
EPJ Photovoltaics 15, 17 (2024)
© T. Kappler et al., Published by EDP Sciences, 2024
https://doi.org/10.1051/epjpv/2024013

EPJ PhotovoltaicsEPJ Photovoltaics

Available online at:

www.epj-pv.org
Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’,

edited by Robert Kenny and João Serra
REVIEW
Detection of shading for short-term power forecasting
of photovoltaic systems using machine learning techniques
Tim Kappler* , Anna Sina Starosta, Nina Munzke, Bernhard Schwarz and Marc Hiller

Institute of Electrical Engineering (ETI), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
* e-mail: t

This is anO
Received: 7 July 2023 / Accepted: 6 March 2024

Abstract. This paper presents a mahcine learning based solar power forecast methode that can take into
account shading related fluctuations. The generated PV power is difficult to predict because there are various
fluctuations. Such fluctuations can be weather related when a cloud passes over the array. But they can also
occur due to shading caused by stationary obstacles, and this paper addresses this form of shading. In this work
an approach is presented that improves the forecast under such fluctuations caused by shading. A correction of
the prediction could successfully reduce error due to shading. The evaluation of the model is based on five sets of
recorded shading data, where shading resulted from intentionally placed structures. The correction uses internal
inverter data and irradiance values of the previous day to perform the correction and was able to reduce the
RMSE of four 10 kWp systems with different orientation and tilt angle under shading and thus improve the
prediction accuracy by up to 40%. The model can detect how intense the shading is and correct the forecast by
itself.
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1 Introduction

The number of photovoltaic systems installed worldwide
and the associated installed capacity rose by 22% to more
than 1000 TWh in 2021. Further increase is expected to
meet CO2 emission targets in the future [1]. As the
generated power of PV systems fluctuates due to factors
such as cloud movements, rain, or changes in irradiation,
issues related to grid stability are increasingly coming into
focus [2]. Accurate forecasts of generated power and energy
are necessary to maintain and guarantee stability and
availability. Forecasting methods can use physical models,
statistical methods or machine learning methods. Espe-
cially machine learning methods have gained popularity in
this context, since their advantage is to have a good
generalization capability and are therefore able to adapt
quickly to new situations [3]. The disadvantage of these
methods is the large amount of data that has to be collected
over years to achieve high accuracy. The trend is
increasingly towards the use of new neural network
architectures, which are particularly well suited to solar
power forecasting. Jianwu Zeng et al. were able to show
that an RBF network can represent the internal con-
nections of the data particularly well and was able to
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outperform other non-linear models [4]. Furthermore, in a
comprehensive study of various deep learning approaches
by Dairi et al., it was investigated that variational auto-
encoder networks could best represent fluctuating behavior
[5]. But there are also studies that come to the conclusion
that SVR can prevail over neural networks, such as Fentis
et al. [6] and Starosta et al. [7]. Typically, exogenous data
such as irradiation data, wind speed or air temperature are
used for solar power forecasting [8]. Furthermore, in Bacher
et al. it can be shown that weather forecast data as input
data for the solar power prediction methods is significantly
more representative for forecast periods of over two hours
than for shorter periods in which the past measured PV
power is significantly more meaningful [9]. Solar power
forecasting is not only a subject of scientific research, but
are also already being used commercially. A comprehensive
comparison of such solutions has already been done.
Lehmann et al. carried this out based on a test period of
6 months [10].

In addition, it is difficult to predict newly occurring
situations that were not considered in the recorded data set
because no information about them is available. For
example, incoming shade from trees that have grown taller
or buildings that were constructed later can reduce the PV
system’s output. Other possible effects are pollution [11] by
dust and leaves or degradation of the PV modules [12].
With information about irradiation, wind speed, ambient
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temperature or sun angle, it is not possible to represent such
caused drops in power. The forecast error becomes larger
when shading is present because the trained models are not
able to handle the shading on their own.

There is already awide range of papers dealing in general
with theprediction of the generated solar power [7,13] aswell
as with the effects of shading [14,15] and how to model and
analyze shading or solar systems under yield reducing effects
[16,17]. Shading was already taken into account in produc-
tion forecasts, where the loss of yield was considered over a
long period of one year [18]. Physical models can be used to
compensate the shading by using geomtrical information as
shown in Mayer et al. [19]. Here two shading models were
used to predict the solar power. Direct shading from
neighboring PV arrays was taken here into account.
Masa-Bote et al. [20] have also used a forecast of energy in
daily frequency for an energy management system for a
system of battery storage, PV with a statistical ARIMA
approach used an estimation for the shading by surrounding
trees. A shading factor was here determined there, which
corrects the daily forecastedEnergyunder constant shading.

However, since complex physical or mathematical
models to include dynamic shading cannot be integrated
into classical machine learning algorithms, an approach to
take such effects into account is necessary. All the papers
mentioned so far that deal with the forecast with machine
learningmethods of solar power do not explicitly address the
effects of shading caused by obstacles. Since such effects are
subject to sesonal fluctuations due to changing sun positions
in addition to the already existing fluctuation of cloud
movements. Only a few papers have training data sets of
morethanoneyearandcannottake sucheffects intoaccount.
Since the effects of shading by obstacles can be quantified
simulatively by the proposed method, a hybrid approach of
data-drivenmethodsandaphysicalmodelwaschosenhere to
take such effects into account. In this paper, the focus is on a
correction of the already existing prediction value with a
model that has seen training data over years and thus could
develop a good generalization capability. In addition, loss
effects such as shading and soiling are quantified and allow
later condition monitoring approaches in an extension.
Furthermore, several PV arrays with different inclinations
and orientations are considered as well as an evaluation over
several months, which are located in different seasons.
However, to the best of the authors’ knowledge, there is no
research that combines shading loss quantificationwith solar
power prediction, which should be investigated due to the
significant impact of shading on solar power generation.
Long Short-TermMemory (LSTM) networks were used as a
basis for the prediction model. The model is validated with
four shading setups over severalmonths of recordedPVdata
by comparing the RMSE of the shaded PV arrays with
different orientations and inclination.

The paper is structured as follows. First, the basic
method of theprocedure to consider shading forPV forecasts
isdescribed.For thispurpose, three individual submodelsare
described, which are required for the understanding of the
method. Then, the presented method is validated using the
shading setups. Finally, the results are discussed and an
outlook is given.
The main contributions of this work are:

–
 Development of solar power forecasts for a day were
developed based on a data set of over 7 years and a
comparison of popular machine learning methods was
performed.
–
 A simulation model based on the 1-diode model was built
and validated.
–
 Shading effects were determined based on measurement
and simulation.
–
 A method was developed that can explicitly consider
shading effects in solar power forecasts and is validated
over different array configurations.

2 Methodology

The following section explains how the whole approach
works. Three sub-models are described, with a basic
introduction of the models used for the forecasting part.
The shading is taken into account by means of a correction
value. For this purpose, the forecast values of the
prediction model are subsequently corrected to take the
effect of shading into account. First, the forecast model
itself is described in this section. For this purpose, three
classical ML methods are compared. These methods
are first presented in a fundamentals section to show
how the different methods work. Afterwards it is explained
how the forecast model is trained to predict the generated
PV power one day ahead. Then, a PV array model is
presented, which simulates the power that an unshaded PV
array would provide based on irradiation and temperature
values. Finally, it is discussed how the shading power is
determined from the simulated PV power and the actual
measured values. This refers to the power that is lost due to
the shadows that occur.

The principle of the approach is visualized in Figure 1.
The forecast model provides a predicted value, which
represents the solar power one day ahead. The PV array
model calculates the power that an unshaded array will
deliver under the same conditions. Together with the
calculated and actual measured value, the shading power
can be determined and the actual predicted value can be
corrected afterwards so that the prediction can take the
shading into account.

2.1 Fundamentals

In the following, the used forecast models are briefly
introduced. The focus lies on how the forecast models work
and which parameters need to be trained or optimized
using collected data (which will be explained more in detail
in Sect. 2.4). All models are later used for the forecast of the
generated power one day ahead.

2.1.1 Long Short-Term Memory networks (LSTM)

The basic unit of each neural network is the perceptron.
It maps a weighted sum of the input data xi with the edge
weights wij and transfer function c to the output hj.
Layers can be built up based on this unit. The output
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Fig. 1. Overall approach to considering shading for solar performance predictions. The approach is divided into three submodels with
the prediction model, the PV array model and the separation of losses.

Fig. 2. Structure of a two-layer neural network with three input
features, two hidden layers and one output.

T. Kappler et al.: EPJ Photovoltaics 15, 17 (2024) 3
values of each neuron are finally calculated according to
equation (1)

h
j
¼ c

Xn
i¼1

wij⋅xi

 !
: ð1Þ

If several of these layers are linked together, this
arrangement is called a neural network as displayed in
Figure 2. These are called feed-forward networks (FFN)
because the layers with pn neurons in the k-th layer mesh
in the forward direction from input to output with the
transfer function C [21].

Finally, the data are transformed from the input layer
to the output yk using equations (2)–(4)

h1 ¼ C WT
1X

� � ð2Þ

h2 ¼ C WT
pþ1hp

� �
ð3Þ
y ¼ C WT
kþ1hk

� �
: ð4Þ

Such FFNs have been able to demonstrate good
prediction capabilities in many publications in the past
[22,23]. In more recent publications, however, recurrent
neural network architectures are used, which have shown
an improvement in prediction accuracy several times
[24,25]. In particular, LSTM networks have been able to
achieve more and more popularity in scientific publica-
tions due to their memory capability [25,26] and their
ability to deal with the exploding and vanishing gradient
problem [27]. LSTM networks consist of a large number
of gates that store knowledge about the previous state.
These data are either written to, stored in or read from a
cell that serves as a type of memory. When the cell reads,
writes or deletes information using the input and forget
gates, it makes a decision about whether to store the
data. Based on the signals received, they become active
and use their own weighted filters to decide whether to
forward or suppress the information based on its
importance and strength. These weights are similar to
those that adapt during the training phase of the network
to modulate the input and hidden states [28]. The
mathematical relationships between the input xt and the
output ht can be expressed with equations (5)–(10). How
the individual gates depend on each other can be
visualized in Figure 3.

Ct ¼ tanh WC⋅ ht�1;xt½ � þ bCð Þ: ð5Þ

Equation (5) computes the updated cell stateCt at time
t by applying the weighted sum of the previous hidden state
ht-1, the current input xt, and a bias term bc.The cell state
reflects the memory content of the LSTM by the current
input and the prior state.

Ct ¼ ft⋅Ct�1 þ it⋅Ct : ð6Þ



Fig. 4. Hyperplane of the SVRwith epsilon strap. Values of SVR
are ordered by brightness.
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Fig. 3. Structure of a LSTM cell with input vector xt and output
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Equation (6) determine the change of the cell state Ct,
set its update as a function of the forget gate output ft,
the input gate output it, and the cell state Ct . The forget
gate regulates the storing of information from the
previous cell state, while the input gate determines
the intake of the actual cell state.

ft ¼ s W f ⋅ ht�1;xt½ � þ bfð Þ: ð7Þ
The forget gate ft is determined by information from the

previous cell state according to equation (7). It involves a
weighted sum of the previous hidden state ht-1, the current
input xt and a bias term bf.

it ¼ s W i⋅ ht�1;xt½ � þ bið Þ: ð8Þ
Computed analogously to the forget gate, the input

gate it selects information from the previous cell state ht-1,
the current input xt, and a bias term bi.

ot ¼ s Wo⋅ ht�1;xt½ � þ boð Þ: ð9Þ
The output gate ot determines the output of the

LSTM cell at time t. It is computed through the sigmoid
activation function of the current cell state. The
computation involves the previous hidden state ht-1,
the current input xt, and a bias term bo.

ht ¼ ot⋅tanh Ctð Þ: ð10Þ
Thehidden stateht at time t is computedbyelement-wise

multiplication of the output gate ot with the hyperbolic
tangent of the current cell state Ct. This resultant hidden
state serves as the output of the LSTM cell at t.

2.1.2 Support Vector Regression

Support Vector Regression (SVR) is an extension of the
Support Vector Machine (SVM) for regression problems.
As with classification, SVR is characterized by the number
of support vectors and kernel functions. The functions that
will generate the transformation into the high dimensional
space are called kernel functions. This kernel trick exploits
the fact that any non-linearly separable data set becomes
linearly separable by transformation into a sufficiently
higher dimensional space [29]. Typically, kernel functions
are linear polynomials, Gaussian functions or radial basis
functions. The transition to the regression method is
motivated by the fact that the regression is enabled by a
classification of regression errors. This is illustrated in
Figure 4.

In simple terms, SVR aims to fit a hyperplane that best
approximates the training data within a certain tolerance.
The optimization problem penalizes deviations beyond the
tolerance level, and the regularization parameter C helps
control the balance between achieving a good fit and
preventing overfitting. In summary, the mathematical
description of Support Vector Regression involves finding
the optimal hyperplane parameters (w and b) that
minimize the error between predicted and actual values,
considering a margin of tolerance e. To calculate the
parameters of the SVR the following optimization problem
is solved:

min
1

2
jjwjj2 þ C⋅

XN
n¼1

ðzi þ z�i Þ
 !

ð11Þ

subject to the constraints:

yi � ⟨w;xi⟩� b � eþ zi ð12Þ

⟨w;xi⟩þ b� yi � eþ z�i ð13Þ

z�i ; zi ≥ 0; ð14Þ
where the slack variables z represent the allowable error due
to the training samples [30]. They enable specific data points
todeviatewithinorviolate themarginconstraints, creatinga
balance between minimizing errors and optimizing the
margin.
2.1.3 Gradient boosting regression

Gradient boosting regression trees belong to the ensemble
methods, which all follow the idea that an improvement in
regression accuracy is associated with a combination of
multiple weak regression models [31]. This idea is taken up
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in Boosted Trees by building a flock of weak decision trees
hm with prediction Fm in the m-th iteration using the
available data set. Then, the error to the actual valuesYi is
calculated. In the next iteration, the resulting problem is
solved:

Fmþ1 xið Þ ¼ Fm xið Þ þ hm xið Þ ¼ Y i ð15Þ
or in a different form converted

hm xið Þ ¼ Y i � Fm xið Þ ð16Þ
it can be shown that the resulting residuals minimize the
squared error

� ∂ðY i � F xið ÞÞ2
∂Fxi

¼ Y i � F xið Þ ¼ h xið Þ ð17Þ

With the resulting residuals another decision tree is
trained, which corrects the error of the first one. In
principle, this procedure can be repeated as often as
necessary until a sufficiently good result is achieved [32]. To
avoid overfitting, regularization methods are typically used
which scale the output of each decision tree as seen in
equation (18):

Fm xið Þ ¼ Fm�1 xið Þ þ nhm; n∈ 0; 1½ �: ð18Þ

2.1.4 Metrics

In order to be able to compare the forecast models with
each other, metrics are used which form a measure of the
deviation from the actual value. The Root Mean Squared
(RMSE) and the Mean Absolute Error (MAE) are two
frequently used metrics. The RMSE is used to give more
weight to large deviations due to the squaring of the
deviations as described in equation (20), while the MAE
(see Eq. (19)) indicates the average error of the forecast.
Metric are used for a forecast depends on the application.
Often, these measures are normalized to the maximum
power in order to better compare different methods. The
calculation rules for RMSE and MAE, as well as their
normalized metrics are as follows:

MAE ¼
XN�1

n¼0

jY n � Ŷ nj
N

 !
ð19Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n¼0

Y n � Ŷ n

N

 !2
vuut : ð20Þ

For better comparison, these measures are normalized
to the maximum observed generated power (see Eqs (21)
and (22)).

nMAE ¼
XN�1

n¼0

jY n � Ŷ nj
N⋅YMax

 !
ð21Þ
nRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n¼0

Y n � Ŷ n

N⋅YMax

 !2
vuut : ð22Þ

2.2 Robustness

K-fold cross-validation serves as a means to evaluate the
robustness of a model. Instead of relying on a single random
division of the data into training and test sets, the data set is
divided into K subsets. K-1 subsets are utilized for training
for every used model, while the remaining subset is reserved
for testing.Thisprocess is repeatedKtimes,with each subset
serving as the test set exactly once. By averaging the error
metrics over theseK iterations, amore reliable assessment of
the model’s performance is obtained [33]. The utilization of
K-Fold cross-validation offers several advantages. Firstly, it
aids in reducing variance in the performance metrics by
employing multiple training and test splits, as shown in
Figure 5. Additionally, it enables a comprehensive evalua-
tion across the entire data set, as each data point is utilized
once for validation.Thismethodology facilitates themodel’s
ability to generalize effectively to different data sets, thereby
showcasing its robustness in the face of varying conditions
and data diversity.

2.3 Data

The data are classified into endogenous and exogenous data.
Exogenous data: Since 1981 the German Weather

Service (DWD) offers historical and forecast weather data
from selected weather stations on its publicly accessible
website [34,35]. Weather data includes data such as air
temperature, irradiation, cloud cover, humidity and many
others. In this work, weather data are used as input features
to train and validate the forecast models as explained in
Section 2.1.

Endogenous data: Data from the solar park at KIT
Campus North are used. It is located at 49.1° north and
8.44° east. There are a total of 102 PV arrays with an
installed capacity of around 10 kWp each. Each PV array



Fig. 6. Solar park at the North Campus of the KIT with array
numbers. Every shading structure has its own characteristic shading
pattern over time. Two self-constructed shading structures and two
tree shading configurations of varying strength and orientation are
considered.

Table 1. Shading structures used and their associated
shading characteristics.

Array Structure Shading characteristic

A Plastic pipe Early morning hours
B Wooden construction Whole day
C Tree and array Morning and evening hours
D Tree (protruding) Whole day

Table 2. Corresponding array orientations and inclina-
tions.

Array Orientation Inclination

A 0° South 30°
B 30° East 15°
C 60° West 30°
D 30° West 15°
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uses a string inverter which can provide three MPPTs. The
10 kWp installation capacity is made up of two strings with
an output of 5 kWp each. The PV tables examined each
used SOLARWATT Blue modules with a peak output of
250W according to STC conditions. This means that 20
modules are installed per string and 40 modules in total per
array. The arrays have inclinations between 2° and 60° and
an orientation between 60° west and 60° east. The data of
the solar park is recorded since 2014. Power data of the
inverters (string voltage, string currents, string power) as
well as irradiance and module temperatures of selected
arrays are available. In addition, the geographical location
is used to determine the solar angles with the help of the
library pvLib [36] for the description of the solar trajectory.

The hourly mean values of the data are used for all
analyses and calculations, as the weather data can only be
provided in hourly resolution. Since data can be corrupted,
the data are filtered beforehand. These outliers can be
explained by sensor errors or communication problems
during transmission of the data to the database. From the
outset negative values and values that are measured
significantly above the Standard Test Conditions (STC)
can be considered corrupt. However, since this concerns
onlya small amountofdata, thecorruptedvalues canbeeasily
compensated by interpolation of the neighboring values.

2.3.1 Shading structures

For the evaluation of the methodology, four of the 102 PV
arrays are selected. These are marked in Figure 6. The
orientation and inclination of the PV tables can be seen in
Table 1. The structures were erected to study the shading
effect on PV systems, which is intended to simulate shading
(see Fig. 6). All shading structures apart from the wooden
structure can cast a shadow over both strings.

By separating the loss effects and quantifying them, the
shading times can be detected well. Later, the calculated
power losses are used to subsequently correct the forecast
values of the model. There are two natural shadings by
trees (Fig. 6 both upper pictures) and two artificial shading
structures (lower both pictures of Fig. 6). The different
arrays areabbreviated in the followingusing the lettersA–D.
The different shading arrays with their characteristic
shading effects are summarized in Tables 1 and 2.
The shading setup was put into operation from August
2023. After data has been recorded, the procedure is
evaluated based on multiple one-month test intervals. Each
structure always has its own individual shading pattern.
However, the correction method should work correctly
regardless of shading geometry, seasons or shading times.
The shading structure at PV array D refers to the incoming
shade caused by protruding trees. This shadow has a
particularly strong effect in winter and spring, since the low
position of the sun contributes to a particularly strong
shading over both strings. With increasing time there is less
and less shading, so that betweenMay and September there
isnoshadingonthisarray. Inaddition, there is shadingatPV
arrayCdue to anadjacent tree.Here, shading occurs early in
the morning and late in the evening. The shading here is
relatively short and amounts to only 0.5–1 hour. Further-
more, twoartificial shadingsetupswerebuiltup inorder tobe
able tobetter assign the effects on the individual strings.One
is a wooden elevation at PV array B, which creates a wide
shadow throughout the day, and a tubular obstacle at array
A, which contributes to shading early in the morning, but
also casts a diagonal shadow insteadof the rectangular one of
thewoodenelevation.The importantaspectof the correction
modelpresentedbelowis thatacorrectioncanbemadeonthe
basis of the shadingpower.Adirectdetection of shadowing is
realized, since an estimation of the shadow losses is always
calculated in relation to the running ideal model. The
procedure is thus instructed that the irradiation values
accurately represent the power values. Shorter forecast
intervals could solve this problem, since accuracy typically
increases as the forecast interval decreases.
2.4 Forecast model

The methods presented in Section 2.1 are data-driven
methods and are trained using endogenous and exogenous
data so that they can predict the generated PV power. The
power data are visualized in Figure 7.



0 1 2 3 4 5 6 7
Time / a

0

2

4

6

8

10

S
ol

ar
 P

ow
er

 /
 k

W

ValidationTraining

Fig. 7. Separation of the data set into training data and
validation data. The validation period is one year. The split is
shown on the power data. the same holds true for the input data
(exogenous data).

Glob
alR

adiati
on

AirTe
mpera

ture

Elev
atio

n

SunnyM
inutes

Hour

Pre
ssu

reS
eal

eve
l

WindSpeed

Clou
dCove

r
Pow

er

GlobalRadiation

AirTemperature

Elevation

SunnyMinutes

Hour

PressureSealevel

WindSpeed

CloudCover

Power
-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8. Correlation matrix with Pearson coefficients.

Fig. 9. 1-Diode model to describe the generated current I and
applied voltage Vo of a PV array [40].

T. Kappler et al.: EPJ Photovoltaics 15, 17 (2024) 7
The exogenous and endogenous data are combined in
one data set. The training data set with which the forcast
model is trained covers six years. Another year forms the
test data set to validate it. The training data set is used to
optimize the parameters with respect to the error measure
and the validation data set is used to test the model on data
unknown to the model.

2.4.1 Feature selection

A Pearson feature selection is necessary to create an
effective and accurate model. The correlation coefficients
between the input features and the output are calculated.
The exogenous data is used as input features. With the
forecast models the generated power is predicted one day
ahead using relevant weather data. Therefore, the
corresponding output feature is the power one day ahead.
It is possible to determine the importance of the input
characteristics for the output. For this purpose, the
Pearson correlation coefficient is used, where cov(X,Y) is
the covariance of parameters X (Input Features) and Y
(Output). sx and sy are the corresponding standard
deviations of X and Y, respectively.

The results of the Pearson feature selection is
summarized in Figure 8. Accordingly, Global the Horizon-
tal Irradiation (GHI), the air temperature, the elevation
angle of the sun, and the number of sunny minutes per hour
are further used as input features for the forecast model.
Whereas, the cloudiness degree, the current hour and the
wind speed are not further used due to the low correlation
(|r|< 0.5). The correlation of the features also varies over
the seasons and weather conditions. This effect is
comparatively low, so that considering all seasons is
sufficient for feature selection, as was also shown in [37]. An
alternative approach for identifying relevant features is the
mutual information method, which exhibits increased
sensitivity to non-linear relationships. Despite its ability
to discern non-linear associations, this method converges to
similar conclusions regarding the significance of features.
Notably, the present analysis highlights the current hour as
markedly relevant. However, it is noteworthy that adding
the time feature during training led to a worsening in
forecast performance. Consequently, the time feature was
omitted from the feature set.

2.5 PV-array model

As described in Section 2.1.4, the second step is to create a
simulation model that can replicate the ideal performance
of a PV array. To determine the power of an unshaded PV
array, a 1-diode model is used for the PV modules. The
model for the array is then consequently obtained by
combining series and parallel connections of the individual
module models. The structure of the 1-diode model is
shown in Figure 9.

In addition to the 1-diode model, there are two- and
three-diode models, whose advantage is a higher accuracy
at temperature deviations [38] and additionally consider
contact and optical losses [39]. The accuracy of the 1-diode
model is sufficient for the following investigations and
would be associated with a lower parameterization and
simulation effort. The model equations are therefore as
shown in equations (23)–(25):

I ¼ IL � ID � Ip ð23Þ
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Fig. 10. Separation of the power of the heavily shaded PV array
D at noon. The shadow occurs noticeably shortly before 10 a.m.
by covering String 1 more than String 2. In this case, the shadows
are cast by trees standing directly in front of the PV array, which
cast a particularly long shadow in the early season.

Table 3. Characteristic values of the installed modules for
all PV arrays under investigation of the solar park at KIT.

Parameter Values

Open circuit voltage Voc 37.6V
Short circuit current Ics 8.69 A
Voltage at MPP VMPP 30.2V
Maximum power PMPP 250W
Number of solar cells NS 60
Temperature coefficient Voc �0.33%/K
Temperature coefficient Isc 0.04%/K
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ID ¼ I0⋅exp
V 0 þRSHI

V t
� 1

� �
ð24Þ

I0 ¼ IScn þKiDT

exp V OCn þ KvDT
V t

� �
� 1

: ð25Þ

The parameters of the model equations can be obtained
completely from the data sheets and compared with the
current–voltage characteristics of the datasheet from the
used modules. The relevant information of the data sheet
for the parameterization of the model is given in Table 3.

Irradiation and temperature data are used to calculate
the ideal PV power generated. For this purpose, endogenous
data is used, which is recorded via sensors on the solar park.
2.6 Separation of losses

Now that the ideal power can be described using the PV
arraymodel and the forecast is calculated using the forecast
model, the model for calculating the occurring shading
power is still needed. The recorded data and the ideal PV
model can be used to estimate the shading losses similar to
[41]. For this purpose, a ratio r is defined, which puts the
ideal and actual power into a direct relation, as in equation
(26).

r tð Þ ¼ P ideal tð Þ
PDC tð Þ : ð26Þ

However, since soiling contributes to a reduction in
output in addition to shading, a soiling ratio rsoiling can be
calculated as the average value of the ratio at midday
hours, as in equation (27).

rsoiling ¼ rNoon tð Þ: ð27Þ

In general, the average rNoon tð Þ should be calculated at
unshaded times. The power dissipation on the soiling and
shading are then calculated according to equation (28).

PSoiling tð Þ ¼ rSoiling⋅P ideal tð Þ ð28Þ
with rShading (t) as shown in equation (29).

rShading tð Þ ¼ r tð Þ � rSoiling: ð29Þ

The shading losses are calculated through equation (30)
as follows.

PShading tð Þ ¼ rShading tð Þ⋅P ideal tð Þ: ð30Þ

Figure 10 shows an example of the separation of the
power losses. By dividing the ideal and actual power, one
obtains the factor r which is a measure for the power loss
PLosses. Power losses are plotted over the course of the day
as shading and the resulting losses differ throughout the
day (caused by structures, buildings, chimneys, trees, etc).
The losses due to the soiling are proportional to the
irradiation on the PV array, since the soiled modules only
allow a fraction of the total irradiation power to pass
through and thus cause a weakening of the irradiation.

3 Results

In the following section the results of the three submodels
(forecast model, PV array model and the separation of the
losses) are presented. The results are in the same order as
the submodels’ order in the method section. Afterwards, in
the result part in Section 2.3.1, it is explained how shading
data are recorded and evaluated and how the entire
approach is validated. Furthermore, the limitations of the
method are discussed.

3.1 Forecast model

The algorithms are trained using the filtered data set. After
hyperparameter optimization was performed, predicted
values were compared to actual values over a full year.
Figure 11 shows three days of recorded DC power data
during December 2021 and the corresponding predicted
values of the three different machine learning models of
array B. The errors over a whole year of the validation data
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Fig. 12. The error of the forecast models is time-dependent. In
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Fig. 13. The error increases during the summer months and
decreases during the winter and spring months. The highest
amplitude values of the generated power are to be expected in
summer.

Table 4. Error measures related to the validation data set
of one year for the different models LSTM, SVR and
gradient boosted trees.

RMSE (kW) nRMSE (%) MAE (kW) nMAE (%)

SVR 0.97 9.7 0.47 4.7
GB 0.95 9.55 0.43 4.3
LSTM 0.90 9.0 0.40 4.0

Table 5. Parameters used for LSTM model.

Parameter Neurons Optimizer Epochs Learn rate

LSTM 20/15 Adam 500 1e-3

Table 6. Parameters used for gradient boosted trees.

Parameter NLearners Learn rate MinLeafSize

XBoost 497 57 1

Table 7. Parameter used for SVR.

Parameter Kernel Kernel scale Box constrain

SVR Rbf 57 149
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are summarized in Table 4 and displayed over the
corresponding months and hours to show the distribution
of the forecast error. The representation over the daytime
hours (see Fig. 12) is in this case more important than the
RMSE over the complete year, because the shading occurs
at characteristic hours in the real field. However, the effect
depends on the season, orientation and location of the
obstacle that casts the shadow.

The validation over a complete year illustrates how the
error is distributed over the year. Figure 13 clearly shows
that the error increases in the summer months and
decreases in the colder months. This is due to the high
amplitude values, since more power is generated in summer
than in winter or spring.

Since the LSTM network provides the best precision in
this study, all further evaluations will be performed using
this model in the following. However, the method works
equally well regardless of the forecasting algorithm used.
The investigation of the errors of the different methods
should show that different methods have the same relevant
error characteristics. The differences are marginal. The
evaluation of the validation dataset is summarized in
Table 3. For the training of the machine learning
algorithms an hyperparameter tuning was performed.
The parameters according to Tables 5–7 were used.

3.2 PV-Array model

To validate the PV-Array model, the current-voltage
characteristics of the data sheet are used. The result of the
model is compared with the measured values from the data
sheet (see Fig. 14). The model can thus describe the
electrical behavior sufficiently well and can consequently
be used to simulate the ideal behavior.

Historical irradiance and temperature data as well as
real generated PV power are used to validate the model. To
control the string voltages to ensure operation at maximum
power point (MPP), a buck-boost converter with an
Pertubation and Oberservation (PO) algorithm is used
here according to [42]. Figure 15 shows that the results of
the 1-diode model can reproduce the real behavior of the
PV system. The model can also reproduce rapidly changing
irradiation behavior as shown in Figure 16.

3.3 Separation of losses

After the shading structures have been set up, data has
been recorded over several months. This allows the
manipulation of power due to shading to be recreated
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Fig. 14. Current-voltage curves of the used modules and the
results of the parametric PV model (dashed).
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Fig. 15. Comparison of model result and measurement of the
1-diode model on a sunny day without cloud shadowing of array
B.

0 24 48
Time / h

0

2

4

S
ol

ar
Po

w
er

/
kW pStringShaded pStringUnshaded

Fig. 17. Effects of shading buildup in string outputs (array B).
String 2 (blue) is more affected by shadows and thus provides less
power during the shading period than String 1 (red).
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and observed in real terms using the inverter data (see
Fig. 17). Since the shadow does not pass both strings of the
PV system B at the same time, the effects of shading can be
visualized particularly well by comparing the string
powers. Since the simulation delivers highly accurate
power values by precise irradiationmeasurements, it allows
the exact determination of shading power throughout our
measurements (see Fig. 18). Given the absence of sensor
failures, the possibility of erroneously detecting shadows
due to sensor errors is also precluded.
3.4 Validation of the approach

With the help of the losses from the previous day and from
the shading ratio rShading (t) a correction can now take
place by multiplication with the forecast value. It is also
conceivable to subtract the power loss from the forecast
value. But the correction via the shading ratio makes more
sense here, since the losses proportional to the occurring
shading always depend on the actual irradiation and thus
the power. In particular, the error is largest during the
midday hours, because shading in the real environment
typically occurs in the early morning and late evening
hours. It makes sense to multiply the forecast values by
(1� rShading (t)) because the shading remains constant over
the days if it comes from a stationary obstacle related to the
time points (see Fig. 19). So the new prediction values are
calculated as in equation (31).

P forecastnew;nþ1
¼ 1� rShadingn
� �

⋅P forecast;nþ1: ð31Þ

At the same time, the forecast model that was trained
with the historical data and supplemented with the current
weather data to provide daily forecasts in the shading
period. In Figure 1 the scheme of the correction is shown as
well as the change of the RMSE over the hours of the day
when the model is applied. However, since the correction
model detects the shading power at these times, it canmake
the correction and adjust the power values downward. So
you can also see in Figure 1 the change of the RMSE by the
correction model. In principle, other forms of correction are
also possible with the method shown. Figure 20 shows that
a correction using the shading power of the previous day
(“lag correction”) can already result in a significant
improvement of the forecast error. A perfect correction
would be if the power losses of the previous day are exactly
equal to those of the current day. This illustrates the
maximum potential of the presented method. The RMSE
and MAE values over the entire observation period are
shown in Table 8.

As a final comparison, other machine learning algo-
rithms were also examined for the method, namely support
vector regression, gradient boosting LSTM.

Shading data from Array A was used from July 2023 to
September 2023. The weather data and measurement data,
which were selected using Pearson Feature Selection, were



3 7 11 15 19
Daytime / h

0

2

4

6

S
ol

ar
 P

ow
er

 / 
kW

PIdeal PShading PActual PString1 PString2 PSoiling

7 11 15
Daytime / h

0

2

4

6

8

S
ol

ar
 P

ow
er

 / 
kW

PIdeal PShading PActual PString1 PString2 PSoiling

7 11 15 19
Daytime / h

0

2

4

6

S
ol

ar
 P

ow
er

 / 
kW

PIdeal PShading PActual PString1 PString2 PSoiling

7 11 15 19
Daytime / h

0

2

4

6

S
ol

ar
 P

ow
er

 / 
kW

PIdeal PShading PActual PString1 PString2 PSoiling

Fig. 18. Various shading structures on the arrays and their impact on the generated power. The calculated portion of the power falling
on the shading is shown in black. The theoretical maximum power is reduced by this amount.
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Fig. 19. Three days of recorded DC power from array B. The
shaded string visibly delivers less power and the shading ratio
increases during this period.
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Fig. 20. Improvement of the RMSE through the correction
process. The improvement is particularly clear in the case of
heavy shading, while only a slight improvement can be achieved
in the case of weak shading, such as with PV array A.
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again used as input data. Since a reduction in the output
power is to be expected due to the shading, an
overestimation of the actual power values can be expected
in the predicted values. This can also be seen in Figure 21
after the error boxplot is clearly shifted towards positive
errors. The outliers can be completely traced back to
individual, particularly large errors in the weather forecast.

The results of the correction are illustrated in Figure 22.
It can be seen here that there are only slight differences
between the models. The method can therefore contribute
to an improvement in the prediction errors regardless of the
algorithms considered.

3.5 Discussion

Although the correction method in the previous validation
has consistently contributed to a noticeable improvement in
the prediction error under shading, the method also has a
limitation. It is in the nature of predictionmodels to over- or
underestimatethetruevalue. If thepredictionvaluesarenow
corrected downwards, although the true value is under-
estimated, an improvement in the prediction error is not
guaranteed. In general, the power loss due to shading must
be greater than the bias of the prediction model to improve
the forecast error.The validationdataset shows that the true
value is underestimated, especially in the early morning
hours and ingeneral during the summermonths (seeFig. 23).
The previous studies therefore presented good comparison
months forvalidation, since the correctionmodel contributes
the least to an improvement in the forecast error at these
times. A correction in the case of very weak shading does not
always lead to an improvement in the RMSE due to the
negative MAE, which is particularly visible in the summer
months.Due to the fact thatmeterological data is constantly
increasing in accuracy due to ever better satellite systems
andmorepreciseweather forecastmodels, it is tobe expected
that this will become less and less important.Even the use of
endogenous features cannot eliminate shadowing, especially
if no shadowing has occurred during the training process.
This is also shown by Figure 24, which shows that the
addition of lag features does not improve the RMSE in the
presence of shadowing.
Furthermore, it can be concluded that the method still
performs its function even if other features are added. The
RMSE in the validation data set only minimally decreased
from0.9 kWto0.88 kWwiththeadditionof the lag feature. It
would be particularly interesting to select features in the
following, which could transfer theMAE into a positive bias
range, but at the same time do not lead to a deterioration of
the RMSE.



Table 8. Decrease in RMSE over oberservation time when
correction model is applied.

Array A Array B Array D Array C

RMSE decrease/% 0.51 14.8 40.0 5.02

LSTM SVR Boosted Trees

-4

-2

0

2

4

Wk / rorr
E

Fig. 21. Error distribution of prediction errors.

0 5 10 15 20
Daytime / h

0

1

2

3

Wk / 
E

S
M

R

0

0.2

0.4

0.6

0.8

S
ha

de
ra

tio

No Correction Correction Shaderatio

0 5 10 15 20
Daytime / h

0

0.5

1

1.5

2

Wk / 
E

S
M

R

0

0.2

0.4

0.6

0.8

S
ha

de
ra

tio

No Correction Correction Shaderatio

0 5 10 15 20
Daytime / h

0

1

2

3

Wk / 
E

S
M

R

0

0.2

0.4

0.6

0.8

S
ha

de
ra

tio

No Correction Correction Shaderatio

Fig. 22. Reduction in RMSE due to correction for (a) SVR, (b)
Gradient Boosted Trees and (c) Neural Net.
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Fig. 23. The curves of the MAE show the bias of the forecast
model. The curves indicate time periods in which a correction of
the forecast values cannot lead to any improvement as the
shading is too small.
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Fig. 24. Comparisonof theprocedurewhenpastperformancedata
is still taken into account in the forecast model. However, this does
not lead to a reduction in the RMSE in the event of shading.
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In addition, it was examined whether it is possible to
replace the sensor data with historical weather data (GHI,
temperature). This allows a complete monitoring and
correction without additional sensors, but especially the
data of the irradiance sensor are necessary to accurately
represent the shading ratio (see Fig. 25). However, the
temperature sensor could be replaced by the air tempera-
ture data without major loss of accuracy for the previous
investigations.

4 Conclusion

In this work, a forecast model was trained and a PV model
was parameterized using endogenous and exogenous data.
The PVmodel uses a PO algorithm to guarantee the MPP.
Based on the power values of the PV model and the actual
measured data, it was possible to calculate how much
power is due to shading. This could finally be used to
subsequently correct the prediction value of the trained
prediction model and thus achieve an improvement in the
prediction error under shading. In summary the subsequent
correction and therefore post-processing of day-ahead PV
power forecasts can help improve forecast error. The
presented procedure was able to contribute to an
improvement of the forecast error in all shading scenarios.
The method was also validated at different orientations
and seasons and was able to consistently reduce the error of
the forecast models. Particularly large shadings can be
recognized and corrected in the forecast model. An
improvement of the RMSE by up to 40% could be achieved
depending on the extend of shading. Array C achieved a
15% improvement, Array B achieved a 5% improvement,
and Array A achieved a 2% improvement.

As an outlook, the correction models should be
extended. It would make sense to extend the forecast
correction by including soiling. In principle, the following
methodology could also be extended to other inverter
faults. The error would then be detected at time n and the
forecast would be corrected at time n+1 depending on the
forecast horizon. In addition, the limitations of themethods
were worked out. Through the detection of shading and
soiling, a direct quantification of the losses is possible and
can therefore be used to save costs. A condition monitoring
approach would be conceivable here. The energy lost from
shading and soiling can thus be used to intelligently
coordinate maintenance intervals in large solar storage
parks. This means that they no longer have to carry out
maintenance work at regular intervals, but only when it is
needed. At the same time, the presented method is
interesting for rooftop systems, since the quantified
shading performance can determine whether solar power
optimizers can sensibly retrofit their performance. Both
areas of application would lead to a reduction in the
levelized cost of electricity (LCOE).
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