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Abstract: The thermal freeze-out mechanism in its classical form is tightly connected to
physics beyond the Standard Model around the electroweak scale, which has been the target of
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that governs the entropy transfer between the two sectors. As a result, the predictions for
the peak frequency of gravitational waves in the LISA band are robust, while the amplitude
can change depending on the initial dark sector temperature.
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1 Introduction

Dark matter (DM) is known to be the dominant form of matter in the universe, but it has so
far evaded any attempt of detection in the laboratory or by other non-gravitational means [1].
These null results have cast doubt on the so-called WIMP miracle, where DM is produced
from the thermal bath of Standard Model (SM) particles in the early universe, and which
for a long time has been used to motivate sizeable couplings between DM particles and
the SM. Indeed, it has been shown that thermal freeze-out may happen entirely within an
extended dark sector, such that the observed DM relic abundance ΩDMh2 ≃ 0.12 [2] can be
reproduced without the need for any sizeable couplings between the dark and the visible
sector [3]. These so-called secluded DM models pose a great challenge for laboratory searches
due to their apparent lack of testable predictions.
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At the same time, gravitational wave (GW) observatories have opened a completely new
window into the universe, making it possible to observe objects and phenomena that affect
visible matter only through gravity. The proposed LISA mission [4] will extend this window
to the mHz frequency range, allowing in particular for the observation of a stochastic GW
background that would be connected to a strong first-order phase transition (PT) close to
the electroweak scale [5–7]. LISA therefore raises new hopes to detect dark sectors that
are otherwise unobservable. Over the past few years, first-order PTs in dark sectors have
been studied in great detail [8–12], and various correlations between GW signals and the
phenomenology of DM have been explored [13–25]. The conclusion of these studies is that
it is difficult to robustly predict the expected amplitude of the GW signal for a given DM
model, because strong PTs often only happen in special regions of parameter space. In other
words, it appears generally challenging to identify a strong correlation between the GW
amplitude and the DM abundance. In this work, we instead focus on the peak frequency
of the GW signal and show that it can be tightly correlated with the predicted DM relic
abundance. Intriguingly, when imposing the observed value of ΩDMh2 = 0.12 and focussing
on GW signals strong enough to be potentially observable, we predict a GW peak frequency
that falls right into the most sensitive range of LISA.

Before describing our analysis in detail, let us provide a rough sketch of the argument.
We consider a dark sector comprised of a fermionic DM candidate χ charged under a new
U(1)′ gauge group that is spontaneously broken by the vacuum expectation value (vev) vϕ

of a new dark Higgs field. It is well known that strong PTs can occur in this model for a
sufficiently large gauge coupling [26, 27]. All newly introduced particles are massless before
symmetry breaking and acquire a mass proportional to vϕ afterwards. The dark gauge boson
A′ (a.k.a. dark photon) and the dark Higgs boson ϕ are generally unstable against decays into
SM particles, but χ is stable and may obtain a sizeable relic abundance through thermal freeze-
out. If the spontaneous symmetry breaking occurs in a first-order PT, bubbles of the new
phase will nucleate spontaneously, expand and collide. This process perturbs the dark plasma
and leads to the emission of GWs, with a present-day peak frequency very roughly given by [7]

fpeak ≃ 10 mHz
(

β/H

100

)(
Tp

1 TeV

)
. (1.1)

Here β/H denotes the speed of the PT and Tp is the temperature of the SM heat bath at
the time of percolation. For a not-too-strongly supercooled dark sector PT, which is what
we consider here, one expects β/H ∼ 100 and Tp ∼ vϕ.

The relic density from thermal freeze-out, on the other hand, can in leading-order
approximation be written as [28]

ΩDM ≃ 0.1 10−8 GeV−2

⟨σannv⟩
, (1.2)

with ⟨σannv⟩ the thermally averaged DM annihilation cross section. If the DM particles
dominantly annihilate into the dark Higgs bosons ϕ, arising from the same dark Higgs field
that generates the DM mass, it is parametrically of the form

⟨σannv⟩ ∼ y4

m2
DM

∼ y2

v2
ϕ

, (1.3)
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where y denotes the DM Yukawa coupling. At first sight, this coupling is arbitrary, and
hence the freeze-out mechanism does not predict a specific dark sector mass scale. However,
if we are interested in dark sectors that produce strong first-order PTs and large GW signals,
the dark gauge coupling g and the dark Higgs quartic coupling λ must be sizeable, which
implies that the dark Higgs boson mass mϕ cannot be much smaller than vϕ. At the same
time, the observed DM relic abundance can only be obtained through dark sector freeze-out
if the DM particle is not the lightest particle in the dark sector (or at least not much lighter
than its annihilation products [29]). This, in turn, implies that y cannot be much smaller
than unity, and hence vϕ ∼ TeV once we require ΩDMh2 ∼ 0.1. Combining this with the
conclusion from eq. (1.1), we thus expect a peak frequency of fpeak ∼ 10 mHz — which, as
advocated, lies right within the LISA band.

A possible concern with the simplified reasoning above is that a large Yukawa coupling
will affect the effective potential and may possibly prevent a first-order phase transition, or
even destabilize the scalar potential [30]. We have also neglected the impact of additional
DM annihilation channels involving dark photons. In our full analysis, we explore the entire
parameter space of the model, calculating in detail the effective potential, the thermodynamic
quantities characterising the PT and the relic density from thermal freeze-out. We then
identify viable combinations of the different dark sector couplings and show that the qualitative
argument from above is confirmed by quantitative calculations. In order to further refine the
analysis, we also perform parameter scans over all relevant model parameters — namely the
three couplings g, λ and y and the dark Higgs vev vϕ, and we identify parameter points for
which the correct DM abundance is obtained. Interpreting the sampling distributions for the
model parameters as prior probabilities thus enables us to define “typical” model predictions
and quantify the probability (in the Bayesian sense) of a detectable signal.

A significant focus of our analysis is to extend the simple argument sketched above to
situations where the couplings are so weak that the dark and visible sectors do not necessarily
share a common temperature, which would be maintained through (inverse) decays of SM
and dark Higgs bosons. Indeed, even if the two sectors have the same temperature initially,
the first-order PT in the dark sector will change the temperature ratio, as the vacuum
energy in the dark Higgs field is converted to rest mass and kinetic energy. This additional
energy needs to be rapidly transferred to the SM in order to avoid a dilution of GW signals
from late-time entropy injection [11, 12]. We calculate the dilution of the GW background
and derive a lower bound on the portal coupling from the requirement that no significant
dilution occurs. We show that the portal coupling required for this purpose is well below
the sensitivity of laboratory experiments. Finally, we explore what happens if the initial
temperature ratio of the two sectors differs from unity. In this case the amplitude of the GW
signal will change [10, 31, 32] — but the peak frequency remains almost unaffected, such
that the estimate from above remains robust even for portal couplings that are too small to
quickly (re-)thermalize the sectors after the transition. This conclusion is only modified if
the portal coupling is so weak that the energy density of the dark sector cannot be depleted
and starts to dominate the energy density of the universe.

The remainder of this work is structured as follows. In section 2 we introduce the
model under consideration and discuss the finite-temperature effective potential. We also
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briefly review the calculation of the temperature and strength of the PT, and we identify
the interesting regions of parameter space. In section 3 we calculate the DM relic density
under the assumption that the dark and SM sector remain in thermal equilibrium throughout
their evolution, and explore the correlation between the relic density and the GW signal.
We revisit this assumption in section 4, and discuss in detail the processes that thermalize
the dark sector with itself and with the SM. In section 5 we finally calculate the effect of
inefficient thermalisation on the GW signal. We consider the dilution due to entropy injection
and show that for hot dark sectors a net enhancement of the GW amplitude can remain,
while the peak frequency is essentially unaffected. We conclude in section 6 with a summary
of our results and some remarks about their consequences. In two technical appendices, we
provide details on the bubble wall velocity (appendix A) and on the Boltzmann equations
for entropy transfer (appendix B).

2 Dark sector phase transition

2.1 Dark sector model

The model we study in this work is an extension of the models considered in refs. [11, 33]
and consists of a complex scalar Φ charged under the U(1)′ gauge symmetry, the associated
gauge boson A′

µ, and two chiral fermion DM candidates, χL and χR. The Lagrangian
describing the model is

L = |DµΦ|2 − 1
4A′

µνA
′µν + µ2Φ∗Φ − λ(Φ∗Φ)2

+ χ†
Li /DχL + χ†

Ri /DχR − yΦχ†
LχR − yΦ∗χ†

RχL , (2.1)

where A′
µν is the field strength tensor of A′

µ, λ and y are dimensionless couplings and µ is a
bare mass parameter for Φ. The complex scalar and fermions are charged under the U(1)′

group as QΦ = +1, QχL = +1/2 and QχR = −1/2. The kinetic mixing of the dark photon
with SM hypercharge and the portal coupling of the scalar field Φ with the SM Higgs field
are assumed to be small enough that they satisfy experimental bounds (see, e.g., refs. [34, 35]
for bounds on dark photons and ref. [36] for a recent review of bounds on Higgs mixing)
and do not play a role during the PT. We will return to these terms in section 4.2 when
discussing the thermalisation of the dark sector with the SM bath.

The tree-level scalar potential of our model has a minimum at vϕ = ±
√

µ2/λ. One can
hence expand the complex field as Φ = (vϕ + ϕ + iφ)/

√
2, where ϕ and φ are real scalar

fields. In addition, the chiral fermions χL and χR can be written as a Dirac fermion χ. The
Lagragian in eq. (2.1) can thus be re-written as

L = 1
2∂µϕ∂µϕ + 1

2∂µφ∂µφ − 1
4A′

µνA
′µν − 1

2m2
ϕϕ2 + 1

2m2
A′A

′2
µ

− gA′
µ[φ∂µϕ − ϕ∂µφ − vϕ∂µφ] + g2

2 ϕ2A
′2
µ + g2

2 φ2A
′2
µ + g2vϕϕA

′2
µ

− λvϕϕ3 − λvϕφ2ϕ − λ

4 ϕ2φ2 − λ

4 ϕ4 − λ

4 φ4

+ iχ̄/∂χ − mχχ̄χ + g

2 χ̄ /A
′
γ5χ − y√

2
ϕχ̄χ + i

y√
2

φχ̄γ5χ , (2.2)
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where g is the gauge coupling associated with the U(1)′ symmetry, and the bare masses of
the various fields depend on the vacuum expectation value (vev) vϕ as

m2
ϕ = −µ2 + 3λv2

ϕ = 2λv2
ϕ, m2

φ = 0, m2
A′ = g2v2

ϕ, m2
χ = y2

2 v2
ϕ. (2.3)

2.2 The effective potential

The properties of the PT can be computed from the temperature-dependent effective potential
Veff . This effective potential can be constructed out of the tree-level potential extracted from
eq. (2.2), the 1-loop Coleman-Weinberg (CW) potential VCW and the finite temperature
potential VT [37]. The CW potential in our model, computed using the background field (ϕb)
method [38], in the Landau gauge and the MS renormalisation scheme, has the form [39, 40]

VCW(ϕb) =
∑

a=ϕ,φ,A′,χ

±ga
m4

a(ϕb)
64π2

(
log m2

a(ϕb)
Λ2 − ka

)
, (2.4)

where the + (−) sign applies to bosons (fermions), ga are the degrees of freedom of particle
a, ma(ϕb) are the background field-dependent masses, and ka = 3/2 for scalars and fermions
and ka = 5/6 for gauge bosons. In this study we take the renormalisation scale Λ to be
the vev at zero temperature, vϕ(T = 0). The field-dependent masses in the CW potential
are computed with renormalised parameters, i.e. using the expressions from eq. (2.3) with
the replacement vϕ → ϕb and with the addition of relevant counterterms [37]. We choose
the renormalisation conditions such that the dark Higgs mass and vev are fixed to their
tree-level values at zero temperature.

The finite-temperature part has the form

VT (ϕb) = T 4

2π2

∑
a

±gaJb/f

(
m2

a(ϕb)
T 2

)
, (2.5)

with the thermal functions Jb/f for bosons/fermions defined in ref. [37]. The finite temperature
potential in eq. (2.5) suffers from infrared divergences for bosonic modes when T ≫ m, leading
to a breakdown of finite-temperature perturbation theory at high temperatures [40]. The
resummation of these modes is commonly done by “daisy resummation” [41]. Here we
follow the Espinosa method [42], which adds an additional contribution to the effective
potential of the form

Vdaisy(ϕb) = − T

12π

∑
a=ϕ,φ,A′

L

ga

[
(m2

a(ϕb) + Πa(T ))3/2 − (m2
a(ϕb))3/2

]
, (2.6)

where a now only runs over the scalar fields and the longitudinal component of the dark
photon. The one-loop thermal masses Πa in our model are given by

Πϕ =
(

λ

3 + y2

12 + g2

4

)
T 2 ,

Πφ =
(

λ

3 + y2

12 + g2

4

)
T 2 ,

ΠA′ =
( 1

12 + 2
3

)
g2T 2 . (2.7)
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Figure 1. Total effective potential (solid) and finite temperature part (dot-dashed) for g = 0.67, λ =
0.0035, vϕ = 1000 GeV and T = 240 GeV, for varying values of y.

We only resum the Matsubara zero modes in the daisy potential, which are the ones causing
the infrared divergences of eq. (2.5), such that the thermal mass of the DM fermion does not
enter our calculations. The final form of the effective potential is then given by

Veff(ϕb, T ) = V0(ϕb) + VCW(ϕb) + VT (ϕb, T ) + Vdaisy(ϕb, T ) . (2.8)

For illustration, we plot this potential in figure 1 for a choice of parameters g = 0.67, λ = 0.0035,
and varying values of y.

In addition to encoding the properties of the PT, the effective potential also provides
information about the stability of the true vacuum after the phase transition occurs. In fact,
a new feature becoming important for non-zero Yukawa couplings is that for low values of λ

and g the potential can become unbounded from below [30]. To ensure vacuum stability we
require that no deeper vacua are present at zero temperature. The requirement of a dark
sector PT already implies that Veff(0) > Veff(vϕ). Hence, it is sufficient to check whether there
exist vacua with lower potential energy for large field values, i.e. whether Veff(ϕb) < Veff(vϕ)
for ϕb ≫ vϕ. In our analysis, we explicitly exclude such parameter points.

It is well known that the one-loop, daisy-resummed calculation of the effective potential
can suffer from large theoretical uncertainties, foremost sourced by a large renomalization scale-
dependence [43]. A possibility to improve upon those uncertainties is to systematically resum
higher orders of the thermal masses in the effective field theory framework of dimensional
reduction [44]. In order to validate our simpler approach, we therefore also implemented our
model in DRalgo [45], which automates the task of dimensional reduction. We calculate the
critical temperature in both our four-dimensional implementation and the reduced three-
dimensional theory for the parameter space where we expect a first-order PT. In the regime
where the effective field theory is valid (T ≫ mϕ) we find that the two results agree very well.
We therefore conclude that we can take the computationally more economical approach of
using the 1-loop, daisy-resummed effective potential stated in eq. (2.8).

– 6 –
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2.3 Properties of the phase transition

The PT in our model occurs when the dark Higgs ϕ acquires a non-vanishing vev at the
minimum of the effective potential Veff , thereby breaking the U(1)′ symmetry. At the
nucleation temperature Tn the transition from the unbroken (false) vacuum to the broken
(true) vacuum becomes energetically favourable and bubbles of the new phase start nucleating
and expand rapidly to fill the entire Universe. The probability of transitioning from one
phase to the other, parametrized by the bubble nucleation rate Γ(T ), can be computed
from the effective potential in a semiclassical formalism by solving the bounce equation [46–
48], which takes into account thermal tunneling through the potential barrier. We use
TransitionListener [11] for this purpose, an extension of CosmoTransitions [49], which
takes care of the computation of the bounce action, as well as phase tracing and the calculation
of the thermodynamic properties of the phase transition. For the moment, we will assume
equal temperatures for the SM bath and the dark sector, i.e. we adopt a temperature ratio of

ξ ≡ TDS
T

= 1 . (2.9)

The temperature that appears in the effective potential in eq. (2.8) and in the thermodynamic
quantities discussed below can thus be identified with the temperature of SM photons. We
discuss the general case with ξ ̸= 1 in sections 4 and 5.

Gravitational waves from a PT are produced when the expanding bubbles or their sound
shells collide (more in section 2.4). Therefore, the thermodynamic properties of the PT must
be computed at a time when the rate of bubble collisions is maximised. This occurs at the
time of percolation, when the Universe is permeated with a connected web of bubbles of the
broken phase [7, 50, 51], which happens when approximately 70 % of the Universe is in the
symmetric phase. Quantitatively, the fraction of the Universe remaining in the false vacuum
after the PT is given by P (T ) = exp [−I(T )] with [40]

I(T ) = 4π

3 v3
w

∫ Tc

T
dT ′ Γ(T ′)

T ′ 4 H(T ′)

(∫ T ′

T

dT ′′

H(T ′′)

)3

, (2.10)

where T is the common temperature of the dark sector (DS) and the SM bath, Γ(T ) is the
bubble nucleation rate, H(T ) is the Hubble parameter, vw is the wall velocity and Tc is the
‘critical’ temperature where the minimum of the effective potential with non-vanishing vev
becomes a global minimum [52]. Hence, the temperature at which percolation occurs can be
computed by solving I(Tp) = 0.34 [53] with the approximation vw → 1. A discussion about
the bubble wall velocity in our model can be found in appendix A.

The dependence of the percolation temperature Tp on the model parameters can be seen
in figure 2. In the top panels Tp is shown as a function of the quartic coupling λ and gauge
coupling g for two values of the Yukawa coupling, y = 0 (left) and y = 0.5 (right). There
is a strong correlation between the values of λ and g that produce a first-order PT, with
lower values of Tp in the top-left end of the allowed band, and higher values of Tp in the
bottom-right. The disallowed areas correspond to parameter regions where the transition is
not first-order or it does not occur at all. These effects are better illustrated in the bottom
panels, where the color scale indicates the ratio Tp/Tc in the same parameter plane. The
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Figure 2. The percolation temperature Tp (top) and the ratio of percolation temperature and critical
temperature Tp/Tc (bottom) in the λ − g plane for Yukawa couplings of y = 0.0 (left) and y = 0.5
(right) and a vev of vϕ = 1 TeV. The coloured band shows the parameter region where a first-order
PT is possible.

amount of supercooling of the transition is largest when Tp is much lower than Tc and smallest
when both temperatures almost coincide. For the points above the coloured contours, the
potential barrier becomes so large that the bubble nucleation rate is too low for the transition
to reach percolation; the region below instead indicates a smooth crossover transition in
which no bubbles form since the potential does not develop a barrier between the phases.
For non-zero values of the Yukawa coupling y, the enhanced thermal corrections in the
effective potential cause a delay of the development of the true vacuum (cf. figure 1), thereby
decreasing the value of Tp. The vacuum also becomes deeper due to the Yukawa coupling,
which increases the tunneling rate close to the supercooled region, and thus slightly larger
values of g are within the allowed band. The grey shaded regions, finally, indicate parameter
combinations where the potential is unstable (as discussed above in section 2.2).
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The strength of the PT is quantified by the amount of released latent heat, described
by the difference in the trace θ ≡ gµνT µν of the energy momentum tensors between the
two phases [54],

∆θ =
[
−4∆Veff + T

∂∆Veff
∂T

]
Tp

> 0 , (2.11)

where ∆Veff is the difference in the effective potential between the vacua of the two phases.
A dimensionless quantity for the strength of the PT can be obtained by dividing ∆θ by the
total energy density of the SM and dark sector plasma,

α ≡ ∆θ/4
ρSM,p + ρDS,p

, (2.12)

where ρSM,p (ρDS,p) is the energy density in the SM (DS) at percolation. The last missing
piece for obtaining a GW spectrum is the speed of the PT, which can be determined through

β/H = Tp
d

dT

S3(T )
T

∣∣∣∣
T =Tp

, (2.13)

where S3 is the O(3)-symmetric bounce action for thermal tunneling.
In figure 3 we show how the transition strength α and transition speed β/H depend on

the model parameters, λ, g and y. The PT is relatively strong for most of the allowed region
α ∈ (10−2, 102) and it is particularly strong close to the supercooled limit, where percolation
is delayed (Tp ≪ Tc). On the other hand, the speed of the PT β/H becomes smaller in the
supercooling limit, reaching values of β/H ≈ 102–103.

2.4 Gravitational wave spectrum

The spectrum of GWs in our scenario is produced dominantly through bulk fluid motion in
the reheated plasma due to the large velocity-dependent friction from the emission of soft
dark photons in the bubble wall, yielding a terminal bubble wall velocity [55–57]. A discussion
of this argument can be found in appendix A. As the case of runaway bubbles can hence
be excluded, we neglect the contribution of bubble collisions to the GW signal. Since the
onset of turbulence as a GW source is not yet understood well enough to make quantitative
statements [7], and often requires complicated lattice simulations [58], we conservatively
consider sound waves the only relevant source of GWs emitted during the PT. Therefore,
the GW spectrum is exclusively determined by the set of parameters {α, β/H, Tp}. We
use semi-analytical approximations to compute the peak frequency and spectrum of GWs
from sound shell collisions, based on simulations [7]. Our computation of the GW spectrum
includes some corrections taking into account that the transition happens in a dark sector
and that the bubble wall dynamics are independent of the SM field content. The spectrum
of gravitational waves is thus computed as [12]

h2ΩGW(f) = Rh2 Ω̃
(

κsw α

α + 1

)2 ( β

H

)−1
Y S(f) . (2.14)
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Figure 3. The transition strength α (top) and speed β/H (bottom) of the PT, in the λ − g plane for
y = 0 (left) and y = 0.5 (right), with v = 1 TeV and ξ = 1.

In this expression, the prefactor Rh2 quantifies the redshift of the amplitude of the
emitted GW signal and is given by [11, 12]

Rh2 = Ωγh2
(

hSM,0
htot,p

)4/3(
gtot,p
gγ,0

)
= 1.653 · 10−5

(
100

htot,p

)4/3 (
gtot,p
100

)
, (2.15)

where Ωγh2 = 2.473 · 10−5 is the present radiation energy density [2]; hSM,0 = 3.93 and
gγ,0 = 2 are the entropy and energy degrees of freedom of the SM bath today [59]. The total
degrees of freedom at percolation gtot,p and htot,p are fixed through gtot,p = gSM,p + gDS,p and
htot,p = hSM,p + hDS,p, respectively. The normalization of the signal in eq. (2.14) is given by
Ω̃ = 3 × 0.012 × 0.687 × (8π)1/3 = 0.07, with the first two factors coming as normalization
constants from ref. [60], the third one being the overall normalization of the spectrum S(f)
to unity [7] and the fourth one arising due to the conversion from mean bubble separations to
β/H. The efficiency κsw of converting sound waves into GWs is calculated from ∆θ/(4 ρDS,p),
cf. eq. (2.11), using the high-vw approximation from ref. [61]. The factor Y takes into account
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the lifetime of the sources of GWs and is given by [7, 62]

Y = min [1, τshH] ≃ min
[
1,

3.38
β/H

√
1 + α

κsw α

]
. (2.16)

The spectral shape of the GWs is given by [5]

S(f) =
(

f

fpeak

)3( 7
4 + 3 (f/fpeak)2

)7/2

, (2.17)

with peak frequency [12]

fpeak = 8.9 mHz
(

Tp
100 GeV

)(
β/H

1000

)(
gtot,p
100

)1/2
(

100
htot,p

)1/3

, (2.18)

where we used that the peak frequency of the sound wave signal lies at 0.53 β at the time
of its emission [60].

We will refer to a GW signal h2ΩGW(f) as being observable by LISA, the Einstein Tele-
scope [63, 64] or pulsar timing arrays [65], if it achieves a sufficiently large signal-to-noise ratio.
This means that the signal will be observable if its peak amplitude h2Ωpeak

GW ≡ h2ΩGW(fpeak)
lies above the power-law-integrated (PLI) sensitivity curve at the peak frequency. The
threshold signal-to-noise ratios and the PLI curves used in this work were derived in ref. [10].

2.5 Parameter ranges

The computation of properties and GW spectrum of the PT in section 2.3 and 2.4, respectively,
depends only on the bare parameters of the Lagrangian in eq. (2.2), i.e. the gauge coupling
g, the quartic coupling of the dark Higgs λ, the Yukawa coupling of the dark fermion y

and the vacuum expectation value of the dark Higgs vϕ. In our study we are specifically
interested in exploring possible correlations between the DM relic density and a strong
GW signal in our model.

A strong GW signal typically requires sizeable α and values of β/H that are not too large.
From the discussion about figure 3, a strong first-order PT implies large but perturbative
values of both g and λ. Too small values of these two couplings would imply very large values
of β/H and correspondingly weak GW signals, and even cause issues of vacuum stability (for
large y, cf. right panel of figure 3). This in turn induces an upper limit on the value of y

as large values would cause an unstable vacuum for any perturbative value of g and λ. As
will be seen below in section 3, successfully producing the right DM relic density requires
mχ ≳ mϕ, which implies a lower limit y > 2

√
λ. Lastly, the vev vϕ is chosen in a range that

produces GWs in the frequency range of near-future GW observatories, such as LISA.
Consequently, we randomly draw parameters from distributions that are logarithmically

flat within the following ranges: 0.1 ≤ g ≤ 1, 10−4 ≤ λ ≤ 10−2, 0.01 ≤ y ≤ 0.7 and
10−3 GeV ≤ vϕ ≤ 103 GeV. We then discard parameters that cause the vacuum to be
unstable, that do not predict a first-order PT, or for which the PT is too supercooled
and never percolates, thereby removing 82% of the points drawn. The remaining 18% of
parameter points all feature a first-order PT with a corresponding GW signal. However, since
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g λ y vϕ mχ mϕ mA′

Benchmark point 0.67 0.0035 0.62 430 GeV 189 GeV 36 GeV 288 GeV

Table 1. Benchmark point used for discussing the thermalisation of visible and dark sector.

the percolation temperature is very sensitive to small changes in the couplings, the PT is
only strong enough to give an observable GW signal in certain small regions of parameter
space. Indeed, only about 1% of paramter points from the original sample feature strong
supercooling (Tp/Tc < 0.5).

We can quantify the fine-tuning required to obtain an observable GW signal by interpreting
our parameter scan as a sample drawn from the prior distributions of the parameters. We
then find that out of the parameter points that give a first order PT, only about 0.8% would
be observable with LISA, whereas this number increases to 10% if we select parameter points
that give a strongly supercooled PT. For the parameter ranges that we consider (in particular
of vϕ) none would be observable with pulsar timing arrays or the Einstein Telescope. We note
that these numbers do not correspond to rigorously calculated posterior probabilities, but
rather rough estimates based on sampling densities. More precise estimates would require a
different sampling strategy (see e.g. [66]), which is beyond the scope of this work.

We emphasize that this number is largely independent of the choice of priors as long
as we select only parameter points that predict any kind of first-order PT. The probability
to find parameter points that give a first-order PT does however depend sensitively on the
choice of priors. If we were to extend the prior ranges for all parameters to lower couplings,
the volume of parameter space without first-order PT would grow significantly. Choosing for
example g > 0.01 (instead of 0.1), λ > 10−5 (instead of 10−4) and y > 10−3 (instead of 0.01)
would decrease the fraction of parameter points with a first-order PT from 18% to 6%. Out
of these, 0.7% would be observable by LISA, which increases to 8.5% when considering only
points with a strongly supercooled PT. As expected, our results are not very sensitive to
different prior choices as we find that points that already have a first-order PT have a roughly
equivalent probability of being visible at LISA regardless of the parameter ranges. In later
sections, we will discuss how these numbers change when imposing additional constraints
on the dark sector, such as the relic density requirement.

Finally, when studying the effects of thermalisation in our model in section 4.2 it will be
convenient to identify a benchmark scenario with the right properties for the PT and DM
relic abundance. For reference the benchmark point is given in table 1.

3 Dark sector relic density

During the PT, the dark sector particles χ, ϕ and A′ all obtain masses proportional to
the dark Higgs vev vϕ. In the parameter regions of interest for a strong first-order PT, we
generally find g >

√
2λ and g > y/

√
2 and hence the dark photon is usually the heaviest

state in the dark sector, cf. eq. (2.3). Depending on the value of the Yukawa coupling y, the
lightest dark sector particle will instead be either the DM fermion or the dark Higgs boson,
as shown in figure 4. The dark sector equilibrises soon after the PT (see section 4 for a more
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Figure 4. The upper (lower) panels show the ratio of the dark Higgs boson mass mϕ (the dark
photon mass mA′) to the mass of the DM fermion mχ for y = 0.1 (left) and y = 0.5 (right), as a
functions of the gauge coupling g and the self-interaction λ. Note that these ratios are independent of
the dark Higgs vev.

detailed discussion). Typically, the heaviest particles will then first drop out of equilibrium as
their number densities become strongly suppressed. The relic abundance of the dark fermions
χ is thus determined through a freeze-out process [67] in the usual way. We assume that the
dark photon is unstable, decaying for example through kinetic mixing, and therefore does
not contribute to the DM relic density (unlike the case studied in ref. [22]).

In our model there are three possible DM annihilation processes that are relevant for
setting the DM abundance: χχ → ϕϕ, χχ → ϕA′ and χχ → A′A′. If the DM fermion is the
lightest particle in the dark sector, annihilation into other dark sector states is kinematically
forbidden for vanishing kinetic energy, such that the annihilation cross section becomes
exponentially suppressed at low temperatures. In this so-called ‘forbidden’ regime [29],
a relic abundance in accordance with observations requires that all mass scales must be
correspondingly smaller, or the relevant couplings (much) larger. For the parameter values
we are interested in here, it is therefore typically necessary for the DM particle to be heavier
than the dark Higgs boson, which in turn requires a sizeable Yukawa coupling y. For even
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Figure 5. Scatter plots and 1D distributions of the DM density ΩDMh2, the GW density ΩGWh2

and the GW peak frequency fpeak. For comparison, the dashed line shows the observed DM density,
ΩDMh2 = 0.12 [2]; grey shaded areas show the PLI sensitivities [10] of pulsar timing arrays, LISA and
the Einstein Telescope, respectively.

heavier DM, with 2mχ ≳ mϕ + mA′ , the annihilation channel χχ → ϕA′ opens up. This
process is a highly relevant contribution, once kinematically accessible, as it proceeds via
an s-wave; the annihilation into a pair of dark Higgs bosons, χχ → ϕϕ, on the other hand,
only proceeds via a p-wave.

To compute the DM relic density, we have calculated the amplitudes for all three processes,
see appendix B.3, and implemented them in DarkSUSY [68], which calculates the thermal
averages and solves the full Boltzmann equation [69]. While DarkSUSY allows precision
calculations of the relic density in a fully secluded dark sector with a varying temperature
ratio ξ between the dark and the SM sector, cf. ref. [70], we will set ξ = 1 for the purpose
of this section. We will revisit this assumption of thermal equilibrium between the two
sectors in section 4.

We show the results from the parameter scan described in section 2.5 in figure 5. The
three two-dimensional scatter plots show the correlation between the DM relic density ΩDMh2,
the peak frequency fpeak well as the peak amplitude Ωpeak

GW h2. One can immediately see
that ΩDM and Ωpeak

GW are not tightly correlated (with a correlation coefficient of 0.20), while
there exists a clear connection between the DM relic density and the peak frequency (with
a correlation coefficient of 0.85). We can trace this correlation back to the fact that both
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0.06 ≤ ΩDMh2 ≤ 0.12. Here, the color scale does not encode the vev, but the ratio of percolation
temperature Tp to the vev vϕ, thus indicating the amount of supercooling.

quantities are determined by the dark Higgs vev vϕ (indicated by the colour of each point).
A smaller value of vϕ implies a smaller DM mass and therefore a larger annihilation cross
section, which in turn results in a smaller relic density. At the same time, a smaller vϕ

also implies a smaller percolation temperature, and hence a smaller peak frequency. The
strength of the PT, on the other hand, depends on the details of the effective potential, and
can vary over many orders of magnitude for any given value of vϕ. We complement these
scatter plots by showing distributions of the derived quantities, in the form of histograms
based on our random scan described above. For example, one can infer that most samples
drawn in our setup correspond to a peak GW signal strength of Ωpeak

GW h2 ≈ 10−16, i.e. a few
orders of magnitude below the sensitivity of near-future GW observatories (indicated as grey
shaded areas). Note also that the DM density caps at ΩDMh2 ≈ 10, which would already
correspond to an overclosed universe; even higher values are avoided by our prior choice, in
particular the upper bound on vϕ and the lower bound on y.

In figure 6 we show the result of sharpening the relic density requirement by requiring that
0.06 ≤ ΩDMh2 ≤ 0.12. Demanding in this way that the fermionic DM candidate in our model
constitutes the dominant form of DM, the predicted range of peak frequencies of the GW
signal shrinks significantly — as expected from the discussion above. Interestingly, almost
all viable parameter points now predict a peak frequency between 0.1 mHz and 100 mHz,

– 15 –



J
C
A
P
0
5
(
2
0
2
4
)
0
6
5

largely overlapping with the frequency range to which LISA is sensitive. In fact, the peak
frequencies for those parameter points that result in the strongest signal are the same as
those where LISA is most sensitive. This striking correlation is a non-trivial feature of our
model and constitutes one of our main results. Let us note that a few points remain that
predict peak frequencies outside the LISA band. Much smaller values of fpeak, in particular,
correspond to parameter points in the ‘forbidden’ regime, mχ < mϕ, where DM annihilations
are exponentially suppressed at small temperatures. Smaller values of vϕ (and hence smaller
temperatures of the PT) can then still result in the correct DM relic abundance, but only at
the cost of significant tuning between the various couplings (as reflected by the rareness of
such parameter points, cf. the fpeak histogram at the top of the plot).

In contrast to figure 5, where the colour coding of each point represents the dark Higgs
vev, the points in figure 6 are coloured according to the percolation temperature of the PT,
normalized to the vev vϕ. Doing so allows us to confirm that the peak amplitude of the
GW spectrum is determined primarily by the amount of supercooling. In other words, if
the PT is delayed by a large potential barrier, the strength of the PT increases, yielding
strong GW amplitudes (as expected from figures 2 and 3). As discussed in section 2.5, the
predictions for the PT properties vary a lot with small changes of the model parameters,
and thus only certain regions of the parameter space predict a strong first-order PT. For
this reason, our model cannot in general guarantee a strong PT, and thus a GW signal that
is visible with next-generation GW observatories.

We can make this statement more precise if we interpret the sampling distributions of
the model parameters as prior probabilities (as we did in section 2.5), such that the density
of points in figures 5 and 6 can be interpreted as probability distributions for the observables
under consideration. As before, this makes it possible to quantify the amount of fine-tuning
required to obtain a strong first-order PT, through the fraction of points with a first order PT
that predict a signal observable with LISA. If we do not impose the relic density requirement
(figure 5), only 0.8% of points with a first-order PT predict a GW signal visible at LISA,
whereas this fraction increases to 3% once the relic density requirement is included (figure 6).
If we restrict ourselves to parameter points with a strongly supercooled PT, the fraction of
observable parameter points increases from 10% to 35%. Again, we have checked that this
number is not very sensitive to our choice of parameter ranges.

4 Thermalisation of the two sectors

In this section we revisit the assumption that the temperature ratio of the dark and visible
sectors is ξ = 1 throughout the PT. To do so, we first need to understand the evolution
of the dark sector temperature during the PT, and convince ourselves that the dark sector
quickly thermalizes with itself afterwards, such that the dark sector states remain in kinetic
equilibrium with each other until after dark sector freeze-out (i.e. chemical decoupling).
However, it is not necessarily the case that also the SM states are in kinetic equilibrium
with the dark sector, such that their temperature may differ from the one of the dark sector
both before and after the PT. We therefore discuss the various processes that allow for
the exchange of energy and entropy between the dark and the SM sector, and the resulting
Boltzmann equations. This enables us to identify the necessary portal couplings for efficient
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thermalisation. For the case of delayed thermalisation, after the end of the PT, we calculate the
resulting dilution of the GW signal due to the injection of entropy into the SM thermal bath.

For the purpose of illustration, we will in this section consider a specific benchmark point
that we selected from the random parameter scan discussed previously (see table 1). For ξ = 1,
the parameters of this point lead to α = 0.258, β/H = 874, Tn = 39.7 GeV, Tp = 39.1 GeV,
fpeak = 3 mHz, ΩDMh2 = 0.117, and Ωpeak

GW h2 = 3 · 10−13. The rationale behind choosing this
benchmark point is that i) the observed DM relic abundance is reproduced (for ξ = 1), and
that ii) the PT is sufficiently strong in order to obtain an observable signal in LISA. We have
explicitly checked that our choice is representative in the sense that other points fulfilling
these two criteria lead to a very similar temperature evolution and resulting predictions.

4.1 The dark sector temperature

As the bubbles of the broken phase expand, more and more dark sector particles will pass
through the bubble walls and enter the new phase. In the process, not only their rest masses
but also their kinetic energies increase dramatically, by converting the vacuum energy of the
dark Higgs field stored in the false vacuum. Here we neglect the small fraction of the energy
density that is converted into GWs and assume that the bubble walls have already reached
their terminal velocity, such that no energy is needed for their acceleration. As we have
learned in the previous section, in particular, the energy density of GWs produced in the PT is
bounded by Ωpeak

GW h2 < 10−10 and can therefore safely be ignored. We also neglect the effect of
bubble filtering [16, 71], i.e. we assume that all dark sector particles can enter the new phase.
This is a good approximation for sufficiently fast bubble walls, see appendix A for details.

Since the different particle species in the dark sector were all relativistic before the
PT, their number densities immediately after the PT will be comparable, even though
their masses will now be very different. Indeed, for strongly supercooled PTs the dark
photons (and possibly also the DM particles) will typically have a large mass compared
to the temperature of the plasma, such that their equilibrium number density would be
Boltzmann-suppressed. In other words, right after the PT the dark sector finds itself far
away from thermal equilibrium. Nevertheless, interactions between the different dark sector
particles are rather strong, and hence the heavier particles are expected to annihilate rapidly
into lighter ones, thereby restoring equilibrium.

As we will show below, the time required to reach equilibrium is negligible compared to
the duration of the PT, such that we can to a very good approximation define a dark sector
temperature of the broken phase T br

DS immediately after the PT. This temperature is obtained
from the temperature of the symmetric dark sector phase T sym

DS using energy conservation:

ρvac(T br
DS) + ρDS(T br

DS) = ρvac(T sym
DS ) + ρDS(T sym

DS ) , (4.1)

where T br
DS denotes the temperature in the broken phase and

ρDS(T br
DS) = π2

30 gDS(T br
DS)

(
T br

DS

)4
, (4.2)

where gDS(T ) takes into account the T -dependence stemming both from thermal (field-
dependent) masses and the minimum of the effective potential. Eq. (4.1) can easily be solved
numerically for T br

DS for a given T sym
DS .
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Figure 7. Contributions to the energy density around the PT for our benchmark point, as a function
of the SM temperature and for a temperature ratio ξ = 1. The energy densities in the symmetric and
broken phase of the dark sector have two contributions, namely the energy of the particles (‘rad’) and
the potential energy of the scalar field (‘vac’).

In practice, we find that slightly different temperatures T br
DS of the broken phase are

obtained when solving the equation taking T sym
DS = Tp or T sym

DS = Tn. This is because the
energy density of the broken phase redshifts differently from the symmetric phase. We have
therefore implemented a more detailed calculation, which tracks the temperature of the
symmetric and broken phases from bubble nucleation to percolation and applies eq. (4.1) at
each time step to the fraction of the universe entering the broken phase. Here the energy in
the bubble walls, which for relativistic bubble wall velocities redshifts like radiation [72], is
included in the energy in the symmetric phase. We find that this more careful treatment
gives very similar results to simply applying eq. (4.1) at T sym

DS = Tp. We therefore use the
latter prescription in the following when computing the temperature of the dark sector
after the phase transition.

For our benchmark point, we find that the energy density of the dark sector before
the PT is dominated by vacuum energy (see figure 7). In the broken phase, on the other
hand, the vacuum energy is very small and quickly relaxes to a value very close to its zero
temperature value as the temperature decreases further. This difference in vacuum energy
leads to a substantial reheating of the dark sector, which, as a result, is hotter than the SM
sector after the PT. For our benchmark point, we find that if the two sectors have equal
temperature before the PT, in the broken phase the dark sector temperature will be larger
by a factor of about 1.3. This reheating of the dark sector typically ensures that the dark
Higgs bosons will be relativistic immediately after the PT.

4.2 Thermalisation within the dark sector

In the discussion above we have assumed that the dark sector can be characterised by a
common temperature shortly after the PT. To justify this approach, we need an estimate of the
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time τ required to reach this equilibrium state and show that it is sufficiently small. For this
purpose, we calculate the interaction rate for each dark sector state X in thermal equilibrium:

ΓX =
∑
Y

⟨σXY v⟩neq
Y , (4.3)

where the sum is over all dark sector states Y , σXY denotes the total interaction cross
section of X and Y , brackets denote thermal averaging (for simplicity calculated by assuming
Boltzmann distributions) and neq

Y denotes the equilibrium number density of Y .
A total of 20 different processes contribute to the thermalisation of the dark sector,

the relative importance of which depends on the specific choice of parameters and the dark
sector temperature. In the interest of brevity we refrain from stating the thermalisation rates
explicitly. Broadly speaking, we find that ΓX is only a few orders of magnitude smaller than
mX . For example, dark Higgs bosons can thermalise via self-scattering, i.e. ϕϕ ↔ ϕϕ, for which
the scattering cross section is 9λ2/(8πs). For temperatures comparable to the dark Higgs boson
mass, we have s ≈ 4m2

ϕ and nϕ ≈ ζ(3)m3
ϕ/π2, such that Γϕ ∼ 10−7mϕ for the benchmark

point. Interactions of the dark Higgs bosons with dark fermions or dark photons benefit from
the larger couplings y, g ≫ λ, but suffer from a Boltzmann suppression if Tp < mχ, mA′ .

A rough estimate of the thermalisation timescale is then obtained via

τ = max
X

Γ−1
X . (4.4)

Given the timescale τ we can estimate the out-of-equilibrium fraction of the universe
F (t), which describes the relative volume of the universe that entered the broken phase so
recently that it has not had enough time to reach thermal equilibrium. The related false
vacuum fraction P (t), cf. eq. (2.10), describes the fraction of the universe which has not yet
transitioned to the new phase, such that the true vacuum fraction is given by Pt(t) = 1−P (t).
Its time derivative Ṗt describes the rate with which the volume is transitioning to the true
minimum of the potential for a given time t. We introduce the quantity

F (t) ≡ P (t − τ) − P (t) > 0 , (4.5)

which can hence be interpreted as the volume fraction Ṗt ∆t that just transitioned to the
broken phase within the small thermalization time scale ∆t = τ , cf. figure 7. The volume
fraction F becomes small exactly when the thermalisation timescale τ is small compared to
the transition timescale 1/β, as can be seen from the saddle point approximation of P (t)
around the percolation time tp:

F (t) ≈ exp
(
−0.34eβ(t−tp−τ)

)
− exp

(
−0.34eβ(t−tp)

)
≈ βτeβ(t−tp) exp

(
−0.34eβ(t−tp)

)
≤ 0.37βτ .

(4.6)

Here, the last term follows by inserting the time at which F (t) peaks, which is found to be
t ≈ tp − 1.08/β. Alternatively, one can interpret F as the volume fraction of a shell around
the bubbles with the width of the mean free path of the particles that just entered the bubbles.
In the left panel of figure 8 we show F as a function of T − Tp for our benchmark point. As
expected, we find that F takes its maximal value close to the percolation temperature Tp.
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Figure 8. Left: the black line shows the energy fraction of the dark sector that is out of equilibrium
for our benchmark point, as a function of the SM photon temperature. For reference, the fraction of
the dark sector in the broken phase is given by the orange line and the percolation temperature as
the dashed vertical line. Right: out-of-equilibrium fraction as a function of λ and g for y = 0.62 and
vϕ = 430 GeV.

Nevertheless, even at the peak the value is tiny, implying that the fraction of the universe
that is not in thermal equilibrium and therefore cannot be described by a temperature is
completely negligible. In the right panel of figure 8 we show the maximum value Fp at the
percolation temperature for more points from our parameter scan, varying both g and λ.
Similarly we find that for all our cases the thermalisation is fast compared to the transition
timescale. Even strongly supercooled points, where Fp becomes close to unity, are expected
to return to equilibrium before freeze out, since β/H ≫ 1.

So far, we have throughout assumed that chemical potentials in the dark sector can be
neglected after thermalization has taken place. This is certainly a good approximation as
long as at least the lightest state in the dark sector has a mass that is small compared to the
dark sector temperature, which is typically the case shortly after the PT. However, as the
universe continues to cool down, this assumption becomes increasingly critical. If we assume
that the dark sector cannot transfer its entropy to the SM thermal bath, the subsequent
evolution depends crucially on whether number-changing processes of the lightest state, such
as 3ϕ → 2ϕ, are efficient enough to maintain chemical equilibrium in the dark sector. If
this is the case, the dark sector temperature will decrease much more slowly than the SM
temperature, and the universe will enter a period of ‘cannibal’ domination [73, 74]. If, on
the other hand, number-changing processes are inefficient, the dark sector will develop large
chemical potentials and the universe will eventually enter a period of matter domination.
In both cases, the energy and entropy stored in the dark sector must later be transferred
to the SM heat bath in order to recover radiation domination before neutrinos decouple at
T ≈ 2 MeV, marking the onset of big bang nucleosynthesis [12]. Neither of these scenarios is
very desirable, as the GW signals from the PT will be strongly diluted in the process [11].

We are therefore more interested in the case where the dark and SM sector quickly
equilibrate after the PT, such that their temperatures become equal, chemical potentials
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become negligible, and the universe evolves approximately as in radiation domination. In
the following we discuss the processes that contribute to this process, and we derive the
coupling strengths required for it to happen rapidly enough.

4.3 Thermalisation of the dark and visible sector

The conceptually simplest way for the dark and visible sector to exchange entropy and
energy is via Higgs mixing [32, 75–78].1 Such a mixing arises from an additional term in
the scalar potential:

Vmix(H, Φ) = λhϕ|H|2|Φ|2 . (4.7)

As long as the vevs of both Higgs bosons vanish, the dominant process connecting the two
sectors is HH → ΦΦ. As soon as one of the two Higgs bosons acquires a vev, it can decay
into the other one, i.e. h → ΦΦ (if the electroweak symmetry breaks first) or ϕ → HH (if
the dark symmetry breaks first). If kinematically allowed, these decay processes typically
dominate over the 2 → 2 process for non-relativistic particles.

After both electroweak symmetry and the dark gauge symmetry have been spontaneously
broken, the Higgs mixing generates a non-diagonal mass term, which can be rotated away
by introducing the mixing angle

θ = λhϕvϕvh

m2
h − m2

ϕ

, (4.8)

where we have assumed θ ≪ 1 both in order to satisfy experimental constraints on the
properties of the SM-like Higgs boson and to ensure that thermal corrections from SM fields
to the effective potential are negligible so that the dark sector PT can be treated separately
from the EWPT. Both the masses and the vevs, and hence also the mixing angle, depend on
the temperature. As a result of this mixing, the dark Higgs boson obtains couplings to SM
fermions and gauge bosons proportional to θ. Of the greatest relevance for our discussion will
be the decay of dark Higgs bosons into bottom quarks b, with a tree-level decay width given by

Γϕ→bb̄ = 3mϕm2
b sin2 θ

8πv2
h

√√√√1 −
4m2

b

m2
ϕ

. (4.9)

To calculate the entropy transfer between the dark and visible sector, we define the
heat transfer rate

q̇ ≡ ρ̇ + 3H(ρ + P ) , (4.10)

which is related to the change of entropy density via

ṡ = −3Hs + q̇

T
. (4.11)

1A second possibility would be to consider kinetic mixing between the dark photon and SM hypercharge.
However, given that the dark photon is typically the heaviest state in the dark sector, it will be strongly
Boltzmann-suppressed at low temperatures, and therefore cannot efficiently keep the two sectors in equilibrium.
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At the same time, the first moment of the Boltzmann equation gives∫ d3p

(2π)3 E L[f ] = q̇ =
∫ d3p

(2π)3 E C[f ] . (4.12)

The general expression for the first moment of the collision operator for decays (including
relativistic corrections and quantum effects) was derived in refs. [79, 80]. It was shown
there that the leading relativistic effects (namely a time dilation of the decay proportional
to 1/γ and an increase of the injected energy by a factor γ) cancel, and it is therefore a
good approximation to assume that the decaying particle is at rest. The integral of the
collision operator thus gives

q̇ ≃ mϕ (ṅ + 3Hn) , (4.13)

and the evolution of the number density is given by the usual Boltzmann equation

ṅϕ + 3Hnϕ = −Γϕ→bb̄ neq
ϕ

(
nϕ

neq
ϕ

− 1
)

. (4.14)

Here neq denotes the equilibrium number density for TDS = TSM, whereas the actual number
density can be calculated from the dark sector temperature and the assumption of negligible
chemical potential. Putting everything together, we obtain

ṡDS = −3HsDS − mϕ

TDS
Γϕ→bb̄ neq

ϕ

(
nϕ

neq
ϕ

− 1
)

. (4.15)

A completely analogous equation holds for the evolution of the SM entropy density sSM. Since
the Hubble rate H depends on the combined energy density of both sectors, both equations
need to be solved simultaneously, together with the equation ȧ = Ha, which we will need
below to calculate the evolution of the GW spectrum.

In practice, we also include decays into lighter quarks and leptons, which become relevant
if decays into bottom quarks are kinematically forbidden. We further include the processes
h → ϕϕ and ϕ → hh if they are kinematically allowed. We do not, however, include 2 → 2
processes of the form qq̄ → gϕ or qϕ → qg, which may give a non-negligible contribution for
light dark Higgs bosons [81, 82]. Additional details, and the relevant equations, can be found
in appendix B. We note that analogous equations to the ones above can be derived for the
case that only one Higgs boson has a vev and the case that both symmetries are unbroken.

As discussed above, it is not necessarily the case that the dark sector is in kinetic
equilibrium with the SM at high temperatures. In the following, we will therefore take the
temperature ratio of the two sectors at the electroweak phase transition (EWPT), ξEWPT, as
a free parameter and calculate the evolution of ξ during the subsequent cosmological stages
(see appendix B for details). In figure 9 we show the visible and dark sector temperatures as
a function of scale factor for different initial values of ξEWPT, defined at TSM = 150 GeV. In
the four panels the portal coupling was set to the representative values λhϕ = 10−6 (top left),
3 · 10−7 (top right), 10−7 (bottom left) and 3 · 10−8 (bottom right). In each panel, we indicate
the moment of percolation by a vertical dot-dashed line; the approximate temperature of
the dark Higgs becoming non-relativistic (mϕ/TDS = 3) and the DM fermion freezing out
(mχ/TDS = 25) are indicated by horizontal dotted and dashed lines, respectively. We make
the following observations:
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Figure 9. Evolution of the dark sector temperature (solid) and the SM temperature (dashed) for
different values of the initial temperature ratio ξEWPT as a function of scale factor. The vertical lines
indicate the scale factor at percolation, which depends on the temperature ratio. The horizontal
lines indicate when the lightest state in the dark sector becomes non-relativistic (TDS = mϕ/3) and
approximately when the DM particles freezes out (TDS = mχ/25). The different panels correspond to
different values of the portal coupling λhϕ.

• For λhϕ = 10−6, the two sectors thermalise efficiently already before percolation. The
initial value of ξEWPT is therefore inconsequential for the subsequent evolution, and we
obtain the same results for all cases.

• For λhϕ = 3×10−7, the two sectors do exchange energy and entropy already in the unbro-
ken phase, but do not fully thermalise before percolation, such that ξp depends on ξEWPT.
After dark symmetry breaking, the two sectors thermalise rapidly, so that the subsequent
evolution, and in particular the relic density calculation, do not depend on ξEWPT.

• For λhϕ = 10−7, the energy exchange before dark symmetry breaking is completely neg-
ligible. Even after dark symmetry breaking, it will take a while for the temperatures of
the two sectors to approach each other. Nevertheless, the two sectors reach equilibrium
before the dark Higgs bosons become non-relativistic.
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• For λhϕ = 3 × 10−8, the two sectors do not quickly thermalize after the PT, and the
universe enters an early period of cannibal domination.2

In general the value of λhϕ needed to ensure thermalisation depends somewhat on the
dark Higgs vev, since for mϕ ≪ mh the mixing angle scales as θ ∝ λhϕvϕ. Moreover, for
small dark Higgs boson masses, decays into bottom quarks are kinematically forbidden and
thermalisation is less efficient. For the parameter points that reproduce the observed relic
density we find that the assumption ξ = 1 made in section 3 is well justified for λhϕ greater
than 10−6–10−5. This value should be compared to the currently strongest bounds from
direct detection experiments, which are only sensitive to λhϕ ≳ 10−3 [36].

5 Gravitational waves from hot dark sectors

While the analysis of the dark sector PT is simplest for λhϕ > 10−6, it is phenomenologically
interesting to also consider smaller values of λhϕ, such that the temperature ratio of the
two sectors before the PT may differ from unity. The reason is that ξp > 1 leads to an
enhancement of the GW signal, as a result of the larger total energy density in the dark
sector compared to the SM thermal bath [10, 11]. In this case, however, we also need to
consider what happens to the energy density of the dark sector after the PT.

If the transfer of energy from the dark to the visible sector after the PT is slow, the
energy density of the universe will eventually be dominated by non-relativistic dark sector
particles. This effect is already visible in figure 9, where for small values of λhϕ = 3 × 10−8

the temperature ratio ξ still differs from unity when the lightest dark sector particle becomes
non-relativistic. When the non-relativistic dark Higgs bosons eventually decay into SM
particles, their entropy is transferred to the thermal bath; this modifies the expansion history
of the universe and leads to a dilution of the GW signal. It is a priori unclear whether this
dilution effect dominates over the enhancement with increasing dark sector temperature, or
whether a net increase in the strength of GW signals remains. Moreover, the dilution effect
also shifts the GW frequencies and might thereby spoil the correlation between peak frequency
and relic density found in section 3. In the following we will investigate these effects in detail.

If the portal coupling is extremely small, in principle even the relic density calculation
could be modified. If the dark Higgs bosons become non-relativistic after freeze-out, in
particular, they may come to dominate the energy density of the universe at later times, and
dilute not only the GW energy density but also the DM energy density through their decays
(see e.g. ref. [83]). If, on the other hand, the dark Higgs bosons are non-relativistic already
during freeze-out, inefficient thermalisation between the two sectors may additionally imply
a non-trivial evolution of the dark sector temperature during freeze-out. While these are
interesting scenarios in their own right, they are beyond the scope of this work. Instead, we
will here focus exclusively on the case where the dark Higgs bosons decay sufficiently quickly
for the standard freeze-out calculation (with temperature ratio ξ = 1) to be valid.

2For the purpose of this plot, we assume that number changing processes in the dark sector remain efficient
throughout, such that the chemical potential of the dark Higgs boson vanishes and (in the absence of decays)
the dark sector temperature grows relative to the SM temperature.
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5.1 Dilution of gravitational waves

We described the GW spectrum in section 2.4 under the assumption of equal initial tempera-
tures between the dark and SM sectors and the absence of any entropy injection into the
SM bath. If the temperatures are unequal, the total degrees of freedom used in eqs. (2.15)
and (2.18) are modified as [84]

gtot,p = gSM,p + gDS,p ξ4
p , (5.1)

htot,p = hSM,p + hDS,p ξ3
p , (5.2)

where the temperature ratio at percolation ξp is derived from the initial temperature ratio
ξ by assuming entropy conservation in the dark sector, which is valid before the onset
of thermalization of the two sectors (see section 4.2). Gravitational waves redshift like
radiation, such that the spectrum ΩGW observed today can be calculated from the emitted
spectrum Ωem

GW as

ΩGW(f) =
(

ap
a0

)4 (Hp
H0

)2
Ωem

GW

(
a0
ap

f

)
≡ R Ωem

GW

(
a0
ap

f

)
. (5.3)

Here we assume that all modes redshift equally and thus ignore possible spectral features,
which can for instance arise in the case of an early matter domination [85]. This is reasonable
as we are only interested in the GW spectra close to their peak. Assuming entropy conservation
between the end of the phase transition and today, we have

a0
ap

=
(

hSM,p
hSM,0

)1/3(
TSM,p
TSM,0

)
. (5.4)

Together with eq. (5.3) this directly yields the previously used eq. (2.15). If entropy is
however not conserved in the SM bath at early times, the ratio of scale factors a0/ap in
eq. (5.4) needs to be corrected by a factor of D

1/3
SM , where DSM = SSM,0/SSM,p [11, 86]. We

hence find, more generally, that

Rh2 = Ωradh2

D
4/3
SM

(
hSM,0
hSM,p

)4/3
gtot,p

2 = Ωradh2

D4/3

(
hSM,0
htot,p

)4/3
gtot,p

2 , (5.5)

where we introduced the more convenient dilution factor D ≡ DSM hSM,p/htot,p [11, 86].
Analogously, the peak frequency obtains an additional redshift for the case of a non-conserved
SM entropy and hence reads

fpeak = 8.9 mHz
D1/3

(
TSM,p

100 GeV

)(
β/H

1000

)(
gtot,p
100

)1/2
(

100
htot,p

)1/3

. (5.6)

We show in figure 10 the dilution factor D, as a function of the portal coupling λhϕ. Here,
we choose the same benchmark point as studied in section 4, and show the result for different
values of the initial dark sector temperature ratio ξEWPT, defined at TSM = 150 GeV. As
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Figure 10. Dilution factor D, cf. eq. (5.5), as a function of the portal coupling λhϕ, and for different
values of the initial temperature ratio ξEWPT as indicated.

expected, for sufficiently large λhϕ there is no significant dilution,3 as entropy is conserved and
only radiation degrees of freedom contribute to the energy content of the universe. However,
with decreasing λhϕ this is no longer the case and the dilution factor grows, becoming
sizeable for λhϕ ≪ 10−7.

5.2 Results

We are finally in the position to calculate the GW signal for ξ ̸= 1 and λhϕ < 10−6. We show
the result in figure 11, for various initial values of the temperature ratio as well as portal
couplings. As anticipated, a net enhancement of the GW signal is found for ξEWPT > 1,
provided that λhϕ is sufficiently small for the sectors to not equilibrate before the PT
(cf. figure 9). The enhancement saturates for ξEWPT ≳ 2, see also the discussion in ref. [11],
implying a dark sector energy density that initially dominates over that of the SM sector.
For too small portal couplings λhϕ ≲ 3 × 10−8, on the other hand, the effect of dilution
becomes relevant and the GW signal starts to become suppressed. Crucially, changing ξ

and λhϕ does not significantly affect the peak frequency, such that the GW signal remains
within the LISA sensitivity range.

We can now test the robustness of our results from section 3, where we assumed ξ = 1
and λhϕ > 10−6, by allowing larger values of ξ and smaller values of λhϕ. In figure 12
we show the same result as in figure 6, but now for ξEWPT = 2 and λhϕ = 10−7. For
comparison we show the 1D distributions from figure 6 as red lines. In this plot we have
removed points for which the dark sector temperature still differs significantly from the SM
temperature when the dark Higgs boson becomes non-relativistic, i.e. for which ξnr > 1.1
at TDS,nr = mϕ/3. The reason is that for such cases our final predictions depend on the

3In the limit of large portal couplings λhϕ, the dilution factor D approaches a value slightly larger than 1.
This is an expected feature, indicating a negligible dilution effect that is entirely due to the additional degrees
of freedom in the combined thermal bath of SM and dark sector particles and not a consequence of additional
entropy injection (with respect to ΛCDM) into the SM bath after the PT.
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Figure 11. Gravitational wave signal for the same scenarios as considered in figure 9, i.e. for various
values of the portal coupling λhϕ (different panels) and the initial temperature ratio ξEWPT (different
colours).

details of chemical decoupling within the dark sector, which we do not study further in
this work. While this requirement removes almost half of the parameter points, it does not
introduce any significant bias, i.e. the distributions of fpeak and Ωpeak

GW h2 look very similar
with and without this additional requirement.

The parameter combination ξEWPT = 2 and λhϕ = 10−7 leads to a nearly maximal
enhancement of the GW signal. As expected, we find that the peak position of the GW signal
is not affected, such that the frequency range implied by the observed DM relic abundance
remains within the LISA sensitivity window. The amplitude of the GW signal, on the
other hand, is slightly enhanced, as can be seen from the comparison in the corresponding
one-dimensional histogram.

We can make this statement more precise by once again interpreting the density of points
in the scatter plots as a probability distribution for the observables. Compared to figure 6,
we find that the probability to obtain a signal observable with LISA increases from 3% to 8%.
Limiting ourselves to parameter regions with strong supercooling, the fraction of observable
events increases from 35% to 69%. We summarize our findings in table 2.
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Figure 12. Same as figure 6, but without the assumption of thermal equilibrium between the two
sectors. Specifically, we consider ξEWPT = 2 and λhϕ = 10−7. Compared to the situation in figure 6
(indicated by the red lines in the 1D histograms), the GW amplitude is shifted to slightly larger values,
while the peak position remains almost unaffected.

Fraction of parameter points observable by LISA
ξEWPT =1, λhϕ =10−6 ξEWPT =2, λhϕ =10−7

Full sample 0.1% 0.5%

First-order PT 0.8% 3%
First-order PT + relic density 3% 8%

Strong supercooling 10% 21%
Strong supercooling + relic density 35% 69%

Table 2. Fraction of parameter points that predict an observable GW signal for LISA after imposing
various selection requirements on the sample of points drawn from the parameter ranges discussed in
section 2.5.

We emphasize that this large increase is a result of fixing ξ and λhϕ to particular values.
If we instead vary ξ and λhϕ as part of the scan, most parameter combinations will either
give very similar results to the case ξ = 1 considered in section 3 or lead to an extended
period where the dark sector energy density dominates.
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6 Conclusions

In this work we explored correlations between the DM relic density and GW signals arising
from a first-order PT that breaks a U(1)′ gauge symmetry and gives rise to the mass of
the fermionic DM particle. We demonstrated that, while the amplitude of the GW signal
depends on the details of the effective potential and can vary over many orders of magnitude,
the peak frequency is tightly constrained once we impose the observed value for the DM
relic abundance. Intriguingly, the peak frequency is found to lie exactly in the milli-Hertz
range, which will be explored by the LISA mission.

The dark sector considered in this work is characterised by four parameters: the dark
gauge coupling g, the quartic coupling of the dark Higgs field λ, the dark Yukawa coupling
y and the dark Higgs vev vϕ. As a first step, we calculated the effective potential and
the percolation temperature of the PT and identified the regions of parameter space that
give a strong (large α) and not too fast (β/H ∼ 102–104) PT, corresponding to potentially
observable GW signals. We showed in particular that large GW signals require sizeable
couplings g and λ and occur also for large values of y. The relic density of the dark sector is
determined by annihilations of DM fermions into pairs of dark Higgs bosons. The requirement
to match the observed DM relic density then requires that the DM fermion cannot be much
lighter than the dark Higgs boson, with mass mϕ ∼ vϕ, which in turn implies a sizable
Yukawa coupling and a DM mass that is comparable to the dark Higgs vev vϕ. The dark
Higgs vev, on the other hand, determines the percolation temperature and hence the peak
frequency of the resulting GW signal. This connection leads to a tight correlation between
relic density and GW peak frequency. Through comprehensive scans of the parameter space,
we confirmed that this correlation is indeed highly generic in our model.

A rigorous statistical interpretation of our results is beyond the scope of this work, but
some estimates of the significance of the samples can be performed. A rough measure of the
fine-tuning required to have a visible signal at LISA can be obtained by assuming that the
sampling distributions of the parameters act as prior probabilities, and that the sampling
density of points hence indicates the posterior distributions of derived quantities. Indeed,
the majority of points drawn from these distributions do not feature any first-order PT at
all. Out of the points that feature a strongly-supercooled PT (Tp/Tc < 0.5), the probability
of producing a visible signal at LISA in our model is around 10%. With the additional
requirement that the observed DM relic abundance be reproduced, this probability increases
to 35%, as a result of the strong correlation between the predicted relic density and the
peak frequency of the GW signal (see figure 6).

We then studied two connected questions: how does the dark sector transfer its energy
density to the Standard Model? And is it justified to assume the same temperature for both
sectors? Indeed, the PT leads to an increase of the dark sector temperature, as vacuum energy
is converted into rest mass and kinetic energy. Having confirmed that the dark sector itself
thermalises immediately after the PT, we discussed in detail how the two sectors thermalise
with each other for the specific case that the two Higgs bosons in the theory interact via the
portal coupling λhϕ. After both electroweak symmetry breaking and dark sector symmetry
breaking, this interaction leads to mixing between the Higgs bosons, such that they can
decay into each other as well as into fermions of both sectors.
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We derived and solved the Boltzmann equations for the entropy transfer between the two
sectors and showed that for λhϕ > 10−6 the assumption of equal temperature for both sectors
is well justified. This portal coupling is small enough to be consistent with all laboratory
constraints, in particular with direct detection experiments. For even smaller portal couplings,
on the other hand, the temperatures of the two sectors may differ significantly, motivating us
to consider the initial temperature ratio ξEWPT as a free parameter. While small values of
λhϕ combined with large initial values of ξEWPT may lead to an increase in the amplitude of
the GW signal, the dark Higgs bosons will decay only slowly after the PT and may end up
dominating the energy density of the universe. The resulting entropy injection would then
lead to a substantial dilution of GW signals. We find that for λhϕ ≈ 10−7 a net enhancement
remains, demonstrating that it is possible to have ξ > 1 during the dark sector PT while at
the same time avoiding the dilution of the GW signal due to sufficiently rapid thermalisation
afterwards. Rpeating our parameter scans for ξ = 2 and λhϕ = 10−7, we find that the impact
on the GW spectrum is only modest; while the typical amplitude is slightly enhanced, the
peak frequency remains unchanged. In combination, these effects increase the fraction of
points with a strongly supercooled PT that would be observable in LISA to 69%. Hence,
our conclusion regarding the correlation between the DM relic abundance and the GW peak
frequency applies also to dark sectors that thermalise only slowly with the Standard Model.

An interesting open question is how the relic density calculation would change for even
smaller values of the portal coupling than what we consider. In this case, the energy density
of the universe would be dominated by non-relativistic dark Higgs bosons, which may develop
a chemical potential if number-changing processes are inefficient. The relic density calculation
then requires solving a coupled set of Boltzmann equations with non-trivial evolution of
the dark sector temperature. While the details of this calculation are beyond the scope
of this work, the general expectation is that the DM relic abundance would be increased.
This might open up the possibility to have a dark sector PT in the nano-Hertz frequency
range and hence of interest in the context of recent results from pulsar timing arrays [87–89].
Another promising avenue for further investigations opens up due to our findings regarding
the bubble wall velocity presented in appendix A. There exists a potentially relevant part in
the parameter space of our model in which the Bödeker-Moore criterion hints towards non-
relativistic bubble wall velocities. For such low wall speeds the effect of bubble filtering [16]
may be non-negligible, and the calculation of the DM relic abundance is expected to be
more involved than presented here.

Let us finally mention that even for tiny portal couplings there is a chance to actually
detect the DM particles that we consider: unlike for annihilation into dark Higgs boson
pairs, the mixed annihilation channel into one dark Higgs boson and one dark photon is
not suppressed in the limit of small DM velocities. If kinematically allowed, it may thus
lead to observable signals in indirect detection experiments [90] such as CTA [91]. Such an
observation would raise the possibility to explore in practice the correlations studied in this
work and pin down the detailed structure of the dark sector.
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A Dark bubble walls

In addition to the strength α of the PT, its speed β/H, the percolation temperature Tp and
the temperature ratio ξp, it is also necessary to know the speed of the bubble walls vw in
order to determine the processes that dominate the GW signal from a dark sector PT. While
the former parameters can be obtained from the effective potential Veff(ϕ, T ), the bubble
wall velocity depends on plasma effects of the expanding bubble walls and therefore requires
additional considerations. For bubbles expanding into the vacuum (i.e. if bubbles expand into
a plasma that is not influenced by a change of the scalar vev), there is no source of friction,
such that bubble walls can accelerate up to the point of their collision. For walls that interact
with the surrounding plasma, on the other hand, several model-dependent sources of friction
have been discussed [55, 92–95]. If the friction increases with the bubble wall velocity, the
acceleration of the bubble walls eventually stalls and a terminal velocity is reached. In this
case, the bulk motion of the plasma dominates the GW spectrum [57].

In this paper we take the approach suggested in ref. [96], i.e. we show that vw is either
expected to be non-relativistic in our model or that the bubbles are relativistic, but do not
run away due to the emission of soft gauge bosons in the bubble walls. We conclude that the
plasma motion is responsible for the dominant part of the GW signal and the contribution
from bubble wall collisions is negligible.

To decide whether a bubble wall can accelerate up to relativistic velocities, we use the
Bödeker-Moore criterion [93], which relates the velocity-independent leading-order (LO)
bubble wall friction PLO to the amount of liberated vacuum energy density ∆Veff:

Bödeker-Moore criterion:

∆Veff > PLO Relativistic bubble walls
∆Veff < PLO Non-relativistic bubble walls

. (A.1)

We emphasize that this criterion is insufficient to decide whether walls can run away (i.e. ac-
celerate indefinitely), because of the next-to-leading-order (NLO) friction PNLO, which scales
with powers of γw = 1/

√
1 − v2

w [55, 56, 97]. Bubbles can run away only if ∆Veff > PLO+PNLO
for all vw. Otherwise they will reach a relativistic terminal velocity given by the equilibrium
of forces, ∆Veff = PLO + PNLO.
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The LO friction due to particles acquiring a mass when crossing the bubble wall is
given by [61, 93]

PLO ≃
∑

i

gi ci
∆m2

i

24 T 2
n , (A.2)

where ∆m2
i is the positive change of the mass square of particle species i during the PT, gi is

the corresponding number of degrees of freedom, and ci = 1 (1/2) for bosons (fermions). This
expression assumes that the particle masses outside the bubble are below the dark sector
temperature. For ultra-relativistic bubble walls, the production of heavy particles with mass
up to γwTn can also add to the LO friction [94]. For the dark sector considered in this work,
all particles are light before the PT and subsequently obtain a mass comparable to the scale
of the PT, such that (A.2) is the only relevant contribution to the LO friction.

In the case of a broken U(1)′ with a fermionic species, the LO friction reads [61]

PLO ≃
(
3m2

A′ + m2
ϕ + 2m2

χ

) Tp
2

24 ≈ m2
A′ Tp

2

8 , (A.3)

where in the last step we have used that the dominant contribution comes from the heaviest
state in the dark sector, which in the parameter regions of interest is the dark photon.
The amount of released vacuum energy ∆Veff can be estimated from the zero-temperature
potential, which gives

∆Veff ≈ λ

4 v4
ϕ =

m2
ϕ

8 v2
ϕ . (A.4)

Hence we find that the Bödeker-Moore criterion for relativistic bubble walls is satisfied if
mϕ/mA′ > Tp/vϕ, which is the case for the parameter regions that give strongly supercooled
PTs corresponding to observable GW signals (Tp ≲ 0.1 vϕ). In these parameter regions, the
bubble walls are therefore expected to be relativistic, vw → 1. This finding also implies
that we can neglect the effect of bubble filtering, which is only relevant in the (deeply) non-
relativistic regime vw ≪ 1 [16, 71]. In the regions in which weaker GW signals are expected,
the Bödeker-Moore criterion instead hints towards slower bubble walls, see figure 13.

The NLO friction created by the emission of soft dark photons into the broken phase
quickly starts to grow with γw. The bubble walls will therefore reach a terminal, asymptotic
bubble wall velocity which is close to the speed of light. The precise value of γterminal

w is
unnecessary for our purposes, as the existence of a terminal yet relativistic bubble wall
velocity is sufficient to assume a dominant GW emission through bulk fluid motion. A more
refined calculation of the respective energy budgets for the processes emitting gravitational
radiation was performed in refs. [98–100]. In ref. [98] it was shown that for sufficiently
high terminal bubble wall velocities the fluid profiles are strongly peaked, such that the
emitted GW spectral shapes are in fact indistinguishable from bubble collisions. We conclude
that it is hence a reasonable approximation to work with a GW spectrum that is solely
sourced through sound waves.
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Figure 13. The leading-order friction PLO over the difference ∆Veff in potential energy between the
true and false vacuum phases as a function of the quartic coupling λ and the gauge coupling g for
values of the Yukawa coupling y = 0 and y = 0.5. Values greater than one indicate that relativistic
bubble wall velocities cannot be reached, cf. eq. (A.1). For values smaller than one, a relativistic
terminal velocity is expected.

B Boltzmann equations for thermalisation and dark matter freeze-out

Here we discuss the processes we consider for the entropy transfer between the DS and the SM.

B.1 Thermal mixing angle

The Higgs mixing angle defined in eq. (4.8) depends on temperature through the masses and
vevs of the two Higgs bosons. The temperature dependence of the dark Higgs boson can
be directly obtained from the effective potential, whereas we follow ref. [79] to implement
the temperature dependence of the SM Higgs boson. For large values of the dark Higgs
vev, we sometimes encounter the situation that the SM Higgs and dark Higgs mass become
similar or even cross, in which case the mixing angle apparently diverges. To regulate this
unphysical divergence, we have to include the finite width Γh of the Higgs resonance. As
shown in ref. [82], including the width leads to an effective mixing angle given by

θ2
eff(T ) = (λpvh(T )vϕ(T ))2

(m2
ϕ(T ) − m2

h(T ))2 + (mϕ(T )Γh)2 . (B.1)

B.2 The Boltzmann equation for entropy transfer

In our analysis we specify the initial conditions, i.e. the temperature ratio ξEWPT of the dark
sector and SM bath at the EWPT, for which we take TEWPT = 150 GeV. Which processes
contribute to the thermalisation of the two sectors depends on whether or not the U(1)′

gauge symmetry is already broken at this point. We consider two different timelines:

• The EW symmetry breaks before the dark sector PT. This is the case for the majority
of our parameter space. Here, the thermalisation between the two sectors is initially
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determined by the processes hh ↔ ΦΦ and the decay of the SM Higgs h → ΦΦ.
Additional processes can only contribute after the dark sector PT.

• The dark sector PT occurs before EW symmetry breaking. This can happen for
parameter points with a large vev of the dark Higgs and not too strong supercooling.
Once both symmetries are broken, thermalisation proceeds via hh ↔ ϕϕ, the decays of
the SM Higgs into dark Higgs h → ϕϕ if it is kinematically allowed, and the decays of
the dark Higgs into SM particles ϕ → SM SM through Higgs mixing.

In the following we give the relevant expressions contributing to the entropy transfer.

B.2.1 2 → 2 processes

In most regions of parameter space, the dark sector phase is unbroken immediately after the
EWPT, such that there are no dark Higgs boson decays that can transfer entropy between
the two sectors. Here the 2 → 2 process induced by the portal coupling ΦΦ ↔ hh become
relevant. Since the particles’ thermal masses are smaller than the temperature, we cannot
take the usual non-relativistic approach. Instead we will follow the relativistic treatment of
the calculation of the entropy transfer developed in refs. [101, 102], which we briefly sketch
here. The heat transfer for 2 → 2 processes can be expressed as

q̇
∣∣
2→2 =

∫ d3p

(2π)3 EC[f ]

=
∫ d3p1

(2π)3
d3p2

(2π)32E2

d3k1
(2π)32Ek1

d3k2
(2π)32Ek2

|M|2(2π)4δ(Σp)

× f(p1)f(p2)(1 + f(k1)(1 + f(k2))

=
∫ d3p1

(2π)32E1

d3p2
(2π)32E2

8E1F (p1, p2)σ(p1, p2)f(p1)f(p2) . (B.2)

Here the final state statistical factors are absorbed into the cross section and F (p1, p2) =√
(p1 · p2)2 − m2

1m2
2. It is easiest to calculate this cross section in the center of mass frame.

However, since the Bose-Einstein and Fermi-Dirac distributions are not Lorentz-invariant
we have to apply a Lorentz boost Λ from the cosmic rest frame where u = (1, 0, 0, 0)T into
the center of mass frame, which can be parameterised by the rapidity η and two angles θ

and φ; for details see ref. [101]. The phase space distribution becomes

f(k) = 1
eu·k/T ∓ 1

Λ→ fΛ(k) = 1
e(k0 cosh η+k1 sinh η)/T ∓ 1

. (B.3)

With this, we can rewrite the center of mass cross section as

σCM(p1, p2) = 1
(2π)216F (p1, p2)

∫
dφd cos θ |M|2

√
E2 − m2

f

E
((1 + fΛ(k1))(1 + fΛ(k2))) .

(B.4)
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The matrix element for the processes ΦΦ → hh is at tree level simply given by M = iλhϕ. For
this angle-independent transition amplitude, we can integrate over the solid angle and obtain

σCM = |M|2

64πE2
T√

E2 − m2
Φ sinh η

1
1 − e− 2E

T
cosh η

ln

sinh
(

E cosh η+
√

E2−m2
h

sinh η

2T

)
sinh

(
E cosh η−

√
E2−m2

h
sinh η

2T

)


︸ ︷︷ ︸
≡λ(E,η,T,mh)

. (B.5)

In the case of initial and final states with respectively equal masses, eq. (B.2) reduces to

IΦΦ→hh ≡ 2TDS
π4

∫ ∞

mΦ(T )
dE
√

E2 − m2
ΦE4

∫ ∞

0
dη

sinh η cosh η

e2E cosh η/TDS − 1
ln λ(E, η, TDS, mΦ) σCM .

(B.6)

This expression can now be efficiently evalutated numerically. An analogous expression is
obtained for the process hh → ϕϕ.

We note that in principle there are additional 2 → 2 processes that may contribute to
thermalisation. The process ϕϕ → tt̄ via an off-shell SM Higgs boson is strongly Boltzmann-
suppressed below the EWPT [79] and does not give a relevant contribution in the temperature
range that we consider. However, processes such as ϕ+q → g+q with a quark in the t-channel
can give a relevant contribution if the decay ϕ → bb̄ is kinematically forbidden [81, 82]. Since
this is the case only in a very small fraction of the parameter space that we consider, we
neglect these processes, thus giving a conservative estimate of the thermalisation rate.

B.2.2 Standard Model Higgs boson decays

After both symmetries are broken and for temperatures comparable to the SM Higgs boson
mass, a second process of interest besides dark Higgs decays is the resonantly enhanced
pair-annihilation of dark Higgs bosons into predominantly bottom quarks: ϕϕ → h → bb̄. In
thermal equilibrium, the rate of this process can be related to the inverse process, which
is the decay h → ϕϕ with partial width given by

Γh→ϕϕ =
(m2

h + 2 m2
ϕ)2 sin2 2θeff

128π mh

(
1 −

4 m2
ϕ

m2
h

)1/2( 1
vϕ

cos θeff + 1
vh

sin θeff

)2

. (B.7)

This gives the additional term in the heat transfer rate

q̇
∣∣
h→ϕϕ

= −mhΓh→ϕϕneq
h

1 −
(

nϕ

neq
ϕ

)2
 . (B.8)

Before the dark sector symmetry breaking, we also have the decay h → ΦΦ with the decay rate

Γh→ΦΦ =
λ2

hϕv2
h

128π mh
, (B.9)

which can be treated in analogy to the case above.
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B.2.3 Full Boltzmann equation

The full Boltzmann equation that we solve before the PT, in case it occurs after the EWPT
then reads

ṡDS + 3HsDS = − mh

TDS
Γh→ΦΦneq

h

( nϕ

neq
ϕ

)2

− 1

− 1
TDS

IΦΦ→hh + 1
TDS

Ihh→ΦΦ . (B.10)

The equation for the case of the PT occuring before the EWPT follows analogously. After
both symmetries are broken the full Boltzmann equation reads

ṡDS + 3HsDS = − mϕ

TDS
Γϕ→SMSMneq

ϕ

(
nϕ

neq
ϕ

− 1
)

+ mh

TDS
Γh→ϕϕneq

h

1 −
(

nϕ

neq
ϕ

)2


− 1
TDS

Iϕϕ→hh + 1
TDS

Ihh→ϕϕ , (B.11)

where we use the decay widths of the SM Higgs into other SM particle pairs from ref. [36].
The equations for the SM entropy follow analogously.

B.3 Annihilation cross sections

In the following we list the various DM annihilation cross sections in the non-relativistic limit,
up to second order in the CMS velocity v (of each of the DM particles):

(σv)χχ→A′A′ =
m4

A′(m2
χ − m2

A′)3/2

64π v4
ϕ mχ(m2

A′ − 2m2
χ)2

+
v2
√

m2
χ − m2

A′

384π v4
ϕ mχ(m2

ϕ − 4m2
χ)2(m2

A′ − 2m2
χ)4

×
[
144m12

A′m2
χ + 2m10

A′(7m4
ϕ − 88m2

ϕm2
χ − 432m4

χ)

+ 128m10
χ (m4

ϕ + 8m4
χ) − 64m2

A′m8
χ(3m4

ϕ + 16m2
ϕm2

χ + 32m4
χ)

+ 4m4
A′m6

χ(17m4
ϕ + 600m2

ϕm2
χ + 592m4

χ)
+ m8

A′(−73m4
ϕm2

χ + 1128m2
ϕm4

χ + 1840m6
χ)

+ 4m6
A′(25m4

ϕm4
χ − 648m2

ϕm6
χ − 496m8

χ)
]

+ O
(
v4
)

(B.12)

(σv)χχ→ϕϕ =
v2mχ

√
m2

χ − m2
ϕ

192π v4
ϕ(m2

ϕ − 4m2
χ)2(m2

ϕ − 2m2
χ)4

(
3m4

ϕ − 8m2
ϕm2

χ + 8m4
χ

)
×
(
9m8

ϕ − 64m6
ϕm2

χ + 200m4
ϕm4

χ − 352m2
ϕm6

χ + 288m8
χ

)
+ O

(
v4
)

(B.13)
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(σv)χχ→A′ϕ

=
(m4

A′ −2m2
A′m2

ϕ+m4
ϕ−8m2

A′m2
χ−8m2

ϕm2
χ+16m4

χ)3/2

2048πv4m4
χ

+
v2
√

m4
A′ +(m2

ϕ−4m2
χ)2−2m2

A′(m2
ϕ+4m2

χ)
12288π v4

ϕm4
χ(m2

A′ −4m2
χ)2(m2

A′ +m2
ϕ−4m2

χ)4

×
[
−2m14

A′(11m2
ϕ−228m2

χ)−16m4
χ(m2

ϕ−4m2
χ)4(15m4

ϕ−80m2
ϕm2

χ+16m4
χ)

−11m16
A′ −m12

A′(−11m4
ϕ−1200m2

ϕm2
χ+7264m4

χ)
+4m10

A′(11m6
ϕ+266m4

ϕm2
χ−4328m2

ϕm4
χ+15136m6

χ)
+8m2

A′m2
χ(m2

ϕ−4m2
χ)2(15m8

ϕ−244m6
ϕm2

χ+1280m4
ϕm4

χ−2880m2
ϕm6

χ+6912m8
χ)

−m4
A′(m2

ϕ−4m2
χ)2(11m8

ϕ−344m6
ϕm2

χ+1808m4
ϕm4

χ−8704m2
ϕm6

χ+80384m8
χ)

−m8
A′(−11m8

ϕ−32m6
ϕm2

χ+12464m4
ϕm4

χ−114688m2
ϕm6

χ+291840m8
χ)

−2m6
A′(11m10

ϕ −140m8
ϕm2

χ+1216m6
ϕm4

χ−29056m4
ϕm6

χ+201984m2
ϕm8

χ−412672m10
χ )
]

+O
(
v4
)

(B.14)
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