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Abstract
Benzene, toluene, and xylenes (BTX), as well as their down-
stream products, are a fundamental part of numerous pro-
cesses in the chemical industry. However, by now, aromatics
are still yielded from fossil resources like naphtha, coal, and
natural gas. Thus, to push the chemical industry further toward
renewability, the production of bio-based aromatics is an
essential step to take. The implementation of bio-based aro-
matics to replace petrochemical aromatics can proceed in two
main ways: as direct replacement via renewable drop-in or as
replacement by renewable functional alternatives. However,
the implementation of both pathways still requires significant
process optimization toward large-scale application in indus-
trial processes. In this work, renewable drop-in is mainly
discussed in the context of pyrolysis and Diels–Alder re-
actions. Furthermore, renewable functional alternatives
discussed here focus on furan derivatives and lignin-based
building blocks.
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Introduction
Currently, the chemical industry is still strongly depen-
dent on fossil fuels. This industry sector is not only a
significant energy consumer, but also uses large amounts
of fossil resources to produce chemicals and materials.
Thus, changes in the availability or price of fossil fuels
have a significant impact on the chemical industry and
consumers. Since it is long known that fossil resources are
not produced at the same rate as they are consumed, and
thus far from circular, the energy sector and feedstock
supply need to be shifted toward renewable alternatives.

In the long term, this cannot only stabilize cost fluctua-
tions, but also ensures a more reliable and independent
feedstock supply. Due to their high value and extensive
application in the chemical industry, the production of
bio-based aromatics will have major economic and
ecologic impact. Among these aromatics, the commodity
chemicals benzene, toluene, and xylenes (BTX) are of
particular interest, as they are precursors to many
downstream products. Conventionally, these aromatics
are produced in multiple steps from fossil resources,
namely naphtha, coal, or natural gas. To replace these

fossil resources in the production of versatile platform
molecules, lignocellulosic biomass is considered a
promising and abundant alternative. Its three main
components are lignin, hemicellulose, and cellulose.
Some types of biomass also contain starch and other
carbohydrates. For a successful replacement of fossil re-
sources by bio-based alternatives, efficient pathways of
biomass valorization need to be investigated. These
pathways can utilize various approaches that allow opti-
mization toward a variety of target molecules. Efforts
toward renewable aromatics can be divided into twomain

approaches: the direct replacement of petrochemicals by
their renewable equivalents, so-called drop-in solutions,
and renewable functional alternatives to commodity ar-
omatics. In the following paragraphs, the focus is set on
current developments in the manufacture of aromatics
from biomass and their further utilization. Due to their
rather limited applications, if compared tomonoaromatic
molecules, polycyclic aromatic molecules will not be
discussed in the scope of this work.
Direct replacements of petrochemicals via
renewable drop-in
Over the past 50 years, the global plastic production has
increased eightfold [1,2] and is expected to increase
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further in the future. In 2022, 400.3 Mt of plastic were
produced in total, of which only 0.5% were bio-based
[2]. In the same year, poly(ethylene terephthalate)
(PET) and polystyrene (PS) accounted for a total of
11.4% of the global plastic production from fossil re-
sources [2]. PET and PS are commodity plastics,
containing terephthalic acid and styrene as aromatic
building blocks, respectively. Both of these building

blocks are downstream products of BTX aromatics.
Since BTX downstream products have already found
suitable wide range purpose due to their established
applications, a direct replacement of these via renew-
able drop-in would be highly advantageous in terms of
the easier implementation into already existing pro-
duction lines and consumer products. This way of
implementing bio-based chemicals avoids the necessity
of completely new or strongly adapted downstream
processes and is in this regard less cost and labor
intensive, making them economically easier to imple-

ment. Various pathways toward bio-based BTX aro-
matics are recently investigated. These include
upgrading of bio-fuels from biomass via catalytic fast
pyrolysis, as well as cycloaddition reactions of bio-based
building blocks (Figure 1) and more.

Pyrolysis
Fast pyrolysis is a thermochemical procedure by which
the feedstock decomposes thermally in the absence of
oxygen to form fractions of solid char, gases, and most
important for the discussion herein: liquid bio-oil
(Figure 1, left) [3]. For fast pyrolysis, bio-oil is the
Figure 1

Fast pyrolysis and Diels–Alder cycloaddition approaches toward renewable B
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main product with typical yields around 40%e60% [4,5].
However, the exact distribution of the three main
product fractions of fast pyrolysis varies strongly with the
reaction conditions, experimental setup and the type of
biomass that is used [5]. Due to the high content of
oxygen in biomass, the obtained bio-oil shows undesired
properties like high acidity and low stability [6]. Thus,
the bio-oil must be upgraded to higher value composi-

tions either in a separate, subsequent process or directly
during catalytic fast (hydro)pyrolysis [3,6]. Other tech-
niques to lower the oxygen content of bio-oil cover
various pre- and in-process treatments of the used
biomass [7].

Catalytic fast pyrolysis under the right conditions is
considered a suitable technique for BTX production,
since the higher quality bio-oil obtained via this process
usually has higher hydrocarbon content due to the
removal of oxygen from the bio-oil [8]. Different cata-

lytic systems based on zeolites or metal oxides, other
metal based catalysts and waste products like red mud
have been reported to be suitable for improving BTX
selectivity during catalytic fast pyrolysis [3,9,10].

Besides the used catalysts, also feedstock choice has a
great impact on the product distribution after catalytic
fast pyrolysis [11]. Since biomass feedstock usually
contains high fractions of oxygen, which is rather
disruptive for optimal BTX yield, the addition of mate-
rials that help to increase hydrogen fractions during py-

rolysis can improve the process [11,12]. Based on this,
TX aromatics and some discussed downstream products.
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catalytic co-pyrolysis of biomass with wastematerials like
tires, plastic (PVC, LDPE) or oil sludge has been re-
ported recently to increase the hydrocarbon fractions and
BTX selectivity during catalytic fast pyrolysis [12e15].
This is especially interesting as it combines the use of
biomass as feedstock with the valorization of accumu-
lating waste.

Diels–Alder cycloaddition
DielseAlder reactions are atomefficient cycloadditions of
a diene and a dienophile, in which a six-membered, un-
saturated carbon ring is formed, thus offering an attractive

pathway for the production of BTX aromatics (Figure 1,
right) [16]. The general method for the manufacture of
bio-based aromatics via DielseAlder cycloadditions in-
volves the reaction of a bio-based furan derivative as diene
with a bio-based short chain olefin like ethylene or pro-
pylene as dienophile [16,17]. Suitable furan derivatives
are for example furan, 2-methylfuran and 2,5-
dimethylfuran, which can all be produced from biomass
[17]. DielseAlder reactions of these building blocks are
also an important pathway for BTX formation during
catalytic fast pyrolysis of biomass [18]. Hence, one way to

produce BTX aromatics viaDielseAlder cycloadditions is
to expose the mentioned furan derivatives and olefins to
conditions similar to those used in catalytic fast pyrolysis,
i.e. high temperatures (around 500 �C) and catalysts like
HZSM-5 or b-zeolites [19]. Under these conditions, a
complex product mixture of benzene, toluene, xylenes,
but also polycyclic aromatics is obtained [19,20].
Recently, it was also shown that by using this DielseAlder
approach, platform chemicals like furfural and ethanol can
be used directly instead of the alkylated furan derivatives
and olefins, due to the in-situ decarbonylation of furfural to
furan and dehydration of ethanol to ethylene under the
harsh conditions [21].

A different approach toward BTX production via Dielse
Alder cycloaddition uses lower temperatures and olefin
pressure, while working with catalysts that contain
Brønsted acid sites (BAS) and Lewis acid sites (LAS)
[22]. The implementation of both, BAS and LAS, relates
to the two step mechanism of the BTX formation via
DielseAlder reactions of furans and olefins. While the
first step, the DielseAlder reaction, is typically cata-
lyzed by LAS, the second step, which is the dehydration

aromatization of the formed oxanorbornene derivative, is
more effectively catalyzed by BAS [17,22,23].
Depending on the furan derivative and olefin used,
different products and side products form [23]. With
regard to the synthesis of renewable terephthalic acid
for PET production, the synthesis of p-xylene from 5-
hydxroxymethylfurfural (HMF) derived 2,5-
dimethylfuran and ethylene is particularly interesting
[24]. A technoeconomic analysis showed that, compared
to other bio-based p-xylene production routes, this is
indeed an attractive process that can be further opti-

mized toward cheaper prices, mainly by lowering HMF
www.sciencedirect.com C
cost [25]. For further insights, a life cycle assessment for
this method was performed on the production of bio-
based p-xylene and compared the environmental impact
of fossil-based p-xylene and bio-based p-xylene from
edible biomass (starch) and non-edible biomass (red
oak) [26]. While bio-based p-xylene from non-edible
biomass was found to be similar to its fossil-based
equivalent in terms of environmental friendliness, the

bio-based p-xylene from edible biomass was found to be
less environmentally friendly than fossil-based p-xylene
[26]. Thus, in order to make bio-based p-xylene
competitive to its fossil-based equivalent, several im-
provements along the whole process from supply-chain
to process optimization are necessary.
Functional alternatives to petrochemicals
and their application
Besides the efforts made to produce already established
aromatics from renewable sources, there is also great
enthusiasm toward the exploration of bio-based func-
tional alternatives. Inevitably, the implementation of
new building blocks into the basis of production in the
chemical industry will initially entail higher costs and
efforts due to the requirement of new concepts, pro-

duction lines, and consumer products. Nevertheless,
the investigation of novel bio-based functional building
blocks opens up new possibilities and provides room for
innovative improvements. Furthermore, new functional
alternatives could exhibit desired properties upon their
discovery. Currently, many novel building blocks are
discovered. Among these, furan derivatives and lignin-
based aromatics have attracted particular attention.

Furan derivatives
Furan derivatives can not only be used for the Dielse
Alder pathways toward BTX aromatics, but are also
versatile and promising building blocks on their own.
They maintain a central role in sustainable chemistry, as

they can be prepared from abundantly available, non-
edible biomass. Renewable HMF and furfural are
mainly produced from hexoses and pentoses, respec-
tively [27,28]. Both furan derivatives are used as starting
materials to produce many useful building blocks
(Figure 2) [27,28].

In the face of a growing plastic demand, one furan de-
rivative that has been intensely researched in the past
years is 2,5-furandicarboxylic acid (FDCA). FDCA can be
produced by oxidation of HMF via different biocatalytic
[29], chemocatalytic [30], electrocatalytic [31,32], or
photocatalytic [32,33] routes. One advantage that is
regularly mentioned for the electrooxidation of HMF to
FDCA is the opportunity to couple it with an electro-
reduction that results in other value-added chemicals,
like hydrogen [32]. For instance, a coupling of HMF
electrooxidation to the reduction of 4-nitrophenol to 4-
aminophenol was recently reported [34].
urrent Opinion in Green and Sustainable Chemistry 2024, 47:100931
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Figure 2

Bio-based platform molecules furfural and HMF and their downstream furan derivatives, some of which can be used in polymer synthesis.
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FDCA has mainly gained popularity as potential alter-
native to terephthalic acid in the PET substitution
polymer named poly(ethylene furanoate) (PEF)
(Figure 2) [35]. Indeed, PEF shows properties that
make it suitable for applications similar to those of
PET. Compared to PET, PEF shows enhanced carbon-

dioxide barrier properties accompanied by attractive
thermal and mechanical properties [35,36]. These
properties make PEF attractive for food and beverage
packaging. In this regard, the Dutch company Avan-
tium has put major effort into the commercialization of
PEF with their YXY� technology [36,37]. Life cycle
assessments and technoeconomic analyses regarding
HMF and FDCA have shown them to be promising,
greenhouse gas emission reducing intermediates for
polymer production [38]. Environmental impacts of
both intermediates are expected to further decrease
with advances in catalytic systems, solvent systems and

the development of direct synthetic routes from
lignocellulosic biomass [38]. Recent applications of
FDCA also include its use in fully bio-based aromatic
polyester polyols for the synthesis of polyisocyanurate
rigid foams [39]. Furthermore, copolyester synthesis
using FDCA and other bio-based dicarboxylic acids is
frequently reported [40e42].

Instead of incorporating the furan building block into
polyesters as dicarboxylic acid, it can also be used as a
diol in the form of 2,5-bis(hydroxymethyl)furfural

(BHMF). BHMF can be used as a monomer to syn-
thesize polymers like polyesters, polycarbonates, or
polyurethanes [43,44]. Furthermore, polyesters that are
similar to those from FDCA with diols can be synthe-
sized from BHMF by using the corresponding dicar-
boxylic acid to the diols as second monomer [44]. This
way, structural isomers to FDCA derived polyesters can
be obtained (Figure 2). However, it must be noted that
BHMF exhibits low thermal stability, making it less
suitable for high-temperature bulk polymerization
[44].
Current Opinion in Green and Sustainable Chemistry 2024, 47:100931
Lignin based building blocks
On the subject of bio-based aromatics, lignin is consid-
ered a promising raw material. Its chemical structure is
composed of a network rich in aromatic building blocks
[45,46]. To yield small molecules from lignin, its highly
branched network must be depolymerized. Lignin
depolymerization can be performed by various thermal,
chemical, and biochemical methods [45]. Thermal
depolymerization of lignin is mainly carried out via py-

rolysis, but also by combustion, gasification, or lique-
faction [45]. The chemical depolymerization of lignin
can be performed using acid or base catalyzed hydrolysis,
oxidative or reductive methods and ionic liquids or deep
eutectic solvents [47,48]. Biological methods for lignin
depolymerization include the application of various
bacteria, fungi, or enzymes [48]. Depending on which
method of depolymerization is performed, the main
products can vary [49]. Building blocks yielded from
chemical and biochemical lignin depolymerization can
be categorized in three groups, i.e. syringyl, guaiacyl and

p-hydroxyphenyl units (Figure 3a) [47]. Due to unstable
intermediates during lignin depolymerization, stabili-
zation techniques are required to increase monomer
yields [50]. Another challenge faced for lignin depoly-
merization is to find efficient separation methods that
lead to pure products. Here, methods like extraction,
filtration, chromatography, distillation or a combination
of these techniques can be applied [49]. Nevertheless,
when successfully depolymerized and purified, lignin
monomers find various applications in polymer synthesis
and medical or cosmetic applications [51e53]. Howev-

er, since the separation and purification of the depoly-
merization products are quite time-consuming and
cause considerable costs [49], it would also be inter-
esting to develop applications for unseparated lignin
depolymerization products.

Certain building blocks from lignin depolymerization
are also interesting for producing monomers that are
structurally similar to styrene (Figure 3b). One attempt
www.sciencedirect.com
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Figure 3

(a) Types of functional monomers yielded from lignin depolymerization: syringyl, guaiacyl and p-hydroxyphenyl units. (b) Synthesis of functional styrene
alternatives from lignin derived p-hydroxybenzaldehydes.
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here is to first produce a,b-unsaturated carboxylic acids
by Knoevenagel reaction of malonic acid with different
lignin derived 4-hydorxybenzaldehyde derivatives.
Subsequent decarboxylation of these building blocks
creates a terminal double bond that can be radically
polymerized after protection of the phenol groups [54].
Conclusion and outlook
The synthesis of bio-based aromatics is an essential step
for the chemical industry to combat its dependence on
fossil resources. Recent literature has shown a variety of
different ways to produce bio-based aromatics and to use
them for further applications like building block or
polymer synthesis. While methods that focus on the
direct replacement of petrochemicals like BTX aro-
matics via renewable drop-in can take advantage of easier
downstream utilization, new functional alternatives offer

great potential that still needs to be explored. Especially
on the example of PEF for replacing PET, the advantage
of functional alternatives to enable innovative, and
possibly better performing products and materials is
emphasized. Nevertheless, the production of bio-based
www.sciencedirect.com C
aromatics still requires further innovation and progress
to make it viable for large-scale industrial production.
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