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Abstract
The accurate prediction of intense precipitation events is one of the main
objectives of operational weather services. This task is even more relevant
nowadays, with the rapid progression of global warming which intensifies
these events. Numerical weather prediction models have improved continuously
over time, providing uncertainty estimation with dynamical ensembles. How-
ever, direct precipitation forecasting is still challenging. Greater availability of
machine-learning tools paves the way to a hybrid forecasting approach, with the
optimal combination of physical models, event statistics, and user-oriented post-
processing. Here we describe a specific chain, based on a random-forest (RF)
pipeline, specialised in recognising favourable synoptic conditions leading to
precipitation extremes and subsequently classifying extremes into predefined
types. The application focuses on northern and central Italy, taken as a testbed
region, but is seamlessly extensible to other regions and time-scales. The system
is called MaLCoX (Machine Learning model predicting Conditions for eXtreme
precipitation) and is running daily at the Italian regional weather service of
ARPAE Emilia-Romagna. MalCoX has been trained with the ARCIS gridded
high-resolution precipitation dataset as the target truth, using the last 20 years
of the European Centre for Medium-Range Weather Forecasts (ECMWF) refore-
cast dataset as input predictors. We show that, with a long enough training
period, the optimal blend of larger-scale information with direct model output
improves the probabilistic forecast accuracy of extremes in the medium range. In
addition, with specific methods, we provide a useful diagnostic to convey to fore-
casters the underlying physical storyline which makes a meteorological event
extreme.
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1 INTRODUCTION

Italy is among the European nations most exposed to
torrential rainfall and flash flooding, due to its geo-
graphical conformation and climatological characteris-
tics (Grazzini, 2021). Every year these weather hazards
produce huge costs and deadly consequences. The cor-
rect prediction of intense meteorological phenomena is
one of the main objectives of operational weather ser-
vices, and this task is even more relevant today with
the rapid progression of global warming which ampli-
fies extremes (Seneviratne et al., 2021; Tramblay &
Somot, 2018). Numerical weather prediction (NWP) mod-
els have improved continuously over time; however,
providing accurate, quantitative precipitation forecasts
remains challenging. Precipitation is an intermittent and
complex phenomenon, often characterised by high spa-
tial variability. Direct predictability of this field is limited
compared to the predictability of large-scale circulation
patterns in which precipitation events are developing.
The broader usage of machine learning in many sec-
tors characterised by high-dimensional data raises the
question of whether machine learning can effectively
be used for advanced postprocessing of meteorological
fields, thereby helping to recover the loss of predictabil-
ity inherent to surface fields characterised by high vari-
ability. Research in this direction is rapidly develop-
ing with studies showing how machine learning can be
applied to advanced postprocessing of precipitation direct
model output (de Sousa Araújo et al., 2022; Espeholt
et al., 2022; Frnda et al., 2022; Whan & Schmeits, 2018),
or testing the inclusion of large-scale components such
as atmospheric rivers (Chapman et al., 2022). The link
between extreme precipitation events (EPEs) over the
Mediterranean area and large-scale atmospheric flow
patterns has long been studied and is consolidated in
the literature (Grazzini, 2007; Grazzini & Vitart, 2015;
Martius et al., 2008; Rudari et al., 2005). Recently
Mastrantonas et al. (2022) has shown that inferring
EPE probability from predefined specific weather pat-
terns outperforms precipitation output in the medium
range, extending the forecasting horizon of the model
up to three days in many Mediterranean locations.
Starting from this perspective, we consider whether
machine-learning methods can be used operationally to
improve extreme precipitation predictions in Italy, com-
bining large-scale dynamical predictors with precipita-
tion direct model output. In this work, we describe a
random-forest (RF)-based postprocessing chain, called
MaLCoX (Machine-Learning model predicting Conditions
for eXtreme precipitation), specialized in recognizing
favourable synoptic and large-scale conditions leading
to precipitation extremes and subsequently classifying

the categories proposed by Grazzini et al. (2020a). The
focus is on northern and central Italy, taken as a pre-
liminary testbed region. The choice of predictors is
based largely on previous work by the authors (Grazzini
et al., 2020a, 2021). In addition, we include non-local
predictors: spatial composites of Euro-Atlantic anomaly
patterns in the days preceding Italian EPEs, as described
in a recent companion paper (Dorrington et al., 2023).
MaLCoX – composed of two modules that detect and clas-
sify precipitation extremes respectively – has been imple-
mented semi-operationally at ARPAE-SIMC using as
predictors the available fields the institute is receiving in
real time from the European Centre for Medium-Range
Weather Forecasts (ECMWF) dissemination stream. The
goal is to set up an innovative ‘warning-bell chain’ comple-
menting existing forecasting products, such as direct prob-
abilities and the extreme forecast index (Tsonevsky, 2015).
This type of hybrid modelling is relatively novel, with
promising application in the field of extreme-event early
warnings, potentially anticipating major events at a
time-scale of several days, compared to the current stan-
dard of 48 hours. To our knowledge, this is the first
documented machine-learning application for the pre-
diction of extreme precipitation targetted at the medium
range. The paper is organised as follows: in Section 2 we
describe the datasets, algorithms, architecture and pre-
dictors. In Section 3 we show the results of the compar-
ison against direct model output, while in Section 4 we
illustrate the new MaLCoX forecasting tools applied to
a recent case study. Finally, in Section 5, we draw our
conclusions.

2 DATA AND METHODS

To introduce the geographic area and its relation with syn-
optic predictors used in the model, in Figure 1 we show
the synoptic situation associated with storm Alex, cho-
sen as an exemplary case. We are not going to discuss
the forecast of this event but use it to illustrate the con-
cept of non-local predictors referred to later. A trough
is deepening over western Europe, at the leading edge
of an incoming Rossby wave packet. At the same time,
strong integrated water vapour transport (IVT) is connect-
ing the upstream trough over the US east coast and the
deepening trough over Western Europe, forming an atmo-
spheric river on the northern side of the Atlantic ridge.
This is a typical and recurrent synoptic situation associ-
ated with the strongest EPEs, as discussed in the work of
Sioni et al. (2023) where the detailed evolution of the two
most severe EPEs ever recorded over northern Italy is dis-
cussed. On 2 and 3 October 2020 a large EPE was recorded
in the area of interest, inside the green box in Figure 1, with
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GRAZZINI et al. 3

F I G U R E 1 Synoptic situation on 02-10-2020 1200 UTC associated with storm Alex. An Extreme Precipitation Event (EPE) occurred
inside the test region depicted with the green box between 2 and 3 October 2020. The map displays the geopotential height at 500 hPa which
describes the middle-level flow (solid lines) and the associated magnitude of the instantaneous vertically integrated water vapour flow
shaded according to the scale above in kg⋅s−1⋅m −1. Blue dashed isolines and red solid lines show the corresponding 500-hPa anomaly for the
seasonal climatological average which is then projected onto the non-dimensional Z500 non-local index which in this flow configuration is
2.4. [Colour figure can be viewed at wileyonlinelibrary.com]

significant damages and flooding in the western Alps, Italy
and France, as described in Magnusson et al. (2021).

2.1 Event definition and target variable

Our definition of EPE consists of an extreme precipita-
tion event occurring within the area indicated by the green
rectangle in Figure 1. The condition of extreme precipita-
tion yes/no, is obtained through thresholding based on the
observational ARCIS dataset. ARCIS is a high-resolution
(5 km× 5 km) gridded precipitation dataset obtained by
the spatialisation of a high-density surface observation net-
work of 11 Italian regions plus several stations of adjacent
Alpine regions, described in Pavan et al. (2019). Gridded
data cover northern and central Italy at daily resolution
from 1 January 1961 up to real time. Each day since
then has been labelled with EPE yes if the aggregated
daily precipitation of one or more of the 94 warning areas
into which northern and central Italy are subdivided [see
Grazzini et al. (2020b) for details] exceeds the 99th per-
centile of its wet-days climatology of the recent climate
period (1991–2020) and the sum of the area above the 99th
percentile is greater than 1000 km2. We focus on medium-
to large-area extremes, filtering out very localised down-
pours. The obtained tabular time series of dates with
EPE yes/no is our ground truth or target variable. In the
recent period (1991–2022), we have observed 782 EPE

days, 24.4± 6.9 EPEs each year, with a seasonal distribu-
tion ranging from about 5% in winter (DJF), spring (MAM)
and summer (JJA) and ca 12% in autumn (SON). An equiv-
alent time series of precipitation forecast output, used as a
benchmark, is obtained by applying the same thresholding
rules to the direct model output daily precipitation, using
the 24-hour short-term precipitation forecast from ERA5
reanalyses as base climatology for computing the 99th per-
centile thresholds of each warning area. This results in
lower thresholds, in absolute terms, for the direct model
outputs to raise an EPE yes.

2.2 Machine-learning algorithm
description

MaLCox consists of a pipeline of Python modules con-
taining machine-learning models and estimators from the
scikit-learn library (Pedregosa et al., 2011). At the core of
MaLCoX’s algorithms lies the RF method (Breiman, 2001).
Random forest is an estimator that fits many decision tree
classifiers on various randomly drawn subsamples of the
dataset instances and predictors. It uses averaging on the
trees to improve the predictive accuracy and control over-
fitting. Prediction, which can be categorical, probabilistic
or continuous regression, is made by aggregating the indi-
vidual predictions of the ensemble of decision trees. Ran-
dom forests are already proven to be useful in the context of
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4 GRAZZINI et al.

F I G U R E 2 Schematic of MaLCoX architecture. EPE,
Extreme Precipitation Event. [Colour figure can be viewed at
wileyonlinelibrary.com]

severe weather detection (Hill et al., 2020) and are straight-
forward to implement and optimise. The architecture of
MaLCoX can be divided into two major blocks, both using
RF estimators, schematised in Figure 2. The first module
(EPE module) is designed to predict the probability of an
EPE and eventually the total volume of rain (Vol) and the
EPE area extension (EPEarea). A second block (Classifi-
cation module) classifies EPEs into categories defined in
Grazzini et al. (2020a). Besides different predictors, the
two modules differentiate themselves by their different
levels of tuning. While the task of EPE classification is rel-
atively simple (we use the default hyperparameters) since
it works on a homogeneous set of dates containing only
EPE days, the task of the first module (EPE yes/no) is
more challenging and requires some specific hyperparam-
eter customisation accounting for EPE rarity. RF produces
individual trees from a bootstrap sample of the training
data. In learning extremely imbalanced data, as in our
dataset, there is a significant probability that a bootstrap
sample contains few or even none of the minority class,
resulting in an overall poor performance in predicting the
positive event (EPE yes).

To alleviate this problem, in the EPE module, we set
the option of having balanced subsamples which automat-
ically adjust weights inversely proportional to class fre-
quencies in the bootstrap sample for every tree grown. The
other problem to face was avoiding overfitting to improve
generalisation. Instead of changing specific hyperparame-
ters, we used cost complexity pruning to control the size
of RF trees and prevent overfitting. This pruning tech-
nique is parameterised by the cost complexity parameter
(ccp_alpha) with values greater than zero progressively
increasing the number of nodes pruned. We find the
optimal value by testing different values recursively (via
GridSearch) using cross-validation on the training dataset.

For our application, the choice of ccp_alpha= 0.001 is the
best compromise which maximises the validation scores.
While the classification module is independent of lead
time, the EPE yes/no module has a different RF model for
each forecast step, with a different training dataset and the
same hyperparameters. We tested also having the predic-
tors and hyperparameters change with lead time, trying
a recursive feature elimination with cross-validation. Still,
the results were comparable using the same predictors
and letting the model decide how to use them. We opted
then for this latter choice since having the same num-
ber of predictors at all lead times is preferable in terms
of the interpretability of the results. The EPE (yes/no)
module also includes two additional RF regressor mod-
els used to compute the expected rain volume and EPE
area, fitted with the same predictors of the classification
models. Finally, we complemented the software modules,
with the Shapley additive explanations library (Lundberg
et al., 2017) specifically designed to help explain the out-
puts of machine-learning models. It allows us to effectively
visualise the contribution of each feature for a particular
prediction. The prototype of MaLCoX has been put in a
preoperational and testing phase, running daily on ARPAE
servers since September 2022.

2.3 Training and test dataset

On average there are only 24 EPE days for each year, so
we need a sufficiently long dataset for the training period
to build meaningful statistics. Another requirement, since
we are dealing with forecasts of events occurring in differ-
ent years, is that only small changes in model performance
occur over time. These requirements restricted the choice
to the ECMWF reforecast, which has a coarse horizontal
resolution (18 km), for the investigated period, compared
with high-resolution 9 km (HRES) operational runs, but
is more stable in terms of model changes. This system is
composed of an 11-member ensemble running biweekly
for 46 days, with the latest Integrated Forecasting Sys-
tem of ECMWF (IFS) cycle, on the same initial date (day
and month) for the previous 20 years (Vitart et al., 2019).
We take the 20-year reforecast sets produced on every
available date from 2019 to 2021, accumulating statistics
over different model cycles. In case of duplicate dates, we
keep only the most recent forecast. Another restriction is
represented by the availability of the IVT fields. This fun-
damental predictor, which only became available in June
2018, comes from model cycle 45r1 of the ECMWF IFS sys-
tem output. To reduce the already large data transfer, we
train our model only on the control (CTRL) member of the
ensemble reforecast. We also tried training based on the
reanalysis but as we want to account for the mean forecast
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GRAZZINI et al. 5

T A B L E 1 Table showing the list of predictors.

Variable Description Units RF model Class

fcst_IVTmag IVT-normalised anomaly index lead times from 0 to −2 days EPE (y/n) Non-Local

fcst_Z500 Geopot-normalised anomaly index at 500 hPa lead times
from 0 to −2 days

EPE (y/n) Non-Local

fcst_V850 850 hPa meridional wind normalised anomaly index at
850 hPa lead times from 0 to −2 days

EPE (y/n) Non-Local

IVTe Daily mean of zonal component of integrated water vapour
transport

kg⋅s−1⋅m−1 EPE (y/n) Local

IVTn Daily mean of meridional component of integrated water
vapour transport

kg⋅s−1⋅m−1 EPE (y/n) Local

TCWV Daily mean of total column water vapour kg⋅m−2 EPE (y/n) Local

MSLP Daily mean of mean sea level pressure hPa EPE(y/n) Local

V olf Daily volume of rain over the target domain m3 EPE (y/n) Direct

Juld Day of the year (Julian day) EPE (y/n) Climate

𝛩e850 Daily mean of equivalent potential temperature at 850 hPa K Classification Local

Δ𝛩e500–850 Daily minimum of delta 𝛩e (500–850) hPa K Classification Local

𝛩pv2 Daily mean of 𝛩 on dynamical tropopause (PV= 2) K Classification Local

iaudmax Daily maximum of convective adjustment time-scale hr Classification Local

CAPEdmax Daily maximum of CAPE J⋅kg−1 Classification Local

Note: Predictors are subdivided according to their type and usage in the two-step blocks of the MaLCoX model.

error of the predictors, which is lead-time-dependent, we
opted for training on the reforecast. After removing dupli-
cate reforecast dates, the training dataset consists of ca
5282 days with the number of EPEs slightly changing with
forecast steps (357± 12). Forecast steps are spanning from
+24 hours (D1) to +240 hours (D10). The test dataset is
assembled on the same set of predictors extracted from the
ECMWF HRES operational daily runs from July 2018 (the
first available cycle with IVT as output) until 2022. All the
verification dates already included in the training dataset,
about 10% of the original available HRES dates, are being
excluded from the test dataset to avoid any overlap. At the
end, the number of days present in the test dataset is 898,
of which 58± 4 EPEs, depending on the forecast lead time.

2.4 Non-local, local, direct and climate
predictors

We define four sets of predictors: non-local, local, direct
and climate predictors. Table 1 shows the full list of pre-
dictors subdivided according to their class and usage in
the two modules of the MaLCoX model. The majority of
predictors is used in the first step, in the EPE module,
used to detect EPE yes/no. The remaining five predictors
are used to classify the type of event in three main EPE
categories: frontal or orographic uplift of moist statically

stable flow (Cat1), stronger frontal uplift of a neutrally
moister/warmer stable flow with embedded convection
(Cat2), and thermally forced deep convective ascent
(Cat3), as proposed in Grazzini et al. (2020a). For the
training, all the predictors are obtained from the con-
trol member of the reforecast, at six-hour intervals up
to 15 days and aggregated at daily resolution (last five
days not used at the moment). In the test period and
in real-time application the predictors are taken instead
from the HRES ECMWF forecast every six hours up to
day 10 and aggregated at daily resolution, benefitting from
higher resolution. This difference between training (low
resolution) and testing (high resolution), which makes
the comparison unfavourable for MaLCoX, will disappear
in the current (after June 2023) IFS model cycles, when
the ensemble prediction forecast (ENS) and HRES will
have the same resolution and reforecast resolution will
also be upgraded accordingly. Let us introduce the first
class of predictors: the non-local predictors. This class of
predictors is based on the prior systematic identification
of precursor patterns, as lagged-anomaly composites of
large-scale variables prior EPEs, defined in ERA5 data,
following the approach of Dorrington et al. (2023) and
using the associated Domino Python package. Patterns are
masked based on the statistical significance, amplitude
and spatial extent of anomalies, and then standardised.
Finally, time-evolving indices are computed from the
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6 GRAZZINI et al.

F I G U R E 3 Standardised composites of non-local precursors (top row: Z500; middle row: integrated water vapour transport (IVT)
magnitude; bottom row: V850) from three days before (lag 3) up to the day (lag 0) of Extreme Precipitation Events (EPEs) occurring in the
September–October–November (SON) season. [Colour figure can be viewed at wileyonlinelibrary.com]

spatial patterns for selected variables (Z500, V850 and IVT
magnitude) as the projection (scalar product) of the daily
deseasonalised field anomaly onto the precursors patterns.
In practical terms, the non-local indices summarise the
spatial similarity of current synoptic conditions to the typ-
ical precursor patterns associated with EPEs n days before
(with n from 0 up to 5 days before the event) over the
Euro-Atlantic area. Precursor patterns are computed on
a seasonal basis accounting for the change of large-scale
dynamics during the year. In Figure 3 we show an example
of precursors patterns for autumn (SON) EPEs.

The wave pattern associated with EPEs is very evident
in the three respective atmospheric variables at day 0 (the
same day as the EPE), and it remains coherent while shift-
ing west in the days before the event, up to day 3 in Z500
and V850 and up to day 2 in IVT (Figure 3). Coherency
and significance depend on the season, increasing in SON
and DJF and decreasing in MAM and JJA (not shown). In
the current version of the system, we use non-local pre-
cursors up to day 2, to have significant amplitudes for all
variables. This means that for each valid date, we have
up to three non-local indices for each variable, leading
to nine independent non-local indices. For example, the
Z500 indices are computed projecting the instantaneous
forecast anomaly validating on the composite two days
before (lead2), one day before (lead1) and on the day of
the event (lead0). So the non-local predictors of each day
are not only a function of fields valid at D0 but also reflect
the forecast for the days before; they are non-local both
in space and time. Qualitatively, it is possible to see in
Figure 1 how the anomalies of the wave associated with

storm Alex, including high IVT values, match the compos-
ites of Figure 3. The resulting non-local indices at lag0 are
2.4 for Z500, 3 for V850 and 3.9 for IVTmag. These val-
ues are very high and correspond respectively to 2.4, 3 and
3.9 standard deviations from the mean values observed for
autumn EPEs.

Local predictors are a set of thermodynamic and
dynamic variables, describing the circulation at the local
scale, averaged temporally at the daily resolution, and spa-
tially over the green box of Figure 1. The choice of variables
has been made through a combination of established vari-
ables described in previous work of the authors (Grazzini
et al., 2020a) plus the addition of 𝛩 on the potential vor-
ticity (PV) surface, at a level of the dynamical tropopause
(PV= 2) as a tracer of upper-level wave activity. The choice
of this variable compared with PV on 𝛩 surfaces instead,
as proposed in Grazzini et al. (2021), is mostly motivated
for practical reasons due to the availability of this field in
the operational dissemination already in place at ARPAE.
We introduced also a direct model predictor, the daily vol-
ume of rain forecast (Volf) over the entire target area, as a
feature to convey the explicit prediction of the model. An
attempt without direct model output showed worse per-
formance, especially in the short-term forecast. Finally, we
introduced the climate predictors class, which in the cur-
rent configuration is composed only of the day of the year.
This variable provides direct information on observed EPE
frequency which shows a marked seasonal cycle (see fig. 2
of Grazzini et al. (2020a)).

In addition to this simple information, this variable
allows MaLCoX to modulate the importance of other
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GRAZZINI et al. 7

predictors according to the time of the year. We tested the
introduction of other slow-varying predictors in the clima-
tological class, accounting for example for the observed
warming trend like sea surface temperature (and its
deseasonalised anomaly) averaged on the scale of the
Mediterranean basin. We found that the Mediterranean
averaged sea surface temperature (SST) did not add pre-
dictive power to the model and therefore we discarded
it. A possible explanation is that SST variability occurs
at longer time-scales compared to synoptic disturbances.
According to our predictor’s correlation matrix (not shown
here), there is no significant correlation (r= 0.03) between
EPE area or rain volume (Vol) and SST (full value and
anomaly) averaged over the Mediterranean Sea. This does
not mean that SSTs are not influential in EPE gene-
sis, they are indeed important for heat and momentum
fluxes. Simply there is no covariance because even if
SSTs are high, or anomalous, they will stay high also
when the phenomenon is not occurring (especially in
summer). Probably latent heat flux (not tried yet) would
be a better indicator, with variability on the same tem-
poral scales of EPEs. In addition, water vapour sources
from remote areas are sometimes more important for
EPE development, as confirmed by other recent stud-
ies (Duffourg & Ducrocq, 2011; Khodayar et al., 2021;
Khodayar et al., 2022), so that the direct Mediterranean
Sea contribution for some EPEs is less important, like
in winter.

3 MODEL EVALUATION

In this section, we discuss the model performance over
a large sample of cases. As a main score to evaluate
the performance of MaLCoX, against the direct model
output of the ECMWF HRES precipitation taken as a
benchmark, we used the average precision score (AP)
available from the scikit-learn library. Receiver Opera-
tor Characteristic (ROC) curves are commonly used to
present results for binary classification in machine learn-
ing. However, when dealing with highly skewed and
imbalanced datasets, like in our application, the AP,
which is the area under the precision–recall curve, gives
a more informative picture, as discussed in Davis and
Goadrich (2006). Precision (P) is a metric that quanti-
fies the number of true positive predictions of minority
class (EPE yes) divided by all positive (true plus false),
while recall (R), also known as sensitivity, is the frac-
tion of true positive divided by true positives plus false
negatives.

AP is calculated as follows:

AP =
∑

n
(Rn − Rn−1)Pn (1)

where Pn and Rn are the precision and recall at the nth
threshold.

In addition to AP, we use the Brier score to assess the
improvement of the inclusion of the non-local predictors.
Brier score or Brier score loss is a negatively oriented score,
the smaller the better, which measures the mean squared
difference between the predicted probability and the actual
outcome.

3.1 Feature importance

Before focusing on the scores, it is useful to discuss the
contribution of each feature class to the model. One of
the main reasons for conceiving MaLCoX as a hybrid
model is that we can study the relative importance of
direct vs large-scale predictors for the correct prediction
of EPEs at different forecast ranges. This can be done
using the feature importance of the RF estimator. As might
be expected, in the first three days of the forecast the
direct model output of precipitation (Volf) is the domi-
nant predictor. At short ranges, direct rainfall prediction
from state-of-the-art physical models is very well corre-
lated with observed precipitation, especially if temporally
and spatially aggregated. As we enter the medium range,
precipitation errors grow rapidly and other synoptic vari-
ables become more relevant in discriminating days with
EPE yes/no. Namely, IVTn (Table 1) is the second most
important variable after Volf until D+3, while from D+4
onward the IVTmag (lead0) surpasses IVTn in importance
(not shown). To synthesise the relative contribution of the
different features, we aggregated the predictors accord-
ing to their type, indicated in the last column of Table 1,
and show how relative importance changes with forecast
lead time. This is shown in Figure 4, where we observe
a crossing point between the feature importance of the
aggregated predictors by type around D+4. From this point
onward, the overall effect of non-local predictors (repre-
senting the larger-scales) becomes predominant over the
other types. Direct model prediction rapidly decreases in
importance, reducing to almost climatological value by
D+9, while local predictors’ importance remains almost
constant, mostly supported by the IVTn contribution. The
constant increase of climate predictors from D+5 onward
is also notable.

3.2 Performance in the train and test
dataset

Once we defined the metrics, we tested two MalCoX ver-
sions using different predictors. RF ALL contains all pre-
dictors, while RF LOC excludes the non-local predictors.
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8 GRAZZINI et al.

F I G U R E 4 Random-forest feature importance evolution
with forecast lead time [hours], aggregated by class of predictors
according to Table 1. [Colour figure can be viewed at
wileyonlinelibrary.com]

The difference between the models is informative as
to the importance of non-local predictors. The perfor-
mance is first assessed on the training dataset with a
cross-validation procedure (CV), in which the training
set is split into five smaller folds used to compute the
validation metrics after being trained on the remaining
folds. The result of the probabilistic prediction of the two
MaLCoX versions for the train and test are also compared
respectively against the categorical prediction obtained
from the control forecast (CTRL), shown in Figure 5, and
later the HRES forecast in Figure 6. As shown in Figure 5,
MaLCoX performance evaluated in the training dataset is
always much better than CTRL with the largest gain in
the medium range between+96 and+144 hours lead time.
Both versions, ALL and LOC, are showing a similar level
of skill up to seven days (forecast lead time +168 hours).
After, RF ALL tends to perform marginally better, hinting
at a positive role of the non-local features for the predic-
tion of EPEs at longer ranges, although there is still a large
overlap of confidence intervals which did not allow us to
draw firm conclusions.

We apply the same metrics to the test dataset, not seen
during the training. The test dataset contains a smaller
sample size but is still relevant for the significance of the
statistics with 898 days on average and 57 EPEs. To esti-
mate the mean and standard deviation of the scores we
applied a 100-time resampling procedure with replace-
ment. From Figure 6 we see that the HRES precision score
is higher than the CTRL score due to higher resolution
and accuracy in predicting EPEs. Better skill of HRES pre-
cipitation has a positive influence also on MaLCoX skill
which in general is higher compared with results obtained
in the training dataset. RF models, even if trained on the
CTRL, continue to show higher precision throughout the

F I G U R E 5 Average precision score computed on the
training dataset (5282 days, 357 with extreme precipitation events).
Scores averaged over five cross-validation folds. [Colour figure can
be viewed at wileyonlinelibrary.com]

F I G U R E 6 Average precision score computed on the test
dataset (on average 898 days, 58 with extreme precipitation events).
[Colour figure can be viewed at wileyonlinelibrary.com]

forecast period compared to the HRES categorical precip-
itation forecast. This advantage is greatest in the medium
range, where the skill gain of using MaLCoX instead of
HRES precipitation is equivalent to about three days; the
skill of MaLCoX (ALL) at D7 forecast is almost the same
as that of HRES direct model output at D+4. Secondly,
we see a similar behaviour of the two model configura-
tions observed in the training dataset. RF ALL shows an
even larger advantage, although not significant, compared
to RF LOC at forecast lead time +144 hours. It should
be noted, however, that despite AP being an appropri-
ate score there is a disparity in comparing a probabilistic
forecast with a categorical benchmark. A more fair com-
parison should be done against the probabilistic prediction
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GRAZZINI et al. 9

F I G U R E 7 Brier score of different Extreme Precipitation
Event (EPE) models containing different sets of predictors: ALL,
only Local (green curve), only Non-local (orange curve). [Colour
figure can be viewed at wileyonlinelibrary.com]

obtained from the full ECMWF ensemble over a long time
window, planned for a more comprehensive verification in
a future study.

To investigate further the relative importance of the
non-local vs local predictors we consider also different skill
metrics in the test dataset, among those the Brier score.
This skill metric proved particularly effective in highlight-
ing the relative role of different types of predictors that
contribute to keeping the performance of MaLCoX con-
sistently higher than the precipitation model output. In
Figure 7 we compare the Brier score, which is negatively
oriented, of RF ALL predictors against RF LOC and a
further version, denominated RF Non-local, which shows
only the contributions on non-local predictors. It is inter-
esting to see that the Brier score of RF ALL, up to lead time
+144 hours, is very similar to the Brier score of RF LOC
(green curve), while after, in the late medium–late range,
the level of skill is the same of RF non-local (orange curve).
This behaviour seems to reinforce the hypothesis, com-
ing from the feature importance analysis, that non-local
predictors contribute more than local predictors from D6
onward.

Finally, we show a measure of the accuracy of the EPE
classification model in assigning EPEs (in the forecast) at
one of the defined three categories Cat1, Cat2 and Cat3.
Note that, differently from the RF models used in the EPE
yes/no block, the RF EPE classifier is trained on the anal-
ysis fields (1991–2022) using only days where EPEs were
observed and a perfect prog approach. Assuming perfect
predictors, the skill of the RF category classifier is very
good in reproducing the categories obtained by Kmeans
clustering, our ground truth, based on the same predic-
tors [see Grazzini et al. (2020a) for a description of the

F I G U R E 8 Confusion matrix showing the accuracy of
prediction of the Extreme Precipitation Events (EPEs) classification
module over the test dataset containing 235 EPEs. [Colour figure
can be viewed at wileyonlinelibrary.com]

clustering]. The confusion matrix in Figure 8 shows that
about 87% of the predictions in Cat3 are correct, 95% in
Cat2 and 98% in Cat1. The test dataset is obtained from a
random sampling of 30% of days in 1991–2022, excluded
by the training period.

4 CASE STUDY: 15 DECEMBER
2022

Besides the verification statistic presented above, in this
section we practically demonstrate the usage of MaLCoX,
discussing one EPE event, which occurred after MaL-
CoX’s implementation at ARPAE in September 2022. The
EPE occurred in December 2022 with three warning areas
exceeding their respective 99th percentile of daily pre-
cipitation (Figure 9). Localised floods were observed in
northern Tuscany due to continuous heavy stratiform rain,
enhanced by orographic uplift, consistent with Cat1 clas-
sification. The city of Pistoia was particularly hit with
110 mm of rain falling in 18 hours. Among the ranking
of past EPEs, this can be considered moderate intensity,
and small area (see Figure 12 for comparison with other
events). The ground effects were limited due to prevail-
ing antecedent drought conditions, which resulted in good
drainage in the mountain basins. Aside from the severity of
the ground effects, this is an interesting exemplary case to
illustrate how the forecasting system works even with rel-
atively small-amplitude events and to introduce some new
forecast tools created to display the information content
available with MaLCoX.
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10 GRAZZINI et al.

F I G U R E 9 Twenty-four-hour
observed precipitation during
15-12-2022 from the ARCIS dataset.
Color shading shows the precipitation
accumulated between 00 and 24 hr
(UTC) spatially averaged over warning
areas. In the three warning areas with
red outlines, the observed daily rainfall
exceeded the 99th percentile of the
daily accumulated precipitation.
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 10 Synoptic situation on 15-12-2022 1200 UTC. An Extreme Precipitation Event (EPE) occurred inside the test region
depicted with the green box with floods in northern Tuscany. The map displays the geopotential height at 500 hPa (solid lines) and the
associated magnitude of the instantaneous vertically integrated water vapour flow shaded according to the scale above in kg⋅s −1⋅m −1.
[Colour figure can be viewed at wileyonlinelibrary.com]

The synoptic situation associated with this case study
is shown in Figure 10. The EPE was associated with an
amplifying Rossby wave centred over the Iberian penin-
sula, moving east. Further upstream there are regions of
enhanced water vapour downstream of two other troughs,
flowing in a low-latitude zonally elongated region of
high geopotential gradient. This configuration favours

continuous replenishment of water vapour from the
Atlantic to the Mediterranean basin.

In Figure 11 we show the EPE monitor display of two
subsequent MaLCoX forecasts. This is our first alarm bell,
showing the probabilistic output for an EPE in a 10-day
forecast horizon. MaLCoX probability is displayed and
compared against the corresponding probability obtained
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GRAZZINI et al. 11

F I G U R E 11 Extreme Precipitation Event (EPE) monitor tool used to display MaLCoX predictions daily. The X-axes shows the forecast
valid dates (day/month). The bars are showing the EPE probability computed by MaLCoX, coloured according to the predicted category
(cyan, no EPE; blue, Cat1; orange, Cat2; green, Cat3). The probability obtained by processing the direct model output of the ensemble
prediction system forecast members (empty grey bars) is also shown for comparison. (a) 10 day forecast issued 10 December 2022. (b) 10 day
forecast issued 11 December 2022. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 12 Total volume of rain and area extension of the extreme precipitation events (EPEs) predicted by MaLCoX and IFS HRES.
The shading of the cells represents the frequency distribution of rain volume and area of previous EPEs observed between 1961 and 2022.
Dashed lines divide the plane in areas above or below the 95th percentile of the respective EPE distribution. For comparison, the violet dot
shows the observed value. (a) EPE rain volume prediction issued 2022-12-10 and valid for 15 December 2022. (b) EPE rain volume prediction
issued 11 December 2022 and valid for 15 December 2022. [Colour figure can be viewed at wileyonlinelibrary.com]

by ENS precipitation direct model output; the colour of
the bars corresponds to the EPE category. In Figure 12
we show a display referring to the expected intensity of
the event in comparison with all EPEs which occurred
before in terms of area above the 99th percentile and total
volume of rain. This type of volume–area plot is automat-
ically generated only if MaLCoX or ENS predicts an EPE.
As shown by Figures 11 and 12, MaLCoX predicted the

likelihood of an EPE Cat1 between 14 and 16 December
many days in advance, but only from the forecast start-
ing on 11 December, it started to point to 15 December
as the day with the highest rainfall. The MaLCoX fore-
cast issued on 11 December showed a much higher and
closer rain volume estimation than the one predicted by
ECMWF raw output. Besides these quantitative measures,
forecast consistency is another very desirable property of
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12 GRAZZINI et al.

F I G U R E 13 Extreme Precipitation Event (EPE) heatmap for 20 days covering the case study. (a) EPE probability predicted by
MaLCoX is shaded according to the legend, and the predicted category is indicated by the tick outline (blue, Cat1; orange, Cat2; green, Cat3).
Dates marked in red indicate days with observed Extreme Precipitation Events (EPEs). (b) Difference in probability, MaLCoX minus
ensemble prediction forecast (ENS), according to legend. In boxes without annotation the difference is smaller in absolute terms than 0.2. RF,
stands for random forest module (of MaLCoX) [Colour figure can be viewed at wileyonlinelibrary.com]

a reliable forecast system, particularly to increase trust. A
further assessment of consistency can be obtained with a
heatmap view of EPE probability. In Figure 13a, we show
the predicted probability and the EPE category by MaLCoX
for a running window of 20 validating dates (X-axes) and
forecast at different lead times (Y-axes). MaLCoX became
certain of the 15th day from the D+4 forecast (lag3) while
at longer lead times the forecast was showing some incon-
sistency, alternating between days 14 and 16 as possible
EPEs. In Figure 13b we show a systematic difference of
EPE probability predicted by MaLCoX minus the prob-
abilities predicted by the ENS. MaLCoX correctly raised
the probabilities (red boxes) compared to the ENS on the
days with observed EPEs, except for a short-range fore-
cast valid on 10 December. A general increase prevailed on
the other days, but was non-significant, with differences
smaller than 20% (boxes without annotation).

To explain the behaviour of MaLCoX and to convey the
physical process which made the precipitation extreme in
the forecast we adopted the Shapely additive explanation
package (Lundberg et al., 2017), already used for a similar
application related to atmospheric composition forecast
(Vega García & Aznarte, 2020). The waterfall representa-
tion, displayed in Figure 14, shows the contribution of each
feature in the two successive forecasts, both validating on
15 December 2022.

Starting from the background expectation E[f (X)],
which is defined by the average frequency of the EPE
in the forecast, 6% at this lead time, the waterfall shows
the incremental increase or decrease of the model output
adding features until it reaches the outcome [f (X)= 1]
(EPE yes). In both forecasts, MaLCoX predicted an EPE

but the decision was led by different predictors. In the
forecast initiated on 10 December (D+5) (Figure 14a) the
most important predictor is the IVTmag non-local index
(lead time 0) followed by the day of the year (Juld) and
Z500 non-local index (lead time 0), while in the forecast
of next day (11 December) (Figure 14b) the total rain
volume predicted by HRES becomes the most important
feature, followed by IVTmag non-local index (lead time 0)
and V850 non-local index (lead time 0). In Figure 14a it
is interesting to note the slightly negative contribution of
Volf due to HRES predicting a smaller rain amount com-
pared with a typical EPE. Despite the lack of sufficient
explicit rain, MaLCoX was still leading to an EPE due
to the contribution of the large-scale component namely
the non-local class. From D+4 and closer to the event,
the ranking of predictors changes and Volf becomes the
driving source of information with non-local predictors
progressively going down in the ranking as the lead time
reduces. Despite the predictors ranking changing case by
case, this example illustrates well the typical complemen-
tary value of local and non-local predictors acting when
the predictability of direct precipitation output is low. This
improves the forecast skill in the medium range and the
consistency, preventing sudden jumps in the forecast.

5 CONCLUSION

In this paper, we present a hybrid dynamical-statistical
model (MaLCoX) which uses sequential RF models
to combine different classes of forecast atmospheric
predictors and improve predictions of EPEs. These types
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GRAZZINI et al. 13

F I G U R E 14 SHAP waterfall illustrating the additive contribution of each feature for two consecutive MaLCoX forecasts both
validating on 15 December. In both forecasts, MaLCoX predicted an Extreme Precipitation Event (EPE) but the result was driven by different
predictors. The bottom of a waterfall plot starts as the climatological expected value of the model output for EPE= yes, and then each row
shows how the positive (red) or negative (blue) contribution of each feature moves the value from the background value to the model output
for this prediction. On the Y-axes predictors’ names are ranked according to their influence and their value is shown with grey numbers. (a)
D+5 forecast initiated on 10 December 2022. (b) D+4 forecast initiated on 11 December 2022. [Colour figure can be viewed at
wileyonlinelibrary.com]

of hybrid models represent an emerging class in the
spectrum of weather forecasting systems. While pre-
vious studies have already reported hybrid predictions
of short-term precipitation forecast, to our knowledge,
no analogous examples of medium-range forecasting of
extreme events exist, which is the target of our work. In the
medium range, non-local predictors – scalar normalised
indices representing large-scale anomalies preceding
EPEs in the Euro-Atlantic sector – are an important source
of skill and an innovation of our approach. MaLCoX,
trained with a low-resolution dataset with a 20-years
equivalent period of 10-day forecasts obtained from the
ECMWF reforecast dataset, shows a better performance
than the high-resolution ECMWF operational forecast
in the prediction of EPEs over northern–central Italy,
with a gain of about three days of forecast skill in the
medium range.

A third innovative contribution is its interpretability:
explaining the reason for a predicted outcome in terms
of the relative contribution of different predictors. Under-
standing why a model makes a certain prediction can be
as crucial as the prediction’s accuracy, especially when
forecasters have to face rare extreme conditions and they
need to gain trust in model output. Combining the results
obtained by feature importance, scores on training and
test datasets and results of feature attribution on single
case studies, we show that predictors act in complemen-
tary ways throughout the forecasting period. At short

forecast lead times, the hybrid model is mostly informed
by the explicit precipitation field (total volume of rain) and
local synoptic features, like IVTn. In the medium range,
and especially after lead time+ 144 hours, the cumula-
tive effects of non-local predictors become predominant
together with local synoptic features. The four-day fore-
cast horizon is on average the crossing point where the
redistribution of weights among the different feature com-
ponents occurs. This information also has implications on
predictability suggesting that, for the medium range and
even longer ranges, flow-pattern characteristics remain
predictable and the information that can be extracted is
useful to infer the likelihood of an EPE. Finally, we want to
stress the positive role played by the non-local predictors
class, here newly tested, in reducing the loss of predictabil-
ity at longer time ranges. The results shown here refer
to the first operational version that will be updated with
further refinements. In particular, in the future upgrade
of MaLCoX we plan to increase even further the training
dataset using all ensemble members of the ENS reforecast
as independent realisation and to expand the prediction to
all individual warning areas.

5.1 Scripts and datasets

The table containing observed aggregated daily precip-
itation over northern and Central Italy warning areas
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14 GRAZZINI et al.

(1961–2022) and days with EPE (yes/no) is available on
the open data repository of ARPAE Emilia-Romagna:
https://dati.arpae.it/dataset/serie-giornaliera-di-eventi
-estremi-di-precipitazione-sul-centro-nord-italia.
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