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A B S T R A C T

The 3D dynamic response of twin rigid massless foundations under concurrent time-harmonic loads in a finite
soil region resting on a homogeneous visco-elastic half-space is studied. The mechanical model is based on an
efficient approach combining the boundary element method (BEM) for the semi-infinite far-field zone and the
finite element method (FEM) for the finite near-field geological region. The accuracy and convergence study
of the hybrid computational scheme based on the macro-element concept is presented. A parametric study
revealing the sensitivity of the dynamic response to the following key model parameters: (1) Poisson’s ratio of
the semi-infinite zone; (2) separation distance between foundations; (3) material damping; (4) the foundations’
geometry; and (5) the phase shift between the acting harmonic loads is presented. The obtained results show
resonance patterns as a result of the mutual play between foundations’ geometry, their spatial arrangement,
and soil properties. Approximation formulae are proposed to estimate the resonance states. The results also
show that the effect of material damping cannot be fully decoupled from the impedance functions using the
conventional formula. Further, the presence of a phase between harmonic loads acting on the foundations
influences the resonance state, and negligence of it may lead to unexpected responses of the foundations. An
efficient optimization of the dynamic design of structures with adjacent foundations, such as bridges, offshore
and onshore infrastructures with multiple foundations, machinery, or adjacent structures, could be performed
using the obtained results. For better accessibility, the solutions are presented in the form of 3D impedance
and compliance surfaces, and they are readily downloadable as interactive figures. A calculation example is
given in the appendix.
1. Introduction

The term foundation–soil–foundation interaction (FSFI) reflects the
collective interaction between multiple vibrating foundations and the
soil domain. The understanding of FSFI is important for structures
with closely spaced foundations such as bridges, offshore and onshore
structures with multiple foundations, machinery, etc., or closely adja-
cent structures. A group of foundations involves both the modification
of the ground motion and the alteration of the dynamic response
of each foundation, due to multiple interactions that occur as the
foundations are rested or inserted in the geological continuum. Such
a complex interaction includes the following key factors: (1) the stiff-
ness contrast between the foundations and the soil, (2) the spatial
discontinuities along their interfaces, (3) the spatial arrangement of
the foundations/structures, (4) the eigenfrequencies and eigenmodes
of the soil–foundation–structure systems, (5) the excitation’s or ground
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motion’s characteristic and actively propagating waves, (6) the site
effect due to impedance contrasts of soil layers, and (7) the effects
of nonlinearities, in the case of strong vibrations. With respect to the
problem’s geometrical representation, the complexity of soil–structure
interaction (SSI) problems can be approached numerically using either
(a) the direct or single-step method, where the structure of interest and
its near-field region is modeled and the whole domain is solved in one
step, or (b) the substructure or multistep method [1–3]. In the latter
method, the problem is decoupled into (b1) a kinematic interaction
analysis involving the soil and massless foundations/structures, from
which the result is foundation’s input motion (FIM) or impedance
functions; and (b2) an inertial interaction analysis, in which the ob-
tained FIM or impedances are coupled with the foundation-structure
system (and its mass) to obtain its inertial response. For foundations
vailable online 31 May 2024
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or structures with relatively simple configurations and elastic mate-
rial behavior, the substructure method is preferable due to its lower
computational demand. In addition, kinematic interaction analyses,
such as described in (b1), facilitate a thorough understanding of the
governing mechanism of the problem and the role of key parameters.
What follows is a short evaluation of the state of the art regarding
available mechanical models concerning the dynamic behavior of a
system of soil and adjacent spread foundations.

The importance of the FSFI phenomenon in dynamic and seismic
structural design and analysis has long attracted the attention of the
scientific community. Savidis and Richter [4] employed an analytical
formulation to examine the FSFI problem, in which Holzöhner influ-
ence functions for constant stress distribution over rectangular regions
were used. Two rigid massless rectangular foundations on the surface
of a linear-elastic, isotropic half-space were the object of interest. Later,
the method was used to extend the study considering linear visco-elastic
half-space by Gaul [5]. In both cases, relaxed boundary conditions
in the contact between the soil and foundations were considered.
Triantafyllidis and Prange [6] improved the assumption by considering
non-relaxed (complete bond) boundary conditions in their study, in
which they used a set of Fredholm’s integral equations of the first kind
and solved them using the Bubnov–Galerkin method. They discussed
an intriguing case study of the dynamic interaction of railway sleepers.
Liou [7] proposed to solve the problem by decomposing arbitrarily
prescribed stress boundary conditions on the surface of a half-space
to obtain analytical solutions of the 3D wave equation. The solution
for two foundations was subsequently obtained by the superposition of
interaction stresses. Aldaikh et al. [8] proposed an analytical solution
for the static stiffness coefficients of adjacent foundations and suggested
that the results have good agreement with the experimental ones.

A numerical study on this topic using the finite element method
(FEM) can be found in Kausel et al. [9]. Gonzales [10] utilized the
FEM in conjunction with the consistent boundary method to study
the interaction between two square rigid massless spread foundations.
Further research using this approach can be found in Lin et al. [11],
among others.

Wong and Luco [12] approached the dynamic interaction problem
of two rigid square foundations resting on a visco-elastic half-space
using the discretized boundary integral equation technique, supple-
mented with an iterative scheme to improve its solution. Numerical
studies on the topic using the boundary element method (BEM) were
performed by Qian and Beskos [13,14], in which the response of
two square massless foundations subjected to external load or seis-
mic waves was of interest. This study was later extended for flexible
surface foundations of arbitrary shape using the BEM-FEM in Qian
et al. [15]. Additionally, Betti [16] used the BEM in conjunction with
the substructure deletion method to obtain the FIM. Karabalis and
Mohammadi [17] used the 3D BEM in the frequency domain to exam-
ine the compliance functions of two and three adjacent foundations.
Sbartai [18] later extended this study by a deeper examination of
each parameter’s influence and for more vibration modes using the
BEM and the thin-layer method [19,20]. Aji et al. [21] studied the
influence of adjacent foundations on surface wave fields caused by a
buried dynamic source using the BEM-FEM, taking into account the
damaged states of the materials. Zeolla et al. [22] investigated the
group effect of twin foundations under simultaneous loads using the
finite difference method (FDM), enhanced with viscous dampers, and
proposed impedance modifiers to account for the group effect.

The influence of SSI on typical railroad frame bridges was thor-
oughly examined by Heiland et al. [23] through multiple numerical
approaches: (1) the FEM in conjunction with tuned dampers and (2)
the hybrid BEM-FEM. One of the key findings was that the soil-bridge
system experiences a change of state depending on the ratio between
the first bending mode of its frame, 𝑓1, and the frequency of the
vertical rigid body mode of its soil–foundation systems, 𝑓𝐵 , i.e., 𝜂 =
𝑓 ∕𝑓 . At 0 ≤ 𝜂 < 1, the soil-bridge system responds vertically in
2

1 𝐵
Fig. 1. Problem geometry presenting the general configuration of two surface
foundations resting on a finite region 𝛺1, which is embedded in a half-space 𝛺0.

phase to a vertical harmonic load, similar to a single-degree-of-freedom
(SDOF) system, and the radiation damping tends to increase with the
abutment’s stiffness. The soil-bridge system conversely responds as a
multi-degrees-of-freedom (MDOF) system at 𝜂 > 1, at which the soil–
abutment system and the bridge’s frame move asynchronously relative
to each other. The damping in this state decreases as the abutment’s
stiffness increases. Such a phenomenon highlights the importance of
FSFI in practical engineering cases and raises the question of integrating
the FSFI effects into the practical modeling procedure. For the practical
modeling of portal frame bridges, Heiland [24] proposed a conservative
estimation of the frequency range influenced by FSFI and derives appli-
cation limits for quasi-static SSI approaches. The aim is to minimize the
influence of FSFI on the overall dynamic system. Another example is the
dynamic design of offshore wind turbine’s support structure, in which
the structure’s natural frequencies must not interact with the rotor’s and
blade passing frequencies, e.g., in [25]. Such a support structure can be
founded on a multi-contact foundation, e.g., a tripod or a jacket. This
means that the identification or estimation of the natural frequencies
of such a system, including the FSFI effect, under synchronous and
asynchronous harmonic loads is crucial in its design.

Most of the aforementioned studies regarding the foundations’ re-
sponse to externally applied loads considered a condition, in which the
harmonic load is applied to one foundation. Meanwhile, the behavior
of such a system’s kinematics under concurrent harmonic loads is not
yet well understood. Note that for cases in which both kinematic
and inertial interactions in a group of structures are directly taken
into account, discussions can be found under the topic structure–soil–
structure interaction (SSSI) or site-city interaction, e.g., in [24,26–31],
among others, while studies investigating the influence of asynchronous
FIMs on a structure’s response can be found in [32,33], among others.
For a deeper understanding of the dynamic behavior of foundation–
soil–foundation systems under synchronous and asynchronous vertical
harmonic loads, we perform here an extensive numerical study on
the dynamic response of twin rigid massless surface foundations sub-
jected to concurrent time-harmonic loads. The study is focused on
the kinematic interaction between the foundations and soil, and the
results are presented in the form of dynamic impedances and compli-
ances. The choice of limiting the study to surface foundations and a
homogeneous visco-elastic half-space is taken because the aim is to
better understand the governing kinematics of the system. The study
is performed using the hybrid BEM-FEM implemented in ABAQUS and
MATLAB, which is capable of handling problems involving arbitrary
layered half-space [30].

The paper is organized as follows. The mathematical description
of the problem is presented in Section 2, while the accuracy and the
convergence study of the proposed hybrid numerical scheme is given in
Section 3. The parametric study setup and results are discussed in Sec-
tion 4. The computational aspect of the numerical study is illustrated
in Section 5, followed by the conclusions in Section 6.
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Fig. 2. Example of a couple FE and BE digital models.

2. Problem description

An idealization of the problem is given in Fig. 1. Two foundations
rest on a finite soil region, which is embedded in a homogeneous visco-
elastic half-space. The foundations and the supporting near-field soil
region are modeled using finite elements (FEs), whereas the half-space
is computed using boundary elements (BEs). The half-space is marked
as 𝛺0, and the finite soil region is denoted as 𝛺1. The interface between
BE and FE subdomains is denoted as 𝛤𝑖𝑛𝑡. The traction-free surfaces of
the FE and BE regions are denoted as 𝛤𝐹 and 𝛤𝐵 , respectively, such
that 𝛤𝛺1

= 𝛤𝑖𝑛𝑡 ∪ 𝛤𝐹 ∪ 𝛤𝑔𝑗 and 𝛤𝛺0
= 𝛤𝑖𝑛𝑡 ∪ 𝛤𝐵 . Here, 𝛤𝑔𝑗 , 𝑗 = 1, 2, are

the interfaces between foundations and the finite soil region. Note that
𝛤𝑖𝑛𝑡 can take an arbitrary shape. Examples of the FE and BE numerical
models are shown in Fig. 2.

The foundations are congruent with a length of 2𝑙 and a width of 2𝑏,
and they are separated by an edge-to-edge distance 𝑑. The foundations
are assumed to be massless and rigid, therefore, their height, ℎ, and
material properties do not play any role.

The material properties of 𝛺0 and 𝛺1 are the same: shear wave
velocity 𝐶𝑆 = 1 m s−1, density 𝜌 = 1 kg m−3, shear modulus 𝜇 = 1
Pa. The Poisson’s ratio is either 𝜈 = 1∕3, 0.40, or 0.49. A material (hys-
teretic/viscous) damping, 𝛽, of either 0%, 5%, or 10% is considered.
The shear modulus is modified by the damping such that 𝜇∗ = 𝜇(1+2𝑖𝛽),
where 𝑖 =

√

−1. Thus, the corresponding shear wave velocity in this
case is 𝐶∗

𝑆 =
√

𝜇∗∕𝜌.
The following boundary conditions are taken into account: (1)

Sommerfeld’s radiation condition at infinity is satisfied in the semi-
infinite region, 𝛺 ; (2) along the free-surfaces, 𝛤 and 𝛤 , the tractions
3

0 𝐹 𝐵
Fig. 3. Illustration of asynchronous vertical harmonic loads applied on two founda-
tions, 𝑃3𝑗 𝑒

𝑖𝜔𝑡, and its displacement responses, 𝑢3𝑗 𝑒
𝑖𝜔𝑡 , 𝑗 = 1, 2. The phase shift between

the harmonic loads, 𝜙, here is 45◦. The amplitudes are 𝑃31 = 𝑃3, i.e., it only has a real
component, and 𝑃32 = 𝑃3(cos𝜙 − 𝑖 sin𝜙). Both have the same magnitudes, |𝑃3|.

𝑡𝑗 = 𝜎𝑗𝑘𝑛𝑘, 𝑗 = 1, 2, 3; 𝑘 = 1, 2, 3, are zero, where 𝜎𝑗𝑘 is the stress
tensor and 𝑛𝑘 is the outward normal of respective surfaces; (3) along
the interface, 𝛤𝑖𝑛𝑡, compatibility and dynamic equilibrium conditions
of displacement, 𝑢𝑗 , and traction, 𝑡𝑗 , are enforced (𝑗 = 1, 2, 3); (4)
likewise, non-relaxed (complete bond) boundary conditions are applied
on the contact between foundations and the soil (𝛤𝑔𝑗 ) except the contact
in models used for the convergence study. The definition of these
boundary conditions can be found in [34]. The assumption of a non-
relaxed contact is closer to reality since spread foundations are usually
built in situ, on top of a lean concrete layer. In addition, the soil region
and half-space are assumed to remain in an elastic state, i.e., low-strain
vibration, see [23,35].

The harmonic loads, 𝑃𝑗𝑒𝑖𝜔𝑡, are applied to the center-top of both
foundations (Figs. 1 and 2(a)), while the foundations’ response is
measured at their center-bottom nodes. The foundation’s response is
presented in the form of an impedance and a compliance which are
described as

𝑆𝑗𝑘(𝜔) =
𝑃𝑗𝑒𝑖𝜔𝑡

𝑢𝑘𝑒𝑖𝜔𝑡
and (1)

𝑉𝑗𝑘(𝜔) =
𝑢𝑘𝑒𝑖𝜔𝑡𝜇𝑏
𝑃𝑗𝑒𝑖𝜔𝑡

, (2)

respectively. Here, 𝑃𝑗 , 𝑗 = 1, 2, 3, are the complex-valued amplitude
of the load (N), 𝜔 is the angular frequency (rad/s) and the scalar
𝑡 denotes time (s). A phase shift in the periodic load, 𝜙, can be
inserted through modification of the complex-valued amplitude, 𝑃𝑗 ,
i.e., 𝑃𝑗𝑒𝑖(𝜔𝑡−𝜙) =

(

𝑃𝑗 (cos𝜙 − 𝑖 sin𝜙)
)

𝑒𝑖𝜔𝑡. Inversely, 𝜙 between two
harmonic loads can be computed by taking the real part of the ratio
between the amplitudes, 𝑃𝑗1 and 𝑃𝑗2 , as follows:

𝜙 = arccos

(

ℜ

(

𝑃𝑗2
𝑃𝑗1

))

. (3)

An illustration of asynchronous harmonic load time functions is given
in Fig. 3, where 𝜙 = 45◦.

We present the impedance and compliance results as 2D functions
and 3D surfaces. The more general form of impedance functions is more
convenient and accessible to use in dynamic-resistant designs. Com-
puted impedances can be coupled to a model of foundation or structure
to obtain a complete, i.e., kinematic and inertial, dynamic response of
a soil–structure system (see [36,37]; Appendix). Alternatively, one can
use the frequency-dependent impedances in a time-domain analysis,
e.g., by using the time-domain transformation method [38], among
others. Thus, from a practical point of view, practicing engineers may
find them more useful. On the other hand, compliance functions
are better for identifying a trend in the response, such as resonance
patterns of a soil–foundation system. We also present the impedance
and compliance surfaces as interactive figures to improve their practical
usefulness (https://doi.org/10.57892/100-50).

https://doi.org/10.57892/100-50
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𝑐

Fig. 4. Flowchart of the hybrid BE-FE method based on the extended macro-element concept. The gray color marks processes performed in the ABAQUS environment, while the
white marks those performed in MATLAB.
The complex-valued impedance is decoupled into its real and imag-
inary parts as [37]

𝑆𝑗𝑘(𝜔) = 𝐾𝑗𝑘𝑘𝑗𝑘(𝜔) + 𝑖𝜔𝐶𝑗𝑘𝑐𝑗𝑘(𝜔), (4)

where 𝐾𝑗𝑘 and 𝐶𝑗𝑘 are the static terms. The multipliers 𝑘𝑗𝑘(𝜔) and 𝑐𝑗𝑘(𝜔)
are the corresponding frequency-dependent coefficients, which can be
derived as

𝑘𝑗𝑘(𝜔) =
ℜ
(

𝑆𝑗𝑘(𝜔)
)

𝐾𝑗𝑘
and (5)

𝑗𝑘(𝜔) =
ℑ
(

𝑆𝑗𝑘(𝜔)
)

𝜔𝐶𝑗𝑘
, (6)

respectively. By substituting and rearranging Eqs. (5) and (6) into the
fundamental equations of linear dynamics with respect to the hysteric
damping of soils (omitted for brevity), the radiation damping 𝛽𝑅 is
obtained. This involves determining the ratio between the imaginary
(ℑ) and real (ℜ) components of the impedance function:

𝛽𝑅 =
ℑ
(

𝑆𝑗𝑘(𝜔)
)

2 ⋅ℜ
(

𝑆𝑗𝑘(𝜔)
) (7)

We avoid addressing the real and imaginary parts as the dynamic
stiffness and radiation damping since this may mislead engineers. The
real and imaginary parts (or the in-phase and out-of-phase parts) of
4

impedances should be understood as a pair of data, which describes the
magnitude and the phase of a system in response to a harmonic load.
This means that these values can be negative, which merely describes
the response’s phase shift.

We find that we can present the imaginary (or out-of-phase) co-
efficients for some cases better using the term 𝑎0𝑐𝑗𝑘(𝜔), with the use
of which the high values in the near-static region can be avoided. For
these cases, the impedance can be computed as

𝑆𝑗𝑘(𝜔) = 𝐾𝑗𝑘𝑘𝑗𝑘(𝜔) + 𝑖𝐶𝑗𝑘
𝐶𝑆
𝑏

𝑎0𝑐𝑗𝑘(𝜔), (8)

where 𝑎0 is the normalized frequency, i.e., 𝑎0 = 𝜔𝑏𝐶−1
𝑆 . We limit

our present study to vertical–vertical impedance coefficients or compli-
ances as functions of the normalized frequency, i.e., 𝑘33(𝑎0) and 𝑐33(𝑎0)
or 𝑉33(𝑎0). Here, we use the static terms defined in [37] as follows:

𝐾33 =
[

2𝜇𝑙
(1 − 𝜈)

]

(

0.73 + 1.54𝜒0.75) ; (9)

𝐶33 = 𝜌𝐶𝐿𝐴𝑏, where (10)

𝜒 =
𝐴𝑏

4𝑙2
; 𝐶𝐿 =

3.4𝐶𝑆
𝜋(1 − 𝜈)

. (11)

The term 𝐶𝐿 refers to Lysmer’s analogue wave velocity and 𝐴𝑏 denotes
the area of a foundation, i.e., 𝐴 = 2𝑙×2𝑏 for a rectangular foundation.
𝑏
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Numerical solution

The mechanical problem is solved using the hybrid BE-FE method
implemented in ABAQUS and MATLAB [21,30,39]. The BEM here
handles the semi-infinite region. The FEM is utilized to compute the
near-field region and solve the global system of equations (SEs) in the
frequency domain. The coupling method is an extension of the direct,
FEM-hosted approach developed by Vasilev et al. [40]. The standard
collocation technique is used in the BEM implemented here. The BEM
influence matrices for the far-field region are computed for each fre-
quency, 𝜔, and then condensed and converted into a suitable form for
the FE environment. The converted matrices are then generated into
macro-elements using the substructure procedure in ABAQUS and sub-
sequently attached to the computed SEs of the FE subdomain, resulting
in the global SEs. Finally, the latter is solved using a direct-solution
steady-state dynamic solver in ABAQUS. The workflow is illustrated in
Fig. 4. The verification of the coupling method is presented elsewhere
for the following cases: (1) the dynamic response of a rigid massless
foundation resting on a half-space in [21]; (2) the dynamic response of
a rigid massless foundation on the surface of an arbitrary layered half-
space in [30]; (3) wave propagation due to incident waves in [21]; (4)
wave propagation through a layered soil due to a double-couple point
source in [39]. The details of the coupling method are also available in
the aforementioned sources and are not repeated here for the sake of
brevity.

The advantages of the current method include the followings: (1)
dynamic soil–structure problems involving complex structural models
can be considered due to the extensive element library of the FEM; (2)
Sommerfeld’s radiation condition at infinity is satisfied and the model
domain can be minimized, reducing computational cost; (3) different
types of dynamic or seismic source can be considered (see [39]); (4)
multi-layer problems with an arbitrary number of layers and geometry
can be considered, while avoiding high computational memory cost
(see [30]); (5) non-conforming BE and FE meshes along the interface
can be used, providing modeling flexibility; and (6) the macro-elements
of the BE subdomain can be transferred and reused for other FE models
(see [39]). The computation benefit for the current study is quantified
in Section 5.

The frequency domain BEM-FEM employed here results in complex-
valued outputs, i.e., pairs of real and imaginary data. Some results in
the following sections are presented in the form of a value at a phase
angle relative to its corresponding real value. In these cases, the phase
of the output is denoted as �̄�. For example, plotting the displacement
t �̄� = 0◦ and −90◦ results in the real and the imaginary part of
isplacement, respectively.

The FEM leads to sparse symmetric positive definite matrices,
hile the BEM based on the collocation technique leads to fully non-

ymmetric ones. As a result, the global matrices in our proposed direct
ybrid method are large, only partially sparse, and non-symmetric.
o solve this, one can utilize ABAQUS’s unsymmetric matrix storage
nd solver, see [41]. The disadvantage of the direct coupling method
elative to the iterative method in terms of matrix storage and solver
s compensated by the omission of necessary iterations. In addition,
ur improvement in allowing the reuse of the macro-elements further
xtends the advantage of the direct method by reducing computation
ime, as illustrated in Section 5.

imitations of the study

The current study considers a linear visco-elastic homogeneous half-
pace supporting the foundations. In addition, the soil here is assumed
o be in a dry condition. Although such a soil condition with constant
aterial properties is uncommon in nature, the results presented here

ffer an understanding of the governing interaction between the surface
oundations and soil in the case of synchronous and asynchronous
5

oads, which is important for understanding more complex problems.
Fig. 5. Comparison of vertical compliance functions obtained from models with one
load-sustaining foundation for varying mesh setup and with existing solution.

On the other hand, previous studies showed that the impedances of a
foundation embedded in a thick topsoil may be very well approximated
by those of a foundation embedded in a half-space, e.g., ℎ𝑠∕𝑟 > 20 in
the case of the horizontal impedance of a foundation embedded in a
poroelastic soil [42] and ℎ𝑠∕𝑏 > 12 in the case of the vertical compli-
ance of foundations resting on a soil overlaying a bedrock [18]. Here,
ℎ𝑠 is the topsoil thickness and 𝑟 is the foundation’s radius. In addition,
the assumption of a linear elastic material behavior taken here is only
suitable for problems involving low-strain vibrations (see [35]), such as
those associated with traffic or machine operations [23]. Consequently,
the effects of nonlinear material and contact behaviors such as liquefac-
tion, sliding, uplifting, or gapping are not within the scope of this study.
We also only consider vertical harmonic loads to adhere to the space
limit. Broader analyses and discussions on topics covering the effects
of foundation embedment, layered soil, groundwater table/saturation,
and an additional number of foundations are reserved for future studies.
In a broader sense, the authors’ idea is to develop in the near future
a library of BEM models, modeling the semi-infinite domain with
complex properties such as material anisotropy, poroelasticity, physical
and geometrical nonlinearity, and material gradient and heterogeneity
of different types. All these models are based on different analytically
derived fundamental solutions or half-space Green’s functions, which
are themselves complex tasks of mathematical physics.

3. Mesh convergence and setup

To study the mesh convergence, a case of two adjacent rigid founda-
tions, where only one of them is subjected to a vertical harmonic load,
is taken into account. The problem’s solution was given by Karabalis
and Mohammadi [17] using the BEM in the frequency domain. The
results are presented in the form of 𝑉33𝑗 , 𝑗 = 1, 2, where the subscript
𝑗 = 1 refers to the load-sustaining foundation and 𝑗 = 2 refers to its
counterpart.

The mesh sizes considered for this case are laid out in Table 1. In
addition to the regular discretization method, we also consider a mesh
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Table 1
Mesh sizes considered for the convergence study.

Name FE mesh BE mesh

Size (m) Formulation Type Size (m)

A 0.50 Reduced Regular 0.50
B 0.50 Linear Regular 0.50
C 0.50 Quadratic Regular 0.50
D 0.50 Quadratic Regular 0.40
E 0.35 Linear WL86 0.40
F 0.40 Quadratic WL86 0.40
G 0.35 Quadratic WL86 0.40

bias following the work by Wong and Luco [12] (marked as WL86 in
the table). Such a discretization method is important to capture the
stress concentration around the soil–foundation interfaces’ edges that
arise due to the foundations’ sharp corners. Following and modifying
the concept by Wong and Luco, the foundations and the soil underneath
are discretized horizontally into 16 × 16 grid. The sizes of the elements,
starting from an edge to a mid-line of a foundation, are defined as

𝛥𝑗 = 𝑏 𝛼(𝑗−1)
∑8

𝑗=1 𝛼(𝑗−1)
, for 𝑗 = 1, 2,… , 8. (12)

The constant 𝛼 controls the contrast between the elements’ sizes, and
we chose 𝛼 = 1.5. Sizes 0.5, 0.4, and 0.35 in Table 1 correspond to 𝛥8,
and they are 1/3.1, 1/3.9, and 1/4.5 of the shortest wavelength at a
frequency of 0.64 Hz, respectively. Note that this frequency results in
𝑎0 ≈ 4 for the aforementioned material properties and 𝑏 = 1 m. The bias
is also used to discretize the soil region surrounding the foundations.
These sizes in Table 1 are also used to mesh in the vertical direction
without bias. In the regular FE mesh type, the element sizes shown in
the table are applied to all finite elements without bias.

The finite region is meshed using hexahedral elements with either
linear (C3D8), quadratic (C3D20), or ‘‘reduced’’ (C3D8R) formulation.
The latter refers to an element type with one integration point, i.e., a
constant element. The BE model is meshed using linear quadrilateral
shell elements (S4).

A comparison of compliance functions between our numerical re-
sults with the ones by Karabalis and Mohammadi [17] is shown in
Fig. 5(a). Note that the latter was obtained using constant boundary
elements, a regular discretization technique, and relaxed boundary
conditions on the soil–foundation contact. The contact definition is
adapted to our numerical model for this particular part of the study.
The results are for a distance-to-half-width ratio, 𝑑∕𝑏, of 2 and 𝛽 of
5%. The hybrid BEM-FEM model results in a similar trend but lower
compliances (or higher impedances) compared to the existing solution,
even when using constant elements and a regular discretization tech-
nique (Mesh A). Reducing the element size and increasing the number
of integration points lead to an oscillation of the results towards con-
vergence (Fig. 5(b)), which is contrary to expectation. However, even
though the compliances obtained from Mesh A and Mesh G seem to
be similar, they differ significantly in terms of wave dispersion, as can
be seen in the results visualizations in Fig. 6. The wave field result
obtained from Mesh A shows a reasonable waveform but lacks the
deformation details. The loaded foundation’s displacement response to
a unit harmonic load from Mesh A and Mesh G are (0.44+i6.21)E-
2 m and (−1.43+i5.73)E-2 m, respectively. Thus, it can be examined
that Mesh A results in a shifted response relative to the results from
Mesh G. Hence, the similarities and oscillation found in Fig. 5 can be
explained by the fact that the compliance functions merge the real and
imaginary parts and may give an incomplete picture. The influence of
the discretization technique on the simulation result can be seen by
comparing the results from Mesh D with the ones from Mesh E or
Mesh F (Fig. 5(b)). The results from Mesh F and Mesh G show that
convergence is likely achieved. Based on these results, Mesh G is used
as the main setup for the parametric study.
6

Fig. 6. Visualized wave fields (real part) for Mesh A and Mesh G at a 𝑎0 = 2.0. Units
in meter.

Fig. 7. Comparison of vertical compliance functions obtained from models with one
load-sustaining foundation for varying distance between foundations.

The results in Figs. 5 and 6 show the importance of the discretiza-
tion technique, mesh sizes, and mesh formulation to the solution’s
accuracy. By gradually decreasing the mesh sizes, applying a mesh
bias to obtain a finer mesh near the foundations’ edges, and using
higher-order interpolation functions, it can be seen that the results are
improved towards convergence. Examination of the displacement fields
surrounding the foundation also reveals the presence of shorter wave-
lengths, which means that the finer mesh and higher order interpola-
tion surrounding the foundations’ edges serve not only to approximate
the stress concentration but also to capture the shorter waveforms.
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Fig. 8. Influence of 𝑑∕𝑏 on impedance coefficients (𝜈 = 1∕3, 𝑙∕𝑏 = 1, 𝛽 = 0%, 𝜙 = 0◦).
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Both points, otherwise, cannot be achieved using a regular meshing
technique and constant elements.

The discretized surface’s width in the BE model is chosen to be two
meters (Fig. 2(b)). A previous numerical experiment on this method
in [39] showed that a good accuracy can be obtained by keeping the
ratio between the longest shear wavelength, 𝜆𝑆 , and the discretized
surface of the half-space, 𝑙𝛤𝐵 , below 500, i.e., 𝜆𝑆∕𝑙𝛤𝐵 ≤ 500. For the
lowest considered frequency of 5E-3 Hz, the width leads to a ratio of
100.

The convergence study is extended for models with varying dis-
tances between foundations, 𝑑, and the results are compared with the
ones obtained from a model with a single foundation using mesh setup
Mesh G. In addition, the results are compared with the ones presented
in [21]. Compared to the results in [21], the simulations performed in
this study for a single foundation using Mesh G results in slightly higher
compliances, as shown in Fig. 7. This is because the results in [21]
were obtained using a regular meshing technique. By increasing 𝑑∕𝑏,
the results obtained from models with two foundations, in which only
one of them is subjected to a harmonic load, are converging towards the
results obtained from a single-foundation model, which is as expected.
The mean absolute differences between the compliances’ real part from
𝑑∕𝑏 = 1, 5, and 10 relative to the one from the single-foundation model
are 6.32%, 4.77%, and 2.05%, respectively. The corresponding values
for the imaginary part are 2.63%, 1.74%, and 1.17%, respectively. It
can be also concluded that the influence of a second foundation in this
case is rather minimal beyond a 𝑑∕𝑏 ratio of 5.

4. Numerical study results and discussions

The parametric study is focused on understanding the response of
adjacent rectangular foundations when both are experiencing dynamic
loads concurrently. The typical model geometry used for the parametric
study is as shown in Fig. 2. The parameters considered are as follows:
the clear distance between foundations, normalized to the foundations’
half-width, 𝑑∕𝑏; material damping, 𝛽; Poisson’s ratio, 𝜈; the shape
ratio of the rectangular foundations, presented as 𝑙∕𝑏; and the phase
angle between the harmonic loads acting on the foundations, 𝜙. The
illustration of the dimensions 𝑏, 𝑑, and 𝑙 can be found in Fig. 1. The
range of these parameters is chosen to represent mainly structures with
closely spaced foundations or short-to-medium span frame bridges and
is given in Table 2. The parametric study is performed by maintaining
the material properties as before (𝐶𝑆 = 1 m s−1, 𝜌 = 1 kg m−3, 𝜇 = 1
Pa) and a foundation half-width, 𝑏, of 1 m. The magnitude of the
vertical harmonic loads, |𝑃3|, is 1 N. For each soil–foundations setup,
simulations are performed for a frequency range of [0.005, 0.64] Hz.

The results of the parametric study are presented in the form of
7

impedance and compliance values shown in classical 2D plots and 3D a
Table 2
Range of parameters considered for the para-
metric study. The illustration of 𝑑, 𝑏, and 𝑙 is
given in Fig. 1.

Parameter Range or values

𝑑∕𝑏 0.1–10
𝛽 0%, 5%, 10%
𝜈 1/3, 0.40, 0.49
𝑙∕𝑏 1–4
𝜙 (−180◦)–180◦

surfaces. The latter provides completeness, and these two combined
perspectives facilitate a better understanding of the system’s response.
The 3D surfaces are also preferable for practical engineering purposes
due to the complexity of the system’s response, and they are available
online at https://doi.org/10.57892/100-50. A calculation example is
given in Appendix.

4.1. Influence of the distance between foundations

The impedance coefficients, 𝑘33 and 𝑐33, for varying foundations’
distance ratio, 𝑑∕𝑏, values and 𝜈 = 1∕3, 𝑙∕𝑏 = 1, and 𝜙 = 0◦ are
presented in Figs. 8(a) and 8(b). The simulations are performed for a
variety of 𝑑∕𝑏 values in a grid of 0.5, and the results are then organized
into impedance coefficients surfaces and a compliance surface as shown
in Figs. 9(a)–9(c).

Figs. 8 and 9 show that an increase in the distance between foun-
dations leads to an additional number of peaks in the foundation’s
response, which is dissimilar to the case of two adjacent foundations
when only one of them is receiving a harmonic load, see [18]. Figs. 9(a)
and 9(b) illustrate the influence of 𝑑∕𝑏 on the real and imaginary parts
coefficients of the impedance, while Fig. 9(c) shows the resonance
patterns in the compliance surface. The trend of decreasing resonance
frequency as 𝑑∕𝑏 increases can be observed here. It can also be observed
n Fig. 9 that these patterns of resonance occur as a result of the
nteraction between the foundation arrangement, excitation frequency,
nd soil properties. These patterns can be related to the shear or
ayleigh wavelength as is done in Wolf [43], who describes the FSFI of
ile foundations (⌀ = 2𝑟0) in terms of the ratio of the shear wavelength,

𝜆𝑆 , to the pile spacing, 𝑑𝑝. In this context, it was observed that the
resonant inertia (mass) results in a reduction of the real part of the
impedance function as the frequency increases. However, in the case
of group foundations, this reduction is interrupted by the progressive
predominance of the shear wave (𝜆𝑆 → 𝑑𝑝) between the piles. Once the
hreshold is reached, the soil experiences an increasingly pronounced

ntiphase oscillation, resulting in a significant decrease in stiffness. The

https://doi.org/10.57892/100-50
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Fig. 9. Influence of 𝑑∕𝑏 on impedance and compliance surfaces (𝜈 = 1∕3, 𝑙∕𝑏 = 1, 𝛽 = 0%, 𝜙 = 0◦).
Fig. 10. Vertical displacement fields (imaginary part) obtained from models with 𝑑∕𝑏 = 6, illustrating wave patterns at 𝑎0 (a) lower than and (b) within the first resonance
frequency. Other parameters are 𝑙∕𝑏 = 1, 𝜈 = 1∕3, 𝛽 = 0%, and 𝜙 = 0◦. Units in meter.
𝑛th nadir of the real part of the impedance at 𝑎0(𝑛),𝑟 is reached when
both piles oscillate out of phase.

𝑎0(𝑛),𝑟 =
2𝜋𝑟0
𝑑𝑝

(1 + 0.5𝑛) with 𝑛 ∈ Z+. (13)

A similar form to Eq. ((13)) can be obtained for the displacement or
compliance peaks in the context of rectangular foundations (𝑟0 → 𝑏
and 𝑑𝑝 → 𝑑). Fig. 9(d) shows that the resonance patterns can be
approximated using the relation
𝑑
𝑏
=
( 2
3
+ 0.95(𝑛 − 1)

)

𝜆𝑅 with 𝑛 ∈ Z+. (14)

Here, 𝜆𝑅 is the Rayleigh wavelength. Writing for 𝑎0, the following
approximation for the 𝑛th resonance line is obtained:

𝑎0(𝑛) =
𝜋𝑏 𝐶𝑅

( 4 + 1.9(𝑛 − 1)
)

with 𝑛 ∈ Z+. (15)
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𝑑 𝐶𝑆 3
Alternatively, one can reach a similar approximation accuracy without
using the Rayleigh wave velocity, 𝐶𝑅, by using

𝑎0(𝑛) =
𝜋𝑏
𝑑

(5
4
+ 1.8(𝑛 − 1)

)

with 𝑛 ∈ Z+. (16)

Note that in the formulae above, the influence of soil properties on the
resonance frequency is included in the term 𝑎0.

By examining the displacement fields, the relation between the
resonance patterns and the phase difference between the foundations’
response and that of a partitioned soil volume between foundations
can be observed. This argument is illustrated in Fig. 10, which shows
the imaginary vertical displacement fields for models with 𝑑∕𝑏 = 6.
Fig. 10(a) shows the displacement fields at 𝑎0 lower than the first
resonance frequency, while Fig. 10(b) shows those within it. The po-
sitions of these values are shown by blue and red circles, respectively,
in Fig. 9(d). These figures illustrate that the system starts to enter
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Fig. 11. Displacement pattern of twin surface foundations under synchronous harmonic loads during resonance states: Results from model with 𝑑∕𝑏 = 2 at 𝑎0 = 1.7 showing 𝑢3
at output phases corresponding to (a) the foundations’ minimum vertical displacement (�̄� = 70◦) and (b) the foundations’ maximum vertical displacement (�̄� = 240◦); results from
model with 𝑑∕𝑏 = 6 at (c) the first resonance frequency (𝑎0 = 0.73) and (d) the second resonance frequency (𝑎0 = 1.51) showing 𝑢3 at output phases corresponding to foundations’
minimum vertical displacements. Other parameters are 𝑙∕𝑏 = 1, 𝜈 = 1∕3, 𝛽 = 0%, and 𝜙 = 0◦.
Fig. 12. Vertical displacements for varying output phases, �̄�, along the line 𝑥2 = 𝑥3 = 0
obtained from a model with 𝑑∕𝑏 = 2, 𝑙∕𝑏 = 1, 𝜈 = 1∕3, 𝛽 = 0%, and 𝜙 = 0◦ at 𝑎0 = 1.39.
Black circles mark the start of the Rayleigh waves.

the first resonance pattern when the partitioned soil volume between
foundations starts to move out of phase relative to the foundations’
response, similar to an MDOF system. The peak resonance then occurs
when the phase difference between the response of the soil wedge
and the foundations is 180◦. The phase differences in these 2 figures
are 121◦ and 181◦, respectively, and these values are measured at
the foundations and the center of soil wedge between foundations
shown in Fig. 10(b). Although certain soil regions surrounding both
foundations move in phase with the soil wedge between foundations
(Fig. 10(b), blue areas outside both foundations), results obtained from
the simulation of a single foundation show that their movement does
not lead to resonance.

The kinematics of the system is further detailed in Fig. 11. The
displacement fields from a model with 𝑑∕𝑏 = 2 at output phases
corresponding to foundations’ minimum and maximum vertical dis-
placements are shown in the left figures. It can be observed that the
soil wedge between foundations experiences a shape transition during
the oscillation. The wave fields from models with 𝑑∕𝑏 = 6 at different
resonance frequencies are plotted on the right figures. They show that
the resonance at a higher frequency occurs when the soil volume
between foundations is partitioned further into smaller parts that move
9

Fig. 13. Vertical displacements (real part) along the line 𝑥2 = 𝑥3 = 0 at varying 𝑎0
obtained from models with 𝑑∕𝑏 = 2, 𝑙∕𝑏 = 1, 𝜈 = 1∕3, 𝛽 = 0%, and 𝜙 = 0◦.

at a phase of 180◦ to each other. For 𝑑∕𝑏 = 6, the first resonance
frequency occurs at (𝑑∕𝑏)∕𝜆𝑆 ≈ 0.70 and the second one occurs at
(𝑑∕𝑏)∕𝜆𝑆 ≈ 1.44 (see Fig. 9(c), magenta circle).

The form-finding of the partitioned soil wedge between foundations
is influenced by the distortion zone around the foundations, which is
the result of the kinematic and inertial interactions between the rigid
foundation and the soil. Fig. 12 shows the vertical displacement fields
obtained from a model with 𝑙∕𝑏 = 1, 𝜈 = 1∕3, and 𝛽 = 0% at excitation
frequency 𝑎0 = 1.39. The displacements are plotted for varying output
phases relative to their real value, �̄�. The figure illustrates the surface
wavelengths on the far-field direction (𝑥1 > 3) and on the region facing
the other foundation (0 ≤ 𝑥1 < 1). The distortion zone lies between
the foundation’s edge and the starting point of the Rayleigh wave. In
the figure, the starting point of each output phase’s Rayleigh wave is
marked with a black circle. It can be observed that the distortion zone
for a certain frequency or wavelength depends on the foundation’s po-
sition during its harmonic motion and that the distortion zone extends
from the edge of a foundation to approximately a half of the Rayleigh
wavelength, 𝜆𝑅, which in this case is 4.20 m. The figure also shows the
shorter wavelength appearing within the distortion zone. This supports
the result of the mesh convergence study that a finer mesh is required
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Fig. 14. Influence of 𝑙∕𝑏 on impedance and compliance function and surfaces (𝑑∕𝑏 = 2, 𝜈 = 1∕3, 𝛽 = 0%, 𝜙 = 0◦).
in the vicinity of the foundation, which would ensure that the shorter
wavelengths can be sufficiently approximated.

Fig. 13 presents the real part of vertical displacements along the line
𝑥2 = 𝑥3 = 0 from models of two foundations with 𝑑∕𝑏 = 2 at varying
𝑎0. It can be observed that the interaction between two foundations
results in a consistent wave pattern in the zone between foundations
for a wide range of excitation frequency, i.e., 0 < 𝑎0 ≤ 1.64. The wave
pattern is modified when the system enters and subsequently leaves
its resonance state (𝑎0(1) = 1.7, see Fig. 9(d), red diamond marker).
Upon examination of the results for varying output phases at 𝑎0 = 1.39,
shown in Fig. 12, it can be observed that this wave pattern between
foundations remains consistent regardless of the output phases, unlike
the wave pattern in the far-field direction. Thus, Figs. 12 and 13 show
that the behavior of the partitioned soil wedge between foundations
is related to the resonance patterns. In the practical field, this implies
that the material properties of the region between the foundations play
a significant role in the foundations’ behavior.

4.2. Influence of the foundation’s shape ratio

The foundation’s geometry is represented here as a ratio between its
half-length and half-width, 𝑙∕𝑏. The length 𝑙 is measured perpendicular
to the distance between the foundations 𝑑, see Fig. 1. The impedance
and compliance surfaces from models with 𝑙∕𝑏 = [1, 4] and 𝜈 = 1∕3,
𝛽 = 0%, 𝜙 = 0◦ are presented in Fig. 14. Fig. 14(a) shows that
dissimilar to the case of a single foundation, the ratio 𝑙∕𝑏 tends to have
an amplifying influence on the impedances’ real coefficients with local
minima found along 𝑎0 = [0.30, 0.58] and 𝑎0 = [2.08, 2.58]. On the other
hand, Fig. 14(c) depicts that the ratio has a complex influence on the
imaginary parts of the impedances in the low-frequency regime with
a higher value found in the vicinity of 𝑙∕𝑏 ≈ 3. Fig. 14(d), however,
shows that there is hardly any change in the resonance frequency. This
result is consistent with the results obtained from models with only one
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load-sustaining foundation, see [18]. This suggests that the changes in
the impedance coefficients due to the change of 𝑙∕𝑏 do not alter the
kinematics of the system and the increase in the participating soil mass
is proportional to the increase in the dynamic stiffness. The figure also
shows that compliance tends to exponentially decrease as 𝑙∕𝑏 value
increases. Considering that the half-length of the foundation, 𝑙, is not
taken into account in the derivation of 𝑉33 (see Eq. (2)), this effect can
be understood simply as the result of a larger spread of the energy.

The impedance surfaces obtained from models with 𝑑∕𝑏 = 4 and 6
are presented in Fig. 15. The figure shows that a similar amplification
effect is present in the impedances’ real coefficient surfaces, albeit
with a different magnitude (see the highest values shown in the scale
bar in Figs. 14(b), 15(a), and 15(c)). Figs. 14 and 15 also show that
foundations with 𝑙∕𝑏 ratio of around 3 consistently result in lower in-
phase coefficients (real part of the impedances) at a high-frequency
range and higher imaginary coefficients at a lower frequency range.

Further examination of the displacement fields reveals that increas-
ing 𝑙∕𝑏 induces an inconsistent shape transition of the soil volume
between foundations, which is crucial in the system’s resonance. This is
rather intriguing since the inconsistent shape transition does not influ-
ence the resonance frequency, as shown in Fig. 14(d). Fig. 16 presents
the real part of vertical displacement fields for varying 𝑙∕𝑏 values at a
resonance frequency. It can be observed by comparing Figs. 16(a) and
16(b) that increasing the shape ratio from 𝑙∕𝑏 = 1 to 𝑙∕𝑏 = 2 elongates
the soil wedge between foundations. However, models with 𝑙∕𝑏 = 3
and 4 result in partitioned soil regions with two smaller ellipsoids
rather than an elongated one, which suggests the predominance of
the shear or surface wavelength on the region between foundations.
This inconsistency may relate to the shift in the local minima found
in Fig. 14(a). This fact also suggests that a plane strain approach for
long rectangular foundations has to be taken carefully when the wave
dispersion is of interest. However, the compliance function results in



Soil Dynamics and Earthquake Engineering 182 (2024) 108740H.D.B. Aji et al.
Fig. 15. Influence of 𝑙∕𝑏 on impedance surfaces for 𝑑∕𝑏 = 4 and 6 (𝜈 = 1∕3, 𝛽 = 0%, 𝜙 = 0◦).
Fig. 16. Vertical displacement fields (real part) obtained from models with varying 𝑙∕𝑏 values at 𝑎0 = 1.64 and with 𝑑∕𝑏 = 2, 𝜈 = 1∕3, 𝛽 = 0%, and 𝜙 = 0◦. Units in meter.
Fig. 14(d) suggest that the foundation’s response produced by such
an approach may still be accurate. Further comparative study on this
point is suggested to form a more reliable conclusion. Note that when
approaching dynamic problems from a 2D perspective, one still has to
account for the damping paradox as discussed in [23].
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4.3. Influence of Poisson’s ratio

The impedance and compliance functions and surfaces for higher
Poisson’s ratios 𝜈 = 0.40 and 𝜈 = 0.49 and for varying 𝑑∕𝑏 are presented
in Fig. 17. Other material properties, i.e., 𝐶 , 𝜌, and 𝜇, are kept the
𝑆
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Fig. 17. Influence of 𝑑∕𝑏 on impedance and compliance functions and surfaces for 𝜈 = 0.40 and 𝜈 = 0.49 (𝑙∕𝑏 = 1, 𝛽 = 0%, 𝜙 = 0◦).
same as before. Further examination shows that the resonance lines in
Fig. 17(e) are the same as those appearing in Fig. 9(c), while the res-
onances in Fig. 17(f) are shifted in the +𝑎0-direction by approximately
0.05 relative to those in Fig. 9(c). This suggests the minor influence
of the Poisson’s ratio and that Eq. (15) would be more suitable for a
higher Poisson’s ratio.

The impedance coefficients obtained from the models with 𝑑∕𝑏 =
2, 𝑙∕𝑏 = 1, 𝜙 = 0◦, 𝛽 = 0%, and with 𝜈 = 1∕3, 0.40, and 0.49
are compared in Figs. 18(a) and 18(b); they are interpolated into
impedance and compliance surfaces in Figs. 18(c) and 18(d). It can be
observed that the influence of Poisson’s ratio on the real and imaginary
parts is as expected and similar to the one for the case of a single
foundation, e.g., in [37]. Although the influence of Poisson’s ratio
on the impedance’s real part surface varies for different frequency
ranges (Fig. 18(c)), higher Poisson’s ratio tends to result in a consistent
decrease in the foundation’s response for all frequency range as shown
in Fig. 18(d). The figure also shows that the resonance frequency
remains the same as 𝜈 increases. The influence of larger Poisson’s ratio
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is already known and well described for single foundations. Wolf [43]
describes this effect in terms of a trapped mass, which leads to a
continuous decrease in the real component of the impedance function
with increasing frequencies, as the inertia counteracts the stiffness.
Very similar correlations can be observed in Fig. 18(a). Conversely, the
higher incompressibility of a media with a high Poisson’s ratio increases
the static stiffness (see Eq. (9)), which overcompensates the decrease in
the in-phase impedance coefficients and, thus, reduces the displacement
responses.

Fig. 19 shows the effect of increasing Poisson’s ratios on the
Rayleigh wavelengths and on the foundations’ stiffness, as a result of
the increase in incompressibility.

4.4. Influence of material damping

In the case that a non-zero material damping is included in the
system, Eq. (4) is written as [36]

𝑆 (𝜔) = 𝐾 𝑘 (𝜔) − 𝜔𝛽𝐶 𝑐 (𝜔) + 𝑖
(

𝜔𝐶 𝑐 (𝜔) + 2𝛽𝐾 𝑘 (𝜔)
)

. (17)
𝑗𝑘 𝑗𝑘 𝑗𝑘 𝑗𝑘 𝑗𝑘 𝑗𝑘 𝑗𝑘 𝑗𝑘 𝑗𝑘
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Fig. 18. Influence of Poisson’s ratio 𝜈 on impedance and compliance functions and surfaces (𝑑∕𝑏 = 2, 𝑙∕𝑏 = 1, 𝛽 = 0%, 𝜙 = 0◦).
Fig. 19. Vertical displacements (imaginary part) along the line 𝑥2 = 𝑥3 = 0 obtained
from models with varying 𝜈 and with 𝑑∕𝑏 = 2, 𝑙∕𝑏 = 1, 𝛽 = 0%, and 𝜙 = 0◦.

To investigate the effect of material damping on the impedances, the
dynamic coefficients obtained from undamped cases are modified to
the damped ones, 𝑘𝑗𝑘(𝜔, 𝛽∗), 𝑐𝑗𝑘(𝜔, 𝛽∗), by the following relations:

𝑘𝑗𝑘(𝜔, 𝛽∗) =
ℜ
(

𝑆𝑗𝑘(𝜔)
)

− 𝜔𝛽ℑ
(

𝑆𝑗𝑘(𝜔)
)

𝐾𝑗𝑘
and (18)

𝑐𝑗𝑘(𝜔, 𝛽∗) =
ℑ
(

𝑆𝑗𝑘(𝜔)
)

+ 2𝛽ℜ
(

𝑆𝑗𝑘(𝜔)
)

𝜔𝐶𝑗𝑘
. (19)

The damping-modified impedance functions for varying 𝑑∕𝑏 values,
computed from undamped coefficients using the above relations, are
compared with those obtained from models with material damping
values, 𝛽, of 5% and 10% in Fig. 20. The modified and damped in-
phase coefficients fit quite well to each other for cases with 𝑑∕𝑏 = 2
and 𝛽 = 5% but the coefficients obtained from other cases show a good
agreement only in the low-frequency regime (Fig. 20(a)). On the other
hand, Fig. 20(b) shows very good agreements between the imaginary
coefficients for all cases. The relative differences between the in-phase
coefficients are quantified in Fig. 20(c). Taking into account the results
13
in Sections 4.1 and 4.2, the contrast in the approximation accuracies
between the real and the imaginary parts can be understood as the
complex influence of the mass of the partitioned soil volume between
the foundations. This can be illustrated by an examination of Eq. (17).
When mass, 𝑚, is included there, the real part of the impedance is
modified by the term −𝜔2𝑚, while the imaginary one is unchanged.
However, we find that a consistent pattern cannot be obtained by taking
the differences between the damping-modified impedances and damped
ones. As an alternative, the real part of undamped impedances can be
fitted to the damped impedances better in the higher frequency regime
when the coefficients of the former are modified using the following
relation:

𝑘𝑗𝑘(𝜔, 𝛽∗) =
ℜ
(

𝑆𝑗𝑘(𝜔)
)

𝐾𝑗𝑘
(

1 + 2𝛽𝑎0
) . (20)

Fig. 21 shows that the modified in-phase impedance coefficients, ob-
tained using the above relation, fit quite well with the ones for damped
cases up to 𝑎0 = 2.8. The maximum relative differences are shown to be
decreased to below 20%. Thus, Eq. (17) is modified for cases involving
non-zero material damping into

𝑆𝑗𝑘(𝜔) =
𝐾𝑗𝑘𝑘𝑗𝑘(𝜔)
(

1 + 2𝛽𝑎0
) + 𝑖

(

𝜔𝐶𝑗𝑘𝑐𝑗𝑘(𝜔) + 2𝛽𝐾𝑗𝑘𝑘𝑗𝑘(𝜔)
)

. (21)

This illustrates the complex influence of the inclusion of material
damping on the impedance coefficients.

4.5. Influence of the phase shift between harmonic loads

In adjacent foundations of structures such as bridges or machinery,
asynchronous harmonic loads may occur due to the nature of the pass-
ing vehicle or the operation sequence. A positive phase on a foundation
here can be understood as the foundation sustaining a slightly delayed
harmonic loading, relative to a reference foundation, while a negative
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Fig. 20. Comparison between impedances modified from models with zero material
damping and those obtained from models with non-zero material damping (𝜈 = 1∕3,
∕𝑏 = 1, 𝜙 = 0◦).

hase refers to the opposite experience of the reference foundation
see Fig. 3). Thus, the result of a simulation with a phase 𝜙 between
he harmonic loads can be plotted from the perspective of either the
eference or the second foundation.

Fig. 22 presents the impedance (real part) and compliance surfaces
or varying 𝑑∕𝑏 cases where a shift in the harmonic load is applied on
ne foundation. The impedances and compliances shown in the figure
re measured on the reference foundation which sustains no shift in its
oad. Thus, the results can be read as the response of a foundation under
harmonic load when a nearby foundation is receiving a load with a

hase shift but with the same magnitude and frequency. Data points
14

t

Fig. 21. Improved in-phase coefficients, 𝑘33, modified from the results of models with
ero material damping using Eq. (18) (𝜈 = 1∕3, 𝑙∕𝑏 = 1, and 𝜙 = 0◦).

or 𝑑∕𝑏 = 5 are shown in Figs. 22(a) and 22(b), which show that the
eal coefficient peaks are shifted accordingly. The 𝑎0 value related to
∕𝑏 = 5 is shifted from 0.53 in Fig. 9(a) to 0.68 and 0.98 for cases with
= −90◦ and −180◦, respectively. Note that these points are related

o the valleys in the corresponding compliance plots in Figs. 22(c) and
2(d). These last two figures also show new discontinuous resonance
atterns forming along the low frequency regime at 𝑎0 ≈ 0.4–0.6 (see
ig. 22(d), yellow dashed line).

The impedance and compliance function and surfaces from the
imulations with 𝑑∕𝑏 = 2, 𝜈 = 1∕3, 𝑙∕𝑏 = 1, 𝛽 = 0%, and 𝜙 = [−180, 180]
re examined in Fig. 23. The surfaces can be read as the response of
foundation under a vertical harmonic load when a nearby adjacent

oundation sustains a similar load with either a positive or a negative
hase shift. It is shown in Figs. 23(b)–23(d) that a positive phase
pplied on the second foundation’s load tends to shift the response
attern of the reference foundation towards a lower frequency, and a
egative phase tends to have the opposite effect. The rates of change
𝑎0∕𝛥𝜙 along the resonance frequencies in the positive and negative
hase directions are found to be approximately -1/450. However, the
nfluence of the phase shift on the compliance surface tends to be
amped at a higher frequency range (Fig. 23(d)). The decrease in the
esonance frequency in the case of a positive phase can be explained as
he result of a lower stiffening contribution (or group effect) from the
hased adjacent foundation. On the other hand, the foundation that
ustains a delayed harmonic load must deal with the residual energy
rom the preceding adjacent foundation, hence, the higher resonance
requency.

This trend continues in cases with larger separation distances be-

ween foundations, as shown in Fig. 24 for 𝑑∕𝑏 values of 4 and 6. The
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Fig. 22. Influence of 𝑑∕𝑏 on impedance and compliance surfaces for 𝜙 = −90◦ and −180◦ (𝜈 = 1∕3, 𝑙∕𝑏 = 1, 𝛽 = 0%).

Fig. 23. Influence of phase 𝜙 on impedance and compliance function and surfaces (𝑑∕𝑏 = 2, 𝜈 = 1∕3, 𝑙∕𝑏 = 1, 𝛽 = 0%).
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Fig. 24. Influence of phase 𝜙 on impedance and compliance surfaces for 𝑑∕𝑏 = 4 and 𝑑∕𝑏 = 6 (𝜈 = 1∕3, 𝑙∕𝑏 = 1, 𝛽 = 0%).
figure also shows the increasing number of peaks in the foundation’s
response in relation to the results in Fig. 9. The values of 𝛥𝑎0∕𝛥𝜙 for
𝑑∕𝑏 = 4 and 𝑑∕𝑏 = 6 vary across the surface plots and tend to be higher
relative to the ones for 𝑑∕𝑏 = 2, which illustrates the nonlinear effect
of interaction between the foundations’ arrangement and the phase
between the harmonic loads.

Fig. 25 presents the results from models with 𝑑∕𝑏 = 4 and 6 and
𝑙∕𝑏 = 2 and 3. The general patterns found in compliance surfaces for
𝑙∕𝑏 = 1 (Figs. 24(b) and 24(d)) remain present. The plots in Fig. 25
also show that the phase occurring between harmonic loads influences
the impedance coefficients’ amplitudes in addition to the shift in the
critical frequencies.

The system’s kinematics can be examined as before through the
phase difference between different parts of the system. Fig. 26 illus-
trates the kinematics of twin foundations under asynchronous loads for
cases with phases between harmonic loads, 𝜙, of 45◦, 90◦, and 180◦ and
with 𝑑∕𝑏 = 6, 𝑙∕𝑏 = 2, 𝜈 = 1∕3, and 𝛽 = 0%. The displacement fields
obtained from a model with 𝜙 = 45◦ show that a phase contrast of 180◦
can still be observed at a resonance frequency. In the case of a model
with 𝜙 = 90◦, a 165◦ phase difference is observed between the response
of the soil region between foundations and the reference foundation. A
180◦ phase contrast is no longer present.

The displacement fields obtained from a model with 𝜙 = 180◦ at
its second resonance frequency (𝑎0 ≈ 1.131) show a more complex
response where, in addition to the 180◦ phase difference between the
foundations’ responses, two soil parts are formed between foundations,
oscillating at a phase difference of 180◦ relative to each other, but not
to either of the foundations. This suggests that the higher resonance
frequency, in this case, is required such that the two oscillating soil
parts can be formed, and the forms are oscillating at a sufficient phase
following the distance required for the corresponding wavelength to
transmit their inertia back to the foundations.
16
5. Computational aspect

One of the advantages of our hybrid BEM-FEM implementation is
the ability to reuse the macro-elements or substructures for other FE
models (see Fig. 4). A complete computation of a hybrid BE-FE model
includes the following steps: (1) computation of the system of equations
of a BE model followed by a condensation and conversion of the
equations into a suitable form for the FE environment, (2) generation of
a macro-element from the BE model’s matrices using the substructure
procedure, (3) computation of the FE model followed by the assembly
of the system of equations from both subdomains into a global one, and
(4) solving the system of equations using a steady-state-direct solver
(see Fig. 4). Further details can be found in [30]. A partial computation
using a previously generated macro-element omits steps (1) and (2),
reducing the CPU time.

For the current study, a complete computation of a model with a
certain angular frequency requires the following CPU times for steps
(1), (2), and (3 and 4): 1150 s, 200 s, and 1700 s. We performed
5794 simulations, among which 110 simulations were performed as
complete computations. The rest were solved by reusing the generated
substructures or macro-elements. Thus, approximately 7.7E+6 s of CPU
time can be reduced, corresponding to 50.10% of the overall CPU
time. When measured as the elapsed time, the computations took
effectively 163 h as opposed to 817 h. This corresponds to 79,97%
reduction. Additionally, data storage of approximately 7.8 terabytes
can be avoided. This benefit made it possible for us to carry out the
extensive numerical simulations required for the current study within
a reasonable time frame.

6. Conclusions

This paper presents the results of a numerical study concerning the
response of twin adjacent rigid massless surface foundations resting
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Fig. 25. Influence of phase 𝜙 on the real parts of impedances for 𝑑∕𝑏 = 4 and 6 and 𝑙∕𝑏 = 2 and 3 (𝜈 = 1∕3, 𝛽 = 0%).
Fig. 26. Displacement pattern of twin surface foundations under asynchronous har-
monic loads during resonance states: Results from model with 𝑑∕𝑏 = 6 showing 𝑢3
at output phases, �̄�, corresponding to the reference foundation’s minimum vertical
displacement in cases with (a) 𝜙 = 45◦ (�̄� = 35◦), (b) 𝜙 = 90◦ (�̄� = 35◦), and (c)
𝜙 = 180◦ (�̄� = 60◦). Other parameters are 𝑙∕𝑏 = 2, 𝜈 = 1∕3, and 𝛽 = 0%.

on a homogeneous half-space under synchronous and asynchronous
harmonic loads. The current study is a step to better understand
17
such a system’s behavior and to provide a library of pre-calculated
impedance and compliance functions for practical engineering pur-
poses. The impedance and compliance values are presented here as 3D
surfaces for completeness and to facilitate a more thorough examina-
tion of the parameters’ influence. The parametric study is performed
using the hybrid BEM-FEM implemented in ABAQUS and MATLAB
[21,30,39].

We examine the influence of the distance between foundations, ma-
terial damping, Poisson’s ratio, the geometrical shape ratio of the foun-
dations, and the phase difference between harmonic loads. Conclusions
from the numerical results are summarized as follows:

• The results of the mesh convergence study show the importance
of the discretization grid and mesh formulation to the simulation’s
accuracy. A discretization technique with a bias, e.g., as one
proposed by Wong and Luco [12], is recommended to capture
the stress concentration and the shorter wavelengths near the
foundations’ edges.

• Resonance patterns occur as a result of interaction between the
foundations and soil. Increasing the foundations’ distance ratio
increases the number of resonance points along the same exci-
tation frequency range. Approximation formulae are proposed to
estimate the resonance frequencies as a function of the shear or
Rayleigh wave velocity.

• The foundation’s shape ratio tends to have an amplifying effect
on the real part of impedances. However, the change in the
resonance frequency is minimal. The displacement fields obtained
from long rectangular foundations, i.e., approaching strip founda-
tions, show waveforms that are inconsistent with ones of a plane
strain expectation.

• The effect of soil’s material damping cannot be fully decoupled
in the real part of the impedances. A new relation is proposed to
approximate this effect.
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Table 3
List of downloadble impedance and compliance surfaces.

Prefixes Description

Imped_k33_ Impedance surface (real part)
Imped_c33_ or Imped_a0c33_ Impedance surface (imaginary part)

Compli_V33_ Compliance surface

No. File Name 𝑑∕𝑏 𝜈 𝑙∕𝑏 𝜙

1 DB_Surf 0–10 1/3 1 0
2 DB_Po040_Surf 0–10 0.40 1 0
3 DB_Po049_Surf 0–10 0.49 1 0
4 Po_Surf 2 1/3–0.49 1 0
5 DB2_LB_Surf 2 1/3 1–4 0
6 DB4_LB_Surf 4 1/3 1–4 0
7 DB6_LB_Surf 6 1/3 1–4 0
8 Phi_DB2_Surf 2 1/3 1 (−180)–180
9 Phi_DB4_Surf 4 1/3 1 (−180)–180
10 Phi_DB6_Surf 6 1/3 1 (−180)–180
11 Phi_DB2_LB2_Surf 2 1/3 2 (−180)–180
12 Phi_DB4_LB2_Surf 4 1/3 2 (−180)–180
13 Phi_DB6_LB2_Surf 6 1/3 2 (−180)–180
14 Phi_DB2_LB3_Surf 2 1/3 3 (−180)–180
15 Phi_DB4_LB3_Surf 4 1/3 3 (−180)–180
16 Phi_DB6_LB3_Surf 6 1/3 3 (−180)–180
Fig. 27. Comparison of the system response of harmonic-excited foundations concerning different impedance functions (𝜙 =-90◦, 𝜈 = 0.4, 𝛽 = 2.5%).
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• Increasing Poisson’s ratio tends to decrease the foundation’s dis-
placement response due to the increasing incompressibility.

• The presence of a phase between the acting harmonic loads shifts
the resonance patterns. An adjacent foundation having a posi-
tive phase shifts the resonance peaks of a reference foundation
towards a lower frequency. For a certain foundation configura-
tion, the rate of change of the resonance peaks varies across the
frequencies and phases.

These results highlight the importance of FSFI in engineering design
nd optimization. It is demonstrated here that for a rather simple
oundations setup, the mutual play between the key factors of spatial
spect, material properties, and sustained loads may result in complex
ehavior and resonance patterns.
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Table 4
Calculation example.

Variable Value Unit Description

Foundation
𝑏 2 m
𝑙 4 m
ℎ 1 m
𝑑 8 m

(m1) Mass (1 foundation) 117.60 ton

External load
(p1) 𝑃3 −300 kN Can be complex-valued
(p2) 𝑓 7.00 Hz
(p3) 𝜙 −90 ◦ The phase of the load on the adjacent foundation

Soil properties
𝐶𝑆 110 m s−1
𝜌 1800 kg m−3

𝜈 0.40
𝛽 0.025
𝜇 21.78 MPa

(1) 𝜔 43.982 rad s−1
(2) 𝑎0 0.80
(3) 𝑑∕𝑏 4
(4) 𝑙∕𝑏 2
(5) 𝐴𝑏 32 m2

(6) 𝜒 0.5 Eq. (11)
(7) 𝐶𝐿 198.41 m s−1 Eq. (11)
(8) 𝐾33 477 908.22 kN m−1 Eq. (9)
(9) 𝐶33 11 428.60 kg s−1 Eq. (10)

Real part coefficient
(10) 𝑘33(𝜔) for 𝑙∕𝑏 = 1 1.072 Surf. No. 2 (k33) in Table 3: 𝑎0 in (2), 𝑑∕𝑏 in (3)
(11) Adjust. factor for 𝑙∕𝑏 = 1 1.098 Surf. No. 6 (k33) in Table 3: 𝑎0 in (2), 𝑙∕𝑏 = 1
(12) Adjust. factor for 𝑙∕𝑏 in (4) 1.232 Surf. No. 6 (k33) in Table 3: 𝑎0 in (2), 𝑙∕𝑏 in (4)
(13) 𝑘33(𝜔) adjusted for 𝑙∕𝑏 in (4) 1.203 (10) × (12)/(11)
(14) Adjust. factor for 𝜙 = 0◦ 1.257 Surf. No. 12 (k33) in Table 3: 𝑎0 in (2), 𝜙 = 0◦

(15) Adjust. factor for 𝜙 in (p3) 1.210 Surf. No. 12 (k33) in Table 3: 𝑎0 in (2), 𝜙 in (p3)
(16) 𝑘33(𝜔) adjusted for 𝜙 in (p3) 1.158 (13) × (15)/(14)

Imaginary part coefficient
(17) 𝑐33(𝜔) for 𝑙∕𝑏 = 1 0.831 Surf. No. 2 (c33) in Table 3: 𝑎0 in (2), 𝑑∕𝑏 in (3)
(18) Adjust. factor for 𝑙∕𝑏 = 1 0.863 Surf. No. 6 (c33) in Table 3: 𝑎0 in (2), 𝑙∕𝑏 = 1
(19) Adjust. factor for 𝑙∕𝑏 in (4) 0.915 Surf. No. 6 (c33) in Table 3: 𝑎0 in (2), 𝑙∕𝑏 in (4)
(20) 𝑐33(𝜔) adjusted for 𝑙∕𝑏 in (4) 0.881 (17) × (19)/(18)
(21) Adjust. factor for 𝜙 = 0◦ 0.694 Surf. No. 12 (c33) in Table 3: 𝑎0 in (2), 𝜙 = 0◦

(22) Adjust. factor for 𝜙 in (p3) 1.130 Surf. No. 12 (c33) in Table 3: 𝑎0 in (2), 𝜙 in (p3)
(23) 𝑐33(𝜔) adjusted for 𝜙 in (p3) 1.434 (20) × (22)/(21)

(24) Real part 555 349.57 kN m−1 𝐾33𝑘33(𝜔); (8) × (16)
(25) Damped real part 532 075.12 kN m−1 (24)/(1 + 2𝛽𝑎0)
(26) Imaginary part 16 389.10 kg s−1 𝐶33𝑐33(𝜔); (9) × (23)
(27) Damped imaginary part 17 018.16 kg s−1 (26)+2𝛽(24)/𝜔
(28) 𝑆33(𝜔) 532075.12 + 748497.84𝑖 kN m−1 Eq. (21)
(29) 𝑆33(𝜔) (including mass) 304584.69 + 748497.84𝑖 kN m−1 (28) - (m1)𝜔2

(30) |𝑢3| 3.70E−04 m Eq. (1); | (p1)/(29)|
(31) |𝑣3| 1.64E−02 m s−1 (30) × 𝜔
(32) |𝑎3| 0.72 m s−2 (30) × 𝜔2
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Appendix. Calculation example — harmonically excited founda-
tions

Two machines are placed on two adjacent foundations, each with
dimensions of 2𝑏 = 4 m, 2𝑙 = 8 m, and ℎ = 1 m. The foundations are sep-
rated by an 8 m clear distance, which corresponds to a center-to-center
istance of 12 m. Each foundation supports a mass of 117.6 tonnes,
ncluding its own weight. The soil properties are 𝐶𝑆 = 110 m s−1,
= 1800 kg m−3, 𝜈 = 0.40, 𝜇 = 21.78 MPa, and 𝛽 = 2.5 %,

Each machine is designed for an operating frequency of 7 Hz. Each
oundation is expected to transfer a load with a magnitude of 300 kN to
he underlying soil. The machines are operated such that one machine
ustains a delay of 0.1072 s relative to the other. This corresponds to
phase shift of 270◦, i.e., 𝜙 = 360◦ × 𝛥𝑡 × 𝑓 , where 𝑓 is the excitation

requency.
The calculation using the provided impedances is given in Ta-

le 4, where conversion to adjust the values from 𝜈 = 1∕3 to 0.40
s demonstrated. The displacement magnitudes, |𝑢 |, for the upstream
19

3 s
oundation calculated using the 3D surfaces and obtained using the hy-
rid numerical method are 3.70E−04 m and 3.73E−04 m, respectively.
he corresponding results for the downstream one are 6.12E−04 m and
.95E−04 m, respectively. The velocity and acceleration magnitudes
f the upstream foundation calculated in Table 4 are 0.0163 m s−1
nd 0.718 m s−2, respectively, while those obtained using the hybrid
ethod are 0.0164 m s−1 and 0.722 m s−2, respectively.

The comparison of the displacement magnitudes calculated using
mpedance functions of a single foundation and the presented 3D
urfaces of twin foundations reveals significant discrepancies. The dis-
lacement magnitude obtained using impedance functions of a single
oundation is 5.042E−04 m (see Fig. 27). The shown discrepancy of
≈ 36 % emphasizes the relevance of the FSFI for the practical design of
adjacent parallel harmonically excited foundations. Using the provided
impedance functions, the natural frequencies of the system can be iden-
tified as well, as pictured in Fig. 27(c). In addition to the magnitudes of
the complex calculation (see Table 4), the steady-state solution of 𝑢33 is
alculated in the time domain as a comparative analysis. This involves

ubjecting the foundation to a harmonic excitation 𝑓ℎ(𝑎0) and analyzing
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the steady-state response of the system. The result is shown as twin𝑆𝑆𝐷,𝑡
in Fig. 27(c). It is seen that the presented approach, together with the
normalization given by Eqs. (5) and (6), is applicable in both the time
and frequency domain. Material damping is taken into account using
the Dobry and Gazetas’ approach [44,45].
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