuous evolution of the statistical
operator evolves continuously.

Taking the full average of Eq. (66) removes all the stochas-
tic terms, resulting in the LE (see Fig. 4)

∂tρs(t ) =
∑
i∈I

γ p(i)D(Ai )ρs(t ). (73)

This master equation is purely dissipative and has as many
dissipators as steering directions. Continuing with the above
example, averaging over 103 trajectories of the form shown
in Fig. 5(a) gives an approximate solution to the correspond-
ing LE. The corresponding averaged trajectory is shown in
Figs. 5(d) and 5(i) in red using the Bloch representation,
and it is compared with the exact solution, in black, of the
corresponding Lindblad equation

[ρs(t )]11 = 9

10
− 8 + 5

√
2

20
exp

(
−5γ

8
t

)
, (74)
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FIG. 5. Dynamics of the Bloch vector of a steered qubit with R = {(π/3, 0, 0.5), (π/3, π, 0.5)} as the set of target states [cf. Eq. (61)]
under different averaging hierarchies for γ = 0.1, initial point r(0) = (1, 0, −1)/

√
2 (represented by the blue dot), and δt = 0.1. The two target

states in R are represented by the two green dots in panels (f)–(j). Panels (a)–(c) and their respective transverse cross sections in panels (f)–(i)
display several representative quantum trajectories, corresponding to full stochasticity retained (a), averaging over the steering directions (b),
and averaging over detector outcomes (c), which are solutions of Eqs. (66), (77), and (86), respectively. Panels (e) and (j) show the averaged
dynamics of the Bloch vector for ideal steering toward the north pole [see Eq. (14)]. The jumps from a prior state are represented in panels
(f) and (g) by straight lines. Panels (d), in black, and (i), in red, represent the analytical [see Eqs. (74)–(75)] and numerical fully averaged
dynamics of the erroneous steering with R given as above. The numerical average is performed over 103 trajectories. We note that the final
state, although not pure, is closer to the north pole than the midpoint of the straight line (not shown) connecting the two green dots. In fact, for
all averaging hierarchies, under a sufficient number of steering steps, the dynamics of the Bloch vector associated with the steered state gets
locked above the line joining the two (erroneous) target states.

[ρs(t )]12 = 1

2
√

2
exp

(
−7γ

8

)
t . (75)

As shown in Figs. 5(d) and 5(i), the resulting station-
ary state is mixed because of the competition of dissipative
channels. To complete the picture, the solution of the ideal
LE—steering toward the north pole of the Bloch sphere—as
given in Eqs. (43)–(45), is depicted in Figs. 5(e) and 5(j),
where again r(0) = (1, 0,−1)/

√
2 and γ = 0.1. Figure 6

shows the time dependence of the Bloch components depicted
in Fig. 5, as well as the quantifiers Eqs. (19), (21), and (22).

2. Averaged steering directions

We can now examine the situation in which the steering
directional stochasticity has been averaged out, leaving only
the measurement stochasticity in the system dynamics. In
that case, the relation between a (partially averaged) density
matrix πs(t ) with the state ωs(t )—a solution of Eq. (66)—is
given by

πs(t ) := Ei[ωs(t )], (76)

where Ei denotes the classical average over the steering direc-
tions. The following SME gives the evolution of the system

state:

dπs(t ) =
∑
i∈I

γ p(i)D(Ai )πs(t )dt

+
(∑

i∈I p(i)Aiπs(t )A†
i〈∑

j∈I p( j)A†
jA j

〉
t

− πs(t )

)

×
(

dN (t ) − γ

〈∑
i∈I

p(i)A†
i Ai

〉
dt

)
. (77)

The derivation of this SME is presented in Appendix C, and
interestingly, it can also be obtained from the detector-system
interaction

Hds(t |{ξi}) =
N∑

i=1

√
γ p(i)ξi(t )h(i)

0 , (78)

where h(i)
0 is given by Eq. (62), and, for all i, j = 1, 2, 3 the

{ξi(t )}i are delta-correlated white noises satisfying

E[ξi(t )] = 0, E[ξi(t )ξ j (s)] = δi jδ(t − s). (79)

The equivalence is shown in Appendix D.

023159-13



MEDINA-GUERRA, KUMAR, GORNYI, AND GEFEN PHYSICAL REVIEW RESEARCH 6, 023159 (2024)

FIG. 6. Entries and distance measures for different averaging hierarchies as functions of time with the set of steering states Eq. (72). (a) Co-
herences of the density matrices. (b) Fidelity F (t ) [Eq. (21)]. (c) Linear entropy L(t ) [Eq. (19)] of several density matrices—corresponding
either to stochastic master equations or Lindblad equations—with the ideal target state ρ⊕ = |↑〉 〈↑|. (d) Trace distance D1(t ) [Eq. (22)].
Orange curves correspond to the results of a quantum trajectory of Eq. (66) [cf. Figs. 5(a) and 5(f)], where both the classical and quantum
stochastic process are present. Blue curves correspond to a quantum trajectory of Eq. (77) [cf. Figs. 5(b) and 5(g)], where the classical average
over the steering directions Ei is taken. Red curves show the quantum trajectory solving Eq. (86) [cf. Figs. 5(c) and 5(h)], where the quantum
average Eα over detector readouts is taken. Magenta and black curves correspond to the solution of the ideal LE (14) [cf. Figs. 5(e) and 5(j)]
and the fully (i.e., with respect to quantum and classical stochasticity) averaged LE (73) [cf. Figs. 5(d) and 5(i)], respectively. Green curves
correspond to the average over 103 quantum trajectories.

Several differences between Eqs. (77) and (66) are worth
noting. Importantly, only the deterministic part of Eq. (77),

∂tπ
det
s (t ) = −

∑
i∈I

γ p(i)

2

{
A†

i Ai − 〈A†
i Ai〉t , π

det
s (t )

}
, (80)

respects purity, whereas the stochastic part does not. Above,
πdet

s denotes a density matrix that evolves deterministi-
cally. Hence, in general, having π2

s (t ) = πs(t ) does not
imply π2

s (t + dt ) = πs(t + dt ), which prevents associating a
stochastic Schrödinger equation with Eq. (77). If a click is
registered, the resultant state is mixed. Because of such jumps
toward a mixed state, we also note that this equation does not
have the form of a conventional SME. Moreover, Eq. (80) also
describes the deterministic evolution of a qubit continuously
and simultaneously monitored by n detectors, where no jump
to a pure state is registered [50]. Hence, an observer who has

access to a trajectory πs(t ) that solves Eq. (80), and has only
partial information about the experimental setup, would be
unable to discern whether πs(t ) describes the former model
or the one described by Eq. (77) where no jump is registered.

The Bloch vector of the stable, stationary-state solution of
Eq. (80) is

r∞ = − Tr
[∑

i∈I p(i)A†
i Aiσ

]
∥∥Tr

[∑
i∈I p(i)A†

i Aiσ
]∥∥ (81)

(see Appendix C). Hence, if dN (t ) = 0 in Eq. (77), the up-
dated state πs(t + dt ) gets closer to the state represented by
Eq. (81), as πs(t ) continuously evolves toward the former
stationary state.
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Furthermore, given a particular trajectory πs(t ) the proba-
bility of the click between t and t + dt is given by

Eα[dN (t )] = γ

〈∑
i∈I

p(i)A†
i Ai

〉
t

dt, (82)

where the expectation value 〈•〉t is taken with respect to πs(t ),
and Eα denotes the quantum average with respect to the de-
tector readouts after the classical average Ei over the steering
directions is taken.

In connection to the last point, the fully averaged density
matrix of the system is expressed as

ρs(t ) = Eα[πs(t )] = (Eα ◦ Ei )[ωs(t )] = E[ωs(t )]. (83)

This also implies, as anticipated, that taking the expectation
value Eα in Eq. (77) coincides with Eq. (73). In a similar
spirit, the relation between the stochastic variables of Eq. (66)
with those of Eq. (77) with respect to the partial averaging Ei

are (see Appendix C)

Ei[χi(t )] = p(i), (84)

Ei[χi(t )dNi(t )] = p(i)Tr[A†
i Aiπs(t )]dN (t )

Tr
[∑

j∈I p( j)A†
jA jπs(t )

] . (85)

In Fig. 5(b), we illustrate a particular trajectory of Eq. (77)
in the Bloch representation, and in Fig. 5(g) we show a
transversal cross-section of the Bloch sphere. The erroneous
states are given by Eq. (72). There, the Bloch vector of this
trajectory evolves continuously along the surface of the sphere
from its initial pure state and then continues with a jump
toward a mixed state. Afterward, it can be seen that the state
follows another continuous trajectory (now inside the Bloch
ball) as it tries to reach the state r∞ = (0, 0, 1) [see Eq. (81)].

Before introducing the following average hierarchy, we
would like to contrast the quenched dynamic error considered
here with the static error of erroneously prepared detectors
(Sec. IV B) to highlight the importance of Eq. (77).

We could have formulated the dynamic error of fluctuat-
ing steering directions in a different yet equivalent manner.
Instead of having detectors prepared in ρd = |�d〉 〈�d | in-
teracting with the system via the fluctuating (dimensionless)
Hamiltonians in Eq. (62), and always measuring the local ob-
servable Sd = |�d〉 〈�d | − |�⊥

d 〉 〈�⊥
d |, we could instead have

detectors randomly prepared in states of the form |�i
d〉 =

R(θi, ϕi ) |�d〉 [cf. Eq. (64)] interacting with the steered system
via the Hamiltonian

h̃(i)
0 = ∣∣�i,⊥

d

〉 〈
�i

d

∣∣ ⊗ Ai + H.c.

Now, after the interaction takes place, the local observable
that must be measured is

S(i)
d = ∣∣�i

d

〉 〈
�i

d

∣∣ − ∣∣�i,⊥
d

〉 〈
�i,⊥

d

∣∣
instead of Sd , and the possible system outcomes are still given
by Eq. (66), if no average is taken.

On the other hand, if the detector readouts are averaged, the
state of the system is given by Eq. (77). Taking a step further,
performing a blind measurement (or a trajectory average) with
the already averaged detector directions gives, once again,
Eq. (73). This LE is fundamentally different from Eq. (27),
obtained from erroneously prepared detectors interacting with

the system through the same Hamiltonian. Although the two
dissipators appearing in Eq. (27) can be obtained by having
two possible orthogonal detector states, there is no combina-
tion of steering directions that, upon total averaging, would
induce a unitary channel, as each erroneous detector state
interacts with the system with a different Hamiltonian (see
discussion above).

3. Averaged detector outcomes

Let us now discuss the third averaging hierarchy, where
first, the measurement stochasticity is averaged out, but the
directional stochasticity is kept. For this case, the detector
readouts in Eq. (66) are averaged so that the SME that de-
scribes the system dynamics is given by (see Appendix C for
the derivation; see also Fig. 4)

dσs(t ) =
∑
i∈I

γD(Ai )σs(t )χi(t )dt, (86)

where [cf. Eq. (76)]

σs(t ) := Eα[ωs(t )], (87)

relates the partially averaged density matrix σs(t ) with the
quantum trajectories ωs(t ) containing the two stochastic pro-
cesses. One can see that taking the mean of Eq. (86) yields
Eq. (73). The SME (86) describes the random appearance of
all the possible dissipation channels where only one is active
within each steering step. Contrary to the two previous SMEs,
Eqs. (66) and (77), Eq. (86) never respects purity. An example
of this is shown in Fig. 5(c), where R is again given by
Eq. (72).

4. Comparison of the steering dynamics
for different averaging hierarchies

In Fig. 6, we present the distance measures and the entries
of density matrices of trajectories corresponding to the dif-
ferent averaging hierarchies, as well as for an ideal (single
steering direction-north pole), fully averaged steering. For
the trajectory displaying full stochasticity [see Fig. 6(b) in
orange], when no jump occurs, the fidelity grows continuously
and monotonically, sometimes getting very close to unity [as
shown by D1(t ) in Fig. 6(d) also in orange]. This behavior
repeats after each jump until the steering stops. It is also
worth noting that, as long as the initial state is pure, the linear
entropy [depicted in Fig. 6(c)] is always zero for this trajectory
and every other described by the SME (66).

Once the averaging over steering directions is carried out
[see Figs. 5(b) and 5(g)], the trajectory evolution is deter-
mined by Eq. (77). From Fig. 6(b) (in blue), we can observe
how the fidelity increases monotonically until a jump occurs.
In contrast with the fully stochastic scheme, the jump is
toward a mixed state that gets closer and closer to the center—
this point is eventually reached—of the imaginary line joining
the two erroneous target states represented by the two green
dots in Figs. 5(f)–5(j). Similarly to the previous scheme, the
ideal target state can be reached [cf. Eq. (81)] if no jump
occurs during a sufficient time lapse.

If we average over the detector readouts [cf. Figs. 5(c) and
5(h)], the three distance measures behave similarly to those
obtained from the fully averaged dynamics [cf. Figs. 5(d)
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FIG. 7. Distance measures between the ideal target state ρ⊕ =
|↑〉 〈↑| and the actual target state ρ̃⊕, together with its impurity, as
functions of (p, θ ). (a) Fidelity F∞(p, θ ) [Eq. (21)]. (b) Impurity
L∞(p, θ ) [Eq. (19)]. There, we observe the trivial fact that states
close to (p, θ ) = (1/2, π/2), which corresponds to the maximally
mixed state, are those with the greatest impurity. (c) Trace distance
D1(p, θ ) [Eq. (22)]. This surface shows an absolute-value-shaped
region centered at p = 1/2.

and 5(i)], as shown in panels of Fig. 6 by red, green, and
black curves, respectively. Note that the difference relies on
a fluctuation of the measures in the former stochastic case
around the stationary-state values. The fluctuations observed
in the green curves, representing the numerically averaged
dynamics, are due to the finite number of averaged trajectories
[see, e.g., the subfigure in Fig. 6(b)].

We would like to reiterate that, contrary to the case of
averaged detector readouts, obtaining the fully averaged tra-

jectory followed by the Bloch vector [see Fig. 5(d)] from
both the fully stochastic picture and the averaged directions
is by no means self-evident. Furthermore, even though the
fully averaged Bloch trajectories corresponding to the erro-
neous and ideal protocols have different characteristics such
as curvatures and endpoints [compare Figs. 5(d) and 5(i)
with Figs. 5(e) and 5(j)], the respective dependencies of the
distance measures on time for a given initial state have over-
all similar qualitative features (see Fig. 6). For example, in
Fig. 6(c) for L(t ), both black (erroneous) and magenta (ideal)
curves first grow, attain a maximum, and then decay exponen-
tially towards a constant value. The difference is only in the
saturation value (finite for the erroneous protocol versus zero
for the ideal one).

In Fig. 4, we summarize in a diagram the averaging hier-
archies corresponding to Eqs. (68), (77), and (86), and how
they unravel Eq. (73). A correspondence with the trajectories
in Fig. 5 is also shown.

5. Stationary state of the fully averaged dynamics
and small-error approximation

There is an infinite number of probability distributions
(both discrete and continuous) over the sphere that can be
associated with the steering directions Eq. (61). However, for
simplicity, we use the set of two steering directions,

R = {(θ, 0; p), (θ, π ; 1 − p)}, (88)

because it simplifies the process of obtaining analytical
results. In Appendix E, we consider two continuously dis-
tributed steering directions: a uniform distribution between
two angles and a von Mises distribution. Note that ρ⊕ =
|↑〉 〈↑| /∈ R for θ > 0. Given the steering set Eq. (88), we
study how robust the protocol is to this error by performing
a series expansion of the quantifiers in p and θ . We see that
p = 1/2 is the most favorable condition, as the leading order
of the quantifiers is of fourth order in θ .

Two relevant entries of the stationary-state solution of the
fully averaged LE [cf. Eq. (73)]

∂tρs(t ) = γ [pD(A(θ )) + (1 − p)D(A(−θ ))]ρs(t ), (89)

corresponding to the steering set Eq. (88) are

[ρ̃⊕]11 = 4 + (1 − p)p + 4[1 + (1 − p)p] cos θ + (p − 1)p(4 cos 3θ + cos 4θ )

8 + 2(1 − p)p + 2(p − 1)p cos 4θ
, (90)

[ρ̃⊕]12 = 2(−1 + 2p) sin θ

4 + (1 − p)p + (−1 + p)p cos 4θ
. (91)

In Fig. 7, we depict the distance measures, Eqs. (21)–
(22), comparing ρ̃⊕ with ρ⊕, as well as impurity of ρ̃⊕,
Eq. (19), as functions of p and θ . The domain of the lat-
ter variable is set as θ ∈ [0, π ] since all the quantifiers
are even with respect to θ . The impurity [see Fig. 7(b)]
has a thick crest centered at the plane θ = π/2, and its
maximum max L∞(p, θ ) = 0.5 is located at the intersection

of the planes θ = π/2 and p = 1/2. The density matrix
corresponding to the values (p, θ ) = (1/2, π/2) is maxi-
mally mixed, as the two dissipators in Eq. (89) have the
same strength and try to steer the system toward orthogonal
states.

There is an interesting behavior of the trace distance as ob-
served in Fig. 7(c). Upon intersecting the surface D1,∞(p, θ )
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FIG. 8. (a) Sections of D1,∞(p, θ ) [Eq. (22)] with constant θ ∈ [0, π/2]. The curves resemble an absolute value as the angle gets closer to
zero. (b) Sections of D1,∞(p, θ ) with constant p ∈ [0, 1/2]. The change of concavity for curves with 0 � θ � π/2 is reflected on the change
of the powers in θ in the series expansion of D1,∞(p, θ ) [Eqs. (92) and (93)].

with constant planes of small θ , the resulting curves, which
are differentiable, resemble an absolute value centered at
p = 1/2 as shown in Fig. 8(a). The behavior of D1,∞(p, θ )
for several fixed probabilities as a function of the angle is
shown in Fig. 8(b), where the curves are pretty close to zero
for p = 1/2 − ε, 0 < ε � 1—this also holds for p = 1/2 + ε

because D1,∞(p,−θ ) = D1,∞(p, θ ).

Returning to the properties observed in Fig. 8, we can
see a crossover between absolute-value–shaped curves cen-
tered around p = 1/2, which are differentiable, to curves
with a smaller curvature at p = 1/2. This behavior can
be seen analytically by performing a series expansion of
D1,∞(p, θ ) around different points. For example, for p ∈
[0, 1/2) ∪ (1/2, 1], we have

D1,∞(p, θ ) =
∣∣∣1 − p

2

∣∣∣(θ + 60(p − 1)p − 1

24
θ3 + 120(p − 1)p[78(p − 1)p − 49] + 1

1920
θ5

)

+ 16(p − 1)p[630(p − 1)p{8(p − 1)p[157(p − 1)p − 163] − 229} + 27011] − 1

1290240
∣∣1 − p

2

∣∣ θ7 + O(θ9), (92)

where there are only odd powers of θ . This is no longer the
case if we expand D1,∞(p, θ ) at p = 1/2 with respect to θ :

D1,∞(p = 1/2, θ ) = 4 sin2 (θ/2)

3 + cos (2θ )
(93a)

= θ4

16
+ θ6

48
+ O(θ8). (93b)

By comparing Eqs. (92) and (93b), the protocol shows more
robustness when θ � 1 and p = 1/2, as the leading power in
θ is of order four instead of one.

The change of evenness in powers of θ in the series ex-
pansion of D1,∞(p, θ ) is only observed in the trace distance;
Figs. 7(a) and 7(b) evidence the smoothness of F∞(p, θ ) and
L∞(p, θ ) in (0, 1) × (−π, π ) ⊂ R2. More precisely, expand-
ing F∞(p, θ ) and L∞(p, θ ) in θ and p �= 1/2 gives

F∞(p, θ ) = 1 − 1
4 (1 − 4p + 4p2)θ2 + 1

48 (1 + 8p − 104p2

+ 192p3 − 96p4)θ4 + O(θ6), (94)

L∞(p, θ ) = 2p(1 − 4p + 6p2 − 3p3)θ4 + O(θ6). (95)

The above two series coincide term-by-term with their expan-
sion at p = 1/2,

F∞(p = 1/2, θ ) = 1

2
+ 2 cos θ

3 + cos 2θ
= 1 − θ4

16
+ O(θ6),

(96)

L∞(p = 1/2, θ ) = 2 sin4 θ

(3 + cos 2θ )2 = θ4

8
+ O(θ6). (97)

Note that the second-order term in θ of F∞(p, θ ) vanishes at
p = 1/2, and, in contrast with D1,∞(p, θ ) with p �= 1/2 [see
Eq. (92)], the fidelity and impurity have only even powers
of θ .

Returning to the discrete distribution of states given by
Eq. (72), the uniqueness of the actual target state and its
closeness to the ideal one observed in Eq. (93) can be bet-
ter understood if we adopt the geometrical point of view of
the fully averaged dynamics and make use of the averaging
hierarchies previously shown.

Let us first address the former point by implementing
the superposition principle of fields. Each of the dissipators
present in the Lindbladian in Eq. (89) induces a vector field
in the Bloch ball with a single fixed point on the sphere’s
surface. Therefore, when adding two fields, there will only
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be a single stable fixed point within the Bloch sphere. This is
easily extended when there are more dissipators of the form
D(A(θ, ϕ)) with angles being either continuous or discretely
distributed. The fields are added two by two until all are
summed, resulting in a single stationary state—in the contin-
uous case, they are integrated.

The closeness of the actual target state to the ideal one
when the steering states are given by Eq. (88) with p = 1/2
and θ � 1—even for a broader range of angles—is evident in
the three averaging hierarchies presented at the beginning of
the section. When the stochasticity of both the direction and
the detector outcomes is maintained, the steered Bloch vector
will eventually jump to one of the target states in R. Then its
trajectory will be exclusively contained in the arc connecting
the two target states and passing through the north pole [see
Figs. 5(a) and 5(f)].

If the steering directions are averaged, the Bloch vector
will try to reach the north pole (the ideal target state) when no
jump occurs. If a jump occurs, the z component of the Bloch
vector will coincide with the z component of both nonideal
target states. Subsequently, the trajectory will be continuous
and, once more, directed toward the ideal target state until
another jump occurs. Nevertheless, the absolute value of the x
component of the Bloch vector reduces after each jump. This
behavior repeatedly occurs with the consequence of having
the jumps concentrated in the middle point of the imaginary
line l̄ passing through the two erroneous target states in R.
Likewise, the continuous trajectories also get closer and closer
to the z-axis segment that passes through the ideal target state
(the north pole) and the middle point of l̄ . Therefore, all the
trajectories followed by the Bloch vector will be contained in
the intersection of the spherical cap, whose base contains l̄ ,
with the plane containing these two points through which the
segment l̄ passes [see Figs. 5(b) and 5(g)].

Lastly, when the detectors’ outcomes are ignored, only
one of the dissipators—D(A(θ )) or D(A(−θ ))—will be active
during each steering step. After a sufficiently long steering
time, regardless of the initial point, the trajectory followed by
the Bloch vector will wiggle close to a point above l̄ as it is
evident in Figs. 5(c) and 5(h). Once more, all the trajectories
within the three averaging hierarchies with the R mentioned
above are within the spherical cap described in the previous
case. The overall result upon performing a total average over
the stochastic variables—and as long as 0 < θ < π/2—is
having a stationary state always lying above l̄; and the closer
the angle θ is to zero, the closer the stationary state is to the
north pole (see Fig. 5).

B. Error in the detector-system coupling strength

The detector-system coupling strength may fluctuate be-
cause of imperfect control. This section discusses how this
type of error affects the final state of the steering protocol.
This error can be quenched or time-dependent. However, we
shall see that the averaged dynamics of the system state will
be described by the same LE as in the ideal steering case, with
the dark (stationary) state being the ideal target state, implying
that the protocol is robust to this error.

Without loss of generality, let us choose again the ONBs
B⊕ = {|↑〉 , |↓〉} and Bd = {|↑〉 , |↓〉}, such that the interac-

tion Hamiltonian is [cf. Eq. (6)]

Hds = J (t )(σ+ ⊗ σ− + H.c.) = J (t )h0, (98)

so that the ideal target state is the north pole of the Bloch
sphere. Here, J (t ) controls the detector-system interaction
strength and can have quenched [with J (t ) = ∑

k Jkδt,kδt ,
where δt,t ′ is the Kronecker delta-symbol and Jk is randomly
chosen from a predefined set J at each step] or generic time-
dependent error contributions. Below, we discuss both cases
one by one.

1. Quenched error

Let I := {1, . . . , N}, and let J := {Jn}n∈I be a valid set of
detector-system coupling strengths, i.e., such that for a given
interaction time δt , Jnδt/π /∈ Z, and Jnδt/(π/2) /∈ 2Z/Z, and
there is at least one Jn �= 0 with nonzero probability to occur.
Suppose that, after each measurement step, the coupling ac-
quires a value in J , say, Jn, with a given probability p(n) with
the conditions stated above.

The quantum trajectories accounting for the stochastic ap-
pearance of coupling constants in J can also be described by
SMEs like Eqs. (66), (77), and (86) by mapping An → A for
all n ∈ I, and γ to γn := limδt→0 J2

n δt . Under this mapping,
it is easy to see that a single target state will be shared by
n dissipators that are proportional to each other. Therefore,
it is sufficient to focus only on the fully averaged dynamics
described by

∂tρs(t ) =
∑
n∈I

p(n)γnD(σ+)ρs(t ). (99)

This LE has the same dissipator as in Eq. (14) with A ∼=
σ+, but the effective channel strength is different: γ →∑

n∈I p(n)γn. Thus, the trajectories followed by the states are
precisely the same as for the ideal steering, yet they traverse
the Bloch ball at a different speed.

If J belongs to a continuous distribution, such as a Gaus-
sian one μJ with zero mean and variance σ , the fully averaged
state after a steering step is given by

ρs(t + δt ) =
∫
R

Trd{exp [−iJδtad(h0)]ρd ⊗ ρs(t )}dμJ

= Trd

[
exp

(
−σ 2δt2

2
ad2(h0)

)
ρd ⊗ ρs(t )

]
,

(100)

where dμJ is the one-dimensional Gaussian measure. Making
use of the WM limit limδt→0 δtσ 2 = γ = const upon per-
forming a series expansion in Eq. (100) and using the ONB
B⊕, gives the LE

∂tρs(t ) = γD(σ+)ρs(t ), (101)

where we took the usual decomposition of h0 as in Eq. (98).
This WM limit is similar to the one used in Ref. [68].

2. Time-dependent error

Promoting the detector-system coupling to be a white-
noise variable, i.e., J �→ ϒξ (t ) with

E[ξ (t )] = 0, E[ξ (t )ξ (s)] = δ(t − s), (102)
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makes the error time-dependent in our categorization (see
Sec. III). Hence, by using the Itô calculus rules [56]

(dX (t ))2 = dt, dX (t )dt = 0, (dt )2 = 0, (103)

with the Wiener increment

dX (t ) = ξ (t )dt, (104)

the unitary operator for an infinitesimal time reduces to

U (dt ) = e−iϒh0dX (t ) = Ids − iϒh0dX (t ) − ϒ2

2
h2

0dt . (105)

Therefore, the updated system state after taking the blind
measurement is

ρs(t + dt ) = ρs(t ) + ϒ2D(A)ρs(t )dt, (106)

which leads to the LE

∂tρs(t ) = ϒ2D(A)ρs(t ). (107)

In conclusion, the only difference among the LEs given by
Eqs. (14), (99), (101), and (107) is the dissipation strength,
giving that the protocol is entirely robust to errors in the
coupling constant.

C. Errors in the steering Hamiltonian

In an experimental situation akin to the one in which the
detectors are erroneously prepared (see Sec. IV B), we may
assume the existence of an environment, e.g., a heat bath,
over which we do not have absolute control and that interacts
with the system and detector during the steering and not
before. As a result, the initial state ρeds(0) = ρe(0) ⊗ ρd ⊗
ρs(0), involving the environment state ρe(0), evolves under
the Hamiltonian

Heds = He ⊗ Ids + Ie ⊗ Hds + H̃e ⊗ H̃ds, (108)

where He is the Hamiltonian of the environment, Hds is the
ideal steering Hamiltonian, and H̃e ⊗ H̃ds is the Hamiltonian
dictating the interaction of the environment with the detector
and steered system.

Adapting the steps outlined in Sec. II, we first allow the
total system—now being the environment-detector-system—
to evolve during a time δt and then take the partial trace over
the environmental degrees of freedom. This gives the reduced
detector-system density matrix

ρds(δt ) = Tre[U (δt )ρeds(0)U†(δt )], (109)

where U (δt ) = exp(−iδtHeds). Immediately after, the ob-
servable Sd = |�d〉 〈�d | − |�⊥

d 〉 〈�⊥
d | is measured on the

detector, leaving us with the reduced steered state [cf. Eq. (3)],

ρs,α (δt ) = 〈α| ρds(δt ) |α〉
P(α)

, (110)

where α ∈ {0, 1} accounts for the measurement outcome with
probability P(α), and |0〉 = |�d〉, |1〉 = |�⊥

d 〉.
The reduced state, Eq. (110), can be thought of as the result

of applying the measurement (Kraus) operator

Kα (δt ) := 〈α|
∑
i, j

√
p j 〈ψi|U (δt ) |ψ j〉 |0〉 (111)

to the initial state ρs(0), where the initial state of the envi-
ronment is written as ρe(0) = ∑

i pi |ψi〉 〈ψi|. An integral can
replace this sum if the spectrum of the environment is con-
tinuous. In comparison with the previous scenarios, Eq. (111)
illustrates how the dynamics of the steered system become
more complex and perhaps intractable, even if all the terms in
the Hamiltonian (108) terms are known.

As the focus of our study is a sequence of generalized
measurements performed on the system to steer it toward a
particular target state, in what follows, we seek to translate
the microscopic theory Eq. (108) in the total Hilbert space
He ⊗ Hd ⊗ Hs into a phenomenological model in Hd ⊗ Hs,
to make the problem tractable. More precisely, we capture
the influence of the environment on the detector-system in a
stochastic operator perturbing the ideal steering Hamiltonian.
However, this replacement will require a set of assumptions
and conditions on the environment and its interaction with the
detector-system.

1. Noise representation

We start by rescaling some of the terms in Eq. (108),

Heds = λ−2He ⊗ Ids + Ie ⊗ Hds + λ−1H̃e ⊗ H̃ds, (112)

such that we are interested in the limit λ → 0. This is known
as the singular-coupling limit [56,61], and it implies that the
characteristic relaxation time of the environment tends to zero,
which, in turn, guarantees the elimination of any memory
effects linked to the environment. According to the vanishing
memory effect, the correlation function of the environment is
proportional to a δ function [61], namely,

C(t − s) =
∫
R

e−iω(t−s)/λ2
Tr[H̃e(ω)H̃eρe(0)]

ds

λ2
∝ δ(t − s),

(113)

where H̃e(ω) is an eigenoperator of ad(He) with eigenvalue
−ω. Another requirement is that the integral of the correla-
tion function with s = 0 over all times is equal to a positive
constant, i.e.,

η =
∫
R

C(t )dt . (114)

Given the above assumptions, we can replace the reduced
dynamics of the detector-system,

ρds(t ) = Treρeds(t ),

by the average over realizations of the unitary-driven density
matrix:

χds(t |ξ ) = U (t |ξ )ρd ⊗ ρs(0)U †(t |ξ ), (115)

given a realization of the stochastic noise ξ (see below). Here,

U (t |ξ ) := −→T exp

(
−i

∫ t

0
H (s|ξ )ds

)
(116)

is the time-ordered (as represented by the symbol
−→T ), unitary

time-evolution operator generated by the Hamiltonian

H (t |ξ ) := Hds + √
ηϒξ (t )h̃ds (117)

acting only in the detector-system space. Here, the ef-
fective time-dependent coupling ϒξ (t ) accounts for the
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environmentally induced noise, h̃ds is the effective dimen-
sionless Hamiltonian describing the noisy detector-system
interaction, and η is defined by Eq. (114). The normalization
conditions of the white noise are the same as in Eq. (102).

To summarize, the properties of the environment described
by the microscopic model given by Eq. (112) and ρe(0) are
encoded in the perturbation term of the phenomenological
model Eq. (117), under the assumption that the environment-
detector-system coupling in the former equation is singular
and that the coupling constant in the latter equation is given
by Eq. (114). Under these conditions, it is then guaranteed
that

ρds(t ) = Treρds(t ) = E[ζds(t |ξ )], (118)

where E denotes the average over all “classical” noise trajec-
tories ξ , and ζds(t |ξ ) is the detector-system density matrix for
a given noise realization.

The replacement of the exact, reduced dynamics of an
open system by the realization-average of a stochastic, uni-
tary evolution represented by Eq. (115) is called the noise
representation, and justifies the widely used Hamiltonians of
the form given by Eq. (117) (see, e.g., Refs. [69–75]). More
conditions on the applicability of the noise representation are
studied in Refs. [76,77] and the references therein.

In what follows, we start with the blind measurement
scheme and find the LE governing the averaged dynamics of
ρs(t ). We call this procedure a direct averaging. Later, we opt
for a different strategy to derive an SME of the jump-diffusive
type that unravels the same LE we obtain in the direct averag-
ing. We finally finish by studying three particular forms of h̃ds

in Eq. (117).

2. Direct averaging

Let us start by taking the expectation value as in Eq. (118),
but in the interaction picture with Hds = Jh0 as the free
Hamiltonian, and then return to the Schrödinger picture. This
gives

ρds(t ) = exp [−itJad(h0)]

× E

[−→T exp

(
−i

∫ t

0
ϒξ (s)

√
ηad( ˆ̃h(s))ds

)]
ρd

⊗ ρs(0), (119)

where ˆ̃h(s) := exp[isJad(h0)]H is any Hamiltonian term H
in the interaction picture. After noting that the time-ordering
operator commutes with the expectation E (this is proven in
Appendix F), the above equation can be cast in the form

ρds(t ) = Etρds(0)

with the dynamical map

Et = exp [−itJad(h0)]
−→T exp

(
−ϒ2η

2

∫ t

0
ad2( ˆ̃h(s))ds

)
.

(120)

Here, the nth power of the adjoint action of an operator A over
B is recursively defined as

adn(A)B = [adn−1(A)]ad(A)B = adn−1(A)[A, B].

Thus, ad2(A)B = [A, [A, B]].

Taking the time derivative of ρds(t ) = Etρds(0) gives

∂tρds(t ) = −iJ[h0, ρds(t )] − ϒ2η

2
[h̃ds, [h̃ds, ρds(t )]]. (121)

This LE contains two channels: a unitary channel describing
the detector-system interaction without performing any par-
tial trace (or detector readout); and a dissipator originating
from the interaction between the detector system with the
environment. Now, the formal solution of the above LE is
ρds(t ) = exp(Lt )ρds(0) with

L = −iJad(h0) − ϒ2η

2
ad2(h̃ds).

By comparing this solution with Eq. (120) we obtain the
interesting identity

exp [−itJad(h0)]
−→T exp

[
−ϒ2η

2

∫ t

0
exp[isJad(h0)]ad2

× (h̃ds) exp[−isJad(h0)]ds

]

= exp

[
−iJtadh0 − ϒ2η

2
tad2(h̃ds)

]
, (122)

and can find the LE obeyed by ρs(t ) = Trdρds(t ). To this end,
we start from

ρs(t + δt ) = Trd [exp (Lδt )ρd ⊗ ρs(t )], (123)

and use the WM limit with the usual representations of ρd and
h0 with respect to the ONBs B⊕ = {|�⊕〉 , |�⊥

⊕〉} and Bd =
{|�d〉 , |�⊥

d 〉} to get (see Appendix H)

∂tρs(t ) = [γD(A) + γ̃D(G) + γ̃D(B)]ρs(t ), (124)

where G = G†, C = C†, and B are block matrices of the
Hamiltonian [cf. Eq. (117)]

h̃ds =
(

G B†

B C

)
, (125)

and

γ̃ = ηϒ2. (126)

We note that we obtained Eq. (124) by first taking the av-
erage over realizations of the white noise ξ (t ) from t to t + δt
and then performing a blind measurement. Alternatively, it
can be shown (see Appendix G) that one can perform a blind
measurement at t + δt given the same stochastic trajectory
and then take the average over realizations of the stochastic
variable.

We provide a few relevant comments about the LE (124).
First, we note that this LE has no hybrid channels generated
by G, B, or A; that is, it has no cross-terms of the form
Gρs(t )B† − {B†G, ρs(t )}/2, and so on. Second, there is no
channel associated with C.

In addition, Eq. (124) explicitly shows that a local
environment-detector interaction, effectively described by
h̃ds = O ⊗ Is in Eq. (117), has no effect on the dynamics of
ρs(t ). This is easily seen by noting that for this interaction
G, B ∝ Is in Eq. (125), and thus D(Is) = 0. This means that
performing a blind measurement takes care of the environ-
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mental influence over the detectors, and this perturbation is
not transferred to the state of the system. Likewise, if the
interaction is local in the system space, e.g., h̃ds = Id ⊗ G, the
LE loses the dissipator associated with the off-diagonal blocks
in Eq. (125): D(B) = 0.

3. Jump-diffusive stochastic master equation

An SME describing the possible individual quantum tra-
jectories obeyed by the steered state under the influence of the
white noise and the continuous monitoring of the detectors
reads (see Appendix I)

dωs(t ) = −i
√

γ̃ [G, ωs(t )]dX (t ) + γ̃D(G)ωs(t )dt +
(

〈γ A†A + γ̃ B†B〉tωs(t ) − 1

2
{γ A†A + γ̃ B†B, ωs(t )}

)
dt

+
(

γ Aωs(t )A† + γ̃ Bωs(t )B†

〈γ A†A + γ̃ B†B〉t
− ωs(t )

)
dN (t ), (127)

where dX (t ) is a Wiener increment with zero mean and vari-
ance dt , dN (t ) is a Poissonian increment with strength

E[dN (t )] = 〈γ A†A + γ̃ B†B〉t dt . (128)

The overall Itô table is

[dX (t )]2 = dt, (129)

[dN (t )]2 = dN (t ), (130)

dN (t )dt = dX (t )dt = dX (t )dN (t ) = 0, (131)

(dt )2 = 0. (132)

The SME (127) is quite peculiar. When a click is registered
[dN (t ) = 1], the steered state is found in a mixed state unless
γ = γ̃ and B = A, or B = 0. On the other hand, if no click
is registered [dN (t ) = 0], the system evolution contains de-
terministic and fluctuating contributions. The fluctuating term
is given by a unitary channel generated by G. In contrast,
the deterministic terms are due to an Itô correction of the
unitary fluctuating generator in the form of a dissipator, the
deterministic backaction induced by the other environment-
induced terms (i.e., the terms proportional to B), and the
backaction due to the detectors. Contrary to the usual diffusive
[19,50,55,56] and hybrid jump-diffusive SMEs [78–81], see
also Eq. (147), the Wiener increment in Eq. (127) multiplies
a unitary generator instead of a nonunitary one. Finally, by
taking the expectation value of Eq. (127), using the rules
specified by Eqs. (128)–(132), we arrive at the LE (124).

4. Examples

Let us illustrate Eqs. (124) and (127) with two particular
perturbation Hamiltonians [see Eq. (117)] of the form h̃ds =
Id ⊗ G with G = σ z and G = σ x. For both cases, the detectors
are prepared in the state ρd = |↑〉 〈↑|, and the ideal target state
is given by ρ⊕ = |↑〉 〈↑|.

In Fig. 9(a), we show a particular solution of Eq. (127)
with G = σ z, where we can see the fluctuating rotation of the
Bloch vector r(t ) = Tr[ωs(t )σ] around the z axis while it gets
inevitably closer to the target state, owing to the backaction of
the detectors. In that particular trajectory, the system jumps
to the north pole, where it stops evolving. A straight line
represents the jump in the transverse cut of the Bloch sphere
shown in Fig. 9(e).

Averaging over 104 trajectories gives rise to the purely
dissipative dynamics shown in Figs. 9(b) and 9(f) in red,
which is an approximate solution of the LE [cf. Eq. (124)],

∂tρs(t ) = [γD(σ+) + γ̃D(σ z )]ρs(t ). (133)

The solution to this equation is

[ρs(t )]11 = 1 + {[ρs(0)]11 − 1} exp (−γ t ), (134)

[ρs(t )]12 = [ρs(0)]12 exp

(
−γ + 4γ̃

2
t

)
, (135)

and is shown in Figs. 9(b) and 9(f) in black. In those figures,
we can see that the numerically averaged trajectory agrees
to a great extent with the analytical solution. Moreover, we
note that the only change compared with the ideal solution
Eqs. (44) and (45) (in the Bloch representation) is in the rate
at which the x and y components decay, which is faster in the
case here treated.

Although the averaged trajectories change compared with
the ideal dissipative dynamics [cf. Fig. 5(e)], the ideal target
state is invariant. This is a trivial consequence of |�⊕〉 = |↑〉
being an eigenstate of G = σ z. We provide further insight in
Fig. 10 by illustrating the time dependence of the relevant
quantities of the erroneous steering with G = σ z. There, we
can see again [cf. Fig. 6] the similarities between the im-
purities and trace distance of the ideal and averaged (both
numerically and analytically) dynamics. Due to the presence
of the dissipator D(σ z ), which dampens the coherences of
the state even faster than in the ideal case, the steered state
becomes maximally mixed as it traverses the z axis of the
Bloch sphere. While doing so, it approaches the ideal state
faster than in the ideal steering.

Turning to the case where G = σ x, the ideal target state is
no longer an eigenstate of this operator. As a consequence, the
actual final state of the averaged dynamics is

[ρ̃⊕]11 = 1 − γ̃

γ + 2γ̃
, [ρ̃⊕]12 = 0. (136)

This state is the result of the competition between the two
dissipative channels in the LE

∂tρs(t ) = [γD(σ+) + γ̃D(σ x )]ρs(t ), (137)

where the first dissipator tries to collapse the entire Bloch ball
toward the north pole and the second one toward the x axis.

A single trajectory of the corresponding SME and its
average is shown in Figs. 9(c) and 9(d), respectively. The
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FIG. 9. Steering of a single qubit toward the north pole of the Bloch sphere, i.e., ρ⊕ = |↑〉 〈↑|, with the perturbed detector-system
Hamiltonian Hds(t ) = √

γ /δt (σ+ ⊗ σ− + H.c.) + Id ⊗ √
γ̃ ξ (t )G, where G = σ z in panels (a), (b) and (e), (f), and G = σ x in panels (c),

(d) and (g), (h). The decay rates are γ = γ̃ = 0.1 and the initial state is r(0) = (1, 0, −1)/
√

2, which is represented by a blue dot. For G = σ z

and G = σ x , respectively, panels (a) and (c) display particular quantum trajectories that are solutions of Eq. (127). In panels (a) and (e), a
combination of the fluctuating rotation around the z axis, with the continuous backaction steering induced by the detectors, can be observed
until the state jumps to the north pole, where the evolution stops. Panels (b) and (f) show an average of 103 (in red) trajectories—similar to
the one in panel (a)—and the analytical solution to the LE (133) (in black). The ideal target state is still the stationary point of the dissipative
dynamics, implying full robustness to this type of perturbation. In panels (c) and (g), we observe the interplay of the continuous backaction
and the rotation around the x axis until a jump to the north pole occurs. Hereafter, the Bloch vector stays locked on the great circle of the y-z
plane. As a result, the average over 104 trajectories displayed in panels (d) and (h) (in red) show that the actual target state [Eq. (136)] is mixed
and does not coincide with the ideal one. As the strength of the fluctuating rotation around the x axis increases, the stationary state becomes
more mixed. The analytical solution to the corresponding LE [Eq. (137)] is shown in black.

depicted single trajectory results from the combined effect of
the fluctuating rotation around the x axis and the continuous,
nonunitary evolution directing the Bloch vector toward the
north pole. Once the north pole is reached by a jump—or via
continuous evolution for other trajectories—the Bloch vector
stays locked on the great circle in the y-z plane. Since this
occurs for every trajectory, once the average is performed, the
stationary state is no longer pure and lies on the z axis below
the north pole. Figure 11 shows the time progression of the
Bloch components depicted in Figs. 9(c) and 9(d), and in their
respective transverse cuts Figs. 9(g) and 9(h), in addition to
the usual quantifiers.

The stationary-state quantifiers comparing the actual target
state and the ideal target state are to leading order

F∞ = γ + γ̃

γ + 2γ̃
≈ 1 − γ̃

γ
, (138)

D1,∞ = γ̃

γ + 2γ̃
≈ γ̃

γ
, (139)

L∞ = 2γ̃ (γ + γ̃ )

(γ + 2γ̃ )2 ≈ 2γ̃

γ
, (140)

where we have performed a series expansion in small γ̃ with
fixed γ . We observe here that the dissipator strength γ̃ affects
the steering to first order, which means that this error signifi-
cantly affects the steering protocol.

D. Errors in the measurement direction
(direction of the detector projection)

We close the study of the dynamic errors by considering the
situation in which the basis of the local observable measured
on the detectors changes at each steering step with a given
probability. We know a priori that the blind measurement
scheme will not be affected by this occurrence, for the partial
trace does not depend on the chosen basis. Nevertheless, from
the individual quantum trajectories, the situation described
above can lead to a set of different SMEs unraveling the
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FIG. 10. Entries of density matrices and distance measures as functions of time, associated with the steering of a single qubit to the ideal
state ρ⊕ = |↑〉 〈↑| with the perturbed detector-system Hamiltonian Hds(t ) = √

γ /δt (σ+ ⊗ σ− + H.c.) + Id ⊗ √
γ̃ ξ (t )σ z. (a) Coherences of

several states are generically labeled as [ρs(t )]12 even if they refer to different density matrices. (b) Fidelity [Eq. (21)]. (c) Impurity [Eq. (19)].
(d) Trace distance [Eq. (22)]. Note that the impurity of the quantum trajectory is always zero as Eq. (127) respects purity when B = 0. Black
curves correspond to a single quantum trajectory solving Eq. (127) with G = σ z. In panel (a), the solid and dotted black lines, respectively,
refer to the real and the negative imaginary part of the coherences of the quantum trajectory. Green curves correspond to the ideal steered state
solving LE (14). Blue and red curves are the exact and approximate solutions to the fully averaged LE (124) (where B = 0), respectively. The
average was taken over 104 trajectories. For all the plots, γ = γ̃ = 0.1, δt = 0.1, and the initial Bloch vector r(0) = (1, 0, −1)/

√
2.

error-free LE containing a single dissipation channel whose
stationary state is the ideal target state.

Let {Bd,i}i∈I be a family of ONBs spanning Hd with I =
{1, . . . , n}. For convenience, we set

Bd,1 := {|0〉 = |↑〉 , |1〉 = |↓〉}
as the canonical basis, and, for i �= 1,

Bd,i = {∣∣ψ (i)
0

〉
,
∣∣ψ (i)

1

〉} �= Bd,1.

After the detector and system interact, there is a probability
p(i) of measuring the detector in the ONB Bd,i. Regardless of
the measurement basis, we assume that the remaining steering
parameters coincide with those of the ideal protocol setting
(see Sec. II).

The general discrete SME describing the repeated interac-
tion of the steered system with a set of detectors measured in

random ONBs is

ωk+1 =
∑
i∈I

∑
α∈{0,1}

M(i)
α ωk

p(i, α|ωk )
1k+1

i,α , (141)

where the time t has been discretized, i.e., tk := kδt , k ∈ Z+,
and so ωk := ω(tk ). Furthermore, 1k+1

i,α is the indicator de-
scribing the random implementation of the measurement basis
Bd,i and the (also random) resulting detector state |ψ (i)

α 〉 with
α ∈ {0, 1}. The expectation of this indicator, given the prior
state ωk , reads

E
[
1k+1

i,α

] = p(i, α|ωk ) = TrM(i)
α ωk, (142)

which is the joint probability of obtaining the detector out-
come α with the ith measurement direction.
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FIG. 11. Entries of density matrices and distance measures as functions of time, associated with the steering of a single qubit to the ideal
state ρ⊕ = |↑〉 〈↑| with the perturbed detector-system Hamiltonian Hds(t ) = √

γ /δt (σ+ ⊗ σ− + H.c.) + Id ⊗ √
γ̃ ξ (t )σ x . (a) The coherences

of several states are generically labeled as [ρs(t )]12 even if they correspond to different density matrices. (b) Fidelity [Eq. (21)]. (c) Impurity
[Eq. (19)]. Note that the impurity of the quantum trajectory is always zero as Eq. (127) respects purity when B = 0. (d) Trace distance
[Eq. (22)]. Black curves correspond to a single quantum trajectory solving Eq. (127) with G = σ x . In panel (a), the solid and dotted black
lines, respectively, correspond to the real and the negative imaginary part of the coherences of the quantum trajectory. Green curves correspond
to the ideal steered state solving LE (14). Note that in panel (a), the green curve is not visible since it coincides with the red and blue curves.
Blue and red curves are the exact and approximate solutions of the fully averaged LE (124) (where B = 0), respectively. The average was taken
over 104 trajectories. For all the plots, γ = γ̃ = 0.1, δt = 0.1, and the initial Bloch vector r(0) = (1, 0, −1)/

√
2.

The unnormalized state

M(i)
α ωk := p(i)M (i)

α (δt )ωkM (i)
α (δt )† (143)

describes the backaction on the prior state, ωk , once the state
of the detector is reduced from |0〉 to |ψ (i)

α 〉. The measurement
operator is

M (i)
α (δt ) := 〈ψ (i)

α | exp[−iV (δt )]|0〉, (144)

with V (δt ) = √
γ δth0, and h0 = |�⊥

d 〉 〈�d | ⊗ A + H.c. If an
unbiased average over all possible results is taken, i.e., a blind
measurement, the updated state becomes

ρk+1 := E[ωk+1] (145a)

=
∑
i,α

p(i)M (i)
α (δt )E[ωk]M (i)

α (δt )† (145b)

= Trd [U (δt )ρd ⊗ ρkU
†(δt )], (145c)
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which is the ideal, error-free, updated state. Recall that in the
WM limit, the above equation leads to ideal LE (14).

1. Example: Two measurement directions

Let us now consider a particular example in the quantum
trajectories scheme. Let us suppose that there are two possible
measurement directions: the ideal one denoted by Bd,1, and
an erroneous one with the basis Bd,2 with the respective ket
vectors

∣∣ψ (2)
0

〉
:= 1√

2
(|0〉 + |1〉),

∣∣ψ (2)
1

〉
:= 1√

2
(|0〉 − |1〉). (146)

In the limit δt = dt → 0, the discrete SME (141) becomes
the continuous-time, hybrid SME (see Appendix J),

dωs(t ) = D(L)ωs(t )dt +
[

Lωs(t )L†

〈L†L〉t
− ωs(t )

]

× [dN (t ) − 〈L†L〉t dt]χ1(t )

+ [Lωs(t ) + ωs(t )L† − 〈L + L†〉tωs(t )]dX (t )χ2(t ),

(147)

where we have set L := i
√

γ A for convenience. The indicator
χi(t ) describes the random choice of the local measurement
basis Bd,i appearing with probability E[χi(t )] = p(i). The
hybrid SME (147) is a combination of two standard SMEs:
If χ1(t ) = 1 between t and t + dt , that is, if we measure in
the correct direction, we have the SME of the jump-type we
have derived before [cf. Eq. (12)], where the detector outcome
is registered simultaneously. This detection is captured by
dN (t ), where the mean value of counts up to time t for a given
trajectory ωs(t ) is

E[χ1(t )dN (t )] = p(1)Tr[L†Lωs(t )]dt . (148)

On the other hand, if the measurement is performed in the
wrong direction, i.e., χ2(t ) = 1, we have a diffusive-type SME
characterized by the Wiener increment dX (t ) with zero mean
and variance dt . Note, however, that this diffusive SME does
not coincide with the diffusive part of the SME (127) (after
setting A = B = 0). The latter equation contains a unitary,
diffusive part on top of a deterministic Itô correction arising
as a simple dissipator. In contrast with this case, the diffusive-
type SME (147) describes the continuous measurements on
the detectors made in the basis Bd,2, where neither a jump nor
a unitary evolution occurs.

As both the jump and diffusive part in Eq. (147) re-
spect the purity of states, this equation induces the stochastic
Schrödinger equation

d |ψs(t )〉 = −1

2

(
L†L − 〈L†L〉t

) |ψs(t )〉 χ1(t )dt +
(

L√
〈L†L〉t

− Is

)
|ψs(t )〉 χ1(t )dN (t )

+
(

−1

2
L†L + 1

2
〈L + L†〉t − 1

8
〈L + L†〉2

t

)
|ψs(t )〉χ2(t )dt +

(
L − 1

2
〈L + L†〉t Is

)
|ψs(t )〉 dX (t )χ2(t ). (149)

Figures 12 and 13 show a representative quantum trajec-
tory and the average over 103 quantum trajectories obtained
from Eq. (149) with an initial state (in the Bloch represen-
tation) r(0) = (1, 0,−1)/

√
2, decay γ = 0.1, time-step δt =

0.1, and probabilities p(1) = p(2) = 1/2, i.e., the probability
of measuring in the correct and erroneous basis is the same.
The trajectory followed by the Bloch vector of the repre-
sentative quantum trajectory shown in Figs. 12(a) and 12(c),
displays the full-fledged stochastic contributions contained in
Eq. (149) as it approaches the north pole. Specifically, from
its initial position, its evolution is randomly governed by
continuous, nonunitary evolution present in Eq. (149) when
dN (t ) = 0 and χ1(t ) = 1, and the diffusive, nonunitary evo-
lution when χ2(t ) = 1. The steered state approaches the ideal
target state—the north pole—notwithstanding, as shown also
in the trace distance in Fig. 13(d). This fluctuating behavior
stops when a jump to the north pole is registered. The state
stops evolving as this is a stationary state of Eq. (149).

Even though the quantum trajectories of Eq. (149) have a
somewhat “erratic” behavior before a jump occurs (if it oc-
curs), their average is precisely the one obtained from the ideal
protocol where the measurement basis is always the correct
one [see Figs. 12(b) and 12(d) and compare with Figs. 5(e) and
5(j)]. Therefore, as we stated at the beginning of this section,
the protocol is fully robust to this type of error by design.

VI. DISCUSSION

We have studied the robustness of a measurement-induced
quantum steering protocol to errors applied to a qubit. This
protocol was introduced in Ref. [6] and is based on the re-
peated interaction of a chain of detectors with the steered
system. After an interaction occurs, each detector is imme-
diately measured, and the outcomes are not selected (“blind
measurement”). The state of the steered system then reaches
the predetermined target state with a given fidelity in a finite
time.

The protocol could enable the preparation of any quan-
tum system with finite degrees of freedom in a pure state,
should it prove to be experimentally feasible. However, a
realistic implementation of the protocol requires considering
any possible undesired alteration of the protocol’s steps and
parameters, i.e., errors. We have sorted the errors into two
categories depending on how they appear relative to each
steering step: static, if they are either constant or appear with a
given probability at each steering step, or dynamic otherwise.

To simplify our analysis, we have studied one error at
a time. We have considered two types of static errors (due
to a wrongly chosen detector-system coupling parameter
and erroneously prepared detector states) and four types of
dynamic errors (due to fluctuating steering directions, fluc-
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FIG. 12. Dynamics of the Bloch vector of a steered qubit toward
the north pole with two measurement directions: the correct one, and
an erroneous one given by Eq. (146). Both measurement directions
are used with the same probability. A particular quantum trajectory
solving Eq. (149) is shown in panels (a) and (c). An average over 103

quantum trajectories of the form presented in panel (a) is shown in
panels (b) and (d). The initial state is r(0) = (1, 0, −1)/

√
2 (repre-

sented by the blue dot). The decay is γ = 0.1, and the time-step used
in the stochastic Schrödinger equation is δt = 0.1.

tuating detector-system interaction strength, errors in the
steering Hamiltonian, and erroneously chosen measurement
direction, and errors in the steering Hamiltonian). We have set
the error-free protocol as a reference and introduced various
quantifiers such as fidelity, trace distance, and linear entropy
(“impurity”) to characterize the protocol’s robustness.

In our study of static errors, we have demonstrated how
a wrongly chosen detector-system coupling might effectively
implement either a projective measurement or a Pauli σ z gate
on the steered state. Both occurrences impede the implementa-
tion of Lindbladian dynamics and might lead to the complete
failure of the protocol when steering many-body systems.

We have also shown that erroneously prepared detectors
can induce Lindbladian dynamics with an extra dissipation
channel that steers toward a state orthogonal to the ideal one.
While this type of dissipator is induced by the population
(ρ̃d )22 of the detector state, its coherences give rise to a unitary
channel. In the small-error approximation; that is, when the
strength of the two former channels is small, the leading terms
in the quantifiers (i.e., trace distance, impurity, and fidelity)
were linear in the population (ρ̃d )22. Thus, the protocol was
not that robust to this error.

As a result of their fluctuating behavior, dynamic errors
produce more complex dynamics. We have found three novel
stochastic master equations describing different types of aver-
aging hierarchies when individual detectors, interacting with
the system, could steer it toward states different from the
ideal one. These stochastic master equations differ from the
two most common ones: One describes the detectors continu-
ously monitoring the system, resulting in a sudden change to
different pure states. In contrast, the other stochastic master
equation describes how the detectors can induce a diffusive
and nonunitary evolution on the steered states [50,55,56,82].

Furthermore, we have demonstrated that, in contrast with
these two types of equations, when both the random steering
direction and detector results are considered, a weighted sum
of stochastic master equations of the first type mentioned
above is obtained, where the weights are stochastic indicators.
Now, when the steering directions are averaged out—which
would require massive postselection in an experimental exe-
cution of the protocol—we found that whenever a click was
registered (no matter from which detector), the steered state
jumped to a mixed state. The system dynamics described by
this equation coincides with the nonunitary dynamics found
when several detectors monitor a quantum system, and there
is no jump to any pure state. We also demonstrated how this
stochastic master equation could be obtained from a different
model of random, repeated interactions, where the detector-
system Hamiltonian has several delta-correlated white noises.

We have further shown that when all the detector outcomes
are averaged out, the system evolution is governed by the
stochastic weighted sum of simple dissipators, each steering
toward one of the available directions. We have provided
a particular example with two erroneous steering directions
parametrized by their probability and a polar angle in the
Bloch sphere. In the stationary-state regime, the quantifiers
showed that the protocol is quite robust to this error, as its
leading power in the polar angle is of order four.

In addition, we have investigated how an environment
may interfere with the detector and steered system by using
a perturbation Hamiltonian with multiplicative white noise.
With this error, we have analytically studied the dynamics
of the system and showed how the additional dissipative
channels appear in the corresponding Lindbladian. We have
developed two approaches to arrive at the resulting Lindblad
equation. The first approach involves directly averaging the
detector-system dynamics over realizations of the white noise.
Subsequently, a blind measurement is performed.

In our second approach, we have devised a novel stochas-
tic master equation to simultaneously describe the influences
of the detector measurement and the environment pertur-
bation. This master equation is diffusive because it has a
unitary fluctuating generator, unlike the master equation of
the diffusive type mentioned. The deterministic part of this
stochastic master equation includes the detector’s contribution
(the finite backaction), an additional backaction caused by
the environment, and a dissipator, which is the Itô correction
of the fluctuating unitary generator. As part of this equation,
an inhomogeneous Poissonian process represents the jump
part. However, unlike the usual jump terms used in standard
stochastic master equations, this one describes a jump to a
mixed state instead of a pure state. Because of the novelty of
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FIG. 13. Entries and quantifiers of the density matrix as functions of time of a single qubit steered toward the north pole of the Bloch
sphere, where the detector is measured in two different directions: the correct one—related to the ideal steering—and an erroneous one given
by Eq. (146). Both measurement directions are used with the same probability as functions of time associated with the steering of a single
qubit toward the north pole. (a) Coherences of the density matrices. (b) Fidelity. (c) Impurity. (d) Trace distance. Black curves correspond to a
representative quantum trajectory solving Eq. (149). In panel (a), the solid and dotted lines correspond to the real and the negative imaginary
parts of the coherences. Red curves are associated with the average over 103 quantum trajectories.

this equation, it would be necessary to extend and strengthen
its mathematical foundations in the same manner as it was
done for the jump, diffusive, and more standard diffusive-type
stochastic master equations [50,54,55,80,82]. With this error,
we analyzed the dynamics analytically for a particular form of
the perturbation Hamiltonian. We showed how the additional
dissipative channels appear in the system dynamics. We have
shown that when the ideal target state is an eigenstate of the
constant operator of the perturbation, the protocol displays
complete robustness. This is no longer the case when the
former condition is not fulfilled.

Our findings indicate that errors due to fluctuating detector-
system strength could be quenched or time-dependent.
However, we have found that the resultant Lindblad equa-
tion remains the same in both cases, and only the dissipation
rate is affected. Furthermore, while fluctuating measurement
directions do not change the averaged dynamics, they alter
the nature of the stochastic differential equation describing the
system dynamics. Specifically, we have demonstrated that the
system could follow a jump-type or diffusive-type behavior
after every steering step.

Our work opens up several future directions. In par-
ticular, our analytical treatment of the errors in steering
directions, where we derive three stochastic master equa-
tions, is essentially valid for more complicated dynamics
having multiple stochasticities. This approach can be ap-
plied to study measurement-induced entanglement transitions
[52,53,83–87] where multiple stochasticities in the dynamics
can stem from different errors or multiple measurement ob-
servables.

Even though we have focused on a single qubit steer-
ing, our approach can be systematically applied to quantum
systems possessing a larger number of degrees of freedom,

where, in addition, multiple errors can occur. Importantly,
when considering systems with two degrees of freedom (or
more), the role of static and dynamic errors in modifying
or undermining measurement-engineered entanglement is an
outstanding challenge. While the present work only addressed
the question of how different errors affect the steering pro-
tocol, the present study can be taken as a starting point for
developing stabilizer codes [36,37,88], with the prospects of
implementing error correction schemes.

Our results can be adapted and readily used in a num-
ber of experimental platforms where errors and noise are
present in various measurement-based protocols. These in-
clude the observation of topological transitions in single
qubits implementing weak measurements [89,90], monitor-
ing superconducting qubits via weak-measurements where
the quantum trajectories are registered [91–94], measuring
incompatible operators in superconducting qubits via weak
measurements using ancillary quantum systems [95], among
other applications and platforms. The relevant types of errors
and their parameters can vary from setup to setup, as can be
inferred from the above references.

Note that the list of errors studied in this work is far from
exhaustive. For example, it would be interesting to investi-
gate other perturbation Hamiltonians with additional (even
nonmultiplicative) noise sources. More formally, it would be
intriguing to mathematically substantiate our novel stochastic
equations (comprising white noise), as was done with the
jump and diffusive stochastic master equations [54,96].
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APPENDIX A: THE DERIVATION OF THE LINDBLAD
EQUATION ASSOCIATED WITH ERRORS IN THE

DETECTOR STATES

In this Appendix, we derive the LE (27) from both the static
and quenched versions of the errors in the detector state.

1. Static error

Let us first consider the erroneous detector state

ρ̃d =
(

a |b| exp (iφ)

|b| exp (−iφ) 1 − a

)
(A1)

written in the ONB Bd = {|�d〉 , |�⊥
d 〉}. Before the detector

interacts with the steered system, we have the product state

ρ̃d ⊗ ρs(t ) =
(

aρs(t ) bρs(t )

b∗ρs(t ) (1 − a)ρs(t )

)
. (A2)

The detector-system Hamiltonian Hds = J (|�⊥
d 〉 〈�d | ⊗ A +

H.c.) can also be written in the ONB Bd as

Hds = Jh0 ≡ γ

(
0 A†

A 0

)
. (A3)

Next, we replace Eqs. (A2) and (A3) into the second and third
terms of the series expansion of the evolved detector-system
state,

ρds(t + δt ) = exp [−iJδtad(h0)]ρ̃d ⊗ ρs(t )

=
(

Ids − iJδtad(h0) − J2δt2

2
ad2(h0)

)
ρ̃d ⊗ ρs(t )

+ O(J3δt3), (A4)

which are

ad(h0)ρ̃d ⊗ ρs(t ) =
(

b∗A†ρs − bρs(t )A (1 − a)A†ρs(t ) − aρs(t )A†

aAρs(t ) − cρs(t )A bAρs(t ) − b∗ρs(t )A†

)
, (A5)

and

ad2(h0)ρ̃d ⊗ ρs(t ) =
(

{aA†A, ρs} − 2(1 − a)A†ρsA bA†Aρs − 2b∗A†ρsA† + bρsAA†

−2bAρsA + b∗AA†ρs + b∗ρsA†A {(1 − a)AA†, ρs} − 2aAρsA†

)
. (A6)

Next, we take the partial trace with respect to the detectors to get

ρs(t + δt ) = ρs(t ) + [−iJ|b|δtad(exp (iφ)A + H.c.) + aJ2δt2D(A) + (1 − a)J2δt2D(A†)]ρs(t ) + O(J3δt3). (A7)

The next step is to evaluate the limit

lim
δt→0

ρs(t + δt ) − ρs(t )

δt

while guaranteeing that the products κ = J|b| and γ = J2δt
are kept constant—this is the WM limit [cf. Eq. (11)]. The
resulting equation is then

∂tρs(t ) = [−iκad(h̃) + γ+D(A) + γ−D(A†)]ρs(t ), (A8)

which is Eq. (27), where γ+ := aγ and γ− := (1 − a)γ are
the decays, and h̃ = exp(iφ)A + H.c.

2. Quenched error

Let us now assume that at each steering step, the detector
state is |�i

d〉 = cos(θi/2) |�d〉 + eiϕi sin(θi/2) |�⊥
d 〉 and ran-

domly chosen from an ensemble with probability p(i) such
that

∑
i p(i) |�i

d〉 〈�i
d | = ρ̃d . Given this quenched version of

the error, the discrete-time stochastic master equation govern-
ing the dynamics of the steered state from time tk = kδt to

tk+1 = (k + 1)δt is

ωk+1 =
∑
i,α

M(i)
α ωk

p(i, α|ωk )
1k+1

i,α , (A9)

where ω(tk ) = ωk , E[1k+1
i,α ] = p(i, α|ωk ) is the prob-

ability of the indicator function of the outcomes
(i, α) given the previous state ωk , and M(i)

α ωk =
p(i) 〈α|U (δt ) |�i

d〉 ωk 〈�i
d |U †(δt ) |α〉 is the updated,

unnormalized state. We have mapped |�d〉 �→ |0〉 and
|�⊥

d 〉 �→ |1〉. [See Appendix C for a more detailed description
of the notation used in Eq. (A9).]

If we average with respect to the detector outcomes and
the detectors in (A9), i.e., E[ωk] = ρk and perform a series
expansion in δt , we can have the formal derivative

∂tρs(t ) = lim
δt→0

ρs(t + δt ) − ρs(t )

δt

=
∑

i

p(i)

(
−iJ sin

θi

2
cos

θi

2
[Aeiϕi + H.c., ρs(t )]
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+ cos2 θi

2
J2δtD(A)ρs(t ) + sin2 θi

2
J2δtD(A†)ρs(t )

)

+ O(J3δt2). (A10)

Therefore, we recover (A8) in the weak measurement if

∑
i

p(i) sin
θi

2
cos

θi

2
eiϕi = κeiφ

√
δt

γ

and
∑

i

p(i) cos2 θi

2
= a. (A11)

APPENDIX B: STATIONARY ELLIPSOID

Here, we demonstrate the properties obeyed by the station-
ary ellipsoids described by Eq. (54).

Let us demonstrate these two properties by denoting the
punctured ellipsoid by C. To demonstrate that {(0, 0, 0)} /∈ C,
we represent the Bloch vector r∞ in spherical coordinates:

r∞ = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ ). (B1)

For κ > 0, the polar angle is given by

θ = arccos

[
sgn(2a − 1)

γ√
γ 2 + 16κ2

]
. (B2)

For a fixed value of γ , the polar angle tends to θ → π/2 as
κ → ∞, and therefore

r = ‖r∞‖ = |2a − 1|γ
√

γ 2 + 16κ2

γ 2 + 8κ2
→ 0 (B3)

as κ → ∞. Thus, the endpoint of the ellipsoid’s minor axes
coinciding with the origin of the Bloch sphere does not belong
to C.

The other statement is directly checked from Eq. (54) by
setting x∞ = y∞ = 0. This gives that the other endpoint of
the minor axis is located at z∞ = 2a − 1, which is never
equal to ±1, as a /∈ {0, 1}. The physically attainable point
r∞ = (0, 0, 2a − 1) is obtained when κ → 0.

APPENDIX C: STOCHASTIC DIFFERENTIAL EQUATIONS
FOR ERRONEOUS STEERING DIRECTIONS

Here, we derive the stochastic master equations (SMEs)
shown in Sec. V A corresponding to different averaging
hierarchies with several steering directions: Eq. (66), where
the detector readouts and the random steering directions are
present; Eq. (77), where the steering directions are averaged
out; and Eq. (86), where the detector readouts are averaged
out.

We denote the set of steering directions as R =
{(θi, ϕi; p(i))}i∈I , where I = {1, 2, . . . , n} is an index set indi-
cating the number of steering directions, and p(i) denotes the
probability of steering toward the ith direction parametrized
by the angles (θi, ϕi ) with θi ∈ [0, π ] and ϕi ∈ [0, 2π ). Note
that the ideal target state may be contained in R, yet it is not
required. We label each steering step by an integer number,
e.g., k ∈ Z+ for a given time tk = kδt , and we relabel the
states of the system as ωs(tk ) = ωk .

1. On the Kraus operators

Before attempting to derive the SMEs, we must construct
and adequately understand the Kraus operators inducing the
operations on the system density matrix.

The measurement operators associated with a detector
readout α given that the ith direction appeared (see below)
are

�i,α := M (i)
α (δt ) = 〈α| exp

(−iJδth(i)
0

) |0〉α ∈ {0, 1}, (C1)

where h(i)
0 = |�⊥

d 〉 〈�d | ⊗ Ai + H.c. is the dimensionless op-
erator associated with the Hamiltonian of the ith direction (or
state), and Ai = R(θi, ϕi )UR†(θi, ϕi ) is the rotated operator
operator annihilating the ith target state [cf. Eq. (64)].

Let us define the following operators:

Wi,α :=
√

p(i)�i,α with i ∈ {1, . . . , n} and α ∈ {0, 1}. (C2)

For a given prior state ωk , if upon a measurement of the local
observable S(i)

d = |�i
d〉 〈�i

d | − |�i,⊥
d 〉 〈�i,⊥

d | it is revealed that
the ith direction and the outcome α where measured at the
same time, then the unnormalized posterior state is given by

ω̃k+1 = M(i)
α ωk := Wi,αωkW

†
i,α = p(i)�i,αωk�

†
i,α. (C3)

The joint probability of having the ith direction and the detec-
tor outcome α given the prior state ωk is then

p(i, α|ωk ) := Trω̃k+1 = p(i)Tr(�†
i,α�i,αωk ). (C4)

We want to point out once more that the direction and click
result are simultaneously read.

The above joint probability equation shows that the term
multiplying p(i) is the conditional probability of obtaining the
result α given the ith direction and prior state ωk appeared. We
denote this probability by

p(α|i; ωk ) := Tr(�†
i,α�i,αωk ). (C5)

At first, this choice of probability might seem strange, and one
might think that it describes the joint probability Eq. (C4).
To disprove this, we give the following arguments: First,
the conditional probability Eq. (C5) fulfills the well-known
normalization condition (in terms of probability)∑

α=0,1

p(α|i; ωk ) =
∑

α=0,1

Tr(�†
i,α�i,αωk )

=
∑

α=0,1

Tr
[
Mα

(i)(δt )†Mα
(i)(δt )ωk

]
= Tr[ωk] = 1.

Therefore, summing over α in Eq. (C4) gives∑
α

p(i, α|ωk ) = p(i), (C6)

which is precisely the marginal probability of the ith steering
direction. Moreover, the right-hand side of Eq. (C4) is just the
formula for the conditional probability

p(i, α|ωk ) = p(i)p(α|i; ωk ). (C7)

Note that the probability p(i|ωk ) ≡ p(i) is independent of the
prior state.
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A trivial consequence of Eq. (C6) is that summing over the
directions gives unity, so∑

α,i

p(α, i|ωk ) = 1. (C8)

Therefore, the joint probabilities defined in Eq. (C4) are well
defined. In addition, the set {Ai,α} satisfies the Kraus condition∑

m,α

W †
i,αWi,α = Is. (C9)

Our last argument in favor of the definition of the operators
{Wi,α} is that they naturally incorporate the classical probabil-
ity p(m).

2. The three averaging hierarchies

Having defined the set of Kraus operators {Wi,α}, the up-
dated state upon jointly obtaining the click α and the ith
direction is

ωk+1 = M(i)
α ωk

p(i, α|ωk )
. (C10)

This is our starting point to find the SMEs describing different
averaging hierarchies, starting with Eq. (66).

a. Full stochasticity

With the aid of Eq. (C10), we can write the discrete SME

ωk+1 =
∑
i,α

M(i)
α ωk

p(i, α|ωk )
1k+1

i,α , (C11)

where {1k+1
i,α } is a set of indicator functions from which a

single one appears between tk and tk+1 with expectation

E
[
1k+1

i,α

] = p(i, α|ωk ). (C12)

In other words, the indicator functions act as the stochastic
variables describing the direction and click outcomes. Hence,
Eq. (C11) describes the stochastic, discrete evolution of a
steered state once a given direction and a detector outcome
are determined at the same time.

Pointing toward the WM limit [cf. Eq. (11)], we per-
form the now usual rescaling of the detector-system coupling
strength J = √

γ /δt , and thus we have up to the first order in
δt

M(i)
0 ωk

p(i, α = 0|ωk )
= ωk − γ δt

2
{A†

i Ai − 〈A†
i Ai〉k, ωk} + O(δt2),

(C13)

M(i)
1 ωk

p(i, α = 1|ωk )
= AiωkA†

i

〈A†
i Ai〉k

+ O(δt2), (C14)

where 〈A†
i Ai〉k := Tr(A†

i Aiωk ). Replacing the above expan-
sions in Eq. (C11) gives

ωk+1 =
∑

i

(
ωk − γ δt

2
{A†

i Ai − 〈A†
i Ai〉t , ωk}

)
1k+1

i,α=0

+
∑

i

AiωkA†
i

〈A†
i Ai〉t

1k+1
i,α=1 + O(δt2), (C15)

where the expectation of the indicators become

E
[
1k+1

i,α=0

] = (1 − γ δt〈A†
i Ai〉k )p(i) + O(δt2), (C16)

E
[
1k+1

i,α=1

] = γ δt〈A†
i Ai〉k p(i) + O(δt2). (C17)

After adding an appropriate zero operator in Eq. (C15) and
setting δt = dt → 0, we have

dω(t ) =
∑

i

(
γ 〈A†

i Ai〉tω(t ) − γ

2
{A†

i Ai, ω(t )}
)

χi(t )dt

+
∑

i

(
Aiω(t )A†

i

〈A†
i Ai〉t

− ω(t )

)
χi(t )dNi(t ), (C18)

where

1k+1
i,α=0 −→ χi(t ) as δt = dt → 0 (C19)

and

E[χi(t )] = p(i). (C20)

Similarly,

1k+1
i,α=1 −→ χi(t )dNi(t ) as δt = dt → 0, (C21)

with

E[χi(t )dNi(t )] = γ 〈A†
i Ai〉t p(i)dt = γ Tr[A†

i Aiω(t )]p(i)dt .

(C22)

Arranging the SME in Eq. (C18) gives Eq. (66).
Clearly, the stochastic variable χi(t ) expresses that the ith

steering direction is obtained between ω(t ) and ω(t + δt ),
and dNi(t ) is the Poissonian increment registering a jump (or
the lack of it) with strength γ 〈A†

i Ai〉t dt given that the latter
direction appeared.

Taking the full average over all random variables in
Eq. (C18) gives

dE[ω(t )] =
∑

i

γ p(i)D(Ai )E[ω(t )]dt, (C23)

which corresponds to the LE

∂tρ(t ) =
∑

i

γ p(i)D(Ai )ρ(t ) (C24)

describing the fully averaged dynamics of the steered density
matrix. Here, ρ(t ) := E[ω(t )] is the trajectory-averaged den-
sity matrix.

b. Average over the directions

We now demonstrate Eq. (77). For this, let πk = Ei[ωk] be
a prior state where Ei denotes the classical average over the
steering directions. Suppose the click result α was obtained,
and we are not interested in which steering direction was ob-
tained. Therefore, we must premultiply a posterior state (C10)
by the conditional probability of obtaining the ith direction
given the click result α and the prior state πk were obtained,
p(i|α; πk ). This gives the updated state

πk+1 =
∑

i

p(i|α; πk )
M(i)

α πk

p(i, α|πk )
. (C25)
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By implementing the Bayes rule

p(i|α; πk )p(α|πk ) = p(α|i; πk )p(i|πk ), (C26)

the updated state becomes

πk+1 = 1

p(α|πk )

∑
i

M(i)
α πk . (C27)

Similarly to the fully stochastic case [cf. Eq. (C11)] the
discrete SME describing the evolution of the posterior state is

πk+1 =
∑

α

1

p(α|πk )

[∑
i

p(i)�i,α (πk )

]
1k+1

α , (C28)

where

Eα

[
1k+1

α

] = p(α|πk ) (C29)

is the expectation value of the new indicator function 1k+1
α .

This function is indeed the conditional expectation value of
the indicator function 1k+1

i,α given that the click result α was
obtained. We denote this by [cf. Eqs. (C16) and (C17)]

Ei
[
1k+1

i,α

]
:= p(i|α; πk )1k+1

α . (C30)

More specifically,

Ei
[
1k+1

i,α=0

] = p(α = 0|i; πk )p(i)∑
n p(α = 0|n; πk )p(n)

1k+1
α=0

=
(

1 − γ δt

〈
A†

i Ai −
∑

n

p(n)A†
nAn

〉
k

)
p(i)1k+1

α=0

+ O(δt2), (C31)

Ei
[
1k+1

i,α=1

] = p(α = 1|i; πk )p(i)∑
n p(α = 1|n; πk )p(n)

1k+1
α=1

= 〈A†
i Ai〉k p(i)〈∑

n p(n)A†
nAn

〉
k

1k+1
α=1 + O(δt2). (C32)

Alternatively, we can use Eq. (C28) to derive continuous-time
SME. To do so, we need the following expressions for the
marginal click probabilities

p(α = 0|πk ) =
∑

n

p(α = 0|n; πk )p(n)

= 1 − γ δt

〈∑
n

p(n)A†
nAn

〉
k

+ O(δt2), (C33)

p(α = 1|πk ) =
∑

n

p(α = 1|n; πk )p(n)

= γ δt

〈∑
n

p(n)A†
nAn

〉
k

+ O(δt2). (C34)

Expanding the discrete SME gives us

πk+1 =
∑

i

(
1 + γ δt

〈∑
n

p(n)A†
nAn

〉
k

)

×
(

πk − γ δt

2
{A†

i Ai, πk}
)

p(i)1k+1
α=0

+
∑

i p(i)AiπkA†
i〈∑

n p(n)A†
nAn

〉
k

1k+1
α=1 + O(δt2). (C35)

Now, since the probability of obtaining a click is proportional
to δt in leading order, we can set 1k+1

α=0 ≈ 1 for all k. Moreover,
in the WM limit, we have [cf. Eq. (C22)] 1k+1

α=1 → dN (t ) with

Eα[dN (t )] = γ

〈∑
n

p(n)A†
nAn

〉
t

dt . (C36)

The SME is then

dπ (t ) =
(〈∑

n

γ p(n)A†
nAn

〉
t

π (t ) −
∑

i

γ

2
{p(i)A†

i Ai, π (t )}
)

dt

+
(∑

i p(i)Aiπ (t )A†
i〈∑

n p(n)A†
nAn

〉
t

− π (t )

)
dN (t ). (C37)

This coincides with Eq. (77) after some rearrangement. After
taking the average over clicks, we have [cf. Eq. (C23)]

Eα[dπ (t )] = dEα[π (t )] =
∑

i

γ p(i)D(Ai )Eα[π (t )]dt .

(C38)

The relation between the two types of density matrices is
ρ(t ) = Eα[π (t )] = (Eα ◦ Ei )[ω(t )].

c. Stationary state of the deterministic map

We demonstrate Eq. (81), which is the stable fixed point of
the deterministic part of Eq. (C37).

When no jump occurs—either at all, i.e., dN (t ) ≡ 0, or be-
tween t and t + dt—and the steering directions are averaged,
the evolution of the state is given by

∂tπ
det(t ) =

〈∑
n

γ p(n)A†
nAn

〉
t

πdet(t )

−
∑

i

γ

2
{p(i)A†

i Ai, π
det(t )}, (C39)

where πdet denotes a density matrix that evolves determin-
istically. We aim to find its stationary state. To accom-
plish this, we make use of the ordered matrix ONB F =
(F0, F1, F2, F3) = (F0, F ) := (Is, σ )/

√
2 with respect to the

inner product

(Fμ, Fν ) := Tr(F †
μ Fν ) = δμν. (C40)

Greek indices run from zero to three, and Latin from one to
three. With respect to the above ONB, the density matrix will
be denoted π = ∑

μ xμFμ.
Given the above notation, we use the identity [97]

FμFν = 1√
2

∑
γ

(θμνγ + iεμνγ )Fγ , (C41)

where

θμνγ :=
{

1 one index is zero, the other two equal

0 otherwise
(C42)

is a fully symmetric tensor satisfying

θμνa = δμ0δνa + δν0δμa, θμν0 = δμν, (C43)
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and

εμνγ :=

⎧⎪⎨
⎪⎩

1 μνγ ∈ {123, 231, 312}
−1 μνγ ∈ {132, 213, 321}
0 repeated indices, or any index is zero

(C44)

is an extended Levi-Civita symbol.
Using the Bloch representation and setting Eq. (C39) to

zero, we get

∂tπ
det(t ) = γ Tr

⎡
⎣∑

a∈I
p(a)A†

aAa

∑
μ

xμFμ

⎤
⎦∑

λ

xλFλ

−
∑
a∈I

γ p(a)

{
A†

aAa,
∑

ν

rνFν

}
= 0. (C45)

We send the negative part to the right-hand side (RHS), and
we treat it independently from the left-hand side (LHS) for
the sake of order:

LHS = γ Tr

⎡
⎣∑

a∈I
p(a)A†

aAa

∑
μ

xμFμ

⎤
⎦∑

λ

xλFλ (C46a)

= γ
∑

λ

σλxλ

∑
a∈I,μ

p(a)xμTr[A†
aAaσμ]. (C46b)

Setting above the four-vector

Bμ :=
∑
a∈I

p(a)Tr[A†
aAaFμ], (C47)

gives

LHS = γ
∑
λμ

xλxμBμ, (C48)

where LHS denotes the left-hand side. Now, infor-
mally writing the RHS as RHS = ∑

μ Tr[RHSFμ]Fμ, we
have

RHS = γ

2

∑
λ

FλTr

[∑
a∈I

p(a)

{
A†

aAa,
∑

ν

xνFν

}
Fλ

]
(C49a)

= γ

2

∑
a∈I

∑
λν

Fλ p(a)xνTr[A†
aAaFνFλ + A†

aAaFλFν]

(C49b)

= γ

2
√

2

∑
a∈I

∑
λν

Fλ p(a)xν (θνλδ + iενλδ + θλνδ + iελνδ )

× Tr[A†
aAaFδ]. (C49c)

Setting the LHS equal to the RHS and using the fact that the
set {Fμ}μ is an orthonormal basis together with the identity
Eq. (C43), we have for all μ

xλ

∑
μ

xμBμ =
∑
νδ

xνθνλδBδ. (C50)

Setting above λ = 0 and using the second identity of
Eq. (C43) gives the tautology

∑
μ xμBμ = ∑

ν xνBν .

Before continuing with Eq. (C50), if we use the first iden-
tity of Eq. (C43) together with the fact that A ∼= σ+ leads to
Tr[A†

aAa] = Tr[σ−σ+RaR†
a] = 1, we get

B0 =
∑
a∈I

p(a)Tr[A†
aAaF0] = 1√

2

∑
a∈I

p(a)Tr[A†
aAa] = 1√

2
,

(C51)

result that coincides with x0 = Tr[πF0]. Above, recall that
Ra = R(θa, ϕa) = exp(− i

2θaσ
z ) exp(− i

2ϕaσ
y) is the rotation

operator corresponding to the ath steering direction and Aa =
RaAR†

a.
Let us set λ = a in Eq. (C50), to which we get

xa

∑
μ

xμBμ =
∑
νδ

θνδ0Bδ (C52a)

=
∑
νδ

(δν0δaδ + δδ0δaν )xνBδ, (C52b)

xa

(
x0 +

∑
b

xbBb

)
= x0Ba + xaB0 ⇒ xa

∑
b

xbBb = Ba.

(C52c)

This equation implies that the 3-vector x := (x1, x2, x3), which
is proportional to the Bloch vector r = Tr[πσ] = √

2Tr[πF]
is proportional to the vector

B = Tr

[∑
a∈I

A†
aAaF

]
= 1√

2
Tr

[∑
a∈I

A†
aAaσ

]
. (C53)

Hence, we rewrite Eq. (C52) as

(r · B)r = B, (C54)

where r · B denotes the euclidean inner product between r and
B. Hence, the Bloch vector is either parallel or antiparallel to
A. We proceed to solve this issue.

To solve Eq. (C54), we first conclude that the stationary
state of Eq. (C39) is pure because this equation induces the
nonlinear Schrödinger equation

d

dt
|ψ (t )〉 = −1

2

∑
a∈I

p(a)γ (A†
aAa − ‖Aaψ (t )‖2) |ψ (t )〉

(C55)

whenever the statistical operator π (t ) evolves determin-
istically starting from a pure state. In this case, π (t ) =
|ψ (t )〉 〈ψ (t )|. Nonetheless, if the initial state is not pure, the
relation between the pure states and the statistical operator is
given by π (t ) = E[|ψ (t )〉 〈ψ (t )|] and Eq. (C55) still holds.
This observation about the state’s purity allows us to set
‖r‖ = 1 into Eq. (C54) such that

ra = Ba

‖B‖ sec α, (C56)

with sec α ∈ {1,−1}. We can determine the value of sec α in
two ways: we either calculate the divergence of the vector field
defined in Eq. (C39) or we only go back to the ideal protocol
and set Aa = A ∼= σ+ and p(a) = 1/n for all a ∈ I, i.e., we set
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the target state to be r = (0, 0, 1). Hence, Eq. (C56) becomes

ra = Tr
[∑

b∈I p(b)A†
bAbσa

]
∥∥Tr

[∑
b∈I p(b)A†

bAbσ
]∥∥ sec α

= Tr[|↓〉 〈↓| σa]

‖Tr[|↓〉 〈↓| σ]‖ sec α = δ3,a sec α. (C57)

Thus, sec α = −1 and the Bloch vector associated with the
stable stationary state of Eq. (C39) is given by

r = − Tr
[∑

b∈I p(b)A†
bAbσ

]
∥∥Tr

[∑
b∈I p(b)A†

bAbσ
]∥∥ . (C58)

d. Average over the clicks

Let us now demonstrate Eq. (86). By following similar
steps as in the two previous discrete SMEs, suppose the ith
direction appeared and that we are not interested in the detec-
tor readout. The updated state is then [cf. Eq. (C27)]

σk+1 =
∑

α

p(α|i; σk )
M(i)

α σk

p(i, α|σk )
, (C59)

where the quantum average Eα over detector readouts is taken
over the density matrix ωk .

The associated discrete SME describing all the possible
steering outcomes is [cf. Eqs. (C11) and (C28)]

σk+1 =
∑

i

1

p(i|σk )

(∑
α

�i,α (σk )

)
1k+1

i

=
∑

i

γD(Ai )σkδt1k+1
i + O(δt2), (C60)

with

Ei
[
1k+1

i

] = p(i|σk ). (C61)

The connection between the indicators is given by
[Eqs. (C16), (C17), and (C30)]

Eα

[
1k+1

i,α

] = p(α|i; σk )1k+1
i , (C62)

and so the SME is

dσ (t ) =
∑

i

γD(Ai )σ (t )χi(t )dt, (C63)

with

Ei[χi(t )] = p(i). (C64)

Once more, we obtain the following LE by performing the
average with respect to the directions,

dEi[σ (t )] = dρ(t ) =
∑

i

p(i)γD(Ai )ρ(t )dt, (C65)

where Ei[σ (t )] = (Ei ◦ Eα )[ω(t )] = ρ(t ).

APPENDIX D: EQUIVALENCE BETWEEN
TWO FORMALISMS

In this section, we show how the SME (77) can be obtained
from a different model of repeated, random interactions.

Consider the detector-system interaction Hamiltonian in
Hd ⊗ Hs:

Hds(t |{ξi}) =
N∑

i=1

√
γ p(i)ξi(t )h(i)

0 , (D1)

where

h(i)
0 = |�⊥

d 〉 〈�d | ⊗ Ai + H.c., (D2)

is an operator corresponding to the steering toward the rotated
target state |� (i)

⊕ 〉 = R(θi, ϕi ) |�⊕〉, i.e., Ai |� (i)
⊕ 〉 = 0, and

E[ξi(t )] = 0, E[ξi(t )ξ j (s)] = δi jδ(t − s) ∀ i, j = 1, 2, 3

(D3)

are delta-correlated white noises. When using the unitary op-
erator generated by Eq. (D1), we use the Itô formalism with
the table

dXi(t )dXj (t ) = δi jdt,

(dt )2 = 0,

dXi(t )dt = 0 ∀ i, j = 1, 2, 3, (D4)

where dXi(t ) = ξi(t )dt is a Wiener increment.
Let us then consider the following unitary operator using

the above rules

U (dt ) = exp

(
−i

n∑
i=1

√
γ p(i)h(i)

0 dXi(t )

)

= I − i
n∑

i=1

√
γ p(i)h(i)

0 dXi(t ) − 1

2

n∑
i=1

γ p(i)
(
h(i)

0

)2
dt .

(D5)

As the initial density operator is ρd ⊗ ρ(t ), the associated
measurement operators are

M0(dt ) = I −
n∑

i=1

γ p(i)

2
A†

i Aidt and

M1(dt ) = −i
n∑

i=1

√
γ p(i)AidXi. (D6)

Thus, the two possible operations over ρ(t ) upon a detector
readout are given by

ρ0(t + dt ) = M0(dt )ρ(t )M†
0 (dt )

〈M†
0 (dt )M0(dt )〉t

= ρ(t ) −
n∑

i=1

γ p(i)

2
{A†

i Ai − 〈A†
i Ai〉t , ρ(t )}dt,

(D7)

ρ1(t + dt ) = M1(dt )ρ(t )M†
1 (dt )

〈M†
1 (dt )M1(dt )〉t

=
∑n

i=1 p(i)Aiρ(t )A†
i〈∑n

j=1 p( j)A†
jA j

〉
t

.

(D8)

The probabilities of obtaining these two states are

P(α = 0) = 1 − γ

〈
n∑

i=1

p(i)A†
i Ai

〉
t

dt,

P(α = 1) = γ

〈
n∑

i=1

p(i)A†
i Ai

〉
t

dt . (D9)
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Note that the outcome ρ1(t + dt ) is Poissonian. We are thus
set to write the SME governing the dynamics of ρ(t ):

dρ(t ) =
n∑

i=1

γD(Ai )ρ(t )dt +
(∑n

i=1 p(i)Aiρ(t )A†
i〈∑n

j=1 p( j)A†
jA j

〉
t

− ρ(t )

)

×
(

dN (t ) − γ

〈
n∑

i=1

p(i)A†
i Ai

〉
t

dt

)
. (D10)

This equation has the same form as Eq. (77), yet it was
obtained from a different dynamic error.

APPENDIX E: TWO CONTINUOUS
STEERING DIRECTIONS

This section aims to show that the protocol is also robust
against two continuous steering directions: the continuous
distribution and the von Mises distribution [98] and compare
the results to those obtained in Sec. V A 5.

The set of steering states (or directions) is now denoted by

R := {(ω(θ ); p(θ, λ)}, (E1)

where p(θ, λ) is a probability distribution over the circle
characterized by the parameters λ [cf. Eq. (88)]. The corre-
sponding LE must be integrated with respect to the probability
distribution [cf. Eq. (89)], i.e.,

∂tρs(t ) =
∫

dθ p(θ, λ)D(A(θ ))ρs(t ). (E2)

With the above definitions at hand, let us study the contin-
uous distribution between defined in [−θ̃ , θ̃ ]

p(θ, θ̃ ) := 1

2θ̃
[�(θ + θ̃ ) − �(θ − θ̃ )], (E3)

where � is the Heaviside step function Eq. (F2), and the von
Mises distribution [98]

p(θ, σ ) := exp(σ−2 cos θ )

2π I0(σ−2)
, (E4)

where σ 2 is the variance, and Iν is the modified Bessel func-
tion of order ν.

The relevant entries of the stationary states corresponding
to each distribution are

[ρ̃⊕(θ̃ )]11 = 1

2
+ 4 sin θ̃

6θ̃ + sin 2θ̃
, [ρ̃⊕(θ̃ )]12 = 0, (E5)

[ρ̃⊕(σ )]11 = 1

2
+ I1(σ−2)

I0(σ−2) − θ2I1(σ−2)
, [ρ̃⊕(σ )]12 = 0.

(E6)

The fidelities concerning the above two states with the ideal
target state ρ⊕ = |↑〉 〈↑| are

F∞(θ̃ ) = 1

2
+ 4 sin θ̃

6θ̃ + sin 2θ̃
≈ 1 − θ̃4

80
, (E7)

F∞(σ ) = 1

2
+
(

2I0(σ−2)

I1(σ−2)
− σ 2

)−1

≈ 1 − 3

16
σ 4. (E8)

In the small-error approximation, i.e., for σ, θ̃ � 1, we see
once more that the leading terms are of order four as in
Eq. (96), F∞(p = 1/2, θ ) ≈ 1 − θ4/16. Notably, the coeffi-
cients multiplying the small parameters are much smaller for
the two continuous distributions than for the discrete, sym-
metric distribution. Additionally, the continuously distributed
steering directions present the fidelity closest to unity, which
indicates a higher degree of robustness.

APPENDIX F: COMMUTATION OF THE EXPECTATION
VALUE WITH THE TIME-ORDERING

OPERATOR AND PARTIAL TRACE

As the time-ordering operator and the expectation are lin-
ear operators acting on different mathematical objects, they
automatically commute—this is what we used in Sec. V C.
However, proving this is involved, as we now show.

Theorem F.1. For a multiplicative white noise, the time-

ordering operator
−→T commutes with the expectation value

with respect to the white noise E.
Proof. In what follows, every integral must be understood

in the Stratonovich form [99]. Let f (si ) := ad(Ĥ (si)) for i ∈
In := {1, . . . , n} with n ∈ 2Z. Ĥ (s) is some time-dependent
Hamiltonian. Let P (In) be the set of all partitions on In. The
expectation value of the product of an even number of white
noise variables is

E

[
n∏

i=1

ξ (si )

]
=

∑
π∈P (In )

∏
{i, j}∈π

δ(si − s j ), n ∈ 2Z+. (F1)

The product of an odd number is zero. Moreover, we make use
of the Heaviside function adapted for the Stratonovich integral

�(t ) :=

⎧⎪⎨
⎪⎩

1 t > 0

1/2 t = 0

0 t < 0.

(F2)

Let us treat the adjoint version of the unitary opera-

tor Û (t |ξ ) := −→T exp[−i
∫ t

0 Ĥ (s)ξ (s)ds] given by U (t |ξ ) :=−→T exp[−i
∫ t

0 f (s)ξ (s)ds], and take its expectation:

Û (t |ξ ) := E

[−→T exp

(
−i

∫ t

0
f (s)ξ (s)ds

)]
(F3a)

= E

[ ∞∑
n=0

(−i)n
∫ t

0
ds1 f (s1)ξ (s1) · · ·

∫ sn−1

0
dsn f (sn)ξ (sn)

]
(F3b)

=
∞∑

n=0

(−i)n
∫
Rn

n∏
i=1

dsi�(si) f (si )�(t − s1)
n−1∏
l=1

�(sl − sl+1)E

[
n∏

i=1

ξ (si)

]
(F3c)
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=
∞∑

k=0

(−1)k
∑

π∈P (In )

∫
R2k

2k∏
i=1

dsi�(si ) f (si)�(t − s1)
2k−1∏
l=1

�(sl − sl+1)
∏

{i, j}∈π

δ
(
si − s j

)
(F3d)

=
∞∑

k=0

(−1)k
∫
Rk

k∏
i=1

dsi�(si ) f 2(si )�(t − s1)�k (0) (F3e)

=
∞∑

k=0

(−1)k

2k

∫ t

0
ds1 f 2(s1) · · ·

∫ sk−1

0
dsk f 2(sk ) (F3f)

= −→T exp

(
−1

2

∫ t

0
ds f 2(s)

)
(F3g)

= −→T exp

[
−1

2

∫ t

0
ad2(Ĥ1(s))ds

]
. (F3h)

From Eq. (F3b) to (F3c), we used the Heaviside function to rewrite the integrals and thus be able to integrate the Dirac delta;
from Eq. (F3c) to (F3d) we used the fact that the expectation value over the product of the white-noise variables is only nonzero
for an even number of them [see Eq. (F1)]; from Eq. (F3d) to (F3f), we used the fact that only partitions having pairs of
the form {1, 2}, . . . {i, i + 1}, . . . , {k − 1, k} make the integrand different than zero because Heaviside functions of the form
�(si − s j )�(s j − si ) are zero for i �= j.

Let us now take the following turn by evaluating the following superoperator

ˆ̃U (t |ξ ) := −→T E

[
exp

(
−i

∫ t

0
f (s)ξ (s)ds

)]
(F4a)

= −→T exp

(
−1

2
E

[∫ t

0
f (s)ξ (s)ds

∫ t

0
f (u)ξ (u)du

])
(F4b)

= −→T exp

(
−1

2

∫ t

0
f 2(s)ds

)
. (F4c)

From Eq. (F4a) to Eq. (F4b), we applied the well-known identity for Gaussian stochastic integrals [99]. From the above equation,

we conclude that Û = ˆ̃U [cf. Eq. (F3g)], which in turn, implies that
−→T E = E

−→T . �

APPENDIX G: THE PARTIAL TRACE COMMUTES WITH THE EXPECTATION VALUE

Let ρds(0) = ρd ⊗ ρs(0). Let us consider ζ̂ds(t |ξ ) := Û (t |ξ )ρds(0)Û †(t |ξ ), where

Û (t |ξ ) := −→T exp

[
−i

∫ t

0
ĥ1(s)ξ (s)ds

]
(G1)

is the time-evolution operator in the interaction picture with respect to the perturbed detector-system Hamiltonian H (t ) = Jh0 +
ξ (t )h1, and ξ (t ) is the delta-correlated white noise. Let ρ̂s(t |ξ ) := Trd ζ̂ds(t |ξ ), ¯̂ρds(t ) := E[ζ̂ds(t |ξ )], and ¯̂ρs(t ) := E[ρ̂s(t |ξ )]. We
show that ¯̂ρs(t ) = Trd ¯̂ρ(t ) (i.e., Trd ◦ E = E ◦ Trd ). In other words, we show that we can either take the average over realizations
of the stochastic noise up to time t and then perform a blind measurement or that we can perform a blind measurement at time t
over the same stochastic trajectory and then take the average over the realizations of the stochastic variable.

Theorem G.1. For a multiplicative white noise, the partial trace commutes with the expectation value with respect to the white
noise E.

Proof. Let us denote

f (n1 )(s1) f (n2 )(s2) · · · f (ni )(si ) := Trd{ad(n1 )(ĥ(s1))ad(n2 )(ĥ(s2)) · · · ad(ni )(ĥ(si ))ρds(0)}, (G2)

where ni ∈ N for all i ∈ In := {1, . . . , n}. Consider

¯̂ρs(t ) := E[Trd ζ̂ds(t |ξ )] (G3a)

= E

[
Trd

∞∑
n=0

(−i)n
∫ t

0
ds1ad(ĥ(s1))ξ (s1) · · ·

∫ sn−1

0
dsnad(ĥ(sn))ξ (sn)ρds(0)

]
(G3b)

= E

[ ∞∑
n=0

(−i)n
∫ t

0
ds1 f (s1)ξ (s1) · · ·

∫ sn−1

0
dsn f (sn)ξ (sn)

]
. (G3c)
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Following the same steps as in the proof of Theorem F.1 and recalling Eq. (G2), we arrive at

¯̂ρs(t ) =
∞∑

k=0

(−1)k

2k

∫ t

0
ds1 · · ·

∫ sk−1

0
dsk f 2(s1) · · · f 2(sk )ρs(0) (G4a)

=
∞∑

k=0

(−1)k

2k

∫ t

0
ds1 · · ·

∫ sk−1

0
dskTrd

[−→T exp

(
− 1

2

∫ t

0
ad2(ĥ(s))ds

)
ρ(0)

]
(G4b)

= Trd

[−→T exp

(
−1

2

∫ t

0
ad2(ĥ(s)

)
ds)ρ(0)

]
(G4c)

= Trd ¯̂ρds(t ). (G4d)

The last equation implies that E ◦ Trd = Trd ◦ E. �

APPENDIX H: LINDBLAD EQUATION: ERRORS IN THE STEERING HAMILTONIAN

In this Appendix, we obtain the LE (124), which describes the full averaged dynamics of a steered system obtained from the
direct averaging unraveling.

Upon averaging over the white noise, the LE describing the evolution of the detector-system density matrix is

∂tρds(t ) =
[
−iJad(h0) − γ̃

2
ad2(h̃ds)

]
ρds(t ) = Lρds(t ). (H1)

Hence, the formal solution of this equation is ρds(t ) = exp(Lt )ρds(0), where ρds(0) = ρd ⊗ ρs(t ), and the state of the steered
system is obtained by just performing the partial trace, i.e., ρs(t ) = Trd [exp(Lt )ρd ⊗ ρs(0)]. After another interaction with a
new detector, the updated state is given by

ρds(t + δt ) = exp (Lδt )[ρd ⊗ ρs(t )] (H2a)

= ρd ⊗ ρs(t ) + δt

[
−iJad(h0) − γ̃

2
ad2(h̃ds) + δt

2

(
−iJad(h0) − γ̃

2
ad2(h̃ds)

)2
]
ρd ⊗ ρs(t ) + O(δt3). (H2b)

Similarly as before (see Appendix A), we choose the following decomposition of the Hamiltonian operators and the density
matrix of the detectors:

h0 =
(

0 A†

A 0

)
, h̃ds =

(
G B†

B C

)
, ρd =

(
1 0
0 0

)
, (H3)

with G = G† and C = C†. With this decomposition, all the relevant terms in Eq. (H2) are

ad(h0)ρd ⊗ ρs =
(

0 −ρsA†

Aρs 0

)
, (H4)

ad(h̃ds)ρd ⊗ ρs =
(

ad(G)ρs −ρsB†

Bρs 0

)
, (H5)

ad2(h0)ρd ⊗ ρs =
(

{G†G, ρs} 0

0 −2GρsG†

)
, (H6)

ad2(h̃ds)ρd ⊗ ρs =
(

ad2(G)(ρs) + {B†B, ρs} −ad(G)ρsB† − GρsB† + ρsB†C

Bad(G)ρs − BρsG + CBρs −2BρsB†

)
. (H7)

We substitute the above terms into Eq. (H2b) and take the partial trace over the detectors:

ρs(t + δt ) = ρs(t ) − δt γ̃

2
[ad2(G)ρs(t ) + {B†B, ρs(t )} − 2Bρs(t )B†] + J2δt2

2
[−2Aρs(t )A† + {A†A, ρs(t )}]

+ δt2γ̃

2
Trd

[
γ̃

2
ad4(h̃ds)ρd ⊗ ρs(t ) − i

J

2
{ad(h0), ad2(h̃ds)}ρd ⊗ ρs(t )

]
+ O(δt3). (H8)

The term containing the trace in the above equation will vanish in the WM limit, which is our next step. Subtracting ρs(t ) above,
dividing by δt , and taking the limit δt → 0 while keeping γ := J2δt fixed, gives Eq. (124).
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APPENDIX I: STOCHASTIC MASTER EQUATION
OF THE JUMP-DIFFUSIVE TYPE I

In this Appendix, we derive the SME in Eq. (127).
Let ξ (t ) be a white noise with normalization conditions

E[ξ (t )] = 0, E[ξ (t )ξ (s)] = δ(t − s). (I1)

Let δX := ∫ δt
0 ξ (s)ds = ξ (δt )δt be a Wiener increment on R

with zero mean and variance δt . Following Ref. [73],

U (t ) = lim
δt→0

1∏
l=t/δt

exp [Y (lδt ) − Y ((l − 1)δt )]U (0) (I2)

is a stochastic process describing Brownian motion on the Lie
group U (4) and Y (t ) corresponds to Brownian motion on the
Lie algebra u(4). Above, U (0) = Ids.

The increments of the process Y (t ) can be related to the
so-called Hamiltonian increments

H (δt ) := i�(δt ), (I3)

where

�(δt ) := 1

δt
[Y (lδt ) − Y ((l − 1)δt )] (I4)

are the increments in u(4). In our case, since the perturbed

detector-system Hamiltonian is given by H (t ) =
√

γ

δt h0 +
ξ (t )

√
γ̃ h̃ds, we have

�(δt ) = −
√

γ

δt
h0 − iξ (δt )

√
γ̃ h̃ds, (I5)

which in turn gives that

U (lδt ) − U ((l − 1)δt ) = −i
√

γ δth0 − i
√

γ̃ δXh̃ds. (I6)

Replacing the above increment in Eq. (I2) allows us to write

U (δt ) = exp [�(δt )δt] = exp(−i
√

γ δth0 − i
√

γ̃ δXh̃ds),

(I7)

from which we obtain the measurement operators Mα (δt ) =
〈α|U (δt ) |0〉 for α ∈ {0, 1}.

Before performing a series expansion of U (δt ), we note
that even though the product

√
δtδX is of order δt , it has zero

mean and variance (δt )2, so we can neglect this product (in
the Itô sense) when compared with terms such as δt and δX .
With this observation, we have up to order δt

U (δt ) = Ids − i
√

γ δth0 − i
√

γ̃ δXh̃ds − γ δth2
0

2
− γ̃ δt h̃2

ds

2
.

(I8)

Using Eq. (H3), we get the following measurement operators

M0(δt ) = Is − iδX
√

γ̃ G − γ δt

2
A†A − γ̃ 2δt

2
(G2 + B†B),

(I9)

M1(δt ) = −i
√

γ δtA − i
√

γ̃ δXB. (I10)

For a given prior state, ωs(t ), the two possible states corre-
sponding to a no-click and a click result, respectively, are

ωs,0(t + δt ) = M0(δt )ωs(t )M†
0 (δt )

Tr[M†
0 (δt )M0(δt )]

(I11a)

= {1 + Tr[γ A†Aωs(t ) + B†Bωs(t )]δt}ωs(t )

− idXt

√
γ̃ [G, ωs(t )] + γ̃D(G)ωs(t )δt

− 1

2
{γ A†A + γ̃ B†B, ωs(t )}δt, (I11b)

and

ωs,1(t + δt ) = M1(δt )ωs(t )M†
1 (δt )

Tr[M†
1 (δt )M1(δt )]

= γ Aωs(t )A† + γ̃ Bωs(t )B†

Tr[γ A†Aωs(t ) + γ̃ B†Bωs(t )]
. (I12a)

The time-dependent probability of a click result to occur
is again too small compared with the one of a no-click re-
sult, i.e., Tr[M†

1 (δt )M1(δt )ωs(t )] ∝ δt . Thus, we can regard
this event to be registered by an inhomogeneous Poissonian
process N (t ), and we can capture it with the continuous

one (the no-click result) in a single SME:

dωs(t ) = [ωs,0(t + δt ) − ωs(t )][1 − dN (t )] + [ωs,1(t + δt ) − ωs(t )]dN (t )

= −i
√

γ̃ [G, ωs(t )]dX (t ) + γ̃D(G)ωs(t )dt + γD(A)ωs(t )dt + γ̃D(B)ωs(t )dt

+
[

γ Aωs(t )A† + γ̃ Bωs(t )B†

Tr[(γ A†A + γ̃ BB†)ωs(t )]
− ωs(t )

]
{dN (t ) − Tr[(γ A†A + γ̃ B†B)ωs(t )]dt}, (I13a)

where we have set δt = dt and dN (t ) = N (t + dt ) − N (t ), and similarly for dωs(t ). The above equation is precisely Eq. (127).
After taking the mean value over the clicks, i.e., E[dN (t )] = Tr[(γ A†A + γ̃ B†B)ωs(t )]dt , and then taking the average over

trajectories and setting ρs(t ) := E[ωs(t )], we get Eq. (124).

APPENDIX J: STOCHASTIC MASTER EQUATION OF THE JUMP-DIFFUSIVE TYPE II

In this section, we demonstrate Eq. (147).
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We start with the general discrete stochastic master equation

ωk+1 =
∑
i∈I

∑
α∈{0,1}

M(i)
α ωk

p(i, α|ωk )
1k+1

i,α , (J1)

where I = {1, 2}. Index i = 1 indicates a measurement in the correct basis B1 = {|ψ (1)
0 〉 = |0〉 = (1, 0), |ψ (1)

1 〉 = (0, 1)}, appear-
ing with probability p(1). Index i = 2 corresponds to the basis B2 with kets∣∣ψ (2)

0

〉
:= 1√

2
(|0〉 + |1〉),

∣∣ψ (2)
1

〉
:= 1√

2
(|0〉 − |1〉). (J2)

The operations on a prior state ωk are represented by

M(i)
α ωk := p(i)M (i)

α (δt )ωkM (i)
α (δt )†, (J3)

with the corresponding measurement operators

M (i)
α (δt ) := 〈

ψ (i)
α

∣∣ exp(−i
√

γ δth0)|0〉. (J4)

Let us define the new Lindblad operator L := i
√

γ A. If the basis B1 appears, we have a discrete SME of the jump-type again.
Thus, we can write its contribution in Eq. (J1) as

ωk+1 =
(

ωk − δt

2
{L†L, ωk}

)
(1 + δt〈L†L〉k )1k+1

1,0 + LωkL†

〈L†L〉k
1k+1

1,1 +
∑

α

M(2)
α ωk

p(2, α|ωk )
1k+1

2,α . (J5)

Turning to the erroneous basis, the corresponding measurement operators are

M (2)
α=0(δt ) = 1√

2

(
Is − δt

2
L†L −

√
δtL

)
, M (2)

α=1(δt ) = 1√
2

(
Is − δt

2
L†L +

√
δtL

)
, (J6)

which induce the following operations over the prior state ωk:

M(2)
0 ωk = p(2)

2

[
ωk − δt

2
{L†L, ωk} + δtLωkL† −

√
δt (ωkL† + Lωk )

]
, (J7)

M(2)
1 ωk = p(2)

2

[
ωk − δt

2
{L†L, ωk} + δtLωkL† +

√
δt (ωkL† + Lωk )

]
. (J8)

Respectively, the probability of each operation is

E
[
1k+1

2,0

] = p(2, 0|ωk ) = p(2)

2
(1 −

√
δt〈L† + L〉k ), (J9)

E
[
1k+1

2,1

] = p(2, 1|ωk ) = p(2)

2
(1 +

√
δt〈L† + L〉k ). (J10)

Replacing the above probabilities and the above operations into the diffusive part of Eq. (J5) gives, after some calculation,

∑
α

M(2)
α ωk

p(2, α|ωk )
1k+1

2,α = ωk
(
1k+1

2,0 + 1k+1
2,1

) + [D(L)ωk − 〈L + L†〉k (Lωk + ωkL† − 〈L + L†〉kωk )]
(
1k+1

2,0 + 1k+1
2,1

)
δt

+ (Lωk + ωkL† − 〈L + L†〉kωk )
(
1k+1

2,1 − 1k+1
2,1

)√
δt . (J11)

Now, by noting that

E
[
1k+1

2,0 + 1k+1
2,1

] = p(2, 0|ωk ) + p(2, 1|ωk ) = p(2)

2
(1 − δt〈L + L†〉) + p(2)

2
(1 +

√
δt〈L + L†〉k ) = p(2), (J12)

we can set, in the limit δt = dt → 0,

1k+1
2,0 + 1k+1

2,1 −→ χ2(t ). (J13)

Similarly, as

E
[
1k+1

2,1 − 1k+1
2,0

]√
δt = p(2)〈L + L†〉k, (J14)

we can set, in the limit δt → 0, (
1k+1

2,1 − 1k+1
2,0

)√
δt −→ χ2(t )dZ (t ), (J15)

where dZ (t ) is a Wiener increment with variance 〈L + L†〉t dt .
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Replacing the above results corresponding to the diffusive parts in the total discrete SME, and after also setting 1k+1
2,1 +

1k+1
2,0 → χ1(t ), and recentering the Wiener differential to dX (t ) = dZ (t ) − 〈L + L†〉t dt , we get Eq. (147).

APPENDIX K: MULTIPLE ERRORS AT THE SAME TIME

In this Appendix, we show that considering several errors at a time just requires the addition of the corresponding dissipative
and unitary channels of each error to the fully averaged dynamics. To see this, let us consider a generic version of the detector-
system Hamiltonian

H (i, j)
ds = Jh(i, j)

ds = J |� j,⊥
d 〉 〈� j

d | ⊗ Ai + H.c. (K1)

appearing with probability p(i, j) and where |� j
d〉 = cos(θ j/2) |�d〉 + sin(θi/2)eiϕ j |� j,⊥

d 〉. (Note that this type of Hamiltonian
encloses all our errors except the time-dependent ones. At the end of this section, we argue about the inclusion of time-dependent
errors.) Furthermore, let us assume that the detectors are prepared in the state

ρ̃d =
(

a b

b∗ 1 − a

)
. (K2)

In a block-matrix form, the above dimensionless Hamiltonian reads

h(i, j)
ds =

(
− sin θ j

2 cos θ j

2 (Ai + A†
i ) e−iϕ j

(
cos2 θi

2 A†
i − sin2 θ j

2 Ai
)

eiϕ j
(

cos2 θi
2 Ai − sin2 θ j

2 A†
i

)
sin θ j

2 cos θ j

2 (Ai + A†
i )

)
≡
(

�i j �i j

�
†
i j −�i j

)
. (K3)

The averaged dynamics of the steered system is given by

ρs(t + δt ) = ρs(t ) +
∑

i j

p(i, j)Trd

[(
−iJδadh(i, j)

ds − J2δt2

2
ad2h(i, j)

ds

)
ρ̃d ⊗ ρs(t )

]
+ O(J3δt3). (K4)

Upon the replacement of h(i, j)
ds in this equation, we can find the formal derivative

∂tρs(t ) = lim
δt→0

−iJa
∑
i, j

p(i, j)[�i j, ρs(t )] + iJ (1 − a)
∑
i, j

p(i, j)[�i j, ρs(t )] − iJ
∑
i, j

p(i, j)[b∗�i j + H.c., ρs(t )]

+ J2δt
∑

i j

p(i, j)[D(�i j ) + aD(�†
i j ) + (1 − a)D(�i j ) + b∗D(�i j,�i j ) + bD(�i j, �i j ) − b∗D(�i j, �

†
i j )

− bD(�†
i j,�i j )]ρs(t ), (K5)

where D(A, B)ρ := AρB† − 1
2 {B†A, ρ} is a mixed dissipative channel.

Following the sufficient condition of the WM limit as in Appendix A, we must require that O(�i j ) = O(b) = O(
√

δt ) and
O(�i j ) = O(1). Hence, we perform the following rescalings:

�i j = λi j

√
δt

γ
, b = κ

√
δt

γ
eiφ, (K6)

where κ, φ ∈ R. After replacing Eq. (K6) in Eq. (K5) and taking the limit, the resulting LE is

∂tρs(t ) = −i(2a − 1)
∑

i j

p(i, j)[λi j, ρs(t )] − i
∑

i j

p(i, j)[eiφ�i j + H.c., ρs(t )] + γ
∑

i j

p(i, j)[aD(�i j ) + (1 − a)D(�†
i j )]ρs(t ).

(K7)

Let us check that we can recover the previous LEs when individual errors are considered. First, let us assume that there is only
one index i, which gives Ai = A, and that θ j = ϕ j = 0 for all j. Hence, �i j = 0 and �i j = A. Let also a = 1 in ρ̃d . Therefore,
with these conditions, we recover Eq. (A8). Second, let us assume that a = 1 and b = 0 in ρ̃d , ϕ j = 0 for all j, and Ai = A for
all i. Then, Eq. (K7) coincides with Eq. (C24).

Overall, we conclude from Eq. (K7) that the coherences of ρ̃d (if they scale appropriately) always induce unitary dynamics,
whereas its populations always induce dissipative dynamics. Let us note that an additional unitary channel is induced as long as
ρ̃d is not maximally mixed and θi /∈ {0, π}.

The above analysis combined both static and quenched errors, and we saw that each error contributes linearly to dissipative
and unitary channels; that is, each of the channels can be obtained by considering each error at a time. Now, if we add time-
dependent errors containing white noise, we concluded from Appendix I that they only add two extra dissipative channels. Thus,
the same will occur if we consider them together with other errors.
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