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Abstract
We calculate the conductance of a junction between a disordered superconductor 
and a very strong half-metallic ferromagnet admitting electrons with only one spin 
projection. A usual mechanism of Andreev reflection is strongly suppressed in this 
case since Cooper pairs are composed of electrons with opposite spins. However, 
this obstacle can be overcome if we take into account spin-orbit scattering inside the 
superconductor. Spin-orbit scattering induces a fluctuational (zero on average) spin-
triplet component of the superconducting condensate, which is enough to establish 
Andreev transport into a strong ferromagnet. This remarkably simple mechanism is 
quite versatile and can explain long-range triplet proximity effect in a number of 
experimental setups. One particular application of the suggested effect is to measure 
the spin-orbit scattering time �

SO
 in disordered superconducting materials. The value 

of Andreev conductance strongly depends on the parameter Δ�
SO

 and can be notice-
able even in very disordered but relatively light metals like granular aluminum.

Keywords  Andreev reflection · Proximity effect · Spin-orbit scattering · 
Ferromagnetism

1  Introduction

Andreev reflection [1] is a fundamental process underlying electron transport 
through an interface between a superconductor and a normal metal. An elec-
tron excitation incident from the normal side on the surface of a superconductor 
is reflected as a hole while an extra Cooper pair is added to the superconductor’s 
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condensate [2]. A distinguishing feature of Andreev reflection is that the reflected 
hole has opposite velocity and spin as compared to the incident electron. Alterna-
tively, the Andreev reflection process can be thought of as a Cooper pair entering 
from the superconductor into the normal metal and propagating as a coherent state 
of two electrons bearing the same velocity and opposite spins.

Andreev reflection is crucial for numerous manifestations of the proximity effect 
[2, 3] when certain superconducting correlations are observed inside the normal part 
of a normal metal–superconductor junctions. Most importantly, it explains propaga-
tion of the supercurrent in SNS junctions and hence provides microscopic justifica-
tion of the Josephson effect in such structures.

This simple semiclassical picture implies that Andreev reflection is strongly sup-
pressed in a junction between a superconductor and a metallic ferromagnet [4]. In 
the ferromagnet, electrons with opposite spin projections found themselves in a dif-
ferent microscopic environment and rapidly loose coherence. An important excep-
tion from this rule was suggested in Ref. [5] (see Ref. [6] for a review). The main 
idea is that a coherent pair of electrons in the triplet rather than singlet spin state can 
much easier propagate inside a ferromagnet when the total spin is aligned with the 
magnetization direction. It was suggested that a nonuniform ferromagnet (e.g., due 
to the presence of several magnetic domains) can convert an electron pair from the 
singlet spin state into a triplet provided magnetizations of the domains are not col-
linear. This mechanism leads to the long-range proximity effect and, in particular, 
enhanced Josephson current in the SFS junctions [7].

The suggested mechanism, however, becomes ineffective in extremely strong fer-
romagnets, often referred to as half-metals, where electrons with only one spin pro-
jection can propagate. A singlet Cooper pair simply cannot enter such a material. 
Nevertheless, there are experiments [8, 9] observing a significant triplet supercurrent 
in half-metallic samples of CrO2 brought in proximity with singlet superconductors. 
Extremely strong spin polarization of this material (up to 97%) was also experimen-
tally confirmed in a related work [10]. As we have already mentioned, appearance 
of the triplet component in half-metals cannot be explained by the long-range prox-
imity effect of Ref. [5] since (i) there is no room for Andreev reflection when only 
one spin sub-band is present at the Fermi level and (ii) there is no evidence for non-
collinear domains in the experiments. Another observation of extremely long-range 
proximity effect in a strongly ferromagnetic material was reported in Ref.  [11]. 
Superconducting current was detected between two tungsten electrodes through a 
cobalt nanowire of length 600 nm. While spin polarization of cobalt is [8] as high 
as 42%, the range of proximity effect in this materials is normally about few nanom-
eters [4].

An alternative mechanism to generate spin-triplet component in a junction 
between a superconductor and a normal metal or a ferromagnet was suggested in 
Ref.  [12]. This mechanism involves a special type of boundary between the two 
materials, such that the electron spin rotates going through the interface. In essence, 
this is similar to the effect of noncollinear magnetic domains discussed above but 
in a setting where these magnetic domains are effectively hidden inside the junc-
tion interface. Such spin-active boundaries produce a number of nontrivial phenom-
ena [13, 14] and, in particular, can explain Andreev transport between an ordinary 



1 3

Journal of Low Temperature Physics	

singlet superconductor and a fully polarized ferromagnet [15]. However, this expla-
nation comes at the cost of assuming that the boundary itself is polarized in a direc-
tion not collinear with the magnetization of the ferromagnetic lead.

In this paper, we propose an alternative explanation for the superconducting prox-
imity effect in a half-metallic ferromagnet due to possible spin-orbit scattering in the 
superconducting part of the junction. Spin-orbit scattering naturally occurs in mate-
rials composed of heavy elements. Unlike scattering on magnetic impurities, spin-
orbit scattering does preserve time-reversal symmetry and hence does not influence 
the critical temperature of a superconductor [16, 17]. At the same time, it violates 
spin symmetry and mixes singlet and triplet components of the superconducting 
condensate. Even in conventional superconductors where Cooper attraction is pre-
sent only in the singlet channel, Cooper pairs represent a random mixture of singlet 
and triplet spin states due to spin-orbit scattering. When such a superconductor is 
brought in contact with the half-metal, triplet Cooper pairs with the suitable orienta-
tion of their total spin can easily penetrate the boundary and establish the proximity 
effect.

To demonstrate this mechanism, we will consider an idealized model of an SIF 
junction where the superconductor is connected to a half-metallic ferromagnet via 
a tunnel barrier. We assume the superconductor contains a certain concentration of 
spin-orbit impurities and has a finite spin-flip scattering time �SO . We will calculate 
Andreev conductance for arbitrary values of Δ�SO and for any conductance of the 
barrier. In particular, we will demonstrate that in the limit of strong spin-orbit scat-
tering Δ𝜏SO ≪ 1 , Andreev conductance has the same order of magnitude as in an 
equivalent SIN junction, where the ferromagnet is replaced with an ideal normal 
metallic lead.

Enhancement of Andreev conductance between a half-metallic ferromagnet and 
a dirty superconductor due to spin-orbit scattering can be used in order to measure 
spin-orbit scattering time �SO . Such a measurement is expected to be most accurate 
when the key parameter Δ�SO is neither very large nor very small. Detailed predic-
tions for Andreev conductance as a function of Δ�SO are given in Eqs. (17), (36) and 
(35) and illustrated in Figs. 3 and 4.

2 � General Formalism

We consider a superconductor–ferromagnet junction shown in Fig. 1. Ferromagnetic 
part occupies the domain x > 0 and is assumed clean and ideal (full spin polariza-
tion). The superconducting part of the junction at x < 0 is in the dirty limit Δ𝜏 ≪ 1 
( � is the elastic mean-free time) and will be described by the semiclassical Usadel 
equation [18]. The superconductor also contains a finite concentration of spin-orbit 
impurities that induce the spin-flip scattering time 𝜏SO ≫ 𝜏 . Contact between the 
superconductor and the half-metal is through the tunnel barrier with the dimension-
less conductance GT . This assumption is not very restrictive since the limit of large 
GT correctly models a transparent boundary. We assume the system is homogeneous 
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in lateral dimensions, and hence, it suffices to solve the 1D problem where all quan-
tities depend only on x.

Technically, it is more convenient to study not the Usadel equation but rather an 
equivalent semiclassical action written in terms of Q-matrix. Usadel equation will 
be “an equation of motion” minimizing the action and matrix elements of Q at this 
minimum coincide with the components of the semiclassical fermionic Green func-
tion. The derivation of the semiclassical action is very similar to the derivation of 
the nonlinear sigma model [19] but with only one fermionic replica. It is outlined in 
Appendix A.

The semiclassical action for the semi-infinite superconducting part of the junc-
tion has the form

Here � is the normal density of states at the Fermi level per one spin component and 
D is the normal diffusion constant. The matrix Q of the size 8 × 8 has the structure 
in the Nambu, spin and particle–hole spaces. Detailed description of these spaces 
is given in Appendix A. We denote Pauli matrices operating in these spaces by � , s 
and � , respectively. The last term of the action contains the vector s = {sx, sy, sz} of 
all spin matrices and hence describes isotropic spin-orbit scattering. The matrix Q 
obeys a nonlinear constraint Q2

= 1 and can be represented as

In addition, the symmetry with respect to charge conjugation is also imposed:

At the point x = 0 , the superconductor is connected to a normal ferromagnetic lead 
that allows propagation of spin-up electrons only (half-metal). We will model this 

(1)S =
��

8 ∫
0

−∞

dxTr

[
D(∇Q)2 − 4Δ�xQ −

(Qs)2

�SO

]
.

(2)Q = T−1
�z�zT .

(3)Q = ̄Q ≡ 𝜎x𝜏xsyQ
T
𝜎x𝜏xsy.

Fig. 1   Schematic picture of the SF junction. Arrows on the ferromagnetic layer show its polarization. We 
assume that the junction is uniform in the lateral dimensions and all physical quantities depend only on 
the x coordinate
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situation by replacing the ferromagnetic part of the junction with a normal metal 
(both spin projections are allowed and the full spin symmetry is preserved) but 
assuming that the interface is transparent to the spin-up electrons only. Such a spin-
filtering boundary in the tunneling limit is described by the action [20]

Here GT is the normal conductance of the SF interface per unit area measured in 
units e2∕h and P is the projection operator that selects the allowed spin component

Matrix Q(0) is the value of Q at the interface from the superconducting side. On the 
opposite ferromagnetic side, the matrix is fixed with the value

Let us stress at this point that the boundary action (4) couples only spin-up compo-
nents on the two sides of the junction. This boundary condition does not involve any 
explicit or hidden noncollinear spin domains and hence is not a spin-active bound-
ary in the sense of Ref. [14].

Matrix QN on the normal side of the junction contains the source angle � . Once the 
total action of the junction is minimized, the linear conductance G = (dI∕dV)V→0 can 
be computed as (see Appendix A for the derivation)

Since the setup is uniform in the lateral directions, we will consider configurations 
of Q that depend only on the x coordinate. It is convenient to introduce a dimension-
less variable t =

√
2Δ∕Dx and a parameter GS = 4��

√
2DΔ . The latter is the con-

ductance in the normal state in units e2∕h per unit area of a piece of superconduc-
tor whose length is equal to the coherence length 

√
D∕2Δ . Note that we explicitly 

include the spin degeneracy factor here. The total action in these dimensionless units 
is

This action contains two dimensionless parameters: the strength of spin-orbit scat-
tering 1∕Δ�SO and the ratio GT∕GS of junction’s tunnel conductance to the normal 
state conductance of a superconductor. We will first consider two limiting cases of 
weak contact GT ≪ GS and of strong spin-orbit scattering Δ𝜏SO ≪ 1 . Both cases 
allow for a relatively simple solution. The general case will be analyzed afterward.

(4)S
Γ
= −

GT

8
Tr[PQNQ(0)].

(5)P =
1 + �zsz

2
.

(6)QN = �z�z cos� + �x sin� .

(7)G =
2e2

h

�
2Smin

��
2

|||�=0.

(8)S =
GS

32 ∫
0

−∞

dtTr

[
̇Q2

− 2𝜏xQ −
(Qs)2

2Δ𝜏SO

]
−

GT

8
Tr[PQNQ(0)].
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3 � Two Limiting Cases

3.1 � Limit of Weak Contact

When the coupling between superconducting and normal parts of the junction 
is relatively weak, GT ≪ GS , the matrix Q in the superconductor only slightly 
deviates from its equilibrium bulk value �x . Hence, we can approximate Q by the 
expansion

Linear constraints on W follow from the conditions Q2
= 1 and Q = ̄Q.

Next, we expand the bulk action up to the second order in W and the boundary 
action up to the linear term:

Our goal is to minimize this expression with respect to W. From the structure of the 
boundary term, we conclude that only two components in the matrix W are nonzero:

In terms of these components, the action takes the form

We observe that ws and wt describe soft modes in the singlet and triplet spin sector, 
respectively. This can be qualitatively explained in the following way. Ferromag-
netic part of the junction admits only excitations with a fixed spin projection. A spin 
state of a fully polarized electron–hole pair � ↑↑⟩ can be equivalently viewed as a 
linear combination of singlet and triplet states � ↑↑⟩ ± � ↓↓⟩ . (The spin state of an 
electron–hole pair can be converted into the state of two electrons by applying time 
reversal to the second spin. Then singlet and triplet acquire a more familiar form 
� ↑↓⟩ ∓ � ↓↑⟩ .) These are exactly the states corresponding to ws and wt components 
in the action (13). While the singlet mode is insensitive to spin-orbit scattering, the 
triplet mode acquires an additional mass ∼ 1∕�SO.

Minimization of the action (13) is straightforward and leads to the result

(9)Q = �x(1 + iW −W2
∕2),

(10)W = − ̄W, {𝜏x, W} = 0.

(11)
S =

GS

32 ∫
0

−∞

dtTr

[
̇W2

+W2
+

3W2
− (Ws)

2

2Δ𝜏SO

]

+
GT

16
Tr
[
(𝜎z𝜏y cos𝜒 + 𝜎x𝜏ysz sin𝜒)W(0)

]
.

(12)W = �z�yws + �x�yszwt.

(13)
S =

GS

4 ∫
0

−∞

dt

[
ẇ2

s
+ ẇ2

t
+ w2

s
+

(
1 +

2

Δ𝜏SO

)
w2

t

]

−
GT

2

[
ws(0) cos𝜒 + wt(0) sin𝜒

]
.
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Note that the triplet component wt vanishes when the source angle � is zero. This 
signifies the absence of the average triplet component of the superconducting Green 
function in equilibrium.

The minimized action (13) takes the form

while the Andreev conductance is determined by Eq. (7) and equals

This result can be illustrated by a single diagram shown in Fig. 2 with the diffusion 
ladder in either singlet or triplet spin sector.

In the limit of weak spin-orbit scattering �SO → ∞ , the Andreev conductance 
vanishes ∝ 1∕�SO as expected due to the lack of Andreev reflection in a fully spin-
polarized ferromagnet. In the opposite limit Δ𝜏SO ≪ 1 , triplet mode is strongly 
suppressed and the result (17) is similar to the usual Andreev conductance of an 
SIN junction in the tunneling limit [21].

(14)ws(t) = −
GT et

GS

cos� ,

(15)wt(t) = −
GT e

√
1+2∕Δ�SO t

GS

√
1 + 2∕Δ�SO

sin� .

(16)Smin = −

G2

T

4GS

�
cos2 � +

sin
2
�√

1 + 2∕Δ�SO

�

(17)G =

G2

T

GS

�
1 −

1√
1 + 2∕Δ�SO

�
.

Fig. 2   A diagram for Andreev conductance in terms of matrix Green functions for the Bogoliubov–de 
Gennes Hamiltonian. The result (17) in the limit G

T
≪ G

S
 is provided by just this single diagram. It also 

illustrates the general Kubo formula (A6) and explains the ordering of current operators 0 < x
1
< x

2
 in 

real space
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3.2 � Strong Spin‑Orbit Scattering

Consider now the limit of very strong spin-orbit scattering Δ𝜏SO ≪ 1 and arbitrary 
GT∕GS ratio. The matrix Q becomes trivial in the spin space and we can reduce the 
problem to the 4 × 4 matrices with the action

The linear constraint (3) becomes

This condition defines the standard manifold of the symplectic class sigma model 
Q ∈ O(4)∕O(2) × O(2) . This manifold has dimension four and is equivalent to the 
product of two spheres. It can be parametrized explicitly by four angles as

In terms of these angles, the action (8) takes the form

The bulk part of the action is minimized by any constant values of �1,2 ; the bound-
ary term then requires �1,2 = 0 . For the remaining two angles, we introduce new 
variables �

±
= �1 ± �2 and observe that the action decouples in these variables:

Minimization of the bulk part of SU yields the standard Usadel equation for the sin-
gle angle �:

This equation has an integral of motion and can be reduced to the first-order equation

owing to the fact that � should decay in the limit t → −∞ . Using these identities, we 
can represent the integrand in Eq. (23) as a total derivative and express SU as a func-
tion of � at the boundary:

(18)F =
GS

16 ∫
0

−∞

dtTr
[
̇Q2

− 4𝜏xQ
]
−

GT

4
Tr
[
PQNQ(0)

]
.

(19)Q = �x�xQ
T
�x�x.

(20)
Q = [�z�x cos �1 + �z sin �1 cos�1 + �z�y sin �1 sin�1]

× [�z cos �2 + �x�z sin �2 cos�2 + �y�z sin �2 sin�2].

(21)
S =

GS

4 ∫
0

−∞

dt
[
̇
𝜃
2

1
+ ̇
𝜃
2

2
+ sin

2
𝜃1

̇
𝜙
2

1
+ sin

2
𝜃2

̇
𝜙
2

2
− 2 cos 𝜃1 cos 𝜃2

]

−
GT

2
sin 𝜃1 cos𝜙1(cos 𝜃2 cos𝜒 + sin 𝜃2 sin𝜒 cos𝜙2)

||||t=0.

(22)S = SU[�+,�] + SU[�−,−�],

(23)SU[𝜃,𝜒] =
GS

8 ∫
0

−∞

dt
[
̇
𝜃
2
− 2 cos 𝜃

]
−

GT

4
sin[𝜃(0) − 𝜒].

(24)̈
𝜃 = sin 𝜃.

(25)̇
𝜃
2
+ 2 cos 𝜃 = 2, ̇

𝜃 = 2 sin(𝜃∕2),
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In the absence of the source field, � = 0 , minimum of SU is attained at:

A small nonzero value of � can be then taken into account perturbatively. We expand 
up to the second order in � and then apply Eq. (7). This yields the following result:

As was already mentioned previously, strong spin-orbit scattering completely sup-
presses triplet electron modes in the superconductor. Hence, the above result 
for Andreev conductance is solely due to semiclassical dynamics of singlet elec-
tron–hole pairs. One quite remarkable consequence of this observation is that an 
SIN junction with a tunnel barrier but without ferromagnetism exhibits exactly the 
same dependence (28) of Andreev conductance on GS and GT . The only minor dis-
tinction is that GT in that case should include contributions from both spin-up and 
spin-down conducting channels through the barrier and hence is twice larger than in 
an equivalent SF junction. One other crucial assumption that allows to equally apply 
Eq. (28) to both SIN and SF junctions is that the normal part should be relatively 
clean compared to the superconducting side of the junction.

In the two limiting cases of weak and strong barrier, we can reduce Eq. (28) to

The first of these cases matches with the result (17) when Δ𝜏SO ≪ 1 . The second 
limit corresponds to usual Andreev conductance in a dirty SN junction with a rela-
tively transparent interface as was explained above.

4 � Andreev Conductance at Arbitrary 1�
SO

 and Interface Quality

4.1 � General Result

When both dimensionless parameters of the problem Δ�SO and GT∕GS take arbitrary 
values, we can apply the following strategy to find Andreev conductance. First, min-
imize the action in the absence of the source field, � = 0 . It turns out that spin-orbit 

(26)SU = −GS cos
�(0)

2
−

GT

4
sin

[
�(0) − �

]
.

(27)sin
�0

2
=

√
G2

S
+ 2G2

T
− GS

2GT

.

(28)G =

GS

(√
G2

S
+ 2G2

T
− GS

)3∕2
√√

G2

S
+ 2G2

T
+ 3GS

2GT

√
G2

S
+ 2G2

T

.

(29)G =

⎧⎪⎨⎪⎩

G2

T

GS

, GT ≪ GS,

GS√
2
, GT ≫ GS.
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scattering is irrelevant in this case and the action is minimized by the simple one-
parameter trajectory in the singlet sector only:

The action for this single angle � has the standard Usadel form:

This action is twice larger than Eq. (23) in the limit � = 0.
The function �(t) can be found by solving the Usadel equation (24). Using the 

integral of motion (25), we obtain

Substituting this result back into Eq. (31), we express the action as a function of �(0)
,

Similarly to Eq. (31), this expression is twice larger than Eq. (26) provided � = 0 . 
Hence, the minimum of the action is attained when �(0) is given by Eq. (27).

Next step is to expand the action in small deviations in the vicinity of the solu-
tion (30) and at the same time to take into account a small but nonzero value of the 
source angle � . This is achieved by representing Q as

where W obeys conditions (10). We expand the bulk action up to the second order in 
W and the boundary action up to the second order in either W(0) or � . This proce-
dure is described in detail in Appendix B. Minimizing the quadratic action in W at a 
given � and applying Eq. (7) yield the following result:

We have thus established a general expression for the linear Andreev conductance 
valid for arbitrary values of parameters Δ�SO and GT∕GS . The only assumptions are 
relatively large (compared to both GT and GS ) conductance of the ferromagnetic part 
of the junction and low temperature T ≪ Δ . Dependence of Andreev conductance 
on both parameters is illustrated in Fig. 3.

Let us stress once more that spin-orbit scattering in the superconductor is cru-
cial for Andreev transport in the SF junction. Andreev conductance is an increasing 
function of spin-orbit scattering rate 1∕Δ�SO and vanishes when this parameter is 
zero, see Fig. 3 (middle panel). Andreev conductance is also suppressed both when 

(30)Q = �xe
−i�z�y�(t).

(31)S0 =
GS

4 ∫
0

−∞

dx
[
̇
𝜃
2
− 2 cos 𝜃

]
−

GT

2
sin 𝜃(0).

(32)�(t) = 4 arctan et−t0 , t0 = − ln tan
�(0)

4
.

(33)S0 = −2GS cos
�(0)

2
−

GT

2
sin �(0).

(34)Q = ei�z�y�(t)∕2�x(1 + iW −W2
∕2)e−i�z�y�(t)∕2,

(35)

G = GT sin 2�0

�
4 + 3Δ�SO − 2 cos �0 +

4 − 6Δ�SO

3 + 2
√
1 + 2∕Δ�SO cos(�0∕2) + cos �0

�−1

.
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Fig. 3   Andreev conductance normalized to G
T
 as a function of both spin-orbit scattering rate 1∕Δ�

SO
 and 

conductance ratio G
T
∕G

S
 according to Eq. (35) (top). The same dependence for several fixed values of 

G
T
∕G

S
 (middle) and Δ�

SO
 (bottom)
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the junction coupling is weak, GT ≪ GS , and in the limit GS ≪ GT when supercon-
ductivity is weak. Highest values of Andreev conductance are achieved at GT ≈ GS 
as shown in Fig. 3 (bottom panel).

4.2 � Analysis of Limiting Cases

Naturally, the general expression (35) for Andreev conductance is consistent with 
the limiting cases considered previously in Sect.  3. The limit of weak junction 
GT ≪ GS implies small values of the angle 𝜃0 ≈ GT∕GS ≪ 1 according to Eq. (27). 
In this limit, Eq. (35) directly reduces to Eq. (17).

In the opposite case GT ≫ GS , the value of �0 is close to �∕2 and Andreev con-
ductance acquires the form

Remarkably, this result is independent of the value of GT . Both limiting functions 
are shown in Fig. 4.

Another pair of asymptotic results is for the limits of weak and strong spin-orbit 
scattering. In the latter case, Δ𝜏SO ≪ 1 , we can expand Eq. (35) and obtain

The first term of this expansion reproduces Eq. (28) upon substitution of Eq. (27). 
The second term represents a small correction ∼

√
Δ�SO to this result and takes a 

surprisingly simple form

(36)G =
GS√
2

�
1 +

3

4
Δ�SO +

1 − (3∕2)Δ�SO

3 +
√
2 + 4∕Δ�SO

�−1

.

(37)G =
GT sin 2�0

4 − 2 cos �0
−

√
2Δ�SO GT sin 2�0

(4 − 2 cos �0)
2 cos(�0∕2)

+⋯

Fig. 4   Dependence of Andreev conductance on the spin-orbit scattering rate 1∕Δ�
SO

 in the limits of 
weak and strong coupling in the SF junction. Upper curve for the case G

T
≪ G

S
 corresponds to Eq. (17). 

Lower curve illustrates the dependence Eq. (36) for G
T
≫ G

S
 . The plots in Fig. 3 (middle panel) interpo-

late between these two limits



1 3

Journal of Low Temperature Physics	

When spin-orbit scattering is weak, Δ𝜏SO ≫ 1 , Eq. (35) reduces to

This dependence, together with Eq. (28), is shown in Fig. 5.
Finally, we quote the results for simultaneous limits when both the spin-orbit 

scattering and the junction coupling are weak or strong:

The first two cases here naturally coincide with Eq. (29).

(38)�G = −

√
Δ�SOG

2

T
GS√

2(G2

S
+ 2G2

T
)

.

(39)

G =
4GT cos �0[1 − cos3(�0∕2)]

3Δ�SO sin(�0∕2)

=
2
√
2GS

3G3

T
Δ�SO

�
2

√
2G3

T
−

�
GS

�
G2

S
+ 2G2

T
− G2

S
+ G2

T

�3∕2
�
.

(40)G =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

G2

T

GS

, GT ≪ GS, Δ𝜏SO ≪ 1,

GS√
2
, GT ≫ GS, Δ𝜏SO ≪ 1,

G2

T

GSΔ𝜏SO

, GT ≪ GS, Δ𝜏SO ≫ 1,

8−2
√
2

3

GS

Δ𝜏SO

, GT ≫ GS, Δ𝜏SO ≫ 1.

Fig. 5   Andreev conductance as a function of G
T
∕G

S
 in the limits of weak [upper curve, Eq.  (39)] and 

strong [lower curve, Eq. (28)] spin-orbit scattering. The plots in Fig. 3 (lower panel) interpolate between 
these two limits
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5 � Discussion and Conclusions

In the present paper, we have demonstrated that Andreev conductance between a 
strong half-metal ferromagnet (like CrO2 , for example) and a dirty superconduc-
tor can be of significant magnitude due to spin-orbit scattering in the supercon-
ductor. Our key qualitative observation is as follows: The triplet component of the 
Cooper pair wave function (necessary for this conduction mechanism to operate) 
is not required to have a nonzero spatial average. In fact, it is sufficient to have 
a finite square average of the triplet component. This is exactly what spin-orbit 
scattering in a singlet superconductor generates.

We have found Andreev conductance between a dirty superconductor with 
the order parameter Δ and spin-orbit scattering rate 1∕�SO and an idealized fer-
romagnet connected by a generic tunnel junction with the conductance GT . The 
result is a function of two dimensionless parameters Δ�SO and GT∕GS where 
GS = 4��

√
2DΔ is the conductance in the normal state of a piece of supercon-

ductor whose length is equal to the coherence length 
√
D∕2Δ . Our general result 

for Andreev conductance is given in Eqs. (35) and (27) and illustrated in Fig. 3. 
Calculation of the Andreev conductance in two limits of weak tunneling coupling 
GT ≪ GS or strong spin-orbit scattering Δ𝜏SO ≪ 1 is technically easier compared 
to the general case. This calculation is presented first with the results in Eqs. (17) 
and (28), respectively. Opposite limits of strong tunneling coupling GT ≫ GS or 
weak spin-orbit scattering Δ𝜏SO ≫ 1 are derived later from the general expression 
(35) and given by Eqs. (36) and (39). All four limiting forms of the Andreev con-
ductance are shown in Figs. 4 and 5.

Quite remarkably, Andreev conductance of the SIF junction with strong spin-
orbit scattering has exactly the same functional dependence (28) on GT and GS as 
the conductance of an equivalent SIN junction without both ferromagnetic order 
and spin-orbit scattering.

In general, spin-orbit scattering rate can be estimated as 1∕�SO ≈ (Z∕137)4∕� 
where � is the electron mean-free time and Z is the typical atomic number of the 
material. The effect proposed in the present paper is easier to observe experimen-
tally in relatively dirty superconductors in the presence of heavy elements. For 
example, for amorphous indium oxide InOx with ZIn = 49 and � ∼ 3 ⋅ 10−16 s one 
has �SO ∼ 2 ⋅ 10−14 s which results in a very small product Δ�SO ∼ 10−2 . This esti-
mate may explain high values of the upper critical field Hc2 observed in Ref. [22] 
which strongly exceed the usual Chandrasekhar–Clogston paramagnetic limit 
HP = Δ∕

√
2�B . Indeed, short spin-orbit scattering time leads [16] to enhance-

ment of paramagnetic critical field according to the relation HSO

P
∼ HP∕

√
Δ�SO.

We predict that Andreev conductance between amorphous InOx and half-
metallic ferromagnet CrO2 should be of the same order of magnitude as between 
InOx and some simple normal metal without spin polarization. Dependence of 
Andreev conductance on the basic parameters GT and GS in both cases is given by 
Eq. (28).

The above example shows that considerable spin-orbit scattering rate with 
Δ�SO ∼ 1 can be found in other superconducting materials, even composed of 
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lighter elements, if the potential disorder is strong, and hence, the elastic scat-
tering time is short enough. For example, for highly resistive granular aluminum 
with ZAl = 13 it is quite realistic to obtain ℏ∕�SO ∼ 10−4  eV comparable to the 
superconducting gap in Al. Then the actual magnitude of �SO can be found by 
comparing measured Andreev conductivity from a half-metallic ferromagnet 
with our theory. Namely, for a weak interface coupling GT ≪ GS we predict the 
dependence of Andreev conductance on �SO given by Eq. (17). In a general case 
of arbitrary GT∕GS ratio, one should use Eq.  (35). On the other hand, relatively 
clean superconductors with Δ𝜏 ≳ 1 cannot provide necessary spin-orbit scatter-
ing since 𝜏SO ≫ 𝜏 always. In this case, the triplet component is very small and 
the magnitude of sub-gap Andreev conductance will rather indicate the amount of 
spin polarization in the ferromagnet [8].

Our results were derived in the limit of zero temperature T and zero voltage V (linear 
regime). Practically, it means that we assume T , eV ≪ Δ . Although it is possible to 
generalize our calculations for nonzero T and V, we defer this to a separate publica-
tion. The same concerns the account of noncomplete polarization of the ferromagnet. 
Indeed, if the minority spin sub-band is not totally suppressed, so that its contribution 
to the density of states at the Fermi energy is some small fraction 𝛼FM = 𝜈↓∕𝜈↑ ≪ 1 , 
then a weak Andreev conductance can exist even without the triplet component and in 
the absence of spin-orbit scattering. This restricts the possibility to measure by the pro-
posed method very long spin-orbit times 𝜏SO ≳ 1∕𝛼FMΔ.

Josephson effect in an SFS junction with a strong ferromagnet [9, 11] represents 
another example of coherent transport which is controlled by the triplet component of 
the pair amplitude. While we postpone an actual calculation of the Josephson critical 
current in such a device to a separate publication, our major point about the role of 
spin-orbit scattering for Andreev conductance is relevant in the case of Josephson cur-
rent as well. Usual explanation [5–7] for long-range Josephson current in terms of the 
triplet component of pairing as a result of noncollinear magnetization is hardly appli-
cable in the case of fully polarized materials like CrO2 . On the other hand, supercon-
ducting alloy NbTiN studied in Ref. [9] is sufficiently disordered to provide spin-orbit 
scattering rate 1∕�SO comparable to Δ and to realize the mechanism of coherent pair 
transfer proposed in our paper.

Appendix A: Derivation of the effective action

In this appendix, we outline the derivation of the action (8) together with the source 
terms that define the matrix QN in Eq. (6). We assume the contact has the form of a 
one-dimensional wire characterized by a set of conducting channels. Kinetic energy of 
the electrons in the metallic wire is given by the operator � = vp , where v is the veloc-
ity operator acting in the space of conducting channels and p = −i(�∕�x) . Together 
with random scalar potential U and random spin-orbit scattering amplitude USO , single-
particle Hamiltonian takes the following form:

(A1)h = vp + U + USO, h = syh
∗sy.
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The second identity here is the time-reversal symmetry of the model.
The single-particle Hamiltonian h is a matrix in the space of conducting channels 

with each channel corresponding to an eigenvalue of the velocity operator v. In the 
absence of spin-orbit coupling, electron states in the conducting channels are doubly 
degenerate with respect to the electron spin. We count these degenerate states as dis-
tinct channels; hence, the spin degree of freedom in our model is part of the channel 
space. The matrix sy in the above equation is the second Pauli matrix acting on this spin 
degree of freedom. The spin-orbit scattering term USO in the Hamiltonian also acts non-
trivially on the spin degree of freedom mixing the channels with opposite spin projec-
tions and thus lifting their degeneracy.

In the superconducting state, the system is described by the Bogoliubov–de Gennes 
Hamiltonian, that has an extra 2 × 2 matrix structure in the Nambu space and hence 
obeys an additional mirror symmetry,

Here �y is the second Pauli matrix in the Nambu space. We will describe the normal 
part of the junction by the same Bogoliubov–de Gennes Hamiltonian assuming both 
Δ and USO are absent while potential disorder U is relatively weak. In other words, 
we assume the normal metallic lead is equivalent to a clean ballistic waveguide for 
electron waves. In our model, the tunnel interface between the ideal normal and 
dirty superconducting sides of the junction is transparent for spin-up electrons only.

Appendix A.1: Kubo Formula

Andreev conductance can be obtained using the approach of Blonder, Tinkham and 
Klapwijk [23] in terms of probability of Andreev reflection in individual conducting 
channels. This probability is then expressed via Green functions of the system leading 
to the Kubo formula [24]. In the regime of linear response, Andreev conductance is

Here f0(E) is the Fermi distribution function, x1,2 > 0 are two arbitrary points within 
the normal side of the junction, and the trace is taken in both the Nambu and chan-
nel spaces. Detailed derivation of this formula will be published elsewhere.

Retarded and advanced Green functions are defined in the standard way:

They are matrices in the Nambu and channel spaces. Retarded and advanced Green 
functions are related by the symmetry (A2):

(A2)H =

(
h Δ

Δ
∗

− h

)
, H = −�ysyH

∗
�ysy.

(A3)G = −
e2

h ∫
∞

0

dE
�f0

�E
Tr
[
vGR

E
(x1, x2)vG

A
E
(x2, x1)

]
.

(A4)G
R∕A

E
= (E − H ± i0)−1.

(A5)GA
E
(x1, x2) = −�ysy

[
GR

−E

]T
(x2, x1)�ysy.
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In the limit of small temperature T ≪ Δ , the Kubo formula greatly simplifies. Deriv-
ative of the Fermi distribution function can be replaced with a delta-function of 
energy; hence, integration in Eq. (A3) is removed.

In the rest of the paper, we consider only this limit. The Kubo formula (A6) is illus-
trated in Fig. 2.

The formula for Andreev conductance can be further expressed as a Gaussian path 
integral over fermionic fields with the action

The field � is a column vector in the Nambu and channel spaces whose elements are 
Grasmann-valued functions of x. The field �† is an independent row vector of a sim-
ilar structure. The action (A7) is written in such a way that it generates the retarded 
Green function at zero energy. This is sufficient for the problem at hand due to the 
identity (A5). Let us note that in order to solve the problem at a finite temperature 
we would need a more general model with the action that encodes both retarded and 
advanced Green functions at the same nonzero energy independently.

The Andreev conductance (A6) can be written as the following correlation function 
of four fields:

Here angular brackets imply averaging with the Gaussian weight e−S with the action 
(A7). Indeed, applying the Wick theorem to the product of four fields in Eq. (A8), 
we get two terms, both with a product of two retarded Green functions. Together, 
they can be combined as

Finally, using the identity (A5) and the time-reversal property of the velocity opera-
tor vT = −syvsy , we indeed reproduce the expression (A6).

Let us stress that formula (A8) is valid only for a system with broken spin symmetry 
(symplectic class). When the spin symmetry is preserved, time-reversal operation does 
not involve sy matrix and the two terms from the Wick theorem in Eq. (A9) cancel each 
other. In this case, a similar correlation function for the Andreev conductance can be 
written in terms of commuting rather than Grassmann fields.

(A6)G =
e2

2h
Tr
[
vGR

(x1, x2)vG
A
(x2, x1)

]
E=0

.

(A7)S = −i∫ dx�†
(i0 − H)�.

(A8)G =
e2

4h

⟨(
�
Tsy�yv�

)
x1

(
�
†v�ysy�

∗
)
x2

⟩
.

(A9)G =
e2

4h
Tr
[
sy�yvG

R
(x1, x2)(�ysyv

T
− v�ysy)(G

R
)
T
(x1, x2)

]
.
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Appendix A.2: Derivation of the Source Term

We can further transform the action (A7) taking into account superconducting 
symmetry (A2) and introducing the particle–hole space. We also include the 
source terms in the action.

When z
±
= 0 , this action is indeed identical to Eq.  (A7). Andreev conductance in 

the form (A8) can be generated as a variation of the partition function:

In order to average Andreev conductance with respect to disorder, we should get 
rid of Z in the denominator of the above equation. This is usually achieved with the 
help of the replica trick that extends the system, and hence the fields, to N identi-
cal copies. Alternatively, one can apply supersymmetry formalism [19], which aug-
ments the fermionic model with its bosonic counterpart. Both approaches lead to 
the identity Z = 1 in the extended theory. We will ignore these complications since 
our final goal is to derive the Usadel equation rather than a complete field theory. 
Usadel equation provides a fully symmetric (in replicas or superspace) minimum 
of the effective action. Hence, we can as well proceed with the derivation using the 
original action (A10) and simply disregard Z in the denominator in Eq. (A11).

The derivation of the effective action proceeds in the standard way [19]. We 
introduce notations for doubled fields in the PH space and rewrite the action 
(A10) as

Here �z and �
±
= �x ± i�y are Pauli matrices in the PH space.

The partition function (A11) is then averaged with respect to the random 
Gaussian potential U and the ensuing quartic term is decoupled by a subsequent 
Hubbard–Stratonovich transformation. This introduces a new matrix field in the 
problem, which we denote ̃Q , and the action becomes

Here H0 is the Hamiltonian (A2) without random potential and ̃Q obeys the symme-
try condition (3). The latter follows from the fact that 𝜓̄ and � are linearly related to 
each other, cf. Eq. (A13).

(A10)S = −
i

2

(
�
†, �Tsy�y

)(i0 − H z
+
v

z
−
v − i0 − H

)(
�

�ysy�
∗

)
.

(A11)G = −
e2

hZ

�
2Z

�z
−
(x1)�z+(x2)

, Z = ∫ d�∗d� e−S.

(A12)S = −i𝜓̄
[
i0𝜎z𝜏z − 𝜏zH + 𝜏zv̂(z−𝜎− + z

+
𝜎
+
)
]
𝜓 ,

(A13)𝜓 =
1√
2

�
𝜙

𝜏ysy𝜙
∗

�
, 𝜓̄ =

1√
2

�
𝜙
†
𝜏z, i𝜙

Tsy𝜏x
�
.

(A14)S =
𝜋𝜈

8𝜏
Tr ̃Q2

− i𝜓̄

[
i ̃Q

2𝜏
− 𝜏zH0 + 𝜏zv̂(z−𝜎− + z

+
𝜎
+
)

]
𝜓 .
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In the normal part of the junction, x > 0 , H0 reduces to the clean metallic Ham-
iltonian H0 = �zvp . This allows us to exclude the source terms from the action by 
applying a suitable gauge rotation:

The matrix M should be chosen such that

The source terms z
∓
 are only relevant at two spatial points x1,2 according to 

Eq.  (A11). We will thus assume z
∓
(x) to be proportional to delta functions 

�(x − x1,2) . In fact, the partition function Z depends only on the product of ampli-
tudes of these two delta functions; hence, we can further introduce a single source 
angle � by the relation

With this definition, Eq. (A11) directly reduces to Eq. (7) used in the main text of 
the paper (up to the factor Z in the denominator, which we discard in the semiclassi-
cal limit).

The result is also independent of the exact positions of x1,2 . For the sake of 
simplicity, we will assume the ordering 0 < x1 < x2 and take the limit x1,2 → 0 , as 
shown in Fig. 2. With these assumptions, Eq. (A16) is readily solved yielding a 
steplike matrix M

Once the gauge transformation has removed the source term from Eq. (A14), deri-
vation of the effective action proceeds in the standard way [19]. Fermionic fields � 
are integrated out, and the resulting nonlinear action in terms of Q is restricted to its 
saddle manifold defined by Eqs. (2) and (3). Expansion of the action in small gra-
dients of Q as well as in small parameters Δ� and in spin-orbit scattering amplitude 
USO yields the action (1). It only remains to establish boundary conditions at infinity 
and at the interface. This is where the source terms show up.

Appendix A.3: Boundary Conditions

Far in the normal part of the junction, x → +∞ , we can completely disregard any 
proximity effect. In this limit the matrix field attains its limiting value ̃Q = 𝜎z𝜏z . 
This value is fixed by the infinitely small term in Eq. (A12) to prevent exponen-
tial growth of � . Since we assume the normal metal to be almost clean, its diffu-
sion constant is large and gradients of Q are strongly suppressed. Hence, we can 
simply set ̃Q = 𝜎z𝜏z everywhere in the normal lead. For the matrix Q, this implies

(A15)Q = M−1 ̃QM, M−1
= ̄M.

(A16)
�M

�x
= i�z(z−�− + z

+
�
+
)M.

(A17)z
∓
(x) = sin(�∕2)�(x − x1,2).

(A18)Mx>0 =

(
1 i𝜏z sin(𝜒∕2)

i𝜏z sin(𝜒∕2) cos2(𝜒∕2)

)
Mx<0.
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Deep in the superconducting part of the junction x < 0 , we have an additional 
term in the Hamiltonian with Δ . This term acts in the Nambu space only and we 
would like to preserve its form under the gauge transformation (A15). This means 
we should assume Mx<0 to act trivially in the Nambu space. We will thus choose a 
diagonal matrix

With this choice, Eqs. (A18) and (A20) yield the simplest possible form of QN:

This is exactly the boundary value (6) used in the main text of the paper.
The last ingredient of the model is the boundary action (4) at the interface x = 0 . 

This part of the action can be derived in its most general form [14, 19, 20, 25]

Here T  is the transfer matrix of the boundary [21]. This matrix is twice larger than 
the space of channels (it additionally has the left/right structure) and has eigenvalues 
e±�n related to the transmission probabilities of individual channels Tn = cosh

−2
�n . 

In our problem, T  is trivial in the PH space but does discriminate between up and 
down spins and hence does not commute with Q. Nevertheless, we can choose a 
specific basis in the channel and spin spaces to bring T  to its diagonal form. Assum-
ing all �n for spin-down channels are very large (negligible transparency of the inter-
face), we can reduce the boundary action to

Here P is the projection operator defined in Eq. (5). It selects only the spin-up chan-
nels whose transmission probability is characterized by finite values of �n . If these 
values of �n are still relatively large (tunneling limit), we can further expand the 
logarithm to the linear order in small e−2�n . Using the fact that QN and P commute, 
we finally obtain the action (4). The prefactor is nothing but the normal tunneling 
conductance according to the Landauer formula [21].

Appendix B: General solution for Andreev conductance

In this appendix, we minimize the action (8) with the matrix Q given by Eq. (34) 
and derive the general result for Andreev conductance (35). Expansion of the action 
up to the second order in W and � yields

(A19)QN = Qx>0 = M−1

x>0
𝜎z𝜏zMx>0.

(A20)Mx<0 =

(
i cos(𝜒∕2) 0

0 1

)
.

(A21)QN =

(
�z cos� sin�

sin� − �z cos�

)
.

(A22)S
Γ
= −

1

4
Tr ln[1 + TQ(0)T†QN].

(A23)S
Γ
= −

1

2
Tr ln[1 + e−2�nPQ(0)PQN].



1 3

Journal of Low Temperature Physics	

where S0 is given by Eq. (31). Linear and quadratic terms in the action are

We observe that the linear part S1 vanishes provided � obeys the Usadel equation 
(24) in the bulk and its boundary value is �0 from Eq.  (27). This is an expected 
behavior because the Usadel equation describes a minimum of the action, and hence, 
there should be no linear corrections in the vicinity of its solution.

Let us now analyze the quadratic part of the action S2 . In the absence of 
source term � = 0 , this part of the action is minimized by W = 0 . For a small but 
nonzero � , we will look for W linear in � . The structure of the coupling term in 
the last line of Eq. (B3) suggests that only two matrix components are induced in 
W at the boundary with the ferromagnet:

Below we will see that this structure with only two components is also preserved in 
the bulk of the superconductor.

Let us note that parametrization (B4) looks similar to Eq.  (12) but has an 
important difference. Both forms of W are linear combinations of a singlet and 
a triplet component. However, in Eq.  (B4) a different structure of the singlet 
matrix appears as compared to Eq. (12). This discrepancy has occurred because 
we are now using the parametrization (34) and expand near different point on the 
Q-matrix manifold compared to Eq. (9). The role of the singlet component from 
Eq. (12) is now played by the angle � in Eq. (34).

Substituting Eq. (B4) into Eq. (B3), we obtain the following bulk and bound-
ary parts of the quadratic action:

(B1)S = S0 + S1 + S2,

(B2)S1 = −
GS

16 ∫
0

−∞

dtTr
[
𝜎z𝜏y(

̇
𝜃
̇W +W sin 𝜃)

]
+

GT

16
cos 𝜃0Tr

[
𝜎z𝜏yW(0)

]
,

(B3)
S2 =

GS

32 ∫
0

−∞

dtTr

[
̇W2

−
̇
𝜃
2

4
{𝜎z𝜏z,W}

2
+W2 cos 𝜃 +

3W2
− (Ws)

2

2Δ𝜏SO

]

+
GT

16
Tr

[
𝜒
2

2
sin 𝜃0 +

(
W(0)2

2
− 𝜒W(0)𝜎y𝜏z

)
(sin 𝜃0 + 𝜎z𝜏xsz)

]
.

(B4)W = �y�zws + �x�yszwt.

(B5)S2 = S2S + S2T ,

(B6)S2S =
GS

4 ∫
0

−∞

dt

[
ẇ2

s
+ ẇ2

t
− ̇
𝜃
2w2

t
+ (w2

s
+ w2

t
) cos 𝜃 +

2w2
t

Δ𝜏SO

]
,

(B7)S2T =
GT

4

[
sin �0

([
� − ws(0)

]2
+ w2

t
(0)

)
+ 2

[
� − ws(0)

]
wt(0)

]
.
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Variation of the bulk part of the action S2S yields equations for ws,t(t) [here we have 
used Eq. (32)]:

Relevant solutions to these equations should decay in the limit t → −∞ and have the 
form

Upon substitution of these functions into Eq. (B6), we can reduce the bulk action to 
an additional boundary term integrating by parts:

We now add the boundary action S2T from Eq. (B7) and obtain the total action as 
a quadratic expression in ws,t(0) and � . This total action is to be minimized with 
respect to ws,t(0) to produce Smin(�) . Finally, taking the second derivative in � 
according to Eq. (7) we arrive at the result (35).
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